CN104134816A - 一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池 - Google Patents

一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池 Download PDF

Info

Publication number
CN104134816A
CN104134816A CN201410380855.1A CN201410380855A CN104134816A CN 104134816 A CN104134816 A CN 104134816A CN 201410380855 A CN201410380855 A CN 201410380855A CN 104134816 A CN104134816 A CN 104134816A
Authority
CN
China
Prior art keywords
film
anode
solid
current collector
array structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410380855.1A
Other languages
English (en)
Inventor
郭航
林杰
郭建来
刘畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201410380855.1A priority Critical patent/CN104134816A/zh
Publication of CN104134816A publication Critical patent/CN104134816A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池,涉及锂电池。设有基片、绝缘膜、阴极集流体、下层阳极集流体、阴极膜、固体电解质膜、阳极膜和上层阳极集流体;所述绝缘膜设在基片上,阴极集流体和下层阳极集流体设在绝缘膜上,阴极膜设在阴极集流体上,固体电解质膜覆盖在阴极膜上,阳极膜设在固体电解质膜上,上层阳极集流体设在阳极膜和下层阳极集流体上。利用硅衬底的各向异性腐蚀,精确制造出倒金字塔阵列结构,并将其应用于全固态微型薄膜锂电池中,提高单位立足面积内的活性物质负载量,而且使各层薄膜之间的接触更加紧密。同时采用独特的掩膜板设计,将上下电路引至同一平面,是提高微电池的空间利用率、结构稳定性的有效方式。

Description

一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池
技术领域
本发明涉及锂电池,尤其是涉及一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池。
背景技术
当今,随着微机电系统(MEMS)的迅速发展,外接电源已无法满足日益增长的微型化、集成化需求。微型薄膜锂电池由于其尺寸灵活、安全和高能量密度等优点,在微能源中脱颖而出。然而现有的全固态薄膜锂电池大部分都局限在二维平面内([1]K.F.Chiu,C.C.Chen,K.M.Lin,H.C.Lin,C.C.Lo,W.H.Ho,C.S.Jiang,Vacuum,84(2010)1296-1301;[2]J.F.Whitacre,W.C.West,B.V.Ratnakumar,J Electrochem Soc,150(2003)A1676;[3]B.J.Neudecker,N.J.Dudney,J.B.Bates,J Electrochem Soc,147(2000)517-523),空间利用率低,即使是已有的三维薄膜锂电池,通常结构复杂、工艺要求较高([4]L.Baggetto,R.A.H.Niessen,F.Roozeboom,P.H.L.Notten,Adv Funct Mater,18(2008)1057-1066;[5]L.Baggetto,H.C.M.Knoops,R.A.H.Niessen,W.M.M.Kessels,P.H.L.Notten,J MaterChem,20(2010)3703),大部分采用的矩形或柱状三维结构([6]M.Kotobuki,Y.Suzuki,H.Munakata,K.Kanamura,Y.Sato,K.Yamamoto,T.Yoshida,J Electrochem Soc,157(2010)A493;[7]D.Golodnitsky,V.Yufit,M.Nathan,I.Shechtman,T.Ripenbein,E.Strauss,S.Menkin,E.Peled,J Power Sources,153(2006)281-287),不易与微电子工艺结合,往往只是单个电极或需要加电解液([8]K.Yoshima,H.Munakata,K.Kanamura,J Power Sources,208(2012)404-408;[9]T.Ripenbein,D.Golodnitsky,M.Nathan,E.Peled,Electrochimica Acta,56(2010)37-41),从而没有真正微型化、固体化全电池,而且很少有研究者考虑电路的平面设计,将薄膜电池的上电路引线至基底面进行封装。
发明内容
为了克服上述现有技术的不足,本发明提供一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池。
本发明设有基片、绝缘膜、阴极集流体、下层阳极集流体、阴极膜、固体电解质膜、阳极膜和上层阳极集流体;
所述绝缘膜设在基片上,阴极集流体和下层阳极集流体设在绝缘膜上,阴极膜设在阴极集流体上,固体电解质膜覆盖在阴极膜上,阳极膜设在固体电解质膜上,上层阳极集流体设在阳极膜和下层阳极集流体上。
三维结构是利用SiO2当掩蔽层,用KOH溶液对<100>晶向的硅做各向异性腐蚀而得到。
所述基片可采用<100>晶向的硅片,所述绝缘膜可采用SiO2膜或Si3N4膜,所述阴极集流体、下层阳极集流体和上层阳极集流体可采用Pt、Au、Ni、Cu或Al,所述阴极集流体、下层阳极集流体优选Pt,上层阳极集流体优选Cu。
所述阴极膜可采用锂膜或金属的氧化物膜,优选LiCoO2薄膜;所述固体电解质膜为LiPON膜或改性的LiPON膜,优选LiPON薄膜;所述阳极膜可为金属或金属氧化物膜,优选SnOx薄膜。
所述阴极膜的面积可为0.1~1mm2,厚度可为0.1~2μm,优选面积0.65mm×0.8mm、厚度0.6μm;所述固体电解质膜的厚度可为0.1~2μm,优选0.6μm;所述阳极膜的厚度可为0.1~2μm,优选0.2μm。
所述阴极膜在氧气或者空气中进行300~1000℃退火处理,优选700℃退火处理。
所述绝缘膜可通过氧化法或者化学气相沉积法制备;所述阴极集流体、下层阳极集流体、阴极膜、固体电解质膜、阳极膜和上层阳极集流体均可通过磁控溅射法或脉冲激光沉积法制备。
本发明利用硅衬底的各向异性腐蚀,精确制造出倒金字塔阵列结构,并将其应用于全固态微型薄膜锂电池中,提高了单位立足面积内的活性物质负载量,而且使各层薄膜之间的接触更加紧密。同时采用独特的掩膜板设计,将上下电路引至同一平面,是提高微电池的空间利用率、结构稳定性的有效方式。
与现有技术相比,本发明的有益效果是:
1、硅基及其三维微结构与微电子工艺兼容,容易实现与微型器件的集成。
2、工艺连续性好、器件完整性好,制备完成后保护金属对微型电池,尤其是固体电解质具有良好的密封和引流作用。
3、所设计的三维结构与相同立足面积的二维结构对比,其接触面积提高了30%,微型电池的电化学性能可得到显著提高。
4、上层集流体将电流引至下层,后续可实现平面上的电路设计而不用进行另外的引线。
附图说明
图1为本发明实施例的横截面图;
图2为本发明实施例的俯视图;
图3为本发明实施例倒金字塔阵列的俯视图;
图4为本发明实施例倒金字塔结构的设计图。
具体实施方式
下面结合附图对本发明做进一步说明。
如图1~4所示,本发明实施例设有基片1、绝缘膜2、阴极集流体3a、下层阳极集流体3b、阴极膜4、固体电解质膜5、阳极膜6和上层阳极集流体7。
所述绝缘膜2设在基片1上,阴极集流体3a和下层阳极集流体3b设在绝缘膜2上,阴极膜4设在阴极集流体3a上,固体电解质膜5覆盖在阴极膜4上,阳极膜6设在固体电解质膜5上,上层阳极集流体7设在阳极膜6和下层阳极集流体3b上。
三维结构是利用SiO2当掩蔽层,用KOH溶液对<100>晶向的硅做各向异性腐蚀而得到。
所述基片1可采用<100>晶向的硅片,所述绝缘膜2可采用SiO2膜或Si3N4膜,所述阴极集流体3a、下层阳极集流体3b和上层阳极集流体7可采用Pt、Au、Ni、Cu或Al,所述阴极集流体3a、下层阳极集流体3b优选Pt,上层阳极集流体7优选Cu。
所述阴极膜4可采用锂膜或金属的氧化物膜,优选LiCoO2薄膜;所述固体电解质膜5为LiPON膜或改性的LiPON膜,优选LiPON薄膜;所述阳极膜6可为金属或金属氧化物膜,优选SnOx薄膜。
所述阴极膜4的面积可为0.1~1mm2,厚度可为0.1~2μm,优选面积0.65mm×0.8mm、厚度0.6μm;所述固体电解质膜5的厚度可为0.1~2μm,优选0.6μm;所述阳极膜6的厚度可为0.1~2μm,优选0.2μm。
所述阴极膜4在氧气或者空气中进行300~1000℃退火处理,优选700℃退火处理。
所述绝缘膜2可通过氧化法或者化学气相沉积法制备;所述阴极集流体3a、下层阳极集流体3b、阴极膜4、固体电解质膜5、阳极膜6和上层阳极集流体7均可通过磁控溅射法或脉冲激光沉积法制备。
首先采用<100>标准硅片,在上下表面都氧化一层SiO2,再光刻出500μm×500μm的三维腐蚀窗口。然后以SiO2为掩蔽层,用KOH溶液对硅进行湿法腐蚀,得到如图3和4所示的三维结构,腐蚀出的结构与平面的夹角为α=54.7°。再去掉原来的SiO2,重新氧化一层新的绝缘隔离层。接着在衬底上涂覆光刻胶,光刻后形成电流收集极窗口,先溅射一层较薄的Cr作为粘黏层,再溅射一层较厚的Pt作为阴极集流体和下层阳极集流体,然后在丙酮中剥离掉多余的金属。类似地,涂胶后光刻出500μm×500μm的正极窗口,然后溅射一层约600nm厚的LiCoO2作为阴极膜,再用丙酮剥离掉多余的材料。为了减少薄膜应力和实现晶体化,将整个基片放在氧气氛围中,以700℃退火2h。涂胶后同时光刻出电解质和负极的窗口,溅射一层约600nm厚的LiPON作为固体电解质膜,再溅射一层约200nm厚的SnOx作为阳极膜,然后用丙酮剥离掉多余的材料。最后溅射一层较厚的Cu作为上层阳极集流体膜,然后涂胶光刻出保护层窗口,并用强酸溶液腐蚀得到最后的结构。

Claims (10)

1.一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池,其特征在于设有基片、绝缘膜、阴极集流体、下层阳极集流体、阴极膜、固体电解质膜、阳极膜和上层阳极集流体;
所述绝缘膜设在基片上,阴极集流体和下层阳极集流体设在绝缘膜上,阴极膜设在阴极集流体上,固体电解质膜覆盖在阴极膜上,阳极膜设在固体电解质膜上,上层阳极集流体设在阳极膜和下层阳极集流体上。
2.如权利要求1所述一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池,其特征在于所述基片采用<100>晶向的硅片。
3.如权利要求1所述一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池,其特征在于所述绝缘膜采用SiO2膜或Si3N4膜。
4.如权利要求1所述一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池,其特征在于所述阴极集流体、下层阳极集流体和上层阳极集流体采用Pt、Au、Ni、Cu或Al,所述阴极集流体、下层阳极集流体优选Pt,上层阳极集流体优选Cu。
5.如权利要求1所述一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池,其特征在于所述阴极膜采用锂膜或金属的氧化物膜,优选LiCoO2薄膜;所述阴极膜的面积可为0.1~1mm2,厚度可为0.1~2μm,优选面积0.65mm×0.8mm、厚度0.6μm。
6.如权利要求1所述一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池,其特征在于所述固体电解质膜为LiPON膜或改性的LiPON膜,优选LiPON薄膜;所述固体电解质膜的厚度可为0.1~2μm,优选0.6μm。
7.如权利要求1所述一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池,其特征在于所述阳极膜为金属或金属氧化物膜,优选SnOx薄膜;所述阳极膜的厚度可为0.1~2μm,优选0.2μm。
8.如权利要求1所述一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池,其特征在于所述阴极膜在氧气或者空气中进行300~1000℃退火处理,优选700℃退火处理。
9.如权利要求1所述一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池,其特征在于所述绝缘膜通过氧化法或者化学气相沉积法制备。
10.如权利要求1所述一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池,其特征在于所述阴极集流体、下层阳极集流体、阴极膜、固体电解质膜、阳极膜和上层阳极集流体均通过磁控溅射法或脉冲激光沉积法制备。
CN201410380855.1A 2014-08-05 2014-08-05 一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池 Pending CN104134816A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410380855.1A CN104134816A (zh) 2014-08-05 2014-08-05 一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410380855.1A CN104134816A (zh) 2014-08-05 2014-08-05 一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池

Publications (1)

Publication Number Publication Date
CN104134816A true CN104134816A (zh) 2014-11-05

Family

ID=51807407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410380855.1A Pending CN104134816A (zh) 2014-08-05 2014-08-05 一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池

Country Status (1)

Country Link
CN (1) CN104134816A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449168A (zh) * 2015-11-19 2016-03-30 中国航空工业集团公司北京航空材料研究院 具有界面修饰层的金属基固态薄膜锂电池正极的制备方法
CN106058305A (zh) * 2016-08-12 2016-10-26 合肥国轩高科动力能源有限公司 一种用pld原位制备微型全固态薄膜锂离子电池的方法
CN106848390A (zh) * 2016-12-05 2017-06-13 东莞市绿骏电动自行车科技有限公司 一种3d结构的薄膜锂电池
WO2017180945A1 (en) * 2016-04-14 2017-10-19 Applied Materials, Inc. Energy storage device with encapsulation anchoring
CN108325876A (zh) * 2017-12-19 2018-07-27 成都亦道科技合伙企业(有限合伙) 锂电池材料高通量筛选方法
CN109817972A (zh) * 2019-01-24 2019-05-28 深圳市致远动力科技有限公司 具有微纳结构的全固态薄膜锂电池
WO2021059045A1 (en) * 2019-09-23 2021-04-01 International Business Machines Corporation High capacity compact lithium thin film battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030152829A1 (en) * 2002-02-12 2003-08-14 Ji-Guang Zhang Thin lithium film battery
US6835493B2 (en) * 2002-07-26 2004-12-28 Excellatron Solid State, Llc Thin film battery
CN101771168A (zh) * 2010-02-11 2010-07-07 厦门大学 微型锂电池的制备方法
CN102082288A (zh) * 2009-11-30 2011-06-01 比亚迪股份有限公司 一种锂离子二次电池及其制造方法
CN102301519A (zh) * 2009-02-03 2011-12-28 索尼公司 薄膜固态锂离子二次电池及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030152829A1 (en) * 2002-02-12 2003-08-14 Ji-Guang Zhang Thin lithium film battery
US6835493B2 (en) * 2002-07-26 2004-12-28 Excellatron Solid State, Llc Thin film battery
CN102301519A (zh) * 2009-02-03 2011-12-28 索尼公司 薄膜固态锂离子二次电池及其制造方法
CN102082288A (zh) * 2009-11-30 2011-06-01 比亚迪股份有限公司 一种锂离子二次电池及其制造方法
CN101771168A (zh) * 2010-02-11 2010-07-07 厦门大学 微型锂电池的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIE SONG等: "Solid-state microscale lithium batteries prepared with microfabrication processes", 《JOURNAL OF MICROMECHANICS AND MICROENGINEERING》 *
MOHAMED GAD-EL-HAK: "《微机电系统设计与加工》", 28 February 2010, 机械工业出版社 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449168A (zh) * 2015-11-19 2016-03-30 中国航空工业集团公司北京航空材料研究院 具有界面修饰层的金属基固态薄膜锂电池正极的制备方法
CN105449168B (zh) * 2015-11-19 2018-01-19 中国航空工业集团公司北京航空材料研究院 具有界面修饰层的金属基固态薄膜锂电池正极的制备方法
US10547040B2 (en) 2016-04-14 2020-01-28 Applied Materials, Inc. Energy storage device having an interlayer between electrode and electrolyte layer
WO2017180945A1 (en) * 2016-04-14 2017-10-19 Applied Materials, Inc. Energy storage device with encapsulation anchoring
CN106058305A (zh) * 2016-08-12 2016-10-26 合肥国轩高科动力能源有限公司 一种用pld原位制备微型全固态薄膜锂离子电池的方法
CN106848390B (zh) * 2016-12-05 2019-02-01 东莞市绿骏电动自行车科技有限公司 一种3d结构的薄膜锂电池
CN106848390A (zh) * 2016-12-05 2017-06-13 东莞市绿骏电动自行车科技有限公司 一种3d结构的薄膜锂电池
CN108325876A (zh) * 2017-12-19 2018-07-27 成都亦道科技合伙企业(有限合伙) 锂电池材料高通量筛选方法
CN109817972A (zh) * 2019-01-24 2019-05-28 深圳市致远动力科技有限公司 具有微纳结构的全固态薄膜锂电池
WO2021059045A1 (en) * 2019-09-23 2021-04-01 International Business Machines Corporation High capacity compact lithium thin film battery
CN114424377A (zh) * 2019-09-23 2022-04-29 国际商业机器公司 高容量紧凑型锂薄膜电池
GB2602607A (en) * 2019-09-23 2022-07-06 Ibm High capacity compact lithium thin film battery
GB2602607B (en) * 2019-09-23 2023-05-17 Ibm High capacity compact lithium thin film battery

Similar Documents

Publication Publication Date Title
CN104134816A (zh) 一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池
CN101771168B (zh) 微型锂电池的制备方法
US10256500B2 (en) Three-dimensional batteries and methods of manufacturing the same
CN101796654B (zh) 集成电化学和太阳能电池
TWI796295B (zh) 於電極與電解質層間具有中間層之能量儲存元件
JP6590242B2 (ja) 薄膜全固体電池
CN107078268B (zh) 具有受保护负电极的电化学单元
US8722234B2 (en) Microbattery and method for manufacturing same
CN105529489B (zh) 全固态二次电池组件的制备方法
US10903525B2 (en) Self-supporting thin-film battery and method of manufacturing such a battery
JP2014241275A (ja) 固体電池およびその製造方法
US10084207B2 (en) Substrate for solid-state battery
CN102035030B (zh) 用于形成垂直薄膜锂离子电池的方法
KR20110139221A (ko) 리튬 마이크로배터리 및 그의 제조 방법
CN108808058B (zh) 一种具有图案化结构的高电压固态薄膜锂电池片
US20160293905A1 (en) Electrochemical device, such as a microbattery or an electrochromic system, covered by an encapsulation layer comprising a barrier film and an adhesive film, and method for fabricating one such device
JP2014523618A (ja) 電池を電気的に接続する前に電池の動作を試験して電池を有するデバイスを作製する方法
CN106531949B (zh) 一种直立结构的全固态薄膜锂离子电池极耳引出方法
CN104393346A (zh) 锂微电池的制造方法
US9972827B2 (en) Method for producing 3D-structured thin films
CN204271201U (zh) 一种固态锂离子薄膜电池
WO2021245790A1 (ja) リチウム二次電池
CN107681192B (zh) 锂离子电池及其制造方法、电子装置
CN108963325A (zh) 软包锂离子电池及其制备方法与用电设备
KR101417575B1 (ko) 배터리 분리 방법 및 이를 이용한 배터리 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20141105

RJ01 Rejection of invention patent application after publication