WO2018042945A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2018042945A1
WO2018042945A1 PCT/JP2017/026697 JP2017026697W WO2018042945A1 WO 2018042945 A1 WO2018042945 A1 WO 2018042945A1 JP 2017026697 W JP2017026697 W JP 2017026697W WO 2018042945 A1 WO2018042945 A1 WO 2018042945A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
secondary battery
oxide semiconductor
hydroxide
semiconductor layer
Prior art date
Application number
PCT/JP2017/026697
Other languages
English (en)
French (fr)
Inventor
孝司 殿川
裕 小坂
和之 津國
光 高野
重英 秩父
一信 小島
Original Assignee
株式会社日本マイクロニクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本マイクロニクス filed Critical 株式会社日本マイクロニクス
Priority to EP17845955.8A priority Critical patent/EP3509157B1/en
Priority to CN201780052280.2A priority patent/CN109643829B/zh
Priority to CA3034996A priority patent/CA3034996C/en
Priority to KR1020197005550A priority patent/KR102144979B1/ko
Publication of WO2018042945A1 publication Critical patent/WO2018042945A1/ja
Priority to US16/286,362 priority patent/US11245113B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This embodiment relates to a secondary battery.
  • the conventional secondary battery does not use an electrolytic solution / rare element and can be made thin, the first electrode / insulator / n-type oxide semiconductor layer / p-type oxide semiconductor layer / second electrode Stacked secondary batteries have been proposed.
  • a positive electrode including a positive electrode active material film containing nickel oxide or the like as a positive electrode active material, a solid electrolyte having a water-containing porous structure, and a negative electrode including titanium oxide or the like as a negative electrode active material A secondary battery including a negative electrode including an active material film has been proposed.
  • Japanese Patent No. 5508542 Japanese Patent No. 5297809 JP 2015-82445 A JP 2016-82125 A
  • This embodiment provides a secondary battery with high energy density, high battery characteristics (storage capacity), and high reliability.
  • a first conductivity type first oxide semiconductor layer and a first insulator and a first conductivity type second oxide are disposed on the first oxide semiconductor layer.
  • a first charging layer made of a semiconductor, a second conductive type third oxide semiconductor layer disposed on the first charging layer, and between the first charging layer and the third oxide semiconductor layer There is provided a secondary battery including a hydroxide layer disposed and having a metal hydroxide constituting the third oxide semiconductor layer.
  • the energy density is improved, the battery characteristics (storage capacity) can be increased, and a highly reliable secondary battery can be provided.
  • the secondary battery which concerns on embodiment WHEREIN The scanning electron microscope (SEM) photograph example of the cross section of the sample which produced the 2nd charge layer using the silicone oil.
  • FIG. 10 is a SIMS profile example for each element in the secondary battery according to the embodiment shown in FIG.
  • the figure which shows the relationship of resistance R (a.u.) and energy density (a.u.) between the 1st electrode and the 2nd electrode with respect to electrical conductivity adjustment material addition amount.
  • the secondary battery 30 is disposed on the first conductivity type first oxide semiconductor layer 14 and the first oxide semiconductor layer 14, and includes the first insulator and the first oxide semiconductor layer 14.
  • a first charge layer 16 made of a first conductivity type second oxide semiconductor; a second conductivity type third oxide semiconductor layer 24 disposed on the first charge layer 16; a first charge layer 16; and a hydroxide layer 22 having a metal hydroxide that is disposed between the oxide semiconductor layer 24 and the third oxide semiconductor layer 24.
  • the secondary battery 30 may include a second charging layer 18 disposed between the first charging layer 16 and the hydroxide layer 22 as shown in FIG.
  • the second charge layer 18 may include a second insulator.
  • the second charge layer 18 may include a second insulator and a conductivity adjusting material.
  • the first charge layer 16 may have a composition different from each other and have at least a two-layer structure.
  • the first charge layer 16 may be formed of, for example, silicon oxide (SiO 2 ) / titanium oxide (TiO 2 ). Specifically, it may be formed by a layer structure of SiO 2 / TiO 2, or may be formed by particles bonded structure coated around the TiO 2 particle shape by SiO 2.
  • the first charging layer 16, TiO 2 may be provided with a structure mixed with SiO 2 or TiO 2 is wrapped in silicon oxide.
  • the composition of titanium oxide and silicon oxide is not limited to TiO 2 and SiO 2, may include a structure in which the composition ratio x of such TiO x or SiO x is changed.
  • the n-type oxide semiconductor may be an oxide of titanium (Ti), tin (Sn), zinc (Zn), or magnesium (Mg), SiO 2 and Ti, Sn, Zn, Mg It may be an oxide layer structure, or may be formed by a particle bonding structure in which the periphery of Ti, Sn, Zn, and Mg oxides having a particle shape is covered with SiO 2 . In addition, a structure in which SiO 2 and molecules or molecular groups of Ti, Sn, Zn, and Mg oxides are surrounded by SiO 2 (amorphous) may be provided.
  • the first charging layer 16 may have a porous structure.
  • the second oxide semiconductor may include at least one oxide selected from the group consisting of oxides of Ti, Sn, Zn, or Mg.
  • the conductivity adjusting material may include a first conductivity type semiconductor or metal oxide.
  • the conductivity adjusting material may comprise at least one oxide selected from the group consisting of Sn, Zn, Ti, or niobium (Nb) oxide.
  • the second insulator may include SiO 2 and the conductivity adjusting material may include SnO x .
  • the second insulator may include SiO x formed from silicone oil.
  • the first insulator may include SiO 2
  • the second oxide semiconductor may include TiO 2 .
  • the metal hydroxide is reduced by applying an electric field during charging to convert holes (h + ) into hydrogen ions (H + ), and during discharge, the hydrogen ions are converted into holes. It is a layer to convert to.
  • Ni (OH) 2 nickel hydroxide
  • NiOOH nickel oxyhydroxide
  • the first charging layer 16 is a layer that forms a pair with the hydroxide layer 22 and accumulates hydrogen generated during charging.
  • a reaction of M + H 2 O + e ⁇ ⁇ MH + OH ⁇ proceeds during charging, and a reaction of MH + OH ⁇ ⁇ M + H 2 O + e ⁇ proceeds during discharging.
  • the efficiency of hydrogen accumulation can be increased.
  • hydrogen accumulation and conductivity can be optimized by using a plurality of layers.
  • the second oxide semiconductor can be optimized by using an oxide of Ti, Sn, Zn, or Mg.
  • the second charge layer 18 is a buffer layer for adjusting the movement of H + and electrons (e ⁇ ). By adding a conductivity adjusting material, the mobility of H + and e ⁇ can be further adjusted. By using an oxide of Sn, Zn, Ti or Nb as the conductivity adjusting material, the second charge layer 18 can be formed thick and electrically with a high breakdown voltage.
  • the oxide semiconductor layer 24 forms a pn junction with the n-type semiconductor of the hydroxide layer (NiOOH of the nickel hydroxide layer), and can suppress charge leakage during charging.
  • the p-type oxide semiconductor layer 24 is made of NiO, a Ni (OH) 2 layer can be formed by electrical stimulation.
  • the n-type first oxide semiconductor layer 14 has an intermediate electrical resistance between the first electrode 12 and the first charging layer 16, and smoothes electrical connection.
  • the secondary battery 30 includes a first electrode 12 and a second electrode 26, and the first oxide semiconductor layer 14 includes an n-type first oxide semiconductor layer.
  • the second oxide semiconductor includes an n-type second oxide semiconductor
  • the third oxide semiconductor layer 24 includes a p-type third oxide semiconductor layer, and the second electrode 26. It may be connected to.
  • the third oxide semiconductor layer 24 includes nickel oxide (NiO), and the hydroxide layer 22 includes nickel hydroxide (Ni (OH) 2 ) or At least one of nickel oxyhydroxide (NiOOH) may be provided.
  • the third oxide semiconductor layer 24 includes nickel oxide (NiO), and the hydroxide layer 22 includes nickel hydroxide (Ni (OH) 2 ) and nickel oxyhydroxide.
  • NiOOH nickel hydroxide
  • Ni (OH) 2 nickel hydroxide
  • NiOOH nickel oxyhydroxide
  • the third oxide semiconductor layer 24 includes nickel oxide (NiO), and the hydroxide layer 22 includes nickel oxyhydroxide (NiOOH) during full charge. At the time of full discharge, nickel hydroxide (Ni (OH) 2 ) is provided.
  • Ni (OH) 2 nickel hydroxide
  • NiOOH nickel oxyhydroxide
  • NiOOH nickel oxyhydroxide
  • the hydroxide layer 22 may be formed directly on the second charging layer 18 or, as will be described later, a p-type third oxide semiconductor layer 24 and an n-type first oxide semiconductor layer 14. Alternatively, a pulse voltage may be periodically applied between them.
  • a nickel hydroxide (Ni (OH) 2 ) layer is provided between the charge layer (first charge layer 16 + second charge layer 18) 20 and the third oxide semiconductor layer 24.
  • the storage capacity can be increased by forming.
  • a layer (Ni (OH) x ), Si () containing many OH groups between the second charging layer 18 and the p-type third oxide semiconductor layer 24 is used.
  • a configuration in which OH) X is formed and inserted may be adopted. With such a configuration, the storage capacity can be increased and the battery performance can be improved.
  • the hydroxide layer 22 is not limited to nickel hydroxide (Ni (OH) 2 ), and is a mixture of layers containing a large amount of OH groups (Ni (OH) x ), Si (OH) x, and the like. It may be formed as a layer. Further, structurally, Ni, Si, O, H, and a compound of an element constituting the second charge layer 18 may be included.
  • the p-type third oxide semiconductor layer 24 is nickel oxide (NiO)
  • the hydroxide layer 22 is at least one of nickel hydroxide (Ni (OH) 2 ) or nickel oxyhydroxide (NiOOH)
  • the charge layer 16 is formed of SiO 2 / TiO 2 and the second charge layer 18 is formed of SiO 2 / SnO will be described.
  • FIG. 2A An energy band diagram before charging the secondary battery 30 according to the embodiment is expressed as shown in FIG. 2A, and a schematic configuration of each layer corresponding to FIG. 2A is shown in FIG. It is expressed as shown in Here, E f represents the Fermi level.
  • the p-type third oxide semiconductor layer 24 of nickel oxide (NiO) is connected to the second electrode (26) E2, and the first charging layer 16 of SiO 2 / TiO 2 is connected to the first electrode (12) E1. Yes.
  • the energy band diagram before charging the secondary battery 30 according to the embodiment is expressed as shown in FIG. 2A, and NiO / Ni (OH) 2 with respect to the vacuum level.
  • the conduction band of / SnO / TiO 2 exists at a level of 1.8 eV / 1.47 eV / 4.3 to 4.5 eV / 4.3 eV.
  • the band gap energy E g of NiO / Ni (OH) 2 / SnO / TiO 2 is 4.0 eV / 3.7 eV / 3.8 eV / 3.2 eV.
  • the band gap energy E g of SiO 2 constituting the charge layer 20 is 8.9 eV.
  • the hydroxide layer 22 is nickel hydroxide (Ni (OH) 2 ).
  • FIG. 1 An energy band diagram in a state where, for example, about 2.8 V is applied as a charging voltage with the second electrode E2 connected to plus (+) and the first electrode E1 connected to minus ( ⁇ ) is shown in FIG. It is expressed as follows.
  • the Fermi level E f in a state where about 2.8 V is applied is expressed as shown in FIG.
  • the hydroxide layer 22C being charged generates nickel oxyhydroxide (NiOOH) from nickel hydroxide (Ni (OH) 2 ).
  • the layer 22C is represented by a layer structure of nickel hydroxide (Ni (OH) 2 ) / nickel oxyhydroxide (NiOOH) as shown in FIGS. 3 (a) and 3 (b).
  • the nickel hydroxide (Ni (OH) 2 ) layer is mainly disposed on the nickel oxide layer (NiO) side, and the nickel oxyhydroxide (NiOOH) layer is disposed on the second charging layer 18 side.
  • the energy band diagram in the fully charged state of the secondary battery 30 according to the embodiment is expressed as shown in FIG. 4A, and the schematic configuration of each layer corresponding to FIG. ).
  • the conduction band of NiO / NiOOH exists at a level of 1.8 eV + 2.8 eV / ⁇ eV + 2.8 eV.
  • the band gap energy E g of NiOOH is 1.75 eV.
  • the nickel hydroxide (Ni (OH) 2 ) layer 22 is changed to a nickel oxyhydroxide (NiOOH) layer 22F, and unstable NiOOH Energy is stored as a chemical potential.
  • the energy band diagram in the discharge state (connected to the load) of the secondary battery 30 according to the embodiment is expressed as shown in FIG. 5A, and the schematic configuration of each layer corresponding to FIG. This is expressed as shown in FIG. That is, an energy band diagram in a discharge state (connected to the load) in which the load 42 is connected between the second electrode E2 and the first electrode E1 is expressed as shown in FIG.
  • the Fermi level E f in a state where approximately 2.8 V is applied gradually increases according to the discharge state, as shown in FIG.
  • the reverse reaction of the above charging operation occurs.
  • the hydroxide layer 22D during discharge generates nickel hydroxide (Ni (OH) 2 ) from nickel oxyhydroxide (NiOOH).
  • the layer 22D is represented by a layer structure of nickel hydroxide (Ni (OH) 2 ) / nickel oxyhydroxide (NiOOH) as shown in FIGS. 5 (a) and 5 (b).
  • the nickel hydroxide (Ni (OH) 2 ) layer is mainly formed on the nickel oxide layer (NiO) side, and the nickel oxyhydroxide (NiOOH) layer is formed on the second charge layer 18 side.
  • the load 42 is externally connected between the second electrode E2 and the first electrode E1, and therefore, inside the secondary battery 30, electrons e ⁇ are generated from the n-type oxide semiconductor (TiO 2 ) of the charge layer 20.
  • the holes h + are emitted from the p-type oxide semiconductor layer (NiO) 24 to the second electrode E2.
  • NiOOH nickel oxyhydroxide
  • Ni (OH) 2 nickel hydroxide
  • the energy band diagram of the secondary battery 30 is expressed as shown in FIG. 6A, where NiO / Ni (OH) 2 / SnO /
  • the conduction band of TiO 2 exists at a level of 1.8 eV / 1.47 eV / 4.3 to 4.5 eV / 4.3 eV.
  • the band gap energy E g of NiO / Ni (OH) 2 / SnO / TiO 2 is 4.0 eV / 3.7 eV / 3.8 eV / 3.2 eV.
  • the band gap energy E g of SiO 2 constituting the charge layer 20 is 8.9 eV.
  • the hydroxide layer 22 is nickel hydroxide (Ni (OH) 2 ).
  • the manufacturing method of the secondary battery 30 includes the step of forming the first conductivity type first oxide semiconductor layer 14, the first insulator and the first conductivity on the first oxide semiconductor layer 14. Forming a first charge layer 16 made of a second oxide semiconductor of a type, forming a second charge layer 18 on the first charge layer 16, and a second conductivity type on the second charge layer 18. The step of forming the third oxide semiconductor layer 24 and water having a metal hydroxide constituting the third oxide semiconductor layer 24 between the first charge layer 16 and the third oxide semiconductor layer 24. Forming the oxide layer 22.
  • -N-type oxide semiconductor layer 14- A TiO 2 film is formed, for example, by sputtering deposition on the first electrode 12 constituting the lower electrode.
  • Ti or TiO can be used as a target.
  • the film thickness of the n-type oxide semiconductor layer 14 is, for example, about 50 nm to 200 nm.
  • a tungsten (W) electrode can be used as the first electrode 12.
  • the chemical solution is formed by stirring fatty acid titanium and silicone oil together with a solvent. This chemical solution is applied onto the n-type oxide semiconductor layer 14 using a spin coater. The rotational speed is, for example, about 500 to 3000 rpm. After application, it is dried on a hot plate. The drying temperature on the hot plate is, for example, about 30 ° C.-200 ° C., and the drying time is, for example, about 5-30 minutes. Baking after drying. For the post-drying firing, firing is performed in the air using a firing furnace. The firing temperature is, for example, about 300 ° C. to 600 ° C., and the firing time is, for example, about 10 minutes to 60 minutes.
  • the aliphatic acid salt is decomposed to form a fine particle layer of titanium dioxide covered with a silicone insulating film.
  • the above manufacturing (manufacturing) method in which titanium dioxide covered with a silicone insulating film is formed is a coating pyrolysis method. Specifically, this layer has a structure in which a metal layer of titanium dioxide coated with silicone is embedded in the silicone layer.
  • UV irradiation with a low-pressure mercury lamp is performed.
  • the UV irradiation time is, for example, about 10 to 100 minutes.
  • -Second charge layer (buffer layer) 18 (Method 1)-
  • the chemical solution is formed by stirring fatty acid tin and silicone oil together with a solvent.
  • This chemical solution is applied onto the first charging layer 16 using a spin coating device.
  • the rotational speed is, for example, about 500 to 3000 rpm.
  • After application it is dried on a hot plate.
  • the drying temperature on the hot plate is, for example, about 30 ° C.-200 ° C., and the drying time is, for example, about 5-30 minutes.
  • firing is performed in the air using a firing furnace.
  • the firing temperature is, for example, about 300 ° C.
  • the firing time is, for example, about 10 minutes to 60 minutes.
  • UV irradiation with a low-pressure mercury lamp is performed.
  • the UV irradiation time is, for example, about 10 to 100 minutes.
  • the film thickness of the second charging layer (buffer layer) 18 after UV irradiation is, for example, about 100 nm to 300 nm.
  • -Second charge layer (buffer layer) 18 (Method 2)-
  • the chemical solution is formed by stirring silicone oil with a solvent.
  • This chemical solution is applied onto the first charging layer 16 using a spin coating device.
  • the rotational speed is, for example, about 500 to 3000 rpm.
  • After application it is dried on a hot plate.
  • the drying temperature on the hot plate is, for example, about 50 ° C.-200 ° C., and the drying time is, for example, about 5-30 minutes.
  • it is fired after drying.
  • firing is performed in the air using a firing furnace.
  • the firing temperature is, for example, about 300 ° C. to 600 ° C.
  • the firing time is, for example, about 10 minutes to 60 minutes.
  • UV irradiation with a low-pressure mercury lamp is performed.
  • the UV irradiation time is, for example, about 10-60 minutes.
  • the film thickness of the second charging layer (buffer layer) 18 after UV irradiation is, for example, about 10 nm-100 nm.
  • P-type third oxide semiconductor layer 24 A NiO film is formed on the second charging layer 18 by, for example, sputtering deposition.
  • Ni or NiO can be used as a target.
  • the film thickness of the p-type oxide semiconductor layer 24 is, for example, about 200 nm to 1000 nm.
  • the second electrode 26 as the upper electrode is formed, for example, by depositing Al by sputtering deposition or vacuum deposition. A film can be formed on the p-type third oxide semiconductor layer (NiO) 24 using an Al target.
  • a stainless mask may be used, and only the designated region may be formed.
  • the second electrode 26 is formed using an electrical stimulation process in which electrical treatment is performed after the formation of the second electrode 26.
  • the first electrode 12 is set to the ground potential, and positive and negative voltages are alternately applied to the second electrode 26.
  • the atmosphere is air, and the humidity is, for example, about 20% -60%.
  • FIG. 7A a schematic circuit configuration of a control system applied to an electrical stimulation process for forming a hydroxide layer between the charging layer 20 and the third oxide semiconductor layer 24 is shown in FIG.
  • the circuit connection relationship is represented by a thick line
  • the signal flow is represented by a thin line.
  • the pulse voltage V A applied to the second electrode 26 of the secondary battery 30 with the first electrode 12 grounded is a voltage via an ammeter 34, a voltmeter 36, and a resistor 38. Supplied from source 32.
  • the voltage source 32 can be controlled by the control device 40. Since the values of the ammeter 34 and the voltmeter 36 are fed back to the control device 40, the voltage source 32 controlled by the control device 40 can supply the pulse voltage V A shown in FIG. .
  • the pulse voltage V A is, for example, 3V (5 seconds) ⁇ ⁇ 3V (2 seconds) ⁇ 5V (0.5 seconds) ⁇ ⁇ 0.4V (4.5 seconds).
  • the Ni (OH) 2 layer 22 can be formed between the second charge layer 18 and the third oxide semiconductor layer (NiO) 24.
  • SIMS secondary ion mass spectrometry
  • the above-described electrical stimulation step causes a gap between the first charging layer 16 and the third oxide semiconductor layer 24.
  • a hydroxide layer can be formed.
  • the pulse voltage waveform shown in FIG. 7B is an example, and the voltage, the number of pulses per cycle, the order of positive and negative voltages, and the like can be appropriately selected depending on the configuration of the secondary battery 30. It is also possible to select a pulse waveform with no negative voltage applied.
  • the experimental result of the relationship between the energy density and the electrical stimulation time is expressed as shown in FIG.
  • the energy density tends to increase as the electrical stimulation time increases. It has been confirmed that the film thickness of the hydroxide (Ni (OH) x ) layer 22 increases as the electrical stimulation time elapses.
  • a nickel hydroxide (Ni (OH) 2 ) layer 22 is formed between the charging layer 20 and the third oxide semiconductor layer (NiO) 24, so that Ni (OH) is charged during charging.
  • Ni (OH) 2 + h + ⁇ NiOOH + H + proceeds, and during discharge, the reaction of NiOOH + H + ⁇ Ni (OH) 2 + h + proceeds. Therefore, the secondary battery 30 with an increased storage capacity can be provided.
  • a hydroxide (Ni (OH) 2 ) layer 22 is formed between the second charging layer (buffer layer) 18 and the third oxide semiconductor layer (NiO) 24 formed only of silicone oil. Yes.
  • SIMS analysis In the secondary battery 30 according to the embodiment shown in FIG. 9, the mass analysis of each element was performed while digging from the surface of the third oxide semiconductor layer (NiO) 24, and the SIMS profile for each element was obtained. .
  • the region having a Si peak near the depth 5 (au) corresponds to the second charging layer (buffer layer) 18 using only silicone oil.
  • a peak of H is observed at the interface between the buffer layer 18 and the third oxide semiconductor layer (NiO) 24 (the depth of the vertical line A).
  • the hydroxide (Ni (OH) 2 ) layer 22 is formed electrochemically by an electrical stimulation process. For this reason, there is also the introduction of Si from the SiO x of the underlying second charging layer (buffer layer) 18, and the presence of Si can also be confirmed by the SIMS profile (curve W in FIG. 10).
  • the relationship between the resistance R (au) and the energy density (au) between the first electrode and the second electrode with respect to the added amount of the conductivity adjusting material is expressed as shown in FIG.
  • the energy density (a.u.) corresponds to the discharge capacity of the secondary battery 30.
  • the conductivity adjusting material addition amount corresponds to a value related to the addition amount of SnO x in the second charge layer (buffer layer) 18.
  • the values of the resistance R (au) and the energy density (au) between the first electrode and the second electrode are optimal with respect to the values related to the added amount of SnO x in the second charging layer 18. Value exists.
  • the second charging layer (buffer layer) 18 is made of an insulator and a conductivity adjusting material, and the energy density can be optimized by controlling the addition amount of the conductivity adjusting material. It is.
  • the structure of the secondary battery 30 according to the embodiment is produced in a sheet shape using a stainless steel foil as a substrate. Thereafter, the sheets may be laminated to produce a secondary battery 30 having a necessary capacity.
  • the second electrode (upper electrode) of two sheets faces each other, an electrode (thin metal foil) is inserted between them, and the two sheets are stacked in multiple layers to produce a secondary battery with the required capacity. You may do it. After the lamination, sealing may be performed with a laminate or the like.
  • the present embodiment includes various embodiments that are not described here.
  • the secondary battery according to the present embodiment can be used for various consumer devices and industrial devices, and can be used for communication terminals, secondary batteries for wireless sensor networks, etc. It can be applied to a wide range of application fields such as secondary batteries.

Abstract

二次電池(30)は、第1導電型の第1酸化物半導体層(14)と、第1酸化物半導体層(14)上に配置され、第1絶縁物と第1導電型の第2酸化物半導体とからなる第1充電層(16)と、第1充電層(16)上に配置された第2充電層(18)と、第2充電層(18)上に配置された第2導電型の第3酸化物半導体層(24)と、第1充電層(16)と第3酸化物半導体層(24)との間に配置され、第3酸化物半導体層(24)を構成する金属の水酸化物を有する水酸化物層(22)とを備える。エネルギー密度が向上し、電池特性(蓄電容量)を増大可能で、信頼性の高い二次電池を提供する。

Description

二次電池
 本実施の形態は、二次電池に関する。
 従来の二次電池として、電解液・希少元素を用いないこと、及び薄膜化可能であるため、第1電極/絶縁物・n型酸化物半導体層/p型酸化物半導体層/第2電極が積層された二次電池が提案されている。
 また、この二次電池に類似した構造として、酸化ニッケルなどを正極活物質として含む正極活物質膜を備える正極と、含水多孔質構造を有する固体電解質と、酸化チタンなどを負極活物質として含む負極活物質膜を備える負極とを備える二次電池が提案されている。
特許第5508542号公報 特許第5297809号公報 特開2015-82445号公報 特開2016-82125号公報
 本実施の形態は、エネルギー密度が向上し、電池特性(蓄電容量)を増大可能で、信頼性の高い二次電池を提供する。
 本実施の形態の一態様によれば、第1導電型の第1酸化物半導体層と、前記第1酸化物半導体層上に配置され、第1絶縁物と第1導電型の第2酸化物半導体とからなる第1充電層と、前記第1充電層上に配置された第2導電型の第3酸化物半導体層と、前記第1充電層と前記第3酸化物半導体層との間に配置され、前記第3酸化物半導体層を構成する金属の水酸化物を有する水酸化物層とを備える二次電池が提供される。
 本実施の形態によれば、エネルギー密度が向上し、電池特性(蓄電容量)を増大可能で、信頼性の高い二次電池を提供することができる。
実施の形態に係る二次電池の模式的断面構造図。 (a)実施の形態に係る二次電池の充電前におけるエネルギーバンドダイヤグラム、(b)図2(a)に対応する各層の模式的構成図。 (a)実施の形態に係る二次電池の充電中(順バイアス状態)におけるエネルギーバンドダイヤグラム、(b)図3(a)に対応する各層の模式的構成図。 (a)実施の形態に係る二次電池のフル充電状態におけるエネルギーバンドダイヤグラム、(b)図4(a)に対応する各層の模式的構成図。 (a)実施の形態に係る二次電池の放電状態(負荷に接続状態)におけるエネルギーバンドダイヤグラム、(b)図5(a)に対応する各層の模式的構成図。 (a)実施の形態に係る二次電池のフル放電状態におけるエネルギーバンドダイヤグラム、(b)図6(a)に対応する各層の模式的構成図。 (a)実施の形態に係る二次電池において、第1充電層と第3酸化物半導体層との間に水酸化物層を形成する電気刺激工程に適用する制御系の模式的回路構成図、(b)第1電極と第2電極間に印加するパルス電圧VAの波形例。 実施の形態に係る二次電池において、エネルギー密度と電気刺激時間との関係の実験結果を示す図。 実施の形態に係る二次電池において、第2充電層をシリコーンオイルを用いて作製したサンプルの断面の走査型電子顕微鏡(SEM)写真例。 図9に示された実施の形態に係る二次電池において、元素毎のSIMSプロファイル例。 実施の形態に係る二次電池において、導電率調整材添加量に対する第1電極・第2電極間の抵抗R(a.u.)及びエネルギー密度(a.u.)の関係を示す図。
 次に、図面を参照して、本実施の形態について説明する。以下に説明する図面の記載において、同一または類似の部分には同一または類似の符号を付している。ただし、図面は模式的なものであり、各構成部品の厚みと平面寸法との関係などは現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 また、以下に示す実施の形態は、技術的思想を具体化するための装置や方法を例示するものであって、各構成部品の材質、形状、構造、配置などを特定するものではない。この実施の形態は、特許請求の範囲において、種々の変更を加えることができる。
 [実施の形態]
 実施の形態に係る二次電池の模式的断面構造は、図1に示すように表される。以下、実施の形態に係る二次電池30について、説明する。
 実施の形態に係る二次電池30は、図1に示すように、第1導電型の第1酸化物半導体層14と、第1酸化物半導体層14上に配置され、第1絶縁物と第1導電型の第2酸化物半導体とからなる第1充電層16と、第1充電層16上に配置された第2導電型の第3酸化物半導体層24と、第1充電層16と第3酸化物半導体層24との間に配置され、第3酸化物半導体層24を構成する金属の水酸化物を有する水酸化物層22とを備える。
 また、実施の形態に係る二次電池30は、図1に示すように、第1充電層16と水酸化物層22との間に配置された第2充電層18を備えていても良い。
 ここで、第2充電層18は、第2絶縁物を備えていても良い。
 また、第2充電層18は、第2絶縁物と、導電率調整材とを備えていても良い。
 また、第1充電層16は、組成が互いに相違し、少なくとも2層構造を備えていても良い。第1充電層16は、例えば、酸化シリコン(SiO2)/酸化チタン(TiO2)によって形成されていても良い。具体的には、SiO2/TiO2の層構造によって形成されていても良く、あるいは、粒子形状のTiO2の周囲をSiO2によって被覆した粒子接合構造によって形成されていても良い。また、第1充電層16は、TiO2がSiO2と混在あるいはTiO2が酸化シリコンに包まれる構造を備えていても良い。また、上記において、酸化チタン及び酸化シリコンの組成は、TiO2及びSiO2に限定されるものではなく、TiOxあるいはSiOxなどの組成比xが変化した構成を備えていても良い。
 また、n型の酸化物半導体が、チタン(Ti)、錫(Sn)、亜鉛(Zn)、マグネシウム(Mg)の酸化物であっても良いため、SiO2とTi、Sn、Zn、Mgの酸化物の層構造であっても良く、あるいは、粒子形状のTi、Sn、Zn、Mgの酸化物の周囲をSiO2によって被覆した粒子接合構造によって形成されていても良い。また、SiO2とTi、Sn、Zn、Mgの酸化物の分子あるいは分子群がSiO2(非晶質)に囲まれた構成を備えていても良い。
 また、第1充電層16は、多孔質構造を備えていても良い。
 また、第2酸化物半導体は、Ti、Sn、Zn、若しくはMgの酸化物からなる群から選択された少なくとも1つの酸化物を備えていても良い。
 また、導電率調整材は、第1導電型の半導体若しくは金属の酸化物を備えていても良い。
 また、導電率調整材は、Sn、Zn、Ti、若しくはニオビウム(Nb)の酸化物からなる群から選択された少なくとも1つの酸化物を備えていても良い。
 具体的に、実施の形態に係る二次電池30において、第2絶縁物はSiO2を備え、導電率調整材はSnOxを備えていても良い。
 また、実施の形態に係る二次電池30において、第2絶縁物は、シリコーンオイルから成膜したSiOxを備えていても良い。
 また、実施の形態に係る二次電池30において、第1絶縁物はSiO2を備え、第2酸化物半導体はTiO2を備えていても良い。
 (水酸化物層)
 水酸化物層22は、充電時、電界印加により、金属水酸化物が還元し、正孔(h+)を水素イオン(H+)に変換し、また、放電時は、水素イオンを正孔に変換する層である。
 水酸化物が水酸化ニッケルである場合には、以下の反応式となる。
 ―水酸化ニッケル層―
 電界印加により、水酸化ニッケル(Ni(OH)2)がオキシ水酸化ニッケル(NiOOH)に変化する。充電時は、Ni(OH)2+h+→NiOOH+H+の反応が進行し、放電時は、NiOOH+H+→Ni(OH)2+h+の反応が進行する。この反応は、エレクトロクロミズムを伴う。
 (第1充電層)
 第1充電層16は、水酸化物層22と対をなし、充電時に発生した水素を蓄積する層である。第1充電層16は、充電時は、M+H2O+e-→MH+OH-の反応が進行し、放電時は、MH+OH-→M+H2O+e-の反応が進行する。多孔質化することで、水素蓄積の効率を増大化可能である。また、複数層とすることで、水素蓄積と導電性を最適化できる。第2酸化物半導体を、Ti、Sn、Zn若しくはMgの酸化物とすることで、最適化可能である。
 (第2充電層)
 第2充電層18は、H+及び電子(e-)の移動を調整するためのバッファ層である。導電率調整材を添加することで、さらにH+及びe-の移動度を調整可能である。導電率調整材をSn、Zn、TiまたはNbの酸化物とすることで、第2充電層18を厚く、かつ電気的に高耐圧に形成可能である。
 (p型酸化物半導体層)
 酸化物半導体層24は、水酸化物層のn型半導体(水酸化ニッケル層のNiOOH)に対してpn接合を構成し、充電時の電荷リークを抑制可能である。p型酸化物半導体層24は、NiOとすることで、電気刺激によるNi(OH)2層の形成が可能になる。
 (n型第1酸化物半導体層)
 n型第1酸化物半導体層14は、第1電極12と第1充電層16の中間の電気抵抗を有し、電気的接合をスムーズにさせる。
 実施の形態に係る二次電池30は、図1に示すように、第1電極12と、第2電極26とを備え、第1酸化物半導体層14はn型第1酸化物半導体層を備え、かつ第1電極12に接続され、第2酸化物半導体はn型第2酸化物半導体を備え、第3酸化物半導体層24はp型第3酸化物半導体層を備え、かつ第2電極26に接続されていても良い。
 さらに、詳細には、実施の形態に係る二次電池30において、第3酸化物半導体層24は酸化ニッケル(NiO)を備え、水酸化物層22は水酸化ニッケル(Ni(OH)2)若しくはオキシ水酸化ニッケル(NiOOH)の少なくとも一方を備えていても良い。
 また、実施の形態に係る二次電池30において、第3酸化物半導体層24は酸化ニッケル(NiO)を備え、水酸化物層22は水酸化ニッケル(Ni(OH)2)及びオキシ水酸化ニッケル(NiOOH)の両方が混在する積層構造を備えると共に、水酸化ニッケル(Ni(OH)2)は第3酸化物半導体層24に接し、オキシ水酸化ニッケル(NiOOH)は第2充電層18に接していても良い。
 また、実施の形態に係る二次電池30において、第3酸化物半導体層24は酸化ニッケル(NiO)を、水酸化物層22は、フル充電時は、オキシ水酸化ニッケル(NiOOH)を備え、フル放電時は、水酸化ニッケル(Ni(OH)2)を備える。
 さらに、第1電極12に対して第2電極26を正にバイアスする充電時において、水酸化ニッケル(Ni(OH)2)は、オキシ水酸化ニッケル(NiOOH)に変化する。
 また、第1電極12及び第2電極26間に接続された負荷を介する放電時において、オキシ水酸化ニッケル(NiOOH)は、水酸化ニッケル(Ni(OH)2)に変化する。
 水酸化物層22は、第2充電層18上に直接成膜形成しても良く、あるいは、後述するように、p型第3酸化物半導体層24とn型第1酸化物半導体層14との間にパルス電圧を周期的に印加して形成しても良い。
 実施の形態に係る二次電池30においては、充電層(第1充電層16+第2充電層18)20と第3酸化物半導体層24との間に水酸化ニッケル(Ni(OH)2)層を形成することで蓄電容量を増加させることができる。
 また、実施の形態に係る二次電池30においては、第2充電層18とp型第3酸化物半導体層24との間にOH基を多く含んだ層(Ni(OH)),Si(OH)を形成し挿入する構成を採用しても良い。このような構成を備えることで、蓄電容量を大きくすることができ、電池性能向上可能である。すなわち、水酸化物層22は、水酸化ニッケル(Ni(OH)2)に限定されることはなく、OH基を多く含んだ層(Ni(OH)x),Si(OH)xなどの混在層として形成されていても良い。また、構造上Ni、Si、O、H、第2充電層18を構成する元素の化合物が含まれることもある。
 (エネルギーバンドダイヤグラム)
 以下においては、p型第3酸化物半導体層24は酸化ニッケル(NiO)、水酸化物層22は水酸化ニッケル(Ni(OH)2)若しくはオキシ水酸化ニッケル(NiOOH)の少なくとも一方、第1充電層16はSiO2/TiO2、第2充電層18はSiO2/SnOによって形成される例を説明する。
 ―充電前―
 実施の形態に係る二次電池30の充電前におけるエネルギーバンドダイヤグラムは、図2(a)に示すように表され、図2(a)に対応する各層の模式的構成は、図2(b)に示すように表される。ここで、Efは、フェルミレベルを表す。
 酸化ニッケル(NiO)のp型第3酸化物半導体層24は第2電極(26)E2に接続され、SiO2/TiO2の第1充電層16は第1電極(12)E1に接続されている。
 熱平衡状態においては、実施の形態に係る二次電池30の充電前におけるエネルギーバンドダイヤグラムは、図2(a)に示すように表され、真空の準位に対して、NiO/Ni(OH)2/SnO/TiO2の伝導帯は、1.8eV/1.47eV/4.3~4.5eV/4.3eVのレベルに存在する。また、NiO/Ni(OH)2/SnO/TiO2のバンドギャップエネルギーEgは、4.0eV/3.7eV/3.8eV/3.2eVである。また、充電層20を構成するSiO2のバンドギャップエネルギーEgは、8.9eVである。充電前においては、水酸化物層22は水酸化ニッケル(Ni(OH)2)である。
 ―充電中(順バイアス状態)―
 実施の形態に係る二次電池30の充電中(順バイアス状態)におけるエネルギーバンドダイヤグラムは、図3(a)に示すように表され、図3(a)に対応する各層の模式的構成は、図3(b)に示すように表される。
 第2電極E2をプラス(+)、第1電極E1をマイナス(-)に接続して、充電電圧として、例えば約2.8Vを印加した状態のエネルギーバンドダイヤグラムは、図3(a)に示すように表される。ここで、約2.8Vを印加した状態のフェルミレベルEfは、図3(a)中に示すように表される。
 実施の形態に係る二次電池30において、充電中の水酸化物層22Cでは、水酸化ニッケル(Ni(OH)2)からオキシ水酸化ニッケル(NiOOH)を生成するため、充電中の水酸化物層22Cは、図3(a)及び図3(b)に示すように、水酸化ニッケル(Ni(OH)2)/オキシ水酸化ニッケル(NiOOH)の層構造で表される。水酸化ニッケル(Ni(OH)2)層は、主として、酸化ニッケル層(NiO)側に配置され、オキシ水酸化ニッケル(NiOOH)層は、第2充電層18側に配置される。
 充電中は、第2電極E2・第1電極E1間にプラス電圧として約2.8Vが印加されるため、二次電池30の内部では、第1電極E1から電子e-が充電層20のn型酸化物半導体(TiO2)に注入され、第2電極E2から正孔h+が、p型酸化物半導体層(NiO)24に注入される。
 水若しくは水蒸気成分(H2O)のアシストにより、正極側では、Ni(OH)2+OH-→NiOOH+H2O+e-の反応が進行し、一方、負極側では、M+H2O+e-→MH+OH-の反応が進行する。ここで、Mは、充電層20中の金属元素を表している。
 結果として、充電中の水酸化物層22Cでは、Ni(OH)2+h+→NiOOH+H+の反応が進行するため、水素イオンH+と電子e-の合成により、図3(a)に示すように、充電層20中に、水若しくは水蒸気成分(H2O)のアシストによる水素蓄積が実現される。ここで、水素蓄積においては、水素Hは、充電層20の中のTi、Siのダングリングボンドなどに結合している。また、OHでの形の結合も可能である。
 ―フル充電―
 実施の形態に係る二次電池30のフル充電状態におけるエネルギーバンドダイヤグラムは、図4(a)に示すように表され、図4(a)に対応する各層の模式的構成は、図4(b)に示すように表される。真空の準位に対して、NiO/NiOOHの伝導帯は、1.8eV+2.8eV/ΔeV+2.8eVのレベルに存在する。また、NiOOHのバンドギャップエネルギーEgは、1.75eVである。
 充電層20中に水素フル蓄積が行われたフル充電後の開放状態では、充電時(2.8V)より若干低い保持電圧が第2電極E2・第1電極E1間に保持されている。
 また、実施の形態に係る二次電池30のフル充電状態においては、水酸化ニッケル(Ni(OH)2)層22は、オキシ水酸化ニッケル(NiOOH)層22Fに変化し、不安定なNiOOHの化学ポテンシャルとしてエネルギー蓄積が行われる。
 ―放電中―
 実施の形態に係る二次電池30の放電状態(負荷に接続状態)におけるエネルギーバンドダイヤグラムは、図5(a)に示すように表され、図5(a)に対応する各層の模式的構成は、図5(b)に示すように表される。すなわち、第2電極E2・第1電極E1間に負荷42を接続した放電状態(負荷に接続状態)におけるエネルギーバンドダイヤグラムは、図5(a)に示すように表される。ここで、約2.8Vを印加した状態のフェルミレベルEfは、図5(a)中に示すように、放電状態に応じて、次第に上昇する。実施の形態に係る二次電池30の放電状態(負荷に接続状態)においては、上記の充電動作の逆反応が生じる。
 実施の形態に係る二次電池30において、放電中の水酸化物層22Dでは、オキシ水酸化ニッケル(NiOOH)から水酸化ニッケル(Ni(OH)2)を生成するため、放電中の水酸化物層22Dは、図5(a)及び図5(b)に示すように、水酸化ニッケル(Ni(OH)2)/オキシ水酸化ニッケル(NiOOH)の層構造で表される。水酸化ニッケル(Ni(OH)2)層は、主として、酸化ニッケル層(NiO)側に形成され、オキシ水酸化ニッケル(NiOOH)層は、第2充電層18側に形成される。
 放電中は、第2電極E2・第1電極E1間に負荷42が外部接続されるため、二次電池30の内部では、電子e-が充電層20のn型酸化物半導体(TiO2)から第1電極E1に放出され、正孔h+がp型酸化物半導体層(NiO)24から第2電極E2に放出される。
 水若しくは水蒸気成分(H2O)のアシストにより、正極側では、NiOOH+H2O+e-→Ni(OH)2+OH-の反応が進行し、一方、負極側では、MH+OH-→M+H2O+e-の反応が進行する。
 結果として、放電中の水酸化物層22Dでは、NiOOH+H+→Ni(OH)2+h+の反応が進行するため、図5(a)に示すように、充電層20中では、水素イオンH+と電子e-の分離により、水若しくは水蒸気成分(H2O)のアシストによる水素蓄積状態の開放が実現される。
 ―フル放電状態―
 実施の形態に係る二次電池30のフル放電状態におけるエネルギーバンドダイヤグラムは、図6(a)に示すように表され、図6(a)に対応する各層の模式的構成は、図6(b)に示すように表される。
 フル放電状態では、オキシ水酸化ニッケル(NiOOH)は、水酸化ニッケル(Ni(OH)2)層22に変化している。
 フル放電状態では、実施の形態に係る二次電池30のエネルギーバンドダイヤグラムは、図6(a)に示すように表され、真空の準位に対して、NiO/Ni(OH)2/SnO/TiO2の伝導帯は、1.8eV/1.47eV/4.3~4.5eV/4.3eVのレベルに存在する。また、NiO/Ni(OH)2/SnO/TiO2のバンドギャップエネルギーEgは、4.0eV/3.7eV/3.8eV/3.2eVである。また、充電層20を構成するSiO2のバンドギャップエネルギーEgは、8.9eVである。フル放電状態では、水酸化物層22は水酸化ニッケル(Ni(OH)2)である。
 フル放電状態.では、上記の充電前の熱平衡状態と同等の状態に復帰している。
 (製造方法)
 実施の形態に係る二次電池30の製造方法は、第1導電型の第1酸化物半導体層14を形成する工程と、第1酸化物半導体層14上に、第1絶縁物と第1導電型の第2酸化物半導体とからなる第1充電層16を形成する工程と、第1充電層16上に第2充電層18を形成する工程と、第2充電層18上に第2導電型の第3酸化物半導体層24を形成する工程と、第1充電層16と第3酸化物半導体層24との間に、第3酸化物半導体層24を構成する金属の水酸化物を有する水酸化物層22を形成する工程とを有する。
 ―n型酸化物半導体層14―
 下部電極を構成する第1電極12上にTiO2膜を例えば、スパッタデポジション法で成膜することによって形成する。ここで、TiまたはTiOをターゲットとして使用可能である。n型酸化物半導体層14の膜厚は、例えば、約50nm-200nm程度である。なお、第1電極12は、例えば、タングステン(W)電極などを適用可能である。
 ―第1充電層16―
 薬液は脂肪酸チタンとシリコーンオイルを溶媒と共に攪拌して形成する。この薬液を、スピン塗布装置を用いて、n型酸化物半導体層14上に塗布する。回転数は例えば、約500-3000rpmである。塗布後、ホットプレート上で乾燥させる。ホットプレート上の乾燥温度は、例えば、約30℃-200℃程度、乾燥時間は、例えば約5分-30分程度である。乾燥後焼成する。乾燥後焼成には、焼成炉を用い、大気中で焼成する。焼成温度は例えば、約300℃-600℃程度、焼成時間は例えば、約10分-60分程度である。
 これにより、脂肪族酸塩が分解してシリコーンの絶縁膜に覆われた二酸化チタンの微粒子層が形成される。シリコーンの絶縁膜で覆われた二酸化チタンを層形成した上記製造(作製)方法は、塗布熱分解法である。この層は、具体的にはシリコーンが被膜された二酸化チタンの金属塩がシリコーン層中に埋められている構造である。焼成後、低圧水銀ランプによるUV照射を実施する。UV照射時間は例えば、約10分-100分程度である。
 ―第2充電層(バッファ層)18(方法1)―
 薬液は脂肪酸スズとシリコーンオイルを溶媒と共に攪拌して形成する。この薬液を、スピン塗布装置を用いて、第1充電層16上に塗布する。回転数は例えば、約500-3000rpmである。塗布後、ホットプレート上で乾燥させる。ホットプレート上の乾燥温度は例えば、約30℃-200℃程度、乾燥時間は例えば、約5分-30分程度である。さらに、乾燥後焼成する。乾燥後焼成には、焼成炉を用い、大気中で焼成する。焼成温度は例えば、約300℃-600℃程度、焼成時間は例えば、約10分-60分程度である。焼成後、低圧水銀ランプによるUV照射を実施する。UV照射時間は例えば、約10分-100分程度である。UV照射後の第2充電層(バッファ層)18の膜厚は、例えば、約100nm-300nm程度である。
 ―第2充電層(バッファ層)18(方法2)―
 薬液はシリコーンオイルを溶媒と共に攪拌して形成する。この薬液を、スピン塗布装置を用いて、第1充電層16上に塗布する。回転数は例えば、約500-3000rpmである。塗布後、ホットプレート上で乾燥させる。ホットプレート上の乾燥温度は例えば、約50℃-200℃程度、乾燥時間は例えば、約5分-30分程度である。さらに、乾燥後焼成する。乾燥後焼成には、焼成炉を用い、大気中で焼成する。焼成温度は例えば、約300℃-600℃程度、焼成時間は例えば、約10分-60分程度である。焼成後、低圧水銀ランプによるUV照射を実施する。UV照射時間は例えば、約10分-60分程度である。UV照射後の第2充電層(バッファ層)18の膜厚は、例えば、約10nm-100nm程度である。
 ―p型第3酸化物半導体層24―
 第2充電層18上にNiO膜を例えば、スパッタデポジション法で成膜することによって形成する。ここで、NiまたはNiOをターゲットとして使用可能である。p型酸化物半導体層24の膜厚は、例えば、約200nm-1000nm程度である。
 ―第2電極26―
 上部電極としての第2電極26は、例えばAlをスパッタデポジション法若しくは真空蒸着法で成膜することによって形成する。p型第3酸化物半導体層(NiO)24上にAlターゲットを使用して成膜可能である。第2電極26は、例えば、ステンレスマスクを用い、指定領域のみ成膜しても良い。
 ―Ni(OH)2
 第2電極26の形成後に電気的処理を行う電気刺激工程を用いて形成する。
 第1電極12を接地電位とし、第2電極26にプラスとマイナスの電圧を交互に印加する。雰囲気は大気であり、湿度は、例えば、約20%-60%程度である。
 実施の形態に係る二次電池30において、充電層20と第3酸化物半導体層24との間に水酸化物層を形成する電気刺激工程に適用する制御系の模式的回路構成は、図7(a)に示すように表され、第1電極12と第2電極26間に印加するパルス電圧VAの波形例は、図7(b)に示すように表される。なお、図7(a)において、回路の接続関係は太線によって表され、信号の流れは細線によって表される。
 図7(a)に示すように、第1電極12が接地された二次電池30の第2電極26に印加するパルス電圧VAは、電流計34・電圧計36・抵抗38を介して電圧源32から供給される。電圧源32は制御装置40によって、制御可能である。また、電流計34・電圧計36の値は、制御装置40にフィードバックされるため、制御装置40によって制御された電圧源32によって、図7(b)に示すパルス電圧VAが供給可能である。
 図7(b)に示すように、パルス電圧VAは、例えば3V(5秒)→-3V(2秒)→5V(0.5秒)→-0.4V(4.5秒)を1周期TCとして、約300サイクル-5000サイクル程度印加することによって、第2充電層18と第3酸化物半導体層(NiO)24との間にNi(OH)2層22を形成することができる。なお、Ni(OH)2層22には、Si、O、H、Niを含む物質も存在することが、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectroscopy)の測定結果より検出されている。
 充電層20として、第1充電層16のみを備え、第2充電層18を備えない構造においても、上記の電気刺激工程により、第1充電層16と第3酸化物半導体層24との間に水酸化物層を形成可能である。
 図7(b)に示したパルス電圧波形は1例であり、二次電池30の構成により、電圧、1サイクルあたりのパルス数、正負電圧の順序などを適切に選ぶことができる。負電圧の印加がないパルス波形を選ぶことも可能である。
 (エネルギー密度と電気刺激時間との関係)
 実施の形態に係る二次電池30において、エネルギー密度と電気刺激時間との関係の実験結果は、図8に示すように表される。ここで、電気刺激時間とは、1周期TC=12秒のパルス電圧VAを複数サイクル印加する時間に対応している。
 図8に示すように、電気刺激時間の増加と共にエネルギー密度が増加傾向を示す。電気刺激時間の経過に伴い、水酸化物(Ni(OH)x)層22の膜厚の増加が確認されている。
 実施の形態においては、充電層20と第3酸化物半導体層(NiO)24との間に水酸化ニッケル(Ni(OH)2)層22を形成することで、充電時は、Ni(OH)2+h+→NiOOH+H+の反応が進行し、放電時は、NiOOH+H+→Ni(OH)2+h+の反応が進行するため、蓄電容量を増加させた二次電池30を提供することができる。
 (実験結果)
 実施の形態に係る二次電池30において、第2充電層18をシリコーンオイルのみを用いて作製し、電気刺激工程を経たサンプルの断面SEM写真例は、図9に示すように表される。
 明らかに、シリコーンオイルのみで形成した第2充電層(バッファ層)18と第3酸化物半導体層(NiO)24との間に、水酸化物(Ni(OH)2)層22が形成されている。
 (SIMS分析)
 図9に示された実施の形態に係る二次電池30において、第3酸化物半導体層(NiO)24の表面より掘りながら、各元素の質量分析を実施し、元素毎のSIMSプロファイルを取得した。
 電気刺激工程を経ていないサンプル(図10の曲線WO)においては、深さ5(a.u.)付近のSiのピークのある領域が、シリコーンオイルのみを用いた第2充電層(バッファ層)18に相当する。バッファ層18と第3酸化物半導体層(NiO)24との界面(深さが縦線Aの部分)にHのピークがみられる。
 一方、電気刺激工程を経たサンプル(図10の曲線W)においては、深さが縦線Aよりも左側の部分でHの多い領域があり、水酸化物(Ni(OH)2)層22の存在によるものと推定される。
 水酸化物(Ni(OH)2)層22は、電気刺激工程により、電気化学的に形成されたものである。このため、下地の第2充電層(バッファ層)18のSiOxからのSiの導入もあり、SIMSプロファイル(図10の曲線W)でもSiの存在が確認できる。
 実施の形態に係る二次電池30において、導電率調整材添加量に対する第1電極・第2電極間の抵抗R(a.u.)及びエネルギー密度(a.u.)の関係は、図11に示すように表される。エネルギー密度(a.u.)は、二次電池30の放電容量に対応する。
 図11において、導電率調整材添加量とは、第2充電層(バッファ層)18におけるSnOxの添加量に関連した値に対応している。図11に示すように、第1電極・第2電極間の抵抗R(a.u.)及びエネルギー密度(a.u.)の値は、第2充電層18におけるSnOxの添加量に関連した値に対して最適値が存在する。
 実施の形態に係る二次電池30においては、第2充電層(バッファ層)18が絶縁物と導電率調整材からなり、導電率調整材の添加量を制御して、エネルギー密度を最適化可能である。
 (積層化)
 例えば、ステンレス箔を基板として、実施の形態に係る二次電池30の構造をシート状に作製する。その後、このシートを積層し、必要な容量の二次電池30を作製しても良い。
 例えば、2枚のシートの第2電極(上部電極)を対向し、間に電極(薄い金属箔)を挿入し、2枚のシートを多層に重ねることで、必要な容量の二次電池を作製しても良い。積層後はラミネートなどで封止しても良い。
 [その他の実施の形態]
 上記のように、いくつかの実施の形態について記載したが、開示の一部をなす論述及び図面は例示的なものであり、限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 このように、本実施の形態は、ここでは記載していない様々な実施の形態などを含む。
 本実施の形態の二次電池は、様々な民生用機器、産業機器に利用することができ、通信端末、無線センサネットワーク向けの二次電池など、各種センサ情報を低消費電力伝送可能なシステム応用向けの二次電池など、幅広い応用分野に適用可能である。
12…第1電極(E1)
14…第1酸化物半導体層(TiO2層)
16…第1充電層(TiO2/SiO2
18…第2充電層(バッファ層)
20…充電層(16・18)
22…水酸化物層(Ni(OH)2層)
22C、22D…Ni(OH)2/NiOOH層
22F…NiOOH層
24…第3酸化物半導体層(NiO層)
26…第2電極(E2)
30…二次電池
32…電圧源
34…電流計
36…電圧計
38…抵抗
40…制御装置
42…負荷
…パルス電圧
R…第1電極と第2電極間の抵抗

Claims (18)

  1.  第1導電型の第1酸化物半導体層と、
     前記第1酸化物半導体層上に配置され、第1絶縁物と第1導電型の第2酸化物半導体とからなる第1充電層と、
     前記第1充電層上に配置された第2導電型の第3酸化物半導体層と、
     前記第1充電層と前記第3酸化物半導体層との間に配置され、前記第3酸化物半導体層を構成する金属の水酸化物を有する水酸化物層と
     を備えることを特徴とする二次電池。
  2.  前記第1充電層と前記水酸化物層との間に配置された第2充電層を備えることを特徴とする請求項1に記載の二次電池。
  3.  前記第2充電層は、第2絶縁物を備えることを特徴とする請求項2に記載の二次電池。
  4.  前記第2充電層は、第2絶縁物と、導電率調整材とを備えることを特徴とする請求項2に記載の二次電池。
  5.  前記第1充電層は、多孔質構造を備えることを特徴とする請求項1~4のいずれか1項に記載の二次電池。
  6.  前記第2酸化物半導体は、Ti、Sn、Zn、若しくはMgの酸化物からなる群から選択された少なくとも1つの酸化物を備えることを特徴とする請求項1~5のいずれか1項に記載の二次電池。
  7.  前記導電率調整材は、第1導電型の半導体若しくは金属の酸化物を備えることを特徴とする請求項4に記載の二次電池。
  8.  前記導電率調整材は、Sn、Zn、Ti、若しくはNbの酸化物からなる群から選択された少なくとも1つの酸化物を備えることを特徴とする請求項4または7に記載の二次電池。
  9.  前記第2絶縁物は、SiO2を備え、前記導電率調整材は、SnOxを備えることを特徴とする請求項4に記載の二次電池。
  10.  前記第2絶縁物は、シリコーンオイルから成膜したSiOxを備えることを特徴とする請求項4に記載の二次電池。
  11.  前記第1絶縁物はSiO2を備え、前記第2酸化物半導体はTiO2を備えることを特徴とする請求項1~10のいずれか1項に記載の二次電池。
  12.  前記導電率調整材の添加量を制御して、エネルギー密度を調整したことを特徴とする請求項4、7~9のいずれか1項に記載の二次電池。
  13.  前記第3酸化物半導体層は酸化ニッケル(NiO)を備え、
     前記水酸化物層は水酸化ニッケル(Ni(OH)2)若しくはオキシ水酸化ニッケル(NiOOH)の少なくとも一方を備えることを特徴とする請求項1~12のいずれか1項に記載の二次電池。
  14.  前記第3酸化物半導体層は酸化ニッケル(NiO)を備え、
     前記水酸化物層は水酸化ニッケル(Ni(OH)2)及びオキシ水酸化ニッケル(NiOOH)の両方が混在する積層構造を備えると共に、前記水酸化ニッケル(Ni(OH)2)は前記第3酸化物半導体層に接し、前記オキシ水酸化ニッケル(NiOOH)は前記第2充電層に接することを特徴とする請求項2~12のいずれか1項に記載の二次電池。
  15.  前記第3酸化物半導体層は酸化ニッケル(NiO)を備え、
     前記水酸化物層は、フル充電時は、オキシ水酸化ニッケル(NiOOH)を備え、フル放電時は、水酸化ニッケル(Ni(OH)2)を備えることを特徴とする請求項13または14に記載の二次電池。
  16.  充電時において、前記水酸化ニッケル(Ni(OH)2)は、オキシ水酸化ニッケル(NiOOH)に変化することを特徴とする請求項13または14に記載の二次電池。
  17.  放電時において、前記オキシ水酸化ニッケル(NiOOH)は、水酸化ニッケル(Ni(OH)2)に変化することを特徴とする請求項13または14に記載の二次電池。
  18.  前記水酸化物層は、前記第3酸化物半導体層と前記第1酸化物半導体層との間にパルス電圧を周期的に印加して形成可能であることを特徴とする請求項1~17のいずれか1項に記載の二次電池。
PCT/JP2017/026697 2016-08-31 2017-07-24 二次電池 WO2018042945A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17845955.8A EP3509157B1 (en) 2016-08-31 2017-07-24 Secondary battery
CN201780052280.2A CN109643829B (zh) 2016-08-31 2017-07-24 二次电池
CA3034996A CA3034996C (en) 2016-08-31 2017-07-24 Secondary battery
KR1020197005550A KR102144979B1 (ko) 2016-08-31 2017-07-24 이차 전지
US16/286,362 US11245113B2 (en) 2016-08-31 2019-02-26 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016168956A JP6854100B2 (ja) 2016-08-31 2016-08-31 二次電池
JP2016-168956 2016-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/286,362 Continuation US11245113B2 (en) 2016-08-31 2019-02-26 Secondary battery

Publications (1)

Publication Number Publication Date
WO2018042945A1 true WO2018042945A1 (ja) 2018-03-08

Family

ID=61300688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026697 WO2018042945A1 (ja) 2016-08-31 2017-07-24 二次電池

Country Status (8)

Country Link
US (1) US11245113B2 (ja)
EP (1) EP3509157B1 (ja)
JP (1) JP6854100B2 (ja)
KR (1) KR102144979B1 (ja)
CN (1) CN109643829B (ja)
CA (1) CA3034996C (ja)
TW (1) TWI635642B (ja)
WO (1) WO2018042945A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117235A1 (ja) * 2016-12-21 2018-06-28 株式会社 東芝 半導体固体電池
JP7075717B2 (ja) * 2017-03-15 2022-05-26 株式会社日本マイクロニクス 蓄電デバイス
JP7023049B2 (ja) * 2017-03-16 2022-02-21 株式会社日本マイクロニクス 二次電池
JP2019140053A (ja) * 2018-02-15 2019-08-22 株式会社日本マイクロニクス 二次電池
JP7138020B2 (ja) * 2018-11-13 2022-09-15 株式会社日本マイクロニクス 二次電池、及び製造方法
JP7122981B2 (ja) 2019-01-31 2022-08-22 株式会社日本マイクロニクス 二次電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282633A (ja) * 2007-05-09 2008-11-20 Nissan Motor Co Ltd 電池一体化回路装置
WO2012046326A1 (ja) * 2010-10-07 2012-04-12 グエラテクノロジー株式会社 太陽電池
WO2013065093A1 (ja) * 2011-10-30 2013-05-10 株式会社日本マイクロニクス 繰り返し充放電できる量子電池
WO2013179471A1 (ja) * 2012-05-31 2013-12-05 株式会社日本マイクロニクス 量子電池の試験用半導体プローブ、試験装置及び試験方法
JP2015195335A (ja) * 2014-03-24 2015-11-05 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211245A (en) 1975-07-17 1977-01-28 Sumitomo Bakelite Co Ltd Phenolic resin composition
US8911903B2 (en) * 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
EP2078980B1 (en) 2006-11-02 2019-01-09 Guala Technology Co., Ltd. Electric field sensing element and display device making use of the same
JP4321584B2 (ja) * 2006-12-18 2009-08-26 ソニー株式会社 二次電池用負極および二次電池
WO2009081594A1 (ja) * 2007-12-26 2009-07-02 Panasonic Corporation 非水電解質二次電池
JP5515308B2 (ja) * 2009-02-03 2014-06-11 ソニー株式会社 薄膜固体リチウムイオン二次電池及びその製造方法
JP5531602B2 (ja) * 2009-12-18 2014-06-25 住友化学株式会社 電極活物質、電極および非水電解質二次電池
FR2956523B1 (fr) 2010-02-18 2012-04-27 Centre Nat Rech Scient Procede de preparation d'une batterie monolithique par frittage sous courant pulse
EP2626909B1 (en) * 2010-10-07 2016-09-14 Guala Technology Co., Ltd. Secondary cell
CN104115325B (zh) * 2012-01-24 2017-02-22 艾诺维克斯公司 用于能量存储装置的离子透过结构
WO2013183132A1 (ja) * 2012-06-06 2013-12-12 株式会社日本マイクロニクス 固体型二次電池の電極構造
JP2015082445A (ja) 2013-10-23 2015-04-27 旭化成株式会社 二次電池
JP6390037B2 (ja) * 2013-10-31 2018-09-19 エルジー・ケム・リミテッド 電極組立体及びそれを含むリチウム二次電池
CA2924766C (en) * 2013-12-10 2019-06-11 Kabushiki Kaisha Nihon Micronics Secondary battery and method of manufacturing the same
JP2016082125A (ja) 2014-10-20 2016-05-16 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
US10020545B2 (en) * 2014-11-25 2018-07-10 American Lithium Energy Corporation Rechargeable battery with resistive layer for enhanced safety
US20160149269A1 (en) * 2014-11-25 2016-05-26 American Lithium Energy Corporation Rechargeable battery with temperature activated current interrupter
JP2017059516A (ja) * 2015-02-18 2017-03-23 パナソニックIpマネジメント株式会社 蓄電素子およびその製造方法
KR101957406B1 (ko) * 2015-03-18 2019-06-19 주식회사 엘지화학 일체형 전극조립체 및 이를 포함하는 전기화학소자
JP6789938B2 (ja) * 2015-06-18 2020-11-25 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. シングルパウチバッテリセル及びその製造方法
JP6572015B2 (ja) * 2015-06-25 2019-09-04 株式会社日本マイクロニクス 二次電池の製造方法
JP2017059524A (ja) * 2015-09-18 2017-03-23 パナソニックIpマネジメント株式会社 蓄電素子およびその製造方法
US10916766B2 (en) * 2017-04-10 2021-02-09 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282633A (ja) * 2007-05-09 2008-11-20 Nissan Motor Co Ltd 電池一体化回路装置
WO2012046326A1 (ja) * 2010-10-07 2012-04-12 グエラテクノロジー株式会社 太陽電池
WO2013065093A1 (ja) * 2011-10-30 2013-05-10 株式会社日本マイクロニクス 繰り返し充放電できる量子電池
WO2013179471A1 (ja) * 2012-05-31 2013-12-05 株式会社日本マイクロニクス 量子電池の試験用半導体プローブ、試験装置及び試験方法
JP2015195335A (ja) * 2014-03-24 2015-11-05 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3509157A4 *

Also Published As

Publication number Publication date
EP3509157B1 (en) 2021-03-03
CN109643829B (zh) 2021-12-14
US20190190024A1 (en) 2019-06-20
CA3034996C (en) 2021-02-16
CA3034996A1 (en) 2018-03-08
EP3509157A4 (en) 2020-05-13
KR102144979B1 (ko) 2020-08-14
CN109643829A (zh) 2019-04-16
JP6854100B2 (ja) 2021-04-07
KR20190034271A (ko) 2019-04-01
US11245113B2 (en) 2022-02-08
JP2018037261A (ja) 2018-03-08
TW201813180A (zh) 2018-04-01
TWI635642B (zh) 2018-09-11
EP3509157A1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
WO2018042945A1 (ja) 二次電池
US8755169B2 (en) Electrochemical capacitor
KR101883330B1 (ko) 레독스 커패시터 및 그 제작 방법
US8449628B2 (en) Lithium battery and manufacturing method thereof
JP5504765B2 (ja) 全固体型リチウム二次電池
US20200006763A1 (en) Electricity storage device
JP7100170B2 (ja) 二次電池
WO2019159773A1 (ja) 二次電池
KR20180076953A (ko) 에너지 밀도가 향상된 전고체 전지 및 이의 제조방법
WO2018168495A1 (ja) 二次電池
TW202137619A (zh) 二次電池
WO2021107909A1 (ru) ХЕМОЭЛЕКТРОННЫЙ КОНВЕРТЕР НА ОСНОВЕ НАНОПОРОШКОВ ZrО2 - З%мол Y2О3
JP2020080368A (ja) 二次電池、及び製造方法
JP2005071782A (ja) リチウム二次電池用負極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3034996

Country of ref document: CA

Ref document number: 20197005550

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017845955

Country of ref document: EP

Effective date: 20190401