WO2013058371A1 - 非水系二次電池用セパレータ及び非水系二次電池 - Google Patents

非水系二次電池用セパレータ及び非水系二次電池 Download PDF

Info

Publication number
WO2013058371A1
WO2013058371A1 PCT/JP2012/077135 JP2012077135W WO2013058371A1 WO 2013058371 A1 WO2013058371 A1 WO 2013058371A1 JP 2012077135 W JP2012077135 W JP 2012077135W WO 2013058371 A1 WO2013058371 A1 WO 2013058371A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
porous layer
filler
adhesive porous
adhesive
Prior art date
Application number
PCT/JP2012/077135
Other languages
English (en)
French (fr)
Inventor
亜由美 岩井
吉冨 孝
西川 聡
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to KR1020147012902A priority Critical patent/KR101434379B1/ko
Priority to JP2013510829A priority patent/JP5355821B2/ja
Priority to US14/352,489 priority patent/US9799868B2/en
Priority to CN201280051113.3A priority patent/CN103890999B/zh
Publication of WO2013058371A1 publication Critical patent/WO2013058371A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a non-aqueous secondary battery and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries represented by lithium ion secondary batteries are widely used as main power sources for portable electronic devices such as mobile phones and laptop computers. And the application is spreading to the main power source of electric cars and hybrid cars, the electricity storage system for night electricity, and the like. With the spread of non-aqueous secondary batteries, it has become a challenge to ensure stable battery characteristics and safety.
  • the role of the separator is important in ensuring the safety of the non-aqueous secondary battery.
  • a polyolefin microporous film containing polyolefin as a main component is currently used.
  • the entire separator may melt (so-called meltdown).
  • meltdown since polyolefin resin has poor adhesion to other resins and other materials, the adhesion between the polyolefin microporous membrane and the electrode is not sufficient, resulting in a decrease in battery capacity and cycle characteristics. There was a case.
  • Patent Documents 1 to 7 As a technique for improving the adhesion between the electrode and the separator, a separator in which a porous layer (hereinafter referred to as “PVDF layer”) containing a polyvinylidene fluoride resin as a main component is formed on a polyolefin microporous film.
  • PVDF layer a porous layer containing a polyvinylidene fluoride resin as a main component
  • JP 2004-146190 A JP 2007-273123 A International Publication No. 1999/036981 Pamphlet JP 2010-240936 A JP 2010-015917 A Special table 2008-508391 Special table 2008-524824
  • the PVDF layer has a property of being easily charged, and is easily charged with static electricity in a battery manufacturing process (for example, a separator transport process in which friction with a metal roll occurs). Therefore, a separator having a PVDF layer is static and difficult to slip, and therefore handling properties are reduced. As a result, meandering or wrinkling of the separator occurs in the battery manufacturing process, which may lead to a defective product of the battery. Even if a static electricity removing step for removing static electricity from the separator is provided, it is difficult to remove static electricity throughout the battery manufacturing process.
  • the present invention has been made under the above circumstances. Under the above circumstances, there is a need for a separator for a non-aqueous secondary battery that has excellent adhesion to electrodes and excellent handling properties. In addition, under the above circumstances, there is a need for a non-aqueous secondary battery that has excellent cycle characteristics and a high manufacturing yield.
  • a separator for a non-aqueous secondary battery comprising an adhesive porous layer that includes the filler and satisfies the following formula (1).
  • a is the average thickness ( ⁇ m) of the adhesive porous layer on one side of the porous substrate
  • r is the volume average particle diameter ( ⁇ m) of the filler contained in the adhesive porous layer. It is.
  • ⁇ 2> The non-aqueous secondary battery separator according to ⁇ 1>, wherein a ratio of the filler to a total amount of the polyvinylidene fluoride resin and the filler is 1% by mass to 30% by mass.
  • ⁇ 3> The non-aqueous secondary battery separator according to ⁇ 1> or ⁇ 2>, wherein the adhesive porous layer has an average thickness of 0.5 ⁇ m or more and 5 ⁇ m or less on one side of the porous substrate.
  • ⁇ 4> The non-aqueous secondary battery separator according to any one of ⁇ 1> to ⁇ 3>, wherein the filler has a volume average particle diameter of 0.01 ⁇ m or more and 10 ⁇ m or less.
  • ⁇ 5> A positive electrode, a negative electrode, and the separator for a nonaqueous secondary battery according to any one of ⁇ 1> to ⁇ 4> disposed between the positive electrode and the negative electrode, and doped with lithium A non-aqueous secondary battery that obtains an electromotive force by dedoping.
  • the separator for non-aqueous secondary batteries which is excellent in adhesiveness with an electrode and is excellent in handling property is provided. Furthermore, according to the present invention, a nonaqueous secondary battery having excellent cycle characteristics and a high production yield is provided.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • the separator for a non-aqueous secondary battery of the present invention (hereinafter also referred to as “separator”) is a porous base material and an adhesive porous layer provided on one or both surfaces of the porous base material. And an adhesive porous layer containing a filler having a difference between a particle diameter of 90% cumulative volume and a particle diameter of 10% cumulative volume of 2 ⁇ m or less. And the said adhesive porous layer satisfy
  • a is the average thickness ( ⁇ m) of the adhesive porous layer on one side of the porous substrate
  • r is the volume average particle diameter ( ⁇ m) of the filler contained in the adhesive porous layer. It is.
  • the volume average particle diameter of the filler is a particle diameter that results in a volume accumulation of 50% from the small diameter side in the volume-based particle size distribution.
  • the particle diameter of 10% cumulative volume of the filler is a particle diameter of 10% volume cumulative from the small diameter side in the volume-based particle size distribution (hereinafter also referred to as “D10”).
  • the particle diameter of 90% cumulative volume of the filler is a particle diameter of 90% cumulative volume from the smaller diameter side in the volume-based particle size distribution (hereinafter also referred to as “D90”).
  • the separator of the present invention includes an adhesive porous layer containing a polyvinylidene fluoride resin and a filler in order to improve the adhesion to the electrode and the slipperiness of the separator surface.
  • the difference between D90 and D10 in the filler contained in the adhesive porous layer is 2 ⁇ m or less, and the adhesive porous layer satisfies the above (1). Are compatible.
  • the filler contained in the adhesive porous layer has a difference between D90 and D10 of 2 ⁇ m or less in order to ensure adhesion between the adhesive porous layer and the electrode. If the difference between D90 and D10 is more than 2 ⁇ m, the unevenness formed on the surface of the adhesive porous layer by the filler becomes non-uniform, so the adhesiveness between the adhesive porous layer and the electrode is poor, As a result, the cycle characteristics of the battery are inferior.
  • the ratio a / r between the average thickness a ( ⁇ m) of the adhesive porous layer on one side of the porous substrate and the volume average particle diameter r ( ⁇ m) of the filler contained in the adhesive porous layer Is 0.5 or more and 3.0 or less.
  • the filler protrudes excessively on the surface of the adhesive porous layer, resulting in poor adhesion between the electrode and the separator, and as a result, the battery cycle characteristics are poor. Further, when the a / r is less than 0.5, the filler protruding from the surface of the adhesive porous layer is likely to fall off in the separator transport process. From these viewpoints, the a / r is preferably 0.6 or more, and more preferably 0.7 or more. On the other hand, if the a / r is more than 3.0, it is difficult for the filler to protrude on the surface of the adhesive porous layer, and it is difficult to impart slipperiness to the separator.
  • the a / r is preferably 2.5 or less, and more preferably 2.0 or less.
  • the porous substrate means a substrate having pores or voids therein.
  • a substrate include a microporous film; a porous sheet made of a fibrous material such as a nonwoven fabric and a paper-like sheet; a composite in which one or more other porous layers are laminated on the microporous film or the porous sheet. Porous sheet; and the like.
  • a microporous membrane is a membrane that has a large number of micropores inside and a structure in which these micropores are connected, and allows gas or liquid to pass from one surface to the other. Means.
  • the material constituting the porous substrate may be either an organic material or an inorganic material as long as it is an electrically insulating material.
  • the material constituting the porous substrate is preferably a thermoplastic resin from the viewpoint of imparting a shutdown function to the porous substrate.
  • the shutdown function refers to a function of preventing the thermal runaway of the battery by blocking the movement of ions by dissolving the constituent materials and closing the pores of the porous base material when the battery temperature increases.
  • the thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is suitable, and polyolefin is particularly preferable.
  • a polyolefin microporous membrane As a porous substrate using polyolefin, a polyolefin microporous membrane is suitable.
  • the polyolefin microporous membrane one having sufficient mechanical properties and ion permeability may be selected from polyolefin microporous membranes applied to conventional separators for non-aqueous secondary batteries.
  • the polyolefin microporous membrane preferably contains polyethylene from the viewpoint of exhibiting a shutdown function, and the polyethylene content is preferably 95% by mass or more.
  • a polyolefin microporous film containing polyethylene and polypropylene is preferable from the viewpoint of imparting heat resistance that does not easily break when exposed to high temperatures.
  • Examples of such a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one layer.
  • a microporous membrane preferably contains 95% by mass or more of polyethylene and 5% by mass or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance.
  • the polyolefin microporous membrane has a laminated structure of two or more layers, and at least one layer contains polyethylene and at least one layer contains a polyolefin microporous membrane having a structure containing polypropylene. .
  • the polyolefin contained in the polyolefin microporous membrane preferably has a weight average molecular weight of 100,000 to 5,000,000. When the weight average molecular weight is 100,000 or more, sufficient mechanical properties can be secured. On the other hand, when the weight average molecular weight is 5 million or less, the shutdown characteristics are good and the film can be easily formed.
  • the polyolefin microporous membrane can be produced, for example, by the following method. That is, it is a method in which a molten polyolefin resin is extruded from a T-die to form a sheet, which is crystallized and then stretched, and further heat-treated to form a microporous film. Alternatively, a polyolefin resin melted together with a plasticizer such as liquid paraffin is extruded from a T-die, cooled and formed into a sheet, and after stretching, the plasticizer is extracted and heat treated to form a microporous membrane. is there.
  • a plasticizer such as liquid paraffin
  • porous sheets made of fibrous materials include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; heat-resistant polymers such as aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide; And the like, or a porous sheet made of a mixture of the fibrous materials.
  • the composite porous sheet a structure in which a functional layer is laminated on a porous sheet made of a microporous film or a fibrous material can be adopted. Such a composite porous sheet is preferable in that a further function can be added by the functional layer.
  • a porous layer made of a heat resistant resin or a porous layer made of a heat resistant resin and a filler can be adopted.
  • the heat resistant resin include one or more heat resistant polymers selected from aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone and polyetherimide.
  • heat-resistant polymer fine particles such as crosslinked polyacrylic acid, crosslinked polyacrylic ester, crosslinked polymethacrylic acid, crosslinked polymethacrylic acid ester, crosslinked polymethyl methacrylate, and crosslinked polysilicon; metal oxide such as alumina; A metal hydroxide such as magnesium hydroxide can be preferably used.
  • a method of applying a functional layer to a microporous membrane or a porous sheet a method of bonding the microporous membrane or porous sheet and the functional layer with an adhesive, a microporous membrane or a porous layer Examples thereof include a method of thermocompression bonding the sheet and the functional layer.
  • the film thickness of the porous substrate is preferably 5 ⁇ m to 25 ⁇ m from the viewpoint of obtaining good mechanical properties and internal resistance.
  • the Gurley value (JIS P8117) of the porous substrate is preferably 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of preventing short circuit of the battery and obtaining sufficient ion permeability.
  • the puncture strength of the porous substrate is preferably 300 g or more from the viewpoint of improving the production yield.
  • the adhesive porous layer has a large number of micropores inside and has a structure in which these micropores are connected, and gas or liquid can pass from one surface to the other.
  • Layer Moreover, in this invention, an adhesive porous layer is a layer which is provided as an outermost layer of a separator on one side or both sides of a porous substrate and can adhere to an electrode.
  • the adhesive porous layer is preferably present on both surfaces rather than only on one surface of the porous substrate from the viewpoint of excellent battery cycle characteristics. This is because when the adhesive porous layer is on both sides of the porous substrate, both sides of the separator are well adhered to both electrodes via the adhesive porous layer.
  • the average thickness of the adhesive porous layer is preferably 0.5 ⁇ m to 5 ⁇ m on one side of the porous substrate from the viewpoint of ensuring adhesion with the electrode and high energy density, and is 1 ⁇ m to 5 ⁇ m. More preferably.
  • the adhesive porous layer preferably has a sufficiently porous structure from the viewpoint of ion permeability.
  • the porosity is preferably 30% to 60%.
  • the porosity is 60% or less, it is possible to secure mechanical properties that can withstand a pressing process for bonding to an electrode. Further, when the porosity is 60% or less, the surface porosity is not too high, and a sufficient adhesive force can be ensured. On the other hand, when the porosity is 30% or more, the ion permeability is good.
  • the adhesive porous layer preferably has an average pore size of 20 nm to 100 nm.
  • the average pore diameter is 100 nm or less, the nonuniformity of the pores is suppressed on the surface of the adhesive porous layer, and the adhesion points are evenly distributed. As a result, the adhesion to the electrode is more excellent. Further, when the average pore diameter is 100 nm or less, the movement of ions tends to be uniform, and the cycle characteristics and load characteristics are improved.
  • the average pore diameter is 20 nm or more, even when the polyvinylidene fluoride resin constituting the adhesive porous layer swells when impregnated with the electrolytic solution, the pores are hardly clogged, so that the ion permeability is inhibited. It is hard to happen.
  • the surface roughness of the adhesive porous layer is ten-point average roughness (Rz), preferably 0.8 ⁇ m to 8.0 ⁇ m, more preferably 0.9 ⁇ m to 6.0 ⁇ m, and more preferably 1.0 ⁇ m to 3 ⁇ m. More preferably, the thickness is 0.0 ⁇ m.
  • the ten-point average roughness (Rz) is a value measured by a method according to JIS B 0601-1994 (or Rzjis of JIS Bz0601-2001).
  • Rz in the present invention is measured under the conditions of a measurement length of 1.25 mm, a measurement speed of 0.1 mm / second, and a temperature and humidity of 25 ° C./50% RH using an ET4000 manufactured by Kosaka Laboratory. Value.
  • the dynamic friction coefficient of the adhesive porous layer is preferably 0.1 to 0.6, more preferably 0.1 to 0.4, and still more preferably 0.1 to 0.3.
  • the dynamic friction coefficient is a value measured by a method according to JIS K7125.
  • the dynamic friction coefficient in the present invention is a value measured using a surface property tester manufactured by Haydon.
  • the coating amount of the adhesive porous layer in the present invention from the viewpoint of adhesiveness and ion permeability of the electrode at 1.0g / m 2 ⁇ 3.0g / m 2 as the sum of both sides of the porous substrate Preferably there is. Further, the coating amount of the adhesive porous layer is preferably in one surface of the porous substrate is 0.5g / m 2 ⁇ 1.5g / m 2.
  • the difference between the coating amount on one side and the coating amount on the other side is relative to the total coating amount on both sides. And preferably 20% or less. If it is 20% or less, the separator is difficult to curl. As a result, the handling property is good and the problem that the cycle characteristics are deteriorated hardly occurs.
  • the adhesive porous layer contains a polyvinylidene fluoride resin.
  • a polyvinylidene fluoride resin a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride); a copolymer of vinylidene fluoride and another copolymerizable monomer (polyvinylidene fluoride copolymer); a mixture thereof ;
  • the monomer copolymerizable with vinylidene fluoride include hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, trichloroethylene, vinyl fluoride, and the like, and one kind or two or more kinds can be used.
  • the polyvinylidene fluoride resin can be synthesized by emulsion polymerization or suspension polymerization.
  • the polyvinylidene fluoride resin preferably contains 95 mol% or more (more preferably 98 mol% or more) of vinylidene fluoride as a structural unit.
  • 95 mol% or more of vinylidene fluoride is contained, it is easy to ensure mechanical strength and heat resistance that can withstand pressure and heating during battery production.
  • the adhesive porous layer contains two types of polyvinylidene fluoride resins (the following first resin and second resin) having different hexafluoropropylene contents.
  • First resin A vinylidene fluoride / hexafluoropropylene copolymer or a vinylidene fluoride homopolymer (hexafluoropropylene content) having a hexafluoropropylene content of more than 0 mol% and not more than 1.5 mol% Is 0 mol%)
  • Second resin a vinylidene fluoride / hexafluoropropylene copolymer having a hexafluoropropylene content of more than 1.5 mol%.
  • the adhesive porous layer containing the above two types of polyvinylidene fluoride resins is: Compared with the adhesive porous layer which does not contain any one, the adhesiveness of an adhesive porous layer and an electrode improves. In addition, the adhesive porous layer containing the two types of polyvinylidene fluoride resins is more adhesive than the adhesive porous layer not containing any one of the adhesive porous layer and the porous substrate. And the peeling force between these layers is improved.
  • the mixing ratio (mass ratio, first resin: second resin) of the first resin and the second resin is preferably 15:85 to 85:15.
  • the polyvinylidene fluoride resin preferably has a weight average molecular weight of 300,000 to 3,000,000.
  • weight average molecular weight is 300,000 or more, mechanical properties that the adhesive porous layer can withstand the adhesion treatment with the electrode can be secured, and sufficient adhesion can be obtained.
  • weight average molecular weight is 3 million or less, the viscosity of the coating liquid at the time of coating molding does not become too high, and the moldability is excellent.
  • the weight average molecular weight is more preferably in the range of 300,000 to 2,000,000, still more preferably in the range of 500,000 to 1,500,000.
  • the fibril diameter of the polyvinylidene fluoride resin is preferably 10 nm to 1000 nm from the viewpoint of cycle characteristics.
  • the adhesive porous layer may contain a resin other than the polyvinylidene fluoride resin.
  • resins include styrene-butadiene copolymers; homopolymers or copolymers of vinyl nitriles such as acrylonitrile and methacrylonitrile; polyethers such as polyethylene oxide and polypropylene oxide;
  • the adhesive porous layer includes a filler made of an inorganic material or an organic material.
  • the filler may be either an organic filler or an inorganic filler that is stable in a non-aqueous electrolyte and electrochemically stable. From the viewpoint of ensuring the safety of the battery, a filler having a heat resistant temperature of 150 ° C. or higher is preferable.
  • organic filler examples include cross-linked polyacrylic acid, cross-linked polyacrylic ester, cross-linked polymethacrylic acid, cross-linked polymethacrylic acid ester, cross-linked polymethyl methacrylate, cross-linked polysilicon, cross-linked polystyrene, cross-linked polydivinylbenzene, and styrene-divinyl.
  • Cross-linked polymer fine particles such as benzene copolymer cross-linked product, polyimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensate; heat-resistant polymer fine particles such as polysulfone, polyacrylonitrile, polyaramid, polyacetal, thermoplastic polyimide It is done.
  • the resin (polymer) that constitutes the organic filler is a mixture of the molecular species exemplified above, a modified product, a derivative, or a copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer). It may be a crosslinked body.
  • the inorganic filler examples include metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, nickel hydroxide, and boron hydroxide; metal oxides such as alumina and zirconia; Examples thereof include carbonates such as calcium carbonate and magnesium carbonate; sulfates such as barium sulfate and calcium sulfate; clay minerals such as calcium silicate and talc; From the viewpoint of imparting flame retardancy and charge removal effect, metal hydroxides are preferred.
  • metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, nickel hydroxide, and boron hydroxide
  • metal oxides such as alumina and zirconia
  • carbonates such as calcium carbonate and magnesium carbonate
  • sulfates such as barium sulfate and calcium sulfate
  • clay minerals such as calcium silicate and
  • fillers may be used alone or in combination of two or more.
  • the volume average particle diameter of the filler is preferably 0.01 ⁇ m to 10 ⁇ m from the viewpoints of ensuring good adhesion and slipperiness and moldability of the separator.
  • the lower limit is more preferably 0.1 ⁇ m or more, and the upper limit is more preferably 5 ⁇ m or less.
  • the particle shape of the filler is arbitrary, and may be spherical, elliptical, plate-shaped, rod-shaped, or indefinite. From the viewpoint of preventing a short circuit of the battery, plate-like particles and non-aggregated primary particles are preferable.
  • the filler can improve slipperiness by forming fine irregularities on the surface of the adhesive porous layer, but if the filler is a plate-like particle or a non-aggregated primary particle, the filler As a result, the unevenness formed on the surface of the adhesive porous layer becomes finer, and the adhesion to the electrode is better.
  • the ratio of the filler to the total amount of the polyvinylidene fluoride resin and filler is preferably 1% by mass to 30% by mass.
  • the content ratio of the filler is 1% by mass or more, the effect of improving the slipperiness of the separator by forming fine irregularities on the surface of the adhesive porous layer is easily exhibited.
  • the filler content is more preferably 3% by mass or more.
  • the filler content is 30% by mass or less, the mechanical strength of the adhesive porous layer and the separator is maintained. For example, when the electrode and the separator are overlapped and rolled, It is hard for cracks to occur.
  • the filler content is more preferably 20% by mass or less, and still more preferably 10% by mass or less.
  • the filler occupies the total amount of the polyvinylidene fluoride resin and filler.
  • the ratio is preferably 1% by mass or more, and more preferably 3% by mass or more.
  • the adhesive porous layer consisting only of resin is too soft and difficult to cut, and if it sticks to the slit end face, it may stand up, bend, or mix with slit debris, but the adhesive porous layer will contain filler with the above content ratio.
  • the separator becomes reasonably hard and easy to slit, and if it is scattered on the slit end face, it is difficult to stand up, bend, or mix slit dust. If the separator is slit at the slit end face, it is preferable that the separator is not bent, bent, or mixed with slit dust, since the adhesion to the electrode is further improved and the production yield is further improved.
  • the separator of the present invention preferably has a total film thickness of 5 ⁇ m to 35 ⁇ m, more preferably 10 ⁇ m to 20 ⁇ m, from the viewpoint of mechanical strength and energy density when used as a battery.
  • the porosity of the separator of the present invention is preferably 30% to 60% from the viewpoints of adhesion to electrodes, handling properties, mechanical strength, and ion permeability.
  • the Gurley value (JIS P8117) of the separator of the present invention is preferably 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of a good balance between mechanical strength and film resistance.
  • the difference between the Gurley value of the porous substrate and the Gurley value of the separator provided with the adhesive porous layer on the porous substrate is 300 seconds / 100 cc. Or less, more preferably 150 seconds / 100 cc or less, and still more preferably 100 seconds / 100 cc or less.
  • the curvature of the separator of the present invention is preferably 1.5 to 2.5 from the viewpoint of ion permeability.
  • the film resistance of the separator of the present invention from the viewpoint of the load characteristics of the battery, it is preferable that 1ohm ⁇ cm 2 ⁇ 10ohm ⁇ cm 2.
  • the membrane resistance is a resistance value when the separator is impregnated with an electrolytic solution, and is measured by an alternating current method.
  • the above numerical values are values measured at 20 ° C. using 1 M LiBF 4 -propylene carbonate / ethylene carbonate (mass ratio 1/1) as the electrolytic solution.
  • the thermal shrinkage rate of the separator of the present invention at 105 ° C. is preferably 10% or less in both the MD direction and the TD direction. When the thermal contraction rate is within this range, the shape stability of the separator and the shutdown characteristics are balanced. More preferably, it is 5% or less.
  • a coating liquid containing a polyvinylidene fluoride resin and a filler is applied onto a porous substrate to form a coating layer, and then the polyvinylidene fluoride resin in the coating layer is solidified.
  • the adhesive porous layer can be manufactured by a method of integrally forming on the porous substrate.
  • the adhesive porous layer made of the polyvinylidene fluoride resin and filler can be formed, for example, by the following wet coating method.
  • a polyvinylidene fluoride resin is dissolved in a solvent, and a filler is dispersed therein to prepare a coating solution.
  • the coating liquid is applied to a porous substrate, and then immersed in an appropriate coagulating liquid to solidify the polyvinylidene fluoride resin while inducing phase separation.
  • a porous layer composed of polyvinylidene fluoride resin and filler is formed on the porous substrate. Thereafter, washing and drying are performed to remove the coagulating liquid from the porous structure layer.
  • the details of the wet coating method suitable for the present invention are as follows.
  • phase separation agent As a solvent for dissolving the polyvinylidene fluoride resin used for preparing the coating liquid (hereinafter also referred to as “good solvent”), N-methyl-2-pyrrolidone (NMP), dimethylacetamide, dimethylformamide, dimethylformamide A polar amide solvent such as is preferably used. From the viewpoint of forming a good porous structure, it is preferable to mix a phase separation agent that induces phase separation into a good solvent. Examples of the phase separation agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
  • the phase separation agent is preferably added in a range that can ensure a viscosity suitable for coating.
  • the solvent is preferably a mixed solvent containing 60% by mass or more of a good solvent and 5% to 40% by mass of a phase separation agent from the viewpoint of forming a good porous structure.
  • the coating solution preferably contains a polyvinylidene fluoride resin at a concentration of 3% by mass to 10% by mass from the viewpoint of forming a good porous structure.
  • the coating liquid has a filler content of 1% by mass to the total amount of the polyvinylidene fluoride resin and the filler. It is preferably 30% by mass, and more preferably 3% by mass to 28% by mass.
  • the coagulation liquid is generally composed of a good solvent used for preparing the coating liquid, a phase separation agent, and water. It is preferable in production that the mixing ratio of the good solvent and the phase separation agent is adjusted to the mixing ratio of the mixed solvent used for dissolving the polyvinylidene fluoride resin.
  • the concentration of water is preferably 40% by mass to 90% by mass from the viewpoint of formation of a porous structure and productivity.
  • the conventional coating method such as Meyer bar, die coater, reverse roll coater, gravure coater may be applied to the coating liquid on the porous substrate.
  • the adhesive porous layer is formed on both surfaces of the porous substrate, it is preferable from the viewpoint of productivity to apply the coating liquid to both surfaces simultaneously on both surfaces.
  • the adhesive porous layer can be produced by a dry coating method other than the wet coating method described above.
  • the dry coating method is a method of applying a coating liquid containing a polyvinylidene fluoride resin, a filler and a solvent to a porous substrate, and drying the coating layer to volatilize and remove the solvent. This is a method for obtaining a porous layer.
  • the wet coating method is preferred in that a good porous structure can be obtained.
  • the separator of the present invention can also be produced by a method in which an adhesive porous layer is produced as an independent sheet, and this adhesive porous layer is stacked on a porous substrate and combined with thermocompression bonding or an adhesive.
  • a method of producing the adhesive porous layer as an independent sheet a coating liquid containing a polyvinylidene fluoride resin and a filler is applied onto a release sheet, and the above-described wet coating method or dry coating method is applied.
  • the method of forming an adhesive porous layer and peeling an adhesive porous layer from a peeling sheet is mentioned.
  • the non-aqueous secondary battery of the present invention is a non-aqueous secondary battery that obtains an electromotive force by doping and dedoping lithium, and includes a positive electrode, a negative electrode, and the separator for a non-aqueous secondary battery of the present invention described above.
  • the non-aqueous secondary battery has a structure in which a battery element in which a structure body in which a negative electrode and a positive electrode face each other via a separator is impregnated with an electrolytic solution is enclosed in an exterior material.
  • the non-aqueous secondary battery of the present invention is suitable for a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery.
  • the dope means occlusion, support, adsorption, or insertion, and means a phenomenon in which lithium ions enter the active material of an electrode such as a positive electrode.
  • the non-aqueous secondary battery of the present invention is excellent in the adhesion between the electrode and the separator by providing the separator for a non-aqueous secondary battery of the present invention described above as a separator, and therefore excellent in cycle characteristics. Moreover, since the non-aqueous secondary battery of the present invention manufactured using the separator for a non-aqueous secondary battery of the present invention described above is excellent in the handling property of the separator, the manufacturing yield is high.
  • the positive electrode may have a structure in which an active material layer including a positive electrode active material and a binder resin is formed on a current collector.
  • the active material layer may further contain a conductive additive.
  • the positive electrode active material include lithium-containing transition metal oxides. Specifically, LiCoO 2 , LiNiO 2 , LiMn 1/2 Ni 1/2 O 2 , LiCo 1/3 Mn 1/3 Ni 1 / 3 O 2, LiMn 2 O 4 , LiFePO 4, LiCo 1/2 Ni 1/2 O 2, LiAl 1/4 Ni 3/4 O 2 and the like.
  • the binder resin include polyvinylidene fluoride resin.
  • the conductive aid include carbon materials such as acetylene black, ketjen black, and graphite powder.
  • the current collector include aluminum foil, titanium foil, and stainless steel foil having a thickness of 5 ⁇ m to 20 ⁇ m.
  • the polyvinylidene fluoride resin when the adhesive porous layer of the separator is arranged on the positive electrode side, the polyvinylidene fluoride resin is excellent in oxidation resistance, so LiMn that can operate at a high voltage of 4.2 V or more Positive electrode active materials such as 1/2 Ni 1/2 O 2 and LiCo 1/3 Mn 1/3 Ni 1/3 O 2 are easy to apply and advantageous.
  • the negative electrode may have a structure in which an active material layer including a negative electrode active material and a binder resin is formed on a current collector.
  • the active material layer may further contain a conductive additive.
  • the negative electrode active material include materials that can occlude lithium electrochemically, and specific examples include carbon materials; alloys of silicon, tin, aluminum, and the like with lithium.
  • the binder resin include polyvinylidene fluoride resin and styrene-butadiene rubber.
  • the separator of the present invention can ensure sufficient adhesion to the negative electrode even when styrene-butadiene rubber is used as the negative electrode binder.
  • the conductive aid include carbon materials such as acetylene black, ketjen black, and graphite powder.
  • the current collector include copper foil, nickel foil, and stainless steel foil having a thickness of 5 ⁇ m to 20 ⁇ m. Moreover, it may replace with said negative electrode and may use metal lithium foil as a negative electrode.
  • the electrolytic solution is a solution in which a lithium salt is dissolved in a non-aqueous solvent.
  • the lithium salt include LiPF 6 , LiBF 4 , LiClO 4, and the like.
  • non-aqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, and difluoroethylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and fluorine-substituted products thereof; ⁇ -butyrolactone , Cyclic esters such as ⁇ -valerolactone, and the like. These may be used alone or in combination.
  • the electrolytic solution a solution in which a cyclic carbonate and a chain carbonate are mixed at a mass ratio (cyclic carbonate / chain carbonate) of 20/80 to 40/60 and a lithium salt is dissolved in an amount of 0.5 M to 1.5 M is preferable.
  • the separator with the conventional adhesive porous layer may have difficulty in exhibiting the adhesion to the electrode depending on the type of electrolyte used, but the separator of the present invention has good adhesion regardless of the type of electrolyte. This is advantageous in that
  • Examples of the exterior material include metal cans and aluminum laminate film packs.
  • the shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the separator of the present invention is suitable for any shape. Since the separator of the present invention is excellent in adhesiveness with the electrode, it is difficult to form a gap between the electrode and the separator due to external impact or expansion / contraction of the electrode due to charge / discharge, and the aluminum laminate film pack It is suitable for the battery which uses as an exterior material.
  • the non-aqueous secondary battery of the present invention is, for example, impregnated with an electrolyte in a laminate in which the separator of the present invention is disposed between a positive electrode and a negative electrode, and accommodated in an exterior material (for example, an aluminum laminate film pack), It can manufacture by pressing the said laminated body from the said exterior material.
  • an exterior material for example, an aluminum laminate film pack
  • the electrode and the separator can be bonded well, and a non-aqueous secondary battery having excellent cycle life can be obtained.
  • the adhesion between the electrode and the separator is good, the battery is excellent in safety.
  • the separator of the present invention can be bonded by overlapping the electrode.
  • the above-mentioned pressing is not an essential step in battery production, but it is preferable to perform pressing in order to improve the adhesion between the electrode and the separator.
  • the press is preferably a press while heating (hot press).
  • the method of disposing the separator between the positive electrode and the negative electrode may be a method of stacking at least one layer of the positive electrode, the separator, and the negative electrode in this order (so-called stack method). A method of rolling in the vertical direction may be used.
  • the measurement methods applied in the examples and comparative examples of the present invention are as follows.
  • the average thickness a ( ⁇ m) of the adhesive porous layer is a value obtained by subtracting the average thickness of the porous substrate from the average thickness of the separator.
  • the average thickness of the porous substrate was subtracted from the average thickness of the separator and divided by 2.
  • Each average thickness ( ⁇ m) of the separator and the porous substrate was obtained by measuring 20 arbitrary points within 10 cm ⁇ 10 cm with a contact-type thickness meter (LITEMATIC manufactured by Mitutoyo Corporation), and averaging these.
  • the measurement terminal was a cylindrical shape having a diameter of 5 mm, and was adjusted so that a load of 7 g was applied during the measurement.
  • the filler was dispersed in water containing a nonionic surfactant (Triton X-100), and the particle size distribution was measured using a laser diffraction particle size distribution analyzer (Mastersizer 2000 manufactured by Sysmex Corporation).
  • D50 the particle diameter at which the volume accumulation is 50%
  • ⁇ m the volume average particle diameter of the filler.
  • the particle diameter that becomes 10% volume accumulation is the volume accumulation 10% particle diameter (D10)
  • the particle diameter that becomes 90% volume accumulation is the volume accumulation 90% particle diameter (D90). The difference between these particle diameters “D90 ⁇ D10” ( ⁇ m) was calculated.
  • a tape (3M Scotch (registered trademark) mending tape 810) was applied to both sides of the separator, and cut into 10 mm ⁇ 200 mm to obtain test pieces. At one end in the longitudinal direction of the test piece, the end of each of the double-sided tapes is peeled off, and the ends of both of the peeled tapes are gripped by a tensile tester (Orientec Tensilon Universal Tester RTC-1210A). I had it. And the peeling test was implemented on the conditions of a tension direction: the direction orthogonal to the surface of a test piece, and a tension speed: 20 mm / min. The average of the stress values of 30 mm to 100 mm (value obtained by continuous measurement during peeling from 30 mm to 100 mm from the start of tension) was defined as the peeling force (N / cm).
  • the separator was released from the roll, brought into contact with a plurality of metal rolls and resin rolls, and wound up by a winder.
  • the potential (kV) in the vicinity of the surface of the winding roll during winding was measured using an electrometer FMX-003 manufactured by Simco.
  • the ambient temperature was 25 ° C. and the relative humidity was 40%.
  • the dynamic friction coefficient of the separator was measured according to JIS K7125 using a surface property tester manufactured by Haydon.
  • [Production of test batteries] 300 g of artificial graphite as negative electrode active material, 7.5 g of water-soluble dispersion containing 40% by mass of modified styrene-butadiene copolymer as binder, 3 g of carboxymethyl cellulose as thickener, and appropriate amount of water The mixture was stirred with a type mixer to prepare a negative electrode slurry. This negative electrode slurry was applied to a 10 ⁇ m thick copper foil as a negative electrode current collector, dried and pressed to obtain a negative electrode having a negative electrode active material layer.
  • a lead tab was welded to the positive electrode and the negative electrode, and the positive electrode, the separator, and the negative electrode were laminated in this order to produce a laminate.
  • the laminate was impregnated with an electrolytic solution and accommodated in an aluminum laminate film pack.
  • As the electrolytic solution 1M LiPF 6 -ethylene carbonate / ethyl methyl carbonate (mass ratio 3/7) was used.
  • the inside of the pack is vacuum-sealed using a vacuum sealer, and the laminate is hot-pressed together with the pack using a hot press machine, thereby bonding the electrode and the separator and sealing the pack. And went.
  • the conditions of hot pressing were a load of 20 kg per 1 cm 2 of electrode, a temperature of 90 ° C., and a pressing time of 2 minutes.
  • Table 2 shows the physical property values and evaluation results of the separator of Example 1 and the test battery.
  • Examples 2 to 5 As shown in Table 1, separators of Examples 2 to 5 were produced in the same manner as Example 1 except that the average thickness a and the filler content of the adhesive porous layer were changed. In the same manner as in Example 1, test batteries of Examples 2 to 5 were produced. Table 2 shows the physical property values and evaluation results of the separators and test batteries of Examples 2 to 5.
  • Example 6 a cross-linked acrylic resin filler (referred to as “organic filler B”) having a volume average particle size of 3.0 ⁇ m and D90-D10 of 2.0 ⁇ m is used, and the adhesive properties are as shown in Table 1.
  • organic filler B a cross-linked acrylic resin filler having a volume average particle size of 3.0 ⁇ m and D90-D10 of 2.0 ⁇ m is used, and the adhesive properties are as shown in Table 1.
  • a separator of Example 6 was produced in the same manner as in Example 1 except that the average thickness a of the porous layer and the filler content were changed.
  • a test battery of Example 6 was produced.
  • Table 2 shows the physical property values and evaluation results of the separator and the test battery of Example 6.
  • Example 7 Instead of the organic filler A, magnesium hydroxide filler (volume average particle diameter 1.6 ⁇ m) (referred to as “inorganic filler C”) and magnesium hydroxide filler (volume average particle diameter 0.8 ⁇ m) (“inorganic filler D As shown in Table 1, using an inorganic filler (volume average particle diameter 1.2 ⁇ m, D90-D10 is 1.6 ⁇ m) mixed at a mass ratio of 1: 1. A separator of Example 7 was produced in the same manner as Example 1 except that the thickness a and the filler content were changed. In the same manner as in Example 1, a test battery of Example 7 was produced. Table 2 shows the physical property values and evaluation results of the separator of Example 7 and the test battery.
  • Example 8> instead of resin A, resin A and vinylidene fluoride / hexafluoropropylene copolymer (molar ratio 95.2 / 4.8, weight average molecular weight 500,000) (referred to as “resin B”) are in a mass ratio.
  • resin B vinylidene fluoride / hexafluoropropylene copolymer
  • the separator of Example 8 was produced in the same manner as in Example 1 except that the average thickness a and the filler content of the adhesive porous layer were changed as shown in Table 1. .
  • Table 2 shows the physical property values and evaluation results of the separator and the test battery of Example 8.
  • Example 1 A separator of Comparative Example 1 was produced in the same manner as in Example 1 except that the organic filler A was not used and the average thickness a of the adhesive porous layer was changed as shown in Table 1. In the same manner as in Example 1, a test battery of Comparative Example 1 was produced. Table 2 shows the physical property values and evaluation results of the separator and the test battery of Comparative Example 1.
  • Example 3 A separator of Comparative Example 3 was produced in the same manner as in Example 1 except that the average thickness a and filler content of the adhesive porous layer were changed as shown in Table 1. In the same manner as in Example 1, a test battery of Comparative Example 3 was produced. Table 2 shows the physical property values and evaluation results of the separator and the test battery of Comparative Example 3.
  • ⁇ Comparative Example 4> a cross-linked acrylic resin filler (referred to as “organic filler E”) having a volume average particle diameter of 5.0 ⁇ m and D90-D10 of 3.6 ⁇ m is used, and the adhesive properties are as shown in Table 1.
  • organic filler E a cross-linked acrylic resin filler having a volume average particle diameter of 5.0 ⁇ m and D90-D10 of 3.6 ⁇ m is used, and the adhesive properties are as shown in Table 1.
  • organic filler E a cross-linked acrylic resin filler having a volume average particle diameter of 5.0 ⁇ m and D90-D10 of 3.6 ⁇ m
  • Table 1 shows the adhesive properties and evaluation results of the separator and test battery of Comparative Example 4.
  • Example 5 A separator of Comparative Example 5 was produced in the same manner as in Example 1 except that the average thickness a of the adhesive porous layer was changed as shown in Table 1. In the same manner as in Example 1, a test battery of Comparative Example 5 was produced. Table 2 shows the physical property values and evaluation results of the separator and the test battery of Comparative Example 5.
  • Example 6 A separator of Comparative Example 6 was produced in the same manner as in Example 1 except that the organic filler E was used in place of the organic filler A and the average thickness a of the adhesive porous layer was changed as shown in Table 1. In the same manner as in Example 1, a test battery of Comparative Example 6 was produced. Table 2 shows the physical property values and evaluation results of the separator and the test battery of Comparative Example 6.
  • ⁇ Comparative Example 7> a cross-linked acrylic resin filler (referred to as “organic filler F”) having a volume average particle diameter of 4.0 ⁇ m and D90-D10 of 2.5 ⁇ m is used, and the adhesive properties are as shown in Table 1.
  • organic filler F a cross-linked acrylic resin filler having a volume average particle diameter of 4.0 ⁇ m and D90-D10 of 2.5 ⁇ m is used, and the adhesive properties are as shown in Table 1.
  • organic filler F a cross-linked acrylic resin filler having a volume average particle diameter of 4.0 ⁇ m and D90-D10 of 2.5 ⁇ m
  • the separators of Examples 1 to 8 were excellent in adhesion to the electrodes, and the batteries produced using the separators of Examples 1 to 8 were excellent in cycle characteristics. Further, the separators of Examples 1 to 8 were free from wrinkles and gauge bands in the roll appearance, and were excellent in handling properties. Therefore, the separators of Examples 1 to 8 had a high yield in battery production.
  • the separator of the present invention is suitable for a non-aqueous secondary battery, and particularly suitable for a non-aqueous secondary battery with an aluminum laminate exterior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

 多孔質基材と、前記多孔質基材の片面又は両面に設けられ、ポリフッ化ビニリデン系樹脂及び、体積累積90%の粒子径と体積累積10%の粒子径との差が2μm以下であるフィラーを含み、下記の式(1)を満たす接着性多孔質層と、を備えた非水系二次電池用セパレータ。 式(1) 0.5≦a/r≦3.0 式(1)中、aは、多孔質基材の片面における接着性多孔質層の平均厚(μm)であり、rは、接着性多孔質層に含まれるフィラーの体積平均粒子径(μm)である。

Description

非水系二次電池用セパレータ及び非水系二次電池
 本発明は、非水系二次電池用セパレータ及び非水系二次電池に関する。
 リチウムイオン二次電池に代表される非水系二次電池は、携帯電話やノートパソコンといった携帯用電子機器の主電源として広範に普及している。そして、電気自動車やハイブリッドカーの主電源、夜間電気の蓄電システム等へと適用が広がっている。非水系二次電池の普及に伴い、安定した電池特性と安全性を確保することが課題となっている。
 非水系二次電池の安全性確保においてセパレータの役割は重要である。とりわけシャットダウン機能の観点から、現状ではポリオレフィンを主成分とするポリオレフィン微多孔膜が用いられている。
 しかし、ポリオレフィン微多孔膜のみからなるセパレータは、シャットダウン機能が発現する温度よりも高い温度に曝された場合、セパレータ全体が溶融(いわゆるメルトダウン)する虞がある。
 また、ポリオレフィン樹脂は、他の樹脂や他の材料との接着性が乏しいために、ポリオレフィン微多孔膜と電極との接着性が十分ではなく、その結果、電池容量の低下やサイクル特性の低下を引き起こす場合があった。
 そこで、ポリオレフィン微多孔膜の片面又は両面に、セパレータの耐熱性の向上や、電極とセパレータとの接着性の向上を目的に、各種の樹脂とフィラーとからなる多孔質層を設ける提案がなされている(例えば、特許文献1~7参照)。
 なかでも、電極とセパレータとの接着性を高める技術としては、ポリオレフィン微多孔膜上に、ポリフッ化ビニリデン系樹脂を主成分とする多孔質層(以下「PVDF層」という。)を形成したセパレータが知られている(例えば、特許文献1~3参照)。
特開2004-146190号公報 特開2007-273123号公報 国際公開第1999/036981号パンフレット 特開2010-240936号公報 特開2010-015917号公報 特表2008-508391号公報 特表2008-524824号公報
 しかしながら、PVDF層は帯電しやすい性質を有しており、電池の製造工程(例えば金属ロールとの摩擦が生じるセパレータの搬送工程)において、静電気を帯びやすい。そのため、PVDF層を有するセパレータは、静電気を帯びて滑りにくくなり、したがってハンドリング性が低下する。その結果、電池の製造工程においてセパレータの蛇行や搬送しわ等が起こって、電池の製品不良を招きかねない。仮に、セパレータから静電気を除去する静電気除去工程を設けるとしても、電池の製造工程全般にわたって静電気を除去することは難しい。
 本発明は、上記状況のもとになされた。
 上記状況のもと、電極との接着性に優れ、且つ、ハンドリング性に優れる非水系二次電池用セパレータが必要とされている。
 また、上記状況のもと、サイクル特性に優れ、且つ、製造歩留まりが高い非水系二次電池が必要とされている。
 前記課題を解決するための具体的手段は、以下のとおりである。
 <1> 多孔質基材と、前記多孔質基材の片面又は両面に設けられ、ポリフッ化ビニリデン系樹脂及び、体積累積90%の粒子径と体積累積10%の粒子径との差が2μm以下であるフィラーを含み、下記の式(1)を満たす接着性多孔質層と、を備えた非水系二次電池用セパレータ。
   式(1) 0.5≦a/r≦3.0
 式(1)中、aは、多孔質基材の片面における接着性多孔質層の平均厚(μm)であり、rは、接着性多孔質層に含まれるフィラーの体積平均粒子径(μm)である。
 <2> 前記ポリフッ化ビニリデン系樹脂及び前記フィラーの総量に占める前記フィラーの割合が1質量%以上30質量%以下である、前記<1>に記載の非水系二次電池用セパレータ。
 <3> 前記接着性多孔質層は、前記多孔質基材の片面における平均厚が0.5μm以上5μm以下である、前記<1>又は<2>に記載の非水系二次電池用セパレータ。
 <4> 前記フィラーの体積平均粒子径が0.01μm以上10μm以下である、前記<1>~<3>のいずれか1項に記載の非水系二次電池用セパレータ。
 <5> 正極と、負極と、前記正極及び前記負極の間に配置された前記<1>~<4>のいずれか1項に記載の非水系二次電池用セパレータとを備え、リチウムのドープ・脱ドープとにより起電力を得る非水系二次電池。
 本発明によれば、電極との接着性に優れ、且つ、ハンドリング性に優れる非水系二次電池用セパレータが提供される。
 さらに、本発明によれば、サイクル特性に優れ、且つ、製造歩留まりが高い非水系二次電池が提供される。
 以下に、本発明の実施の形態について説明する。なお、これらの説明及び実施例は本発明を例示するものであり、本発明の範囲を制限するものではない。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本明細書において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
<非水系二次電池用セパレータ>
 本発明の非水系二次電池用セパレータ(以下「セパレータ」とも称する。)は、多孔質基材と、この多孔質基材の片面又は両面に設けられた接着性多孔質層であって、ポリフッ化ビニリデン系樹脂及び、体積累積90%の粒子径と体積累積10%の粒子径との差が2μm以下であるフィラーを含む接着性多孔質層と、を備える。
 そして、前記接着性多孔質層は、下記の式(1)を満たす。
   式(1) 0.5≦a/r≦3.0
 式(1)中、aは、多孔質基材の片面における接着性多孔質層の平均厚(μm)であり、rは、接着性多孔質層に含まれるフィラーの体積平均粒子径(μm)である。
 本発明において、フィラーの体積平均粒子径とは、体積基準の粒度分布において、小径側から、体積累積50%となる粒子径である。
 フィラーの体積累積10%の粒子径とは、体積基準の粒度分布において、小径側から、体積累積10%となる粒子径である(以下「D10」とも称する。)。
 フィラーの体積累積90%の粒子径とは、体積基準の粒度分布において、小径側から、体積累積90%となる粒子径である(以下「D90」とも称する。)。
 本発明のセパレータは、電極との接着性とセパレータ表面の滑り性とを向上させるために、ポリフッ化ビニリデン系樹脂及びフィラーを含む接着性多孔質層を備える。そして、接着性多孔質層に含まれるフィラーについてD90とD10との差が2μm以下であり、且つ、接着性多孔質層が前記(1)を満足することにより、電極との接着性とハンドリング性が両立する。
 本発明において、接着性多孔質層に含まれるフィラーは、接着性多孔質層と電極との接着性を確保するために、D90とD10との差が2μm以下である。D90とD10の差が2μm超であると、フィラーによって接着性多孔質層の表面に形成される凹凸の大きさが不均一になるので、接着性多孔質層と電極との接着性に劣り、その結果、電池のサイクル特性に劣る。
 本発明において、多孔質基材の片面における接着性多孔質層の平均厚a(μm)と、当該接着性多孔質層に含まれるフィラーの体積平均粒子径r(μm)との比a/rは、0.5以上3.0以下である。平均厚aと体積平均粒子径rとが上記の関係を満足することにより、接着性多孔質層の表面においてフィラーが適切な高さに突出した状態が得られるので、セパレータが良好な滑り性を示し、ハンドリング性に優れる。
 前記a/rが0.5未満であると、接着性多孔質層の表面においてフィラーが突出し過ぎてしまい、電極とセパレータとの接着性に劣り、その結果、電池のサイクル特性に劣る。また、前記a/rが0.5未満であると、セパレータの搬送工程において、接着性多孔質層の表面から突出したフィラーの脱落が起こり易い。これらの観点で、前記a/rは、0.6以上であることが好ましく、0.7以上であることがより好ましい。
 一方、前記a/rが3.0超であると、接着性多孔質層の表面においてフィラーの突出が起こりにくく、セパレータに滑り性を付与することが難しい。その結果、セパレータの搬送時にしわが発生したり、セパレータを巻き取る際にゲージバンドが発生したりして、セパレータのハンドリング性に劣る。この観点で、前記a/rは、2.5以下であることが好ましく、2.0以下であることがより好ましい。
〔多孔質基材〕
 本発明において多孔質基材とは、内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜;不織布、紙状シート等の繊維状物からなる多孔性シート;これら微多孔膜や多孔性シートに他の多孔性層を1層以上積層させた複合多孔質シート;などが挙げられる。なお、微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
 多孔質基材を構成する材料は、電気絶縁性を有する材料であれば有機材料及び無機材料のいずれでもよい。
 多孔質基材を構成する材料は、多孔質基材にシャットダウン機能を付与する観点からは、熱可塑性樹脂が好ましい。ここで、シャットダウン機能とは、電池温度が高まった場合に、構成材料が溶解して多孔質基材の孔を閉塞することによりイオンの移動を遮断し、電池の熱暴走を防止する機能をいう。熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が適当であり、特にポリオレフィンが好ましい。
 ポリオレフィンを用いた多孔質基材としてはポリオレフィン微多孔膜が好適である。
 ポリオレフィン微多孔膜としては、従来の非水系二次電池用セパレータに適用されているポリオレフィン微多孔膜の中から、十分な力学物性とイオン透過性を有するものを選択すればよい。
 ポリオレフィン微多孔膜は、シャットダウン機能を発現する観点から、ポリエチレンを含むことが好ましく、ポリエチレンの含有量としては95質量%以上が好ましい。
 ほかに、高温にさらされたときに容易に破膜しない程度の耐熱性を付与するという観点では、ポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜が好適である。このようなポリオレフィン微多孔膜としては、ポリエチレンとポリプロピレンが1つの層において混在している微多孔膜が挙げられる。このような微多孔膜においては、シャットダウン機能と耐熱性の両立という観点から、95質量%以上のポリエチレンと5質量%以下のポリプロピレンとを含むことが好ましい。また、シャットダウン機能と耐熱性の両立という観点では、ポリオレフィン微多孔膜が2層以上の積層構造を備え、少なくとも1層はポリエチレンを含み、少なくとも1層はポリプロピレンを含む構造のポリオレフィン微多孔膜も好ましい。
 ポリオレフィン微多孔膜に含まれるポリオレフィンは、重量平均分子量が10万~500万のものが好適である。重量平均分子量が10万以上であると、十分な力学物性を確保できる。一方、重量平均分子量が500万以下であると、シャットダウン特性が良好であるし、膜の成形がしやすい。
 ポリオレフィン微多孔膜は、例えば以下の方法で製造可能である。すなわち、溶融したポリオレフィン樹脂をT-ダイから押し出し、シート化し、これを結晶化処理した後延伸し、さらに熱処理をして微多孔膜とする方法である。または、流動パラフィンなどの可塑剤と一緒に溶融したポリオレフィン樹脂をT-ダイから押し出し、これを冷却してシート化し、延伸した後、可塑剤を抽出し熱処理をして微多孔膜とする方法である。
 繊維状物からなる多孔性シートとしては、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱性高分子;などの繊維状物からなる多孔性シート、又は前記繊維状物の混合物からなる多孔性シートが挙げられる。
 複合多孔質シートとしては、微多孔膜や繊維状物からなる多孔性シートに、機能層を積層した構成を採用できる。このような複合多孔質シートは、機能層によってさらなる機能付加が可能となる点で好ましい。機能層としては、例えば耐熱性を付与するという観点では、耐熱性樹脂からなる多孔質層や、耐熱性樹脂及びフィラーからなる多孔質層を採用できる。耐熱性樹脂としては、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン及びポリエーテルイミドから選ばれる1種又は2種以上の耐熱性高分子が挙げられる。フィラーとしては、架橋ポリアクリル酸、架橋ポリアクリル酸エステル、架橋ポリメタクリル酸、架橋ポリメタクリル酸エステル、架橋ポリメタクリル酸メチル、架橋ポリシリコーン等の耐熱性高分子微粒子;アルミナ等の金属酸化物;水酸化マグネシウム等の金属水酸化物;などを好適に使用できる。なお、複合化の手法としては、微多孔膜や多孔性シートに機能層を塗工する方法、微多孔膜や多孔性シートと機能層とを接着剤で接合する方法、微多孔膜や多孔性シートと機能層とを熱圧着する方法等が挙げられる。
 本発明において多孔質基材の膜厚は、良好な力学物性と内部抵抗を得る観点から、5μm~25μmであることが好ましい。
 多孔質基材のガーレ値(JIS P8117)は、電池の短絡防止や十分なイオン透過性を得る観点から、50秒/100cc~800秒/100ccであることが好ましい。
 多孔質基材の突刺強度は、製造歩留まりを向上させる観点から、300g以上であることが好ましい。
〔接着性多孔質層〕
 本発明において接着性多孔質層は、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった層である。
 また、本発明において接着性多孔質層は、多孔質基材の片面又は両面にセパレータの最外層として設けられ、電極と接着し得る層である。
 接着性多孔質層は、多孔質基材の片面のみにあるよりも両面にある方が、電池のサイクル特性が優れる観点から好ましい。接着性多孔質層が多孔質基材の両面にあると、セパレータの両面が接着性多孔質層を介して両電極とよく接着するからである。
 本発明において接着性多孔質層の平均厚は、電極との接着性と高エネルギー密度を確保する観点から、多孔質基材の片面において0.5μm~5μmであることが好ましく、1μm~5μmであることがより好ましい。
 本発明において接着性多孔質層は、イオン透過性の観点から十分に多孔化された構造であることが好ましい。具体的には、空孔率が30%~60%であることが好ましい。空孔率が60%以下であると、電極と接着させるプレス工程に耐え得る力学物性を確保できる。また、空孔率が60%以下であると、表面開孔率が高過ぎず十分な接着力を確保することができる。一方、空孔率が30%以上であると、イオン透過性が良好である。
 本発明において接着性多孔質層は、平均孔径が20nm~100nmであることが好ましい。平均孔径が100nm以下であると、接着性多孔質層の表面において孔の不均一性が抑えられ、接着点が均等に散在し、その結果、電極との接着性により優れる。また、平均孔径が100nm以下であると、イオンの移動が均一になり易くサイクル特性及び負荷特性が向上する。一方、平均孔径が20nm以上であると、電解液を含浸させた際に接着性多孔質層を構成するポリフッ化ビニリデン系樹脂が膨潤しても孔の閉塞が起きにくく、したがってイオン透過性が阻害されることが起きにくい。
 本発明において接着性多孔質層の表面粗さは、十点平均粗さ(Rz)で、0.8μm~8.0μmが好ましく、0.9μm~6.0μmがより好ましく、1.0μm~3.0μmが更に好ましい。十点平均粗さ(Rz)は、JIS B 0601-1994(又はJIS B 0601-2001のRzjis)に準じた方法により測定される値である。具体的には、本発明におけるRzは、小坂研究所社製のET4000を用いて、測定長1.25mm、測定速度0.1mm/秒、温湿度25℃/50%RHの条件にて測定される値である。
 本発明において接着性多孔質層の動摩擦係数は、0.1~0.6が好ましく、0.1~0.4がより好ましく、0.1~0.3が更に好ましい。動摩擦係数は、JIS K7125に準じた方法により測定される値である。具体的には、本発明における動摩擦係数は、ヘイドン社製のサーフェイスプロパティテスターを用いて測定される値である。
 本発明において接着性多孔質層の塗工量は、電極との接着性及びイオン透過性の観点から、多孔質基材の両面の合計として1.0g/m~3.0g/mであることが好ましい。また、接着性多孔質層の塗工量は、多孔質基材の片面において0.5g/m~1.5g/mであることが好ましい。
 本発明において接着性多孔質層が多孔質基材の両面に設けられている場合、一方の面の塗工量と他方の面の塗工量との差は、両面合計の塗工量に対して20%以下であることが好ましい。20%以下であると、セパレータがカールしにくいので、その結果、ハンドリング性がよく、またサイクル特性が低下する問題が起きにくい。
[ポリフッ化ビニリデン系樹脂]
 本発明において接着性多孔質層は、ポリフッ化ビニリデン系樹脂を含む。
 ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体(即ちポリフッ化ビニリデン);フッ化ビニリデンと他の共重合可能なモノマーとの共重合体(ポリフッ化ビニリデン共重合体);これらの混合物;が挙げられる。
 フッ化ビニリデンと共重合可能なモノマーとしては、例えば、ヘキサフロロプロピレン、テトラフロロエチレン、トリフロロエチレン、トリクロロエチレン、フッ化ビニル等が挙げられ、1種類又は2種類以上を用いることができる。
 ポリフッ化ビニリデン系樹脂は、乳化重合または懸濁重合で合成し得る。
 ポリフッ化ビニリデン系樹脂は、その構成単位としてフッ化ビニリデンが95モル%以上(より好ましくは98モル%以上)含まれていることが好ましい。フッ化ビニリデンが95モル%以上含まれていると、電池製造時の加圧や加熱に耐え得る機械的強度と耐熱性とを確保しやすい。
 本発明において接着性多孔質層は、ヘキサフロロプロピレンの含有量が異なる2種類のポリフッ化ビニリデン系樹脂(下記の第一の樹脂と第二の樹脂)を含有する態様も好ましい。
 ・第一の樹脂:ヘキサフロロプロピレンの含有量が0モル%超1.5モル%以下であるフッ化ビニリデン/ヘキサフロロプロピレン共重合体、又はフッ化ビニリデン単独重合体(ヘキサフロロプロピレンの含有量が0モル%)
 ・第二の樹脂:ヘキサフロロプロピレンの含有量が1.5モル%超であるフッ化ビニリデン/ヘキサフロロプロピレン共重合体
 上記2種類のポリフッ化ビニリデン系樹脂を含有する接着性多孔質層は、いずれか一方を含有しない接着性多孔質層に比べて、接着性多孔質層と電極との接着性が向上する。
 また、上記2種類のポリフッ化ビニリデン系樹脂を含有する接着性多孔質層は、いずれか一方を含有しない接着性多孔質層に比べて、接着性多孔質層と多孔質基材との接着性が向上し、これら層間の剥離力が向上する。
 第一の樹脂と第二の樹脂との混合比(質量比、第一の樹脂:第二の樹脂)は、15:85~85:15が好ましい。
 ポリフッ化ビニリデン系樹脂は、重量平均分子量が30万~300万であることが好ましい。重量平均分子量が30万以上であると、接着性多孔質層が電極との接着処理に耐え得る力学物性を確保でき、十分な接着性が得られる。一方、重量平均分子量が300万以下であると、塗工成形する際の塗工液の粘度が高くなり過ぎず成形性に優れる。重量平均分子量はより好ましくは30万~200万の範囲であり、更に好ましくは50万~150万の範囲である。
 ポリフッ化ビニリデン系樹脂のフィブリル径は、サイクル特性の観点から、10nm~1000nmであることが好ましい。
 本発明において接着性多孔質層は、ポリフッ化ビニリデン系樹脂以外の他の樹脂を含んでいてもよい。他の樹脂としては、スチレン-ブタジエン共重合体;アクリロニトリルやメタクリロニトリル等のビニルニトリル類の単独重合体又は共重合体;ポリエチレンオキサイドやポリプロピレンオキサイド等のポリエーテル類;などが挙げられる。
[フィラー]
 本発明において接着性多孔質層は、無機物又は有機物からなるフィラーを含む。フィラーを含有することで、セパレータの滑り性や耐熱性を向上し得る。
 フィラーとしては、非水電解液に安定であり、且つ、電気化学的に安定な、有機フィラー及び無機フィラーのいずれでもよい。電池の安全性を確保する観点からは、耐熱温度が150℃以上のフィラーが好ましい。
 有機フィラーとしては、例えば、架橋ポリアクリル酸、架橋ポリアクリル酸エステル、架橋ポリメタクリル酸、架橋ポリメタクリル酸エステル、架橋ポリメタクリル酸メチル、架橋ポリシリコーン、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物等の架橋高分子微粒子;ポリスルホン、ポリアクリロニトリル、ポリアラミド、ポリアセタール、熱可塑性ポリイミド等の耐熱性高分子微粒子;などが挙げられる。
 有機フィラーを構成する樹脂(高分子)は、上記に例示した分子種の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)、架橋体であってもよい。
 無機フィラーとしては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化ニッケル、水酸化ホウ素等の金属水酸化物;アルミナ、ジルコニア等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の炭酸塩;硫酸バリウム、硫酸カルシウム等の硫酸塩;ケイ酸カルシウム、タルク等の粘土鉱物;などが挙げられる。難燃性付与や除電効果の観点からは、金属水酸化物が好ましい。
 各種のフィラーは、1種単独で使用してもよく、2種以上を組み合わせて使用してよい。
 フィラーの体積平均粒子径は、良好な接着性とすべり性の確保及びセパレータの成形性の観点から、0.01μm~10μmであることが好ましい。その下限値としては0.1μm以上がより好ましく、上限値としては5μm以下がより好ましい。
 フィラーの粒子形状は任意であり、球形、楕円形、板状、棒状、不定形のいずれでもよい。電池の短絡防止の観点からは、板状の粒子や、凝集していない一次粒子であることが好ましい。
 フィラーは、接着性多孔質層の表面に微細な凹凸を形成することで滑り性を向上させ得るものであるが、フィラーが板状の粒子や凝集していない一次粒子である場合には、フィラーによって接着性多孔質層の表面に形成される凹凸がより微細になり、電極との接着性がより良好である。
 接着性多孔質層においては、ポリフッ化ビニリデン系樹脂及びフィラーの総量に占めるフィラーの割合が、1質量%~30質量%であることが好ましい。
 フィラーの含有割合が1質量%以上であると、接着性多孔質層の表面に微細な凹凸を形成してセパレータの滑り性を向上させる効果が発揮されやすい。この観点では、フィラーの含有割合は3質量%以上がより好ましい。
 一方、フィラーの含有割合が30質量%以下であると、接着性多孔質層及びセパレータの機械的強度が保たれ、例えば電極とセパレータとを重ねて捲き回して電極体を作製する際に、セパレータに割れなどが発生しにくい。この観点では、フィラーの含有割合は20質量%以下がより好ましく、10質量%以下が更に好ましい。
 接着性多孔質層においては、セパレータをスリットした際にスリット端面にけば立ちや折れ曲がり、スリット屑の混入が発生するのを抑制する観点で、ポリフッ化ビニリデン系樹脂及びフィラーの総量に占めるフィラーの割合が、1質量%以上であることが好ましく、3質量%以上がより好ましい。
 樹脂のみからなる接着性多孔質層は柔らか過ぎて切るのが難しく、スリット端面にけば立ちや折れ曲がりやスリット屑の混入が生じたりするが、接着性多孔質層が上記の含有割合でフィラーを含むことにより、セパレータが適度に硬くなってスリットし易くなり、スリット端面にけば立ちや折れ曲がりやスリット屑の混入が生じにくい。
 セパレータのスリット端面にけば立ちや折れ曲がりやスリット屑の混入が少ないと、電極との接着性がより向上し、また、製造歩留まりもより向上するので好ましい。
〔セパレータの物性〕
 本発明のセパレータは、機械強度と電池としたときのエネルギー密度の観点から、全体の膜厚が5μm~35μmであることが好ましく、10μm~20μmであることがより好ましい。
 本発明のセパレータの空孔率は、電極との接着性、ハンドリング性、機械的強度、及びイオン透過性の観点から、30%~60%であることが好ましい。
 本発明のセパレータのガーレ値(JIS P8117)は、機械強度と膜抵抗のバランスがよい点で、50秒/100cc~800秒/100ccであることが好ましい。
 本発明のセパレータは、イオン透過性の観点から、多孔質基材のガーレ値と、前記多孔質基材上に接着性多孔質層を設けたセパレータのガーレ値との差が、300秒/100cc以下であることが好ましく、150秒/100cc以下であることがより好ましく、100秒/100cc以下であることが更に好ましい。
 本発明のセパレータの曲路率は、イオン透過性の観点から、1.5~2.5であることが好ましい。
 本発明のセパレータの膜抵抗は、電池の負荷特性の観点から、1ohm・cm~10ohm・cmであることが好ましい。ここで膜抵抗とは、セパレータに電解液を含浸させたときの抵抗値であり、交流法にて測定される。当然、電解液の種類、温度によって異なるが、上記の数値は電解液として1M LiBF-プロピレンカーボネート/エチレンカーボネート(質量比1/1)を用い、20℃にて測定した数値である。
 本発明のセパレータの105℃における熱収縮率は、MD方向、TD方向ともに、10%以下であることが好ましい。熱収縮率がこの範囲にあると、セパレータの形状安定性とシャットダウン特性のバランスがとれたものとなる。より好ましくは5%以下である。
〔非水系二次電池用セパレータの製造方法〕
 本発明のセパレータは、例えば、ポリフッ化ビニリデン系樹脂及びフィラーを含む塗工液を多孔質基材上に塗工し塗工層を形成し、次いで塗工層のポリフッ化ビニリデン系樹脂を固化させることで、接着性多孔質層を多孔質基材上に一体的に形成する方法で製造し得る。
 ポリフッ化ビニリデン系樹脂及びフィラーからなる接着性多孔質層は、例えば以下の湿式塗工法によって形成することができる。
 まず、ポリフッ化ビニリデン系樹脂を溶媒に溶解させ、これにフィラーを分散させて塗工液を調製する。この塗工液を多孔質基材に塗工し、次いで、適切な凝固液に浸漬することで、相分離を誘発しつつポリフッ化ビニリデン系樹脂を固化させる。この工程を経て、多孔質基材上には、ポリフッ化ビニリデン系樹脂及びフィラーからなる多孔質構造の層が形成される。その後、水洗と乾燥を行って、多孔質構造の層から凝固液を除去する。
 本発明に好適な湿式塗工法の詳細は、以下のとおりである。
 塗工液の調製に用いる、ポリフッ化ビニリデン系樹脂を溶解する溶媒(以下、「良溶媒」とも称する。)としては、N-メチル-2-ピロリドン(NMP)、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミド等の極性アミド溶媒が好適に用いられる。
 良好な多孔質構造を形成する観点からは、相分離を誘発する相分離剤を良溶媒に混合させることが好ましい。相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール等が挙げられる。相分離剤は、塗工に適切な粘度が確保できる範囲で添加することが好ましい。
 溶媒としては、良好な多孔質構造を形成する観点から、良溶媒を60質量%以上、相分離剤を5質量%~40質量%含む混合溶媒が好ましい。
 塗工液は、良好な多孔質構造を形成する観点から、ポリフッ化ビニリデン系樹脂が3質量%~10質量%の濃度で含まれていることが好ましい。
 また、塗工液は、接着性多孔質層に滑り性を付与する観点と良好な多孔質構造を形成する観点から、ポリフッ化ビニリデン系樹脂及びフィラーの総量に占めるフィラーの割合が1質量%~30質量%であることが好ましく、3質量%~28質量%であることがより好ましい。
 凝固液は、塗工液の調製に用いた良溶媒と相分離剤、及び水から構成されるのが一般的である。良溶媒と相分離剤の混合比はポリフッ化ビニリデン系樹脂の溶解に用いた混合溶媒の混合比に合わせるのが生産上好ましい。水の濃度は、多孔質構造の形成および生産性の観点から、40質量%~90質量%であることが好ましい。
 多孔質基材への塗工液の塗工は、マイヤーバー、ダイコーター、リバースロールコーター、グラビアコーターなど従来の塗工方式を適用してよい。接着性多孔質層を多孔質基材の両面に形成する場合、塗工液を両面同時に基材へ塗工することが生産性の観点から好ましい。
 接着性多孔質層は、上述した湿式塗工法以外にも、乾式塗工法で製造し得る。ここで、乾式塗工法とは、ポリフッ化ビニリデン系樹脂、フィラー及び溶媒を含んだ塗工液を多孔質基材に塗工し、この塗工層を乾燥させて溶媒を揮発除去することにより、多孔層を得る方法である。ただし、乾式塗工法は湿式塗工法と比べて塗工層が緻密になり易いので、良好な多孔質構造を得られる点で湿式塗工法のほうが好ましい。
 本発明のセパレータは、接着性多孔質層を独立したシートとして作製し、この接着性多孔質層を多孔質基材に重ねて、熱圧着や接着剤によって複合化する方法によっても製造し得る。接着性多孔質層を独立したシートとして作製する方法としては、ポリフッ化ビニリデン系樹脂及びフィラーを含む塗工液を剥離シート上に塗工し、上述した湿式塗工法あるいは乾式塗工法を適用して接着性多孔質層を形成し、剥離シートから接着性多孔質層を剥離する方法が挙げられる。
<非水系二次電池>
 本発明の非水系二次電池は、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池であって、正極と、負極と、既述した本発明の非水系二次電池用セパレータを備える。非水系二次電池は、負極と正極とがセパレータを介して対向した構造体に電解液が含浸された電池要素が、外装材内に封入された構造を有する。
 本発明の非水系二次電池は、非水電解質二次電池、特にはリチウムイオン二次電池に好適である。
 なお、ドープとは、吸蔵、担持、吸着、又は挿入を意味し、正極等の電極の活物質にリチウムイオンが入る現象を意味する。
 本発明の非水系二次電池は、セパレータとして、既述した本発明の非水系二次電池用セパレータを備えることにより、電極とセパレータとの間の接着性に優れ、したがって、サイクル特性に優れる。
 また、既述した本発明の非水系二次電池用セパレータを用いて製造された本発明の非水系二次電池は、セパレータのハンドリング性に優れるので、製造歩留まりが高い。
 正極は、正極活物質及びバインダー樹脂を含む活物質層が集電体上に成形された構造としてよい。活物質層は、さらに導電助剤を含んでもよい。
 正極活物質としては、例えばリチウム含有遷移金属酸化物等が挙げられ、具体的にはLiCoO、LiNiO、LiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3、LiMn、LiFePO、LiCo1/2Ni1/2、LiAl1/4Ni3/4等が挙げられる。
 バインダー樹脂としては、例えばポリフッ化ビニリデン系樹脂などが挙げられる。
 導電助剤としては、例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末といった炭素材料が挙げられる。
 集電体としては、例えば厚さ5μm~20μmの、アルミ箔、チタン箔、ステンレス箔等が挙げられる。
 本発明の非水系二次電池において、セパレータの接着性多孔質層を正極側に配置した場合、ポリフッ化ビニリデン系樹脂が耐酸化性に優れるため、4.2V以上の高電圧で作動可能なLiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3といった正極活物質を適用しやすく有利である。
 負極は、負極活物質及びバインダー樹脂を含む活物質層が集電体上に成形された構造としてよい。活物質層は、さらに導電助剤を含んでもよい。
 負極活物質としては、リチウムを電気化学的に吸蔵し得る材料が挙げられ、具体的には例えば、炭素材料;ケイ素、スズ、アルミニウム等とリチウムとの合金;などが挙げられる。
 バインダー樹脂としては、例えばポリフッ化ビニリデン系樹脂、スチレン-ブタジエンゴムなどが挙げられる。本発明のセパレータは、負極バインダーとしてスチレン-ブタジエンゴムを用いた場合でも、負極に対し十分な接着性を確保できる。
 導電助剤としては、例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末といった炭素材料が挙げられる。
 集電体としては、例えば厚さ5μm~20μmの、銅箔、ニッケル箔、ステンレス箔等が挙げられる。
 また、上記の負極に代えて、金属リチウム箔を負極として用いてもよい。
 電解液は、リチウム塩を非水系溶媒に溶解した溶液である。
 リチウム塩としては、例えばLiPF、LiBF、LiClO等が挙げられる。
 非水系溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、フロロエチレンカーボネート、ジフロロエチレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、及びそのフッ素置換体等の鎖状カーボネート;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル;などが挙げられ、これらは単独で用いても混合して用いてもよい。
 電解液としては、環状カーボネートと鎖状カーボネートとを質量比(環状カーボネート/鎖状カーボネート)20/80~40/60で混合し、リチウム塩を0.5M~1.5M溶解したものが好適である。
 従来の接着性多孔質層を備えたセパレータは、使用する電解液の種類によって電極に対する接着性を発揮し難い場合もあったが、本発明のセパレータは電解液の種類によらず良好な接着性を発揮し得る点で有利である。
 外装材としては、金属缶やアルミラミネートフィルム製パック等が挙げられる。電池の形状は角型、円筒型、コイン型等があるが、本発明のセパレータはいずれの形状にも好適である。
 本発明のセパレータは電極との接着性に優れるので、外部からの衝撃や、充放電に伴う電極の膨張・収縮によっても、電極とセパレータとの間に隙間が形成されにくく、アルミラミネートフィルム製パックを外装材とする電池に好適である。
 本発明の非水系二次電池は、例えば、正極と負極との間に本発明のセパレータを配置した積層体に、電解液を含浸させて外装材(例えばアルミラミネートフィルム製パック)に収容し、前記外装材の上から前記積層体をプレスすることで製造し得る。
 上記の製造方法によって、電極とセパレータを良好に接着でき、サイクル寿命に優れた非水系二次電池を得ることができる。また、電極とセパレータの接着性が良好なため、安全性にも優れた電池となる。
 本発明のセパレータは電極と重ねることによって接着し得る。したがって、電池製造において上記のプレスは必須の工程ではないが、電極とセパレータとの接着性を高めるためには、プレスを行うことが好ましい。さらに電極とセパレータとの接着性を高めるために、プレスは加熱しながらのプレス(熱プレス)とすることが好ましい。
 正極と負極との間にセパレータを配置する方式は、正極、セパレータ、負極をこの順に少なくとも1層ずつ積層する方式(所謂スタック方式)でもよく、正極、セパレータ、負極、セパレータをこの順に重ね、長さ方向に捲き回す方式でもよい。
 以下に実施例を挙げて、本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<測定方法>
 本発明の実施例及び比較例で適用した測定方法は、以下のとおりである。
〔接着性多孔質層の平均厚〕
 接着性多孔質層の平均厚a(μm)は、接着性多孔質層が片面に形成されている場合は、セパレータの平均厚から多孔質基材の平均厚を減算した値とし、接着性多孔質層が両面に形成されている場合は、セパレータの平均厚から多孔質基材の平均厚を減算し2で除算した値とした。
 セパレータと多孔質基材の各平均厚(μm)は、接触式の厚み計(ミツトヨ社製LITEMATIC)にて、10cm×10cm内の任意の20点を測定し、これを平均することで求めた。測定端子は直径5mmの円柱状のものを用い、測定中に7gの荷重が印加されるように調整した。
〔フィラーの粒度分布、粒子径〕
 フィラーを、非イオン性界面活性剤(Triton X-100)を含有する水に分散させ、レーザー回折式粒度分布測定装置(シスメックス社製マスターサイザー2000)を用いて粒度分布を測定した。
 そして、体積基準の粒度分布において、小径側から、体積累積50%となる粒子径を中心粒子径(D50)と定義し、これをフィラーの体積平均粒子径(μm)とした。
 また、粒度分布曲線において、小径側から、体積累積10%となる粒子径を体積累積10%粒子径(D10)とし、体積累積90%となる粒子径を体積累積90%粒子径(D90)とし、これらの粒子径の差「D90-D10」(μm)を算出した。
〔剥離力〕
 セパレータの両面にテープ(3M社製スコッチ(登録商標)メンディングテープ810)を貼り、10mm×200mmに切り出し試験片とした。この試験片の長手方向の一方の端部において、両面のテープそれぞれの端部を剥がし、引張試験機(オリエンテック社製テンシロン万能試験機RTC-1210A)に、剥がした両テープの端部を握持させた。そして、引張り方向:試験片の面に直交する方向、引張り速度:20mm/min、の条件にて剥離試験を実施した。30mm~100mmの応力値(引張り開始から30mm~100mm剥がす間に連続測定して得た値)の平均を、剥離力(N/cm)とした。
〔曲がり〕
 ある長さのセパレータを平面状に置いたとき、MD方向の一方の端と他方の端との長さが異なる場合、これら両端は略平行な曲線になる(長い方の端が外周で、短い方の端が内周となる)。この曲がりの程度を、下記の方法で測定した。
 幅40cmで長尺状に製造したセパレータを、幅中央におけるMD方向の長さが100cmになるように、MD方向に対して垂直に切断し、測定用試料とした。
 この測定用試料を平らな台の上に平面状に置き、MD方向の両端の曲り具合を目視で確認し、内周となっている端(内周端)を選んだ。この内周端の両先端を結ぶ直線を引き、該直線の中央点において、該直線と内周端との最短距離(mm)を測定し、曲がりの指標とした。
〔帯電圧〕
 セパレータをロールから解除し複数の金属ロールおよび樹脂ロールに接触させ、巻き取り機にて巻き取った。巻き取りを実施している途中の巻き取りロールの表面近傍の電位(kV)を、シムコ社製の電位計FMX-003を用いて測定した。環境温度は25℃、相対湿度は40%であった。
〔表面粗さ〕
 十点平均粗さ(Rz)(μm)を、小坂研究所社製のET4000を用いて、測定長1.25mm、測定速度0.1mm/秒、温湿度25℃/50%RHの条件にて測定した。
〔静摩擦係数〕
 セパレータの静摩擦係数は、東洋精機社製のカード摩擦試験機を用いて、下記の方法で測定した。
 セパレータ(7cm×7cmの正方形)を、荷重1kgのおもりの底部(7cm×7cmの正方形の平面)に密着させた。セパレータを密着させた前記おもりの底部を試験機におけるSUS製のステージ面に接触させ、前記おもりを押して、前記おもりを載せた状態でセパレータを動かすのに必要な力を測定した。そして、この力と垂直抗力から静摩擦係数を求めた。
〔動摩擦係数〕
 セパレータの動摩擦係数は ヘイドン社製のサーフェイスプロパティテスターを用いて、JIS K7125に準じて測定した。
〔ロール外観〕
 400mm幅のセパレータを搬送張力1.5N/cmで搬送し、これを65mm幅にスリットした。そしてスリットされたセパレータを、外径8インチのABS樹脂製の樹脂管に速度20m/minで500m巻取り、ロール表面のしわ及びゲージバンドの有無と、スリット端面の状態について、目視で評価した。スリット端面は、けば立ちや折れ曲がりやスリット屑の混入がない状態を良好と判断し、けば立ちや折れ曲がりやスリット屑の混入がある状態を不良と判断した。
〔電極との接着性〕
 試験用電池10個を解体し、セパレータから負極と正極とをそれぞれ剥がす際の力の大きさを、引張試験機を用いて測定し、負極に対する力の大きさの平均と、正極に対する力の大きさの平均をそれぞれ算出し、さらに、負極に対する力の大きさと正極に対する力の大きさとを平均した。実施例1における力の大きさを指数100とし、各実施例・比較例の指数を算出し、下記の評価基準に従って評価した。A及びBが実用に供し得るレベルである。
 A:70以上
 B:60以上70未満
 C:50以上60未満
 D:50未満
〔サイクル特性(容量維持率)〕
 試験用電池10個について、充電条件を1C、4.2Vの定電流定電圧充電、放電条件を1C、2.75Vカットオフの定電流放電とし、30℃の環境下で充放電を繰返した。300サイクル目の放電容量を初期容量で除して得た値を容量維持率(%)とし、試験用電池10個の平均を算出した。容量維持率80%以上が実用に供し得るレベルである。
<実施例1>
〔セパレータの作製〕
 ポリフッ化ビニリデン系樹脂としてフッ化ビニリデン/ヘキサフロロプロピレン共重合体(モル比98.9/1.1、重量平均分子量195万)(「樹脂A」と称する。)を用意した。
 樹脂Aを濃度が5質量%となるように、ジメチルアセトアミドとトリプロピレングリコールの混合溶媒(ジメチルアセトアミド/トリプロピレングリコール=7/3[質量比])に溶解し、架橋アクリル酸系樹脂フィラー(体積平均粒子径1.8μm、D90-D10が1.3μm)(「有機フィラーA」と称する。)を分散させて、塗工液を作製した。この塗工液において、フィラーの含有量を、ポリフッ化ビニリデン系樹脂とフィラーの合計量に対し5質量%とした。
 この塗工液をポリエチレン微多孔膜(膜厚9μm、ガーレ値160秒/100cc、空孔率43%)の両面に等量塗工し、40℃の凝固液(水/ジメチルアセトアミド/トリプロピレングリコール=57/30/13[質量比])に浸漬して固化させた。
 次いで、これを水洗し乾燥して、ポリエチレン微多孔膜の両面に、ポリフッ化ビニリデン系樹脂及び架橋アクリル酸系樹脂フィラーからなる接着性多孔質層が形成されたセパレータを得た。
〔試験用電池の作製〕
[負極の作製]
 負極活物質である人造黒鉛300g、バインダーであるスチレン-ブタジエン共重合体の変性体を40質量%含む水溶性分散液7.5g、増粘剤であるカルボキシメチルセルロース3g、及び適量の水を双腕式混合機にて攪拌し、負極用スラリーを作製した。この負極用スラリーを負極集電体である厚さ10μmの銅箔に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
[正極の作製]
 正極活物質であるコバルト酸リチウム粉末89.5g、導電助剤であるアセチレンブラック4.5g、及びバインダーであるポリフッ化ビニリデン6gを、ポリフッ化ビニリデンの濃度が6質量%となるようにN-メチル-2-ピロリドンに溶解し、双腕式混合機にて攪拌し、正極用スラリーを作製した。この正極用スラリーを正極集電体である厚さ20μmのアルミ箔に塗布し、乾燥後プレスして、正極活物質層を有する正極を得た。
[電池の作製]
 正極と負極にリードタブを溶接し、正極、セパレータ、負極の順に積層し、積層体を作製した。積層体に電解液をしみ込ませ、アルミラミネートフィルム製パック中に収容した。電解液は1M LiPF-エチレンカーボネート/エチルメチルカーボネート(質量比3/7)を用いた。
 次に、真空シーラーを用いてパック内を真空状態にして仮封止し、熱プレス機を用いてパックごと積層体を熱プレスし、これにより、電極とセパレータとの接着と、パックの封止とを行った。熱プレスの条件は、電極1cm当たり20kgの荷重、温度90℃、プレス時間2分とした。
 実施例1のセパレータ及び試験用電池の物性値及び評価結果を表2に示す。
<実施例2~5>
 表1に示すとおりに接着性多孔質層の平均厚a及びフィラー含有量を変更した以外は実施例1と同様にして、実施例2~5のセパレータを作製した。
 そして、実施例1と同様にして、実施例2~5の試験用電池を作製した。
 実施例2~5のセパレータ及び試験用電池の物性値及び評価結果を表2に示す。
<実施例6>
 有機フィラーAの代わりに、体積平均粒子径3.0μm、D90-D10が2.0μmの架橋アクリル酸系樹脂フィラー(「有機フィラーB」と称する。)を用い、表1に示すとおりに接着性多孔質層の平均厚a及びフィラー含有量を変更した以外は実施例1と同様にして、実施例6のセパレータを作製した。
 そして、実施例1と同様にして、実施例6の試験用電池を作製した。
 実施例6のセパレータ及び試験用電池の物性値及び評価結果を表2に示す。
<実施例7>
 有機フィラーAの代わりに、水酸化マグネシウムフィラー(体積平均粒子径1.6μm)(「無機フィラーC」と称する。)と、水酸化マグネシウムフィラー(体積平均粒子径0.8μm)(「無機フィラーD」と称する。)とを質量比1:1で混合した無機フィラー(体積平均粒子径1.2μm、D90-D10が1.6μm)を用い、表1に示すとおりに接着性多孔質層の平均厚a及びフィラー含有量を変更した以外は実施例1と同様にして、実施例7のセパレータを作製した。
 そして、実施例1と同様にして、実施例7の試験用電池を作製した。
 実施例7のセパレータ及び試験用電池の物性値及び評価結果を表2に示す。
<実施例8>
 樹脂Aの代わりに、樹脂Aと、フッ化ビニリデン/ヘキサフロロプロピレン共重合体(モル比95.2/4.8、重量平均分子量50万)(「樹脂B」と称する。)とを質量比60:40で混合した樹脂を用い、表1に示すとおりに接着性多孔質層の平均厚a及びフィラー含有量を変更した以外は実施例1と同様にして、実施例8のセパレータを作製した。
 そして、実施例1と同様にして、実施例8の試験用電池を作製した。
 実施例8のセパレータ及び試験用電池の物性値及び評価結果を表2に示す。
<比較例1>
 有機フィラーAを使用せず、表1に示すとおりに接着性多孔質層の平均厚aを変更したこと以外は実施例1と同様にして、比較例1のセパレータを作製した。
 そして、実施例1と同様にして、比較例1の試験用電池を作製した。
 比較例1のセパレータ及び試験用電池の物性値及び評価結果を表2に示す。
<比較例2>
 有機フィラーAの代わりに無機フィラーDを用い、表1に示すとおりに接着性多孔質層の平均厚a及びフィラー含有量を変更した以外は実施例1と同様にして、比較例2のセパレータを作製した。
 そして、実施例1と同様にして、比較例2の試験用電池を作製した。
 比較例2のセパレータ及び試験用電池の物性値及び評価結果を表2に示す。
<比較例3>
 表1に示すとおりに接着性多孔質層の平均厚a及びフィラー含有量を変更した以外は実施例1と同様にして、比較例3のセパレータを作製した。
 そして、実施例1と同様にして、比較例3の試験用電池を作製した。
 比較例3のセパレータ及び試験用電池の物性値及び評価結果を表2に示す。
<比較例4>
 有機フィラーAの代わりに、体積平均粒子径5.0μm、D90-D10が3.6μmの架橋アクリル酸系樹脂フィラー(「有機フィラーE」と称する。)を用い、表1に示すとおりに接着性多孔質層の平均厚a及びフィラー含有量を変更した以外は実施例1と同様にして、比較例4のセパレータを作製した。
 そして、実施例1と同様にして、比較例4の試験用電池を作製した。
 比較例4のセパレータ及び試験用電池の物性値及び評価結果を表2に示す。
<比較例5>
 表1に示すとおりに接着性多孔質層の平均厚aを変更した以外は実施例1と同様にして、比較例5のセパレータを作製した。
 そして、実施例1と同様にして、比較例5の試験用電池を作製した。
 比較例5のセパレータ及び試験用電池の物性値及び評価結果を表2に示す。
<比較例6>
 有機フィラーAの代わりに有機フィラーEを使用し、表1に示すとおりに接着性多孔質層の平均厚aを変更した以外は実施例1と同様にして、比較例6のセパレータを作製した。
 そして、実施例1と同様にして、比較例6の試験用電池を作製した。
 比較例6のセパレータ及び試験用電池の物性値及び評価結果を表2に示す。
<比較例7>
 有機フィラーAの代わりに、体積平均粒子径4.0μm、D90-D10が2.5μmの架橋アクリル酸系樹脂フィラー(「有機フィラーF」と称する。)を用い、表1に示すとおりに接着性多孔質層の平均厚a及びフィラー含有量を変更した以外は実施例1と同様にして、比較例7のセパレータを作製した。
 そして、実施例1と同様にして、比較例7の試験用電池を作製した。
 比較例7のセパレータ及び試験用電池の物性値及び評価結果を表2に示す。
 実施例1~8のセパレータについて、水分気化装置(三菱アナリテック社製VA-100型)を用い120℃で水分を気化させた後、カールフィッシャー水分計(三菱化学社製CA-100)を用いて水分を測定した。その結果、実施例1~8のセパレータの水分率は、いずれも1000ppm以下であった。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 表2に明らかなとおり、実施例1~8のセパレータは、電極との接着性に優れており、実施例1~8のセパレータを用いて作製した電池は、サイクル特性に優れていた。
 また、実施例1~8のセパレータは、ロール外観におけるしわ及びゲージバンドの発生がなく、ハンドリング性に優れており、したがって、実施例1~8のセパレータは電池製造の歩留まりが高かった。
 本発明のセパレータは非水系二次電池に好適であり、特にアルミラミネート外装の非水系二次電池に好適である。
 2011年10月21日に出願の日本国出願番号第2011-231837号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (5)

  1.  多孔質基材と、
     前記多孔質基材の片面又は両面に設けられ、ポリフッ化ビニリデン系樹脂及び、体積累積90%の粒子径と体積累積10%の粒子径との差が2μm以下であるフィラーを含み、下記の式(1)を満たす接着性多孔質層と、
     を備えた非水系二次電池用セパレータ。
       式(1) 0.5≦a/r≦3.0
     式(1)中、aは、多孔質基材の片面における接着性多孔質層の平均厚(μm)であり、rは、接着性多孔質層に含まれるフィラーの体積平均粒子径(μm)である。
  2.  前記接着性多孔質層において、前記ポリフッ化ビニリデン系樹脂及び前記フィラーの総量に占める前記フィラーの割合が1質量%以上30質量%以下である、請求項1に記載の非水系二次電池用セパレータ。
  3.  前記接着性多孔質層は、前記多孔質基材の片面における平均厚が0.5μm以上5μm以下である、請求項1又は請求項2に記載の非水系二次電池用セパレータ。
  4.  前記フィラーの体積平均粒子径が0.01μm以上10μm以下である、請求項1~請求項3のいずれか1項に記載の非水系二次電池用セパレータ。
  5.  正極と、負極と、前記正極及び前記負極の間に配置された請求項1~請求項4のいずれか1項に記載の非水系二次電池用セパレータとを備え、リチウムのドープ・脱ドープとにより起電力を得る非水系二次電池。
PCT/JP2012/077135 2011-10-21 2012-10-19 非水系二次電池用セパレータ及び非水系二次電池 WO2013058371A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147012902A KR101434379B1 (ko) 2011-10-21 2012-10-19 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
JP2013510829A JP5355821B2 (ja) 2011-10-21 2012-10-19 非水系二次電池用セパレータ及び非水系二次電池
US14/352,489 US9799868B2 (en) 2011-10-21 2012-10-19 Separator for non-aqueous secondary battery and non-aqueous secondary battery
CN201280051113.3A CN103890999B (zh) 2011-10-21 2012-10-19 非水系二次电池用隔膜以及非水系二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-231837 2011-10-21
JP2011231837 2011-10-21

Publications (1)

Publication Number Publication Date
WO2013058371A1 true WO2013058371A1 (ja) 2013-04-25

Family

ID=48141014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077135 WO2013058371A1 (ja) 2011-10-21 2012-10-19 非水系二次電池用セパレータ及び非水系二次電池

Country Status (6)

Country Link
US (1) US9799868B2 (ja)
JP (1) JP5355821B2 (ja)
KR (1) KR101434379B1 (ja)
CN (1) CN103890999B (ja)
TW (1) TWI557969B (ja)
WO (1) WO2013058371A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153954A1 (ja) * 2012-04-13 2013-10-17 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその製造方法
JP2013251259A (ja) * 2012-06-01 2013-12-12 Samsung Sdi Co Ltd リチウム2次電池用セパレータ、その製造方法およびそれを含むリチウム2次電池
WO2014021293A1 (ja) * 2012-07-30 2014-02-06 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
JP2015004551A (ja) * 2013-06-19 2015-01-08 キヤノン株式会社 放射線検出装置およびその製造方法
US20150162585A1 (en) * 2013-12-10 2015-06-11 Industrial Technolgy Research Institute Organic-inorganic composite layer for lithium battery and electrode module
JP2015115266A (ja) * 2013-12-13 2015-06-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 非水電解質二次電池用電極巻回素子、それを用いた非水電解質二次電池、及び非水電解質二次電池用電極巻回素子の製造方法
WO2015115513A1 (ja) * 2014-01-30 2015-08-06 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
WO2016002567A1 (ja) * 2014-06-30 2016-01-07 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2016031466A1 (ja) * 2014-08-29 2016-03-03 住友化学株式会社 積層体、セパレータ及び非水二次電池
CN105900262A (zh) * 2013-05-15 2016-08-24 株式会社吴羽 非水电解质二次电池用结构体、非水电解质二次电池以及该结构体的制造方法
WO2017085994A1 (ja) * 2015-11-20 2017-05-26 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2017183212A (ja) * 2016-03-31 2017-10-05 東レバッテリーセパレータフィルム株式会社 電池用セパレータおよびその製造方法
JP2017208338A (ja) * 2016-05-17 2017-11-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池用分離膜およびこれを含むリチウム二次電池
WO2019107521A1 (ja) 2017-11-30 2019-06-06 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2019230219A1 (ja) * 2018-05-31 2019-12-05 株式会社クレハ 接着性組成物、セパレータ構造体、電極構造体、非水電解質二次電池およびその製造方法
JP2020155208A (ja) * 2019-03-18 2020-09-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US10811654B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2020537290A (ja) * 2018-06-20 2020-12-17 エルジー・ケム・リミテッド 電気化学素子用セパレータ、その製造方法、及びそれを含む電気化学素子
JP2021512473A (ja) * 2018-09-12 2021-05-13 エルジー・ケム・リミテッド 電気化学素子用セパレータ及びこの製造方法
JP2022137789A (ja) * 2021-03-09 2022-09-22 プライムプラネットエナジー&ソリューションズ株式会社 二次電池
US11777175B2 (en) 2015-07-02 2023-10-03 Teijin Limited Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140374608A1 (en) * 2013-06-19 2014-12-25 Canon Kabushiki Kaisha Radiation detection apparatus and method of manufacturing the same
US9564660B2 (en) * 2013-06-27 2017-02-07 QingHong Technology Co., Ltd. Electric core for thin film battery
JP5904166B2 (ja) * 2013-07-05 2016-04-13 信越化学工業株式会社 非水電解質二次電池及び製造方法
TWI560927B (en) * 2013-12-17 2016-12-01 Lg Chemical Ltd Separator for electrochemical device and electrochemical device
JP5815909B1 (ja) * 2014-10-10 2015-11-17 住友化学株式会社 セパレータ原反の製造方法、セパレータの製造方法、セパレータ原反、及びセパレータ原反製造装置
KR101957406B1 (ko) 2015-03-18 2019-06-19 주식회사 엘지화학 일체형 전극조립체 및 이를 포함하는 전기화학소자
KR102408245B1 (ko) * 2016-08-17 2022-06-10 니폰 제온 가부시키가이샤 비수계 이차 전지 다공막용 조성물, 비수계 이차 전지용 다공막 및 비수계 이차 전지
CN107785521B (zh) * 2016-08-29 2021-03-26 比亚迪股份有限公司 一种电池隔膜和锂离子电池及其制备方法
EP3522289B1 (en) * 2016-09-27 2022-12-21 GS Yuasa International Ltd. Separator having heat resistant layer for power storage element and method for manufacturing same
CN108448033A (zh) * 2017-02-16 2018-08-24 帝人株式会社 非水系二次电池用隔膜和非水系二次电池
CN110832672B (zh) 2017-10-20 2023-05-05 株式会社Lg新能源 隔板以及包括该隔板的电化学装置
US12080843B2 (en) 2017-11-16 2024-09-03 Apple Inc. Battery cell with multiple separator layers that include adhesive and ceramic material
PL3641014T3 (pl) * 2018-01-08 2024-06-10 Lg Energy Solution, Ltd. Separator dla baterii wielokrotnego ładowania, a także urządzenie elektrochemiczne, w którym go zastosowano
US11870037B2 (en) * 2018-04-10 2024-01-09 Apple Inc. Porous ceramic separator materials and formation processes
KR102592147B1 (ko) * 2018-04-20 2023-10-23 삼성전자주식회사 복합분리막, 그 제조방법 및 이를 포함하는 리튬이차전지
KR102279515B1 (ko) * 2018-09-03 2021-07-20 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
KR102388261B1 (ko) 2018-10-12 2022-04-18 주식회사 엘지에너지솔루션 다공성 분리막 및 이를 포함하는 리튬 이차 전지
CN114830398A (zh) * 2019-12-27 2022-07-29 日本瑞翁株式会社 二次电池及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190736A (ja) * 2003-12-24 2005-07-14 Tomoegawa Paper Co Ltd 電子部品用セパレーター
WO2008156033A1 (ja) * 2007-06-19 2008-12-24 Teijin Limited 非水系二次電池用セパレータ、その製造方法および非水系二次電池
JP2010160939A (ja) * 2009-01-07 2010-07-22 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP4988972B1 (ja) * 2011-04-08 2012-08-01 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP4988973B1 (ja) * 2011-04-08 2012-08-01 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036981A1 (fr) 1998-01-19 1999-07-22 Mitsubishi Denki Kabushiki Kaisha Batterie
KR100573358B1 (ko) * 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 리튬이온2차전지용 세퍼레이터 및 이를 포함한리튬이온2차전지
JP4431304B2 (ja) 2002-10-24 2010-03-10 株式会社巴川製紙所 リチウムイオン二次電池用セパレータおよびこれを備えたリチウムイオン二次電池
KR100895196B1 (ko) * 2004-09-02 2009-04-24 주식회사 엘지화학 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
TWI318018B (en) 2004-09-02 2009-12-01 Lg Chemical Ltd Organic/inorganic composite porous film and electrochemical device prepared thereby
KR100775310B1 (ko) 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
JP2007273123A (ja) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池とその製造方法
US9293752B2 (en) * 2007-01-30 2016-03-22 Asahi Kasei E-Materials Corporation Multilayer porous membrane and production method thereof
JP4460028B2 (ja) * 2007-06-06 2010-05-12 帝人株式会社 非水系二次電池セパレータ用ポリオレフィン微多孔膜基材、その製造方法、非水系二次電池セパレータおよび非水系二次電池
JP5603543B2 (ja) * 2008-07-07 2014-10-08 日立マクセル株式会社 電池用セパレータおよび非水電解液電池
JP2010180341A (ja) * 2009-02-06 2010-08-19 Sumitomo Chemical Co Ltd 樹脂組成物、シート、および多孔質フィルム
JP5511214B2 (ja) * 2009-04-03 2014-06-04 旭化成イーマテリアルズ株式会社 多層多孔膜
EP2463331A4 (en) * 2009-08-06 2013-08-21 Sumitomo Chemical Co POROUS FILM, SEPARATOR FOR BATTERIES AND BATTERY

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190736A (ja) * 2003-12-24 2005-07-14 Tomoegawa Paper Co Ltd 電子部品用セパレーター
WO2008156033A1 (ja) * 2007-06-19 2008-12-24 Teijin Limited 非水系二次電池用セパレータ、その製造方法および非水系二次電池
JP2010160939A (ja) * 2009-01-07 2010-07-22 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP4988972B1 (ja) * 2011-04-08 2012-08-01 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP4988973B1 (ja) * 2011-04-08 2012-08-01 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153954A1 (ja) * 2012-04-13 2013-10-17 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその製造方法
US10056595B2 (en) 2012-04-13 2018-08-21 Toray Industries, Inc. Battery separator, and method for producing same
JP2013251259A (ja) * 2012-06-01 2013-12-12 Samsung Sdi Co Ltd リチウム2次電池用セパレータ、その製造方法およびそれを含むリチウム2次電池
WO2014021293A1 (ja) * 2012-07-30 2014-02-06 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
JP5624251B2 (ja) * 2012-07-30 2014-11-12 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
JPWO2014021293A1 (ja) * 2012-07-30 2016-07-21 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
JPWO2014185378A1 (ja) * 2013-05-15 2017-02-23 株式会社クレハ 非水電解質二次電池用構造体、非水電解質二次電池および該構造体の製造方法
CN105900262A (zh) * 2013-05-15 2016-08-24 株式会社吴羽 非水电解质二次电池用结构体、非水电解质二次电池以及该结构体的制造方法
US10074841B2 (en) 2013-05-15 2018-09-11 Kureha Corporation Structure for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing same structure
JP2015004551A (ja) * 2013-06-19 2015-01-08 キヤノン株式会社 放射線検出装置およびその製造方法
US9698399B2 (en) * 2013-12-10 2017-07-04 Industrial Technology Research Institute Organic-inorganic composite layer for lithium battery and electrode module
US20150162585A1 (en) * 2013-12-10 2015-06-11 Industrial Technolgy Research Institute Organic-inorganic composite layer for lithium battery and electrode module
JP2015115266A (ja) * 2013-12-13 2015-06-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 非水電解質二次電池用電極巻回素子、それを用いた非水電解質二次電池、及び非水電解質二次電池用電極巻回素子の製造方法
JP5873605B2 (ja) * 2014-01-30 2016-03-01 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
US10199623B2 (en) 2014-01-30 2019-02-05 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JPWO2015115513A1 (ja) * 2014-01-30 2017-03-23 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
WO2015115513A1 (ja) * 2014-01-30 2015-08-06 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
US10714723B2 (en) 2014-06-30 2020-07-14 Teijin Limited Separator for a non-aqueous secondary battery, and non-aqueous secondary battery
JP5952509B2 (ja) * 2014-06-30 2016-07-13 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US20180212220A1 (en) * 2014-06-30 2018-07-26 Teijin Limited Separator for a non-aqueous secondary battery, and non-aqueous secondary battery
JPWO2016002567A1 (ja) * 2014-06-30 2017-04-27 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
KR20170027715A (ko) 2014-06-30 2017-03-10 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
WO2016002567A1 (ja) * 2014-06-30 2016-01-07 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US9711776B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US9865857B2 (en) 2014-08-29 2018-01-09 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
KR101689494B1 (ko) 2014-08-29 2016-12-23 스미또모 가가꾸 가부시키가이샤 적층체, 세퍼레이터 및 비수 이차 전지
WO2016031466A1 (ja) * 2014-08-29 2016-03-03 住友化学株式会社 積層体、セパレータ及び非水二次電池
KR20160096536A (ko) * 2014-08-29 2016-08-16 스미또모 가가꾸 가부시키가이샤 적층체, 세퍼레이터 및 비수 이차 전지
KR20160086976A (ko) * 2014-08-29 2016-07-20 스미또모 가가꾸 가부시키가이샤 적층체, 적층체를 포함하는 비수 전해액 이차 전지용 세퍼레이터 및 비수 전해액 이차 전지용 세퍼레이터를 포함하는 비수 전해액 이차 전지
US9711775B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
KR101713533B1 (ko) 2014-08-29 2017-03-08 스미또모 가가꾸 가부시키가이샤 적층체, 적층체를 포함하는 비수 전해액 이차 전지용 세퍼레이터 및 비수 전해액 이차 전지용 세퍼레이터를 포함하는 비수 전해액 이차 전지
JP2016051695A (ja) * 2014-08-29 2016-04-11 住友化学株式会社 積層体、非水電解液二次電池用セパレータ、非水電解液二次電池用部材及び非水電解液二次電池
JP2016049774A (ja) * 2014-08-29 2016-04-11 住友化学株式会社 積層体、積層体を含む非水電解液二次電池用セパレータおよび非水電解液二次電池用セパレータを含む非水電解液二次電池
US10014506B2 (en) 2014-08-29 2018-07-03 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
JP5932161B1 (ja) * 2014-08-29 2016-06-08 住友化学株式会社 積層体、セパレータ及び非水二次電池
JP2016051696A (ja) * 2014-08-29 2016-04-11 住友化学株式会社 非水二次電池用セパレータ、積層体、積層体の製造方法、および非水二次電池
US11777175B2 (en) 2015-07-02 2023-10-03 Teijin Limited Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
US10811654B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
JPWO2017085994A1 (ja) * 2015-11-20 2018-11-01 株式会社村田製作所 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2017085994A1 (ja) * 2015-11-20 2017-05-26 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2017183212A (ja) * 2016-03-31 2017-10-05 東レバッテリーセパレータフィルム株式会社 電池用セパレータおよびその製造方法
TWI724094B (zh) * 2016-03-31 2021-04-11 日商東麗股份有限公司 電池用隔膜及其製造方法
JP7043183B2 (ja) 2016-05-17 2022-03-29 三星エスディアイ株式会社 二次電池用分離膜およびこれを含むリチウム二次電池
JP2017208338A (ja) * 2016-05-17 2017-11-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池用分離膜およびこれを含むリチウム二次電池
WO2019107521A1 (ja) 2017-11-30 2019-06-06 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JPWO2019230219A1 (ja) * 2018-05-31 2020-12-17 株式会社クレハ 接着性組成物、セパレータ構造体、電極構造体、非水電解質二次電池およびその製造方法
WO2019230219A1 (ja) * 2018-05-31 2019-12-05 株式会社クレハ 接着性組成物、セパレータ構造体、電極構造体、非水電解質二次電池およびその製造方法
US11657984B2 (en) 2018-06-20 2023-05-23 Lg Chem, Ltd. Separator for electrochemical device, method for manufacturing same, and electrochemical device comprising same
JP2020537290A (ja) * 2018-06-20 2020-12-17 エルジー・ケム・リミテッド 電気化学素子用セパレータ、その製造方法、及びそれを含む電気化学素子
JP2021512473A (ja) * 2018-09-12 2021-05-13 エルジー・ケム・リミテッド 電気化学素子用セパレータ及びこの製造方法
JP2022089963A (ja) * 2018-09-12 2022-06-16 エルジー・ケム・リミテッド 電気化学素子用セパレータ及びこの製造方法
JP2022140606A (ja) * 2018-09-12 2022-09-26 エルジー・ケム・リミテッド 電気化学素子用セパレータ及びこの製造方法
JP7493548B2 (ja) 2018-09-12 2024-05-31 エルジー・ケム・リミテッド 電気化学素子用セパレータ及びこの製造方法
JP7550818B2 (ja) 2018-09-12 2024-09-13 エルジー・ケム・リミテッド 電気化学素子用セパレータ及びこの製造方法
JP2020155208A (ja) * 2019-03-18 2020-09-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2022137789A (ja) * 2021-03-09 2022-09-22 プライムプラネットエナジー&ソリューションズ株式会社 二次電池
JP7385613B2 (ja) 2021-03-09 2023-11-22 プライムプラネットエナジー&ソリューションズ株式会社 二次電池

Also Published As

Publication number Publication date
JP5355821B2 (ja) 2013-11-27
CN103890999A (zh) 2014-06-25
TWI557969B (zh) 2016-11-11
TW201334264A (zh) 2013-08-16
KR20140072208A (ko) 2014-06-12
JPWO2013058371A1 (ja) 2015-04-02
US9799868B2 (en) 2017-10-24
KR101434379B1 (ko) 2014-08-27
CN103890999B (zh) 2016-03-09
US20140248525A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP5355821B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
US10347892B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP5624251B2 (ja) 非水電解質電池用セパレータ及び非水電解質電池
JP6986640B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP5282179B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
EP3745492B1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
US20150236323A1 (en) Separator for non-aqueous secondary battery, method for manufacturing the same, and non-aqueous secondary battery
WO2016098684A1 (ja) 非水電解質電池用セパレータ、非水電解質電池、および、非水電解質電池の製造方法
JP5952509B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP5612797B1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP6078703B1 (ja) 非水系二次電池用セパレータ、非水系二次電池及び非水系二次電池の製造方法
JP5745174B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
WO2013058370A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2017082258A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2016181439A (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2014026947A (ja) 非水電解質電池用セパレータ及び非水電解質電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280051113.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013510829

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842487

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14352489

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147012902

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12842487

Country of ref document: EP

Kind code of ref document: A1