WO2013047451A1 - 樹脂組成物およびそれを用いた膜形成方法 - Google Patents

樹脂組成物およびそれを用いた膜形成方法 Download PDF

Info

Publication number
WO2013047451A1
WO2013047451A1 PCT/JP2012/074427 JP2012074427W WO2013047451A1 WO 2013047451 A1 WO2013047451 A1 WO 2013047451A1 JP 2012074427 W JP2012074427 W JP 2012074427W WO 2013047451 A1 WO2013047451 A1 WO 2013047451A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
film
solvent
compound
Prior art date
Application number
PCT/JP2012/074427
Other languages
English (en)
French (fr)
Inventor
崇文 清水
晋太郎 藤冨
宮木 伸行
江利山 祐一
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020147011045A priority Critical patent/KR101946092B1/ko
Priority to JP2013536270A priority patent/JP5862674B2/ja
Priority to CN201280047281.5A priority patent/CN103842409A/zh
Publication of WO2013047451A1 publication Critical patent/WO2013047451A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a resin composition and a film forming method using the same.
  • wholly aromatic polyimide obtained from aromatic tetracarboxylic dianhydride and aromatic diamine is due to the rigidity of the molecule, the fact that the molecule is resonance-stabilized, the strong chemical bond, etc. It has excellent heat resistance and mechanical properties, and the polyimide or the polyimide-forming composition is used as a raw material for films, coating agents, molded parts and insulating materials in fields such as electricity, batteries, automobiles and aerospace industries. As widely used as.
  • Patent Document 1 discloses a polyimide precursor resin composition for a flexible device substrate, which includes a polyimide precursor synthesized from p-phenylenediamine and s-biphenyltetracarboxylic anhydride.
  • the resin composition can be formed by coating on a carrier substrate such as a glass substrate and becomes a polyimide film having excellent heat resistance and a low thermal expansion coefficient. It is described that when peeling off from a glass substrate without causing peeling, it can be removed cleanly.
  • a conventional resin composition containing a polyimide precursor has a low drying rate and is inferior in productivity when the composition is applied on a support such as a glass substrate to form a film.
  • the object of the present invention is excellent in storage stability, fast in drying speed, excellent in productivity, excellent in adhesion and peelability with a substrate, has a high glass transition temperature, less warpage and cloudiness,
  • An object of the present invention is to provide a resin composition and a film forming method capable of easily producing a film having excellent mechanical strength.
  • the present inventor according to a resin composition comprising a polyimide precursor (polyamic acid) having a specific structural unit and a solvent mainly composed of a non-amide solvent.
  • a resin composition comprising a polyimide precursor (polyamic acid) having a specific structural unit and a solvent mainly composed of a non-amide solvent.
  • the present inventors have found that the above problems can be solved, and have completed the present invention. That is, the present invention provides the following [1] to [9].
  • a resin composition comprising a polyimide precursor containing a structural unit represented by the following formula (2) and having a structural unit represented by the following formula (1), and a solvent mainly composed of a non-amide solvent object.
  • R independently represents a hydrogen atom or a monovalent organic group
  • R 1 independently represents a divalent organic group
  • R 2 independently represents a tetravalent organic group
  • n represents Represents a positive integer, provided that at least one of R 1 and R 2 contains a halogen atom or a halogenated alkyl group.
  • a plurality of R 5 each independently represents a monovalent organic group having 1 to 20 carbon atoms, and m represents an integer of 3 to 200.
  • R 3 is independently an ether bond, a thioether group, a ketone group, an ester bond, a sulfonyl group, an alkylene group, an amide group, or a group containing a siloxane group, a hydrogen atom, a halogen atom, an alkyl group, or a hydroxy group.
  • a nitro group, a cyano group or a sulfo group, and any hydrogen atom of the group containing this alkylene group and the alkyl group may be substituted with a halogen atom, provided that among the plurality of R 3 contained in one group, At least one includes a halogen atom or a halogenated alkyl group, a1 represents an integer of 1 to 3, a2 represents 1 or 2, a3 independently represents an integer of 1 to 4, and e represents 0 to Indicates an integer of 3.)
  • the resin composition according to the present invention is excellent in storage stability, and according to the composition, it is excellent in transparency and mechanical strength, has a high glass transition temperature, easily generates a film with less warpage and white turbidity, It can be manufactured in a short time with high productivity. Further, according to the resin composition of the present invention, when a film is formed by applying the resin composition to a substrate such as a glass substrate, a film excellent in adhesion and peelability to the substrate is easily formed. be able to.
  • the resin composition of the present invention includes a structural unit represented by the following formula (2), a polyimide precursor having a structural unit represented by the following formula (1), and a non-amide solvent as main components. Contains solvent. Since the resin composition of the present invention contains the polyimide precursor and the non-amide solvent, a film having a high glass transition temperature, less warpage and cloudiness, and excellent mechanical strength can be easily obtained in a short time. In addition, when a film is formed by applying a resin composition to a substrate such as a glass substrate, a film excellent in adhesion and peelability to the substrate can be easily formed. Can do.
  • adheresiveness means, for example, when a film is formed on a substrate, or when a device is manufactured to produce a wiring made of metal or the like on the formed film. For example, it means that the coating film (film) and the substrate are difficult to peel off.
  • “Peelability” means, for example, when you want to peel the film from the substrate (when applying force to peel the film from the substrate, etc.) In addition, it means the property that the film can be peeled off from the substrate with few peeling marks.
  • the polyimide precursor includes a structural unit represented by the following formula (2) and has a structural unit represented by the following formula (1) (hereinafter also referred to as “structural unit (1)”). Therefore, the polyimide obtained from the precursor has a rigid skeleton part and a flexible skeleton part containing a structural unit represented by the following formula (2) (hereinafter also referred to as “structural unit (2)”). Then, it is considered that the rigid skeleton site becomes a sea part and a microphase separation structure is formed in which a flexible skeleton part becomes an island part. It is considered that a film having a reduced residual stress can be obtained when polyimide forms this microphase separation structure.
  • microphase separation means that islands made of flexible skeleton parts are dispersed in a size of about 1 nanometer to 1 micron in sea parts made of rigid skeleton parts.
  • the “warp” is the roundness of the film judged visually, and the “residual stress” is the film remaining after the resin composition is applied on a substrate such as a glass substrate to form the film. This is a measure of the “warping” that can occur in the film. Specifically, it can be measured by the method described in the following examples.
  • R independently represents a hydrogen atom or a monovalent organic group, preferably a hydrogen atom
  • R 1 independently represents a divalent organic group
  • R 2 independently represents a tetravalent group.
  • An organic group is shown.
  • n represents a positive integer, preferably an integer of 1 to 2500.
  • R 1 and R 2 contains a halogen atom or a halogenated alkyl group.
  • R 1 contains a halogen atom (fluorine atom)
  • R 1 is -CH 2 -CHF-CH 2 - it refers to a case where a group such as, "R 1 is halogenated alkyl
  • Including a group (fluorinated alkyl group) means, for example, the case where R 1 is a group such as —CH 2 —CH (CF 3 ) —CH 2 —. Since the structural unit (1) contains a halogen atom or a halogenated alkyl group, a polyimide precursor having excellent solubility is obtained, and a polyimide having excellent heat resistance is obtained from the precursor.
  • a plurality of R 5 s each independently represent a monovalent organic group having 1 to 20 carbon atoms, and m represents an integer of 3 to 200.
  • the monovalent organic group for R is preferably a monovalent organic group having 1 to 20 carbon atoms.
  • C1-20 means “1 to 20 carbon atoms”. Similar descriptions in the present invention have similar meanings.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms in R include monovalent hydrocarbon groups having 1 to 20 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms include an alkyl group having 1 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, t- A butyl group, a pentyl group, a hexyl group, etc. are mentioned.
  • the divalent organic group in R 1 is preferably a divalent organic group having 1 to 40 carbon atoms.
  • the divalent organic group having 1 to 40 carbon atoms is preferably a divalent aromatic hydrocarbon group having 6 to 40 carbon atoms, and more preferably a divalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • a ring such as a polycyclic structure in which the rings share one or more bonds, a spiro hydrocarbon structure, or a biphenyl bond such as a single bond A structure bonded by a group is included.
  • the bonding group examples include an ether bond, a thioether group, a ketone group, an ester bond, a sulfonyl group, an alkylene group, an amide group, and a siloxane group in addition to the single bond.
  • the divalent organic group contains a hydrogen atom, any hydrogen atom may be substituted with a halogen atom.
  • the divalent organic group preferably includes a group selected from the group represented by the following formula (3), and more preferably a group selected from the group represented by the following formula (3).
  • the divalent organic group in R 1 is a group selected from the group represented by the following formula (3)
  • the sea part has a more rigid structure. Therefore, it is preferable because a film in which residual stress is small and warpage is suppressed can be obtained.
  • R 3 is independently an ether bond, a thioether group, a ketone group, an ester bond, a sulfonyl group, an alkylene group, an amide group or a siloxane group; a hydrogen atom; a halogen atom; an alkyl group; a hydroxy group; A nitro group; a cyano group; or a sulfo group, wherein any hydrogen atom of the group containing the alkylene group and the alkyl group may be substituted with a halogen atom.
  • at least one of a plurality of R 3 contained in one group contains a halogen atom or a halogenated alkyl group.
  • a1 represents an integer of 1 to 3
  • a2 represents 1 or 2
  • a3 independently represents an integer of 1 to 4
  • e represents an integer of 0 to 3.
  • the ether bond, thioether group, ketone group, ester bond, sulfonyl group, alkylene group, amide group or siloxane group-containing group includes ether bond, thioether group, ketone group, ester bond, sulfonyl group, alkylene group, amide group.
  • an organic group having 1 to 10 carbon atoms including a siloxane group can be given.
  • R 3 preferably contains 1 to 12 halogen atoms, from the viewpoint that a film excellent in mechanical strength can be easily produced in a short time with high productivity. More preferably, 3 to 8 are included.
  • R 3 when R 3 is a halogen atom, it is referred to as “including one halogen atom”, and when R 3 is, for example, a trifluoromethyl group, it is referred to as “including three halogen atoms”. .
  • examples of the halogenated alkyl group for R 3 include a methyl group substituted with a halogen atom or an alkyl group having 2 to 20 carbon atoms.
  • the halogenated alkyl group having 2 to 20 carbon atoms is preferably an alkyl group having 2 to 10 carbon atoms substituted with a halogen atom, and includes an ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t A group in which an arbitrary hydrogen atom of a butyl group, a pentyl group or a hexyl group is substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom;
  • the halogenated alkyl group for R 3 is preferably an alkyl group having 1 to 2 carbon atoms substituted with a halogen atom, and specifically, any hydrogen of a methyl group or an ethyl group Examples include groups in which the atom is substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the halogen atom in R 3 and the halogen atom contained in the halogenated alkyl group can easily produce a film having excellent mechanical strength in a short time with high productivity.
  • R 3 which does not contain a halogen atom is preferably a hydrogen atom, an alkyl group, a fluorene group, a hydroxy group, a nitro group, a cyano group or a sulfo group, and preferably a hydrogen atom or an alkyl group.
  • the alkyl group in R 3 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, specifically a methyl group, Examples thereof include an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, and a hexyl group.
  • examples of the group containing an alkylene group in R 3 include a methylene group or an alkylene group having 2 to 20 carbon atoms, and any hydrogen atom of the alkylene group may be substituted with a halogen atom.
  • the alkylene group having 2 to 20 carbon atoms is preferably an alkylene group having 2 to 10 carbon atoms, and examples thereof include a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and an isopropylidene group. It is done.
  • e is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • a1 is preferably 1 or 3
  • a2 is preferably 2
  • a3 is preferably 1 or 2, and more preferably 1.
  • the divalent organic group in R 1 is preferably a group selected from the group represented by the following formula (3 ′).
  • R 3 has the same meaning as R 3 in formula independently (3).
  • Examples of the group represented by the formula (3 ′) include groups selected from the group represented by the following (3′-1) and (3′-2).
  • the divalent organic group in R 1 is more preferably a group selected from the group represented by the following formula (3 ′′).
  • the tetravalent organic group in R 2 is preferably a tetravalent organic group having 1 to 40 carbon atoms.
  • the tetravalent organic group having 1 to 40 carbon atoms is preferably a tetravalent alicyclic hydrocarbon group having 3 to 40 carbon atoms or a tetravalent aromatic hydrocarbon group having 6 to 40 carbon atoms.
  • a ring such as a polycyclic structure in which the rings share one or more bonds, a spiro hydrocarbon structure, or a biphenyl bond such as a single bond A structure bonded by a group is included.
  • Examples of the bonding group include an ether bond, a thioether group, a ketone group, an ester bond, a sulfonyl group, an alkylene group, an amide group, and a siloxane group in addition to the single bond.
  • R 2 is more preferably a group selected from the group represented by the following formula (4), and more preferably a group selected from the group represented by the following formula (4 ′).
  • the tetravalent organic group in R 2 is a group selected from the group represented by the following formula (4), particularly a group selected from the group represented by the following formula (4 ′), from the polyimide precursor
  • the obtained polyimide has a rigid skeleton and is easy to form a microphase-separated structure, which is preferable in that a film having a small residual stress and a suppressed warpage can be obtained.
  • R 4 independently represents an ether bond, a thioether group, a ketone group, an ester bond, a sulfonyl group, an alkylene group, an amide group or a siloxane group; a hydrogen atom; a halogen atom; an alkyl group; a hydroxy group; A nitro group; a cyano group; or a sulfo group, wherein any hydrogen atom of the group containing the alkylene group and the alkyl group may be substituted with a halogen atom.
  • D represents an ether bond, a thioether group, a ketone group, an ester bond, a sulfonyl group, an alkylene group, an amide group or a siloxane group
  • b independently represents 1 or 2
  • c independently represents an integer of 1 to 3.
  • F represents an integer of 0-3.
  • at least one of the plurality of R 4 contained in one group preferably contains a halogen atom or a halogenated alkyl group.
  • the ether bond, thioether group, ketone group, ester bond, sulfonyl group, alkylene group, amide group or siloxane group-containing group includes ether bond, thioether group, ketone group, ester bond, sulfonyl group, alkylene group, amide group.
  • an organic group having 1 to 10 carbon atoms including a siloxane group can be given.
  • R 4 preferably contains 1 to 12 halogen atoms, from the viewpoint that a film excellent in mechanical strength can be easily produced in a short time with high productivity. More preferably, 3 to 8 are included.
  • examples of the halogenated alkyl group for R 4 include a methyl group substituted with a halogen atom or an alkyl group having 2 to 20 carbon atoms.
  • the halogenated alkyl group having 2 to 20 carbon atoms is preferably an alkyl group having 2 to 10 carbon atoms substituted with a halogen atom, and includes an ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t A group in which an arbitrary hydrogen atom of a butyl group, a pentyl group or a hexyl group is substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom;
  • the halogenated alkyl group in R 4 is preferably an alkyl group having 1 to 2 carbon atoms substituted with a halogen atom, and specifically, any hydrogen of a methyl group or an ethyl group Examples include groups in which the atom is substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the halogen atom in R 4 and the halogen atom contained in the halogenated alkyl group can easily produce a film having excellent mechanical strength in a short time with high productivity.
  • R 4 containing no halogen atom is preferably a hydrogen atom, an alkyl group, a fluorene group, a hydroxy group, a nitro group, a cyano group or a sulfo group, and more preferably a hydrogen atom or an alkyl group.
  • the alkyl group in R 4 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, specifically a methyl group, Examples thereof include an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, and a hexyl group.
  • examples of the group containing an alkylene group represented by R 4 include a methylene group or an alkylene group having 2 to 20 carbon atoms, and any hydrogen atom of the alkylene group may be substituted with a halogen atom.
  • the alkylene group having 2 to 20 carbon atoms is preferably an alkylene group having 2 to 10 carbon atoms, and examples thereof include a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and an isopropylidene group. It is done.
  • D is preferably an ether group, a thioether group, or a sulfonyl group.
  • c is preferably 1 or 2.
  • f is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • the group selected from the group represented by the formula (4) is preferably a group selected from the group represented by the following formula (4 ′).
  • the structural unit (1) includes a structural unit (2).
  • the structural unit (2) may be contained in at least one group selected from the group consisting of a plurality of R 1 and R 2 in the structural unit (1), and is contained at the end of the structural unit (1). However, it is preferably contained in at least one group selected from the group consisting of a plurality of R 1 and R 2 .
  • “At least one group selected from the group consisting of a plurality of R 1 and R 2 includes a structural unit represented by the following formula (2)” means that when n is 2 or more, R 1 And R 2 each exist in two or more structural units (1), and it means that at least one of the plurality of R 1 and R 2 includes a structural unit represented by the following formula (2). . Since the polyimide precursor contains the structural unit (2), according to the resin composition containing the precursor, a film in which the residual stress is small and the occurrence of warpage is suppressed can be obtained.
  • a plurality of R 5 s each independently represent a monovalent organic group having 1 to 20 carbon atoms, and m represents an integer of 3 to 200.
  • examples of the monovalent organic group having 1 to 20 carbon atoms in R 5 include a monovalent hydrocarbon group having 1 to 20 carbon atoms and a monovalent alkoxy group having 1 to 20 carbon atoms. Can be mentioned.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 5 include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. It is done.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms, specifically, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t -Butyl group, pentyl group, hexyl group and the like.
  • the cycloalkyl group having 3 to 20 carbon atoms is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples include a cyclopentyl group and a cyclohexyl group.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a tolyl group, and a naphthyl group.
  • Examples of the monovalent alkoxy group having 1 to 20 carbon atoms in R 5 include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, a phenoxy group, a propenyloxy group, and a cyclohexyloxy group.
  • the island part composed of the flexible skeleton part is excellent in affinity with the sea part composed of the rigid skeleton part.
  • a size of about 1 micron is preferable because it facilitates (uniform) dispersion (microphase separation).
  • the plurality of R 5 are preferably an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 12 carbon atoms.
  • the resulting polyimide has a microphase-separated structure. There is a possibility that it cannot be formed.
  • the ratio of the number of moles of alkyl groups (i) to the number of moles of aryl groups (ii) is within the above range, microphase separation (the skeleton containing the structural unit (2) is nano-dispersed) and low linear expansion is possible.
  • a film having a coefficient, low residual stress, and the like, excellent in transparency and hardly clouded can be obtained.
  • the alkyl group having 1 to 10 carbon atoms is preferably a methyl group
  • the aryl group having 6 to 12 carbon atoms is preferably a phenyl group.
  • the structural unit (2) is preferably included in an amount of 5 to 40% by mass, more preferably 5 to 23% by mass, and 8 to 22% by mass.
  • the content is more preferably 9.5 to 21% by mass.
  • the quantity of the structural unit (2) contained in a polyimide precursor is less than the said range, when the resin composition of this invention is apply
  • M in the formula (2) is an integer of 3 to 200, preferably 10 to 200, more preferably 20 to 150, still more preferably 30 to 100, and particularly preferably 35 to 80.
  • m is 2 or less, the polyimide obtained from the polyimide precursor may be difficult to form a microphase separation structure.
  • m exceeds 200, the size of the island composed of the skeleton part including the structural unit (2) is large. May exceed 1 ⁇ m, and the coating film may become cloudy or the mechanical strength may decrease.
  • the polyimide precursor preferably contains 60% by mass or more, more preferably 77% by mass or more, and still more preferably 79% by mass or more of the structural unit (1) in 100% by mass of the polyimide precursor.
  • the proportion of the structural unit (1) is within the above range in the polyimide precursor, a film having a small residual stress and hardly warping can be obtained.
  • 60% by mass or more of the structural unit (1) means that the structural unit —NH—R 1 —NH—, the structural unit —NH—R 1 —NH 2 , the structural unit— CO—R 2 (COOR) 2 —CO—, structural unit —CO—R 2 (COOR) 2 —COOH, structural unit (2), and structural unit — (Si (R 5 ) 2 —O) m —Si It means that the total of structural units including R 1 and R 2 such as (R 5 ) 2 -R 10 -R 11 and the structural unit (2) is 60% by mass or more.
  • R 1, R 2 and R have the same meanings as R 1, R 2 and R in the formula (1)
  • R 5 has the same meaning as R 5 in the formula (2)
  • R 10 and R 11 has the same meaning as R 10 and R 11 in the following formulas (7 ′) and (8 ′).
  • a part of the structural unit (1) may be imidized.
  • R 1 is a group selected from the group represented by the formula (3), particularly a group selected from the group represented by the formula (3 ′), and R 2 is It is a group selected from the group represented by the formula (4), particularly a group selected from the group represented by the formula (4 ′), and when m in the formula (2) is 3 or more, the polyimide
  • the polyimide obtained from the precursor is particularly preferable from the viewpoint of reducing the residual stress of the obtained film because it becomes easier to take a microphase separation structure.
  • the polyimide precursor has an ether bond, a thioether group, a ketone group, an ester in the main chain of the precursor, depending on the desired use and film forming conditions.
  • a structural unit derived from a monomer hereinafter also referred to as “monomer (I)”) containing at least one group selected from the group consisting of a bond, a sulfonyl group, an alkylene group, an amide group and a siloxane group (hereinafter also referred to as “monomer (I)”) (Also referred to as “structural unit (56)”).
  • Examples of the alkylene group include the same groups as the alkylene group for R 3 in the formula (3).
  • the “structural unit included in the formula (1)” means the structural unit —NH—R 1 —NH—, the structural unit —NH—R 1 —NH 2 , or the structural unit —CO—R 2 (COOR) 2.
  • —CO—, structural unit —CO—R 2 (COOR) 2 —COOH, structural unit (2), and structural unit — (Si (R 5 ) 2 —O) m —Si (R 5 ) 2 —R 10 R 1 a -R 11 or the like refers to a structural unit containing R 2 and structural units (2) (Note, R 1, R 2 and R and R 1, R 2 and R in the formula (1) are synonymous, R 5 has the same meaning as R 5 in the formula (2), R 10 and R 11 has the same meaning as R 10 and R 11 of the formula (7 ') and (8') in. ).
  • the structural unit (56) is a tetracarboxylic acid that does not include the group represented by R 1 and R 2 in the structural unit (1) and the structural unit (2) contained in the main chain of the polyimide precursor. It refers to structural units derived from dianhydrides and their derivatives or imino forming compounds.
  • the main chain of the polyimide precursor means a chain containing R 1 and R 2 of the structural unit (1).
  • —COOR in the structural unit (1) is not a main chain but a side chain. .
  • the coefficient of linear expansion of the resulting film increases, and a film that can be stretched as desired is obtained.
  • the polyimide precursor when the content of the structural unit (56) and / or the content of the structural unit (2) is increased, the linear expansion coefficient of the obtained film is increased, so that the substrate containing Cu or Si is contained.
  • the blending amount of the structural unit (56) and / or the structural unit (2) may be changed according to these substrates.
  • the coefficient of linear expansion of Cu is 16.8 ppm / K
  • the polyimide precursor has a structural unit (56).
  • the linear expansion coefficient of Si is 3 ppm / K
  • the polyimide precursor contains structural units (56).
  • the polyimide precursor preferably contains 0 to 15% by mass of the structural unit (56) in 100% by mass of the polyimide precursor. .
  • the monomer (I) is a compound represented by the following formula (5) (hereinafter also referred to as “compound (5)”) or a compound represented by the formula (6) (hereinafter also referred to as “compound (6)”). It is preferable that
  • each A independently represents an ether bond (—O—), a thioether group (—S—), a ketone group (—C ( ⁇ O) —), an ester bond (—COO—). ), Sulfonyl group (—SO 2 —), alkylene group (—R 7 —), amide group (—C ( ⁇ O) —NR 8 —), siloxane group (—Si (R 9 ) 2 —O—Si ( R 9) 2 -) and a group containing at least one group chosen from the group consisting of fluorene group, R 6 is independently a hydrogen atom, a halogen atom, an alkyl group or a nitro group, any of the alkyl groups The hydrogen atom may be substituted with a halogen atom.
  • d independently represents an integer of 1 to 4.
  • R 8 and R 9 each independently represent a hydrogen atom, an alkyl group or a halogen atom, and the hydrogen atom of this alkyl group may be substituted with a halogen atom.
  • Examples of the alkyl group in R 6 , R 8 and R 9 include the same groups as the alkyl group in R 3 in the formula (3).
  • the halogen atom is preferably a chlorine atom or a fluorine atom.
  • A is preferably an ether bond
  • R 6 is preferably a hydrogen atom
  • examples of the alkylene group (—R 7 —) in A include the same groups as the alkylene group in R 3 in the formula (3).
  • methylene Group, isopropylidene group, and hexafluoroisopropylidene group are preferred.
  • Examples of the compounds (5) and (6) include compounds described in the following compound groups (5-1) to (6-9).
  • the polyimide precursor when the polyimide precursor includes the structural unit (56), the polyimide precursor preferably includes 0 to 15% by mass of the structural unit (56) in 100% by mass of the polyimide precursor, and more preferably 0 to 10% by mass. More preferably 0 to 9% by mass, particularly preferably 0 to 8% by mass.
  • the content of the structural unit (56) exceeds 15% by mass, the elastic modulus of the rigid skeleton part is lowered, and it is difficult to transfer the residual stress to the flexible skeleton part. It may be easier.
  • the polyimide precursor may include a structural unit (56), a polyimide precursor containing the structural unit (56), (i) the equation (1) in R 1 and R 2 in the structural unit (56) And (ii) a structure in which the structural unit (56) is included in a portion other than the structural unit (1) in the polyimide precursor.
  • the polyimide precursor includes a structural unit derived from the compound (5) in R 1 in the formula (1)
  • the polyimide precursor is represented by the following formula (5A), for example.
  • the structural unit (56) is preferably contained in an amount of 0 to 15% by mass in 100% by mass of the polyimide precursor” means between the two —NH— in the repeating unit n2 in 100% by mass of the polyimide precursor. It means that 0 to 15% by mass of a structural unit represented by a structure sandwiched between (including —NH— at both ends) is included.
  • the structural unit (56) may be contained in at least one group selected from the group consisting of a plurality of R 1 and R 2 in the structural unit (1). It may be contained at the end of the unit (1).
  • R, R 1 and R 2 are each independently synonymous with R, R 1 and R 2 in the formula (1), and A, R 6 and d are each independently the above formula ( 5) is the same as A, R 6 and d in n), and n1 + n2 is synonymous with n in the formula (1).
  • the weight average molecular weight (Mw) of the polyimide precursor is preferably 10,000 to 1,000,000, more preferably 10,000 to 200,000, and further preferably 20,000 to 150,000.
  • the number average molecular weight (Mn) is from 5,000 to 10,000,000, preferably from 5,000 to 500,000, particularly preferably from 15,000 to 200,000.
  • the weight average molecular weight or number average molecular weight of the polyimide precursor When the weight average molecular weight or number average molecular weight of the polyimide precursor is less than the lower limit, the strength of the resulting film may be lowered. Furthermore, the linear expansion coefficient of the obtained film may be increased more than necessary.
  • the weight average molecular weight or number average molecular weight of the polyimide precursor exceeds the upper limit, the viscosity of the resin composition increases, and thus when the resin composition is applied to a substrate such as a glass substrate to form a film. The amount of the polyimide precursor that can be blended in the resin composition is reduced, and the film thickness accuracy such as the flatness of the obtained coating film may be deteriorated.
  • the molecular weight distribution (Mw / Mn) of the polyimide precursor is preferably 1.0 to 10.0, more preferably 1.5 to 5.0, and particularly preferably 1.5 to 4.0.
  • the weight average molecular weight, number average molecular weight, and molecular weight distribution were measured using a TOSOH HLC-8220 GPC apparatus (guard column: TSK guard column ALPHA column: TSKgel ALPHA-M, developing solvent: N-methylpyrrolidone (NMP)). Measured value.
  • the polyimide precursor having the structural unit (1) is preferably a component containing at least one acyl compound selected from the group consisting of tetracarboxylic dianhydride and a reactive derivative thereof (hereinafter referred to as “component (A)”). And a component containing an imino forming compound (hereinafter also referred to as “component (B)”).
  • component (A) a component containing at least one acyl compound selected from the group consisting of tetracarboxylic dianhydride and a reactive derivative thereof
  • component (B) a component containing an imino forming compound
  • a polyimide precursor corresponding to the structure of the raw material compound to be used can be obtained, and a polyimide precursor having a structural unit derived from the compound in an amount corresponding to the amount of the raw material compound to be used is obtained. be able to.
  • an acyl compound containing the structural unit (2) as the component (A) (hereinafter also referred to as “compound (A-2)”) is used, or imino formation containing the structural unit (2) as the component (B).
  • a compound (hereinafter also referred to as “compound (B-2)”) is preferably used.
  • compound (A-2) and compound (B-2) can be used.
  • the component (A) is at least one acyl compound selected from the group consisting of tetracarboxylic dianhydride and this reactive derivative.
  • at least one compound selected from the group consisting of the compound (A-2) and an acyl compound (A-1) other than the compound (A-2) is included.
  • acyl compound (A-1) examples include at least one compound selected from the group consisting of aromatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic acids, the compound (6), and reactive derivatives thereof. Is mentioned.
  • acyl compound (A-1) examples include 4,4′-oxydiphthalic dianhydride, pyromellitic dianhydride (PMDA), 1,4,5,8-naphthalene tetracarboxylic dianhydride.
  • PMDA pyromellitic dianhydride
  • 1,4,5,8-naphthalene tetracarboxylic dianhydride examples include 4,4′-oxydiphthalic dianhydride, pyromellitic dianhydride (PMDA), 1,4,5,8-naphthalene tetracarboxylic dianhydride.
  • 2,3,6,7-naphthalenetetracarboxylic dianhydride 3,3 ′, 4,4′-dimethyldiphenylsilane tetracarboxylic dianhydride, 3,3 ′, 4,4′-tetraphenylsilane Tetracarboxylic dianhydride, 2,3,4,5-furantetracarboxylic dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenylsulfone dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylpropane dianhydride, 3,3 ′, 4,4′-perfluoroisopropylide Diphthalic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracar
  • Examples of the reactive derivative include tetracarboxylic acid, acid esterified product of the tetracarboxylic acid, and acid chloride of the tetracarboxylic acid.
  • aliphatic tetracarboxylic dianhydrides or alicyclic tetracarboxylic dianhydrides are preferably used from the viewpoint of excellent transparency and good solubility in organic solvents.
  • aromatic tetracarboxylic dianhydrides are preferably used from the viewpoints of heat resistance, low linear expansion coefficient (dimensional stability), and low water absorption.
  • the acyl compound (A-1) is a compound having a group selected from the group represented by the formula (4) or the formula (4 ′).
  • the flexible skeletal part can be dispersed (uniformly) in a very small size of about 1 nanometer to 1 micron (micro phase separation structure), and the stress generated in the film forming process can be efficiently absorbed by the flexible skeleton part. For this reason, it is more preferable from the viewpoint of obtaining a film having a small residual stress and suppressed warpage.
  • Specific examples of such compounds include pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), the following group (4-1) ), And the like. These compounds can be used alone or in combination of two or more.
  • the compounding amount of the compound (A-1) (excluding the compounds (6) and (6 ′)) is not particularly limited, and the total amount of all acyl compounds (component (A)) is 100% by mass. However, when the compound (A) contains the compound (A-2) and / or the compound (6), etc., the preferred blending amount of each of these compounds from 100% by mass What is necessary is just to mix
  • the compound (A-2) include a tetracarboxylic dianhydride having a structural unit represented by the formula (2) and at least one acyl compound selected from reactive derivatives thereof.
  • the compound represented by the following formula (7) hereinafter also referred to as “compound (7)”
  • the compound represented by the following formula (7 ′) hereinafter also referred to as “compound (7 ′)”.
  • a compound represented by the following formula (8) hereinafter also referred to as “compound (8)”
  • a compound represented by the following formula (8 ′) hereinafter also referred to as “compound (8 ′)
  • Examples of the reactive derivative include a tetracarboxylic acid having a structural unit represented by the formula (2), an acid esterified product of the tetracarboxylic acid, and an acid chloride of the tetracarboxylic acid.
  • the compounds (7) and / or (8) are synthesized.
  • the compound (7 ′) and / or (8 ′) is preferably used when the structural unit (2) is to synthesize a polyimide precursor contained at the terminal of the structural unit (1). Is preferred.
  • R 5 and m are each independently synonymous with R 5 and m in the formula (2).
  • R 10 independently represents a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • R 11 independently represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • the same groups as the monovalent organic group having 1 to 20 carbon atoms in R 5 can be used.
  • Examples of the divalent organic group having 1 to 20 carbon atoms in R 10 include a methylene group, an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, and an arylene group having 6 to 20 carbon atoms. Is mentioned.
  • the alkylene group having 2 to 20 carbon atoms is preferably an alkylene group having 2 to 10 carbon atoms, and examples thereof include a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
  • the cycloalkylene group having 3 to 20 carbon atoms is preferably a cycloalkylene group having 3 to 10 carbon atoms, and examples thereof include a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, and a cycloheptylene group.
  • the arylene group having 6 to 20 carbon atoms is preferably an arylene group having 6 to 12 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
  • the compound (A-2) preferably has a number average molecular weight of 200 to 10,000, more preferably 500 to 10 from the viewpoint of obtaining a film having excellent heat resistance (high glass transition temperature) and water resistance. 000, particularly preferably 500 to 6000.
  • the amine value is preferably 100 to 5000, more preferably 250 to 5,000, and still more preferably 1000 to 3000.
  • the polymerization degree m in the compounds (7), (7 ′), (8) and (8 ′) is the same as that in the formula (2), and the preferred range is also the same.
  • R 5 is preferably a methyl group or a phenyl group, and at least one of a plurality of R 5 is preferably a phenyl group.
  • At least one R 5 in the formulas (7), (7 ′), (8) and (8 ′) is not a phenyl group, the compatibility between the sea part and the island part deteriorates and the dispersion of the island part A film having a size exceeding 1 micron and inferior heat resistance and film strength may be obtained.
  • Compound (A-2) can be used alone or in combination of two or more.
  • the compound (A-2) is contained in the component (A), the compound (A-2) is obtained when the total amount of all raw material compounds (component (A) + component (B)) is 100% by mass.
  • the blending amount is preferably 5 to 40% by mass, more preferably 5 to 23% by mass, and still more preferably 8 to 8% by mass from the viewpoint of obtaining a film that has excellent peelability from the substrate and is less likely to warp. It is 22% by mass, and particularly preferably 9.5 to 21% by mass.
  • the preferred compounding amount of the compound (A-2) is the case where the compound (B-2) is not used when synthesizing the polyimide precursor, and as a raw material when synthesizing the polyimide precursor.
  • the total amount of the compound (A-2) and the compound (B-2) to be used is preferably a blending amount of the compound (A-2). It is preferable to make it to the same degree.
  • the component (A) includes a compound represented by the compound (6) and / or the following formula (6 ′) (hereinafter referred to as “compound”), depending on the desired use, from the viewpoint of improving the elongation of the obtained film. (6 ') ”) may also be included.
  • compound represented by the compound (6) and / or the following formula (6 ′) (hereinafter referred to as “compound”), depending on the desired use, from the viewpoint of improving the elongation of the obtained film. (6 ') ”) may also be included.
  • 6 ′ a compound represented by the compound (6) and / or the following formula (6 ′) (hereinafter referred to as “compound”), depending on the desired use, from the viewpoint of improving the elongation of the obtained film. (6 ') ”).
  • 6 ′ a compound represented by the compound (6) and / or the following formula (6 ′) (hereinafter referred to as “compound”), depending on the desired use, from the viewpoint of improving the elong
  • A has the same meaning as A in the formulas (5) and (6), and R 12 represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 12 represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms include the same groups as the monovalent organic group having 1 to 20 carbon atoms in R 5 in the above formula (2).
  • the total amount of all raw material compounds (component (A) + component (B)) is 100% by mass
  • the compounding amount of the compound (6) and the compound (6 ′) is preferably 0 to 15% by mass, more preferably 0 to 10% by mass, and still more preferably, from the viewpoint of obtaining a film in which warpage hardly occurs.
  • the content is 0 to 9% by mass, particularly preferably 0 to 8% by mass.
  • the preferable compounding amount of the compound (6) and the compound (6 ′) is a case where the compound (5) and / or the following compound (5 ′) is not used when the polyimide precursor is synthesized.
  • the compound (6) and / or compound (6 ′) and the compound (5) and / or compound (5 ′) are used as raw materials when the precursor is synthesized, the compound (6) to be used, It is preferable that the total amount of the compound (6 ′), the compound (5) and the compound (5 ′) is approximately the same as the preferable blending amount of the compound (6) and the compound (6 ′).
  • the component (B) is an imino forming compound.
  • the “imino forming compound” refers to a compound that reacts with the component (A) to form an imino (group), and specifically includes a diamine compound, a diisocyanate compound, and a bis (trialkylsilyl) amino compound. Etc.
  • the component (B) preferably includes at least one compound selected from the group consisting of the compound (B-2) and an imino forming compound (B-1) other than the compound (B-2).
  • Examples of the compound (B-1) include at least one compound selected from the group of aromatic diamines and the compound (5).
  • Examples of the compound (B-1) include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether (ODA), 3,4 ′.
  • the compound (B-1) is selected from the group represented by the formulas (3), (3 ′), (3′-1) to (3′-2) and (3 ′′).
  • the compound having a group makes it possible to (uniformly) disperse the microscopic skeleton part in the sea part having a high elastic modulus in a very small size of about 1 nanometer to 1 micron (microphase separation structure). Since the stress generated in step (b) can be efficiently absorbed by the flexible skeleton portion, it is preferable from the viewpoint of obtaining a film in which the residual stress is small and the occurrence of warpage is suppressed.
  • Such compounds include 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl (TFMB), 4,4′-diamino-2,2′-bis (trifluoro). Ethyl) biphenyl, 4,4′-diamino-2,2′-bis (trifluoroacetyl) biphenyl, etc., among which 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl Is preferred.
  • the amount of compound (B-1) (excluding compounds (5) and (5 ′)) is not particularly limited, and the total amount of all imide-forming compounds (component (B)) is 100% by mass. However, when the compound (B-2) and / or the compound (5) is contained in the component (B), the preferred blending of each of these compounds from 100% by mass What is necessary is just to mix
  • the compound (B-2) is not particularly limited as long as it is an imino forming compound containing the structural unit (2), but is preferably a compound represented by the following formula (9) (hereinafter also referred to as “compound (9)”). And the compound represented by the following formula (9 ′) (hereinafter also referred to as “compound (9 ′)”), and the like.
  • the compound (9 ) Is preferably used, and when it is desired to synthesize a polyimide precursor contained at the terminal of the structural unit (1), it is preferable to use the compound (9 ′).
  • These compounds can be used alone or in combination of two or more.
  • R 5 and m each independently have the same meaning as R 5 and m in the formula (2)
  • R 10 each independently represents the formula (7), ( 7 '), (8) and (8') in the same definition as R 10 in
  • R 11 has the same meaning as R 11 each in the formula independently (7 ') and (8').
  • the flexible skeleton part can be finely dispersed in a sea part composed of the rigid skeleton part with a size of about nano to micron, and has heat resistance (high glass transition temperature) and water resistance.
  • the number average molecular weight is preferably 500 to 12,000, more preferably 1,000 to 8,000, and further preferably 3,000 to 6,000.
  • the amine value is preferably 250 to 6,000, more preferably 500 to 4,000, and further preferably 1,500 to 3,000.
  • the polymerization degree m in the formulas (9) and (9 ′) is the same as that in the formula (2), and the preferred range is also the same.
  • R 5 is preferably a methyl group or a phenyl group, and at least one of a plurality of R 5 is preferably a phenyl group.
  • At least one R 5 in the formulas (9) and (9 ′) is not a phenyl group, the compatibility between the sea part and the island part deteriorates, and the dispersion size of the island part exceeds 1 micron, and the heat resistance In some cases, a film having poor film strength may be obtained.
  • the imino forming compound (B-2) can be used alone or in combination of two or more.
  • the compound (B-2) when the total amount of all raw material compounds (component (A) + component (B)) is 100% by mass The blending amount is preferably 5 to 40% by mass, more preferably 5 to 23% by mass, and still more preferably 8 to 8% by mass from the viewpoint of obtaining a film that has excellent peelability from the substrate and is less likely to warp. It is 22% by mass, and particularly preferably 9.5 to 21% by mass.
  • a preferable blending amount of the compound (B-2) is an amount when the compound (A-2) is not used when the polyimide precursor is synthesized.
  • the component (B) includes a compound represented by the compound (5) and / or the following formula (5 ′) (hereinafter referred to as “compound”), depending on the desired use, from the viewpoint of improving the elongation of the obtained film.
  • (5 ') ) may also be included.
  • a polyimide precursor including the structural unit (56) in the main chain (excluding the terminal) of the polyimide precursor it is preferable to use the compound (5), and the main chain terminal of the polyimide precursor is used.
  • These compounds can be used alone or in combination of two or more.
  • A represents the formula (5) and (6) in the same meaning as A
  • R 12 is the formula (6 Formula (5)' is synonymous with R 12 in).
  • the compounding amount of the compound (5) and the compound (5 ′) is preferably 0 to 15% by mass, more preferably 0 to 10% by mass, and still more preferably from the viewpoint of obtaining a film in which warpage hardly occurs.
  • the content is 0 to 9% by mass, particularly preferably 0 to 8% by mass.
  • the preferable compounding amount of the compound (5) and the compound (5 ′) is an amount when the compound (6) and / or the compound (6 ′) is not used when the polyimide precursor is synthesized.
  • the polyimide precursor is composed of the component (A) and the component (B) as a use ratio (amount ratio), and a molar ratio of the component (A) to the component (B) (component (A) / component (B). ) Is preferably in the range of 0.8 to 1.2, more preferably in the range of 0.90 to 1.0.
  • the molar ratio of the component (A) to the component (B) is less than 0.8 equivalent or more than 1.2 equivalent, the molecular weight may be lowered and it may be difficult to form a polyimide film.
  • the reaction between the component (A) and the component (B) is usually performed in an organic solvent.
  • the organic solvent is preferably dehydrated.
  • the organic solvent it is preferable to use the following non-amide solvents from the viewpoint of the ease of production of the resin composition of the present invention and the properties of the resulting film (haze, warpage, etc.).
  • a specific method for reacting the component (A) and the component (B) at least one component (B) is dissolved in an organic solvent, and then the resulting solution is mixed with at least one component (A). Examples include a method of adding components and stirring at a temperature of 0 to 100 ° C. for 1 to 60 hours.
  • the total amount of component (A) and component (B) in the reaction solution is preferably 3 to 60% by mass, more preferably 5 to 40% by mass, and further preferably 10 to 10% by mass of the total amount of the reaction solution. It is 40% by mass, and particularly preferably 10 to 30% by mass.
  • a resin composition in which the concentration of the polyimide precursor in the obtained resin composition is in the following preferable range can be obtained. Therefore, it is preferable.
  • the composition containing the polyimide precursor obtained by the reaction and the organic solvent is used as it is as the resin composition of the present invention.
  • the resin composition of the present invention is obtained by isolating the polyimide precursor obtained in the above reaction as a solid component and then re-dissolving it in a solvent mainly composed of the following non-amide solvent. You can also.
  • a solution containing the polyimide precursor and an organic solvent is poured into a poor solvent for the polyimide precursor such as methanol or isopropanol to precipitate the polyimide precursor, and is filtered, washed and dried.
  • a poor solvent for the polyimide precursor such as methanol or isopropanol
  • the non-amide solvent used in the resin composition of the present invention include at least one organic solvent selected from the group consisting of ether solvents, ester solvents, nitrile solvents, sulfoxide solvents, and ketone solvents. Since the resin composition of the present invention contains a solvent containing the non-amide solvent as a main component, the drying rate at the time of film formation is increased, the film quality is less deteriorated due to white turbidity, and the film productivity is excellent. Moreover, the resin composition with a high density
  • the “solvent having a non-amide solvent as a main component” is preferably 70% by mass or more, more preferably 90% by mass or more, and more preferably 90% by mass or more, based on 100% by mass of the whole solvent.
  • the solvent preferably contains 95% by mass or more.
  • the ketone solvent is preferably a ketone having 3 to 10 carbon atoms, and more preferably a ketone having 3 to 6 carbon atoms from the viewpoint of boiling point and cost.
  • cyclohexanone is preferable from the viewpoint that a resin composition excellent in drying property, productivity and the like can be obtained.
  • the ether solvent is preferably an ether having 3 to 10 carbon atoms, and more preferably an ether having 3 to 7 carbon atoms.
  • Specific preferred ether solvents include mono- or dialkyl ethers such as ethylene glycol, diethylene glycol, ethylene glycol monoethyl ether, propylene glycol monoethyl ether (119 ° C.), cyclic ethers such as dioxane and tetrahydrofuran, anisole.
  • aromatic ethers such as Among these, use of propylene glycol monoethyl ether is preferable from the viewpoints of obtaining a resin composition having good storage stability and a transparent and excellent mechanical strength.
  • These ether solvents can be used singly or in combination of two or more.
  • the nitrile solvent is preferably a nitrile having 2 to 10 carbon atoms, and more preferably a nitrile having 2 to 7 carbon atoms.
  • acetonitrile is preferable from the viewpoint of a low boiling point.
  • These nitrile solvents can be used singly or in combination of two or more.
  • the ester solvent is preferably an ester having 3 to 10 carbon atoms, and more preferably an ester having 3 to 6 carbon atoms.
  • the sulfoxide solvent is preferably a sulfoxide having 3 to 10 carbon atoms, and preferred sulfoxide solvents include dimethyl sulfoxide.
  • group solvents can be used individually by 1 type or in combination of 2 or more types.
  • the solvent mainly composed of the non-amide solvent preferably includes at least one organic solvent selected from the group consisting of a nitrile solvent, an ether solvent, and a ketone solvent, and more preferably a ketone solvent. And at least one solvent selected from the group consisting of ether solvents. These solvents have high solubility of the precursor having the structural unit (1), and by using these solvents, a resin composition having excellent storage stability can be obtained.
  • the solvent having the non-amide solvent as a main component it is preferable to use a mixed solvent in which two or more kinds are combined. In consideration of physical properties of the obtained film, a solvent in which solvents having different boiling points of 20 ° C. or more are mixed. preferable.
  • the resin composition of the present invention contains the mixed solvent, a resin composition having a high polyimide precursor concentration can be obtained.
  • the mixed solvent preferably contains 5 to 95 parts by mass, more preferably 20 to 95 parts by mass of the solvent having the highest boiling point in the mixed solvent with respect to 100 parts by mass of the mixed solvent. Is more preferably 20 to 65 parts by mass. Further, the mixed solvent particularly preferably contains 20 to 55 parts by mass of the solvent having the highest boiling point in the mixed solvent with respect to 100 parts by mass of the mixed solvent, and this solvent contains the solvent having the highest boiling point in this amount. In this case, a certain solvent remains even after drying at a temperature exceeding 120 ° C.
  • blend additives such as antioxidant, a ultraviolet absorber, and surfactant, in the resin composition of this invention in the range which does not impair the objective of this invention.
  • the viscosity of the resin composition of the present invention is usually 500 to 50,000 mPa ⁇ s, preferably 500 to 20,000 mPa ⁇ s, although it depends on the molecular weight and concentration of the polyimide precursor.
  • the viscosity of the resin composition is a value measured at 25 ° C. in the atmosphere using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., viscometer MODEL RE100).
  • the polyimide precursor concentration in the resin composition of the present invention is preferably adjusted so that the viscosity of the resin composition is in the above range, and preferably 3 to 60% by mass, although depending on the molecular weight of the polyimide precursor.
  • the amount is preferably 5 to 40% by mass, more preferably 10 to 40% by mass, and particularly preferably 10 to 30% by mass.
  • the resin composition of the present invention When the viscosity of the resin composition of the present invention and the polyimide precursor concentration in the composition are in the above ranges, the resin composition can be applied onto a substrate using a slit coating method that is excellent in productivity and the like. A film having excellent film thickness accuracy and the like can be formed with high productivity in a short time.
  • the film forming method of the present invention includes a step of applying the resin composition of the present invention on a substrate to form a coating film, and evaporating a solvent mainly composed of the non-amide solvent from the coating film.
  • the method etc. which include the process and the process of imidating the said precursor are mentioned.
  • a roll coating method As a method of forming a coating film by applying the resin composition on a substrate, a roll coating method, a gravure coating method, a spin coating method, a slit coating method, a dipping method and a doctor blade, a die, a coater, a spray, a brush, The method etc. which apply
  • the film thickness and surface smoothness may be controlled by repeating the coating.
  • the slit coat method is preferable.
  • the thickness of the coating film is appropriately selected depending on the desired application and is not particularly limited. For example, it is 1 to 500 ⁇ m, preferably 1 to 450 ⁇ m, more preferably 2 to 250 ⁇ m, and still more preferably. The thickness is 2 to 150 ⁇ m, particularly preferably 5 to 125 ⁇ m.
  • the substrate examples include polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polybutylene terephthalate (PBT) film, nylon 6 film, nylon 6,6 film, polypropylene film, polytetrafluoroethylene belt, silicon wafer , Glass wafers, oxide wafers, glass substrates (including non-alkali glass substrates), Cu substrates and SUS plates.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • nylon 6 film nylon 6 film
  • nylon 6,6 film polypropylene film
  • polytetrafluoroethylene belt silicon wafer
  • Glass wafers oxide wafers
  • glass substrates including non-alkali glass substrates
  • Cu substrates including non-alkali glass substrates
  • SUS plate or the like.
  • the process of evaporating the solvent mainly composed of the non-amide solvent from the coating film may be performed by specifically drying or heating the coating film, but considering the transparency of the film after imidization, there is no cloudiness. It is preferable to evaporate a solvent containing the non-amide solvent as a main component. In consideration of productivity, it is preferable to carry out only by heating without vacuum drying.
  • the heating condition may be that the solvent evaporates in a certain amount and may be appropriately determined according to the substrate to be used, the polyimide precursor and the solvent.
  • the heating temperature is preferably 60 ° C. to 200 ° C., more preferably 90 ° C. ⁇ 180 ° C.
  • the heating time is preferably 10 minutes to 1 hour.
  • the heating temperature is lower than 60 ° C., it takes a long time to evaporate a certain amount of solvent, resulting in poor productivity.
  • the heating temperature exceeds 200 ° C., imidization proceeds before the solvent evaporates, and the film quality of the obtained film may deteriorate. is there.
  • a solvent having a high boiling point as the non-amide solvent (preferably a solvent having a boiling point equal to or higher than the heating temperature in the step of evaporating the solvent mainly composed of the non-amide solvent from the coating film, more preferably a boiling point of 120 ° C. If a mixed solvent containing the above solvent, more preferably a solvent having a boiling point of 150 to 250 ° C. is used, the solvent will not evaporate more than necessary in the step of evaporating the solvent. (High boiling point solvent) is considered to be contained in the coating film. It is thought that the strength of the film after the imidization process is improved by including a high boiling point solvent during the imidization process. For this reason, in the film formation method of this invention, in order to obtain the film
  • the step of imidizing the coating precursor can be performed by heating.
  • the heating condition may be that the solvent evaporates and the polyimide precursor is imidized, and may be appropriately determined according to the substrate and the polyimide precursor.
  • the temperature is 200 to 450 ° C. for 30 minutes to 2 hours. Heating is preferred. More preferably, heating is performed at a temperature of 300 to 450 ° C. for 30 minutes to 2 hours, and further heating is performed at a temperature of 350 to 450 ° C. for 30 minutes to 1 hour. Moreover, you may heat under reduced pressure as needed.
  • the heating atmosphere is not particularly limited, but is preferably in the air or in an inert gas atmosphere, and particularly preferably in an inert gas atmosphere.
  • the inert gas include nitrogen, argon, helium and the like from the viewpoint of colorability, and nitrogen is preferable.
  • the heating may dry the coating film formed on the substrate together with the substrate, but after being dried to some extent (for example, after the step of evaporating the solvent) because it is not affected by the properties of the substrate.
  • the coating film formed on the substrate may be peeled off from the substrate and then heated.
  • the film obtained through the above film formation process can be used after being peeled off from the substrate, or can be used as it is without being peeled off.
  • the thickness of the obtained film is appropriately selected according to the desired application, but is preferably 1 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, still more preferably 10 to 50 ⁇ m, and particularly preferably 20 to 40 ⁇ m. .
  • the tensile strength of the film obtained from the resin composition of the present invention is 100 MPa or more, particularly preferably 200 MPa or more. If the elastic modulus of the film is less than 100 MPa, there may be a problem of breaking when the film is peeled off from the substrate.
  • the glass transition temperature of the film is 250 ° C. or higher, preferably 350 ° C. or higher, particularly preferably 450 ° C. or higher. Since it is heated to 250 ° C. or higher at the time of solder reflow process or device fabrication, when the film is used for such applications, if the glass transition temperature is less than 250 ° C., the film may be deformed. .
  • Suitable applications of the film include flexible substrates such as flexible printed circuit boards and flexible display substrates, semiconductor elements, thin film transistor type liquid crystal display elements, magnetic head elements, integrated circuit elements, solid-state imaging elements, mounting substrates, and other electronic components. Examples thereof include an insulating film used and films for various capacitors. These electronic components are generally provided with an interlayer insulating film, a planarizing insulating film, a surface protecting insulating film (overcoat film, passivation film, etc.) in order to insulate between wirings arranged in layers. These insulating films can be suitably used.
  • membrane can be conveniently used as films, such as a light-guide plate, a polarizing plate, a film for a display, a film for optical disks, a transparent conductive film, a waveguide board.
  • films such as a light-guide plate, a polarizing plate, a film for a display, a film for optical disks, a transparent conductive film, a waveguide board.
  • the film is excellent in adhesion and peelability to a glass substrate, there is no need to provide an adhesive layer or the like between the film and the substrate, and the number of steps when producing a flexible substrate can be reduced. There is sex.
  • Example 1 In a three-necked flask equipped with a thermometer, a nitrogen introduction tube and a stirring blade, at 15.degree. C. under a nitrogen stream, 15.3050 g (0.35 g) of 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl (TFMB).
  • TFMB 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl
  • both terminal amino-modified side chain phenyl methyl type silicone X-22-1660B-3 (manufactured by Shin-Etsu Chemical Co., Ltd.) [4.2925 g (0.000976 mol)]
  • polyimide precursor in the resin composition 184.527 g of dehydrated cyclohexanone (CHN) was added so that the concentration of was 14%, and the mixture was stirred for 10 minutes until a completely homogeneous solution was obtained. Then, pyromellitic dianhydride (PMDA) 10.9797 g (0.047679 mol) was added, and the reaction was terminated by stirring for 60 minutes.
  • PMDA pyromellitic dianhydride
  • a glass substrate (width: 300 mm x length: 350 mm x thickness: 0.7 mm) is fixed to a control coater base installed so as to be perpendicular to gravity, and the gap interval is set so that the film thickness of the film after drying is 30 ⁇ m.
  • the thickness was set to 405 ⁇ m, and the resin composition 1 (12 g) was cast on the central part of the glass substrate so as to form a coating film of width: 200 mm ⁇ length: 220 mm.
  • Three glass substrates with a coating film were produced.
  • the obtained glass substrate with a coating film was dried by the following methods (1) to (3) to obtain a film after drying.
  • a glass substrate (horizontal: 300 mm x vertical: 350 mm x thickness: 0.7 mm) is fixed to a control coater base installed so as to be perpendicular to gravity, and the gap interval is set so that the film thickness becomes 30 ⁇ m after secondary drying.
  • the thickness was set to 405 ⁇ m, and the resin composition 1 (12 g) was cast on the central part of the glass substrate so as to form a coating film of width: 200 mm ⁇ length: 220 mm.
  • the obtained glass substrate with a coating film was put into a vacuum dryer, and the pressure was reduced to 0.1 mmHg after 10 minutes at 25 ° C., and then the pressure was returned to normal pressure (760 mmHg) to complete the vacuum drying. Then, the glass substrate with the coated film after vacuum drying is heated and dried at 140 ° C. for 10 minutes (primary drying), and then heated and dried at 400 ° C. for 30 minutes in a variable atmosphere dryer (secondary drying). By doing so, a polyimide film with a substrate was obtained.
  • Example 2 Instead of TFMB (15.3050 g), TFMB (12.6570 g) and 4,4′-diaminodiphenyl ether (ODA) 2.0370 g were used, and the amounts of X-22-1660B-3, PMDA and CHN used were shown in Table 1.
  • a resin composition 2 was obtained in the same manner as in Example 1 except that the composition was changed as shown in FIG. Moreover, the film after drying was formed by the method similar to Example 1 except having used the resin composition 2 instead of the resin composition 1.
  • FIG. Further, a polyimide film was formed in the same manner as in Example 1 except that the resin composition 2 was used instead of the resin composition 1 and the secondary drying temperature was changed to 300 ° C.
  • Example 3 Example 1 except that 147.622 g of CHN and 36.905 g of ⁇ -butyrolactone were used in place of CHN 184.527 g, and that the amounts of TFMB, X-22-1660B-3 and PMDA were changed as shown in Table 1.
  • the resin composition 3 was obtained.
  • the film and polyimide film were formed after drying by the method similar to Example 2 except having used the resin composition 3 instead of the resin composition 2.
  • Example 4 Example 1 except that CHN 92.920 g and ⁇ -butyrolactone 92.264 g were used instead of CHN 184.527 g, and the amounts of TFMB, X-22-1660B-3 and PMDA were changed as shown in Table 1. The resin composition 4 was obtained. Further, a film and a polyimide film after drying were formed in the same manner as in Example 2 except that the resin composition 4 was used instead of the resin composition 2.
  • Example 5 Example 2 and Example 2 were used except that CHN 91.804 g and ⁇ -butyrolactone 91.804 g were used instead of CHN 183.607 g, and the amounts of TFMB, ODA, X-22-1660B-3 and PMDA were changed as shown in Table 1.
  • the resin composition 5 was obtained in the same manner.
  • the film and polyimide film were formed after drying by the same method as Example 2 except having used the resin composition 5 instead of the resin composition 2.
  • Example 6 The same procedure as in Example 1 was carried out except that CHN 92.000 g and dimethyl sulfoxide 92.000 g were used instead of CHN 184.527 g, and the amounts of TFMB, X-22-1660B-3 and PMDA were changed as shown in Table 1. A resin composition 6 was obtained. Further, a film and a polyimide film after drying were formed in the same manner as in Example 2 except that the resin composition 6 was used instead of the resin composition 2.
  • Example 7 Resin composition 7 was prepared in the same manner as in Example 1, except that 184.527 g of propylene glycol monoethyl ether was used instead of 184.527 g of CHN, and TFMB, X-22-1660B-3 and PMDA were used in the amounts shown in Table 1. Got. Further, a dried film and a polyimide film were formed in the same manner as in Example 1 except that the resin composition 7 was used instead of the resin composition 1.
  • Example 8 Conducted using 92.2635 g of propylene glycol monoethyl ether and 92.2635 g of propylene glycol monoethyl ether acetate in place of CHN 184.527 g and using TFMB, X-22-1660B-3 and PMDA in the amounts shown in Table 1.
  • Resin composition 8 was obtained in the same manner as in Example 1.
  • the film and polyimide film were formed after drying by the same method as Example 1 except having used the resin composition 8 instead of the resin composition 1.
  • Example 9 Example 1 was used except that 147.6216 g of propylene glycol monoethyl ether and 36.905 g of ⁇ -butyrolactone were used in place of CHN 184.527 g, and TFMB, X-22-1660B-3 and PMDA were used in the amounts shown in Table 1. In the same manner, a resin composition 9 was obtained. Moreover, the film and polyimide film were formed after drying by the same method as Example 1 except having used the resin composition 9 instead of the resin composition 1. FIG.
  • Example 10 Instead of CHN184.527 g, 73.8108 g of propylene glycol monoethyl ether, 73.8108 g of propylene glycol monoethyl ether acetate and 36.905 g of ⁇ -butyrolactone were used, and TFMB, X-22-1660B-3 and PMDA are shown in Table 1. Resin composition 10 was obtained in the same manner as in Example 1, using the amount used. Moreover, the film and polyimide film were formed after drying by the same method as Example 1 except having used the resin composition 10 instead of the resin composition 1. FIG.
  • Example 11 As in Example 1, using 138.3953 g of propylene glycol monoethyl ether and 46.1318 g of butyl acetate instead of 184.527 g of CHN and using TFMB, X-22-1660B-3 and PMDA in the amounts shown in Table 2. The resin composition 11 was obtained. Further, a dried film and a polyimide film were formed in the same manner as in Example 1 except that the resin composition 11 was used instead of the resin composition 1.
  • Example 12 Instead of CHN 184.527 g, 110.7162 g of propylene glycol monoethyl ether, 36.905 g of butyl acetate and 36.905 g of ⁇ -butyrolactone were used, and TFMB, X-22-1660B-3 and PMDA were used in the usage amounts shown in Table 2.
  • a resin composition 12 was obtained. Further, a dried film and a polyimide film were formed in the same manner as in Example 1 except that the resin composition 12 was used instead of the resin composition 1.
  • Example 9 Using 92.2635 g of methyl isobutyl ketone, 46.132 g of CHN and 46.132 g of ⁇ -butyrolactone instead of 184.527 g of CHN, and using TFMB, X-22-1660B-3 and PMDA in the usage amounts shown in Table 2. In the same manner as in Example 1, a resin composition 13 was obtained. Further, a film and a polyimide film after drying were formed in the same manner as in Example 1 except that the resin composition 13 was used instead of the resin composition 1.
  • Example 14 Instead of CHN 184.527 g, 110.7162 g of propylene glycol monoethyl ether, 36.905 g of butyl acetate and 36.905 g of ⁇ -butyrolactone were used, and TFMB, both ends amino-modified dimethyl silicone KF-8012 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the resin composition 14 was obtained in the same manner as in Example 1 using PMDA in the amounts shown in Table 2. Further, a film and a polyimide film after drying were formed in the same manner as in Example 1 except that the resin composition 14 was used instead of the resin composition 1.
  • Example 15 Similar to Example 1 except that 92.2635 g of methyl isobutyl ketone, 46.132 g of CHN and 46.132 g of ⁇ -butyrolactone were used in place of CHN 184.527 g and TFMB, KF-8012 and PMDA were used in the amounts shown in Table 2.
  • the resin composition 15 was obtained.
  • a film and a polyimide film were formed in the same manner as in Example 1 except that the resin composition 15 was used instead of the resin composition 1.
  • Example 1 Example 1 except that 12.2531 g of m-tolidine (mTB) was used instead of TFMB (15.3050 g) and the amounts of X-22-1660B-3, PMDA and CHN were changed as shown in Table 2. In the same manner as above, a resin composition 16 was obtained. An attempt was made to form a film and a polyimide film after drying using the obtained resin composition 16 in the same manner as in Example 1, but the film and film could not be formed.
  • mTB m-tolidine
  • Weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) The weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) of the polyimide precursor in the resin compositions obtained in the examples and comparative examples are as follows.
  • the post-drying films obtained from the resin compositions 1 to 15 had a high drying speed and excellent adhesion to the glass substrate. Further, a tough polyimide film having no warpage, excellent heat resistance with Tg of 450 ° C. or higher, excellent transparency, excellent peelability from a glass substrate, and low linear expansion coefficient could be obtained.
  • the resulting resin composition has a viscosity of 50,000 or more and white turbidity is observed, and a coating film can be formed on the substrate. There wasn't. From the above results, it was found that if the polyimide precursor does not have the structural unit (1), a resin composition having excellent productivity cannot be obtained.
  • the resin composition 17 does not contain a non-amide solvent, white turbidity was observed immediately after preparation of the composition, and the storage stability was remarkably deteriorated. From the above results, it was found that a resin composition having excellent storage stability cannot be obtained unless a non-amide solvent is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

下記式(2)で表される構造単位を含み、下記式(1)で表される構造単位を有するポリイミド前駆体、および、非アミド系溶媒を主成分とする溶媒を含む樹脂組成物。 (式(1)中、Rは独立に水素原子または一価の有機基を示し、R1は独立に二価の有機基を示し、R2は独立に四価の有機基を示し、nは正の整数を示す。ただし、R1またはR2の少なくとも一方は、ハロゲン原子またはハロゲン化アルキル基を含む。) (式(2)中、複数あるR5は各々独立に炭素数1~20の一価の有機基を示し、mは3~200の整数を示す。)

Description

樹脂組成物およびそれを用いた膜形成方法
 本発明は、樹脂組成物およびそれを用いた膜形成方法に関する。
 一般に、芳香族テトラカルボン酸二無水物と芳香族ジアミンから得られる全芳香族ポリイミドは、分子の剛直性や、分子が共鳴安定化していること、強い化学結合を有すること等に起因して、優れた耐熱性、機械的特性を有しており、該ポリイミドまたはポリイミド形成用組成物は、電気、電池、自動車および航空宇宙産業などの分野において、フィルム、コーティング剤、成型部品、絶縁材料の原料として幅広く使用されている。
 しかしながら、前記従来のポリイミド形成組成物を用いて、ガラス基板のような支持体上で成膜を行うと、成膜時の収縮変形に伴い、基板もしくはフィルム自身に反りが生じる問題が指摘されている。
 ここで、特許文献1には、p-フェニレンジアミンおよびs-ビフェニルテトラカルボン酸無水物等から合成されたポリイミド前駆体を含むフレキシブルデバイス基板用ポリイミド前駆体樹脂組成物が開示されている。
 また、該樹脂組成物は、ガラス基板等のキャリア基板上に塗布することで成膜でき、耐熱性に優れ、熱膨張係数の低いポリイミド膜となって、回路等の形成過程でキャリア基板からのはがれを生じさせず、ガラス基板から剥がす際には、きれいに剥がせるものであることが記載されている。
特開2010-202729号公報
 しかしながら、従来のポリイミド前駆体を含む樹脂組成物は、該組成物をガラス基板等の支持体上に塗布し成膜する場合には、乾燥速度が遅く、生産性に劣るものであった。
 本発明の目的は、貯蔵安定性に優れ、乾燥速度が速く生産性に優れ、かつ、基板との密着性と剥離性に優れ、高いガラス転移温度を有し、反りの発生および白濁が少なく、機械的強度に優れた膜を容易に製造できる樹脂組成物および膜形成方法を提供することにある。
 本発明者は、前記課題を解決するために鋭意検討した結果、特定の構造単位を有するポリイミド前駆体(ポリアミック酸)と非アミド系溶媒を主成分とする溶媒とを含む樹脂組成物によれば、前記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[9]を提供するものである。
 [1] 下記式(2)で表される構造単位を含み、下記式(1)で表される構造単位を有するポリイミド前駆体、および、非アミド系溶媒を主成分とする溶媒を含む樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Rは独立に水素原子または一価の有機基を示し、R1は独立に二価の有機基を示し、R2は独立に四価の有機基を示し、nは正の整数を示す。ただし、R1またはR2の少なくとも一方は、ハロゲン原子またはハロゲン化アルキル基を含む。)
Figure JPOXMLDOC01-appb-C000005
(式(2)中、複数あるR5は各々独立に炭素数1~20の一価の有機基を示し、mは3~200の整数を示す。)
 [2] 前記R1が、下記式(3)で表される群より選ばれる基を含む、[1]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
(式(3)中、R3は独立にエーテル結合、チオエーテル基、ケトン基、エステル結合、スルフォニル基、アルキレン基、アミド基もしくはシロキサン基を含む基、水素原子、ハロゲン原子、アルキル基、ヒドロキシ基、ニトロ基、シアノ基またはスルホ基を示し、このアルキレン基を含む基およびアルキル基の任意の水素原子はハロゲン原子で置換されてもよい。ただし、1つの基に含まれる複数あるR3のうち少なくとも1つはハロゲン原子またはハロゲン化アルキル基を含む。a1は、1~3の整数を示し、a2は、1または2を示し、a3は独立に1~4の整数を示し、eは0~3の整数を示す。)
 [3] 前記溶媒が、二種以上の溶媒からなる混合溶媒である、[1]または[2]に記載の樹脂組成物。
 [4] 前記溶媒が、前記混合溶媒中で最も沸点の高い溶媒を、混合溶媒全量100重量%に対して20重量%以上含む、[3]に記載の樹脂組成物。
 [5] 前記ポリイミド前駆体の重量平均分子量が10000~1000000である、[1]~[4]のいずれかに記載の樹脂組成物。
 [6] 前記樹脂組成物中のポリイミド前駆体の濃度が3~60質量%である、[1]~[5]のいずれかに記載の樹脂組成物。
 [7] E型粘度計(25℃)で測定した粘度が500~50000mPa・sの範囲にある、[1]~[6]のいずれかに記載の樹脂組成物。
 [8] 膜形成用である、[1]~[7]のいずれかに記載の樹脂組成物。
 [9] [1]~[8]のいずれかに記載の樹脂組成物を、基板上に塗布して塗膜を形成する工程と、
 該塗膜から前記溶媒を蒸発させる工程と、
 前記前駆体をイミド化する工程を含む
 膜形成方法。
 本発明に係る樹脂組成物は貯蔵安定性に優れ、該組成物によれば、透明性および機械的強度に優れ、高いガラス転移温度を有し、反りの発生および白濁が少ない膜を容易に、短時間に、生産性よく製造することができる。
 また、本発明に係る樹脂組成物によれば、ガラス基板等の基板に樹脂組成物を塗布して膜を形成する際に、該基板との密着性および剥離性に優れる膜を容易に形成することができる。
 ≪樹脂組成物≫
 本発明の樹脂組成物は、下記式(2)で表される構造単位を含み、下記式(1)で表される構造単位を有するポリイミド前駆体、および、非アミド系溶媒を主成分とする溶媒を含む。
 本発明の樹脂組成物は、前記ポリイミド前駆体および非アミド系溶媒を含むため、高いガラス転移温度を有し、反りの発生および白濁が少なく、機械的強度に優れる膜を容易に、短時間に、生産性よく製造することができ、また、ガラス基板等の基板に樹脂組成物を塗布して膜を形成する際に、該基板との密着性および剥離性に優れる膜を容易に形成することができる。
 なお、本発明において、「密着性」とは、例えば、基板上で膜を形成している際、または、形成した膜の上に金属などからなる配線等を作製するデバイス作製をしている際などには、塗膜(膜)と基板とが剥離しにくい性質をいい、「剥離性」とは、例えば、基板から膜を剥がしたい時(基板から膜を剥がすための力等をかける時)に、剥離痕が少なく基板上から膜を剥離できる性質をいう。
 <ポリイミド前駆体>
 前記ポリイミド前駆体は、下記式(2)で表される構造単位を含み、下記式(1)で表される構造単位(以下「構造単位(1)」ともいう。)を有する。このため、該前駆体から得られるポリイミドは、剛直な骨格部位と下記式(2)で表される構造単位(以下「構造単位(2)」ともいう。)を含む柔軟な骨格部位とを有し、該剛直な骨格部位が海部となり、柔軟な骨格部位が島部となるミクロ相分離構造を形成すると考えられる。ポリイミドが、このミクロ相分離構造を形成することにより、残留応力が低減された膜が得られると考えられる。
 なお、本発明において、ミクロ相分離とは、剛直な骨格部位からなる海部に柔軟な骨格部位からなる島部が1ナノ~1ミクロン程度のサイズで分散していることをいう。
 なお、「反り」は、目視により判断される膜の丸まりであり、「残留応力」とは、樹脂組成物をガラス基板等の基板上に塗布して膜を形成した後の膜内部に残っている応力のことをいい、膜に生じ得る「反り」の目安となる。具体的には、下記実施例に記載の方法で測定することができる。
Figure JPOXMLDOC01-appb-C000007
 前記式(1)中、Rは独立に水素原子または一価の有機基を示し、好ましくは水素原子であり、R1は独立に二価の有機基を示し、R2は独立に四価の有機基を示す。nは正の整数を示し、好ましくは1~2500の整数である。
 なお、R1またはR2の少なくとも一方は、ハロゲン原子、またはハロゲン化アルキル基を含む。ここで、「R1がハロゲン原子(フッ素原子)を含む」とは、例えば、R1が-CH2-CHF-CH2-のような基である場合をいい、「R1がハロゲン化アルキル基(フッ素化アルキル基)を含む」とは、例えば、R1が-CH2-CH(CF3)-CH2-のような基である場合をいう。
 前記構造単位(1)は、ハロゲン原子またはハロゲン化アルキル基を含むため、溶解性に優れるポリイミド前駆体が得られ、かつ、該前駆体から耐熱性に優れるポリイミドが得られる。
Figure JPOXMLDOC01-appb-C000008
 前記式(2)中、複数あるR5は各々独立に炭素数1~20の一価の有機基を示し、mは3~200の整数を示す。
 前記式(1)中、Rにおける一価の有機基としては、炭素数1~20の一価の有機基が好ましい。なお、「炭素数1~20」は、「炭素数1以上、炭素数20以下」を示す。本発明における同様の記載は同様の意味を示す。
 前記Rにおける炭素数1~20の一価の有機基としては、炭素数1~20の一価の炭化水素基等を挙げることができる。
 炭素数1~20の炭化水素基としては、炭素数1~20のアルキル基等が挙げられる。
 炭素数1~20のアルキル基としては、炭素数1~10のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 前記式(1)中、R1における、二価の有機基としては、炭素数1~40の二価の有機基が好ましい。
 炭素数1~40の二価の有機基としては、炭素数6~40の二価の芳香族炭化水素基が好ましく、6~20の二価の芳香族炭化水素基がより好ましい。前記有機基には、環構造を2以上含む場合、環同士が1個以上の結合を共有する多環式構造、スピロ炭化水素構造、およびビフェニルのように環と環とを単結合等の結合基で結合した構造等が含まれる。前記結合基としては、前記単結合の他にエーテル結合、チオエーテル基、ケトン基、エステル結合、スルフォニル基、アルキレン基、アミド基およびシロキサン基等が挙げられる。前記二価の有機基が水素原子を含む場合、任意の水素原子はハロゲン原子で置換されてもよい。
 前記二価の有機基としては、下記式(3)で表される群より選ばれる基を含むことがより好ましく、下記式(3)で表される群より選ばれる基であることがさらに好ましい。R1における二価の有機基が、下記式(3)で表される群より選ばれる基であると、前記海部はより剛直な骨格を有する構造となる。よって、残留応力が小さく、反りの発生が抑制された膜を得ることができるため好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(3)中、R3は独立にエーテル結合、チオエーテル基、ケトン基、エステル結合、スルフォニル基、アルキレン基、アミド基もしくはシロキサン基を含む基;水素原子;ハロゲン原子;アルキル基;ヒドロキシ基;ニトロ基;シアノ基;またはスルホ基を示し、このアルキレン基を含む基およびアルキル基の任意の水素原子はハロゲン原子で置換されてもよい。ただし、1つの基に含まれる複数あるR3のうち少なくとも1つはハロゲン原子またはハロゲン化アルキル基を含む。a1は1~3の整数を示し、a2は1または2を示し、a3は独立に1~4の整数を示し、eは0~3の整数を示す。
 前記エーテル結合、チオエーテル基、ケトン基、エステル結合、スルフォニル基、アルキレン基、アミド基もしくはシロキサン基を含む基としては、エーテル結合、チオエーテル基、ケトン基、エステル結合、スルフォニル基、アルキレン基、アミド基またはシロキサン基を含む炭素数1~10の有機基が挙げられる。
 前記式(3)中、R3は、ハロゲン原子を1~12個含むことが好ましく、機械的強度に優れた膜を容易に、短時間に、生産性よく製造することができる等の点から3~8個含むことがより好ましい。
 なお、本発明において、R3がハロゲン原子である場合、「ハロゲン原子が1個含まれる」といい、R3が、例えばトリフルオロメチル基である場合、「ハロゲン原子が3個含まれる」という。
 前記式(3)中、R3におけるハロゲン化アルキル基としては、ハロゲン原子で置換されたメチル基または炭素数2~20のアルキル基等が挙げられる。
 前記炭素数2~20のハロゲン化アルキル基としては、ハロゲン原子で置換された炭素数2~10のアルキル基であることが好ましく、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基の任意の水素原子が、フッ素原子、塩素原子、臭素原子またはヨウ素原子で置換された基等が挙げられる。
 前記式(3)中、R3におけるハロゲン化アルキル基としては、好ましくはハロゲン原子で置換された炭素数1~2のアルキル基であり、具体的には、メチル基、エチル基の任意の水素原子が、フッ素原子、塩素原子、臭素原子またはヨウ素原子で置換された基が挙げられる。
 前記式(3)中、R3におけるハロゲン原子およびハロゲン化アルキル基に含まれるハロゲン原子は、機械的強度に優れた膜を容易に、短時間に、生産性よく製造することができる等の点からフッ素原子であることが好ましい。
 ハロゲン原子を含まないR3としては、水素原子、アルキル基、フルオレン基、ヒドロキシ基、ニトロ基、シアノ基またはスルホ基が好ましく、水素原子またはアルキル基が好ましい。
 前記式(3)中、R3におけるアルキル基としては、好ましくは炭素数1~20のアルキル基であり、より好ましくは炭素数1~10のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 前記式(3)中、R3におけるアルキレン基を含む基としては、メチレン基または炭素数2~20のアルキレン基等が挙げられ、このアルキレン基の任意の水素原子はハロゲン原子で置換されてもよい。
 前記炭素数2~20のアルキレン基としては、炭素数2~10のアルキレン基であることが好ましく、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、イソプロピリデン基等が挙げられる。
 eは、0~2の整数が好ましく、0または1がより好ましく、0がさらに好ましい。
 a1としては、1または3が好ましく、a2としては、2が好ましく、a3としては、1または2が好ましく、1がより好ましい。
 前記式(1)中、R1における、二価の有機基としては、下記式(3')で表される群より選ばれる基であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 前記式(3')中、R3は独立に前記式(3)中のR3と同義である。
 前記式(3')で表される基としては、例えば、以下(3'-1)および(3'-2)で表される群より選ばれる基が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 前記式(1)中、R1における、二価の有機基としては、下記式(3'')で表される群より選ばれる基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000012
 前記式(1)中、R2における、四価の有機基としては、炭素数1~40の四価の有機基が好ましい。
 炭素数1~40の四価の有機基としては、炭素数3~40の四価の脂環式炭化水素基または炭素数6~40の四価の芳香族炭化水素基が好ましい。前記有機基には、環構造を2以上含む場合、環同士が1個以上の結合を共有する多環式構造、スピロ炭化水素構造、およびビフェニルのように環と環とを単結合等の結合基で結合した構造等が含まれる。前記結合基としては、前記単結合の他にエーテル結合、チオエーテル基、ケトン基、エステル結合、スルフォニル基、アルキレン基、アミド基およびシロキサン基等が挙げられる。
 R2としては、下記式(4)で表される群より選ばれる基であることがより好ましく、下記式(4')で表される群より選ばれる基であることがより好ましい。R2における四価の有機基が、下記式(4)で表される群より選ばれる基、特に下記式(4')で表される群より選ばれる基であると、前記ポリイミド前駆体から得られるポリイミドは、剛直な骨格を有する構造となり、ミクロ相分離構造を形成しやすくなるため、残留応力が小さく、反りの発生が抑制された膜を得ることができる等の点で好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(4)中、R4は独立にエーテル結合、チオエーテル基、ケトン基、エステル結合、スルフォニル基、アルキレン基、アミド基もしくはシロキサン基を含む基;水素原子;ハロゲン原子;アルキル基;ヒドロキシ基;ニトロ基;シアノ基;またはスルホ基を示し、このアルキレン基を含む基およびアルキル基の任意の水素原子はハロゲン原子で置換されてもよい。Dは、エーテル結合、チオエーテル基、ケトン基、エステル結合、スルフォニル基、アルキレン基、アミド基またはシロキサン基を示し、bは独立に1または2を示し、cは独立に1~3の整数を示し、fは0~3の整数を示す。
ただし、1つの基に含まれる複数のR4のうち少なくとも1つはハロゲン原子またはハロゲン化アルキル基を含むことが好ましい。
 前記エーテル結合、チオエーテル基、ケトン基、エステル結合、スルフォニル基、アルキレン基、アミド基もしくはシロキサン基を含む基としては、エーテル結合、チオエーテル基、ケトン基、エステル結合、スルフォニル基、アルキレン基、アミド基またはシロキサン基を含む炭素数1~10の有機基が挙げられる。
 前記式(4)中、R4は、ハロゲン原子を1~12個含むことが好ましく、機械的強度に優れた膜を容易に、短時間に、生産性よく製造することができる等の点から3~8個含むことがより好ましい。
 前記式(4)中、R4におけるハロゲン化アルキル基としては、ハロゲン原子で置換されたメチル基または炭素数2~20のアルキル基等が挙げられる。
 前記炭素数2~20のハロゲン化アルキル基としては、ハロゲン原子で置換された炭素数2~10のアルキル基であることが好ましく、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基の任意の水素原子が、フッ素原子、塩素原子、臭素原子またはヨウ素原子で置換された基等が挙げられる。
 前記式(4)中、R4におけるハロゲン化アルキル基としては、好ましくはハロゲン原子で置換された炭素数1~2のアルキル基であり、具体的には、メチル基、エチル基の任意の水素原子が、フッ素原子、塩素原子、臭素原子またはヨウ素原子で置換された基が挙げられる。
 前記式(4)中、R4におけるハロゲン原子およびハロゲン化アルキル基に含まれるハロゲン原子は、機械的強度に優れた膜を容易に、短時間に、生産性よく製造することができる等の点からフッ素原子であることが好ましい。
 ハロゲン原子を含まないR4としては、水素原子、アルキル基、フルオレン基、ヒドロキシ基、ニトロ基、シアノ基またはスルホ基が好ましく、水素原子またはアルキル基が好ましい。
 前記式(4)中、R4におけるアルキル基としては、好ましくは炭素数1~20のアルキル基であり、より好ましくは炭素数1~10のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 前記式(3)中、R4におけるアルキレン基を含む基としては、メチレン基または炭素数2~20のアルキレン基等が挙げられ、このアルキレン基の任意の水素原子はハロゲン原子で置換されてもよい。
 前記炭素数2~20のアルキレン基としては、炭素数2~10のアルキレン基であることが好ましく、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、イソプロピリデン基等が挙げられる。
 Dとしては、エーテル基、チオエーテル基、スルフォニル基が好ましい。
 cとしては、1または2が好ましい。
 fは、0~2の整数が好ましく、0または1がより好ましく、0がさらに好ましい。
 前記式(4)で表される群より選ばれる基は、下記式(4')で表される群より選ばれる基であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 前記構造単位(1)には、構造単位(2)が含まれる。該構造単位(2)は、前記構造単位(1)中の複数あるR1およびR2からなる群より選ばれる少なくとも1つの基に含まれてもよく、前記構造単位(1)の末端に含まれてもよいが、複数あるR1およびR2からなる群より選ばれる少なくとも1つの基に含まれることが好ましい。なお、「複数あるR1およびR2からなる群より選ばれる少なくとも1つの基は、下記式(2)で表される構造単位を含む」とは、nが2以上の場合には、R1およびR2はそれぞれ2以上構造単位(1)中に存在するが、これらの複数あるR1およびR2のうち、少なくとも1つが下記式(2)で表される構造単位を含むことを意味する。
 前記ポリイミド前駆体は、構造単位(2)を含むため、該前駆体を含む樹脂組成物によれば、残留応力が小さく、反りの発生が抑制された膜を得ることができる。
Figure JPOXMLDOC01-appb-C000015
 前記式(2)中、複数あるR5は各々独立に炭素数1~20の一価の有機基を示し、mは3~200の整数を示す。
 前記式(2)中、R5における炭素数1~20の一価の有機基としては、炭素数1~20の一価の炭化水素基および炭素数1~20の一価のアルコキシ基等を挙げることができる。
 前記R5における炭素数1~20の一価の炭化水素基としては、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、または炭素数6~20のアリール基等が挙げられる。
 前記炭素数1~20のアルキル基としては、炭素数1~10のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 前記炭素数3~20のシクロアルキル基としては、炭素数3~10のシクロアルキル基であることが好ましく、具体的には、シクロペンチル基、シクロヘキシル基等が挙げられる。
 前記炭素数6~20のアリール基としては、炭素数6~12のアリール基であることが好ましく、具体的には、フェニル基、トリル基、ナフチル基等が挙げられる。
 前記R5における炭素数1~20の一価のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、フェノキシ基、プロペニルオキシ基およびシクロヘキシルオキシ基等が挙げられる。
 前記式(2)における複数あるR5の少なくとも1つは、アリール基を含むことが、前記柔軟な骨格部位からなる島部が前記剛直な骨格部位からなる海部との親和性に優れ、1ナノ~1ミクロン程度のサイズで(均一)分散(ミクロ相分離)しやすくなるため好ましい。より具体的には、複数あるR5は、炭素数1~10のアルキル基および炭素数6~12のアリール基であることが好ましい。この場合、構造単位(2)中の全てのR5のうち、炭素数1~10のアルキル基のモル数(i)と炭素数6~12のアリール基のモル数(ii)との比(但し、(i)+(ii)=100)は、好ましくは(i):(ii)=90~10:10~90であり、より好ましくは(i):(ii)=85~15:15~85であり、さらに好ましくは(i):(ii)=85~65:15~35である。構造単位(2)中の全てのR5のうち、アルキル基のモル数(i)とアリール基のモル数(ii)との比が前記範囲を外れると、得られるポリイミドがミクロ相分離構造を形成することができないおそれがある。アルキル基のモル数(i)とアリール基のモル数(ii)との比が前記範囲にあると、ミクロ相分離(構造単位(2)を含む骨格部位がナノ分散)可能となり、低い線膨張係数および低い残留応力等を有し、透明性に優れ白濁し難い膜を得ることができる。
 前記炭素数1~10のアルキル基は、好ましくはメチル基であり、前記炭素数6~12のアリール基は、好ましくはフェニル基である。
 前記ポリイミド前駆体全体を100質量%とした場合、前記構造単位(2)は、5~40質量%含まれることが好ましく、5~23質量%含まれることが好ましく、8~22質量%含まれることがより好ましく、9.5~21質量%含まれることがさらに好ましい。
 ポリイミド前駆体中に含まれる構造単位(2)の割合が前記範囲を超えると、ガラス基板等の基板に本発明の樹脂組成物を塗布し、塗膜を形成した場合、該基板から、形成した塗膜を剥離することが困難となる傾向がある。また、ポリイミド前駆体中に含まれる構造単位(2)の量が前記範囲を下回ると、ガラス基板等の基板に本発明の樹脂組成物を塗布し、塗膜を形成した場合、形成した塗膜の残留応力が高くなり、該基板から塗膜を剥離した時に、得られる膜に反りが発生するおそれがある。
 前記式(2)中のmは3~200の整数であり、好ましくは10~200、より好ましくは20~150、さらに好ましくは30~100、特に好ましくは35~80の整数である。mが2以下であると、ポリイミド前駆体から得られるポリイミドがミクロ相分離構造を形成しにくくなる場合があり、mが200を超えると、構造単位(2)を含む骨格部位からなる島の大きさが1μmを超え、塗膜が白濁したり、機械強度が低下するなどの問題が生じる場合がある。
 前記ポリイミド前駆体は、該ポリイミド前駆体100質量%中、前記構造単位(1)を好ましくは60質量%以上、より好ましくは77質量%以上、さらに好ましくは79質量%以上含む。ポリイミド前駆体中、前記構造単位(1)の割合が前記範囲にあると、残留応力が小さく、反りが生じにくい膜を得ることができる。
 なお、ポリイミド前駆体100質量%中、前記構造単位(1)を60質量%以上含むとは、構造単位-NH-R1-NH-、構造単位-NH-R1-NH2、構造単位-CO-R2(COOR)2-CO-、構造単位-CO-R2(COOR)2-COOH、構造単位(2)、および、構造単位-(Si(R52-O)m-Si(R52-R10-R11等のR1、R2および構造単位(2)を含む構造単位の合計が60質量%以上であることを意味する。
(なお、R1、R2およびRは前記式(1)中のR1、R2およびRと同義であり、R5は前記式(2)中のR5と同義であり、R10およびR11は下記式(7')および(8')中のR10およびR11と同義である。)
 また、前記ポリイミド前駆体は、構造単位(1)の一部がイミド化していてもよい。
 前記構造単位(1)において、R1が前記式(3)で表される群より選ばれる基、特に前記式(3')で表される群より選ばれる基であり、R2が、前記式(4)で表される群より選ばれる基、特に前記式(4')で表される群より選ばれる基であり、前記式(2)中のmが3以上であると、該ポリイミド前駆体から得られるポリイミドはよりミクロ相分離構造をとり易くなるため、得られる膜の残留応力の低減の点等から特に好ましい。
 前記ポリイミド前駆体は、所望の用途および成膜条件等に応じて、前記式(1)に含まれる構造単位の他に、該前駆体の主鎖に、エーテル結合、チオエーテル基、ケトン基、エステル結合、スルフォニル基、アルキレン基、アミド基およびシロキサン基からなる群より選ばれる少なくとも1種の基を含む単量体(以下「単量体(I)」ともいう。)に由来する構造単位(以下「構造単位(56)」ともいう。)を含んでもよい。
 前記アルキレン基としては、前記式(3)中、R3におけるアルキレン基と同様の基等が挙げられる。
 なお、「前記式(1)に含まれる構造単位」とは、構造単位-NH-R1-NH-、構造単位-NH-R1-NH2、構造単位-CO-R2(COOR)2-CO-、構造単位-CO-R2(COOR)2-COOH、構造単位(2)、および、構造単位-(Si(R52-O)m-Si(R52-R10-R11等のR1、R2および構造単位(2)を含む構造単位のことをいう(なお、R1、R2およびRは前記式(1)中のR1、R2およびRと同義であり、R5は前記式(2)中のR5と同義であり、R10およびR11は下記式(7')および(8')中のR10およびR11と同義である。)。
 構造単位(56)は、前記ポリイミド前駆体の主鎖に含まれる、前記構造単位(1)中のR1およびR2で表される基、ならびに構造単位(2)を含まない、テトラカルボン酸二無水物およびこれらの誘導体またはイミノ形成化合物に由来する構造単位のことをいう。
 前記ポリイミド前駆体の主鎖とは、前記構造単位(1)のR1やR2が含まれる鎖を意味し、例えば、構造単位(1)における-COORは、主鎖ではなく側鎖である。
 前記ポリイミド前駆体に構造単位(56)が含まれると、得られる膜の線膨張係数が上昇し、所望に応じて伸ばすことが可能な膜が得られる。
 前記ポリイミド前駆体において、構造単位(56)の含有量および/または構造単位(2)の含有量を増加させると、得られる膜の線膨張係数が増加するため、Cuを含む基板やSiを含む基板上などに樹脂組成物を塗布する場合には、これらの基板に応じて構造単位(56)および/または構造単位(2)の配合量を変化させればよい。具体的には、Cuの線膨張係数は16.8ppm/Kであるため、Cuからなる基板上に本発明の樹脂組成物を塗布する場合には、前記ポリイミド前駆体は、構造単位(56)を含むことが好ましく、Siの線膨張係数は3ppm/Kであるため、Siからなる基板上に本発明の樹脂組成物を塗布する場合には、前記ポリイミド前駆体は、構造単位(56)を含まないことが好ましい。その他、クロムの線膨張係数は8.2ppm/K、ガラスの線膨張係数は9ppm/K、ステンレスSUS430の線膨張係数は10.4ppm/K、ニッケルの線膨張係数は12.8ppm/Kであるため、これらからなる基板上に本発明の樹脂組成物を塗布する場合には、前記ポリイミド前駆体は、ポリイミド前駆体100質量%中、構造単位(56)を0~15質量%含むことが好ましい。
 前記単量体(I)は、下記式(5)で表される化合物(以下「化合物(5)」ともいう。)または式(6)で表される化合物(以下「化合物(6)」ともいう。)であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 前記式(5)および(6)中、Aは各々独立にエーテル結合(-O-)、チオエーテル基(-S-)、ケトン基(-C(=O)-)、エステル結合(-COO-)、スルフォニル基(-SO2-)、アルキレン基(-R7-)、アミド基(-C(=O)-NR8-)、シロキサン基(-Si(R92-O-Si(R92-)およびフルオレン基からなる群より選ばれる少なくとも1種の基を含む基を示し、R6は独立に水素原子、ハロゲン原子、アルキル基またはニトロ基を示し、このアルキル基の任意の水素原子はハロゲン原子で置換されてもよい。dは独立に1~4の整数を示す。
 なお、前記R8およびR9は各々独立に水素原子、アルキル基またはハロゲン原子を示し、このアルキル基の水素原子はハロゲン原子で置換されてもよい。前記R6、R8およびR9におけるアルキル基としては、前記式(3)中、R3におけるアルキル基と同様の基等が挙げられる。前記ハロゲン原子としては、塩素原子またはフッ素原子が好ましい。
 前記Aとしては、エーテル結合が好ましく、前記R6としては水素原子が好ましい。
 前記式(5)および(6)中、Aにおけるアルキレン基(-R7-)としては、前記式(3)中、R3におけるアルキレン基と同様の基等が挙げられ、これらの中でも、メチレン基、イソプロピリデン基、およびヘキサフルオロイソプロピリデン基が好ましい。
 前記化合物(5)および(6)としては、例えば、下記化合物群(5-1)~(6-9)に記載の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 前記ポリイミド前駆体が構造単位(56)を含む場合、ポリイミド前駆体は、ポリイミド前駆体100質量%中、構造単位(56)を好ましくは0~15質量%含み、より好ましくは0~10質量%含み、さらに好ましくは0~9質量%含み、特に好ましくは0~8質量%含む。
 構造単位(56)の含有量が15質量%を超えると、前記剛直な骨格部位の弾性率が低くなり、残留応力を前記柔軟な骨格部位に移行させ難くなるため、得られる膜に反りが生じやすくなる場合がある。
 また、構造単位(56)の含有量が前記範囲にあると、反りの発生が抑制されたまま、伸びやすい膜を得ることができる。
 なお、前記ポリイミド前駆体が、構造単位(56)を含む場合、該構造単位(56)を含むポリイミド前駆体は、(i)前記式(1)におけるR1やR2に構造単位(56)が含まれる構造で表される場合、および、(ii)ポリイミド前駆体中の、構造単位(1)以外の部分に構造単位(56)が含まれる構造で表される場合がある。前記(i)の場合、前記ポリイミド前駆体が前記式(1)中のR1に化合物(5)に由来する構造単位を含むとすると、前記ポリイミド前駆体は、例えば下記式(5A)のように表される。この場合、「ポリイミド前駆体100質量%中、構造単位(56)を好ましくは0~15質量%含む」とは、ポリイミド前駆体100質量%中、繰り返し単位n2中の2個の-NH-間にはさまれた構造(両端の-NH-を含む)で表される構造単位を0~15質量%含むことを意味する。
 また、前記(i)の場合、構造単位(56)は、前記構造単位(1)中の複数あるR1およびR2からなる群より選ばれる少なくとも1つの基に含まれてもよく、前記構造単位(1)の末端に含まれてもよい。
Figure JPOXMLDOC01-appb-C000035
 前記式(5A)中、R、R1およびR2は各々独立に前記式(1)中のR、R1およびR2と同義であり、A、R6およびdは各々独立に前記式(5)中のA、R6およびdと同義であり、n1+n2は、前記式(1)中のnと同義である。
 前記ポリイミド前駆体の重量平均分子量(Mw)は好ましくは10,000~1,000,000であり、より好ましくは10000~200000であり、さらに好ましくは20000~150000である。数平均分子量(Mn)は5000~10000000、好ましくは5000~500000、特に好ましくは15000~200000である。
 ポリイミド前駆体の重量平均分子量または数平均分子量が前記下限未満であると、得られる膜の強度が低下してしまうことがある。さらに、得られる膜の線膨張係数が必要以上に上がる場合がある。一方、ポリイミド前駆体の重量平均分子量または数平均分子量が前記上限を超えると、樹脂組成物の粘度が上がるため、該樹脂組成物をガラス基板等の基板に塗布して膜を形成する場合には、樹脂組成物に配合できるポリイミド前駆体の量が少なくなり、得られる塗膜の平坦性等の膜厚精度が悪化する場合がある。
 前記ポリイミド前駆体の分子量分布(Mw/Mn)は好ましくは1.0~10.0、より好ましくは1.5~5.0、特に好ましくは1.5~4.0である。
 なお、前記重量平均分子量、数平均分子量および分子量分布は、TOSOH製HLC-8220型GPC装置(ガードカラム:TSK guard colomn ALPHA カラム:TSKgelALPHA―M、展開溶剤:N-メチルピロリドン(NMP))を用いて測定した値である。
 <ポリイミド前駆体の合成方法>
 前記構造単位(1)を有するポリイミド前駆体は、好ましくは、テトラカルボン酸二無水物およびこの反応性誘導体からなる群より選ばれる少なくとも1種のアシル化合物を含む成分(以下「(A)成分」ともいう。)と、イミノ形成化合物を含む成分(以下「(B)成分」ともいう。)とを反応させることで得られる。但し、前記ポリイミドの合成の際には、前記構造単位(2)を含む化合物を用いることが好ましい。
 この反応によれば、用いる原料化合物の構造に応じたポリイミド前駆体を得ることができ、また、用いる原料化合物の使用量に応じた量で該化合物に由来する構造単位を有するポリイミド前駆体を得ることができる。
 この場合、(A)成分として構造単位(2)を含むアシル化合物(以下「化合物(A-2)」ともいう。)を用いること、または(B)成分として構造単位(2)を含むイミノ形成化合物(以下「化合物(B-2)」ともいう。)を用いることが好ましい。また、化合物(A-2)と化合物(B-2)とを両方用いることもできる。
 [(A)成分]
 (A)成分は、テトラカルボン酸二無水物およびこの反応性誘導体からなる群より選ばれる少なくとも1種のアシル化合物である。好ましくは、前記化合物(A-2)、および化合物(A-2)以外のアシル化合物(A-1)からなる群より選ばれる少なくとも1種の化合物を含む。
 前記アシル化合物(A-1)としては、例えば芳香族テトラカルボン酸二無水物、脂環族テトラカルボン酸、前記化合物(6)およびこれらの反応性誘導体からなる群より選ばれる少なくとも1種の化合物が挙げられる。
 前記アシル化合物(A-1)の具体例としては、4,4'-オキシジフタル酸二無水物、ピロメリット酸二無水物(PMDA)、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3',4,4'-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3',4,4'-テトラフェニルシランテトラカルボン酸二無水物、2,3,4,5-フランテトラカルボン酸二無水物、4,4'-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4'-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4'-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3',4,4'-パーフルオロイソプロピリデンジフタル酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4'-ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)-4,4'-ジフェニルメタン二無水物などの芳香族テトラカルボン酸二無水物、およびこれらの反応性誘導体;
ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,5,6-トリカルボキシノルボルナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、3,3',4,4'-ビシクロヘキシルテトラカルボン酸二無水物などの脂肪族テトラカルボン酸二無水物あるいは脂環族テトラカルボン酸二無水物、およびこれらの反応性誘導体を挙げることができる。
 これらの化合物は1種を単独であるいは2種以上を組み合わせて用いることができる。
 前記反応性誘導体としては、テトラカルボン酸、該テトラカルボン酸の酸エステル化物、該テトラカルボン酸の酸クロライドなどが挙げられる。
 これらのうち、優れた透明性、有機溶媒への良好な溶解性の観点から、脂肪族テトラカルボン酸二無水物または脂環族テトラカルボン酸二無水物が好適に用いられる。また、耐熱性、低線膨張係数(寸法安定性)、低吸水性の観点から、芳香族テトラカルボン酸二無水物が好適に用いられる。
 また、前記アシル化合物(A-1)としては、前記式(4)または式(4')で表される群より選ばれる基を有する化合物であることが、弾性率の高い前記海部中に前記柔軟な骨格部位を極めて小さな1ナノ~1ミクロン程度のサイズで(均一)分散可能(ミクロ相分離構造)となり、成膜工程で発生する応力を前記柔軟な骨格部位で効率よく吸収することができるため、残留応力が小さく、反りの発生が抑制された膜を得る点からより好ましい。
 このような化合物として、具体的には、ピロメリット酸二無水物(PMDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(s-BPDA)、下記群(4-1)で表される化合物等が挙げられ、これらの化合物は1種を単独であるいは2種以上を組み合わせて用いることができる。
Figure JPOXMLDOC01-appb-C000036
 前記化合物(A-1)(但し、化合物(6)および(6')を除く)の配合量は特に制限されず、全アシル化合物((A)成分)の全量を100質量%とした場合に、100質量%であってもよいが、(A)成分に前記化合物(A-2)および/または化合物(6)等が含まれる場合には、100質量%からこれらの化合物それぞれの好ましい配合量を引いた量で配合すればよい。
 前記化合物(A-2)としては、具体的には前記式(2)で表される構造単位を有するテトラカルボン酸二無水物およびこの反応性誘導体より選ばれる少なくとも1種のアシル化合物等が挙げられ、好ましくは下記式(7)で表される化合物(以下「化合物(7)」ともいう。)、下記式(7')で表される化合物(以下「化合物(7')」ともいう。)、下記式(8)で表される化合物(以下「化合物(8)」ともいう。)および下記式(8')で表される化合物(以下「化合物(8')」ともいう。)からなる群より選ばれる少なくとも1種の化合物等を挙げることができる。
 これらの化合物は1種を単独であるいは2種以上を組み合わせて用いることができる。
 前記反応性誘導体としては、前記式(2)で表される構造単位を有するテトラカルボン酸、該テトラカルボン酸の酸エステル化物、該テトラカルボン酸の酸クロライドなどが挙げられる。
 なお、構造単位(2)が、前記構造単位(1)中の複数あるR2の少なくとも1つの基に含まれるポリイミド前駆体を合成したい場合には、化合物(7)および/または(8)を用いることが好ましく、構造単位(2)が、前記構造単位(1)の末端に含まれるポリイミド前駆体を合成したい場合には、好ましくは化合物(7')および/または(8')を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000037
 前記式(7)、(7')、(8)および(8')中、R5およびmは各々独立に、前記式(2)中のR5およびmと同義である。R10は独立に単結合または炭素数1~20の二価の有機基を示す。前記式(7')および(8')中、R11は独立に水素原子または炭素数1~20の一価の有機基を示し、この炭素数1~20の一価の有機基としては、前記式(2)中、R5における炭素数1~20の一価の有機基と同様の基等が挙げられる。
 前記R10における炭素数1~20の二価の有機基としては、メチレン基、炭素数2~20のアルキレン基、炭素数3~20のシクロアルキレン基、または炭素数6~20のアリーレン基等が挙げられる。
 前記炭素数2~20のアルキレン基としては、炭素数2~10のアルキレン基であることが好ましく、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。
 前記炭素数3~20のシクロアルキレン基としては、炭素数3~10のシクロアルキレン基であることが好ましく、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基等が挙げられる。
 前記炭素数6~20のアリーレン基としては、炭素数6~12のアリーレン基であることが好ましく、フェニレン基、ナフチレン基等が挙げられる。
 前記化合物(A-2)としては、耐熱性(高ガラス転移温度)および耐水性に優れた膜を得る観点から数平均分子量が200~10,000であることが好ましく、より好ましくは500~10,000であり、特に好ましくは500~6000である。アミン価は100~5000であることが好ましく、より好ましくは250~5,000、さらに好ましくは1000~3000である。
 前記化合物(7)、(7')、(8)および(8')における重合度mは前記式(2)と同様であり、好ましい範囲も同様である。
 前記式(7)、(7')、(8)および(8')中、R5はメチル基またはフェニル基が好ましく、複数あるR5のうち、少なくとも1つはフェニル基が好ましい。複数あるR5のすべてがメチル基またはフェニル基であり、その少なくとも1つはメチル基であり、その少なくとも1つはフェニル基である場合、メチル基のモル%とフェニル基のモル%との比(メチル基のモル%+フェニル基のモル%=100)は、好ましくはメチル基:フェニル基=5~95:95~5であり、より好ましくはメチル基:フェニル基=15~85:85~15であり、さらに好ましくはメチル基:フェニル基=85~65:15~35である。前記式(7)、(7')、(8)および(8')中の少なくとも1つのR5がフェニル基でないと、前記海部と島部との相溶性が悪化して、島部の分散サイズが1ミクロンを超え、耐熱性、フィルム強度に劣る膜が得られる場合がある。
 前記化合物(A-2)としては、具体的には、ゲレスト社製 DMS-Z21(数平均分子量600~800、アミン価300~400、m=4~7)などを挙げることができる。なお、化合物(A-2)は1種を単独であるいは2種以上を組み合わせて用いることができる。
 前記(A)成分に前記化合物(A-2)が含まれる場合、全原料化合物((A)成分+(B)成分)の全量を100質量%とした場合に、前記化合物(A-2)の配合量は、基板との剥離性に優れ、反りの発生しにくい膜を得る点から、好ましくは5~40質量%であり、より好ましくは5~23質量%であり、さらに好ましくは8~22質量%であり、特に好ましくは9.5~21質量%である。但し、前記化合物(A-2)の好ましい配合量は、ポリイミド前駆体を合成する際に、前記化合物(B-2)を用いない場合であり、ポリイミド前駆体を合成する際に、その原料として、化合物(A-2)および化合物(B-2)を用いる場合には、使用する化合物(A-2)および化合物(B-2)の合計量が前記化合物(A-2)の好ましい配合量と同程度になるようにすることが好ましい。
 また、前記(A)成分には、得られる膜の伸びを改良する点から、所望の用途に応じて、化合物(6)および/または下記式(6')で表される化合物(以下「化合物(6')」ともいう。)が含まれてもよい。なお、ポリイミド前駆体の主鎖(末端を除く)に構造単位(56)が含まれるポリイミド前駆体を合成したい場合には、化合物(6)を用いることが好ましく、ポリイミド前駆体の主鎖末端に構造単位(56)が含まれるポリイミド前駆体を合成したい場合には、好ましくは化合物(6')を用いることが好ましい。
 これらの化合物は1種を単独であるいは2種以上を組み合わせて用いることができる。
Figure JPOXMLDOC01-appb-C000038
 前記式(6')中、Aは前記式(5)および(6)中のAと同義であり、R12は、水素原子または炭素数1~20の一価の有機基を示す。この炭素数1~20の一価の有機基としては、前記式(2)中、R5における炭素数1~20の一価の有機基と同様の基等が挙げられる。
 前記(A)成分に前記化合物(6)および/または化合物(6')が含まれる場合、全原料化合物((A)成分+(B)成分)の全量を100質量%とした場合に、前記化合物(6)および化合物(6')の配合量は、反りの発生しにくい膜を得る点から、好ましくは0~15質量%であり、より好ましくは0~10質量%であり、さらに好ましくは0~9質量%であり、特に好ましくは0~8質量%である。但し、前記化合物(6)および化合物(6')の好ましい配合量は、ポリイミド前駆体を合成する際に、前記化合物(5)および/または下記化合物(5')を用いない場合であり、ポリイミド前駆体を合成する際に、その原料として、化合物(6)および/または化合物(6')ならびに化合物(5)および/または化合物(5')を用いる場合には、使用する化合物(6)、化合物(6')、化合物(5)および化合物(5')の合計量が前記化合物(6)および化合物(6')の好ましい配合量と同程度になるようにすることが好ましい。
 [(B)成分]
 (B)成分は、イミノ形成化合物である。ここで、「イミノ形成化合物」とは、前記(A)成分と反応してイミノ(基)を形成する化合物をいい、具体的には、ジアミン化合物、ジイソシアネート化合物、ビス(トリアルキルシリル)アミノ化合物等を挙げることができる。
 (B)成分としては、好ましくは、前記化合物(B-2)、および化合物(B-2)以外のイミノ形成化合物(B-1)からなる群より選ばれる少なくとも1種の化合物を含む。
 前記化合物(B-1)としては、芳香族ジアミン群より選ばれる少なくとも1種の化合物および前記化合物(5)等が挙げられる。
 前記化合物(B-1)としては、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルエーテル(ODA)、3,4'-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルエーテル、3,3'-ジメチル-4,4'-ジアミノビフェニル(o-トリジン)、2,2'-ジメチル-4,4'-ジアミノビフェニル(m-トリジン)、3,3'-ジエチル-4,4'-ジアミノビフェニル、2,2'-ジエチル-4,4'-ジアミノビフェニル、4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニル(TFMB)、4,4'-ジアミノ-2,2'-ビス(トリフルオロエチル)ビフェニル、4,4'-ジアミノ-2,2'-ビス(トリフルオロアセチル)ビフェニル、3,7-ジアミノ-ジメチルジベンゾチオフェン-5,5-ジオキシド、4,4'-ジアミノベンゾフェノン、3,3'-ジアミノベンゾフェノン、4,4'-ビス(4-アミノフェニル)スルフィド、4,4'-ジアミノジフェニルスルホン、4,4'-ジアミノベンズアニリド、1,n-ビス(4-アミノフェノキシ)アルカン、1,3-ビス[2-(4-アミノフェノキシエトキシ)]エタン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノフェノキシフェニル)フルオレン、5(6)-アミノ-1-(4-アミノメチル)-1,3、3-トリメチルインダン、1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、2,5-ビス(4-アミノフェノキシ)ビフェニル(P-TPEQ)、4,4'-ビス(4-アミノフェノキシ)ビフェニル、4,4'-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシフェニル)]プロパン、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4―(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ベンジジン、3,3-ジメトキシ-4,4-ジアミノビフェニル、2,2'-ジクロロ-4,4'-ジアミノ-5,5'-ジメトキシビフェニル、2,2',5,5'-テトラクロロ-4,4'-ジアミノビフェニル、4,4'-メチレン-ビス(2-クロロアニリン)、2,2'-ジフルオロ-4,4'-ジアミノ-5,5'-ジメトキシビフェニル、2,2',5,5'-テトラフルオロ-4,4'-ジアミノビフェニル、4,4'-メチレン-ビス(2-フルオロアニリン)、9,10-ビス(4-アミノフェニル)アントラセン、o-トリジンスルホン等が挙げられる。これら芳香族ジアミンは、1種単独であるいは2種以上混合して用いることができる。
 また、前記化合物(B-1)としては、前記式(3)、(3')、(3'-1)~(3'-2)および(3'')で表される群より選ばれる基を有する化合物であることが、弾性率の高い前記海部中に前記柔軟な骨格部位を極めて小さな1ナノ~1ミクロン程度のサイズで(均一)分散可能(ミクロ相分離構造)となり、成膜工程で発生する応力を前記柔軟な骨格部位で効率よく吸収することができるため、残留応力が小さく、反りの発生が抑制された膜を得る等の点から好ましい。このような化合物として、具体的には、4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニル(TFMB)、4,4'-ジアミノ-2,2'-ビス(トリフルオロエチル)ビフェニル、4,4'-ジアミノ-2,2'-ビス(トリフルオロアセチル)ビフェニル等が挙げられ、これらの中でも4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルが好ましい。
 前記化合物(B-1)(但し、化合物(5)および(5')を除く)の配合量は特に制限されず、全イミド形成化合物((B)成分)の全量を100質量%とした場合に、100質量%であってもよいが、(B)成分に前記化合物(B-2)および/または化合物(5)等が含まれる場合には、100質量%からこれらの化合物それぞれの好ましい配合量を引いた量で配合すればよい。
 前記化合物(B-2)としては、構造単位(2)を含むイミノ形成化合物であれば特に制限されないが、好ましくは下記式(9)で表される化合物(以下「化合物(9)」ともいう。)および下記式(9')で表される化合物(以下「化合物(9')」ともいう。)等を挙げることができる。
 なお、構造単位(2)が、前記構造単位(1)中の複数あるR1およびR2からなる群より選ばれる少なくとも1つの基に含まれるポリイミド前駆体を合成したい場合には、化合物(9)を用いることが好ましく、前記構造単位(1)の末端に含まれるポリイミド前駆体を合成したい場合には、化合物(9')を用いることが好ましい。
 これらの化合物は1種を単独であるいは2種以上を組み合わせて用いることができる。
Figure JPOXMLDOC01-appb-C000039
 前記式(9)および(9')中、R5およびmは各々独立に、前記式(2)中のR5およびmと同義であり、R10は各々独立に前記式(7)、(7')、(8)および(8')中のR10と同義であり、R11は各々独立に前記式(7')および(8')中のR11と同義である。
 前記化合物(B-2)としては、前記柔軟な骨格部位を前記剛直な骨格部位からなる海部にナノ~ミクロン程度のサイズで微分散させることができ、耐熱性(高ガラス転移温度)および耐水性が優れた膜を得る観点から、数平均分子量が500~12,000であることが好ましく、1,000~8,000であることがより好ましく、3,000~6,000であることがさらに好ましい。アミン価は250~6,000であることが好ましく、500~4,000であることがより好ましく、1,500~3,000であることがさらに好ましい。
 前記式(9)および(9')における重合度mは前記式(2)と同様であり、好ましい範囲も同様である。
 前記式(9)および(9')中、R5はメチル基またはフェニル基が好ましく、複数あるR5のうち、少なくとも1つはフェニル基であることが好ましい。複数あるR5のすべてがメチル基またはフェニル基であり、その少なくとも1つはメチル基であり、その少なくとも1つはフェニル基である場合、メチル基のモル%とフェニル基のモル%との比(メチル基のモル%+フェニル基のモル%=100)は、好ましくはメチル基:フェニル基=5~95:95~5であり、より好ましくはメチル基:フェニル基=15~85:85~15であり、さらに好ましくはメチル基:フェニル基=85~65:15~35である。前記式(9)および(9')中の少なくとも1つのR5がフェニル基でないと、前記海部と島部との相溶性が悪化して、島部の分散サイズが1ミクロンを超え、耐熱性、フィルム強度に劣る膜が得られる場合がある。
 前記化合物(B-2)としては、具体的には、両末端アミノ変性メチルフェニルシリコーン(信越化学社製;X22-1660B-3(数平均分子量4,400 重合度m=41、フェニル基:メチル基=25:75mol%)、X22-9409(数平均分子量1,300))、両末端アミノ変性ジメチルシリコーン(信越化学社製;X22-161A(数平均分子量1,600、重合度m=20)、X22-161B(数平均分子量3,000、重合度m=39)、KF-8012(数平均分子量4400、重合度m=58)、東レダウコーニング製;BY16-835U(数平均分子量900、重合度m=11))などが挙げられる。なお、前記イミノ形成化合物(B-2)は1種を単独であるいは2種以上を組み合わせて用いることができる。なお、重合度mは例えば以下の式により算出することができる。(両末端がアミノプロピル基の場合、前記式(2)中のR5のすべてがメチル基またはフェニル基である化合物の場合)
 m=(数平均分子量-両末端基(アミノプロピル基)の分子量116.2)/(74.15×メチル基のmol%×0.01+198.29×フェニル基のmol%×0.01)
 前記(B)成分に前記化合物(B-2)が含まれる場合、全原料化合物((A)成分+(B)成分)の全量を100質量%とした場合に、前記化合物(B-2)の配合量は、基板との剥離性に優れ、反りの発生しにくい膜を得る点から、好ましくは5~40質量%であり、より好ましくは5~23質量%であり、さらに好ましくは8~22質量%であり、特に好ましくは9.5~21質量%である。但し、前記化合物(B-2)の好ましい配合量は、ポリイミド前駆体を合成する際に、前記化合物(A-2)を用いない場合の量である。
 また、前記(B)成分には、得られる膜の伸びを改良する点から、所望の用途に応じて、化合物(5)および/または下記式(5')で表される化合物(以下「化合物(5')」ともいう。)が含まれてもよい。なお、ポリイミド前駆体の主鎖(末端を除く)に構造単位(56)が含まれるポリイミド前駆体を合成したい場合には、化合物(5)を用いることが好ましく、ポリイミド前駆体の主鎖末端に構造単位(56)が含まれるポリイミド前駆体を合成したい場合には、好ましくは化合物(5')を用いることが好ましい。
 これらの化合物は1種を単独であるいは2種以上を組み合わせて用いることができる。
Figure JPOXMLDOC01-appb-C000040
 前記式(5')中、Aは前記式(5)および(6)中のAと同義であり、R12は、前記式(6')中のR12と同義である。
 前記(B)成分に前記化合物(5)および/または化合物(5')が含まれる場合、全原料化合物((A)成分+(B)成分)の全量を100質量%とした場合に、前記化合物(5)および化合物(5')の配合量は、反りの発生しにくい膜を得る点から、好ましくは0~15質量%であり、より好ましくは0~10質量%であり、さらに好ましくは0~9質量%であり、特に好ましくは0~8質量%である。但し、前記化合物(5)および化合物(5')の好ましい配合量は、ポリイミド前駆体を合成する際に、前記化合物(6)および/または化合物(6')を用いない場合の量である。
 前記ポリイミド前駆体は、(A)成分と(B)成分とを、使用割合(仕込み量比)として、(A)成分と(B)成分とのモル比((A)成分/(B)成分)が0.8~1.2となる範囲で反応させることが好ましく、0.90~1.0となる範囲で反応させることがより好ましい。(A)成分と(B)成分とのモル比が、0.8当量未満、または1.2当量を超えると、分子量が低くなりポリイミド膜を形成することが困難となることがある。
 前記(A)成分と(B)成分との反応は、通常、有機溶媒中で行う。該有機溶媒は脱水したものが好ましい。
 前記有機溶媒としては、下記非アミド系溶媒を用いることが、本発明の樹脂組成物の製造容易性、得られる膜の性質(ヘイズ、反り等)の点から好ましい。
 (A)成分と(B)成分とを反応させる具体的な方法としては、少なくとも1種の(B)成分を有機溶媒に溶解させた後、得られた溶液に、少なくとも1種の(A)成分を添加し、0~100℃の温度で、1~60時間撹拌する方法等が挙げられる。
 なお、反応液中の(A)成分と(B)成分との合計量は、反応液全量の3~60質量%であることが好ましく、より好ましくは5~40質量%、さらに好ましくは10~40質量%であり、特に好ましくは10~30質量%である。
 反応液中の(A)成分と(B)成分との合計量が前記範囲にあると、得られる樹脂組成物中のポリイミド前駆体の濃度が下記好ましい範囲にある樹脂組成物を得ることができるため好ましい。
 前記有機溶媒として下記非アミド系溶媒を主成分とする溶媒を用いた場合には、前記反応で得られたポリイミド前駆体と有機溶媒とを含む組成物は、そのまま本発明の樹脂組成物として使用することが好ましいが、本発明の樹脂組成物は、前記反応で得られたポリイミド前駆体を固体分として単離した後、下記非アミド系溶媒を主成分とする溶媒に再溶解させることで得ることもできる。
 ポリイミド前駆体を単離する方法としては、ポリイミド前駆体および有機溶媒等を含む溶液を、メタノールやイソプロパノール等のポリイミド前駆体に対する貧溶媒に投じてポリイミド前駆体等を沈殿させ、濾過・洗浄・乾燥等によりポリイミド前駆体を固体分として分離する方法等が挙げられる。
 <非アミド系溶媒を主成分とする溶媒>
 本発明の樹脂組成物に用いる非アミド溶媒としては、エーテル系溶媒、エステル系溶媒、ニトリル系溶媒、スルホキシド溶媒、およびケトン系溶媒からなる群より選ばれる少なくとも1種の有機溶媒が挙げられる。
 本発明の樹脂組成物は、前記非アミド系溶媒を主成分とする溶媒を含むため、膜形成時の乾燥速度が速くなり、白濁による膜質悪化が少なく、膜の生産性に優れる。また、前記非アミド系溶媒を主成分とする溶媒を用いることで、ポリイミド前駆体の濃度の高い樹脂組成物を得ることができる。この生産性に優れ、良好な膜質を有する膜は、前記ポリイミド前駆体と前記非アミド系溶媒を主成分とする溶媒とを含む組成物を用いることで初めて得ることができる。
 なお、本発明において、「非アミド系溶媒を主成分とする溶媒」とは、溶媒全体100質量%に対し、非アミド系溶媒を好ましくは70質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上含む溶媒のことをいう。
 前記ケトン系溶媒としては、炭素数3以上10以下のケトン類であることが好ましく、沸点およびコストの点等から、炭素数3以上6以下のケトン類であることがより好ましい。好ましいケトン系溶媒としては、具体的には、アセトン(沸点=57℃)メチルエチルケトン(沸点=80℃)、メチル-n-プロピルケトン(沸点=105℃)、メチル-iso-プロピルケトン(沸点=116℃)、ジエチルケトン(沸点=101℃)、メチル-n-ブチルケトン(沸点=127℃)、メチル-iso-ブチルケトン(沸点=116℃)、メチル-sec-ブチルケトン(沸点=118℃)、メチル-tert-ブチルケトン(沸点=116℃)などのジアルキルケトン類、シクロペンタノン(沸点=130℃)、シクロヘキサノン(CHN,沸点=155℃)、シクロヘプタノン(沸点=185℃)、γ―ブチロラクトン(沸点=204℃)などの環状ケトン類等を挙げることができる。これらの中でもシクロヘキサノンが、乾燥性、生産性等に優れる樹脂組成物を得ることができること等の点から好ましい。
 なお、これらケトン系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
 前記エーテル系溶媒としては、炭素数3以上10以下のエーテル類であることが好ましく、炭素数3以上7以下のエーテル類であることがより好ましい。好ましいエーテル系溶媒としては、具体的には、エチレングリコール、ジエチレングリコール、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル(119℃)などのモノもしくはジアルキルエーテル類、ジオキサン、テトラヒドロフランなどの環状エーテル類、アニソールなどの芳香族エーテル類等を挙げることができる。これらの中でも、プロピレングリコールモノエチルエーテルを用いると、保存安定性の良好な樹脂組成物および透明で機械強度に優れたフィルムを得ることができること等の点から好ましい。
 なお、これらエーテル系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
 前記ニトリル系溶媒としては、炭素数2以上10以下のニトリル類であることが好ましく、炭素数2以上7以下のニトリル類であることがより好ましい。好ましいニトリル系溶媒としては、アセトニトリル(bp=82℃)、プロパンニトリル(bp=97℃)、ブチロニトリル(bp=116℃)、イソブチロニトリル(bp=107℃)、バレロニトリル(bp=140℃)、イソバレロニトリル(bp=129℃)、ベンズニトリル(bp=191℃)等が挙げられる。これらの中でも、低沸点の点等から、アセトニトリルが好ましい。
 なお、これらニトリル系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
 前記エステル系溶媒としては、炭素数3以上10以下のエステル類であることが好ましく、炭素数3以上6以下のエステル類であることがより好ましい。好ましいエステル系溶媒としては、酢酸エチル(bp=77℃)、酢酸プロピル(bp=97℃)、酢酸-i-プロピル(bp=89℃)、酢酸ブチル(bp=126℃)、プロピレングリコールモノエチルアセテート(bp=146℃)などのアルキルエステル類、β-プロピオラクトン(bp=155℃)などの環状エステル類等を挙げることができる。
 なお、これらエステル系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
 前記スルホキシド系溶媒としては、炭素数3以上10以下のスルホキシド類であることが好ましく、好ましいスルホキシド系溶媒としては、ジメチルスルホキシド等を挙げることができる。
 なお、これらスルホキシド系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
 前記非アミド系溶媒を主成分とする溶媒としては、好ましくはニトリル系溶媒、エーテル系溶媒、およびケトン系溶媒からなる群より選ばれる少なくとも1種の有機溶媒が挙げられ、さらに好ましくはケトン系溶媒およびエーテル系溶媒からなる群から選ばれる少なくとも1種の溶媒が挙げられる。これらの溶媒は、構造単位(1)を有する前駆体の溶解性が高く、これらの溶媒を用いることで保存安定性に優れる樹脂組成物を得ることができる。
 また、前記非アミド系溶媒を主成分とする溶媒としては、2種以上を組み合わせた混合溶媒を用いることが好ましく、得られる膜の物性を考慮すると沸点が20℃以上異なる溶媒を混合した溶媒が好ましい。
 本発明の樹脂組成物が、前記混合溶媒を含むと、ポリイミド前駆体の濃度が高い樹脂組成物を得ることができる。
 前記混合溶媒としては、膜の乾燥性、生産性等、白濁および引張り強度等の膜質特性、樹脂組成物の保存安定性等を考慮し場合、プロピレングリコールモノエチルエーテル(沸点=119℃)、酢酸ブチル(沸点=126℃)、メチル-iso-ブチルケトン、プロピレングリコールモノエチルアセテート、シクロヘキサノン(沸点=155℃)、シクロヘプタノン(沸点=185℃)、γ-ブチロラクトン(沸点=204℃)およびジメチルスルホキシド(沸点=189℃)からなる群より選ばれる少なくとも2種の混合溶媒が好ましい。
 前記混合溶媒は、混合溶媒100質量部に対して、混合溶媒中で沸点が最も高い溶媒を5~95質量部含むことが好ましく、20~95質量部含むことがより好ましく、得られる膜の物性を考慮すると20~65質量部含むことがさらに好ましい。さらに前記混合溶媒は、混合溶媒100質量部に対して、混合溶媒中で沸点が最も高い溶媒を20~55質量部含むことが特に好ましく、混合溶媒中に沸点が最も高い溶媒がこの量で含まれていると、120℃を超える温度での乾燥でも一定の溶媒が残存し、膜破壊なく固定化が可能となるため、生産性に優れる樹脂組成物が得られるのみならず、さらに、白濁および引張り強度等の膜質特性、保存安定性等に優れ、基板との密着・剥離性に優れ、反りの生じにくい膜を得ることができる。
 <その他>
 なお、本発明の樹脂組成物には、本発明の目的を損なわない範囲で、酸化防止剤、紫外線吸収剤、界面活性剤などの添加剤を配合してもよい。
 <樹脂組成物の物性>
 本発明の樹脂組成物の粘度は、ポリイミド前駆体の分子量や濃度にもよるが、通常、500~50,000mPa・s、好ましくは500~20,000mPa・sである。樹脂組成物の粘度が前記範囲にあると、成膜中の樹脂組成物の滞留性に優れ、膜厚の調整が容易となるため、膜の成形が容易となる。
 なお、前記樹脂組成物の粘度は、E型粘度計(東機産業製、粘度計MODEL RE100)を用いて、大気中、25℃で測定した値である。
 本発明の樹脂組成物中のポリイミド前駆体濃度は、樹脂組成物の粘度が前記範囲となるよう調整することが好ましく、ポリイミド前駆体の分子量にもよるが、好ましくは3~60質量%、より好ましくは5~40質量%、さらに好ましくは10~40質量%、特に好ましくは10~30質量%である。樹脂組成物中のポリイミド前駆体の濃度が前記範囲にあると、厚膜化可能で、ピンホールが生じにくく、表面平滑性に優れる膜を形成することができる。
 本発明の樹脂組成物の粘度および該組成物中のポリイミド前駆体濃度が前記範囲にあると、生産性等に優れるスリットコート法を用いて、該樹脂組成物を基板上に塗布することができ、膜厚精度等に優れる膜を生産性良く短時間で形成することができる。
 ≪膜形成方法≫
 本発明の膜の形成方法としては、前記本発明の樹脂組成物を基板上に塗布して塗膜を形成する工程と、該塗膜から前記非アミド系溶媒を主成分とする溶媒を蒸発させる工程と、前記前駆体をイミド化する工程を含む方法等が挙げられる。
 前記樹脂組成物を基板上に塗布して塗膜を形成する方法としては、ロールコート法、グラビアコート法、スピンコート法、スリットコート法、ディッピング法およびドクターブレード、ダイス、コーター、スプレー、ハケ、ロールなどを用いて塗布する方法等が挙げられる。なお、塗布の繰り返しにより膜の厚みや表面平滑性などを制御してもよい。これらの中でも、スリットコート法が好ましい。
 前記塗膜の厚さは、所望の用途に応じて適宜選択され、特に限定されないが、例えば1~500μmであり、好ましくは1~450μmであり、より好ましくは2~250μmであり、さらに好ましくは2~150μmであり、特に好ましくは5~125μmである。
 前記基板としては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ナイロン6フィルム、ナイロン6,6フィルム、ポリプロピレンフィルム、ポリテトラフルオロエチレン製ベルト、シリコンウエハ、ガラスウエハ、オキサイドウエハ、ガラス基板(無アルカリガラス基板を含む)、Cu基板およびSUS板などが挙げられる。特に、本発明の樹脂組成物は、基板との密着性および剥離性に優れるため、シリコンウエハ、ガラスウエハ、ガラス基板、Cu基板およびSUS板等への薄膜形成が可能となる。
 塗膜から前記非アミド系溶媒を主成分とする溶媒を蒸発させる工程は、具体的には塗膜を真空乾燥や加熱すればよいが、イミド化後の膜の透明性を考慮すると、白濁なく前記非アミド系溶媒を主成分とする溶媒を蒸発させることが好ましい。また、生産性を考慮すれば、真空乾燥を経ない加熱のみで行うことが好ましい。
 前記加熱条件は、溶媒が一定量蒸発すればよく、用いる基板やポリイミド前駆体および溶媒に応じて適宜決めればよいが、例えば加熱温度が60℃~200℃であることが好ましく、より好ましくは90~180℃である。また、加熱時間としては、10分~1時間であることが好ましい。加熱温度が60℃より低いと、一定量の溶媒の蒸発に時間がかかり生産性が悪く、200℃を超えると溶媒の蒸発以前にイミド化が進行し、得られる膜の膜質が悪化することがある。
 前記非アミド系溶媒として高沸点の溶媒(好ましくは、沸点が、塗膜から前記非アミド系溶媒を主成分とする溶媒を蒸発させる工程における加熱温度以上の溶媒、より好ましくは、沸点が120℃以上の溶媒、さらに好ましくは、沸点が150~250℃の溶媒)を含む混合溶媒を用いると、前記溶媒を蒸発させる工程で必要以上の蒸発が進まないため、イミド化工程の際に多少の溶媒(高沸点溶媒)が前記塗膜に含まれると考えられる。前記塗膜がイミド化工程の際に高沸点の溶媒を含むことで、イミド化工程後の膜の強度が向上すると考えられる。このため、本発明の膜形成方法では、機械的強度に優れる膜を得るために、高沸点の溶媒を含む混合溶媒を含む樹脂組成物を用いることが好ましい。
 塗前駆体をイミド化する工程は、加熱することにより行うことができる。
 前記加熱の条件は、溶媒が蒸発し、前記ポリイミド前駆体がイミド化すればよく、基板やポリイミド前駆体に応じて適宜決めればよいが、例えば、200~450℃の温度で30分~2時間加熱することが好ましく。より好ましくは300~450℃の温度で30分~2時間加熱すること、さらに好ましくは350~450℃の温度で30分~1時間加熱することである。また、必要に応じて、減圧下にて加熱してもよい。
 加熱雰囲気は、特に制限されないが、大気下または不活性ガス雰囲気下等であることが好ましく、不活性ガス雰囲気下であることが特に好ましい。不活性ガスとしては、着色性の観点から窒素、アルゴン、ヘリウムなどが挙げられるが、窒素であることが好ましい。
 また、前記加熱は、前記基板上に形成された塗膜を基板ごと乾燥させてもよいが、基板の性質に影響されない点から、ある程度乾燥させた後(例えば、前記溶媒を蒸発させる工程後)、前記基板上に形成された塗膜を基板から剥離し、その後加熱してもよい。
 以上の膜形成工程を経て得られた膜は、基板から剥離して用いることができるし、あるいは剥離せずにそのまま用いることもできる。
 得られる膜の厚みは、所望の用途に応じて適宜選択されるが、好ましくは1~200μm、より好ましくは5~100μm、さらに好ましくは、10~50μmであり、特に好ましくは20~40μmである。
 本発明の樹脂組成物から得られる膜の引っ張り強度は100MPa以上、特に好ましくは200MPa以上である。膜の弾性率が100MPa未満だとフィルムを基板から剥離する際に破断する問題が起きることがある。
 前記膜のガラス転移温度は250℃以上、好ましくは350℃以上、特に好ましくは450℃以上である。半田リフロー工程やデバイス作製時には250℃以上に加熱されるため、ガラス転移温度が250℃未満であると、このような用途に前記膜を用いる場合には、該膜が変形してしまうことがある。
 前記膜の好適な用途しては、フレキシブルプリント基板、フレキシブルディスプレイ基板等のフレキシブル基板、半導体素子、薄膜トランジスタ型液晶表示素子や磁気ヘッド素子、集積回路素子、固体撮像素子、実装基板などの電子部品に用いられる絶縁膜、および各種コンデンサー用の膜等が挙げられる。これらの電子部品には、一般に層状に配置される配線の間を絶縁するために層間絶縁膜や平坦化絶縁膜、表面保護用絶縁膜(オーバーコート膜、パッシベーション膜等)が設けられており、これらの絶縁膜として好適に用いることができる。
 また、前記膜は、導光板、偏光板、ディスプレイ用フィルム、光ディスク用フィルム、透明導電性フィルム、導波路板などのフィルムとして好適に使用できる。
 特に、前記膜は、ガラス基板との密着性および剥離性に優れるため、該膜と基板との間に粘着層等を設ける必要がなく、フレキシブル基板を作製する際の工程数を低減化できる可能性がある。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 [実施例1]
 温度計、窒素導入管および攪拌羽根付三口フラスコに、25℃にて窒素気流下、4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニル(TFMB)15.3050g(0.0478mol)、両末端アミノ変性側鎖フェニル・メチル型シリコーンX-22-1660B-3(信越化学工業(株)製)[4.2925g(0.000976mol)]、および樹脂組成物中のポリイミド前駆体の濃度が14%となるように脱水シクロヘキサノン(CHN)184.527gを加え、完全に均一な溶液を得るまで10分間攪拌した。そこに、ピロメリット酸二無水物(PMDA)10.3997g(0.047679mol)を加え、60分攪拌することで反応を終了させ、次いで、ポリテトラフルオロエチレン製フィルター(ポアサイズ1μm)を用いて精密濾過行うことで、樹脂組成物1を作製した。
 (PMDAのモル数/(TFMBのモル数+X-22-1660B-3のモル数)=0.977当量)
 [乾燥後フィルムの形成方法]
 重力に対し垂直となるように設置したコントロールコーター台にガラス基板(横:300mm×縦:350mm×厚:0.7mm)を固定し、乾燥後フィルムの膜厚が30μmとなるようにギャップ間隔を405μmに設定し、樹脂組成物1(12g)を、ガラス基板中央部に横:200mm×縦:220mmの塗膜となるようキャストした。この塗膜付ガラス基板を3枚作製した。
 次いで、得られた塗膜付ガラス基板を下記(1)~(3)のそれぞれの方法で乾燥させ、乾燥後フィルムを得た。
 (1)真空乾燥機にて25℃で10分後に0.1mmHgになるように減圧にした後、常圧(760mmHg)に戻し、その後、140℃で10分間加熱乾燥
 (2)ホットプレート上で、155℃で10分間加熱乾燥
 (3)ホットプレート上で、170℃で10分間加熱乾燥
 [ポリイミド膜の形成方法]
 重力に対し垂直となるように設置したコントロールコーター台にガラス基板(横:300mm×縦:350mm×厚:0.7mm)を固定し、2次乾燥後に膜厚が30μmとなるようにギャップ間隔を405μmに設定し、樹脂組成物1(12g)を、ガラス基板中央部に横:200mm×縦:220mmの塗膜となるようキャストした。
 次いで、得られた塗膜付ガラス基板を真空乾燥機に入れ、25℃で10分後に0.1mmHgになるように減圧にした後、常圧(760mmHg)に戻し真空乾燥を終了した。その後、真空乾燥後の塗膜付ガラス基板を140℃で10分間加熱乾燥し(1次乾燥)、次いで、雰囲気可変乾燥機中で窒素雰囲気下、400℃で30分加熱乾燥(2次乾燥)させることで、基板付のポリイミド膜を得た。
 [実施例2]
 TFMB(15.3050g)の代わりに、TFMB(12.6570g)および4,4'-ジアミノジフェニルエーテル(ODA)2.0370gを用い、X-22-1660B-3、PMDAおよびCHNの使用量を表1に示すように変更した以外は実施例1と同様に行い樹脂組成物2を得た。
 また、樹脂組成物1の代わりに樹脂組成物2を用いた以外は実施例1と同様の方法で、乾燥後フィルムを形成した。
 さらに、樹脂組成物1の代わりに樹脂組成物2を用い、2次乾燥温度を300℃に変更した以外は実施例1と同様の方法で、ポリイミド膜を形成した。
 [実施例3]
 CHN184.527gの代わりにCHN147.622gおよびγ-ブチロラクトン36.905gを用い、TFMB、X-22-1660B-3およびPMDAの使用量を表1に示すように変更した以外は実施例1と同様に行い樹脂組成物3を得た。
 また、樹脂組成物2の代わりに樹脂組成物3を用いた以外は実施例2と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [実施例4]
 CHN184.527gの代わりにCHN92.920gおよびγ-ブチロラクトン92.264gを用い、TFMB、X-22-1660B-3およびPMDAの使用量を表1に示すように変更した以外は実施例1と同様に行い樹脂組成物4を得た。
 また、樹脂組成物2の代わりに樹脂組成物4を用いた以外は実施例2と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [実施例5]
 CHN183.607gの代わりにCHN91.804gおよびγ-ブチロラクトン91.804gを用い、TFMB、ODA、X-22-1660B-3およびPMDAの使用量を表1に示すように変更した以外は実施例2と同様に行い樹脂組成物5を得た。
 また、樹脂組成物2の代わりに樹脂組成物5を用いた以外は実施例2と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [実施例6]
 CHN184.527gの代わりにCHN92.000gおよびジメチルスルホキシド92.000gを用い、TFMB、X-22-1660B-3およびPMDAの使用量を表1に示すように変更した以外は実施例1と同様に行い樹脂組成物6を得た。
 また、樹脂組成物2の代わりに樹脂組成物6を用いた以外は実施例2と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [実施例7]
 CHN184.527gの代わりにプロピレングリコールモノエチルエーテル184.527gを用い、TFMB、X-22-1660B-3およびPMDAを表1に示す使用量で用いて、実施例1と同様に行い樹脂組成物7を得た。
 また、樹脂組成物1の代わりに樹脂組成物7を用いた以外は実施例1と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [実施例8]
 CHN184.527gの代わりにプロピレングリコールモノエチルエーテル92.2635gおよびプロピレングリコールモノエチルエーテルアセテート92.2635gを用い、TFMB、X-22-1660B-3およびPMDAを表1に示す使用量で用いて、実施例1と同様に行い樹脂組成物8を得た。
 また、樹脂組成物1の代わりに樹脂組成物8を用いた以外は実施例1と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [実施例9]
 CHN184.527gの代わりにプロピレングリコールモノエチルエーテル147.6216gおよびγ-ブチロラクトン36.905gを用い、TFMB、X-22-1660B-3およびPMDAを表1に示す使用量で用いて、実施例1と同様に行い樹脂組成物9を得た。
 また、樹脂組成物1の代わりに樹脂組成物9を用いた以外は実施例1と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [実施例10]
 CHN184.527gの代わりにプロピレングリコールモノエチルエーテル73.8108g、プロピレングリコールモノエチルエーテルアセテート73.8108gおよびγ―ブチロラクトン36.905gを用い、TFMB、X-22-1660B-3およびPMDAを表1に示す使用量で用いて、実施例1と同様に行い樹脂組成物10を得た。
 また、樹脂組成物1の代わりに樹脂組成物10を用いた以外は実施例1と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [実施例11]
 CHN184.527gの代わりにプロピレングリコールモノエチルエーテル138.3953gおよび酢酸ブチル46.1318gを用い、TFMB、X-22-1660B-3およびPMDAを表2に示す使用量で用いて、実施例1と同様に行い樹脂組成物11を得た。
 また、樹脂組成物1の代わりに樹脂組成物11を用いた以外は実施例1と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [実施例12]
 CHN184.527gの代わりにプロピレングリコールモノエチルエーテル110.7162g、酢酸ブチル36.905gおよびγ―ブチロラクトン36.905gを用い、TFMB、X-22-1660B-3およびPMDAを表2に示す使用量で用いて、実施例1と同様に行い樹脂組成物12を得た。
 また、樹脂組成物1の代わりに樹脂組成物12を用いた以外は実施例1と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [実施例13]
 CHN184.527gの代わりにメチルイソブチルケトン92.2635g、CHN46.132gおよびγ-ブチロラクトン46.132gを用い、TFMB、X-22-1660B-3およびPMDAを表2に示す使用量で用いて、実施例1と同様に行い樹脂組成物13を得た。
 また、樹脂組成物1の代わりに樹脂組成物13を用いた以外は実施例1と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [実施例14]
 CHN184.527gの代わりにプロピレングリコールモノエチルエーテル110.7162g、酢酸ブチル36.905gおよびγ-ブチロラクトン36.905gを用い、TFMB、両末端アミノ変性ジメチルシリコーンKF-8012(信越化学工業(株)製)およびPMDAを表2に示す使用量で用いて、実施例1と同様に行い樹脂組成物14を得た。
 また、樹脂組成物1の代わりに樹脂組成物14を用いた以外は実施例1と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [実施例15]
 CHN184.527gの代わりにメチルイソブチルケトン92.2635g、CHN46.132gおよびγ-ブチロラクトン46.132gを用い、TFMB、KF-8012およびPMDAを表2に示す使用量で用いて、実施例1と同様に行い樹脂組成物15を得た。
 また、樹脂組成物1の代わりに樹脂組成物15を用いた以外は実施例1と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [比較例1]
 TFMB(15.3050g)の代わりに、m-トリジン(mTB)12.2531gを用い、X-22-1660B-3、PMDAおよびCHNの使用量を表2に示すように変更した以外は実施例1と同様に行い樹脂組成物16を得た。
 得られた樹脂組成物16を用いて実施例1と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成しようとしたが、該フィルムおよび膜は形成できなかった。
 [比較例2]
 CHN184.527gの代わりに、N-メチルピロリドン184.527gを用い、TFMB、X-22-1660B-3およびPMDAの使用量を表2に示すように変更した以外は実施例1と同様に行い樹脂組成物17を得た。
 また、樹脂組成物1の代わりに樹脂組成物17を用いた以外は実施例1と同様の方法で、乾燥後フィルムおよびポリイミド膜を形成した。
 [樹脂組成物の特性評価]
 (1)樹脂組成物粘度
 実施例および比較例で得られた樹脂組成物1.5gを用い、25℃での樹脂組成物粘度を測定した。具体的には東機産業製 粘度計 MODEL RE100を用い測定した。その結果を表1または2に記す。
 (2)重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)
 実施例および比較例で得られた樹脂組成物中のポリイミド前駆体の重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、TOSOH製HLC-8220型GPC装置(ガードカラム:TSK guard colomn ALPHA カラム:TSKgelALPHA―M、展開溶剤:NMP)を用いて測定した。その結果を表1または2に記す。
 (3)-15℃での貯蔵安定性
 実施例および比較例で得られた樹脂組成物を-15℃で48時間保存した。目視により、透明で沈殿物のないものを「○」とし、不透明で沈殿物が析出したものを「×」として評価した。その結果を表1または2に記す。
 [乾燥後フィルムの評価]
 (4)固定化
 前記(1)~(3)の方法で乾燥した後のフィルムを金属製スパチュラーで強くこすり、フィルムが移動しないものを「固定化」、フィルムが移動したものを「固定化なし」、と評価した。その結果を表1または2に記す。
 (5)白濁の有無
 前記(1)~(3)の方法で乾燥した後のフィルムの白濁の有無を目視で確認した。その結果を表1または2に記す。
 [ポリイミド膜の評価]
 (6)ガラス転移温度(Tg)
 実施例および比較例で得られたポリイミド膜をガラス基板から剥離し、剥離後の膜をRigaku製 Thermo Plus DSC8230を用い、窒素下で、昇温速度を20℃/minとし、40~450℃の範囲で測定した。その結果を表1または2に記す。
 (7)線膨張係数
 実施例および比較例で得られたポリイミド膜をガラス基板から剥離し、剥離後の膜をSeiko Instrument SSC/5200を用い、昇温速度を6℃/minとし、25~350℃の範囲で測定した。測定結果から100~200℃の線膨張係数を算出した。その結果を表1または2に記す。
 (8)膜強度
 JISK6251の7号ダンベルを用い、実施例および比較例で得られたポリイミド膜をガラス基板から剥離し、剥離後の30μmフィルムを23℃下、50mm/minの速度で引張り試験を実施し、引張り強度を測定した。その結果を表1または2に記す。
 (9)ガラス基板との剥離性
 2次乾燥後のガラス基板付30μmポリイミド膜を幅10mm×長さ50mmになるよう余分な部分をカッターで切り取り、ガラス基板上に残った膜を長さ20mmまで引き剥がした後、引き剥がした部分を180度の方向に速度50mm/minで力を加え、ピール強度を測定した。その結果を表1または2に記す。
 (10)透明性
 実施例および比較例で得られたポリイミド膜をガラス基板から剥離し、剥離後の膜のHaze(ヘイズ)をJIS K7105透明度試験法に準じて測定した。具体的には、スガ試験機社製SC-3H型ヘイズメーターを用い測定した。その結果を表1または2に記す。
 (11)フィルムの反り
 実施例および比較例で得られたガラス基板付30μmポリイミド膜を60mm×60mmの大きさにカッターで切削後、4つの端部の浮き上がりを測定し、平均値を算出した。その結果を表1または2に記す。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 [評価結果]
 樹脂組成物1~15から得られた乾燥後フィルムは、乾燥速度が速く、ガラス基板との密着性に優れていた。また、反りが無く、Tgが450℃以上と耐熱性に優れ、透明性、ガラス基板からの剥離性に優れ、線膨張係数の低い強靭なポリイミド膜を得ることができた。
 樹脂組成物16に含まれるポリイミド前駆体は、構造単位(1)を有していないため、得られる樹脂組成物の粘度が50,000以上、かつ白濁が認められ、基板への塗膜ができなかった。以上の結果より、ポリイミド前駆体が前記構造単位(1)を有していないと、生産性に優れた樹脂組成物を得ることができないことがわかった。
 樹脂組成物17には、非アミド系溶媒が含まれていないため、組成物作製直後に白濁が認められ、貯蔵安定性が著しく悪化した。以上の結果より、非アミド系溶媒を用いないと、貯蔵安定性に優れる樹脂組成物を得ることができないことがわかった。

Claims (9)

  1.  下記式(2)で表される構造単位を含み、下記式(1)で表される構造単位を有するポリイミド前駆体、および、非アミド系溶媒を主成分とする溶媒を含む樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは独立に水素原子または一価の有機基を示し、R1は独立に二価の有機基を示し、R2は独立に四価の有機基を示し、nは正の整数を示す。ただし、R1またはR2の少なくとも一方は、ハロゲン原子またはハロゲン化アルキル基を含む。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、複数あるR5は各々独立に炭素数1~20の一価の有機基を示し、mは3~200の整数を示す。)
  2.  前記R1が、下記式(3)で表される群より選ばれる基を含む、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R3は独立にエーテル結合、チオエーテル基、ケトン基、エステル結合、スルフォニル基、アルキレン基、アミド基もしくはシロキサン基を含む基、水素原子、ハロゲン原子、アルキル基、ヒドロキシ基、ニトロ基、シアノ基またはスルホ基を示し、このアルキレン基を含む基およびアルキル基の任意の水素原子はハロゲン原子で置換されてもよい。ただし、1つの基に含まれる複数あるR3のうち少なくとも1つはハロゲン原子またはハロゲン化アルキル基を含む。a1は、1~3の整数を示し、a2は、1または2を示し、a3は独立に1~4の整数を示し、eは0~3の整数を示す。)
  3.  前記溶媒が、二種以上の溶媒からなる混合溶媒である、請求項1または2に記載の樹脂組成物。
  4.  前記溶媒が、前記混合溶媒中で最も沸点の高い溶媒を、混合溶媒全量100重量%に対して20重量%以上含む、請求項3に記載の樹脂組成物。
  5.  前記ポリイミド前駆体の重量平均分子量が10000~1000000である、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記樹脂組成物中のポリイミド前駆体の濃度が3~60質量%である、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  E型粘度計(25℃)で測定した粘度が500~50000mPa・sの範囲にある、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  膜形成用である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  請求項1~8のいずれか1項に記載の樹脂組成物を、基板上に塗布して塗膜を形成する工程と、
     該塗膜から前記溶媒を蒸発させる工程と、
     前記前駆体をイミド化する工程を含む
     膜形成方法。
PCT/JP2012/074427 2011-09-29 2012-09-24 樹脂組成物およびそれを用いた膜形成方法 WO2013047451A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147011045A KR101946092B1 (ko) 2011-09-29 2012-09-24 수지 조성물 및 그것을 이용한 막 형성 방법
JP2013536270A JP5862674B2 (ja) 2011-09-29 2012-09-24 樹脂組成物およびそれを用いた膜形成方法
CN201280047281.5A CN103842409A (zh) 2011-09-29 2012-09-24 树脂组合物及使用其的膜形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-214751 2011-09-29
JP2011214751 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013047451A1 true WO2013047451A1 (ja) 2013-04-04

Family

ID=47995484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074427 WO2013047451A1 (ja) 2011-09-29 2012-09-24 樹脂組成物およびそれを用いた膜形成方法

Country Status (5)

Country Link
JP (1) JP5862674B2 (ja)
KR (1) KR101946092B1 (ja)
CN (1) CN103842409A (ja)
TW (1) TWI577734B (ja)
WO (1) WO2013047451A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098235A1 (ja) * 2012-12-21 2014-06-26 旭化成イーマテリアルズ株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物
WO2015129682A1 (ja) * 2014-02-26 2015-09-03 東レ株式会社 ポリイミド樹脂、これを用いた樹脂組成物および積層フィルム
JP2016029126A (ja) * 2014-07-25 2016-03-03 Jsr株式会社 樹脂組成物、それを用いた膜形成方法、および基板
JP2017052877A (ja) * 2015-09-09 2017-03-16 富士ゼロックス株式会社 ポリイミド前駆体組成物、ポリイミド前駆体組成物の製造方法、及びポリイミド成形体の製造方法
JP2017066396A (ja) * 2015-09-30 2017-04-06 新日鉄住金化学株式会社 ポリイミド前駆体溶液及びその製造方法並びにポリイミドフィルムの製造方法及び積層体の製造方法
JPWO2015198970A1 (ja) * 2014-06-25 2017-04-20 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
JPWO2016147958A1 (ja) * 2015-03-13 2017-09-28 旭化成株式会社 ポリイミド前駆体樹脂組成物
WO2019065164A1 (ja) * 2017-09-26 2019-04-04 東レ株式会社 ポリイミド前駆体樹脂組成物、ポリイミド樹脂組成物、ポリイミド樹脂膜、積層体の製造方法、カラーフィルタの製造方法、液晶素子の製造方法および有機el素子の製造方法
WO2019142703A1 (ja) * 2018-01-18 2019-07-25 東レ株式会社 ディスプレイ基板用樹脂組成物、ディスプレイ基板用樹脂膜およびそれを含む積層体、画像表示装置、有機elディスプレイ、並びに、それらの製造方法
WO2019189483A1 (ja) * 2018-03-28 2019-10-03 住友化学株式会社 透明ポリイミド系高分子と溶媒とを含むワニス
WO2019208590A1 (ja) * 2018-04-23 2019-10-31 信越化学工業株式会社 ケイ素含有化合物
KR20190131455A (ko) 2018-05-16 2019-11-26 아사히 가세이 가부시키가이샤 폴리이미드 전구체 수지 조성물
JP2020504198A (ja) * 2017-09-14 2020-02-06 エルジー・ケム・リミテッド ポリイミド前駆体組成物及びそれを利用したポリイミドフィルム
JP2020508365A (ja) * 2017-09-29 2020-03-19 エルジー・ケム・リミテッド ポリイミド前駆体溶液及びそれを用いて製造されたポリイミドフィルム
US10647883B2 (en) 2014-05-30 2020-05-12 Lg Chem. Ltd. Polyimide-based solution and polyimide-based film produced using same
WO2020095693A1 (ja) * 2018-11-09 2020-05-14 東レ株式会社 ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイス
JPWO2019142866A1 (ja) * 2018-01-17 2020-09-17 旭化成株式会社 ポリイミド前駆体樹脂組成物
JPWO2019188380A1 (ja) * 2018-03-30 2021-04-01 株式会社カネカ ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法
CN113292853A (zh) * 2015-04-17 2021-08-24 旭化成株式会社 树脂组合物、聚酰亚胺树脂膜及其制造方法
WO2023276093A1 (ja) * 2021-06-30 2023-01-05 昭和電工マテリアルズ株式会社 樹脂組成物、半導体装置の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536647B (zh) * 2014-08-01 2019-05-07 日产化学工业株式会社 固化膜形成用树脂组合物
JP2016076481A (ja) * 2014-10-02 2016-05-12 セントラル硝子株式会社 有機エレクトロルミネッセンス用基板およびそれを用いた有機エレクトロルミネッセンスディスプレイ
JP7361479B2 (ja) * 2018-03-28 2023-10-16 住友化学株式会社 透明ポリイミド系高分子を含む光学フィルム
CN113613904A (zh) * 2019-03-20 2021-11-05 株式会社钟化 聚酰胺酸组合物及其制造方法、聚酰胺酸溶液、聚酰亚胺、聚酰亚胺膜、层叠体及其制造方法、以及柔性器件及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291124A (ja) * 1988-09-29 1990-03-30 Nippon Steel Chem Co Ltd ポリイミド共重合体及びその製造方法
JPH11100503A (ja) * 1997-07-14 1999-04-13 Toray Ind Inc 感光性ポリイミド前駆体組成物
JP2002020893A (ja) * 2000-07-06 2002-01-23 Sankyo Seiki Mfg Co Ltd 電着材料及び電着塗膜形成方法並びにそれを用いた摺動機器
JP2004051794A (ja) * 2002-07-19 2004-02-19 Shin Etsu Chem Co Ltd フェノール性水酸基を有するポリイミド樹脂、その製造方法、及びポリイミド樹脂組成物
JP2005232024A (ja) * 2004-02-17 2005-09-02 Chisso Corp シルセスキオキサン骨格を有するジアミン及びそれを用いた重合体
JP2007177017A (ja) * 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd ポリイミドシリコーン系樹脂組成物
WO2010053186A1 (ja) * 2008-11-10 2010-05-14 味の素株式会社 シロキサン含有ポリイミド樹脂
JP2010168517A (ja) * 2009-01-26 2010-08-05 Ube Ind Ltd アミド酸オリゴマー溶液組成物を用いたポリイミド膜の製造方法、及びアミド酸オリゴマー溶液組成物
JP2011178855A (ja) * 2010-02-26 2011-09-15 Pi R & D Co Ltd 半導体装置用ポリイミド樹脂組成物並びにそれを用いた半導体装置中の膜形成方法及び半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100211440B1 (ko) 1998-08-31 1999-08-02 호소이 쇼지로 신규한 폴리이미드 및 그의 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291124A (ja) * 1988-09-29 1990-03-30 Nippon Steel Chem Co Ltd ポリイミド共重合体及びその製造方法
JPH11100503A (ja) * 1997-07-14 1999-04-13 Toray Ind Inc 感光性ポリイミド前駆体組成物
JP2002020893A (ja) * 2000-07-06 2002-01-23 Sankyo Seiki Mfg Co Ltd 電着材料及び電着塗膜形成方法並びにそれを用いた摺動機器
JP2004051794A (ja) * 2002-07-19 2004-02-19 Shin Etsu Chem Co Ltd フェノール性水酸基を有するポリイミド樹脂、その製造方法、及びポリイミド樹脂組成物
JP2005232024A (ja) * 2004-02-17 2005-09-02 Chisso Corp シルセスキオキサン骨格を有するジアミン及びそれを用いた重合体
JP2007177017A (ja) * 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd ポリイミドシリコーン系樹脂組成物
WO2010053186A1 (ja) * 2008-11-10 2010-05-14 味の素株式会社 シロキサン含有ポリイミド樹脂
JP2010168517A (ja) * 2009-01-26 2010-08-05 Ube Ind Ltd アミド酸オリゴマー溶液組成物を用いたポリイミド膜の製造方法、及びアミド酸オリゴマー溶液組成物
JP2011178855A (ja) * 2010-02-26 2011-09-15 Pi R & D Co Ltd 半導体装置用ポリイミド樹脂組成物並びにそれを用いた半導体装置中の膜形成方法及び半導体装置

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098235A1 (ja) * 2012-12-21 2014-06-26 旭化成イーマテリアルズ株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物
US10026637B2 (en) 2014-02-26 2018-07-17 Toray Industries, Inc. Polyimide resin, resin composition using same, and laminated film
WO2015129682A1 (ja) * 2014-02-26 2015-09-03 東レ株式会社 ポリイミド樹脂、これを用いた樹脂組成物および積層フィルム
US10647883B2 (en) 2014-05-30 2020-05-12 Lg Chem. Ltd. Polyimide-based solution and polyimide-based film produced using same
JP7033171B2 (ja) 2014-06-25 2022-03-09 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
JP2020183539A (ja) * 2014-06-25 2020-11-12 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
JP2018048344A (ja) * 2014-06-25 2018-03-29 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
JPWO2015198970A1 (ja) * 2014-06-25 2017-04-20 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
JP7037534B2 (ja) 2014-06-25 2022-03-16 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
JP2020128522A (ja) * 2014-06-25 2020-08-27 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
JP2016029126A (ja) * 2014-07-25 2016-03-03 Jsr株式会社 樹脂組成物、それを用いた膜形成方法、および基板
JPWO2016147958A1 (ja) * 2015-03-13 2017-09-28 旭化成株式会社 ポリイミド前駆体樹脂組成物
CN113292853B (zh) * 2015-04-17 2024-04-05 旭化成株式会社 树脂组合物、聚酰亚胺树脂膜及其制造方法
CN113292853A (zh) * 2015-04-17 2021-08-24 旭化成株式会社 树脂组合物、聚酰亚胺树脂膜及其制造方法
JP2017052877A (ja) * 2015-09-09 2017-03-16 富士ゼロックス株式会社 ポリイミド前駆体組成物、ポリイミド前駆体組成物の製造方法、及びポリイミド成形体の製造方法
JP2017066396A (ja) * 2015-09-30 2017-04-06 新日鉄住金化学株式会社 ポリイミド前駆体溶液及びその製造方法並びにポリイミドフィルムの製造方法及び積層体の製造方法
JP2020504198A (ja) * 2017-09-14 2020-02-06 エルジー・ケム・リミテッド ポリイミド前駆体組成物及びそれを利用したポリイミドフィルム
US11466124B2 (en) 2017-09-14 2022-10-11 Lg Chem, Ltd. Polyimide precursor composition and polyimide film using same
JPWO2019065164A1 (ja) * 2017-09-26 2020-09-03 東レ株式会社 ポリイミド前駆体樹脂組成物、ポリイミド樹脂組成物、ポリイミド樹脂膜、積層体の製造方法、カラーフィルタの製造方法、液晶素子の製造方法および有機el素子の製造方法
WO2019065164A1 (ja) * 2017-09-26 2019-04-04 東レ株式会社 ポリイミド前駆体樹脂組成物、ポリイミド樹脂組成物、ポリイミド樹脂膜、積層体の製造方法、カラーフィルタの製造方法、液晶素子の製造方法および有機el素子の製造方法
JP2020508365A (ja) * 2017-09-29 2020-03-19 エルジー・ケム・リミテッド ポリイミド前駆体溶液及びそれを用いて製造されたポリイミドフィルム
US11479643B2 (en) 2017-09-29 2022-10-25 Lg Chem, Ltd. Polyimide precursor solution and polyimide film produced using same
JPWO2019142866A1 (ja) * 2018-01-17 2020-09-17 旭化成株式会社 ポリイミド前駆体樹脂組成物
JP2022167930A (ja) * 2018-01-17 2022-11-04 旭化成株式会社 ポリイミド前駆体樹脂組成物
JPWO2019142703A1 (ja) * 2018-01-18 2020-11-19 東レ株式会社 ディスプレイ基板用樹脂組成物、ディスプレイ基板用樹脂膜およびそれを含む積層体、画像表示装置、有機elディスプレイ、並びに、それらの製造方法
CN111601840A (zh) * 2018-01-18 2020-08-28 东丽株式会社 显示器基板用树脂组合物、显示器基板用树脂膜及包含其的层叠体、图像显示装置、有机el显示器、以及它们的制造方法
WO2019142703A1 (ja) * 2018-01-18 2019-07-25 東レ株式会社 ディスプレイ基板用樹脂組成物、ディスプレイ基板用樹脂膜およびそれを含む積層体、画像表示装置、有機elディスプレイ、並びに、それらの製造方法
JP7322699B2 (ja) 2018-01-18 2023-08-08 東レ株式会社 ディスプレイ基板用樹脂組成物、ディスプレイ基板用樹脂膜およびそれを含む積層体、画像表示装置、有機elディスプレイ、並びに、それらの製造方法
WO2019189483A1 (ja) * 2018-03-28 2019-10-03 住友化学株式会社 透明ポリイミド系高分子と溶媒とを含むワニス
JPWO2019189483A1 (ja) * 2018-03-28 2021-05-13 住友化学株式会社 透明ポリイミド系高分子と溶媒とを含むワニス
JPWO2019188380A1 (ja) * 2018-03-30 2021-04-01 株式会社カネカ ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法
JP7292260B2 (ja) 2018-03-30 2023-06-16 株式会社カネカ ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法
JPWO2019208590A1 (ja) * 2018-04-23 2021-01-07 信越化学工業株式会社 ケイ素含有化合物
JP7053807B2 (ja) 2018-04-23 2022-04-12 信越化学工業株式会社 ケイ素含有化合物
WO2019208590A1 (ja) * 2018-04-23 2019-10-31 信越化学工業株式会社 ケイ素含有化合物
KR20190131455A (ko) 2018-05-16 2019-11-26 아사히 가세이 가부시키가이샤 폴리이미드 전구체 수지 조성물
JPWO2020095693A1 (ja) * 2018-11-09 2021-09-30 東レ株式会社 ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイス
JP7384037B2 (ja) 2018-11-09 2023-11-21 東レ株式会社 ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイス
WO2020095693A1 (ja) * 2018-11-09 2020-05-14 東レ株式会社 ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイス
WO2023276093A1 (ja) * 2021-06-30 2023-01-05 昭和電工マテリアルズ株式会社 樹脂組成物、半導体装置の製造方法
WO2023277134A1 (ja) * 2021-06-30 2023-01-05 昭和電工マテリアルズ株式会社 樹脂組成物、半導体装置の製造方法

Also Published As

Publication number Publication date
TW201315772A (zh) 2013-04-16
TWI577734B (zh) 2017-04-11
CN103842409A (zh) 2014-06-04
JPWO2013047451A1 (ja) 2015-03-26
KR20140069264A (ko) 2014-06-09
KR101946092B1 (ko) 2019-02-08
JP5862674B2 (ja) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5862674B2 (ja) 樹脂組成物およびそれを用いた膜形成方法
JP5725017B2 (ja) 基板の製造方法およびそれに用いられる組成物
JP6883640B2 (ja) 樹脂前駆体及びそれを含有する樹脂組成物、樹脂フィルム及びその製造方法、並びに、積層体及びその製造方法
WO2012118020A1 (ja) 樹脂組成物およびそれを用いた膜形成方法
KR102116229B1 (ko) 폴리이미드 전구체 및 그것을 함유하는 수지 조성물
JP6333560B2 (ja) 所定構造を有するフレキシブル電子デバイスに適用される基板及びその作製方法
JP7392660B2 (ja) イミド-アミド酸共重合体及びその製造方法、ワニス、並びにポリイミドフィルム
JP5891693B2 (ja) 基板の製造方法および基板
JP2016029126A (ja) 樹脂組成物、それを用いた膜形成方法、および基板
WO2020110948A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP6496993B2 (ja) ポリイミド前駆体組成物、ポリイミド前駆体の製造方法、ポリイミド成形体、及びポリイミド成形体の製造方法
KR20220104696A (ko) 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
JP2009263654A (ja) ポリイミド、ポリイミドフィルム、及びそれらの製造方法
CN113166409B (zh) 聚酰亚胺前体、聚酰亚胺、聚酰亚胺树脂膜、及柔性器件
JP2022159241A (ja) ポリイミドブロック共重合系高分子、ポリイミドブロック共重合系フィルム、ポリアミド酸-イミド共重合体、及び、樹脂組成物
JP7152812B2 (ja) 接着力に優れたポリイミド樹脂を製造するためのポリアミック酸組成物及びこれによって製造されたポリイミド樹脂
TW202134318A (zh) 聚醯亞胺樹脂、清漆、以及聚醯亞胺薄膜
JP2006182854A (ja) ポリイミドシリコーン樹脂及びその前駆体
TW202402885A (zh) 聚合物之製造方法、清漆、及清漆之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536270

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147011045

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12834883

Country of ref document: EP

Kind code of ref document: A1