WO2020095693A1 - ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイス - Google Patents

ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイス Download PDF

Info

Publication number
WO2020095693A1
WO2020095693A1 PCT/JP2019/041645 JP2019041645W WO2020095693A1 WO 2020095693 A1 WO2020095693 A1 WO 2020095693A1 JP 2019041645 W JP2019041645 W JP 2019041645W WO 2020095693 A1 WO2020095693 A1 WO 2020095693A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
general formula
group
polyimide precursor
resin film
Prior art date
Application number
PCT/JP2019/041645
Other languages
English (en)
French (fr)
Inventor
昭典 佐伯
拓也 宮内
大地 宮崎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020217012151A priority Critical patent/KR20210088551A/ko
Priority to CN201980071725.0A priority patent/CN113166409B/zh
Priority to JP2019559125A priority patent/JP7384037B2/ja
Publication of WO2020095693A1 publication Critical patent/WO2020095693A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/385Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • C08G77/455Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences containing polyamide, polyesteramide or polyimide sequences
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED

Definitions

  • the present invention relates to a polyimide precursor, a polyimide, a polyimide resin film, and a flexible device.
  • organic films are more flexible, less prone to breakage, and lighter in weight. Recently, there is an active movement to make the flat panel display flexible by replacing the substrate of the flat panel display with an organic film.
  • the resin used for the organic film examples include polyester, polyamide, polyimide, polycarbonate, polyether sulfone, acrylic, epoxy and cycloolefin polymer.
  • polyimide is suitable as a display substrate because it is a high heat resistant resin.
  • a general polyimide resin is colored brown or yellow due to a high aromatic ring density, has a low transmittance in the visible light region, and is difficult to be used in a field requiring transparency.
  • Patent Document 1 discloses that an amine having an alicyclic acid dianhydride and a hydroxyl group, specifically 2,2-bis [3- ( A polyimide resin film using 3-aminobenzamido) -4-hydroxyphenyl] hexafluoropropane (HFHA) is disclosed as having high heat resistance and light transmittance.
  • HFHA 2,2-bis [3- ( A polyimide resin film using 3-aminobenzamido) -4-hydroxyphenyl] hexafluoropropane
  • Patent Document 2 discloses a method for obtaining a flexible touch panel by using a transparent polyimide resin film obtained by baking in air.
  • Patent Document 1 discloses a polyimide having high transparency and low in-plane / out-of-plane birefringence.
  • it is necessary to perform baking for a long time in an inert oven in order to form a polyimide resin film, and therefore it takes a great deal of cost and time to form the polyimide resin film. There was a problem.
  • Patent Document 2 discloses that a transparent polyimide resin film can be obtained by baking in air for 30 minutes.
  • the transparent polyimide resin film described in Patent Document 2 is a resin film having a glass transition temperature of about 220 ° C. to 230 ° C., and has a problem that the glass transition temperature is low as a resin film used for a device such as a touch panel or a display. was there.
  • a polyimide resin film having a low glass transition temperature is used for a device, for example, when a touch panel or a color filter is formed after forming an inorganic film on the polyimide resin film in order to improve the reliability of the touch panel, wrinkles occur in the inorganic film. However, the surface smoothness decreases.
  • the present invention has been made in view of the above problems, and efficiently obtains a polyimide having high transparency, high glass transition temperature, low in-plane / out-of-plane birefringence, and good adhesion with a supporting substrate.
  • a first object is to provide a polyimide precursor that can be obtained.
  • a second object of the present invention is to provide a polyimide obtained by using such a polyimide precursor, a polyimide resin film, and a flexible device.
  • the polyimide precursor according to the present invention comprises a structure represented by the general formula (1) and a structural unit represented by the general formula (2). Characterize.
  • R 1 and R 2 each independently represent a monovalent organic group having 1 to 20 carbon atoms.
  • M represents an integer of 1 or more and 200 or less.
  • R 3 represents a divalent organic group represented by formula (3).
  • R 4 represents an aromatic tetracarboxylic acid residue.
  • X 1 and X 2 represent Each independently represents a hydrogen atom, a monovalent organic group having 1 to 10 carbon atoms or a monovalent alkylsilyl group having 1 to 10 carbon atoms.
  • the polyimide precursor which concerns on this invention WHEREIN: When the amount of the said polyimide precursor whole is 100 mass%, the structure represented by the said General formula (1) is 0.1 mass% or more 30 mass. It is characterized by containing less than or equal to mass%.
  • the polyimide precursor which concerns on this invention WHEREIN: 30 mol% of the structural unit of the bivalent organic group represented by the said General formula (3) in all the diamine residues contained in the said polyimide precursor in the said invention. It is characterized by including the above.
  • the polyimide precursor according to the present invention in the above invention, in the total acid dianhydride residues contained in the polyimide precursor, the acid anhydride residue having a fluorene skeleton contains 5 mol% or more 55 mol% or less, It is characterized by
  • the polyimide precursor according to the present invention is characterized in that, in the above-mentioned invention, it contains a residue of a compound represented by the following general formula (4).
  • a plurality of R 5 are each independently a single bond or a divalent organic group having 1 to 10 carbon atoms.
  • a plurality of R 6 and R 7 are independently a carbon number. It is a monovalent aliphatic hydrocarbon group having 1 to 3 or an aromatic group having 6 to 10 carbon atoms, L is an amino group or a reactive derivative thereof, or an acid dianhydride structure or a group containing a reactive derivative thereof. (Y is an integer of 1 or more and 199 or less.)
  • the polyimide precursor according to the present invention is, in the above-mentioned invention, a residue of a compound represented by the general formula (4) and y is 1 or more and 20 or less, and represented by the general formula (4), and It is characterized by including both the residue of the compound in which y is 21 or more and 60 or less.
  • polyimide precursor according to the present invention is characterized in that, in the above invention, it contains a residue of a diamine represented by the following general formula (9).
  • R 8 is a substituted or unsubstituted phenyl group.
  • S represents an integer of 1 or more and 4 or less.
  • the polyimide according to the present invention is characterized in that it is formed by imidizing the polyimide precursor described in any one of the above inventions.
  • polyimide according to the present invention is characterized by containing a structure represented by the general formula (1) and a structural unit represented by the general formula (14).
  • R 1 and R 2 each independently represent a monovalent organic group having 1 to 20 carbon atoms.
  • M represents an integer of 1 or more and 200 or less.
  • R 3 represents a divalent organic group represented by the general formula (3).
  • R 4 represents an aromatic tetracarboxylic acid residue.
  • the polyimide which concerns on this invention contains 0.1 mass% or more and 30 mass% or less of the structure represented by the said General formula (1), when the amount of the said polyimide is 100 mass% in the said invention. , Is characterized.
  • the polyimide which concerns on this invention WHEREIN: In all the diamine residues contained in the said polyimide, the structural unit of the divalent organic group represented by the said General formula (3) contains 30 mol% or more, Is characterized by.
  • the polyimide resin film according to the present invention is characterized in that it contains the polyimide described in any one of the above inventions.
  • the polyimide resin film according to the present invention is characterized in that, in the above-mentioned invention, the density is 1.20 g / cm 3 or more and 1.43 g / cm 3 or less.
  • the polyimide resin film according to the present invention is characterized in that, in the above-mentioned invention, in-plane / out-of-plane birefringence is 0.01 or less.
  • the polyimide resin film according to the present invention is characterized in that, in the above invention, the degree of yellowness is 3 or less.
  • the flexible device according to the present invention is characterized by including the polyimide resin film according to any one of the above inventions.
  • a polyimide having high transparency, high glass transition temperature, low in-plane / out-of-plane birefringence, and good adhesion to a supporting substrate can be efficiently prepared.
  • a polyimide precursor that can be obtained can be provided.
  • the polyimide and polyimide resin film obtained from the polyimide precursor of the present invention can be suitably used as a flexible substrate for a display such as a flexible device such as a touch panel or a color filter.
  • a flexible display an example of a flexible device with high definition and high reliability can be manufactured.
  • FIG. 1 is a schematic cross-sectional view showing one structural example of a color filter including a polyimide resin film according to an embodiment of the present invention.
  • the polyimide precursor according to the embodiment of the present invention includes a structure represented by the general formula (1) and a structural unit represented by the general formula (2).
  • R 1 and R 2 each independently represent a monovalent organic group having 1 to 20 carbon atoms.
  • m represents an integer of 1 or more and 200 or less.
  • R 3 represents a divalent organic group represented by general formula (3).
  • R 4 represents an aromatic tetracarboxylic acid residue.
  • X 1 and X 2 each independently represent a hydrogen atom, a monovalent organic group having 1 to 10 carbon atoms or a monovalent alkylsilyl group having 1 to 10 carbon atoms.
  • the polyimide precursor according to the embodiment of the present invention has the following effects by including the structure represented by the general formula (1) and the structural unit represented by the general formula (2). That is, by heating this polyimide precursor in the air for a short time, a polyimide having high transparency, high glass transition temperature (Tg), low in-plane / out-of-plane birefringence, and good substrate adhesion can be efficiently produced. You can get well.
  • the structural unit represented by the general formula (2) is a structural unit of a compound that is repeated in the polyimide precursor according to the embodiment of the present invention.
  • this structural unit is appropriately referred to as “repeating structural unit” or simply “repeating unit”. This applies not only to the structural unit represented by the general formula (2) but also to the structural unit represented by the general formula other than the general formula (2).
  • the polyimide precursor according to the embodiment of the present invention has a structure represented by the general formula (1) in at least one of an acid dianhydride residue and a diamine residue constituting polyimide. This improves the adhesion between the polyimide obtained from the polyimide precursor and the glass support substrate. It is considered that this is because the structure represented by the general formula (1) and the silanol group existing on the glass surface form a hydrogen bond to generate a strong interaction.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms in R 1 and R 2 include a hydrocarbon group, an alkoxy group and an epoxy group.
  • Examples of the hydrocarbon group for R 1 and R 2 include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and the like.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms, specifically, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t- Examples thereof include a butyl group, a pentyl group and a hexyl group.
  • the cycloalkyl group having 3 to 20 carbon atoms is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples thereof include a cyclopentyl group and a cyclohexyl group.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a tolyl group and a naphthyl group.
  • Examples of the alkoxy group for R 1 and R 2 include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, a phenoxy group, a propenyloxy group and a cyclohexyloxy group.
  • R 1 and R 2 in the general formula (1) are preferably a monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms or an aromatic group having 6 to 10 carbon atoms. This is because the polyimide precursor composition has good storage stability, and the obtained polyimide has high heat resistance.
  • the monovalent aliphatic hydrocarbon having 1 to 3 carbon atoms is preferably a methyl group.
  • the aromatic group having 6 to 10 carbon atoms is preferably a phenyl group.
  • At least one of R 1 and R 2 in the general formula (1) preferably contains an aromatic group. This is because phase separation due to having the structure represented by the general formula (1) is suppressed, and a highly transparent polyimide can be obtained.
  • the polyimide precursor according to the embodiment of the present invention contains the structure represented by the general formula (1) in an amount of 0.1% by mass or more and 30% by mass or less, when the total amount of the polyimide precursor is 100% by mass.
  • the structure represented by the general formula (1) is preferably contained in an amount of 5% by mass or more and 25% by mass or less, more preferably 8% by mass or more and 23% by mass or less. It is more preferable that the content is not less than mass% and not more than 22 mass%.
  • the proportion of the structure represented by the general formula (1) contained in the polyimide precursor is within the above range, the resulting polyimide becomes cloudy, the glass transition temperature is lowered, and the amount of gas generated during heating is suppressed from increasing. be able to.
  • M in the general formula (1) is an integer of 1 or more and 200 or less, preferably 2 or more and 150 or less, more preferably 5 or more and 100 or less, and further preferably 10 or more and 60 or less. It is an integer.
  • this integer m is within the above range, the adhesion between the polyimide and the glass substrate can be improved. Further, it is possible to prevent the polyimide resin film from becoming cloudy or to reduce the mechanical strength of the polyimide resin film, and further to reduce the residual stress of the polyimide resin film.
  • residual stress refers to the stress remaining inside the film after the resin composition is applied onto a substrate such as a glass substrate to form a film
  • warp that can occur in the film
  • the polyimide precursor according to the embodiment of the present invention contains the structure represented by the general formula (1) as described above, and contains the residue of the compound represented by the following general formula (4). Is preferred.
  • Such a polyimide precursor can be obtained by using the compound represented by the general formula (4) as one of the monomer components.
  • a plurality of R 5 's each independently represent a single bond or a divalent organic group having 1 to 10 carbon atoms.
  • a plurality of R 6 and R 7 are each independently a monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms or an aromatic group having 6 to 10 carbon atoms.
  • L is a group containing an amino group or a reactive derivative thereof or an acid dianhydride structure or a reactive derivative thereof.
  • y is an integer of 1 or more and 199 or less. This integer y is preferably 1 or more and 100 or less, and more preferably 1 or more and 60 or less.
  • the divalent organic group having 1 to 10 carbon atoms for R 5 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 3 to 10 carbon atoms, or an arylene having 6 to 10 carbon atoms. Groups and the like.
  • the alkylene group having 1 to 10 carbon atoms include methylene group, dimethylene group, trimethylene group, tetramethylene group, pentamethylene group and hexamethylene group.
  • Examples of the cycloalkylene group having 3 to 10 carbon atoms include cyclobutylene group, cyclopentylene group, cyclohexylene group, cycloheptylene group and the like.
  • the arylene group having 6 to 10 carbon atoms an aromatic group having 6 to 10 carbon atoms is preferable, and examples thereof include a phenylene group and a naphthylene group.
  • the divalent organic group having 1 to 10 carbon atoms in R 5 is preferably a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • each group in R 6 and R 7 include “a monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms” in R 1 and R 2 in the structure represented by the general formula (1).
  • the same ones as the “aromatic group having 6 to 10 carbon atoms” can be mentioned.
  • Examples of the reactive derivative of the amino group represented by L in the general formula (4) include an isocyanate group and a bis (trialkylsilyl) amino group.
  • L is an amino group
  • a specific example of the residue of the compound represented by the general formula (4) is X22-1660B-3 (manufactured by Shin-Etsu Chemical Co., Ltd., which is a methylphenyl silicone modified at both ends).
  • examples of the reactive derivative of the acid anhydride structure of L in the general formula (4) include an acid esterified product of dicarboxylic acid and an acid chloride of dicarboxylic acid.
  • Specific examples of L being a group containing an acid anhydride structure include groups represented by the following formulae.
  • L is a group containing an acid anhydride structure
  • specific examples of the compound represented by the general formula (4) include X22-168AS (manufactured by Shin-Etsu Chemical Co., Ltd., number average molecular weight 1,000), X22-168A.
  • L in the general formula (4) is It is more preferably an amino group.
  • the polyimide precursor according to the embodiment of the present invention is a residue of a compound represented by the general formula (4) and y is 1 or more and 20 or less (hereinafter, referred to as “the general formula (4). 1 is referred to as a “residue of the compound of 1”) and a residue of the compound represented by the general formula (4) and y is 21 or more and 60 or less (hereinafter, the second compound represented by the general formula (4)).
  • the residue of By including the residue of the first compound represented by the general formula (4) in the polyimide precursor, it is possible to obtain a polyimide having good adhesion to a supporting substrate, small haze, and good transparency. It will be possible.
  • the polyimide precursor contains the residue of the second compound represented by the general formula (4), the adhesion to the supporting substrate is good, the glass transition temperature is high, the residual stress is small, and the fracture is caused. It becomes possible to obtain a polyimide having excellent elongation. Therefore, when the polyimide precursor contains both the residue of the first compound and the residue of the second compound represented by the general formula (4), the adhesion to the supporting substrate is good and the transparency is high. It is possible to obtain a polyimide having a high breaking temperature, a high glass transition temperature, a small residual stress, and an excellent breaking elongation.
  • Y in the general formula (4) can be calculated, for example, by the following formula.
  • the compound represented by the general formula (4) is a compound in which both terminals are aminopropyl groups and all of R 6 and R 7 in the general formula (4) are methyl groups or phenyl groups. If the condition is satisfied, the following formula is established.
  • examples of the monovalent organic group having 1 to 10 carbon atoms in X 1 and X 2 include monovalent hydrocarbon groups having 1 to 10 carbon atoms.
  • examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms include an alkyl group having 1 to 10 carbon atoms.
  • Specific examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group and hexyl group.
  • Examples of the monovalent alkylsilyl group having 1 to 10 carbon atoms in X 1 and X 2 include a monovalent silyl group having an alkyl group having 1 to 10 carbon atoms bonded thereto.
  • Specific examples of the monovalent alkylsilyl group having 1 to 10 carbon atoms include a trimethylsilyl group and a triethylsilyl group.
  • R 3 is a divalent organic group represented by general formula (3) as described above, and is preferably a diamine residue.
  • R 4 is a residue of an aromatic tetracarboxylic acid or its derivative. The carbon number of R 4 is preferably 6 to 40.
  • Examples of the diamine that provides R 3 include 2,2′-bis (trifluoromethyl) -4,4′-diaminodiphenyl ether (6FODA) and 2,2′-bis (trifluoromethyl) -3,3′- Examples include diaminodiphenyl ether and 3,3′-bis (trifluoromethyl) -4,4′-diaminodiphenyl ether.
  • R 3 in the general formula (2) is a diamine residue having a structure represented by the general formula (3), it has a flexible ether bond at the center of the structure of the diamine residue. Therefore, the orientation of the polyimide obtained by imidizing the polyimide precursor according to the embodiment of the present invention can be suppressed, and as a result, a polyimide resin film having small in-plane / out-of-plane birefringence can be obtained. .. Further, the diamine residue as R 3 has a trifluoromethyl group which is an electrophilic functional group. Therefore, intramolecular and intermolecular electron transfer in the polyimide precursor is suppressed, and it is possible to obtain a highly transparent polyimide resin film.
  • the polyimide precursor according to the embodiment of the present invention may contain 30 mol% or more of the divalent organic group structural unit represented by the general formula (3) in all diamine residues contained in the polyimide precursor. Preferably, it is more preferably 50 mol% or more.
  • the upper limit of the content of the structural unit is not particularly limited, but is preferably 100 mol% or less.
  • Examples of the tetracarboxylic acid giving R 4 in the general formula (2) include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetra Carboxylic acid, 2,2 ', 3,3'-biphenyltetracarboxylic acid, 3,3', 4,4'-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4 -Dicarboxyphenyl) ether, 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) propane, 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene, 4 , 4 '-(hexafluoroisopropylidene) diphthalic acid and the like.
  • tetracarboxylic acids may be used as they are, or may be used in the form of tetracarboxylic acid derivatives such as acid anhydrides, active esters and active amides.
  • acid anhydrides are preferably used because by-products do not occur during polymerization.
  • these tetracarboxylic acid derivatives may be used in combination of two or more kinds.
  • R 4 in the general formula (2) is preferably a tetravalent organic group represented by the following general formula (5).
  • Y 1 is a direct bond or has 1 to 3 carbon atoms which may be substituted with one or more selected from the group consisting of oxygen atom, sulfur atom, sulfonyl group and halogen atom. It is a divalent organic group or a divalent crosslinked structure selected from the group consisting of organic groups having 1 to 20 carbon atoms having an ester bond, an amide bond, a carbonyl group, a sulfide bond and an aromatic ring.
  • Examples of the compound giving the structure represented by the general formula (5) include 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,2 ', 3,3'-biphenyl tetracarboxylic acid, 3,3', 4,4'-benzophenone tetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) ether , 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene, 4,4 ′-(hexafluoroisopropylidene) diphthalic acid and the like.
  • R 4 in the general formula (2) is selected from the structure represented by the general formula (6), the structure represented by the general formula (7), and the structure represented by the general formula (8). It is particularly preferable that the aromatic tetracarboxylic acid residue contains at least one structure.
  • R 4 includes the structure represented by the general formula (6) a polyimide having a high glass transition temperature can be obtained.
  • R 4 includes the structure represented by the general formula (7) a polyimide having high transparency, low in-plane / out-of-plane birefringence, and high glass transition temperature can be obtained.
  • R 4 includes the structure represented by the general formula (8) a polyimide having high transparency and small in-plane / out-of-plane birefringence can be obtained.
  • the polyimide precursor according to the embodiment of the present invention preferably contains 5 mol% or more and 55 mol% or less of acid anhydride residues having a fluorene skeleton in all acid dianhydride residues contained in the polyimide precursor, It is more preferable that the content is 10 mol% or more and 45 mol% or less. This makes it possible to obtain a polyimide having a smaller in-plane / out-of-plane birefringence.
  • Examples of the structure of the acid anhydride residue having a fluorene skeleton include the structure represented by the above general formula (7).
  • the polyimide precursor according to the embodiment of the present invention preferably contains a residue of the diamine represented by the general formula (9).
  • R 8 is a substituted or unsubstituted phenyl group.
  • s represents an integer of 1 or more and 4 or less.
  • R 8 is preferably a phenyl group or a phenyl group substituted with a phenyl group.
  • R 8 is a phenyl group or a biphenyl group.
  • the diamine represented by the general formula (9) always has a structure containing a carboxyl group. Therefore, in the polyimide precursor containing the residue of the diamine represented by the general formula (9), hydrogen bonds are strongly formed between the molecules and the intermolecular interaction is strengthened. By using such a polyimide precursor, a polyimide having a high glass transition temperature and excellent mechanical strength can be obtained.
  • Examples of the diamine represented by the general formula (9) include those represented by the following general formula (10).
  • the diamine represented by the general formula (10) is specifically 3,5-diaminobenzoic acid, 3,4-diaminobenzoic acid, 2,3-diaminobenzoic acid, or 2,6-diaminobenzoic acid. is there.
  • the diamine represented by the general formula (9) is not limited to the specific examples of the diamine represented by the general formula (10).
  • the polyimide precursor according to the embodiment of the present invention may contain the residue of the diamine represented by the general formula (9) in an amount of 1 mol% or more and 50 mol% or less, when the total amount of the polyimide precursor is 100 mol%. preferable. Further, the polyimide precursor more preferably contains 5 mol% or more and 40 mol% or less of the residue of the diamine represented by the general formula (9), and further preferably 10 mol% or more and 35 mol% or less.
  • the polyimide precursor according to the embodiment of the present invention may include a triamine skeleton.
  • Triamine has three amino groups and forms a branched molecular chain by combining with three tetracarboxylic dianhydride components.
  • the triamine skeleton introduces a branched structure into the molecular chain of polyamic acid to form a branched polyamic acid.
  • the viscosity of the varnish in which the polyimide precursor is dissolved can be improved, and the film thickness uniformity when the coating is performed with the slit can be improved.
  • a polyimide precursor having such a triamine skeleton can be obtained by using a triamine compound as one of the polymerization components.
  • those having no aliphatic group include 2,4,4′-triaminodiphenyl ether (TAPE), 1,3,5-tris (4-aminophenoxy) benzene (1,3 , 5-TAPOB), 1,2,3-tris (4-aminophenoxy) benzene (1,2,3-TAPOB), tris (4-aminophenyl) amine, 1,3,5-tris (4-amino) Examples thereof include phenyl) benzene and 3,4,4′-triaminodiphenyl ether.
  • Specific examples of the triamine compound having an aliphatic group include tris (2-aminoethyl) amine (TAEA) and tris (3-aminopropyl) amine.
  • triamine forms the branch of the crosslinked structure in the molecular chain of the polyimide resin.
  • the triamine component it is preferable to use a component that does not have an aliphatic group and is not easily thermally decomposed. That is, 2,4,4'-triaminodiphenyl ether (TAPE), 1,3,5-tris (4-aminophenoxy) benzene (1,3,5-TAPOB), 1,2,3-tris (4- Aminophenoxy) benzene (1,2,3-TAPOB) and the like are preferably used.
  • TAPE 2,4,4'-triaminodiphenyl ether
  • 1,3,5-tris (4-aminophenoxy) benzene 1,3,5-TAPOB
  • 1,2,3-tris (4- Aminophenoxy) benzene 1,2,3-TAPOB
  • the polyimide precursor according to the embodiment of the present invention may include a tetraamine skeleton.
  • Tetraamine has four amino groups and forms a branched molecular chain by combining with four tetracarboxylic acid dianhydride components.
  • the tetraamine skeleton introduces a branched structure into the molecular chain of the polyamic acid to form a branched polyamic acid. This makes it possible to improve the viscosity of the varnish in which the polyimide precursor is melted, and it is possible to improve the film thickness uniformity when the coating is performed with the slit.
  • the molecular weight of a polyimide obtained from a polyimide precursor having a branched structure is larger than that of a polyimide precursor having no branched structure, it is possible to obtain a polyimide having excellent mechanical strength.
  • the glass transition temperature of the polyimide can be improved by including the tetraamine skeleton. It is considered that this is because when the tetracarboxylic dianhydride and tetraamine are reacted, a benzimidazole structure having high heat resistance is partly produced.
  • a polyimide precursor having such a tetraamine skeleton can be obtained by using a tetraamine compound as one of the polymerization components.
  • tetraamine compound examples include 1,2,4,5-tetraaminobenzene, 3,3 ′, 4,4′-tetraaminobiphenyl, 3,3 ′, 4,4′-tetraaminodiphenyl sulfone, 3, 3 ', 4,4'-tetraaminodiphenyl ether, 3,3', 4,4'-tetraaminodiphenyl sulfide, 2,3,6,7-tetraaminonaphthalene, 1,2,5,6-tetraaminonaphthalene And so on.
  • specific examples of the tetraamine compound include compounds obtained by substituting a part of hydrogen bonded to the aromatic ring contained in these polyvalent amine compounds or diamine compounds with hydrocarbon or halogen.
  • the tetraamine component similarly to the above triamine, it is preferable to use a component that does not have an aliphatic group and is less likely to be thermally decomposed, and further that it has an electron withdrawing group because it improves transparency. preferable. That is, it is preferable to use 3,3 ', 4,4'-tetraaminodiphenyl sulfone or the like.
  • the electron-withdrawing group generally has a Hammett's substituent constant (para position, ⁇ p) of more than 0, preferably 0.01 or more, and more preferably 0.1 or more. , 0.5 or more is particularly preferable.
  • the Hammett's substituent constant is described, for example, in "Chemical Handbook", edited by The Chemical Society of Japan, revised 5th edition, Part II, Maruzen Co., Ltd., February 2004, p. 380.
  • Examples of the electron-withdrawing group include a halogen atom, a cyano group, a carbonyl group having a hydrogen atom or a substituent, a nitro group, a perfluoroalkyl group such as a trifluoromethyl group, a sulfonyl group, and the like.
  • Examples of the halogen atom include a fluorine atom, a bromine atom, a chlorine atom and an iodine atom.
  • the polyimide precursor according to the embodiment of the present invention may include another structural unit other than the above-mentioned structural unit within a range that does not impair the effects of the present invention.
  • Examples of other structural units include polyimide, which is a dehydrated ring-closed product of polyamic acid, and polybenzoxazole, which is a dehydrated ring-closed product of polyhydroxyamide.
  • Examples of the acid dianhydride used for other structural units include aromatic acid dianhydrides, alicyclic acid dianhydrides, and aliphatic acid dianhydrides described in WO 2017/099183.
  • Examples of the diamine compound used in the other structural unit include aromatic diamines, alicyclic diamines, and aliphatic diamines described in International Publication No. 2017/099183.
  • a part of the structural unit (for example, the structural unit represented by the general formula (2)) contained in the polyimide precursor may be imidized.
  • the range of imidization ratio of the polyimide precursor is preferably 1% or more and 50% or less from the viewpoint of solubility in a solution and viscosity stability.
  • the lower limit of this imidization ratio is more preferably 5% or more.
  • the upper limit of the imidization ratio is more preferably 30% or less.
  • Examples of the partially imidized polyimide precursor include a resin having a repeating unit represented by the general formula (11), a resin having a repeating unit represented by the general formula (12), and a general formula (13).
  • R 9 represents a divalent organic group.
  • R 10 represents a tetravalent organic group.
  • W 1 and W 2 each independently represent a hydrogen atom, a monovalent organic group having 1 to 10 carbon atoms or a monovalent alkylsilyl group having 1 to 10 carbon atoms.
  • the divalent organic group for R 9 is the same as the above diamine residue.
  • the tetravalent organic group for R 10 is the same as the above-mentioned tetracarboxylic acid residue.
  • the weight average molecular weight (Mw) of the polyimide precursor according to the embodiment of the present invention is preferably 10,000 to 1,000,000, more preferably 10,000 to 500,000, and further preferably It is 20,000 to 400,000.
  • the number average molecular weight (Mn) of the polyimide precursor is 5,000 to 1,000,000, preferably 5,000 to 500,000, and particularly preferably 15,000 to 300,000.
  • the weight average molecular weight and the number average molecular weight of the polyimide precursor are within the above range, it is possible to increase the strength of the polyimide resin film obtained after curing without deteriorating the flatness of the coating film of the obtained polyimide resin. Is.
  • the weight average molecular weight, the number average molecular weight and the molecular weight distribution are the DP-8020 type GPC device (guard column: TSK guard colon ALPHA column: TSK-GEL ⁇ -M, developing solvent: N, N '). -Dimethylacetamide (DMAc), 0.05M-LiCl, 0.05% phosphoric acid added).
  • the polyimide precursor according to the embodiment of the present invention may have the ends blocked with a terminal blocking agent.
  • the molecular weight of the polyimide precursor can be adjusted to a preferable range by reacting the terminal of the polyimide precursor with an end-capping agent.
  • the terminal monomer in the polyimide precursor is a diamine compound
  • dicarboxylic acid anhydride, monocarboxylic acid, monocarboxylic acid chloride compound, monocarboxylic acid active ester compound , A dialkyl dicarbonate and the like can be used as the end capping agent.
  • a monoamine, a monoalcohol or the like can be used as an end capping agent in order to seal the acid anhydride group of the acid dianhydride. ..
  • the polyimide precursor according to the embodiment of the present invention can be made into a polyimide precursor composition by mixing with a suitable component.
  • the components that may be contained in this polyimide precursor composition are not particularly limited, but include solvents, ultraviolet absorbers, coupling agents, thermal crosslinking agents, inorganic fillers, surfactants, internal release agents, colorants, etc. Is mentioned.
  • the solvent contained in the polyimide precursor composition is not particularly limited, and known solvents can be used.
  • the solvent N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutyramide, 3-methoxy-N, N-dimethylpropionamide, 3- Butoxy-N, N-dimethylpropionamide, ⁇ -butyrolactone, ethyl lactate, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropyleneurea, 1,1,3,3-tetramethylurea, Examples thereof include dimethyl sulfoxide, sulfolane, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, water, and the solvents described in International Publication No.
  • the solvent preferably contains an aprotic polar solvent such as N-methyl-2-pyrrolidone or N, N-dimethylformamide, and particularly preferably N-methyl-2-pyrrolidone.
  • the lower limit of the content of the solvent in the polyimide precursor composition is preferably 200 parts by weight or more, and more preferably 300 parts by weight or more, with respect to 100 parts by weight of the polyimide precursor.
  • the upper limit of the content of the solvent is preferably 2,000 parts by weight or less, more preferably 1,500 parts by weight or less.
  • the concentration and viscosity of the polyimide precursor composition are suitable for coating. As a result, good film thickness uniformity can be obtained when the polyimide precursor composition is applied with a slit coater.
  • the polyimide precursor composition according to the embodiment of the present invention may contain a surfactant.
  • the surfactant include fluorine-based surfactants such as Florard (trade name, manufactured by Sumitomo 3M), Megafac (trade name, manufactured by DIC), Sulfuron (trade name, manufactured by Asahi Glass Co., Ltd.).
  • the surfactant include organic siloxane surfactants such as KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), polyflow, Granol (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), and BYK (manufactured by BYK Chemie). Can be mentioned.
  • the surfactant examples include polyoxyalkylene lauryl ether such as Emulmine (manufactured by Sanyo Kasei Co., Ltd.), polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, and polyoxyethylene cetyl ether surfactant. Further, examples of the surfactant include acrylic polymer surfactants such as Polyflow (trade name, manufactured by Kyoeisha Chemical Co., Ltd.). The content of the surfactant contained in the polyimide precursor composition is preferably 0.001 part by weight or more and 1 part by weight or less based on 100 parts by weight of the polyimide precursor.
  • a coupling agent such as a silane coupling agent or a titanium coupling agent can be added to the polyimide precursor composition according to the embodiment of the present invention in order to improve the adhesiveness to the substrate.
  • Known coupling agents can be used as the coupling agent.
  • the content of the coupling agent contained in the polyimide precursor composition is preferably 0.01% by weight or more and 2% by weight or less based on 100% by weight of the polyimide precursor.
  • the polyimide precursor composition according to the embodiment of the present invention may contain an ultraviolet absorber.
  • an ultraviolet absorber By the polyimide precursor composition containing an ultraviolet absorber, the polyimide obtained from the polyimide precursor composition for a long period of time, the physical properties such as transparency and mechanical properties of the polyimide when exposed to sunlight are greatly reduced. Suppressed.
  • the ultraviolet absorber is not particularly limited, and known ones can be used, but from the viewpoint of transparency and non-coloring property, a benzotriazole compound, a benzophenone compound, and a triazine compound are preferably used.
  • the content of the ultraviolet absorber contained in the polyimide precursor composition is preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyimide precursor.
  • the polyimide precursor composition contains the ultraviolet absorber within the above range, the light resistance of the obtained polyimide can be improved without impairing the transparency of the obtained polyimide.
  • the polyimide precursor can be synthesized by a polymerization reaction of a diamine compound and a tetracarboxylic acid or a derivative thereof, as exemplified by polyamic acid, polyamic acid ester, polyamic acid silyl ester and the like.
  • examples of the tetracarboxylic acid derivative include tetracarboxylic acid anhydrides, active esters, and active amides.
  • the reaction method of the polymerization reaction is not particularly limited as long as the desired polyimide precursor can be produced, and a known reaction method can be used.
  • the polyimide precursor obtained by such a reaction method may be a polyimide precursor composition by appropriately adding the above-mentioned components such as a solvent, a surfactant, an internal release agent and a coupling agent.
  • the water content in the polyimide precursor or the polyimide precursor composition obtained as described above is preferably 0.05% by mass or more and 3.0% by mass or less.
  • the water content referred to here is a value measured by the Karl Fischer method for a solution having this liquid temperature after adjusting the liquid temperature of the target solution to 23 ° C.
  • a Karl Fischer water content titrator for example, "MKS-520" (trade name, manufactured by Kyoto Electronics Manufacturing Co., Ltd.)
  • JIS K0068 2001
  • the polyimide according to the embodiment of the present invention is obtained by imidizing the above polyimide precursor.
  • the above-mentioned polyimide precursor composition is obtained by adding the above-mentioned components such as a solvent to the polyimide precursor according to the embodiment of the present invention, and contains the polyimide precursor. That is, the polyimide according to the embodiment of the present invention can be synthesized by imidizing the above polyimide precursor composition.
  • a polyimide obtained by imidizing a polyimide precursor will be described.
  • the imidization method is not particularly limited, but examples of the imidization method in the present invention include imidization by heating and chemical imidization. Above all, imidization by heating is preferable from the viewpoint of heat resistance of the obtained polyimide and transparency in the visible light region.
  • the imidization by heating it is preferable to heat the polyimide precursor in the range of 180 ° C. or higher and 550 ° C. or lower to convert it into polyimide.
  • the imidization by heating is appropriately referred to as thermal imidization.
  • the step of performing thermal imidization is appropriately referred to as a thermal imidization step.
  • the thermal imidization step is a step of evaporating a solvent from the coating film of the polyimide precursor (hereinafter, appropriately referred to as a drying step). It may be performed after a certain process after.
  • the coating film of the polyimide precursor may be vacuum dried or heat dried, but in consideration of the transparency of the polyimide resin film after imidization, it is preferable to evaporate the solvent without clouding.
  • a hot plate, an oven, an infrared ray, a vacuum chamber or the like is used to dry the coating film of the polyimide precursor.
  • the heating temperature for drying varies depending on the kind and purpose of the object to be heated, and it is preferable to perform heating in the range of room temperature to 170 ° C. for 1 minute to several hours. Room temperature is usually 20 to 30 ° C, preferably 25 ° C. Further, the drying step may be performed multiple times under the same condition or different conditions.
  • the atmosphere of the thermal imidization process is not particularly limited, and may be air or an inert gas such as nitrogen or argon.
  • the polyimide precursor according to the embodiment of the present invention has high resistance to oxidation. Therefore, in the thermal imidization step, a transparent polyimide resin film can be obtained by heating the coating film of the polyimide precursor for 30 minutes to 2 hours in an air atmosphere using an oven.
  • the time required to reach the heating temperature for thermal imidization is not particularly limited, and a heating method can be selected according to the heating type of the production line.
  • the coating film of the polyimide precursor formed on the substrate may be heated in an oven from room temperature to a heating temperature for thermal imidization over 5 to 120 minutes.
  • the coating film of the polyimide precursor formed on the substrate may be directly put into an oven which has been heated to a temperature in the range of 180 ° C. or more and 550 ° C. or less and heated.
  • the coating film of the polyimide precursor may be heated under reduced pressure, if necessary.
  • a polyimide obtained by imidizing a polyimide precursor was illustrated, but the present invention is not limited to this, and a polyimide can be obtained by imidizing a polyimide precursor composition.
  • the target polyimide can be obtained by substituting the “polyimide precursor composition” for the “polyimide precursor” in the thermal imidization step and the drying step described above and performing each of these steps.
  • the polyimide according to the embodiment of the present invention can also be expressed as a polyimide including a structure represented by the general formula (1) and a structural unit represented by the general formula (14).
  • R 1 and R 2 each independently represent a monovalent organic group having 1 to 20 carbon atoms.
  • m represents an integer of 1 or more and 200 or less.
  • R 3 represents a divalent organic group represented by general formula (3).
  • R 4 represents an aromatic tetracarboxylic acid residue.
  • R 1 to R 4 in the general formulas (1) and (14) are the same as those described for the above-mentioned polyimide precursor.
  • This polyimide preferably contains 0.1% by mass or more and 30% by mass or less of the structure represented by the general formula (1) when the total amount of the polyimide is 100% by mass. Moreover, it is preferable that this polyimide contains 30 mol% or more of the structural unit of the divalent organic group represented by General formula (3) among all the diamine residues contained in the said polyimide.
  • the polyimide resin film according to the embodiment of the present invention is a film containing the above-described polyimide according to the embodiment of the present invention.
  • the polyimide resin film according to the embodiment of the present invention will be appropriately abbreviated as “polyimide resin film”.
  • the polyimide resin film can be obtained, for example, by the following method.
  • a coating film forming step of applying a polyimide precursor according to an embodiment of the present invention on a substrate to form a coating film a drying step of evaporating a solvent from the coating film, and , A method including an imidization step of imidizing a polyimide precursor.
  • a coating film of a polyimide precursor is formed by applying the above-mentioned polyimide precursor on a substrate in a coating film forming step.
  • the method for applying the polyimide precursor on a substrate to form a coating film include a roll coating method, a spin coating method, a slit coating method, and a method of applying using a doctor blade, a coater or the like.
  • the thickness and surface smoothness of the coating film may be controlled by repeating the coating.
  • the slit die coating method is preferable from the viewpoint of surface smoothness and film thickness uniformity of the coating film.
  • the thickness of the coating film is appropriately selected according to the desired application and is not particularly limited, but is, for example, 1 to 500 ⁇ m, preferably 2 to 250 ⁇ m, and particularly preferably 5 to 125 ⁇ m.
  • the substrate include polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polybutylene terephthalate (PBT) film, silicon wafer, glass wafer, oxide wafer, glass substrate, Cu substrate and SUS plate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • silicon wafer glass wafer
  • oxide wafer glass substrate
  • Cu substrate and SUS plate a glass substrate is preferable from the viewpoint of surface smoothness and dimensional stability during heating. From the viewpoint of dimensional stability, non-alkali glass is particularly preferable as the glass constituting the glass substrate.
  • the coating film on the substrate is dried by evaporating the solvent.
  • this coating film may be vacuum dried or heat dried, but in consideration of the transparency of the polyimide resin film after imidization, it is preferable to evaporate the solvent without clouding.
  • a hot plate, an oven, infrared rays, a vacuum chamber or the like is used for drying the coating film in the drying step.
  • the heating temperature for drying varies depending on the type and purpose of the object to be heated such as a coating film, and it is preferable to carry out the heating from room temperature to 170 ° C. for 1 minute to several hours.
  • Room temperature is usually 20 to 30 ° C, preferably 25 ° C.
  • the drying step may be performed multiple times under the same condition or different conditions.
  • the polyimide precursor in the coating film on the substrate is imidized, whereby a polyimide resin film is formed on the substrate.
  • the polyimide resin film obtained through the above steps can be peeled from the substrate and used, or can be used as it is without peeling.
  • the thickness of the polyimide resin film obtained as described above is appropriately selected according to the desired application, but is preferably 1 to 100 ⁇ m, more preferably 5 to 30 ⁇ m, and particularly preferably 7 to 20 ⁇ m. is there.
  • the polyimide resin film obtained by imidizing the coating film of the polyimide precursor is illustrated, but the present invention is not limited to this, and the polyimide coating film of the polyimide precursor composition is imidized to form a polyimide film. It is also possible to obtain a resin film.
  • the target polyimide resin film can be obtained by replacing the “polyimide precursor” in each step such as the thermal imidization step described above with the “polyimide precursor composition” and performing each of the above steps.
  • the glass transition temperature of the polyimide resin film (that is, the polyimide resin film according to the embodiment of the present invention) obtained as described above is preferably 240 ° C. or higher, and more preferably 250 ° C. or higher.
  • the density of the polyimide resin film according to an embodiment of the present invention is preferably not more than 1.20 g / cm 3 or more 1.43g / cm 3, 1.23g / cm 3 or more 1.40 g / cm 3 The following is more preferable.
  • the density of the polyimide resin film has a correlation with the intermolecular interaction, and the stronger the intermolecular interaction, the higher the density. Therefore, when the density of the polyimide resin film is high, it is possible to obtain a polyimide resin film having a high glass transition temperature. On the other hand, when the intermolecular interaction is weak, voids are formed between the molecules, so that a polyimide resin film having small in-plane / out-of-plane birefringence can be obtained.
  • the internal stress is relaxed by this void, it is possible to suppress the warp of the substrate formed of the polyimide resin film. Therefore, when the density of the polyimide resin film is 1.20 g / cm 3 or more and 1.43 g / cm 3 or less, the glass transition temperature is high and the in-plane / out-of-plane birefringence because the intermolecular interaction is in the preferable range. It is possible to obtain a polyimide resin film which is small in size and can suppress the warp of the substrate.
  • the in-plane / out-of-plane birefringence of the polyimide resin film according to the embodiment of the present invention is preferably 0.01 or less, and more preferably 0.005 or less.
  • the in-plane / out-of-plane birefringence of the polyimide resin film is 0.01 or less, color shift when viewed from an oblique direction is prevented, and external light reflection when using a circularly polarizing film is suppressed. be able to.
  • the yellowness of the polyimide resin film according to the embodiment of the present invention is preferably 3 or less.
  • the degree of yellowness of the polyimide resin film is 3 or less, it is possible to form a flexible substrate with suppressed yellowness. Furthermore, by using this flexible substrate, it is possible to manufacture a flexible device with a suppressed yellow tint.
  • the polyimide precursor, the polyimide and the polyimide resin film containing the polyimide according to the embodiment of the present invention can be used for an electronic device. More specifically, it can be used for a display device such as a liquid crystal display, an organic EL display, a touch panel, electronic paper, a color filter, a micro LED display, a solar cell, a light receiving device such as a CMOS, and the like. These electronic devices are preferably flexible devices.
  • a flexible device according to an embodiment of the present invention includes the above-mentioned polyimide resin film.
  • the above-mentioned polyimide resin film is preferably used as a substrate in an electronic device such as the flexible device, particularly as a flexible substrate.
  • ⁇ Material> As the acid dianhydride, those shown below are appropriately used.
  • ODPA 3,3 ', 4,4'-diphenyl ether tetracarboxylic dianhydride
  • BPAF 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene dianhydride
  • CBDA Cyclobutane tetracarboxylic dianhydride
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • MMBAc 3-methoxy-3-methyl-1-butylacetate
  • the hot plate was previously heated to 120 ° C., and the coating film of the varnish was dried for 6 minutes.
  • the prebaked film thus obtained was cured in the air at 240 ° C. for 60 minutes using an oven (“IHPS-222”; manufactured by Espec Corporation), whereby the above-mentioned alkali-free glass substrate (first A polyimide resin film was formed on the glass substrate 1).
  • the second glass substrate was the same as the first item except that a glass substrate (Tempax) having a thickness of 50 mm ⁇ 50 mm ⁇ 1.1 mm was used.
  • a polyimide resin film was formed on the glass substrate of No. 2.
  • the coating film of the varnish was pre-baked using a heating type vacuum dryer and a hot plate.
  • the heating type vacuum dryer heated the upper plate to 60 ° C. and the lower plate to 40 ° C., and dried the coating film of the varnish under the condition that the internal pressure dropped to 60 Pa over 150 seconds.
  • the hot plate was previously heated to 120 ° C., and the coating film of the varnish was dried for 6 minutes.
  • the prebaked film thus obtained was cured in the air at 240 ° C. for 60 minutes using an oven, whereby a polyimide resin film was formed on the third glass substrate.
  • the measurement of the density of the polyimide resin film will be described.
  • the polyimide resin film (release film) shown in the second item is cut into a size of 40 mm ⁇ 40 mm to make a measurement sample, and a specific gravity measurement kit (AD-1653-BM, A & D
  • the density of the measurement sample was measured by Archimedes method in an atmosphere of room temperature of 25 ° C. and relative humidity of 65%. At this time, the immersion liquid for immersing the measurement sample was water.
  • the measurement of the density was performed twice for one measurement sample, and the average value was used as the density (g / cm 3 ) of the measurement sample.
  • In-plane / out-of-plane birefringence was calculated as the difference between n (TE) and n (TM) (n (TE) -n (TM)).
  • the polyimide resin film (release film) shown in the second item was used for this measurement.
  • excellent, excellent, good, and defective were judged by the following evaluation methods.
  • the main measurement was performed at a temperature rising rate of 10 ° C./min, and the 1% thermal weight loss temperature of the polyimide resin film was determined.
  • the polyimide resin film (release film) shown in the second item was used for this measurement.
  • Tg Measurement of glass transition temperature
  • a thermomechanical analyzer EXSTAR6000TMA / SS6000 manufactured by SII Nano Technology Inc.
  • the temperature raising method was performed under the following conditions. In the first step, the temperature was raised to 150 ° C. at a temperature rising rate of 5 ° C./min to remove the adsorbed water of the sample of the polyimide resin film, and in the second step, the temperature was lowered to 5 ° C./min to room temperature. In the third step, main measurement was performed at a temperature rising rate of 5 ° C./min to determine the glass transition temperature of this sample.
  • the polyimide resin film (release film) shown in the second item was used for this measurement.
  • the breaking elongation was measured for 10 samples for each polyimide resin film sample, and the average value of the top 5 points of the measurement results of these 10 samples was determined as the breaking elongation.
  • the breaking elongation was evaluated as excellent, excellent, good or defective by the following evaluation methods. Excellent (A): Breaking elongation is 40% or more and excellent (B): Breaking elongation is 25% or more and less than 40% Good (C): Breaking elongation is 10% or more and less than 25% Poor (D): Breaking elongation Is less than 10%
  • the residual stress in the 13th item was measured using a thin film stress measuring device (FLX-3300-T) manufactured by KLA-Tencor.
  • FLX-3300-T thin film stress measuring device
  • the polyimide resin film (on the silicon substrate) shown in the fifth item was used.
  • the polyimide resin film was dehydrated and baked by heating it at 150 ° C. for 30 minutes in a nitrogen atmosphere before measurement, then cooled to 30 ° C. in a nitrogen atmosphere, and the polyimide resin after drying at 30 ° C. The residual stress of the film was measured.
  • the fourteenth item measurement of substrate warp will be described.
  • a test plate was placed on a precision stone surface plate (1000 mm ⁇ 1000 mm) manufactured by Mitutoyo Co., Ltd. so that the glass of the test plate and the precision stone surface plate were in contact with each other.
  • the test plate was the polyimide resin film (on the third glass substrate) shown in the fourth item. Then, the amount (distance) at which the test plate floats from the precision stone surface plate is measured at each of the midpoints of the four sides of the test plate and at each apex using a gap gauge, and the average value of these is measured.
  • the amount of warpage of the test plate that is, the amount of substrate warpage was used. In addition, this measurement was performed in an environment of room temperature of 23 ° C. and humidity of 55%.
  • the substrate warpage was evaluated as excellent, excellent, good or defective by the following evaluation methods.
  • Excellent A: Substrate warp is less than 0.21 mm
  • Excellent B: Substrate warp is 0.21 mm or more and less than 0.28 mm
  • Good Substrate warpage is 0.28 mm or more and less than 0.35 mm
  • D Substrate Warpage is 0.35 mm or more
  • the fifteenth item Measurement of substrate adhesion (90 ° peel test)
  • measurement of substrate adhesion will be described.
  • the polyimide resin film (on the first glass substrate) shown in the first item was cut into a 10 mm width and a 100 mm length to obtain a measurement sample.
  • a 90 ° peel test was performed at a pulling speed of 50 mm / min.
  • Excellent 90 ° peel strength of 1.5 N / cm or more
  • Excellent 90 ° peel strength of 1.0 N / cm or more and less than 1.5 N / cm
  • Good 90 ° peel strength of 0. 5 N / cm or more and less than 1.0 N / cm
  • Defect 90 ° peel strength less than 0.5 N / cm
  • Excellent No wrinkles were observed on the entire surface of the laminated body, and the surface of the laminated body was excellent.
  • B Wrinkles were observed on a part of the laminated body, but the area of the wrinkle-occurring portion was on the laminated body. 5% or less of the entire surface is good
  • C wrinkles are found in a part of the laminate, but the area of the wrinkles is 15% or less of the entire surface of the laminate
  • D the area of wrinkles is Over 30% of the entire surface of the laminate
  • Production Example 1 Preparation of resin black matrix
  • a black resin composition (for resin black matrix) made of polyamic acid in which a black pigment was dispersed was spin-coated on the SiON film of the laminate shown in the above 16th item, and the black resin composition The coating film of the product was dried on a hot plate at 130 ° C. for 10 minutes to form a black resin coating film.
  • a positive photoresist (“SRC-100” manufactured by Shipley Co., Ltd.) was spin-coated on the black resin coating film, and the positive photoresist was prebaked at 120 ° C. for 5 minutes on a hot plate.
  • Production Example 2 Preparation of colored layer
  • an acrylic resin photosensitive red resist was applied to the resin laminate in which the resin black matrix was patterned, produced in the above Production Example 1, and the film thickness at the black matrix opening after heat treatment was 2.0 ⁇ m. Then, spin coating was carried out so as to be 100 ° C. and prebaked for 10 minutes on a hot plate. As a result, a red colored layer was obtained. Next, using an ultraviolet light exposure device (PLA-5011 manufactured by Canon Inc.), the acrylic resin photosensitive red resist in the black matrix opening and a part of the area on the resin black matrix is made of chrome which allows light to pass through in an island shape.
  • PPA-5011 manufactured by Canon Inc.
  • Exposure was performed under a condition of 100 mJ / cm 2 (i-line conversion) through a photomask.
  • the exposed acrylic resin photosensitive red resist was developed by immersing it in a developing solution composed of a 0.2% aqueous solution of tetramethylammonium hydroxide. Subsequently, the red colored layer was washed with pure water and then heat-treated in an oven at 230 ° C. for 30 minutes, whereby red pixels were produced. In the same manner, green pixels made of an acrylic resin photosensitive green resist and blue pixels made of an acrylic resin photosensitive blue resist were produced. As a result, the intended color filter was obtained.
  • the rotation speed of the spinner was adjusted so that the thickness of the colored layer portion after the heat treatment was 2.5 ⁇ m, and the transparent resin composition was applied onto these pixels and the resin black matrix. Then, the coating film of this transparent resin composition was heat-treated in an oven at 230 ° C. for 30 minutes, thereby forming an overcoat layer.
  • FIG. 1 is a schematic cross-sectional view showing one structural example of a color filter including a polyimide resin film according to an embodiment of the present invention.
  • the color filter 6 includes a polyimide resin film 1 and a gas barrier layer 2.
  • the polyimide resin film 1 is an example of the polyimide resin film according to the embodiment of the present invention, and is produced by, for example, the method described in any one of the above-mentioned first to fifth items.
  • the gas barrier layer 2 is a layer that protects the polyimide resin film 1 from a gas such as oxygen, and is composed of, for example, the SiON film shown in the above-mentioned 16th item.
  • the gas barrier layer 2 is formed on the polyimide resin film 1.
  • the polyimide resin film 1 and the gas barrier layer 2 form the laminated body shown in the above-mentioned 16th item.
  • the color filter 6 includes a black matrix 3, a red pixel 4R, a green pixel 4G, a blue pixel 4B, and an overcoat layer 5 on the gas barrier layer 2.
  • the black matrix 3 is a resin black matrix formed on the gas barrier layer 2 by, for example, the method shown in the above-described manufacturing example 1.
  • the red pixel 4R is a red colored pixel.
  • the green pixel 4G is a green colored pixel.
  • the blue pixel 4B is a blue colored pixel.
  • These red pixel 4R, green pixel 4G, and blue pixel 4B are each formed by, for example, the method shown in the above-described manufacturing example 2.
  • the overcoat layer 5 is a layer that covers the black matrix 3, the red pixels 4R, the green pixels 4G, and the blue pixels 4B, and is formed by, for example, the method shown in the above-described manufacturing example 2.
  • Example 1 In Example 1, 6 FODA (12.60 g (37.5 mmol)), X-22-9409 (4.48 g (3.35 mmol)), and ODPA (12. 79 g (41.2 mmol)) and NMP (100 g) were added, and the mixture was heated with stirring at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 2 In Example 2, 6FODA (15.29 g (45.5 mmol)), SiDA (0.15 g (0.60 mmol)), and ODPA (14.43 g (46.46) in a 200 mL four-necked flask under a dry nitrogen stream. 5 mmol)) and NMP (100 g) were added, and the mixture was heated with stirring at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 3 In Example 3, 6 FODA (12.75 g (37.9 mmol)), X-22-1660B-3 (1.78 g (0.40 mmol)) and X- were added to a 200 mL four-necked flask under a stream of dry nitrogen. 22-9409 (2.70 g (2.02 mmol)), ODPA (12.64 g (40.8 mmol)) and NMP (100 g) were added, and the mixture was heated with stirring at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 4 In Example 4, 6FODA (12.81 g (38.1 mmol)), X-22-1660B-3 (2.30 g (0.52 mmol)), and X- were placed in a 200 mL four-necked flask under a stream of dry nitrogen. 22-9409 (2.16 g (1.61 mmol)), ODPA (12.61 g (40.6 mmol)) and NMP (100 g) were added, and the mixture was heated with stirring at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 5 (Example 5) In Example 5, 6FODA (12.84 g (38.2 mmol)), X-22-1660B-3 (3.50 g (0.80 mmol)), and X- were added to a 200 mL four-necked flask under a stream of dry nitrogen. 22-9409 (1.07 g (0.80 mmol)), ODPA (12.46 g (40.2 mmol)) and NMP (100 g) were added, and the mixture was heated with stirring at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 6 In Example 6, 6FODA (8.78 g (26.1 mmol)), BAFL (4.14 g (11.9 mmol)), and X-22-1660B-3 (in a 200 mL four-necked flask under a dry nitrogen stream, were used. 3.48 g (0.79 mmol)), X-22-9409 (1.06 g (0.79 mmol)), ODPA (12.40 g (40.0 mmol)) and NMP (100 g) were added, The mixture was heated and stirred at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 7 In Example 7, 6 FODA (12.87 g (38.3 mmol)), X-22-1660B-3 (2.25 g (0.51 mmol)), and X- were added to a 200 mL four-neck flask under a dry nitrogen stream. 22-9409 (0.68 g (0.51 mmol)), ODPA (8.62 g (27.8 mmol)), BPAF (5.46 g (11.9 mmol)) and NMP (100 g) were added, The mixture was heated and stirred at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 8 In Example 8, 6FODA (12.01 g (35.8 mmol)), X-22-1660B-3 (3.45 g (0.78 mmol)), and X- were added to a 200 mL four-neck flask under a dry nitrogen stream. 22-9409 (1.05 g (0.78 mmol)), ODPA (8.18 g (26.4 mmol)), BPAF (5.18 g (11.3 mmol)) and NMP (100 g) were added, The mixture was heated and stirred at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 9 In Example 9, 6FODA (7.87 g (23.4 mmol)), 3,5-DABA (2.54 g (16.7 mmol)) and X-22- were placed in a 200 mL four-necked flask under a stream of dry nitrogen. 1660B-3 (3.48 g (0.79 mmol)), X-22-9409 (1.06 g (0.79 mmol)), ODPA (9.14 g (29.5 mmol)), and BPAF (5.79 g) (12.6 mmol)) and NMP (100 g) were added, and the mixture was heated with stirring at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 10 (Example 10) In Example 10, 6FODA (10.06 g (29.9 mmol)), 3,5-DABA (1.20 g (7.87 mmol)) and X-22- were placed in a 200 mL four-necked flask under a stream of dry nitrogen. 1660B-3 (3.46 g (0.79 mmol)), X-22-9409 (1.06 g (0.79 mmol)), ODPA (8.63 g (27.8 mmol)), and BPAF (5.47 g) (11.9 mmol)) and NMP (100 g) were added, and the mixture was heated with stirring at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 11 In Example 11, 6FODA (11.11 g (33.0 mmol)), 3,5-DABA (0.59 g (3.84 mmol)) and X-22- were placed in a 200 mL four-necked flask under a dry nitrogen stream. 1660B-3 (3.38 g (0.77 mmol)), X-22-9409 (1.03 g (0.77 mmol)), ODPA (8.43 g (27.2 mmol)), and BPAF (5.34 g) (11.6 mmol)) and NMP (100 g) were added, and the mixture was heated with stirring at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 12 In Example 12, 6FODA (11.15 g (33.2 mmol)), X-22-1660B-3 (4.66 g (1.06 mmol)), and X- were placed in a 200 mL four-necked flask under a stream of dry nitrogen. 22-9409 (1.42 g (1.06 mmol)), ODPA (7.74 g (25.0 mmol)), BPAF (4.90 g (10.7 mmol)), and NMP (100 g), The mixture was heated and stirred at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 13 In Example 13, 6FODA (10.38 g (30.9 mmol)), X-22-1660B-3 (5.75 g (1.31 mmol)) and X- were added to a 200 mL four-necked flask under a stream of dry nitrogen. 22-9409 (1.75 g (1.31 mmol)), ODPA (7.34 g (23.7 mmol)), BPAF (4.65 g (10.2 mmol)) and NMP (100 g) were added, The mixture was heated and stirred at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 14 In Example 14, 6FODA (9.61 g (28.6 mmol)), X-22-1660B-3 (6.83 g (1.55 mmol)), and X- were added to a 200 mL four-necked flask under a stream of dry nitrogen. 22-9409 (2.08 g (1.55 mmol)), ODPA (6.95 g (22.4 mmol)), BPAF (4.40 g (9.60 mmol)), and NMP (100 g) were added, The mixture was heated and stirred at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 15 In Example 15, 6FODA (13.15 g (39.1 mmol)), X-22-9409 (1.07 g (0.80 mmol)) and ODPA (12. 26 g (39.5 mmol)), X-22-168-P5-B (3.39 g (0.81 mmol)) and NMP (100 g) were added, and the mixture was heated with stirring at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 16 In Example 16, 6FODA (13.22 g (39.3 mmol)), ODPA (11.98 g (38.6 mmol)) and X-22-168-P5- were placed in a 200 mL four-necked flask under a stream of dry nitrogen. B (4.67 g (1.11 mmol)) and NMP (100 g) were added, and the mixture was heated with stirring at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Example 17 In Example 17, 6FODA (12.95 g (38.5 mmol)), X-22-1660B-3 (4.53 g (1.03 mmol)), and ODPA (in a 200 mL four-necked flask, under a dry nitrogen stream, were used. 12.39 g (40.0 mmol)) and NMP (100 g) were added, and the mixture was heated with stirring at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Comparative example 2 In Comparative Example 2, 6FODA (15.46 g (46.0 mmol)), ODPA (14.41 g (46.4 mmol)), and NMP (100 g) were put into a 200 mL four-neck flask under a dry nitrogen stream. The mixture was heated and stirred at 80 ° C. After 5 hours, it was cooled to a varnish.
  • Comparative Example 1 since TFMB having high linearity was used, it is considered that the orientation of the polyimide progressed and the in-plane / out-of-plane birefringence of the obtained polyimide resin film increased.
  • Comparative Example 3 since CBDA, which is an alicyclic acid dianhydride, was used, it is considered that oxidative decomposition proceeded and yellowed when cured in an air atmosphere.
  • the polyimide precursor, polyimide, polyimide resin film, and flexible device according to the present invention have high transparency, high glass transition temperature, low in-plane / out-of-plane birefringence, and close contact with a supporting substrate. It is suitable for efficiently providing a polyimide having good properties, a polyimide resin film using the polyimide, and a flexible device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

ポリイミド前駆体は、一般式(1)で表される構造および一般式(2)で表される構造単位を含む。 (一般式(1)中、RおよびRは、各々独立に、炭素数1~20の一価の有機基を示す。mは、1以上200以下の整数を示す。) (一般式(2)中、Rは、一般式(3)で表される二価の有機基を示す。Rは、芳香族テトラカルボン酸残基を示す。XおよびXは、各々独立に、水素原子、炭素数1~10の一価の有機基または炭素数1~10の一価のアルキルシリル基を示す。)

Description

ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイス
 本発明は、ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイスに関する。
 有機フィルムは、ガラスに比べて屈曲性に富み、割れにくく、軽量といった特長を有する。最近では、フラットパネルディスプレイの基板を有機フィルムに替えることで、フラットパネルディスプレイをフレキシブル化する動きが活発化している。
 有機フィルムに用いられる樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリカーボネート、ポリエーテルスルホン、アクリル、エポキシ、シクロオレフィンポリマーなどが挙げられる。これらのうち、ポリイミドは、高耐熱性樹脂であることから、ディスプレイ基板として適している。しかしながら、一般的なポリイミド樹脂は、高い芳香環密度により、茶色又は黄色に着色し、可視光線領域での透過率が低く、透明性が要求される分野に用いることは困難であった。
 このようなポリイミド樹脂の透明性を向上するという課題に対して、特許文献1には、脂環式酸二無水物と水酸基とを有するアミン、具体的には2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン(HFHA)を用いたポリイミド樹脂膜が、高い耐熱性および光透過性を有するものとして開示されている。
 また、特許文献2には、空気中で焼成を行って得られる透明ポリイミド樹脂膜を用いてフレキシブルなタッチパネルを得る手法が開示されている。
国際公開第2013/24849号 国際公開第2018/84067号
 特許文献1には、高い透明性と低い面内/面外複屈折とを有するポリイミドが開示されている。しかし、特許文献1に記載のポリイミドでは、ポリイミド樹脂膜を製膜するためにイナートオーブンで長い時間をかけて焼成を行う必要があるため、ポリイミド樹脂膜の製膜に多大なコストおよび時間がかかるという問題があった。
 また、特許文献2には、空気中で30分間焼成を行うことで透明なポリイミド樹脂膜が得られる旨の開示がある。しかし、特許文献2に記載の透明ポリイミド樹脂膜は、ガラス転移温度が220℃~230℃程度の樹脂膜であり、タッチパネルやディスプレイ等のデバイスに用いられる樹脂膜としてはガラス転移温度が低いという問題があった。ガラス転移温度が低いポリイミド樹脂膜をデバイスに用いる場合、例えば、タッチパネルの信頼性を向上させるべく、ポリイミド樹脂膜上に無機膜を形成した後にタッチパネルやカラーフィルタを形成すると、無機膜にシワが発生し、表面平滑性が低下する。
 このように、現状では、透明性が高く、ガラス転移温度が高く、面内/面外複屈折が低く、さらに良好な基板密着性を有するポリイミドを効率よく得る方法は知られていない。
 本発明は、上記課題に鑑みてなされたものであり、透明性が高く、ガラス転移温度が高く、面内/面外複屈折が低く、支持基板との密着性が良好なポリイミドを効率よく得ることができるポリイミド前駆体を提供することを第1の目的とする。また、本発明は、このようなポリイミド前駆体を用いて得られるポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイスを提供することを第2の目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るポリイミド前駆体は、一般式(1)で表される構造および一般式(2)で表される構造単位を含む、ことを特徴とする。
Figure JPOXMLDOC01-appb-C000009
(一般式(1)中、RおよびRは、各々独立に、炭素数1~20の一価の有機基を示す。mは、1以上200以下の整数を示す。)
Figure JPOXMLDOC01-appb-C000010
(一般式(2)中、Rは、一般式(3)で表される二価の有機基を示す。Rは、芳香族テトラカルボン酸残基を示す。XおよびXは、各々独立に、水素原子、炭素数1~10の一価の有機基または炭素数1~10の一価のアルキルシリル基を示す。)
Figure JPOXMLDOC01-appb-C000011
 また、本発明に係るポリイミド前駆体は、上記の発明において、当該ポリイミド前駆体全体の量を100質量%とした場合、前記一般式(1)で表される構造を0.1質量%以上30質量%以下含む、ことを特徴とする。
 また、本発明に係るポリイミド前駆体は、上記の発明において、当該ポリイミド前駆体に含まれる全ジアミン残基中、前記一般式(3)で表される二価の有機基の構造単位を30mol%以上含む、ことを特徴とする。
 また、本発明に係るポリイミド前駆体は、上記の発明において、当該ポリイミド前駆体に含まれる全酸二無水物残基中、フルオレン骨格を有する酸無水物残基を5mol%以上55mol%以下含む、ことを特徴とする。
 また、本発明に係るポリイミド前駆体は、上記の発明において、下記一般式(4)で表される化合物の残基を含む、ことを特徴とする。
Figure JPOXMLDOC01-appb-C000012
(一般式(4)中、複数のRは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基である。複数のRおよびRは、それぞれ独立に、炭素数1~3の一価の脂肪族炭化水素基、または炭素数6~10の芳香族基である。Lは、アミノ基もしくはその反応性誘導体または酸二無水物構造もしくはその反応性誘導体を含む基である。yは、1以上199以下の整数である。)
 また、本発明に係るポリイミド前駆体は、上記の発明において、前記一般式(4)で表され且つyが1以上20以下である化合物の残基と、前記一般式(4)で表され且つyが21以上60以下である化合物の残基とを両方含む、ことを特徴とする。
 また、本発明に係るポリイミド前駆体は、上記の発明において、下記一般式(9)で表されるジアミンの残基を含む、ことを特徴とする。
Figure JPOXMLDOC01-appb-C000013
(一般式(9)中、Rは、置換又は非置換のフェニル基である。sは、1以上4以下の整数を示す。)
 また、本発明に係るポリイミドは、上記の発明のいずれか一つに記載のポリイミド前駆体をイミド化してなる、ことを特徴とする。
 また、本発明に係るポリイミドは、一般式(1)で表される構造および一般式(14)で表される構造単位を含む、ことを特徴とする。
Figure JPOXMLDOC01-appb-C000014
(一般式(1)中、RおよびRは、各々独立に、炭素数1~20の一価の有機基を示す。mは、1以上200以下の整数を示す。)
Figure JPOXMLDOC01-appb-C000015
(一般式(14)中、Rは、一般式(3)で表される二価の有機基を示す。Rは、芳香族テトラカルボン酸残基を示す。)
Figure JPOXMLDOC01-appb-C000016
 また、本発明に係るポリイミドは、上記の発明において、当該ポリイミド全体の量を100質量%とした場合、前記一般式(1)で表される構造を0.1質量%以上30質量%以下含む、ことを特徴とする。
 また、本発明に係るポリイミドは、上記の発明において、当該ポリイミドに含まれる全ジアミン残基中、前記一般式(3)で表される二価の有機基の構造単位を30mol%以上含む、ことを特徴とする。
 また、本発明に係るポリイミド樹脂膜は、上記の発明のいずれか一つに記載のポリイミドを含む、ことを特徴とする。
 また、本発明に係るポリイミド樹脂膜は、上記の発明において、密度が、1.20g/cm以上1.43g/cm以下である、ことを特徴とする。
 また、本発明に係るポリイミド樹脂膜は、上記の発明において、面内/面外複屈折が0.01以下である、ことを特徴とする。
 また、本発明に係るポリイミド樹脂膜は、上記の発明において、黄色度が3以下である、ことを特徴とする。
 また、本発明に係るフレキシブルデバイスは、上記の発明のいずれか一つに記載のポリイミド樹脂膜を備える、ことを特徴とする。
 本発明によれば、空気中で短時間加熱することで、透明性が高く、ガラス転移温度が高く、面内/面外複屈折が低く、支持基板との密着性が良好なポリイミドを効率よく得ることができるポリイミド前駆体を提供することができる。本発明のポリイミド前駆体から得られるポリイミドおよびポリイミド樹脂膜は、フレキシブルデバイス、例えばタッチパネル、カラーフィルタ等のディスプレイ用のフレキシブル基板として好適に用いることができる。このようなフレキシブル基板を用いることで、高精彩で信頼性の高いフレキシブルディスプレイ(フレキシブルデバイスの一例)の作製が可能である。
図1は、本発明の実施の形態に係るポリイミド樹脂膜を含むカラーフィルタの一構成例を示す断面模式図である。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。すなわち、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。
<ポリイミド前駆体>
 本発明の実施の形態に係るポリイミド前駆体は、一般式(1)で表される構造および一般式(2)で表される構造単位を含むものである。
Figure JPOXMLDOC01-appb-C000017
 一般式(1)中、RおよびRは、各々独立に、炭素数1~20の一価の有機基を示す。mは、1以上200以下の整数を示す。
Figure JPOXMLDOC01-appb-C000018
 一般式(2)中、Rは、一般式(3)で表される二価の有機基を示す。Rは、芳香族テトラカルボン酸残基を示す。XおよびXは、各々独立に、水素原子、炭素数1~10の一価の有機基または炭素数1~10の一価のアルキルシリル基を示す。
Figure JPOXMLDOC01-appb-C000019
 なお、「炭素数1~10」は、「炭素数1以上、炭素数10以下」を示す。本発明における同様の記載は、同様の意味を示す。
 本発明の実施の形態に係るポリイミド前駆体は、一般式(1)で表される構造と、一般式(2)で表される構造単位とを含むことで、以下のような効果を奏する。すなわち、このポリイミド前駆体を空気中で短時間加熱することで、透明性が高く、ガラス転移温度(Tg)が高く、面内/面外複屈折が低く、基板密着力が良好なポリイミドを効率よく得ることができる。
 一般式(2)で表される構造単位は、本発明の実施の形態に係るポリイミド前駆体において、繰り返される化合物の構造単位である。以下、この構造単位は、「繰り返し構造単位」または単に「繰り返し単位」と適宜称される。このことは、一般式(2)で表される構造単位に限らず、一般式(2)以外の一般式で表される構造単位についても同様である。
 本発明の実施の形態に係るポリイミド前駆体は、ポリイミドを構成する酸二無水物残基およびジアミン残基のうち少なくとも一つの中に、一般式(1)で表される構造を有する。これにより、ポリイミド前駆体から得られるポリイミドとガラス支持基板との密着力が向上する。これは、一般式(1)で表される構造とガラス表面に存在するシラノール基とが水素結合を形成することで、強い相互作用が生まれることに起因すると考えられる。
 RおよびRにおける炭素数1~20の一価の有機基としては、炭化水素基、アルコキシ基、エポキシ基等を挙げることができる。RおよびRにおける炭化水素基としては、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基等が挙げられる。
 炭素数1~20のアルキル基としては、炭素数1~10のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。炭素数3~20のシクロアルキル基としては、炭素数3~10のシクロアルキル基であることが好ましく、具体的には、シクロペンチル基、シクロヘキシル基等が挙げられる。炭素数6~20のアリール基としては、炭素数6~12のアリール基であることが好ましく、具体的には、フェニル基、トリル基、ナフチル基等が挙げられる。
 RおよびRにおけるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、フェノキシ基、プロペニルオキシ基およびシクロヘキシルオキシ基等が挙げられる。
 一般式(1)におけるRおよびRは、炭素数1~3の一価の脂肪族炭化水素基、または炭素数6~10の芳香族基であることが好ましい。なぜならば、ポリイミド前駆体組成物の保存安定性が良好であり、かつ、得られるポリイミドが高い耐熱性を有するからである。ここで、炭素数1~3の一価の脂肪族炭化水素は、好ましくはメチル基である。炭素数6~10の芳香族基は、好ましくはフェニル基である。
 一般式(1)におけるRおよびRの少なくとも1つは、芳香族基を含むことが好ましい。なぜならば、一般式(1)で表される構造を有することに起因する相分離が抑制され、透明性の高いポリイミドを得ることができるからである。この場合、一般式(1)で表される構造中の全てのRおよびRのうち、炭素数1~3の脂肪族炭化水素基のモル数M1と炭素数6~10の芳香族基のモル数M2との比(但し、M1+M2=100)は、好ましくはM1:M2=90~10:10~90であり、より好ましくはM1:M2=85~15:15~85であり、さらに好ましくはM1:M2=85~30:15~70である。この比が上記範囲にあると、相分離によるポリイミドのヘイズ発生を抑制でき、透明性の高いポリイミド樹脂膜を得ることができる。
 本発明の実施の形態に係るポリイミド前駆体は、当該ポリイミド前駆体全体の量を100質量%とした場合、一般式(1)で表される構造を0.1質量%以上30質量%以下含むことが好ましい。また、当該ポリイミド前駆体において、一般式(1)で表される構造は、5質量%以上25質量%以下含まれることが好ましく、8質量%以上23質量%以下含まれることがより好ましく、10質量%以上22質量%以下含まれることがさらに好ましい。
 ポリイミド前駆体中に含まれる一般式(1)で表される構造の割合が上記範囲内であると、得られるポリイミドの白濁、ガラス転移温度の低下、加熱時の発ガス量の増加を抑制することができる。
 一般式(1)中のmは、1以上200以下の整数であり、好ましくは2以上150以下の整数であり、より好ましくは5以上100以下の整数であり、さらに好ましくは10以上60以下の整数である。この整数mが上記範囲内である場合、ポリイミドとガラス基板との密着性を向上させることができる。また、ポリイミド樹脂膜が白濁したり、ポリイミド樹脂膜の機械強度が低下したりすることを抑制し、さらには、ポリイミド樹脂膜の残留応力を低減することができる。
 本発明において、「残留応力」とは、樹脂組成物をガラス基板等の基板上に塗布して膜を形成した後の膜内部に残っている応力のことをいい、膜に生じ得る「反り」の目安となる。具体的には、下記実施例に記載の方法で測定することができる。
 本発明の実施の形態に係るポリイミド前駆体は、上述したように一般式(1)で表される構造を含むものであり、下記一般式(4)で表される化合物の残基を含むことが好ましい。このようなポリイミド前駆体は、一般式(4)で表される化合物をモノマー成分の1つとして用いることにより得られる。
Figure JPOXMLDOC01-appb-C000020
 一般式(4)中、複数のRは、それぞれ独立に、単結合または炭素数1~10の二価の有機基である。複数のRおよびRは、それぞれ独立に、炭素数1~3の一価の脂肪族炭化水素基、または炭素数6~10の芳香族基である。Lは、アミノ基もしくはその反応性誘導体または酸二無水物構造もしくはその反応性誘導体を含む基である。yは、1以上199以下の整数である。この整数yは、1以上100以下であることが好ましく、1以上60以下であることがより好ましい。
 一般式(4)において、Rにおける炭素数1~10の二価の有機基としては、炭素数1~10のアルキレン基、炭素数3~10のシクロアルキレン基、炭素数6~10のアリーレン基等が挙げられる。炭素数1~10のアルキレン基としては、メチレン基、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。炭素数3~10のシクロアルキレン基としては、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基等が挙げられる。炭素数6~10のアリーレン基としては、炭素数6~10の芳香族基が好ましく、フェニレン基、ナフチレン基等が挙げられる。Rにおける炭素数1~10の二価の有機基としては、それらの中でも、炭素数1~10の二価の脂肪族炭化水素基が好ましい。
 RおよびRにおける各基の好ましい具体例としては、上記一般式(1)で表される構造中のRおよびRにおける「炭素数1~3の一価の脂肪族炭化水素基」または「炭素数6~10の芳香族基」と同じものが挙げられる。
 一般式(4)中のLにおけるアミノ基の反応性誘導体としては、イソシアネート基、ビス(トリアルキルシリル)アミノ基などが挙げられる。Lがアミノ基である場合の、一般式(4)で表される化合物の残基の具体例としては、両末端アミノ変性メチルフェニルシリコーンである、X22-1660B-3(信越化学社製、数平均分子量4,400、y=39~41、フェニル基:メチル基=25:75mol%)、X22-9409(信越化学社製、数平均分子量1,340、y=10~11、フェニル基:メチル基=25:75mol%)、X22-9681(信越化学社製、数平均分子量2,840、y=25~26、フェニル基:メチル基=25:75mol%)、両末端アミノ変性ジメチルシリコーンである、X22-161A(信越化学社製、数平均分子量1,600、y=19~20)、X22-161B(信越化学社製、数平均分子量3,000、y=38~39)、KF8012(信越化学社製、数平均分子量4,400、y=57)、BY16-835U(東レダウコーニング社製、数平均分子量900、y=9~10)、サイラプレーンFM3311(チッソ社製、数平均分子量1000、y=11~12)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(数平均分子量248.5、y=1)などが挙げられる。以下、「1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン」は、「SiDA」と称する。
 また、一般式(4)中のLにおける酸無水物構造の反応性誘導体としては、ジカルボン酸の酸エステル化物、ジカルボン酸の酸クロライドなどが挙げられる。Lが酸無水物構造を含む基である具体例としては、下記式で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 Lが酸無水物構造を含む基である場合の、一般式(4)で表される化合物の具体例としては、X22-168AS(信越化学社製、数平均分子量1,000)、X22-168A(信越化学社製、数平均分子量2,000)、X22-168B(信越化学社製、数平均分子量3,200)、X22-168-P5-B(信越化学社製、数平均分子量4,200、y=34~38、フェニル基:メチル基=25:75mol%)、DMS-Z21(ゲレスト社製、数平均分子量600~800、y=3~6)などが挙げられる。
 ポリイミド前駆体の分子量向上の観点、ポリイミド前駆体と溶媒とからなるワニスの白濁を回避するという観点、コストの観点および得られるポリイミドの耐熱性の観点から、一般式(4)中のLは、アミノ基であることがより好ましい。
 また、本発明の実施の形態に係るポリイミド前駆体は、一般式(4)で表され且つyが1以上20以下である化合物の残基(以下、「一般式(4)で表される第1の化合物の残基」と称する)と、一般式(4)で表され且つyが21以上60以下である化合物の残基(以下、「一般式(4)で表される第2の化合物の残基」と称する)とを両方含むことが好ましい。当該ポリイミド前駆体が一般式(4)で表される第1の化合物の残基を含むことにより、支持基板との密着性が良好であり且つヘイズが小さく透明性が良好なポリイミドを得ることが可能となる。また、当該ポリイミド前駆体が一般式(4)で表される第2の化合物の残基を含むことにより、支持基板との密着が良好であり且つガラス転移温度が高く、残留応力が小さく、破断伸度に優れたポリイミドを得ることが可能となる。したがって、当該ポリイミド前駆体が一般式(4)で表される第1の化合物の残基と第2の化合物の残基とを両方含むことにより、支持基板との密着性が良好で、透明性が高く、ガラス転移温度が高く、残留応力が小さく、破断伸度に優れたポリイミドを得ることができる。
 一般式(4)中のyは、例えば、以下の式により算出することができる。一般式(4)で表される化合物が、「両末端がアミノプロピル基であり且つ一般式(4)中のRおよびRのすべてがメチル基またはフェニル基となっている化合物である」という条件を満足する場合、下記の式が成立する。
 y={(一般式(4)で表される化合物の数平均分子量)-(両末端基(アミノプロピル基)の分子量=116.2)+(酸素原子の原子量=16.0)}/{(一般式(4)中のRおよびRが共にメチル基である場合の繰り返し構造単位の分子量=74.15)×(メチル基のmol%)×0.01+(一般式(4)中のRおよびRが共にフェニル基である場合の繰り返し構造単位の分子量=198.29)×(フェニル基のmol%)×0.01}-1
 一方、一般式(2)中、XおよびXにおける炭素数1~10の一価の有機基としては、炭素数1~10の一価の炭化水素基を挙げることができる。炭素数1~10の一価の炭化水素基としては、炭素数1~10のアルキル基等が挙げられる。炭素数1~10のアルキル基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 また、XおよびXにおける炭素数1~10の一価のアルキルシリル基としては、炭素数1~10のアルキル基が結合した一価のシリル基が挙げられる。炭素数1~10の一価のアルキルシリル基としては、具体的には、トリメチルシリル基、トリエチルシリル基等が挙げられる。
 一般式(2)中、Rは、上述したように一般式(3)で表される二価の有機基であり、好ましくはジアミン残基である。Rは、芳香族テトラカルボン酸またはその誘導体の残基である。Rの炭素数は、6~40であることが好ましい。
 Rを与えるジアミンとしては、例えば、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)、2,2’-ビス(トリフルオロメチル)-3,3’-ジアミノジフェニルエーテル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテルが挙げられる。
 一般式(2)中のRは、一般式(3)で表される構造を有するジアミン残基である場合、当該ジアミン残基の構造の中心に柔軟なエーテル結合を有する。このため、本発明の実施の形態に係るポリイミド前駆体をイミド化して得られるポリイミドの配向を抑制することができ、この結果、面内/面外複屈折の小さいポリイミド樹脂膜を得ることができる。さらに、上記Rとしてのジアミン残基は、求電子性の官能基であるトリフルオロメチル基を有する。このため、ポリイミド前駆体における分子内および分子間の電子移動が抑制され、透明性の高いポリイミド樹脂膜を得ることが可能である。
 本発明の実施の形態に係るポリイミド前駆体は、当該ポリイミド前駆体に含まれる全ジアミン残基中、一般式(3)で表される二価の有機基の構造単位を30mol%以上含むことが好ましく、50mol%以上含むことがさらに好ましい。なお、当該構造単位の含有率の上限は、特に限定されないが、100mol%以下であることが好ましい。
 一般式(2)中のRを与えるテトラカルボン酸としては、例えば、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン、9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸などが挙げられる。
 これらのテトラカルボン酸は、そのまま使用してもよいし、酸無水物、活性エステル、活性アミドなどのテトラカルボン酸誘導体の状態で使用してもよい。これらのテトラカルボン酸誘導体のうち、酸無水物は、重合時に副生成物が生じないため、好ましく用いられる。また、これらのテトラカルボン酸誘導体は、2種以上を組み合わせて用いてもよい。
 また、一般式(2)におけるRは、下記一般式(5)で表される四価の有機基であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 一般式(5)において、Yは、直接結合であるか、酸素原子、硫黄原子、スルホニル基およびハロゲン原子からなる群より選ばれる1種以上で置換されていてもよい炭素数1~3の二価の有機基であるか、または、エステル結合、アミド結合、カルボニル基、スルフィド結合および芳香族環を有する炭素数1~20の有機基からなる群より選ばれる二価の架橋構造である。
 一般式(5)で表される構造を与える化合物として、例えば、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸などが挙げられる。
 一般式(2)におけるRは、なかでも、一般式(6)で表される構造、一般式(7)で表される構造、および一般式(8)で表される構造の中から選ばれる1種以上の構造を含む芳香族テトラカルボン酸残基であることが特に好ましい。当該Rが一般式(6)で表される構造を含むことで、ガラス転移温度が高いポリイミドを得ることができる。また、当該Rが一般式(7)で表される構造を含むことで、透明性が高く、面内/面外複屈折が小さく、ガラス転移温度が高いポリイミドを得ることができる。また、当該Rが一般式(8)で表される構造を含むことで、透明性が高く、面内/面外複屈折が小さいポリイミドを得ることができる。
Figure JPOXMLDOC01-appb-C000023
 本発明の実施の形態に係るポリイミド前駆体は、当該ポリイミド前駆体に含まれる全酸二無水物残基中、フルオレン骨格を有する酸無水物残基を5mol%以上55mol%以下含むことが好ましく、10mol%以上45mol%以下含むことが更に好ましい。これにより、より面内/面外複屈折の小さいポリイミドを得ることができる。フルオレン骨格を有する酸無水物残基の構造としては、上記一般式(7)で表される構造などが挙げられる。
 また、本発明の実施の形態に係るポリイミド前駆体は、一般式(9)で表されるジアミンの残基を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000024
 一般式(9)中、Rは、置換又は非置換のフェニル基である。sは、1以上4以下の整数を示す。
 Rは、フェニル基、又はフェニル基で置換されたフェニル基であることが好ましい。例えば、Rは、フェニル基又はビフェニル基である。
 一般式(9)で表されるジアミンは、必ずカルボキシル基を含む構造である。このため、一般式(9)で表されるジアミンの残基を含むポリイミド前駆体では、分子間で強固に水素結合を形成して分子間相互作用が強まる。このようなポリイミド前駆体を用いることにより、ガラス転移温度が高く、機械強度に優れたポリイミドを得ることが可能になる。
 一般式(9)で表されるジアミンには、例えば、下記一般式(10)で表されるものがある。
Figure JPOXMLDOC01-appb-C000025
 一般式(10)で表されるジアミンは、具体的には、3,5-ジアミノ安息香酸、3,4-ジアミノ安息香酸、2,3-ジアミノ安息香酸、又は2,6-ジアミノ安息香酸である。本発明において、一般式(9)で表されるジアミンは、一般式(10)で表される、これらジアミンの具体例に限定されない。
 本発明の実施の形態に係るポリイミド前駆体は、当該ポリイミド前駆体全体の量を100mol%とした場合、一般式(9)で表されるジアミンの残基を1mol%以上50mol%以下含むことが好ましい。また、当該ポリイミド前駆体は、一般式(9)で表されるジアミンの残基を、5mol%以上40mol%以下含むことがより好ましく、10mol%以上35mol%以下含むことがさらに好ましい。
 本発明の実施の形態に係るポリイミド前駆体は、トリアミン骨格を含んでもよい。トリアミンは、3つのアミノ基を有しており、3つのテトラカルボン酸二無水物成分と結合することにより分岐状の分子鎖を形成する。トリアミン骨格は、ポリアミック酸の分子鎖に分岐構造を導入し、分岐ポリアミック酸を形成する。それにより、ポリイミド前駆体が溶解したワニスの粘度を向上させることが可能となり、スリットで塗布を行った際の膜厚均一性を高めることができる。また、分岐構造を有するポリイミド前駆体から得られるポリイミドの分子量は、分岐構造が無いものに比べて大きくなるため、機械強度に優れたポリイミド樹脂膜を得ることが可能である。このようなトリアミン骨格を有するポリイミド前駆体は、トリアミン化合物を重合成分の1つとして用いることで、得ることができる。
 トリアミン化合物の具体例のうち、脂肪族基を有さないものとして、2,4,4’-トリアミノジフェニルエーテル(TAPE)、1,3,5-トリス(4-アミノフェノキシ)ベンゼン(1,3,5-TAPOB)、1,2,3-トリス(4-アミノフェノキシ)ベンゼン(1,2,3-TAPOB)、トリス(4-アミノフェニル)アミン、1,3,5-トリス(4-アミノフェニル)ベンゼン、3,4,4’-トリアミノジフェニルエーテル等を挙げることができる。また、脂肪族基を有するトリアミン化合物の具体例として、トリス(2-アミノエチル)アミン(TAEA)、トリス(3-アミノプロピル)アミン等を挙げることができる。
 上述したように、トリアミンは、ポリイミド樹脂の分子鎖において、架橋構造の分岐を構成することになる。このトリアミンが熱分解してしまうと、ポリイミド樹脂の架橋構造が失われてしまうため、トリアミン成分としては、脂肪族基を有さず、熱分解しにくい成分を用いることが好ましい。つまり、2,4,4’-トリアミノジフェニルエーテル(TAPE)、1,3,5-トリス(4-アミノフェノキシ)ベンゼン(1,3,5-TAPOB)、1,2,3-トリス(4-アミノフェノキシ)ベンゼン(1,2,3-TAPOB)等を用いることが好ましい。
 また、本発明の実施の形態に係るポリイミド前駆体は、テトラアミン骨格を含んでもよい。テトラアミンは、4つのアミノ基を有しており、4つのテトラカルボン酸二無水物成分と結合することにより分岐状の分子鎖を形成する。テトラアミン骨格は、ポリアミック酸の分子鎖に分岐構造を導入し、分岐ポリアミック酸を形成する。それにより、ポリイミド前駆体が溶けたワニスの粘度を向上させることが可能となり、スリットで塗布を行った際の膜厚均一性を高めることができる。また、分岐構造を有するポリイミド前駆体から得られるポリイミドの分子量は、分岐構造が無いものに比べて大きくなるため、機械強度に優れたポリイミドを得ることが可能である。さらに、テトラアミン骨格を含むことでポリイミドのガラス転移温度を向上させることができる。これは、テトラカルボン酸二無水物とテトラアミンとを反応させた場合に、一部、耐熱性の高いベンゾイミダゾール構造が生成するためと考えられる。このようなテトラアミン骨格を有するポリイミド前駆体は、テトラアミン化合物を重合成分の1つとして用いることで、得ることができる。
 テトラアミン化合物の具体例として、1,2,4,5-テトラアミノベンゼン、3,3’,4,4’-テトラアミノビフェニル、3,3’,4,4’-テトラアミノジフェニルスルホン、3,3’,4,4’-テトラアミノジフェニルエーテル、3,3’,4,4’-テトラアミノジフェニルスルフィド、2,3,6,7-テトラアミノナフタレン、1,2,5,6-テトラアミノナフタレンなどを挙げることができる。あるいは、テトラアミン化合物の具体例として、これらの多価アミン化合物またはジアミン化合物に含まれる芳香族環に結合する水素の一部を炭化水素やハロゲンで置換した化合物を挙げることができる。
 テトラアミン成分としては、上記のトリアミンと同様に、脂肪族基を有さず、熱分解しにくい成分を用いることが好ましく、さらには、透明性を向上させることから、電子求引基を有することが好ましい。つまり、3,3’,4,4’-テトラアミノジフェニルスルホン等を用いることが好ましい。
 本発明において、電子求引基は、ハメット(Hammett)の置換基定数(パラ位,σp)が通常0より大きく、0.01以上であることが好ましく、0.1以上であることがさらに好ましく、0.5以上であることが特に好ましい。ハメットの置換基定数は、例えば日本化学会編、「化学便覧」、改訂第5版、第II分冊、丸善株式会社、2004年2月、380頁に記載されている。電子求引基の例としては、ハロゲン原子、シアノ基、水素原子若しくは置換基を有するカルボニル基、ニトロ基、トリフルオロメチル基のようなパーフルオロアルキル基、スルホニル基、等が挙げられる。ハロゲン原子としては、フッ素原子、臭素原子、塩素原子、ヨウ素原子が挙げられる。
 本発明の実施の形態に係るポリイミド前駆体は、本発明の効果を妨げない範囲で、上述した構造単位以外である他の構造単位を含んでもよい。他の構造単位としては、ポリアミド酸の脱水閉環体であるポリイミド、ポリヒドロキシアミドの脱水閉環体であるポリベンゾオキサゾール等が挙げられる。
 他の構造単位に用いられる酸二無水物としては、国際公開第2017/099183号に記載の芳香族酸二無水物、脂環式酸二無水物又は、脂肪族酸二無水物が挙げられる。他の構造単位に用いられるジアミン化合物としては、国際公開第2017/099183号に記載の芳香族ジアミン、脂環式ジアミン又は、脂肪族ジアミンが挙げられる。
 また、本発明の実施の形態に係るポリイミド前駆体は、当該ポリイミド前駆体に含まれる構造単位(例えば一般式(2)で表される構造単位)の一部がイミド化していてもよい。当該ポリイミド前駆体の一部をイミド化することで、当該ポリイミド前駆体を含有する樹脂溶液の室温保管時の粘度安定性を向上させることができる。当該ポリイミド前駆体のイミド化率の範囲としては、1%以上50%以下が、溶液への溶解性、粘度安定性の観点から好ましい。このイミド化率の下限は、より好ましくは5%以上である。また、このイミド化率の上限は、より好ましくは30%以下である。
 一部がイミド化したポリイミド前駆体としては、例えば、一般式(11)で表される繰り返し単位を有する樹脂、一般式(12)で表される繰り返し単位を有する樹脂、及び一般式(13)で表される繰り返し単位を有する樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 一般式(11)~(13)中、Rは、二価の有機基を示す。R10は、四価の有機基を示す。WおよびWは、各々独立に、水素原子、炭素数1~10の一価の有機基または炭素数1~10の一価のアルキルシリル基を示す。Rの二価の有機基としては、上述のジアミン残基と同様である。R10の四価の有機基としては、上述のテトラカルボン酸残基と同様である。
 本発明の実施の形態に係るポリイミド前駆体の重量平均分子量(Mw)は、好ましくは10,000~1,000,000であり、より好ましくは10,000~500,000であり、さらに好ましくは20,000~400,000である。当該ポリイミド前駆体の数平均分子量(Mn)は、5,000~1,000,000であり、好ましくは5,000~500,000であり、特に好ましくは15,000~300,000である。当該ポリイミド前駆体の重量平均分子量および数平均分子量が上記範囲内である場合、得られるポリイミド樹脂の塗膜の平坦性を悪化させることなく、キュア後に得られるポリイミド樹脂膜の強度を高めることが可能である。
 なお、本発明において、重量平均分子量、数平均分子量および分子量分布は、TOSOH製DP-8020型GPC装置(ガードカラム:TSK guard colomn ALPHA カラム:TSK-GEL α-M、展開溶剤:N,N’-ジメチルアセトアミド(DMAc)、0.05M-LiCl、0.05%リン酸添加)を用いて測定した値である。
 本発明の実施の形態に係るポリイミド前駆体は、末端が末端封止剤によって封止されたものであってもよい。当該ポリイミド前駆体の末端に末端封止剤を反応させることで、当該ポリイミド前駆体の分子量を好ましい範囲に調整できる。当該ポリイミド前駆体における末端のモノマーがジアミン化合物である場合は、このジアミン化合物のアミノ基を封止するために、ジカルボン酸無水物、モノカルボン酸、モノカルボン酸クロリド化合物、モノカルボン酸活性エステル化合物、二炭酸ジアルキルエステルなどを末端封止剤として用いることができる。当該ポリイミド前駆体における末端のモノマーが酸二無水物である場合は、この酸二無水物の酸無水物基を封止するために、モノアミン、モノアルコールなどを末端封止剤として用いることができる。
<ポリイミド前駆体組成物>
 本発明の実施の形態に係るポリイミド前駆体は、適当な成分と混合することによってポリイミド前駆体組成物とすることができる。このポリイミド前駆体組成物に含まれていてもよい成分としては、特に限定されないが、溶媒、紫外線吸収剤、カップリング剤、熱架橋剤、無機フィラー、界面活性剤、内部剥離剤、着色剤等が挙げられる。
(溶媒)
 ポリイミド前駆体組成物に含まれる溶媒としては、特に制限はなく、公知のものを用いることができる。例えば、この溶媒として、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-ブトキシ-N,N-ジメチルプロピオンアミド、γ-ブチロラクトン、乳酸エチル、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレンウレア、1,1,3,3-テトラメチルウレア、ジメチルスルホキシド、スルホラン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル、水や、国際公開第2017/099183号に記載の溶剤などが挙げられる。これらは、単独で、または2種以上を組み合わせて使用することができる。上記溶媒は、これらの中でも、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等の非プロトン性極性溶媒を含むことが好ましく、N-メチル-2-ピロリドンを含むことが特に好ましい。
 ポリイミド前駆体組成物における溶媒の含有量の下限は、ポリイミド前駆体の100重量部に対して、好ましくは200重量部以上であり、より好ましくは300重量部以上である。当該溶媒の含有量の上限は、好ましくは2,000重量部以下であり、より好ましくは1,500重量部以下である。当該溶媒の含有量が200重量部以上2,000重量部以下の範囲であれば、ポリイミド前駆体組成物の濃度および粘度は塗布に適した濃度および粘度となる。この結果、スリットコーターでポリイミド前駆体組成物の塗布を行った際に良好な膜厚均一性を得ることができる。
(界面活性剤)
 本発明の実施の形態に係るポリイミド前駆体組成物は、界面活性剤を含有していてもよい。当該界面活性剤としては、フロラード(商品名、住友3M社製)、メガファック(商品名、DIC社製)、スルフロン(商品名、旭硝子社製)等のフッ素系界面活性剤があげられる。また、当該界面活性剤としては、KP341(商品名、信越化学工業社製)、ポリフロー、グラノール(商品名、共栄社化学社製)、BYK(ビック・ケミー社製)等の有機シロキサン界面活性剤が挙げられる。また、当該界面活性剤としては、エマルミン(三洋化成工業社製)等のポリオキシアルキレンラウリエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテルおよびポリオキシエチレンセチルエーテル界面活性剤が挙げられる。さらに、当該界面活性剤としては、ポリフロー(商品名、共栄社化学社製)等のアクリル重合物界面活性剤が挙げられる。ポリイミド前駆体組成物に含まれる界面活性剤の含有量は、ポリイミド前駆体の100重量部に対し、0.001重量部以上1重量部以下であることが好ましい。
(カップリング剤)
 本発明の実施の形態に係るポリイミド前駆体組成物は、基材との接着性向上のため、シランカップリング剤、チタンカップリング剤等のカップリング剤を添加することができる。上記カップリング剤としては、公知のものを用いることができる。また、上記カップリング剤は、2種以上を併用してもよい。ポリイミド前駆体組成物に含まれるカップリング剤の含有量は、ポリイミド前駆体の100重量%に対して、0.01重量%以上、2重量%以下であることが好ましい。
(紫外線吸収剤)
 本発明の実施の形態に係るポリイミド前駆体組成物は、紫外線吸収剤を含有していてもよい。ポリイミド前駆体組成物が紫外線吸収剤を含有することにより、ポリイミド前駆体組成物から得られるポリイミドが長期間、太陽光に晒された際の当該ポリイミドの透明性や機械特性などの物性低下が大きく抑制される。
 上記紫外線吸収剤としては、特に限定はなく公知のものを使用できるが、透明性および非着色性の観点から、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物が好ましく用いられる。
 ポリイミド前駆体組成物に含まれる紫外線吸収剤の含有量は、ポリイミド前駆体の100重量部に対し、0.1重量部以上10重量部以下であることが好ましい。ポリイミド前駆体組成物が上記範囲内で紫外線吸収剤を含有することにより、得られるポリイミドの透明性を損なうことなく、当該ポリイミドの耐光性を向上させることができる。
<ポリイミド前駆体の製造方法>
 ポリイミド前駆体は、ポリアミド酸やポリアミド酸エステル、ポリアミド酸シリルエステルなどに例示されるように、ジアミン化合物とテトラカルボン酸又はその誘導体との重合反応により合成することができる。テトラカルボン酸の誘導体としては、例えば、テトラカルボン酸の酸無水物、活性エステル、活性アミドが挙げられる。上記重合反応の反応方法は、目的のポリイミド前駆体が製造できれば特に制限はなく、公知の反応方法を用いることができる。
 上記重合反応の具体的な反応方法としては、所定量のジアミン成分および溶媒を全て、反応器に仕込み、この溶媒中にジアミン成分を溶解させた後、所定量の酸二無水物成分を、この反応容器に仕込み、室温~120℃で0.5~30時間撹拌するという方法などが挙げられる。このような反応方法で得られたポリイミド前駆体は、前述の溶媒、界面活性剤、内部離型剤、カップリング剤等の成分を適宜添加してポリイミド前駆体組成物にしてもよい。
 上記のようにして得られたポリイミド前駆体またはポリイミド前駆体組成物中の水分率は、0.05質量%以上3.0質量%以下であることが好ましい。当該水分率が前述の範囲内であることにより、ポリイミド前駆体またはポリイミド前駆体組成物の粘度保存安定性を向上させることができる。ここでいう水分率は、対象とする溶液の液温を23℃に調節し、この液温の溶液についてカールフィッシャー法で測定した値を指す。カールフィッシャー法で水分率を測定するには、カールフィッシャー水分率滴定装置(例えば「MKS-520」(商品名、京都電子工業社製)など)を用い、「JIS K0068(2001)」に基づき、容量滴定法により、水分率測定を行う。
<ポリイミド>
 本発明の実施の形態に係るポリイミドは、上記ポリイミド前駆体をイミド化してなるものである。また、上記ポリイミド前駆体組成物は、本発明の実施の形態に係るポリイミド前駆体に前述の溶媒等の成分を添加してなるものであり、当該ポリイミド前駆体を含んでいる。すなわち、本発明の実施の形態に係るポリイミドは、上記ポリイミド前駆体組成物をイミド化することによって合成することも可能である。以下では、一例として、ポリイミド前駆体をイミド化してなるポリイミドについて説明する。
 イミド化の方法は特に制限されないが、本発明におけるイミド化の方法としては、加熱によるイミド化や化学イミド化が挙げられる。中でも、得られるポリイミドの耐熱性および可視光領域での透明性の観点から、加熱によるイミド化が好ましい。
 加熱によるイミド化では、ポリイミド前駆体を180℃以上550℃以下の範囲で加熱してポリイミドに変換することが好ましい。以下、加熱によるイミド化は、熱イミド化と適宜称する。熱イミド化を行う工程は、熱イミド化工程と適宜称する。ポリイミド前駆体の溶液から塗膜を形成して当該ポリイミド前駆体を熱イミド化する場合、熱イミド化工程は、ポリイミド前駆体の塗膜から溶媒を蒸発させる工程(以下、乾燥工程と適宜称する)の後に何らかの工程を経てから行われても構わない。
 乾燥工程では、具体的にはポリイミド前駆体の塗膜を真空乾燥や加熱乾燥すればよいが、イミド化後のポリイミド樹脂膜の透明性を考慮すると、白濁なく溶媒を蒸発させることが好ましい。乾燥工程において、ポリイミド前駆体の塗膜の乾燥には、ホットプレート、オーブン、赤外線、真空チャンバーなどを使用する。乾燥のための加熱の温度は、被加熱体の種類や目的により様々であり、室温から170℃の範囲で1分から数時間行うことが好ましい。室温とは、通常20~30℃であるが、好ましくは25℃である。さらに、乾燥工程は、同一の条件、又は異なる条件で複数回行ってもよい。
 熱イミド化工程の雰囲気は、特に限定されず、空気でも窒素やアルゴン等の不活性ガスでもよい。本発明の実施の形態に係るポリイミド前駆体は、酸化に対する耐性が高い。このため、熱イミド化工程では、オーブンを用いて大気雰囲気下で30分~2時間、当該ポリイミド前駆体の塗膜を加熱することにより、透明なポリイミド樹脂膜を得ることができる。
 また、熱イミド化のための加熱温度に到達するまでに要する時間は、特に限定されず、製造ラインの加熱形式にあわせた昇温方法を選択することができる。例えば、オーブン内にて、基材上に形成されたポリイミド前駆体の塗膜を、室温から熱イミド化のための加熱温度まで5~120分かけて昇温しながら加熱してもよい。あるいは、予め180℃以上550℃以下の範囲に昇温されたオーブン内に、基材上に形成されたポリイミド前駆体の塗膜をそのまま投入して加熱してもよい。また、当該ポリイミド前駆体の塗膜は、必要に応じて、減圧下にて加熱してもよい。
 上述した実施の形態では、ポリイミド前駆体をイミド化してなるポリイミドを例示したが、本発明はこれに限定されず、ポリイミド前駆体組成物をイミド化することによってポリイミドを得ることも可能である。例えば、上述した熱イミド化工程および乾燥工程における「ポリイミド前駆体」を「ポリイミド前駆体組成物」に置き換えて、これらの各工程を行うことにより、目的のポリイミドを得ることが可能である。
 本発明の実施の形態に係るポリイミドは、一般式(1)で表される構造および一般式(14)で表される構造単位を含むポリイミドとして表すこともできる。
Figure JPOXMLDOC01-appb-C000027
 一般式(1)中、RおよびRは、各々独立に、炭素数1~20の一価の有機基を示す。mは、1以上200以下の整数を示す。
Figure JPOXMLDOC01-appb-C000028
 一般式(14)中、Rは、一般式(3)で表される二価の有機基を示す。Rは、芳香族テトラカルボン酸残基を示す。
Figure JPOXMLDOC01-appb-C000029
 一般式(1)、(14)におけるR~Rについての詳細は、上述したポリイミド前駆体に関して説明した内容と同じである。
 このポリイミドは、当該ポリイミド全体の量を100質量%とした場合、一般式(1)で表される構造を0.1質量%以上30質量%以下含むことが好ましい。また、このポリイミドは、当該ポリイミドに含まれる全ジアミン残基中、一般式(3)で表される二価の有機基の構造単位を30mol%以上含むことが好ましい。
<ポリイミド樹脂膜>
 本発明の実施の形態に係るポリイミド樹脂膜は、上述した本発明の実施の形態に係るポリイミドを含む膜である。以下、本発明の実施の形態に係るポリイミド樹脂膜は、「ポリイミド樹脂膜」と適宜略記する。
 本発明において、ポリイミド樹脂膜は、例えば、以下の方法で得ることができる。ポリイミド樹脂膜を形成する方法としては、本発明の実施の形態に係るポリイミド前駆体を基板上に塗布して塗膜を形成する塗膜形成工程、当該塗膜から溶媒を蒸発させる乾燥工程、および、ポリイミド前駆体をイミド化するイミド化工程等を含む方法が挙げられる。
 ポリイミド樹脂膜を形成する方法では、塗膜形成工程において、上記ポリイミド前駆体を基板上に塗布することにより、ポリイミド前駆体の塗膜が形成される。このポリイミド前駆体を基板上に塗布して塗膜を形成する方法としては、ロールコート法、スピンコート法、スリットコート法、およびドクターブレード、コーターなどを用いて塗布する方法等が挙げられる。なお、塗膜形成工程では、塗布の繰り返しにより、塗膜の厚みや表面平滑性などを制御してもよい。中でも、塗膜の表面平滑性および膜厚均一性の観点から、スリットダイコート法が好ましい。
 塗膜の厚さは、所望の用途に応じて適宜選択され、特に限定されないが、例えば1~500μmであり、好ましくは2~250μmであり、特に好ましくは5~125μmである。基板としては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリブチレンテレフタレート(PBT)フィルム、シリコンウエハ、ガラスウエハ、オキサイドウエハ、ガラス基板、Cu基板およびSUS板などが挙げられる。中でも、表面平滑性、加熱時の寸法安定性の観点から、ガラス基板が好ましい。ガラス基板を構成するガラスとしては、寸法安定性の観点から、無アルカリガラスが特に好ましい。
 ついで、乾燥工程において、基板上の塗膜から溶媒を蒸発させることにより、この塗膜を乾燥する。具体的には、この乾燥工程では、この塗膜を真空乾燥や加熱乾燥すればよいが、イミド化後のポリイミド樹脂膜の透明性を考慮すると、白濁なく溶媒を蒸発させることが好ましい。乾燥工程における塗膜の乾燥には、ホットプレート、オーブン、赤外線、真空チャンバーなどを使用する。
 乾燥のための加熱の温度は、塗膜等の被加熱体の種類や目的により様々であり、室温から170℃の範囲で1分から数時間行うことが好ましい。室温とは、通常20~30℃であるが、好ましくは25℃である。さらに、乾燥工程は、同一の条件、又は異なる条件で複数回行ってもよい。
 その後、イミド化工程において、基板上の塗膜中のポリイミド前駆体がイミド化され、これにより、基板上にポリイミド樹脂膜が形成される。以上の各工程を経て得られたポリイミド樹脂膜は、基板から剥離して用いることができるし、あるいは剥離せずにそのまま用いることもできる。
 上述のようにして得られるポリイミド樹脂膜の厚みは、所望の用途に応じて適宜選択されるが、好ましくは1~100μmであり、より好ましくは5~30μmであり、特に好ましくは7~20μmである。
 上述した実施の形態では、ポリイミド前駆体の塗膜をイミド化してなるポリイミド樹脂膜を例示したが、本発明はこれに限定されず、ポリイミド前駆体組成物の塗膜をイミド化することによってポリイミド樹脂膜を得ることも可能である。例えば、上述した熱イミド化工程等の各工程における「ポリイミド前駆体」を「ポリイミド前駆体組成物」に置き換えて上記各工程を行うことにより、目的のポリイミド樹脂膜を得ることが可能である。
 上述のようにして得られるポリイミド樹脂膜(すなわち本発明の実施の形態に係るポリイミド樹脂膜)のガラス転移温度は、240℃以上であることが好ましく、250℃以上であることがより好ましい。
 また、本発明の実施の形態に係るポリイミド樹脂膜の密度は、1.20g/cm以上1.43g/cm以下であることが好ましく、1.23g/cm以上1.40g/cm以下であることがさらに好ましい。ポリイミド樹脂膜の密度は、分子間相互作用と相関があり、分子間相互作用が強いと密度が高くなる。従って、ポリイミド樹脂膜の密度が高い場合、ガラス転移温度の高いポリイミド樹脂膜を得ることが可能である。一方、分子間相互作用が弱い場合は分子間に空隙ができるため、面内/面外複屈折の小さいポリイミド樹脂膜を得ることができる。加えて、この空隙によって内部応力が緩和されるため、ポリイミド樹脂膜によって構成される基板の反りを抑制することが可能である。よって、ポリイミド樹脂膜の密度が1.20g/cm以上1.43g/cm以下である場合、分子間相互作用が好ましい範囲にあるため、ガラス転移温度が高く、面内/面外複屈折が小さく、基板の反りを抑制し得るポリイミド樹脂膜を得ることができる。
 また、本発明の実施の形態に係るポリイミド樹脂膜の面内/面外複屈折は、0.01以下であることが好ましく、0.005以下であることがさらに好ましい。ポリイミド樹脂膜の面内/面外複屈折が0.01以下であることにより、斜め方向から見た場合の色ずれを防いだり、円偏光フィルムを用いた時の外光反射を抑制したりすることができる。
 また、本発明の実施の形態に係るポリイミド樹脂膜の黄色度は、3以下であることが好ましい。ポリイミド樹脂膜の黄色度が3以下であることにより、黄色味を抑えたフレキシブル基板を形成することができる。延いては、このフレキシブル基板を用いることにより、黄色味を抑えたフレキシブルデバイスの作製が可能である。
<用途>
 本発明の実施の形態に係るポリイミド前駆体、ポリイミドおよびそれを含むポリイミド樹脂膜は、電子デバイスに使用することができる。より具体的には、液晶ディスプレイ、有機ELディスプレイ、タッチパネル、電子ペーパー、カラーフィルタ、マイクロLEDディスプレイといった表示デバイス、太陽電池、CMOSなどの受光デバイス等に使用することができる。これらの電子デバイスは、フレキシブルデバイスであることが好ましい。本発明の実施の形態に係るフレキシブルデバイスは、前述のポリイミド樹脂膜を備える。前述のポリイミド樹脂膜は、当該フレキシブルデバイス等の電子デバイスにおける基板、特にフレキシブル基板として、好ましく用いられる。
 以下、実施例等をあげて本発明を説明するが、本発明は、下記の実施例等によって限定されるものではない。まず、下記の実施例および比較例で用いた材料、行った測定および評価等について説明する。
<材料>
 酸二無水物として、以下に示すものが適宜用いられる。
ODPA:3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物
BPAF:9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン二酸無水物
X-22-168-P5-B:両末端カルボン酸無水物変性メチルフェニルシリコーンオイル(信越化学社製、数平均分子量4,200、y=34~38、フェニル基:メチル基=25:75mol%)
CBDA:シクロブタンテトラカルボン酸二無水物
 ジアミン化合物として、以下に示すものが適宜用いられる。
6FODA:ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル
CHDA:trans-1,4-ジアミノシクロへキサン
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
SiDA:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
X-22-9409:両末端アミン変性メチルフェニルシリコーンオイル(信越化学社製、数平均分子量1,340、y=10~11、フェニル基:メチル基=25:75mol%)
X22-1660B-3:両末端アミン変性メチルフェニルシリコーンオイル(信越化学社製、数平均分子量4,400、y=39~41、フェニル基:メチル基=25:75mol%)
 溶剤として、以下に示すものが適宜用いられる。
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
MMBAc:3-メトキシ-3-メチル-1-ブチルアセテート
<評価>
(第1項目:ポリイミド樹脂膜(第1のガラス基板上)の作製)
 第1項目では、ポリイミド樹脂膜(第1のガラス基板上)の作製方法について説明する。第1項目でのポリイミド樹脂膜の作製では、下記の各実施例および各比較例で作製したワニスを、100mm×100mm×0.5mm厚の無アルカリガラス基板(旭硝子社製 AN-100)に、ミカサ株式会社製のスピンコーター(MS-A200)を用いてキュア後の膜厚が10±0.5μmになるように塗布した。その後、ホットプレートを用いて、ワニスの塗膜のプリベークを行った。ホットプレートは、予め120℃に加熱したものを用い、6分かけてワニスの塗膜の乾燥を行った。このようにして得られたプリベーク膜に対し、オーブン(「IHPS-222」;エスペック社製)を用いて、空気中、240℃で60分間キュアを行い、これにより、上記無アルカリガラス基板(第1のガラス基板)上にポリイミド樹脂膜を作製した。
(第2項目:ポリイミド樹脂膜(剥離膜)の作製)
 第2項目では、ポリイミド樹脂膜(剥離膜)の作製方法について説明する。第2項目でのポリイミド樹脂膜の作製では、上記第1項目で示したポリイミド樹脂膜(第1のガラス基板上)を、その四辺の端から1cmの部分に片刃で切れ込みを入れ、60℃に温めた温水に60分間浸した。その後、このポリイミド樹脂膜を第1のガラス基板から剥離し、これにより、剥離膜としてのポリイミド樹脂膜を得た。
(第3項目:ポリイミド樹脂膜(第2のガラス基板上)の作製)
 第3項目では、ポリイミド樹脂膜(第2のガラス基板上)の作製方法について説明する。第3項目でのポリイミド樹脂膜の作製では、第2のガラス基板として50mm×50mm×1.1mm厚のガラス基板(テンパックス)を用いたこと以外は、上記第1項目と同様にして、第2のガラス基板上にポリイミド樹脂膜を作製した。
(第4項目:ポリイミド樹脂膜(第3のガラス基板上)の作製)
 第4項目では、ポリイミド樹脂膜(第3のガラス基板上)の作製方法について説明する。第4項目でのポリイミド樹脂膜の作製では、下記の各実施例および各比較例で作製したワニスを、第3のガラス基板である730mm×920mm×0.5mm厚のガラス基板(旭硝子社製AN-100)に、スリットコーター(東レエンジニアリング社製)を用いてキュア後の膜厚が10±0.5μmになるように塗布した。その後、加熱式真空乾燥機、ホットプレートを用いて、ワニスの塗膜のプリベークを行った。加熱式真空乾燥機は、上板を60℃、下板を40℃に加熱し、150秒かけて60Paまで内部圧力が下がる条件でワニスの塗膜の乾燥を行った。ホットプレートは、予め120℃に加熱したものを用い、6分かけてワニスの塗膜の乾燥を行った。このようにして得られたプリベーク膜に対し、オーブンを用いて、空気中、240℃で60分間キュアを行い、これにより、第3のガラス基板上にポリイミド樹脂膜を作製した。
(第5項目:ポリイミド樹脂膜(シリコン基板上)の作製)
 第5項目では、ポリイミド樹脂膜(シリコン基板上)の作製方法について説明する。第5項目でのポリイミド樹脂膜の作製では、下記の各実施例および各比較例で作製したワニスを、6インチのシリコン基板上に、東京エレクトロン社製の塗布現像装置(Mark-7)を用いてキュア後の膜厚が10±0.5μmになるようにスピン塗布した。その後、このシリコン基板上のワニスの塗膜に対し、Mark-7のホットプレートを用いて120℃×6分のプリベーク処理を行った。このようにして得られたプリベーク膜に対し、オーブンを用いて、空気中、240℃で60分間キュアを行い、これにより、シリコン基板上にポリイミド樹脂膜を作製した。
(第6項目:密度の測定)
 第6項目では、ポリイミド樹脂膜の密度の測定について説明する。第6項目での密度の測定では、上記第2項目で示したポリイミド樹脂膜(剥離膜)を40mm×40mmの大きさに切って測定サンプルとし、比重測定キット(AD-1653-BM、エーアンドディー社製)を用い、室温25℃、相対湿度65%の雰囲気でアルキメデス法によって測定サンプルの密度の測定を行った。この際、測定サンプルを浸漬する浸漬液は、水とした。密度の測定は、一つの測定サンプルについて2回行い、その平均値を測定サンプルの密度(g/cm)とした。
(第7項目:面内/面外複屈折の測定)
 第7項目では、ポリイミド樹脂膜の面内/面外複屈折の測定について説明する。第7項目での面内/面外複屈折の測定では、プリズムカプラー(METRICON社製、PC2010)を用い、波長632.8nmのTE屈折率(n(TE))およびTM屈折率(n(TM))を測定した。n(TE)、n(TM)は、それぞれポリイミド樹脂膜面に対して、平行方向、垂直方向の屈折率である。面内/面外複屈折は、n(TE)とn(TM)との差(n(TE)-n(TM))として計算した。なお、この測定には、上記第2項目で示したポリイミド樹脂膜(剥離膜)を用いた。また、面内/面外複屈折については、以下の評価方法で、秀、優良、良、不良の判定を行った。
秀(A):面内/面外複屈折が0.0021未満
優良(B):面内/面外複屈折が0.0021以上0.0030未満
良(C):面内/面外複屈折が0.0030以上0.0050未満
不良(D):面内/面外複屈折が0.0050以上
(第8項目:黄色度の測定)
 第8項目では、ポリイミド樹脂膜の黄色度の測定について説明する。第8項目での黄色度の測定では、カラーメーター(SM-T45、スガ試験機社製)を用いてポリイミド樹脂膜の黄色度の測定を行った。光源にはC光源を用い、黄色度の測定は透過光モードで行った。なお、この測定には、上記第3項目で示したポリイミド樹脂膜(第2のガラス基板上)を用いた。
(第9項目:ヘイズ値の測定)
 第9項目では、ポリイミド樹脂膜のヘイズ値の測定について説明する。第9項目でのヘイズ値の測定では、直読ヘーズコンピュータ(スガ試験機社製 HGM2DP、C光源)を用い、上記第3項目で示したポリイミド樹脂膜(第2のガラス基板上)のヘイズ値(%)を測定した。なお、各々の値としては、3回測定の平均値を用いた。
(第10項目:1%重量減少温度(Td1)の測定)
 第10項目では、ポリイミド樹脂膜の1%重量減少温度の測定について説明する。第10項目での1%重量減少温度の測定では、熱重量測定装置(島津製作所社製 TGA-50)を用いて窒素気流下で測定を行った。昇温方法は、以下の条件にて行った。第1段階で、昇温レート3.5℃/minで150℃まで昇温してポリイミド樹脂膜の試料の吸着水を除去し、第2段階で、降温レート5℃/minで室温まで冷却した。第3段階で、昇温レート10℃/minで本測定を行い、ポリイミド樹脂膜の1%熱重量減少温度を求めた。なお、この測定には、上記第2項目で示したポリイミド樹脂膜(剥離膜)を用いた。
(第11項目:ガラス転移温度(Tg)の測定)
 第11項目では、ポリイミド樹脂膜のガラス転移温度の測定について説明する。第11項目でのガラス転移温度の測定では、熱機械分析装置(エスアイアイ・ナノテクノロジー社製 EXSTAR6000TMA/SS6000)を用いて、窒素気流下で測定を行った。昇温方法は、以下の条件にて行った。第1段階で、昇温レート5℃/minで150℃まで昇温してポリイミド樹脂膜の試料の吸着水を除去し、第2段階で、降温レート5℃/minで室温まで空冷した。第3段階で、昇温レート5℃/minで本測定を行い、この試料のガラス転移温度を求めた。なお、この測定には、上記第2項目で示したポリイミド樹脂膜(剥離膜)を用いた。
(第12項目:破断伸度の測定)
 第12項目では、ポリイミド樹脂膜の破断伸度の測定について説明する。第12項目での破断伸度の測定では、上記第2項目で示したポリイミド樹脂膜(剥離膜)を幅1cm、長さ9cmの短冊状に切断して試料とし、テンシロン(オリエンテック社製 RTM-100)を用いて試料を引っ張り、破断伸度の測定を行なった。この際、試料の引っ張りは、当該試料の初期長さを50mmとし、室温23.0℃および湿度45.0%RHの環境下において引張速度50mm/分で行った。破断伸度の測定は、一つのポリイミド樹脂膜の検体毎に10枚の試料について行ない、これら10枚の試料の測定結果のうち上位5点の平均値を破断伸度として求めた。また、破断伸度については、以下の評価方法で、秀、優良、良、不良の判定を行った。
秀(A):破断伸度が40%以上
優良(B):破断伸度が25%以上40%未満
良(C):破断伸度が10%以上25%未満
不良(D):破断伸度が10%未満
(第13項目:残留応力の測定)
 第13項目では、ポリイミド樹脂膜の残留応力の測定について説明する。第13項目での残留応力の測定では、ケーエルエー・テンコール社製の薄膜応力測定装置(FLX-3300-T)を用いて測定を行った。この測定には、上記第5項目で示したポリイミド樹脂膜(シリコン基板上)を用いた。この際、当該ポリイミド樹脂膜を、測定前に窒素雰囲気下、150℃で30分間加熱することで脱水ベークし、その後、窒素雰囲気下で30℃まで冷却し、30℃における乾燥後の当該ポリイミド樹脂膜の残留応力を測定した。
(第14項目:基板反りの測定)
 第14項目では、基板反りの測定について説明する。第14項目での基板反りの測定では、ミツトヨ社製の精密石定盤(1000mm×1000mm)の上に、試験板を当該試験板のガラスと精密石定盤とが接するように載せた。この際、試験板は、上記第4項目で示したポリイミド樹脂膜(第3のガラス基板上)とした。その後、試験板の4辺の各中点および各頂点の計8箇所について、精密石定盤から試験板が浮いている量(距離)を、隙間ゲージを用いて測定し、これらの平均値を試験板の反り量、すなわち基板反りの量とした。なお、この測定は、室温23℃および湿度55%の環境下で行った。また、基板反りについて、以下の評価方法で、秀、優良、良、不良の判定を行った。
秀(A):基板反りが0.21mm未満
優良(B):基板反りが0.21mm以上0.28mm未満
良(C):基板反りが0.28mm以上0.35mm未満
不良(D):基板反りが0.35mm以上
(第15項目:基板密着力の測定(90°ピール試験))
 第15項目では、基板密着力の測定について説明する。第15項目での基板密着力の測定では、上記第1項目で示したポリイミド樹脂膜(第1のガラス基板上)を10mm幅、100mm長に切り出して測定サンプルとし、この測定サンプルに対し、ホットプレートを用いて120℃×6分の脱水ベーク処理を行った後、引張速度50mm/minの条件で90°ピール試験を行った。この90°ピール試験においては、JIS C6481(1996、プリント配線板用銅張積層版試験法)に準拠した密着性試験機(山本鍍金試験器社製)を用いて、測定サンプルにおける第1のガラス基板に対するポリイミド樹脂膜の90°ピール強度(N/cm)を測定した。また、ポリイミド樹脂膜の基板密着力については、上記90°ピール強度の測定結果をもとに、以下の評価方法で、秀、優良、良、不良の判定を行った。
秀(A):90°ピール強度が1.5N/cm以上
優良(B):90°ピール強度が1.0N/cm以上1.5N/cm未満
良(C):90°ピール強度が0.5N/cm以上1.0N/cm未満
不良(D):90°ピール強度が0.5N/cm未満
(第16項目:積層体の作製および外観確認)
 第16項目では、積層体の作製および外観確認について説明する。第16項目での積層体の作製および外観確認では、上記第4項目で示したポリイミド樹脂膜(第3のガラス基板上)上に、SiON膜(製膜温度:240℃、膜厚:100nm)をプラズマCVDで製膜した。これにより、当該ポリイミド樹脂膜とSiON膜との積層体を作製した。その後、光学顕微鏡(Nikon社製、OPTIPHOT300)を用いて、倍率50倍で当該積層体の外観確認を行った。また、この作製後の積層体の外観確認については、以下の評価方法で、秀、優良、良、不良の判定を行った。
秀(A):積層体の全面でシワが見られず、積層体の表面が平滑
優良(B):積層体の一部にシワの発生が見られるが、シワの発生箇所の面積が積層体全面の5%以下
良(C):積層体の一部にシワの発生が見られるが、シワの発生箇所の面積が積層体全面の15%以下
不良(D):シワの発生箇所の面積が積層体全面の30%超
(第17項目:積層体を用いたカラーフィルタの作製)
 第17項目では、ポリイミド樹脂膜を含む積層体を用いたカラーフィルタの作製について説明する。第17項目でのカラーフィルタの作製では、以下に示す方法により、樹脂ブラックマトリクスの作製および着色層の作製を行い、これらの工程を経て、目的とするカラーフィルタを作製した。
(製造例1:樹脂ブラックマトリクスの作製)
 製造例1では、上記第16項目で示した積層体のSiON膜上に、黒色顔料を分散したポリアミック酸からなる黒色樹脂組成物(樹脂ブラックマトリクス用のもの)をスピン塗布し、この黒色樹脂組成物の塗膜をホットプレートで130℃、10分間乾燥して、黒色の樹脂塗膜を形成した。続いて、上記黒色の樹脂塗膜の上にポジ型フォトレジスト(シプレー社製、“SRC-100”)をスピン塗布し、このポジ型フォトレジストを、ホットプレートで120℃、5分間プリベークし、超高圧水銀灯を用いて100mJ/cm(i線換算)の条件で紫外線照射してマスク露光した。その後、2.38%のテトラメチルアンモニウムヒドロキシド水溶液を用いて、このポジ型フォトレジストの現像と上記黒色の樹脂塗膜のエッチングとを同時に行い、これにより、上記黒色の樹脂塗膜のパターンを形成した。その後、このポジ型フォトレジストをメチルセロソルブアセテートで剥離し、パターン化した黒色の樹脂塗膜をオーブンで240℃、60分間加熱することによってイミド化して、ポリイミド樹脂にカーボンブラックを分散した樹脂ブラックマトリクスを形成した。製造例1では、以上のようにして、パターン加工された樹脂ブラックマトリクスを上記積層体のSiON膜上に備える樹脂積層体を得た。この樹脂ブラックマトリクスの厚さを測定したところ、1.4μmであった。
(製造例2:着色層の作製)
 製造例2では、上記製造例1において作製した、樹脂ブラックマトリクスがパターン加工された樹脂積層体に、アクリル樹脂感光性赤レジストを、熱処理後のブラックマトリクス開口部での膜厚が2.0μmになるようにスピン塗布し、ホットプレートで100℃、10分間プリベークした。これにより、赤色着色層を得た。次に、紫外線露光機(PLA-5011 キャノン社製)を用い、ブラックマトリクス開口部と樹脂ブラックマトリクス上の一部の領域とにおけるアクリル樹脂感光性赤レジストを、アイランド状に光が透過するクロム製フォトマスクを介して、100mJ/cm(i線換算)の条件で露光した。この露光後のアクリル樹脂感光性赤レジストを、0.2%のテトラメチルアンモニウムヒドロキシド水溶液からなる現像液に浸漬することによって現像した。続いて、上記赤色着色層を、純水洗浄後、230℃のオーブンで30分間加熱処理し、これにより、赤色画素を作製した。これと同様にして、アクリル樹脂感光性緑レジストからなる緑色画素と、アクリル樹脂感光性青レジストからなる青色画素とを作製した。この結果、目的とするカラーフィルタを得た。続いて、熱処理後の着色層部での厚さが2.5μmになるようにスピナーの回転数を調整し、これらの画素および樹脂ブラックマトリクスの上に透明樹脂組成物を塗布した。その後、この透明樹脂組成物の塗膜を230℃のオーブンで30分間加熱処理し、これにより、オーバーコート層を作製した。
 図1は、本発明の実施の形態に係るポリイミド樹脂膜を含むカラーフィルタの一構成例を示す断面模式図である。図1に示すように、このカラーフィルタ6は、ポリイミド樹脂膜1と、ガスバリア層2とを備える。ポリイミド樹脂膜1は、本発明の実施の形態に係るポリイミド樹脂膜の一例であり、例えば、上述した第1項目~第5項目のうちの何れか一つで示される方法によって作製される。ガスバリア層2は、酸素等のガスからポリイミド樹脂膜1を保護する層であり、例えば、上述した第16項目に示されるSiON膜によって構成される。図1に示すように、ガスバリア層2は、ポリイミド樹脂膜1の上に形成される。これらのポリイミド樹脂膜1およびガスバリア層2は、上述した第16項目に示される積層体を構成する。
 また、図1に示すように、カラーフィルタ6は、ガスバリア層2の上に、ブラックマトリクス3と、赤色画素4Rと、緑色画素4Gと、青色画素4Bと、オーバーコート層5とを備える。ブラックマトリクス3は、例えば上述した製造例1に示される方法により、ガスバリア層2の上に形成される樹脂ブラックマトリクスである。赤色画素4Rは、赤の着色画素である。緑色画素4Gは、緑の着色画素である。青色画素4Bは、青の着色画素である。これらの赤色画素4R、緑色画素4Gおよび青色画素4Bは、例えば、上述した製造例2に示される方法によって各々形成される。オーバーコート層5は、ブラックマトリクス3、赤色画素4R、緑色画素4Gおよび青色画素4Bを覆う層であり、例えば、上述した製造例2に示される方法によって形成される。
(第18項目:ブラックマトリクスおよび着色画素の剥がれ確認)
 第18項目では、ブラックマトリクスおよび着色画素の剥がれ確認について説明する。第18項目でのブラックマトリクスおよび着色画素の剥がれ確認では、上記第17項目で示したカラーフィルタのブラックマトリクスおよび着色画素の外観(剥がれの有無)を、光学顕微鏡(Nikon社製、OPTIPHOT300)を用いて倍率50倍で確認した。また、これらの剥がれ確認については、以下の評価方法で、秀、優良、良、不良の判定を行った。
秀(A):ブラックマトリクスおよび着色画素の剥れ無し
優良(B):ブラックマトリクスおよび着色画素の一部に剥がれ有り(ブラックマトリクスおよび着色画素の全体に対する当該剥がれの割合:5%未満)
良(C):ブラックマトリクスおよび着色画素の一部に剥がれ有り(ブラックマトリクスおよび着色画素の全体に対する当該剥がれの割合:5%超15%未満)
不良(D):ブラックマトリクスおよび着色画素の一部に剥がれ有り(ブラックマトリクスおよび着色画素の全体に対する当該剥がれの割合:15%以上)
(実施例1)
 実施例1では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(12.60g(37.5mmol))と、X-22-9409(4.48g(3.35mmol))と、ODPA(12.79g(41.2mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例2)
 実施例2では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(15.29g(45.5mmol))と、SiDA(0.15g(0.60mmol))と、ODPA(14.43g(46.5mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例3)
 実施例3では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(12.75g(37.9mmol))と、X-22-1660B-3(1.78g(0.40mmol))と、X-22-9409(2.70g(2.02mmol))と、ODPA(12.64g(40.8mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例4)
 実施例4では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(12.81g(38.1mmol))と、X-22-1660B-3(2.30g(0.52mmol))と、X-22-9409(2.16g(1.61mmol))と、ODPA(12.61g(40.6mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例5)
 実施例5では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(12.84g(38.2mmol))と、X-22-1660B-3(3.50g(0.80mmol))と、X-22-9409(1.07g(0.80mmol))と、ODPA(12.46g(40.2mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例6)
 実施例6では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(8.78g(26.1mmol))と、BAFL(4.14g(11.9mmol))と、X-22-1660B-3(3.48g(0.79mmol))と、X-22-9409(1.06g(0.79mmol))と、ODPA(12.40g(40.0mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例7)
 実施例7では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(12.87g(38.3mmol))と、X-22-1660B-3(2.25g(0.51mmol))と、X-22-9409(0.68g(0.51mmol))と、ODPA(8.62g(27.8mmol))と、BPAF(5.46g(11.9mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例8)
 実施例8では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(12.01g(35.8mmol))と、X-22-1660B-3(3.45g(0.78mmol))と、X-22-9409(1.05g(0.78mmol))と、ODPA(8.18g(26.4mmol))と、BPAF(5.18g(11.3mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例9)
 実施例9では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(7.87g(23.4mmol))と、3,5-DABA(2.54g(16.7mmol))と、X-22-1660B-3(3.48g(0.79mmol))と、X-22-9409(1.06g(0.79mmol))と、ODPA(9.14g(29.5mmol))と、BPAF(5.79g(12.6mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例10)
 実施例10では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(10.06g(29.9mmol))と、3,5-DABA(1.20g(7.87mmol))と、X-22-1660B-3(3.46g(0.79mmol))と、X-22-9409(1.06g(0.79mmol))と、ODPA(8.63g(27.8mmol))と、BPAF(5.47g(11.9mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例11)
 実施例11では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(11.11g(33.0mmol))と、3,5-DABA(0.59g(3.84mmol))と、X-22-1660B-3(3.38g(0.77mmol))と、X-22-9409(1.03g(0.77mmol))と、ODPA(8.43g(27.2mmol))と、BPAF(5.34g(11.6mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例12)
 実施例12では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(11.15g(33.2mmol))と、X-22-1660B-3(4.66g(1.06mmol))と、X-22-9409(1.42g(1.06mmol))と、ODPA(7.74g(25.0mmol))と、BPAF(4.90g(10.7mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例13)
 実施例13では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(10.38g(30.9mmol))と、X-22-1660B-3(5.75g(1.31mmol))と、X-22-9409(1.75g(1.31mmol))と、ODPA(7.34g(23.7mmol))と、BPAF(4.65g(10.2mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例14)
 実施例14では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(9.61g(28.6mmol))と、X-22-1660B-3(6.83g(1.55mmol))と、X-22-9409(2.08g(1.55mmol))と、ODPA(6.95g(22.4mmol))と、BPAF(4.40g(9.60mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例15)
 実施例15では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(13.15g(39.1mmol))と、X-22-9409(1.07g(0.80mmol))と、ODPA(12.26g(39.5mmol))と、X-22-168-P5-B(3.39g(0.81mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例16)
 実施例16では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(13.22g(39.3mmol))と、ODPA(11.98g(38.6mmol))と、X-22-168-P5-B(4.67g(1.11mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(実施例17)
 実施例17では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(12.95g(38.5mmol))と、X-22-1660B-3(4.53g(1.03mmol))と、ODPA(12.39g(40.0mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(比較例1)
 比較例1では、乾燥窒素気流下、200mL4つ口フラスコに、TFMB(12.31g(38.4mmol))と、X-22-9409(4.48g(3.34mmol))と、ODPA(13.09g(42.2mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(比較例2)
 比較例2では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(15.46g(46.0mmol))と、ODPA(14.41g(46.4mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
(比較例3)
 比較例3では、乾燥窒素気流下、200mL4つ口フラスコに、6FODA(15.58g(46.3mmol))と、X-22-9409(4.46g(3.33mmol))と、CBDA(9.84g(50.2mmol))と、NMP(100g)とを入れて、80℃で加熱撹拌した。5時間後、冷却してワニスとした。
 実施例1~17および比較例1~3の各ワニスを用いて、上記第1項目~第18項目に示したように、ポリイミド樹脂膜、これを含む積層体およびカラーフィルタの作製と、これらに関する測定および評価とを行った。これら実施例1~17および比較例1~3の結果は、表1~4に示す。なお、実施例1~17および比較例1~3において合成した各ワニスは、各々、孔径1μmの四フッ化エチレン製樹脂(PTFE)製フィルタで濾過して用いた。ただし、比較例2においては、基板反りが大きいことから、ポリイミド樹脂膜上にSiON膜を製膜することができなかったため、積層体形成後以降の評価は実施できなかった。
 表1~4に示すように、本発明の実施例1~17においては、対象とする評価の全てについて不良という結果は無かった。一方、本発明に対する比較例1~3においては、対象とする評価の少なくとも一つが不良という結果であった。具体的には、比較例1における面内/面外複屈折の評価と、比較例2における基板反りの評価および基板密着力の評価と、比較例3における破断伸度の評価および積層体形成後の外観評価とについて、不良という結果であった。特に、比較例1においては、直線性の高いTFMBを用いたため、ポリイミドの配向が進み、得られるポリイミド樹脂膜の面内/面外複屈折が大きくなったと考えられる。比較例3においては、脂環式酸二無水物であるCBDAを用いたため、大気雰囲気下でキュアを行った際に酸化分解が進み、黄変したものと考えられる。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 以上のように、本発明に係るポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイスは、透明性が高く、ガラス転移温度が高く、面内/面外複屈折が低く、支持基板との密着性が良好なポリイミドの効率よい提供、このポリイミドを用いたポリイミド樹脂膜およびフレキシブルデバイスの提供に適している。
 1 ポリイミド樹脂膜
 2 ガスバリア層
 3 ブラックマトリクス
 4R 赤色画素
 4G 緑色画素
 4B 青色画素
 5 オーバーコート層
 6 カラーフィルタ

Claims (16)

  1.  一般式(1)で表される構造および一般式(2)で表される構造単位を含む、
     ことを特徴とするポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、RおよびRは、各々独立に、炭素数1~20の一価の有機基を示す。mは、1以上200以下の整数を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、Rは、一般式(3)で表される二価の有機基を示す。Rは、芳香族テトラカルボン酸残基を示す。XおよびXは、各々独立に、水素原子、炭素数1~10の一価の有機基または炭素数1~10の一価のアルキルシリル基を示す。)
    Figure JPOXMLDOC01-appb-C000003
  2.  当該ポリイミド前駆体全体の量を100質量%とした場合、前記一般式(1)で表される構造を0.1質量%以上30質量%以下含む、
     ことを特徴とする請求項1に記載のポリイミド前駆体。
  3.  当該ポリイミド前駆体に含まれる全ジアミン残基中、前記一般式(3)で表される二価の有機基の構造単位を30mol%以上含む、
     ことを特徴とする請求項1または2に記載のポリイミド前駆体。
  4.  当該ポリイミド前駆体に含まれる全酸二無水物残基中、フルオレン骨格を有する酸無水物残基を5mol%以上55mol%以下含む、
     ことを特徴とする請求項1~3のいずれか一つに記載のポリイミド前駆体。
  5.  下記一般式(4)で表される化合物の残基を含む、
     ことを特徴とする請求項1~4のいずれか一つに記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)中、複数のRは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基である。複数のRおよびRは、それぞれ独立に、炭素数1~3の一価の脂肪族炭化水素基、または炭素数6~10の芳香族基である。Lは、アミノ基もしくはその反応性誘導体または酸二無水物構造もしくはその反応性誘導体を含む基である。yは、1以上199以下の整数である。)
  6.  前記一般式(4)で表され且つyが1以上20以下である化合物の残基と、前記一般式(4)で表され且つyが21以上60以下である化合物の残基とを両方含む、
     ことを特徴とする請求項5に記載のポリイミド前駆体。
  7.  下記一般式(9)で表されるジアミンの残基を含む、
     ことを特徴とする請求項1~6のいずれか一つに記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(9)中、Rは、置換又は非置換のフェニル基である。sは、1以上4以下の整数を示す。)
  8.  請求項1~7のいずれか一つに記載のポリイミド前駆体をイミド化してなる、
     ことを特徴とするポリイミド。
  9.  一般式(1)で表される構造および一般式(14)で表される構造単位を含む、
     ことを特徴とするポリイミド。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(1)中、RおよびRは、各々独立に、炭素数1~20の一価の有機基を示す。mは、1以上200以下の整数を示す。)
    Figure JPOXMLDOC01-appb-C000007
    (一般式(14)中、Rは、一般式(3)で表される二価の有機基を示す。Rは、芳香族テトラカルボン酸残基を示す。)
    Figure JPOXMLDOC01-appb-C000008
  10.  当該ポリイミド全体の量を100質量%とした場合、前記一般式(1)で表される構造を0.1質量%以上30質量%以下含む、
     ことを特徴とする請求項9に記載のポリイミド。
  11.  当該ポリイミドに含まれる全ジアミン残基中、前記一般式(3)で表される二価の有機基の構造単位を30mol%以上含む、
     ことを特徴とする請求項9または10に記載のポリイミド。
  12.  請求項8~11のいずれか一つに記載のポリイミドを含む、
     ことを特徴とするポリイミド樹脂膜。
  13.  密度が、1.20g/cm以上1.43g/cm以下である、
     ことを特徴とする請求項12に記載のポリイミド樹脂膜。
  14.  面内/面外複屈折が0.01以下である、
     ことを特徴とする請求項12または13に記載のポリイミド樹脂膜。
  15.  黄色度が3以下である、
     ことを特徴とする請求項12~14のいずれか一つに記載のポリイミド樹脂膜。
  16.  請求項12~15のいずれか一つに記載のポリイミド樹脂膜を備える、
     ことを特徴とするフレキシブルデバイス。
PCT/JP2019/041645 2018-11-09 2019-10-24 ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイス WO2020095693A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217012151A KR20210088551A (ko) 2018-11-09 2019-10-24 폴리이미드 전구체, 폴리이미드, 폴리이미드 수지막 및 플렉시블 디바이스
CN201980071725.0A CN113166409B (zh) 2018-11-09 2019-10-24 聚酰亚胺前体、聚酰亚胺、聚酰亚胺树脂膜、及柔性器件
JP2019559125A JP7384037B2 (ja) 2018-11-09 2019-10-24 ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-211149 2018-11-09
JP2018211149 2018-11-09

Publications (1)

Publication Number Publication Date
WO2020095693A1 true WO2020095693A1 (ja) 2020-05-14

Family

ID=70612009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041645 WO2020095693A1 (ja) 2018-11-09 2019-10-24 ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイス

Country Status (5)

Country Link
JP (1) JP7384037B2 (ja)
KR (1) KR20210088551A (ja)
CN (1) CN113166409B (ja)
TW (1) TW202030226A (ja)
WO (1) WO2020095693A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111704719A (zh) * 2020-06-24 2020-09-25 中国科学院化学研究所 一种热固性聚酰亚胺树脂、预聚物、制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291124A (ja) * 1988-09-29 1990-03-30 Nippon Steel Chem Co Ltd ポリイミド共重合体及びその製造方法
JPH0436321A (ja) * 1990-06-01 1992-02-06 Ube Ind Ltd ポリイミドシロキサン組成物および固化膜
WO2006082814A1 (ja) * 2005-02-01 2006-08-10 National University Corporation Nagoya Institute Of Technology シロキサン変性多分岐ポリイミド
JP2010155895A (ja) * 2008-12-26 2010-07-15 Asahi Kasei E-Materials Corp 組成物、組成物からなる塗膜、塗膜を含む積層体、及び積層体を組み込んだ電子機器
WO2013047451A1 (ja) * 2011-09-29 2013-04-04 Jsr株式会社 樹脂組成物およびそれを用いた膜形成方法
JP2013256666A (ja) * 2013-07-26 2013-12-26 Toray Ind Inc ポリイミド系樹脂水溶液
JP2015141303A (ja) * 2014-01-28 2015-08-03 太陽インキ製造株式会社 感光性熱硬化性樹脂組成物およびフレキシブルプリント配線板
CN105461923A (zh) * 2015-12-25 2016-04-06 南京理工大学 一种聚酰亚胺薄膜及其制备方法
WO2017221776A1 (ja) * 2016-06-24 2017-12-28 東レ株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、それを用いたタッチパネルおよびその製造方法、カラーフィルタおよびその製造方法、液晶素子およびその製造方法、有機el素子およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296493B2 (ja) 2008-10-29 2013-09-25 三菱電線工業株式会社 絶縁部材
JP2010254947A (ja) 2009-03-31 2010-11-11 Jsr Corp ポリイミド系材料、フィルム及び組成物、並びにその製造方法
WO2013024849A1 (ja) * 2011-08-18 2013-02-21 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板
JP5891693B2 (ja) 2011-10-05 2016-03-23 Jsr株式会社 基板の製造方法および基板
KR101896271B1 (ko) 2013-03-18 2018-09-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 수지 전구체 및 그것을 함유하는 수지 조성물, 수지 필름 및 그 제조 방법, 그리고, 적층체 및 그 제조 방법
WO2015046019A1 (ja) * 2013-09-27 2015-04-02 東レ株式会社 ポリイミド前駆体、それから得られるポリイミド樹脂膜、ならびにそれを含む表示素子、光学素子、受光素子、タッチパネル、回路基板、有機elディスプレイ、および、有機el素子ならびにカラーフィルタの製造方法
JP6420064B2 (ja) 2014-06-03 2018-11-07 旭化成株式会社 ポリイミド前駆体組成物及びポリイミドフィルム
JP6599620B2 (ja) 2015-03-05 2019-10-30 旭化成株式会社 ポリイミドを貼り合わせ接着層とする光学部材
JP6458099B2 (ja) 2016-09-16 2019-01-23 旭化成株式会社 ポリイミド前駆体、樹脂組成物、樹脂フィルム及びその製造方法
KR102338021B1 (ko) 2016-11-01 2021-12-10 도레이 카부시키가이샤 터치 패널, 터치 패널의 제조 방법
JP6944784B2 (ja) 2017-02-03 2021-10-06 東京応化工業株式会社 積層体、フレキシブルデバイスおよび積層体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291124A (ja) * 1988-09-29 1990-03-30 Nippon Steel Chem Co Ltd ポリイミド共重合体及びその製造方法
JPH0436321A (ja) * 1990-06-01 1992-02-06 Ube Ind Ltd ポリイミドシロキサン組成物および固化膜
WO2006082814A1 (ja) * 2005-02-01 2006-08-10 National University Corporation Nagoya Institute Of Technology シロキサン変性多分岐ポリイミド
JP2010155895A (ja) * 2008-12-26 2010-07-15 Asahi Kasei E-Materials Corp 組成物、組成物からなる塗膜、塗膜を含む積層体、及び積層体を組み込んだ電子機器
WO2013047451A1 (ja) * 2011-09-29 2013-04-04 Jsr株式会社 樹脂組成物およびそれを用いた膜形成方法
JP2013256666A (ja) * 2013-07-26 2013-12-26 Toray Ind Inc ポリイミド系樹脂水溶液
JP2015141303A (ja) * 2014-01-28 2015-08-03 太陽インキ製造株式会社 感光性熱硬化性樹脂組成物およびフレキシブルプリント配線板
CN105461923A (zh) * 2015-12-25 2016-04-06 南京理工大学 一种聚酰亚胺薄膜及其制备方法
WO2017221776A1 (ja) * 2016-06-24 2017-12-28 東レ株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、それを用いたタッチパネルおよびその製造方法、カラーフィルタおよびその製造方法、液晶素子およびその製造方法、有機el素子およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111704719A (zh) * 2020-06-24 2020-09-25 中国科学院化学研究所 一种热固性聚酰亚胺树脂、预聚物、制备方法与应用
CN111704719B (zh) * 2020-06-24 2021-07-20 中国科学院化学研究所 一种热固性聚酰亚胺树脂、预聚物、制备方法与应用

Also Published As

Publication number Publication date
TW202030226A (zh) 2020-08-16
KR20210088551A (ko) 2021-07-14
JP7384037B2 (ja) 2023-11-21
JPWO2020095693A1 (ja) 2021-09-30
CN113166409A (zh) 2021-07-23
CN113166409B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
JP6883640B2 (ja) 樹脂前駆体及びそれを含有する樹脂組成物、樹脂フィルム及びその製造方法、並びに、積層体及びその製造方法
JP7033171B2 (ja) 空隙を有するポリイミドフィルム及びその製造方法
KR101946092B1 (ko) 수지 조성물 및 그것을 이용한 막 형성 방법
JP7367699B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7363142B2 (ja) ポリイミド前駆体樹脂組成物、ポリイミド樹脂組成物およびその膜状物、それを含む積層体、ならびにフレキシブルデバイス
JPWO2019065164A1 (ja) ポリイミド前駆体樹脂組成物、ポリイミド樹脂組成物、ポリイミド樹脂膜、積層体の製造方法、カラーフィルタの製造方法、液晶素子の製造方法および有機el素子の製造方法
WO2020095693A1 (ja) ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイス
WO2021106627A1 (ja) ポリイミド、ポリイミド樹脂膜、積層体およびフレキシブルデバイス
JP2023182123A (ja) 樹脂組成物およびフィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019559125

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881255

Country of ref document: EP

Kind code of ref document: A1