WO2013039229A1 - ガラス板切断方法およびガラス板切断装置 - Google Patents

ガラス板切断方法およびガラス板切断装置 Download PDF

Info

Publication number
WO2013039229A1
WO2013039229A1 PCT/JP2012/073717 JP2012073717W WO2013039229A1 WO 2013039229 A1 WO2013039229 A1 WO 2013039229A1 JP 2012073717 W JP2012073717 W JP 2012073717W WO 2013039229 A1 WO2013039229 A1 WO 2013039229A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
assist gas
cutting
laser
product
Prior art date
Application number
PCT/JP2012/073717
Other languages
English (en)
French (fr)
Inventor
孝英 藤居
勢津夫 内田
尚利 稲山
隆行 野田
翔 伊東
道治 江田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011202142A external-priority patent/JP5824998B2/ja
Priority claimed from JP2011202141A external-priority patent/JP5861864B2/ja
Priority claimed from JP2012114582A external-priority patent/JP5822143B2/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020187014137A priority Critical patent/KR101949777B1/ko
Priority to EP12831681.7A priority patent/EP2757077B1/en
Priority to KR1020187014136A priority patent/KR101962661B1/ko
Priority to CN201280030903.3A priority patent/CN103619765B/zh
Priority to EP15173829.1A priority patent/EP2990389B1/en
Priority to KR1020137026761A priority patent/KR101904797B1/ko
Publication of WO2013039229A1 publication Critical patent/WO2013039229A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/08Severing cooled glass by fusing, i.e. by melting through the glass
    • C03B33/082Severing cooled glass by fusing, i.e. by melting through the glass using a focussed radiation beam, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • B23K26/1438Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means for directional control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24777Edge feature

Definitions

  • the present invention relates to an improvement of a cutting technique for fusing a glass plate.
  • a method of cutting a glass plate a method of forming a scribe line on the surface of the glass plate with a diamond cutter and then cleaving the scribe line by applying a bending stress (cleaving by a bending stress) is widely used. ing.
  • Patent Document 1 discloses that a carbon dioxide laser beam obtained by condensing a carbon dioxide laser beam condensed at a minute point after preheating with a defocused carbon dioxide laser beam is applied. It is disclosed that fusing is performed by irradiating a cut portion.
  • the glass substrate is cut (melting) while blowing off the melt generated in the cutting portion by the laser irradiation heat by the center assist gas that is injected together with the laser from directly above the cutting portion. It is customary to do this.
  • the melt scattered by the center assist gas may become a foreign substance called dross and adhere to the glass plate, which is a factor of reducing the product value of the glass plate. Therefore, in laser fusing, various measures are taken to prevent such adhesion of foreign matters.
  • Patent Document 2 does not relate to the cutting of a glass plate, but discloses the following cutting method in order to prevent the adhesion of dross that occurs when a ceramic or metal is melted. That is, in the same document, an assist gas (corresponding to the above-mentioned center assist gas) is injected from a machining nozzle disposed immediately above a cut portion of the workpiece, substantially vertically downward, and the workpiece is cut.
  • an assist gas corresponding to the above-mentioned center assist gas
  • a gas different from the assist gas from the auxiliary nozzle is sprayed from the side that becomes the product of the work piece to the front and back sides of the part, and the molten foreign matter (such as dross) is scattered to the side that becomes the waste material of the work piece
  • suction is performed with a suction nozzle directly under a cut portion of a workpiece.
  • Patent Document 1 an object is to mainly cut a thick glass of 1 mm or more into a predetermined shape, but such a thick glass is excellent in mechanical strength.
  • the present invention has a first object of managing the gap between the melted end faces of the thin glass and maintaining the shape in the vicinity of the melted end face when the sheet glass is melted by laser irradiation heat.
  • Patent Document 2 since the injection pressure of the assist gas injected from the processing nozzle is set to be larger than the injection pressure of the gas injected from the auxiliary nozzle, when applied to the cutting of the glass plate G temporarily Can cause the following problems.
  • a second object of the present invention is to cut a glass plate by fusing without causing a defective shape on the cut end surface of the glass plate to be a product.
  • a suction nozzle is disposed only directly under a cut portion of a workpiece, and a deposit such as dross falling from the cut portion of the workpiece is sucked by the suction nozzle.
  • Patent Document 2 a suction nozzle is arranged below the workpiece, and this is dealt with.
  • the molten foreign matter that can be captured by such a suction nozzle does not float in the air, and is gravity from the cutting portion. It is thought that large foreign objects that fall in the main are the main. Therefore, it is virtually impossible to sufficiently capture minute molten foreign matters that float in the air.
  • the molten foreign matter cannot be sucked at all, and therefore the floating of the molten foreign matter in the upper space of the glass plate becomes remarkable.
  • the present invention has a third object to reliably reduce the situation where molten foreign matter such as dross adheres to a glass plate as a product when the glass plate is melted by laser irradiation heat. To do.
  • Patent Document 2 discloses that the assist gas is jetted from directly above the laser irradiation part of the metal plate or the ceramic plate, but such a method is also adopted for the glass plate, The following unique problems arise.
  • the molten glass portion of the glass plate is strongly pressed downward by the assist gas, so that the molten glass portion hangs down due to the pressure of the assist gas without scattering due to its high viscosity.
  • the thickness in the vicinity of the cut surface of the plate glass after cutting becomes a state where the thickness is larger than other portions (the plate thickness of the glass plate), and the shape of the cut surface becomes poor, and the cut surface There was a problem of degrading the quality.
  • the glass plate itself is an oxide, unlike the case where laser cutting of a metal plate or the like is performed, it is not expected to promote cutting by an oxidation combustion reaction. For this reason, the above-mentioned problem has become more prominent.
  • This invention made
  • the cutting method according to the first aspect of the invention which was created to solve the first problem, irradiates a laser on a cut portion of a glass plate having a thickness of 500 ⁇ m or less (hereinafter sometimes referred to as thin plate glass), A method for cutting a glass plate for fusing the glass plate, wherein the thickness of the glass plate is a, and the minimum gap between the fusing end faces of the thin glass facing the cut portion is b, 0.1 ⁇ The minimum gap is managed so as to satisfy the relationship of b / a ⁇ 2.
  • the gap between the fused end faces of the thin glass is strictly managed in a relative relationship with the thickness of the thin glass, the shape in the vicinity of the fused end face of the thin glass is favorably maintained. Meanwhile, the blown thin glass can be safely separated. Furthermore, it becomes possible to avoid the deformation
  • the defocused laser can sufficiently melt the cut portion.
  • the energy density of the laser is reduced at a position corresponding to the cutting portion, and thus the amount of change in energy around the irradiation position is also reduced. Therefore, even if the irradiation position varies somewhat due to warpage or vibration of the glass plate, there is an advantage that the irradiation heat applied to the cutting portion hardly changes and the fusing can be executed under substantially the same conditions.
  • the spot diameter of the laser is smaller than the minimum gap between the fusing end faces of the glass plate.
  • the laser is irradiated in a narrower range than the range that is actually melted and removed. Therefore, it can be expected that the annealing process is performed on the cut end surface of the thin glass sheet by heat conduction from the laser irradiation portion.
  • the fusing end face has a convex curved surface.
  • the melted end surface of the thin glass can achieve an effect equal to or higher than that when chamfered, and the end surface strength is increased. For this reason, there is an advantage that chipping is unlikely to occur on the end face when flowing to the process after the cutting process, and handling is facilitated and the yield is improved.
  • the fusing end surface is preferably a fire-making surface.
  • the arithmetic average roughness Ra of the fusing end face is 0.3 ⁇ m or less, and the average length RSm of the roughness curve element is 150 ⁇ m or more.
  • the arithmetic average roughness Ra and the average length RSm of the roughness curve element here are based on JIS 2001.
  • a residual compressive stress of the fusing end face is 20 MPa to 500 MPa.
  • a glass plate according to a first aspect of the invention which was created to solve the first problem, is a glass plate having a thickness of 500 ⁇ m or less and having a fusing end face fused by laser, and the arithmetic operation of the fusing end face
  • the average roughness Ra is 0.3 ⁇ m or less
  • the average length RSm of the roughness curve element is characterized by 150 ⁇ m or more.
  • the residual compressive stress of the fusing end face is 20 MPa to 500 MPa.
  • the second invention created in order to solve the second problem is that the assist gas is injected to the cutting part of the glass plate while irradiating a laser toward the cutting part, and the cutting part is used as a boundary.
  • a center assist gas that is injected, and a side assist gas that is injected obliquely downward from the upper position on the side that becomes the product portion toward the cutting portion, and the injection pressure of the side assist gas is the center assist gas. It is characterized by being stronger than the injection pressure.
  • the injection pressure of the center assist gas is relatively weakened, the melted foreign matter (such as dross) at the cut portion generated at the time of fusing is mainly blown out by the side assist gas. Since this side assist gas is injected obliquely downward from the upper position on the side that becomes the product portion toward the cutting portion, the side assist gas presses the vicinity of the cutting portion of the molten glass plate downward as compared to the center assist gas. The power to do is weak. Therefore, it is possible to prevent the cut portion of the glass plate in the molten state from drooping.
  • the molten foreign matter generated in the cut portion by the side assist gas is preferentially scattered to the non-product portion side in a state in which the dripping of the cut portion is prevented, so that the molten foreign matter accumulates on the cut end surface of the product portion. It becomes difficult. Therefore, it becomes possible to maintain the shape of the cut end surface of the product portion in a good shape having a substantially arc shape.
  • the second invention created in order to solve the second problem is that the assist gas is injected to the cutting part of the glass plate while irradiating a laser toward the cutting part, and the cutting part is used as a boundary.
  • the foreign matter generated in the cutting part by the side assist gas preferentially scatters to the non-product part side, so that the foreign substance does not easily accumulate on the cut end surface of the product part. . Therefore, it becomes possible to maintain the shape of the cut end surface of the product portion in a good shape having a substantially arc shape.
  • the side assist gas is injected with an inclination angle of 25 ° to 60 ° with respect to the upper surface of the glass plate.
  • the side assist gas when the inclination angle of the side assist gas with respect to the upper surface of the glass plate is less than 25 °, the side assist gas may enter the glass plate so shallow that the side assist gas cannot be efficiently supplied to the cut portion. There is.
  • the inclination angle of the side assist gas with respect to the upper surface of the glass plate exceeds 60 °, the side assist gas is excessively incident on the glass plate, and there is a possibility that the force for pressing the vicinity of the cut portion downward increases. Therefore, it is preferable that the inclination angle of the side assist gas is within the above numerical range, and within this range, the side assist gas presses the vicinity of the cutting portion downward while efficiently supplying the side assist gas to the cutting portion. Force can be suppressed appropriately.
  • the assist gas includes an auxiliary side assist gas that is injected obliquely upward from the lower position on the side serving as the product portion toward the cutting portion in the lower space of the glass plate.
  • the laser may be applied to the glass plate with defocus.
  • a second invention created in order to solve the second problem is that a laser irradiation unit emits a laser toward the cutting part while injecting an assist gas from the assist gas injection unit to the cutting part of the glass plate. And a glass plate cutting device for fusing and separating the glass plate into a product portion and a non-product portion with the cut portion as a boundary, wherein the assist gas injection means is disposed in the upper space of the glass plate. Center assist gas injecting means for injecting the center assist gas directly from the upper position toward the cutting portion, and the injection pressure stronger than the center assist gas from the upper position on the product portion side toward the cutting portion. And side assist gas injection means for injecting side assist gas obliquely downward.
  • a second invention created in order to solve the second problem is that a laser irradiation unit emits a laser toward the cutting part while injecting an assist gas from the assist gas injection unit to the cutting part of the glass plate. And a glass plate cutting device for fusing and separating the glass plate into a product portion and a non-product portion with the cut portion as a boundary, wherein the assist gas spraying means includes the product portion in the upper space of the glass plate. It is characterized by having only the side assist gas injection means for injecting the side assist gas obliquely downward from the upper position on the side toward the cutting portion.
  • the said assist gas injection means is an auxiliary side assist gas which injects auxiliary side assist gas diagonally upward toward the said cutting part from the lower position of the side used as the said product part in the downward space of the said glass plate. It is preferable to have an injection means.
  • ⁇ Third invention> 3rd invention created in order to solve the said 3rd subject is the said cutting
  • a glass plate cutting device for irradiating a laser toward the cutting portion while injecting an assist gas to the portion, and fusing the glass plate into a product portion and a non-product portion with the cutting portion as a boundary.
  • the first suction means is disposed at a lower position on the side that becomes the product portion in the lower space of the glass plate, and faces the cutting portion. Forward diagonally upward A second gas injection means for injecting an assist gas, characterized in that it comprises a second suction means for sucking the molten foreign matter of the non-supporting space.
  • molten foreign matter means foreign matters such as dross generated when the glass plate is melted, and includes both those in a molten state and those in a solidified state (the same applies hereinafter).
  • the assist gas is injected obliquely from the upper and lower sides on the side that becomes the product portion of the glass plate toward the cutting portion, so that the molten foreign matter in the cutting portion is surely blown off to the non-product portion side. be able to.
  • the molten foreign material blown off by this upper and lower assist gas is attracted
  • the suction port of the second suction means is long along a planned cutting line including the cutting portion.
  • the suction port of the second suction means disposed in the lower space of the glass plate Is preferably long along the cutting line (the cutting direction of the glass plate).
  • the second suction means is biased and arranged on the side that becomes the non-product part.
  • the molten foreign matter is blown to the non-product part side by the first gas injection means or the second gas injection means. It is possible to efficiently capture the molten foreign matter by arranging the means so as to be biased toward the non-product part side.
  • the first gas injection means may be configured to inject the assist gas onto the upper surface of the glass plate with an inclination angle of 15 ° to 45 °.
  • the assist gas is injected at such an inclination angle, it is possible to efficiently blow off the molten foreign material to the product portion side.
  • the inclination angle of the first gas injection means is less than 15 °, it becomes difficult to efficiently apply the assist gas to the cutting portion, and the force that blows away the molten foreign material to the non-product portion side. May not be fully demonstrated.
  • the inclination angle of the first glass spraying unit exceeds 45 °, the force for blowing the molten foreign material to the non-product part side by the assist gas may be weakened.
  • the side surface portion of the support stage facing the non-supporting space on the side that becomes the product portion has a tapered surface that guides the assist gas injected from the second gas injection means obliquely upward. You may make it.
  • the assist gas can be guided obliquely upward by the tapered surface of the side surface portion of the support stage, so that the assist gas injected from the second gas injection means is reliably supplied to the cut portion of the glass plate. Can act.
  • the support stage facing the non-supporting part on the side to be the product part guides the assist gas injected from the second gas injection unit obliquely upward to the non-supporting space. You may make it have the gas flow path opened.
  • the assist gas can be guided obliquely upward by the gas flow passage of the support stage, so that the assist gas ejected from the second gas ejecting means acts on the cut portion of the glass plate with certainty. be able to.
  • the laser is configured to irradiate the glass plate with defocus.
  • the 3rd invention created in order to solve the said 3rd subject is the said cutting part in the state which mounted the glass plate on the support stage which has a non-supporting space along the cutting part of a glass plate.
  • the assist gas While sucking, in the space below the glass plate, the assist gas is jetted obliquely upward from the lower position on the product portion side toward the cutting portion to suck the molten foreign matter in the non-supporting space. You In particular, it is characterized.
  • a glass sheet laser fusing method for forming a recess in the molten glass portion and extending the recess to the back surface of the glass plate to cut and separate the glass plate, with respect to the surface of the glass plate By injecting the assist gas from the inclined direction, a part of the molten glass portion of the glass plate is brought closer to the assist gas injection destination side, and the remaining part is blown off to the assist gas injection destination side to form the recess.
  • the wall portion facing the inclined wall portion in the recess characterized in that molded on the cut surface forming a convex curved surface.
  • a concave portion having an inclined wall portion is formed in the molten glass portion of the glass plate by laser irradiation on the surface of the glass plate and injection of the assist gas from the inclined direction.
  • the assist gas is smoothly guided to the back surface side of the glass plate by effectively using the inclined wall portion.
  • the inclination angle formed by the assist gas injection direction and the surface of the glass plate is preferably 20 ° to 65 °.
  • the side assist gas is injected into the laser irradiation portion from the side opposite to the assist gas with respect to the irradiation portion and from the direction inclined with respect to the surface of the glass plate.
  • the injection pressure of the side assist gas is preferably smaller than the injection pressure of the assist gas.
  • the glass plate on the assist gas injection source side among the glass plates after separation and cutting may be a product, and the glass plate on the assist gas injection destination side may be a non-product.
  • the glass plate on the injection side of the assist gas can be made high quality, and the glass plate on the injection destination side can be used as a waste material.
  • the gap between the fusing end surfaces of the thin glass is strictly managed in a relative relationship with the thickness of the thin glass.
  • the shape can be favorably maintained in the vicinity of the cut end surface of the thin glass.
  • the melted thin glass can be safely separated without bringing the melted end faces into contact with each other.
  • the second invention since the force pressed downward by the gas injected in the vicinity of the cut portion in the molten state can be suppressed, a defective shape is formed on the cut end surface of the product portion of the glass plate. It is possible to cut the glass plate by fusing without causing it.
  • the assist gas is injected from both the upper and lower sides into the cut portion of the glass plate, and the molten foreign material blown off by the assist gas is sucked and captured on the upper and lower sides of the glass plate. The Therefore, it is possible to reliably reduce the situation where the molten foreign matter adheres to the product portion of the glass plate, and it is possible to maintain the cleanliness of the product portion satisfactorily.
  • the work efficiency at the time of cutting the glass plate is improved, and the quality of the cut surface of the cut glass plate is improved.
  • FIG. 3 is a sectional view taken along line XX in FIG. 2. It is a figure which shows typically the state of the glass substrate immediately after fuse
  • the glass plate is a glass substrate for a flat panel display having a thickness of 500 ⁇ m or less.
  • the glass plate to be cut is a glass substrate for a flat panel display. It is not limited to.
  • the present invention can be applied to glass substrates used in various fields, such as solar cells, organic EL lighting, touch panels, and digital signage, and laminates thereof with organic resins.
  • the thickness of the glass plate is not particularly limited, but is preferably 300 ⁇ m or less, particularly 200 ⁇ m or less.
  • the glass plate is a glass substrate for a flat panel display having a thickness of 500 ⁇ m or less.
  • the glass plate to be cut is not limited to a glass substrate for a flat panel display.
  • the present invention can be applied to glass substrates used in various fields such as solar cells, organic EL lighting, touch panels, and digital signage, and laminates thereof with organic resins.
  • the glass plate cutting device 1 which concerns on 1st Embodiment supports the glass plate G of a flat position from the bottom, and is supported by this support stage 2 And a laser irradiator 3 for fusing and separating the glass plate G.
  • the support stage 2 includes a stage main body 21 and a conveyor 22 that moves along the upper surface of the stage main body 21.
  • the glass plate G is transported downstream in the transport direction (in the direction of arrow A in the figure) along the planned cutting line CL by the movement of the conveyor 22.
  • the stage main body 21 serves to guide the conveyor 22.
  • the conveyor 22 is formed with a large number of ventilation holes (not shown), and the glass plate G is conveyed through the ventilation holes while being sucked and held on the conveyor 22.
  • other transport methods may be employed such as transporting the glass plate G while holding the glass plate G from both the front and back sides without adsorbing the glass plate G.
  • the stage main body 21 and the conveyor 22 are separated into two at intervals in the width direction of the glass plate G, and the unsupported space S is positioned below the planned cutting line CL of the glass plate G. have.
  • the lower surface of the glass plate G and the support stage 2 are not in contact, and the lower surface of the glass plate G is exposed to the non-supporting space S.
  • the laser irradiator 3 has an internal space for propagating the laser LB, and includes a lens 31 in this space.
  • the laser beam LB condensed by the lens 31 is condensed at a fine focal point, and the cutting position (irradiating the laser beam LB is used for fusing in a state where the focal point position FP is aligned with the upper surface of the glass plate G. Irradiating part C). Then, the glass plate G is melted along the planned cutting line CL by the irradiation heat of the laser LB, and separated into a product part Ga that is a product and a non-product part Gb that is discarded and is not a product.
  • the focal position FP of the laser LB may be an intermediate position in the thickness direction of the glass plate G.
  • the focal position FP of the laser LB may be set above the glass plate G, and the cutting part C may be irradiated with the laser LB defocused.
  • the glass sheet cutting device 1 includes a side assist gas injection nozzle 4 that injects the side assist gas A1 obliquely downward from the upper position on the side that becomes the product part Ga toward the cutting part C.
  • the side assist gas A1 plays a role of blowing molten foreign matters such as dross to the non-product part Gb side.
  • the glass plate G is conveyed by the conveyor 22 of the support stage 2, and the laser LB irradiated from the laser irradiator 3 placed in a stationary state on the conveyance path is cut into the glass plate G. Scan along the planned line CL.
  • the side assist gas A1 is injected obliquely downward toward the cutting portion C located on the CL.
  • a molten foreign material is removed from the cutting part C, and fusing is performed efficiently.
  • the molten foreign material is blown off to the non-product part Gb side, the situation where a molten foreign material adheres to the product part Ga can be prevented.
  • the “molten foreign matter” means foreign matters such as dross generated when the glass plate G is melted, and includes both those in a molten state and those in a solidified state.
  • the means for injecting gas to the glass plate G is only the side assist gas injection nozzle 4. And since this side assist gas injection nozzle 4 injects side assist gas A1 diagonally with respect to the cutting part C of the glass plate G, it injects substantially perpendicularly with respect to the cutting part C of the glass plate G from right above. Compared to the case (for example, when the center assist gas is injected), the force that presses down the vicinity of the cutting portion C in the molten state is less likely to act. Therefore, it is possible to prevent the glass plate G in a molten state from drooping downward in the vicinity of the cut portion C.
  • the glass plate G is melted as described above, a part of the cut portion C of the glass plate G is melted and removed, and between the melted end surface Ga1 of the product portion Ga and the melted end surface Gb1 of the non-product portion Gb. A gap is formed. Therefore, since the melted end face Ga1 of the product part Ga and the melted end face Gb1 of the non-product part Gb are separated by the gap, the situation where the melted end faces Ga1 and Gb1 are in contact with each other and damaged is prevented. The product part Ga and the non-product part Gb can be separated smoothly.
  • the minimum gap between the melted end face Ga1 of the product part Ga and the melted end face Gb1 of the non-product part Gb is b.
  • the minimum gap b satisfying the relationship of 0.1 ⁇ b / a ⁇ 2 is controlled by fusing. In this way, the gap between the melted end face Ga1 of the product part Ga and the melted end face Gb1 of the non-product part Gb is strictly controlled in a relative relationship with the thickness of the glass plate G.
  • the product part Ga and the non-product part Gb can be safely separated while maintaining the shape in the vicinity of the fusing end face Ga1.
  • the conditions of the laser LB and the side assist gas A1 are as follows. Of course, the conditions of the laser LB and the side assist gas A1 are not limited to these.
  • the spot diameter of the laser LB is set smaller than the minimum gap b in FIG.
  • the irradiation energy of the laser LB is set to 100 to 100,000 [W / mm 2 ] on the upper surface of the glass plate G.
  • the injection pressure of the side assist gas A1 is set to 0.01 to 0.5 [MPa].
  • the inclination angle ⁇ 1 of the side assist gas A1 is set to 25 ° to 60 °, preferably 30 ° to 50 °, more preferably 35 ° to 45 °. That is, when the inclination angle of the side assist gas A1 with respect to the surface of the glass plate G is less than 25 °, the side assist gas A1 is excessively shallowly incident on the glass plate G, and the side assist gas A1 is efficiently supplied to the cutting part C. There is a risk that it may not be possible. On the other hand, when the inclination angle of the side assist gas A1 with respect to the surface of the glass plate G exceeds 60 °, the side assist gas A1 is excessively incident on the glass plate G, and the force for pressing the vicinity of the cutting portion C downward increases.
  • the inclination angle ⁇ 1 of the side assist gas A1 is preferably within the above numerical range, and within this range, the side assist gas A1 is efficiently supplied to the cutting part C, and the side assist gas A1 is supplied to the cutting part C. The force which presses the vicinity downward can be suppressed appropriately.
  • the inclination angle ⁇ 1 of the side assist gas A1 is preferably set to 15 ° to 45 °. Therefore, in consideration of the shape of the cut end face Ga1 of the product part Ga and the adhesion of the molten foreign matter to the product part Ga, the inclination angle ⁇ 1 of the side assist gas A1 may be set to 25 ° to 45 °. preferable.
  • the directing direction of the side assist gas A1 may be in the vicinity of the cutting part C.
  • the virtual center line L1 of the side assist gas A1 intersects with the cutting part C, but the glass plate G is closer to the product part Ga than the cutting part C. You may make it cross
  • the side assist gas A1 for example, a gas such as oxygen (or air), water vapor, carbon dioxide, nitrogen, and argon is used alone or mixed with other gases. Further, the side assist gas A1 may be injected as hot air.
  • a gas such as oxygen (or air), water vapor, carbon dioxide, nitrogen, and argon is used alone or mixed with other gases. Further, the side assist gas A1 may be injected as hot air.
  • the glass plate G melted as described above has the following characteristics.
  • the shape of the cut end surface Ga ⁇ b> 1 of the product portion Ga is a good convex curved surface shape having a substantially arc shape. If it adds, the fusing end surface Ga1 of the product part Ga will be comprised with a fire-making surface. Note that molten foreign matter (such as dross) blown off by the side assist gas A1 adheres to the fused end surface Gb1 of the non-product portion Gb, and the shape of the fused end surface Gb1 may deviate from a substantially arc shape.
  • the arithmetic average roughness Ra of the cut end face Ga1 of the product part Ga is 0.3 ⁇ m or less, and the average length RSm of the roughness curve element is 150 ⁇ m or more.
  • Ra is preferably as close to zero as possible, and RSm is preferably as close as possible to infinity.
  • RSm is preferably as close as possible to infinity.
  • the residual compressive stress of the fused end face Ga1 of the product part Ga is 20 MPa to 500 MPa.
  • the glass plate cutting device 1 according to the second embodiment is further provided with a center assist gas injection nozzle 5 in addition to the configuration of the glass plate cutting device 1 according to the first embodiment. Is added. Hereinafter, description of common points will be omitted, and only differences will be described.
  • the center assist gas injection nozzle 5 is connected to the tip of the laser irradiator 3 and supplies the center assist gas A2 to the internal space of the laser irradiator 3 (the space below the lens 31).
  • the center assist gas A2 supplied to the internal space of the laser irradiator 3 is jetted directly from the front end of the laser irradiator 3 toward the cutting part C of the glass plate G. That is, from the tip of the laser irradiator 3, the laser LB is emitted and the center assist gas A2 is injected.
  • the center assist gas A2 serves to remove molten foreign matter generated when the glass plate G is melted from the cut portion C of the glass plate G, and to protect optical components such as the lens 31 of the laser irradiator 3 from the molten foreign matter. Furthermore, it plays a role of cooling the heat of the lens.
  • the injection pressure of the side assist gas A1 is P1
  • the injection pressure of the center assist gas A2 is P2
  • P2 / P1 is set to 0-2.
  • the injection pressure of the center assist gas A2 is set to 0 to 0.02 [MPa]
  • the injection pressure of the side assist gas A1 is set to 0.01 to 0.5 [MPa].
  • the injection pressure of the side assist gas A1 is set larger than the injection pressure of the center assist gas A2.
  • P2 / P1 is set to 0.1 to 0.5.
  • the injection pressure of the center assist gas A2 is preferably set to a pressure that can protect the optical components such as the lens 31 of the laser irradiator 3 from the molten foreign matter.
  • the injection pressure of the center assist gas A2 is relatively weakened, the molten foreign matter generated in the cut portion C is mainly blown off by the side assist gas A1. Since the side assist gas A1 is injected obliquely downward from the upper position on the side that becomes the product part Ga toward the cutting part C, the cutting part of the glass plate G in a molten state compared to the center assist gas A2. The force for pressing the vicinity of C downward is weak. Therefore, by making the injection pressure of the side assist gas A1 larger than the injection pressure of the center assist gas A2, it is possible to prevent the cutting portion C of the glass plate G in the molten state from drooping.
  • the shape of the fused end surface Ga1 of the product part Ga can be maintained in a good shape having a substantially arc shape.
  • the side assist gas A1 and the center assist gas A2 may be the same type of gas or different types of gas.
  • the glass plate cutting device 1 according to the third embodiment is different from the glass plate cutting device 1 according to the first or second embodiment in that the glass plate G
  • the auxiliary side assist gas injection nozzle 6 is provided in the lower space.
  • description of common points will be omitted, and only differences will be described.
  • the center assist gas injection nozzle 5 is provided, but may be omitted.
  • the auxiliary side assist gas injection nozzle 6 is disposed at a lower position on the side of the glass plate G that becomes the product part Ga, and injects the auxiliary side assist gas A3 obliquely upward toward the cutting part C.
  • the side surface portion 21a facing the non-supporting space S of the stage main body 21 on the product portion Ga side has a tapered surface that is inclined so that the upper portion is closer to the cutting portion C of the glass plate G than the lower portion. There is no. Further, the auxiliary side assist gas A3 injected from the auxiliary side assist gas injection nozzle 6 is guided obliquely upward by the side surface portion 21a having the tapered surface and supplied to the cutting portion C of the glass plate G. .
  • the side surface portion 21a facing the non-supporting space S of the stage main body 21 on the non-product portion Gb side also has a tapered surface inclined so that the upper portion is closer to the cutting portion C of the glass plate G than the lower portion. There is no. Of course, only the side surface portion 21a of the stage main body 21 on the product portion Ga side may be a tapered surface.
  • the injection pressure of the auxiliary side assist gas A3 is set to 0.01 to 0.5 [MPa], for example.
  • the inclination angle ⁇ 2 of the auxiliary side assist gas A3 with respect to the back surface (lower surface) of the glass plate G is set to 15 ° to 70 °, preferably 20 ° to 60 °, more preferably 25 ° to 45 °.
  • the directing direction of the auxiliary side assist gas A3 may be in the vicinity of the cutting part C.
  • the virtual center line L2 of the auxiliary side assist gas A3 intersects with the cutting part C, but the glass plate is closer to the product part Ga than the cutting part C. You may make it cross
  • the auxiliary side assist gas A3 may be the same type of gas as the side assist gas A1 or a different type of gas.
  • the side assist gas A1 and the auxiliary side assist gas A3 are simultaneously injected into the cutting part C of the glass plate G, but the present invention is not limited to this.
  • the present invention is not limited to this.
  • the side assist gas A1 is stopped, You may make it blow off the molten foreign material of the cutting part C with auxiliary side assist gas A3.
  • the glass plate cutting device 1 according to the fourth embodiment is different from the glass plate cutting device 1 according to the third embodiment in the auxiliary side assist gas A3.
  • the supply method In the supply method.
  • description of common points will be omitted, and only differences will be described.
  • a gas flow passage 21b that extends obliquely upward and has one end communicating with the non-supporting space S is formed in the stage main body 21 of the support stage 2.
  • the injection port of the auxiliary side assist gas injection nozzle 6 is connected to the other end of the gas flow passage 21b.
  • the auxiliary side assist gas A3 injected from the auxiliary side assist gas injection nozzle 6 is guided obliquely upward through the gas flow passage 21b to open to the non-supporting space S, and is supplied to the cutting part C of the glass plate G.
  • the glass plate cutting device 1 according to the fifth embodiment is different from the glass plate cutting device 1 according to the third embodiment in that the molten foreign matter generated in the fusing process. It is in the point provided with the composition which sucks.
  • description of common points will be omitted, and only differences will be described.
  • the first suction nozzle 7 disposed at the upper position on the side to be the non-product part Gb and the second suction nozzle 8 disposed at the lower position on the side to be the non-product part Gb are provided.
  • the first suction nozzle 7 is arranged so as to face the side assist gas injection nozzle 4 in a state where the virtual center line L3 is directed to the cutting portion C, and sucks the molten foreign matter in the space above the glass plate G.
  • the inclination angle ⁇ 1 of the virtual center line L3 of the first suction nozzle 7 with respect to the surface (upper surface) of the glass plate G is within ⁇ 1 ⁇ 15 °, preferably within ⁇ 1 ⁇ 10 °, more preferably within ⁇ 1 ⁇ 5 °.
  • the second suction nozzle 8 is disposed so as to face the auxiliary side assist gas injection nozzle 6 with its suction port directed upward, and in other words, the lower space of the glass plate G, in other words, unsupported.
  • the melted foreign matter in the space S is sucked.
  • the second suction nozzle 8 is arranged so as to be biased toward the non-product part Gb side from directly below the cutting part C because the molten foreign matter is not supported by the side assist gas A1 or the auxiliary side assist gas A3. It is because it descends while being blown away to the non-product part Gb side in S.
  • the first suction nozzle 7 and the second suction nozzle 8 suck the molten foreign matter blown to the non-product part Gb side by the side assist gas A1 and the auxiliary side assist gas A3. In this way, it is possible to reliably prevent the molten foreign matter blown off from the cutting part C by the side assist gas A1 and the auxiliary side assist gas A3 from floating in the surrounding space and adhering to the product part Ga again. .
  • the molten foreign matter is simultaneously sucked by the first suction nozzle 7 and the second suction nozzle 8, but the present invention is not limited to this.
  • the molten foreign matter is sucked by the first suction nozzle 7 until the cutting portion C of the glass plate G penetrates, and the molten foreign matter is melted by the second suction nozzle 8 after the cutting portion C of the glass plate G penetrates. You may make it attract
  • the first suction nozzle 7 may be omitted, and the molten foreign matter may be sucked only by the second suction nozzle 8.
  • the second suction nozzle 8 disposed in the space below the glass plate G has a long suction port 81 along the planned cutting line CL direction of the glass plate G, as shown in FIG. This is because in the lower space of the glass plate G, the molten foreign matter tends to scatter over a wide area along the direction of the planned cutting line CL. If there is no space limitation by the laser irradiator 3 or the like, the first suction nozzle 7 disposed in the upper space of the glass plate G also has a long suction port along the extending direction of the planned cutting line CL. You may make it have.
  • the first suction nozzle 7 and the second suction nozzle 8 are arranged in the glass sheet cutting apparatus 1 (see FIG. 7) according to the fourth embodiment. Also good.
  • the first invention is not limited to the first to sixth embodiments, and various modifications can be made.
  • the thickness of both ends in the width direction of the glass plate G is relatively larger than the thickness of the center portion in the width direction of the glass plate G as shown in FIG. It becomes thick.
  • the width direction center part is made into the product part Ga, and the width direction both ends are made into the non-product part (it calls an ear
  • the following comparison test was performed.
  • the test conditions are as follows. First, in the form shown in FIG. 3, while blowing an assist gas, a thin glass plate having a wavelength of 300 mm ⁇ 300 mm is irradiated with a CO 2 laser having a wavelength of 10.6 ⁇ m to blow the thin glass. And cut. Next, an annealing treatment is performed by performing secondary processing (for example, annealing by laser or annealing by electric heating) on the vicinity of the cut end surface of the thin glass thus blown. Such a series of cutting steps is performed by changing the thickness a of the thin glass and the minimum gap b between the fusing end faces.
  • the b / a is 2 or less, the shape of the fused end surface of the thin glass is well maintained. Therefore, if it manages in such a range, the situation that the product quality of thin glass will fall or the thin glass will be damaged starting from a fusing end face in a post process can be reduced reliably.
  • the minimum gap b is managed so as to satisfy the relationship of 0.1 ⁇ b / a ⁇ 2, the shape of the thin glass sheet is maintained at the time of separation or in the subsequent process while maintaining the shape near the fusing end surface of the thin glass. It is possible to reliably reduce the situation where the glass is broken. In addition, such an effect can be enjoyed without requiring preheating or annealing treatment other than irradiating a laser for fusing.
  • an annealing treatment with a laser or the like may be performed immediately after fusing.
  • the arithmetic average roughness Ra of the cut end surface formed in Examples 8 to 10 is 0.08 to 0.18 ⁇ m
  • the average length RSm of the roughness curve element is 250 to 400 ⁇ m
  • the fusing end surface is contaminated.
  • a split end face obtained by performing diamond polishing after breaking a thin glass plate along a scribe line has Ra of 0.4 to 0.6 ⁇ m and RSm of 80 to 140 ⁇ m.
  • the dirt on the cleaved end face could not be removed sufficiently.
  • the compressive strain (residual compressive stress) of the fusing end face formed in Examples 1 to 10 was 80 to 180 MPa.
  • the compression strain of the end face of the laser-cleaved thin glass produced as a comparative example is 0 to 15 MPa.
  • FIG. 13 is a cross-sectional view showing the glass sheet cutting apparatus 1 used in the laser fusing method according to this embodiment.
  • the glass plate cutting device 1 is directed to an irradiation portion C of a laser L and an assist gas injection nozzle 2 that injects an assist gas A1 from a direction inclined by ⁇ with respect to the surface S of the glass plate G.
  • a side assist gas injection nozzle 4 that injects the side assist gas A2 from a direction inclined with respect to the surface S of the glass plate G toward the irradiation part C from the side opposite to the assist gas injection nozzle 2.
  • a laser irradiator 3 that irradiates the laser L from directly above the irradiation unit C is disposed at a position facing the surface S of the glass plate G in the irradiation unit C of the laser L.
  • a condensing lens 5 that condenses the laser L emitted from a laser oscillation device (not shown) and irradiates the irradiating unit C is provided inside the laser irradiator 3.
  • the focal point is adjusted so as to be positioned on the Z line and on the extended line.
  • a center assist gas introduction path 6 for introducing the center assist gas A3 injected from the irradiation port of the laser irradiator 3 toward the irradiation unit C into the laser irradiator 3 is attached to the side wall of the laser irradiator 3. ing.
  • the glass plate cutting apparatus 1 configured as described above sprays the assist gas A1 on the glass plate G placed on the support stage 7 by the laser fusing method with the irradiation part C (virtual cutting line Z) as a boundary. It cuts into the product part G1 used as the former side, and the non-product part G2 used as the injection destination side.
  • the injection pressure of the side assist gas A2 is set to be smaller than the injection pressure of the assist gas A1 so as not to impair the scattering action of the molten glass portion M generated in the irradiation portion C by the assist gas A1.
  • the injection pressures of the respective gases A1 to A3 are assist gas A1: 0.2 to 0.6 MPa, side assist gas A2: 0.0 to 0.3 MPa, and center assist gas A3: 0.0 to 0.3 MPa.
  • the assist gas A1 is preferably 0.3 to 0.5 MPa
  • the side assist gas A2 is 0.0 to 0.2 MPa
  • the center assist gas A3 is 0.0 to 0.2 MPa.
  • oxygen, air, water vapor, nitrogen, carbon dioxide, an inert gas typified by argon, or the like can be used as the assist gas A1, the side assist gas A2, and the center assist gas A3, oxygen, air, water vapor, nitrogen, carbon dioxide, an inert gas typified by argon, or the like can be used.
  • the injection angle ⁇ of the assist gas A1 is selected according to the relationship between the thickness of the glass plate G and the gap to be formed between the cut surfaces of the glass plate G after cutting.
  • the ratio of the plate thickness to the gap formed after cutting is [0.1 ⁇ (gap / plate thickness) ⁇ 2.0]
  • the cut surfaces of the glass plate G after cutting (product) is preferably set within a range of 20 ° ⁇ ⁇ 65 °. More preferably, 25 ° ⁇ ⁇ 60 °, and the optimum value is adjusted by the plate thickness.
  • the glass plate G to be cut by laser fusing non-alkali glass, soda lime glass, borosilicate glass, lead glass, crystallized glass, etc., physical tempered glass, chemically tempered glass, etc. can be used.
  • the thickness is preferably 1.0 mm or less, more preferably 0.5 mm or less. In any case, the lower limit of the thickness is 0.02 mm.
  • non-alkali glass is used as the glass plate G
  • the thickness of the glass plate G to be cut is 0.5 mm
  • the injection pressure of the assist gas A1 is 0.5 MPa
  • the injection pressures of the side assist gas A2 and the center assist gas A3 are both 0.1 MPa.
  • the glass existing in the irradiation portion C is melted by the irradiation heat of the laser L, and the cross hatching is given to the drawing. It becomes the molten glass part M.
  • the assist gas A1, the side assist gas A2, and the center assist gas A3 are injected toward the irradiation part C (molten glass part M).
  • a part of the surface side of the molten glass part M is brought closer to the non-product part G2 side from the product part G1 side mainly by the pressure of the assist gas A1 as shown in FIG.
  • the remaining part of the molten glass part M is scattered in the same direction, so that the recessed part H is formed in the irradiation part C.
  • a part of the molten glass part M is in the opposite direction to the inclination ⁇ of the injection direction of the assist gas A1 due to fleshing up as described above.
  • An inclined wall portion W that is inclined is formed.
  • the jet of the assist gas A1 flowing in the oblique direction from the product portion G1 side to the non-product portion G2 side collides with the inclined wall portion W, so that the thickness direction of the irradiation portion C is reached.
  • the direction of the flow is changed from the non-product part G2 side to the product part G1 side along the inclined wall part W and is guided to the back surface B side of the glass plate G.
  • the upper end of the inclined wall W is raised from the front surface S of the glass plate G as shown in the figure, so that the assist gas A1 is easily guided to the back surface B side.
  • the side assist gas A2 prevents unnecessary melting of the molten glass portion M due to its pressure, cools the wall portion where the assist gas A1 contacts the concave portion H, and the molten glass portion M existing on the wall portion. It promotes the re-solidification of the steel and plays a role of assisting the forming of the inclined wall portion W. Further, since the injection pressure of the side assist gas A2 is smaller than that of the assist gas A1, the scattering action of the molten glass portion M by the assist gas A1 is not impaired.
  • the center assist gas A3 assists the action of scattering the molten glass portion M by the assist gas A1, and part of the molten material M1 volatilized in the condenser lens 5 is scattered and adhered as dross. Acts as an air curtain to prevent Further, the center assist gas A3 cools the wall portion where the assist gas A1 comes into contact with the concave portion H formed in the irradiation portion C together with the side assist gas A2, and resolidifies the molten glass portion M existing on the wall portion. It also plays the role which assists shaping
  • the wall portion of the recess H where the assist gas A1 comes into contact is formed as the inclined wall portion W, a part of the jet of the assist gas A1 is the thickness of the irradiation portion C as shown in FIG.
  • the flow is curved near the center of the direction. Due to the flow of the assist gas A1 and its pressure, a part of the molten glass portion M melted and softened by the irradiation heat of the laser L is gradually removed, and the cutting of the glass plate G proceeds. .
  • the cut surface F of the product part G1 after cutting is substantially symmetric with respect to the central part in the thickness direction as shown in FIG.
  • the cut surface F is a convex curved surface. Since the cut surface F does not have corners that are liable to be chipped, it is not necessary to polish the cut surface F after cutting.
  • the assist gas A1 is jetted obliquely with respect to the surface S of the glass plate G, and the direction is changed in the middle to escape obliquely from the back surface B, so that the assist gas is perpendicular to the surface S of the glass plate G.
  • the assist gas A1 the side assist gas A2 and the center assist gas A3, are used, but the side assist gas A2 and the center assist gas A3 are not necessarily used. Only the assist gas A1 may be used.
  • the side assist gas A2 is constantly injected from the start of cutting of the glass plate G to the completion thereof, but may be injected after the inclined wall portion W starts to be formed in the irradiation unit C. Further, the laser L irradiated to the irradiation unit C is irradiated from directly above the irradiation unit C.
  • a laser irradiator 3 is provided separately from the injection port of the center assist gas A3, and the product You may make it irradiate from the part G1 side or the non-product part G2 side. Further, the focal point of the laser L does not necessarily need to be located at the intersection between the virtual cutting line Z and the surface S of the glass plate G. From the central portion in the thickness direction of the irradiation unit C, the rear surface B, and the surface S of the glass plate G. You may adjust so that a focus may be located above.
  • a glass plate cutting test was performed by a laser fusing method under the six conditions listed in Table 7 below (four examples and two comparative examples). Thereafter, quality evaluation of the following three items was performed as a quality evaluation of the cut surface of the product. Note that a CO 2 laser having a wavelength of 10.6 ⁇ m was used as a laser for fusing.
  • Item 1 Presence of dross on the cut surface of the product
  • Item 2 Presence of dripping of the melt on the cut surface of the product
  • Item 3 Good or bad symmetry in the thickness direction of the cut surface of the product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Laser Beam Processing (AREA)

Abstract

 500μm以下の厚みのガラス板Gの切断部Cにレーザを照射し、ガラス板Gを溶断する薄板ガラス切断方法であって、ガラス板Gの厚みをa、切断部Cで対向するガラス板Gの溶断端面Ga1,Gb1間の最小隙間をbとした場合に、0.1≦b/a≦2なる関係を満足するように最小隙間を管理する。

Description

ガラス板切断方法およびガラス板切断装置
 本発明は、ガラス板を溶断する切断技術の改良に関する。
 従来、ガラス板を切断する方法としては、ガラス板の表面にダイヤモンドカッタなどでスクライブ線を形成した後、そのスクライブ線に曲げ応力を作用させて割断する方法(曲げ応力による割断)が広く用いられている。
 しかしながら、上記の曲げ応力を利用した切断方法の場合、切断面にクラックが形成され易く、そのクラックを起点としてガラス板が破損するという問題が生じるおそれがあった。そこで、上記の曲げ応力を利用した切断方法に代えて、レーザをガラス板の切断部に照射し、その照射熱によって切断部を溶融して切断するレーザ溶断が採用される場合がある。
 レーザ溶断によるガラス板の切断方法としては、例えば特許文献1には、デフォーカスした炭酸ガスレーザ光により予備加熱を行った後に、微小点に集光した炭酸ガスレーザ光を集光した炭酸ガスレーザ光を被切断部に照射することにより溶断することが開示されている。
 また、レーザ溶断では、切断部の真上から略鉛直下方に向かってレーザと共に噴射されるセンターアシストガスによって、レーザの照射熱で切断部に生じる溶融物を吹き飛ばしながら、ガラス基板の切断(溶断)を行うのが通例である。
 この場合、センターアシストガスにより飛散させた溶融物が、ドロスと称される異物となってガラス板に付着することがあり、ガラス板の製品価値を低下させる要因となっている。そこで、レーザ溶断においては、このような異物の付着を防止する対策が種々講じられている。
 例えば、特許文献2は、ガラス板の切断に関するものではないが、セラミックスや金属の溶断時に生じるドロスの付着を防止するために、次のような切断方法を開示している。すなわち、同文献には、被加工物の切断部の真上に配置された加工ノズルから略鉛直下方に向かってアシストガス(上記のセンターアシストガスに相当)を噴射すると共に、被加工物の切断部の表裏両面に対して、補助ノズルからアシストガスとは異なったガスを、被加工物の製品となる側からそれぞれ吹き付けて、溶融異物(ドロス等)を被加工物の廃材となる側へ飛散させると共に、被加工物の切断部の真下において吸引ノズルで吸引を行うことが開示されている。
特開昭60-251138号公報 特開平8-141764号公報
<第1の課題>
 特許文献1では、主として1mm以上の厚板ガラスを所定形状に切断することを課題としているが、このような厚板ガラスは、機械的強度に優れている。
 これに対し、近年、ディスプレイ用途等に用いられている薄板ガラス、特に500μm以下の厚みの薄板ガラスの場合、上記の厚板ガラスに比して、機械的強度が遥かに弱い。そのため、かかる薄板ガラスを溶断により切断する場合には次のような特有の問題が生じ得る。
 すなわち、第一に、薄板ガラスを溶断後に分離する際に溶断端面同士が接触すると、薄板ガラスが容易に破損するという問題がある。そのため、溶断により薄板ガラスの切断部を溶融除去して、溶断後に対向する薄板ガラスの溶断端面間の隙間をある程度確保する必要がある。
 第二に、薄板ガラスに加えられる熱量が大きくなると、図18に示すように、溶融状態にある切断部Cが下方に垂れ下がるなどして、薄板ガラスGの溶断端面近傍に形状不良が生じるという問題がある。このような形状不良が生じると、製品として供することができずに不良品として扱わざるを得ない事態を招く。そして、このような薄板ガラスの溶断端面近傍の形状不良は、薄板ガラスの溶融除去量を増加させて溶断端面間の隙間を大きくするに連れて顕著になる。そのため、薄板ガラスの溶断端面間の隙間を過度に大きくすることはできない。更に、熱量が多くなるため、溶断端面付近のガラス温度も上昇し、歪により薄板ガラスが変形したり、破損したりするおそれがある。
 したがって、薄板ガラスを溶断して切断する場合には、溶断によって形成される溶断端面間の隙間を厳格に管理する必要があるが、特許文献1を始め、従来このような観点から対策が講じられていないのが実情である。
 本発明は、以上の実情に鑑み、薄板ガラスをレーザの照射熱で溶断するに際し、薄板ガラスの溶断端面間の隙間を管理し、溶断端面近傍の形状を良好に維持することを第1の課題とする。
<第2の課題>
 ガラス板を溶断する場合、レーザの照射熱でガラス板の切断部を溶融させるため、ガラス板の切断部近傍は軟化状態となる。
 しかしながら、特許文献2では、加工ノズルから噴射されるアシストガスの噴射圧を、補助ノズルから噴射されるガスの噴射圧よりも大きく設定しているため、仮にガラス板Gの切断に適用した場合には次のような問題が生じ得る。
 すなわち、加工ノズルから噴射されるアシストガスの噴射圧が大き過ぎると、その噴射圧によって溶融状態のガラス板の切断部近傍が下方に強く押圧されてしまう。その結果、図18に示すように、溶融状態にあるガラス板Gの切断部C近傍が垂れ下がって、切断部C(厳密には製品部Gaの切断端面Ga1及び非製品部Gbの切断端面Gb1の近傍)に形状不良が生じ得る。
 ガラス板の場合、このように切断部に形状不良が生じると、製品品位の低下を招くばかりでなく、破損などの大きな問題を招くことになる。
 本発明は、以上の実情に鑑み、製品となるガラス板の切断端面に形状不良を生じさせることなく、ガラス板を溶断により切断することを第2の課題とする。
<第3の課題>
 特許文献2では、被加工物の切断部の真下にのみ吸引ノズルを配置し、被加工物の切断部から落下するドロス等の付着物を吸引ノズルで吸引するようにしている。
 しかしながら、ガラス板の場合、表面の清浄性が厳格に要求される場合も多いことから、仮に特許文献2の切断方法をガラス板にそのまま適用した場合には、次のような問題が生じる。すなわち、ガラス板の溶断時に切断部で生じる溶融異物を補助ノズルから噴射されるガスで吹き飛ばすと、溶融異物はガラス板の非製品部側(特許文献2でいう廃材側)へ飛散するだけでなく、微小な溶融異物は空中に浮遊することになる。そのため、この浮遊している溶融異物を放置していると、ガラス板の製品部側に再び付着するおそれがある。
 この点、特許文献2では、被加工物の下方に吸引ノズルを配置して対処しているが、このような吸引ノズルで捕捉可能な溶融異物は、空中に浮遊することなく、切断部から重力で落下するような大きな異物が主となるものと考えられる。したがって、空中を浮遊するような微小な溶融異物を十分に捕捉することは実質的に不可能となる。特に、溶断過程で切断部が貫通する前の状態では、溶融異物を全く吸引することができないため、ガラス板の上方空間における溶融異物の浮遊は顕著になる。
 本発明は、以上の実情に鑑み、ガラス板をレーザの照射熱で溶断する際に、製品となるガラス板にドロス等の溶融異物が付着する事態を確実に低減することを第3の課題とする。
<第4の課題>
 ガラス板を対象としてレーザ溶断法で切断を行う場合には、溶融したガラスの粘性が、特許文献2に開示の金属やセラミックと比較して高いために、レーザ照射部に生じた溶融ガラス部を除去する作業が極めて面倒且つ煩雑なものとなる。また、ガラスは比較的熱伝導が低いため、溶融ガラス部の除去の困難性が一層顕著となる。
 詳述すると、単純にアシストガスをレーザ照射部に対して噴射するだけでは、ガラス板に生じた溶融ガラス部を容易に除去できないため、ガラス板の切断に要する時間が長期化され、作業能率が悪化する。しかも、板ガラスに生じた溶融ガラス部の除去の円滑化が阻害されることに起因して、ガラス板の切断面の品位が低下する。
 また、特許文献2には、金属板やセラミック板のレーザ照射部に対してアシストガスを真上から噴射することが開示されているが、このような手法をガラス板についても採用したのでは、以下に示すような特有の問題が生じる。
 すなわち、ガラス板の溶融ガラス部が、アシストガスによって下方に強く押圧されるため、溶融ガラス部は、その高い粘性によって飛散することなく、アシストガスの圧力により垂れ下ってしまう事態を招いていた。このため、切断後の板ガラスの切断面付近の厚みは、他の部分(ガラス板の板厚)に比べて厚みが大きい状態となり、切断面の形状が不良なものとなってしまい、さらに切断面の品位を低下させるという問題があった。
 また、ガラス板はガラス自身が酸化物であるため、金属板等のレーザ溶断を行う場合とは異なり、酸化燃焼反応による切断の促進を期待することができない。このため、上述の問題がより顕著なものとなっていた。
 上記事情に鑑みなされた本発明は、ガラス板のレーザ溶断法に工夫を施すことにより、ガラス板の切断時における作業性を改善すると共に、切断されたガラス板の切断面の品位を向上させることを第4の課題とする。
<第1の発明>
 上記第1の課題を解決するために創案された第1の発明に係る切断方法は、500μm以下の厚みのガラス板(以下、薄板ガラスという場合もある。)の切断部にレーザを照射し、前記ガラス板を溶断するガラス板の切断方法であって、前記ガラス板の厚みをa、前記切断部で対向する前記薄板ガラスの溶断端面間の最小隙間をbとした場合に、0.1≦b/a≦2なる関係を満足するように前記最小隙間を管理することに特徴づけられる。
 このような方法によれば、薄板ガラスの厚みとの相対的な関係で、薄板ガラスの溶断端面間の隙間が厳格に管理されることから、薄板ガラスの溶断端面近傍の形状を良好に維持しつつ、溶断された薄板ガラスを安全に分離することができる。更には、歪による薄板ガラスの変形や破損を回避することが可能となる。一方、b/aが2を超えると、溶断により溶融除去される薄板ガラスの量が多くなり過ぎて、溶断端面近傍に付与される熱量が過度に大きくなる。その結果、薄板ガラスの溶断端面近傍に垂れ下がりなどの形状不良が生じたり、歪による薄板ガラスの変形や破損が発生するおそれがある。また、b/aが0.1未満になると、溶断端面同士が接近し過ぎ、分離時に溶断端面同士が接触して薄板ガラスが破損するおそれがある。
 上記の方法において、前記レーザをデフォーカスの状態で前記切断部に照射することが好ましい。
 すなわち、薄板ガラスが溶断の対象であるから、デフォーカスしたレーザであっても切断部を十分に溶断することが可能となる。そして、このようにデフォーカスしたレーザを切断部に照射する場合、レーザのエネルギー密度が、切断部に対応する位置で小さくなることから、照射位置周辺におけるエネルギーの変化量も小さくなる。そのため、ガラス板の反りや振動などによって、照射位置が多少変動したとしても、切断部に加わる照射熱が変化し難く、ほぼ同条件で溶断を実行することができるという利点がある。
 上記の方法において、前記レーザのスポット径が、前記ガラス板の溶断端面間の最小隙間よりも小さいことが好ましい。
 このようにすれば、実際に溶融除去される範囲よりも狭い範囲にレーザが照射される。そのため、レーザの照射部からの熱伝導によって、薄板ガラスの溶断端面に対してアニール処理が施されることが期待できる。
 上記の方法において、前記溶断端面が、凸曲面をなすことが好ましい。
 このようにすれば、薄板ガラスの溶断端面は、面取りを施した場合と同等以上の効果が得られ、端面強度が上がる。そのため、切断工程以後の工程に流した際に端面に欠けが生じ難くなり、取り扱いが容易になると共に歩留まりが向上するという利点がある。
 上記の方法において、前記溶断端面が、火造り面であることが好ましい。
 このようにすれば、薄板ガラスの溶断端面の表面が滑らかに連続するため、溶断端面からの発塵を防止することができる。また、このように溶断端面の表面が滑らかになると、パーティクルが入り込み難くなるため、工程での汚れを防止することもできる。
 上記の方法において、前記溶断端面の算術平均粗さRaが、0.3μm以下であって、且つ、粗さ曲線要素の平均長さRSmが、150μm以上であることが好ましい。ここでいう算術平均粗さRa及び粗さ曲線要素の平均長さRSmは、JIS 2001に基づくものとする。
 このようにすれば、薄板ガラスの溶断端面の表面が滑らかに連続するため、溶断端面からの発塵を防止することができる。また、このように溶断端面の表面が滑らかになると、パーティクルが入り込み難くなるため、工程での汚れを防止することもできる。一方、Raが0.3μmを越えたり、RSmが150μm未満となる場合には、薄板ガラスの溶断端面が粗面(ザラザラの状態)となって、溶断端面にパーティクルが入り込んで除去し難くなる。
 上記の方法において、前記溶断端面の残留圧縮応力が、20MPa~500MPaであることが好ましい。
 このようにすれば、薄板ガラスの溶断端面に、圧縮応力が作用することから、溶断端面に仮にクラック等の欠陥が形成されていても、その欠陥を塞ぐ方向に力が作用する。その結果、薄板ガラスの端面強度の向上を図ることができる。更に、万一薄板ガラスの端面にクラックが生じた場合でも、そのクラックの近傍にテンション層があるので、クラックが端面に沿って進展し、平面側には進展しない。そのため、ガラス基板としての形状を維持でき、ガラス基板としての性能が損なわれることがない。一方、圧縮応力が20MPaよりも小さい場合、薄板ガラスが破損したとき、クラックの走る方向が任意となり、ガラス基板としての性能が損なわれるおそれがある。また、圧縮応力が500MPaよりも大きい場合、クラック近傍のテンション層の影響で、薄板ガラスが自爆する可能性がある。
 上記第1の課題を解決するために創案された第1の発明に係るガラス板は、500μm以下の厚みであり、レーザで溶断された溶断端面を有するガラス板であって、前記溶断端面の算術平均粗さRaが、0.3μm以下であり、且つ、粗さ曲線要素の平均長さRSmが、150μm以上であることに特徴づけられる。
 この場合、前記溶断端面の残留圧縮応力が、20MPa~500MPaであることが好ましい。
<第2の発明>
 上記第2の課題を解決するために創案された第2の発明は、ガラス板の切断部にアシストガスを噴射しながら、前記切断部に向かってレーザを照射し、前記切断部を境界として前記ガラス板を製品部と非製品部とに溶断分離するガラス板切断方法であって、前記アシストガスは、前記ガラス板の上方空間において、前記切断部の上方位置から前記切断部に向かって真下に噴射されるセンターアシストガスと、前記製品部となる側の上方位置から前記切断部に向かって斜め下方に噴射されるサイドアシストガスとを含み、前記サイドアシストガスの噴射圧が、前記センターアシストガスの噴射圧よりも強いことに特徴づけられる。
 このような方法によれば、センターアシストガスの噴射圧が相対的に弱められるので、主としてサイドアシストガスによって、溶断時に生じる切断部の溶融異物(ドロス等)を吹き飛ばすことになる。このサイドアシストガスは、製品部となる側の上方位置から切断部に向かって斜め下方に噴射されることから、センターアシストガスに比べて、溶融状態にあるガラス板の切断部近傍を下方に押圧する力は弱い。そのため、溶融状態にあるガラス板の切断部の垂れ下がりを防止することができる。そして、このように切断部の垂れ下がりを防止した状態で、サイドアシストガスによって切断部に生じる溶融異物は非製品部となる側に優先的に飛散するため、製品部の切断端面に溶融異物が溜まり難くなる。したがって、製品部の切断端面の形状を略円弧状の良好な形状に維持することが可能となる。
 上記第2の課題を解決するために創案された第2の発明は、ガラス板の切断部にアシストガスを噴射しながら、前記切断部に向かってレーザを照射し、前記切断部を境界として前記ガラス板を製品部と非製品部とに溶断分離するガラス板切断方法であって、前記アシストガスは、前記ガラス板の上方空間において、前記製品部となる側の上方位置から前記切断部に向かって斜め下方に噴射されるサイドアシストガスのみを含むことに特徴づけられる。
 このような方法によれば、ガラス板の上方空間において、第1の発明のように、切断位置の上方位置から切断部に向かって真下に噴射されるセンターアシストガスが存在せず、サイドアシストのみで、溶断時に生じる切断部の異物(ドロス等)を吹き飛ばすことになる。このサイドアシストガスは、製品部となる側の上方位置から切断部に向かって斜め下方に噴射されることから、センターアシストガスに比べて、溶融状態にあるガラス板の切断部近傍を下方に押圧する力は弱い。そのため、溶融状態にあるガラス板の切断部の垂れ下がりを防止することができる。そして、このように切断部の垂れ下がりを防止した状態で、サイドアシストガスによって切断部に生じる異物は非製品部となる側に優先的に飛散するため、製品部の切断端面に異物が溜まり難くなる。したがって、製品部の切断端面の形状を略円弧状の良好な形状に維持することが可能となる。
 上記の方法において、前記サイドアシストガスが、前記ガラス板の上面に対して25°~60°の傾斜角をもって噴射されることが好ましい。
 すなわち、ガラス板の上面に対するサイドアシストガスの傾斜角が25°未満であると、サイドアシストガスがガラス板に浅く入射し過ぎて、切断部にサイドアシストガスを効率よく供給できないという問題が生じるおそれがある。一方、ガラス板の上面に対するサイドアシストガスの傾斜角が60°を超えると、サイドアシストガスがガラス板に深く入射し過ぎて、切断部近傍を下方に押圧する力が大きくなるおそれがある。したがって、サイドアシストガスの傾斜角は上記数値範囲内であることが好ましく、この範囲であれば、サイドアシストガスを切断部に効率よく供給しつつ、サイドアシストガスが切断部近傍を下方に押圧する力を適切に抑えることができる。
 上記の方法において、前記アシストガスは、前記ガラス板の下方空間において、前記製品部となる側の下方位置から前記切断部に向かって斜め上方に噴射される補助サイドアシストガスを含むことが好ましい。
 このようにすれば、ガラス板の下方からも切断部に生じた異物を、非製品部となる側に効率よく吹き飛ばすことが可能となる。また、ガラス板の下面にサイドアシストガスが作用することから、ガラス板の切断部近傍を下方から支持する効果も期待でき、切断部近傍の垂れ下がり防止に寄与するものと考えられる。
 上記の方法において、前記レーザを、前記ガラス板に対してデフォーカスで照射してもよい。
 このようにすれば、レーザのエネルギー密度が、切断部に対応する位置で小さくなることから、照射位置周辺におけるエネルギーの変化量も小さくなる。そのため、ガラス板の反りや振動などによって、照射位置が多少変動したとしても、切断部に加わる照射熱が変化し難く、ほぼ同条件で溶断を実行することが可能となる。
 上記第2の課題を解決するために創案された第2の発明は、ガラス板の切断部にアシストガス噴射手段からアシストガスを噴射しながら、前記切断部に向かってレーザ照射手段からレーザを照射し、前記切断部を境界として前記ガラス板を製品部と非製品部とに溶断分離するガラス板切断装置であって、前記アシストガス噴射手段が、前記ガラス板の上方空間において、前記切断部の上方位置から前記切断部に向かって真下にセンターアシストガスを噴射するセンターアシストガス噴射手段と、前記センターアシストガスよりも強い噴射圧で、前記製品部となる側の上方位置から前記切断部に向かって斜め下方にサイドアシストガスを噴射するサイドアシストガス噴射手段とを有することに特徴づけられる。
 このような構成によれば、既に述べた対応する構成と同様の作用効果を享受することができる。
 上記第2の課題を解決するために創案された第2の発明は、ガラス板の切断部にアシストガス噴射手段からアシストガスを噴射しながら、前記切断部に向かってレーザ照射手段からレーザを照射し、前記切断部を境界として前記ガラス板を製品部と非製品部とに溶断分離するガラス板切断装置であって、前記アシストガス噴射手段は、前記ガラス板の上方空間において、前記製品部となる側の上方位置から前記切断部に向かって斜め下方にサイドアシストガスを噴射するサイドアシストガス噴射手段のみを有することに特徴づけられる。
 このような構成によれば、既に述べた対応する構成と同様の作用効果を享受することができる。
 上記の構成において、前記アシストガス噴射手段は、前記ガラス板の下方空間において、前記製品部となる側の下方位置から前記切断部に向かって斜め上方に補助サイドアシストガスを噴射する補助サイドアシストガス噴射手段を有することが好ましい。
<第3の発明>
 上記第3の課題を解決するために創案された第3の発明は、ガラス板の切断部の下方位置に非支持空間を有する支持ステージの上に、ガラス板を載置した状態で、前記切断部にアシストガスを噴射しながら、前記切断部に向かってレーザを照射し、前記切断部を境界として前記ガラス板を製品部と非製品部とに溶断するガラス板切断装置であって、前記ガラス板の上方空間において、前記製品部となる側の上方位置に配置され、前記切断部に向かって斜め下方に前記アシストガスを噴射する第1のガス噴射手段と、前記非製品部となる側の上方位置に配置され、溶断過程で生じる溶融異物を吸引する第1の吸引手段とを備え、前記ガラス板の下方空間において、前記製品部となる側の下方位置に配置され、前記切断部に向かって斜め上方に前記アシストガスを噴射する第2のガス噴射手段と、前記非支持空間内の前記溶融異物を吸引する第2の吸引手段とを備えていることに特徴づけられる。ここで、「溶融異物」は、ガラス板の溶断時に発生するドロス等の異物を意味し、溶融状態にあるもの、固化状態にあるものの双方を含む(以下、同様)。
 このような構成によれば、アシストガスがガラス板の製品部となる側の上下両側から切断部に向かって斜めに噴射されることから、切断部の溶融異物を確実に非製品部側に吹き飛ばすことができる。そして、この上下のアシストガスによって吹き飛ばされた溶融異物は、ガラス板の上下両側に配置された第1の吸引手段および第2の吸引手段によって吸引される。そのため、ガラス板の上下空間において、浮遊する溶融異物を確実に捕捉することができる。したがって、ガラス板の製品部に溶融異物が付着するという事態を確実に低減することが可能となる。
 上記の構成において、前記第2の吸引手段の吸引口が、前記切断部を含む切断予定線に沿って長尺であることが好ましい。
 すなわち、ガラス板の下方空間において、溶融異物が広範囲に亘って飛散する傾向があるため、溶融異物を確実に捕捉する観点から、ガラス板の下方空間に配置される第2の吸引手段の吸引口は、切断予定線(ガラス板の切断方向)に沿って長尺であることが好ましい。
 上記の構成において、前記第2の吸引手段が、前記非製品部となる側に偏倚して配置されていることが好ましい。
 すなわち、ガラス板の下方空間、すなわち、非支持空間においても、第1のガス噴射手段又は第2のガス噴射手段によって、溶融異物が非製品部側に吹き飛ばされることになるので、第2の吸引手段を非製品部となる側に偏倚させて配置した方が溶融異物を効率よく捕捉することが可能となる。
 上記の構成において、前記第1のガス噴射手段が、前記アシストガスをガラス板の上面に15°~45°の傾斜角をもって噴射するように構成されていてもよい。
 このような傾斜角でアシストガスを噴射すれば、製品部となる側に溶融異物を効率よく吹き飛ばすことが可能となる。換言すれば、第1のガス噴射手段の傾斜角が15°未満であると、切断部にアシストガスを効率よく作用させることが困難になって、溶融異物を非製品部となる側に吹き飛ばす力を十分発揮できなくなるおそれがある。一方、第1のガラス噴射手段の傾斜角が45°を超えると、アシストガスによって溶融異物を非製品部となる側に吹き飛ばす力が弱くなるおそれがある。
 上記の構成において、前記製品部となる側で前記非支持空間に面する前記支持ステージの側面部が、前記第2のガス噴射手段から噴射される前記アシストガスを斜め上方へ案内するテーパ面をなすようにしてもよい。
 このようにすれば、支持ステージの側面部のテーパ面によって、アシストガスを斜め上方に案内することができるので、第2のガス噴射手段から噴射されたアシストガスをガラス板の切断部に確実に作用させることができる。
 上記の構成において、前記製品部となる側で前記非支持部に面する前記支持ステージは、前記第2のガス噴射手段から噴射された前記アシストガスを斜め上方に誘導して前記非支持空間に開放するガス流通路を有するようにしてもよい。
 このようにすれば、支持ステージのガス流通路によって、アシストガスを斜め上方に案内することができるので、第2のガス噴射手段から噴射されたアシストガスをガラス板の切断部に確実に作用させることができる。
 上記の構成において、前記レーザが、前記ガラス板に対してデフォーカスで照射されるように構成されていることが好ましい。
 このようにすれば、レーザのエネルギー密度が、切断部に対応する位置で小さくなることから、照射位置周辺におけるエネルギーの変化量も小さくなる。そのため、ガラス板の反りや振動などによって、照射位置が多少変動したとしても、切断部に加わる照射熱が変化し難く、ほぼ同条件で溶断を実行することが可能となる。
 上記第3の課題を解決するために創案された第3の発明は、ガラス板の切断部に沿って非支持空間を有する支持ステージの上に、ガラス板を載置した状態で、前記切断部にアシストガスを噴射しながら、前記切断部に向かってレーザを照射し、前記切断部を境界として前記ガラス板を製品部と非製品部とに溶断するガラス板切断方法であって、前記ガラス板の上方空間において、前記製品部となる側の上方位置から前記切断部に向かって斜め下方に前記アシストガスを噴射して、前記非製品部となる側の上方位置で溶断過程に生じる溶融異物を吸引すると共に、前記ガラス板の下方空間において、前記製品部となる側の下方位置から前記切断部に向かって斜め上方に前記アシストガスを噴射して、前記非支持空間内の前記溶融異物を吸引することに特徴づけられる。
 このような方法によれば、既に述べた対応する構成と同様の作用効果を享受することができる。
<第4の発明>
 上記第4の課題を解決するために創案された第4の発明は、ガラス板に表面側からレーザを照射して溶融ガラス部を生成しつつ、前記レーザの照射部にアシストガスを噴射することで、前記溶融ガラス部に凹部を形成し且つ該凹部を前記ガラス板の裏面まで進展させて、前記ガラス板を切断分離するガラス板のレーザ溶断方法であって、前記ガラス板の表面に対して傾斜した方向からアシストガスを噴射することで、前記ガラス板の溶融ガラス部の一部をアシストガスの噴射先側に肉寄せし且つ残りの一部をアシストガスの噴射先側に吹き飛ばして前記凹部を形成すると共に、前記肉寄せした溶融ガラスでアシストガスの噴射方向の傾斜と逆向きに傾斜した傾斜壁部を前記凹部に形成し、さらに継続して、前記アシストガスを前記傾斜壁部に沿って前記ガラス板の裏面側に誘導することで、前記凹部における前記傾斜壁部と対向する壁部を、凸曲面状をなす切断面に成形することに特徴づけられる。
 このような方法によれば、ガラス板の表面に対するレーザ照射と傾斜方向からのアシストガスの噴射とによって、先ず、ガラス板の溶融ガラス部に、傾斜壁部を有する凹部が形成され、然る後、この傾斜壁部を有効利用して、アシストガスが円滑にガラス板の裏面側に誘導される。これにより、溶融時の粘性が高く且つ熱伝導率が低いとされているガラス板に対して、短時間で円滑にレーザ溶断を施すことが可能となる。この結果、ガラス板の切断時における作業能率が改善されると共に、切断後におけるガラス板の切断面の品位が向上する。また、アシストガスをガラス板表面に対して斜めに噴射し、且つ途中で方向転換させて裏面から斜めに抜け出させていることによって、ガラス板表面に垂直にアシストガスを噴射する場合の不具合、すなわちガラス板の溶融ガラス部の一部が裏面で垂れ下がるという不具合が回避され、ガラス板の切断面の更なる品位向上が図られる。しかも、ガラス板の切断面は、凸曲面状となるため、面取り加工が不要となるだけでなく、製品として優れた端面を有するガラス板を得ることができる。
 上記の方法において、アシストガスの噴射方向と、ガラス板の表面との成す傾斜角度は、20°~65°であることが好ましい。
 すなわち、アシストガスの噴射方向とガラス板の表面との成す傾斜角度が大きすぎると、ガラス板の切断過程において、レーザの照射部から除去される溶融ガラスの量が少なくなることに伴って、切断後のガラス板の切断面間に生じる間隙が小さくなる。これにより、後工程に移すために切断用の加工台から切断したガラス板をピックアップして移送するような場合に、切断面同士が接触したり、摺動したりする恐れが生じる。逆に傾斜角度が小さすぎると、不必要に溶融ガラスが飛散し、飛散した溶融ガラスがドロスとして切断面に付着する等の恐れがある。しかし、傾斜角度を上記の範囲内に納めておけば、このような不具合は生じない。
 上記の方法において、レーザの照射部に、照射部を基準としてアシストガスと反対側から且つガラス板の表面に対して傾斜した方向からサイドアシストガスを噴射することが好ましい。
 このようにすれば、サイドアシストガスの圧力によって不必要な溶融ガラスの飛散を防止することができる。さらに、溶融ガラス部におけるアシストガスにより肉寄せされた部位を、サイドアシストガスの噴流の一部が冷却することになるため、その肉寄せされた部位の溶融ガラスの再固化が促進され、その結果として傾斜壁部の成形が助長される。
 上記の方法において、サイドアシストガスの噴射圧は、アシストガスの噴射圧よりも小さいことが好ましい。
 このようにすれば、アシストガスによる溶融ガラス部の円滑な除去作用を損なうことなく、既に述べた効果を享受することができる。
 上記の方法において、レーザの照射部におけるガラス板の表面と対向する位置から、照射部に向かってセンターアシストガスを噴射することが好ましい。
 このようにすれば、照射部に向かってセンターアシストガスを噴射することにより、溶融ガラス部の除去を促進させることが可能となる。また、レーザの照射熱によって揮発した一部の溶融ガラスが、照射部に向けてレーザを照射する集光レンズに飛散し、ドロスとして付着するという事態を可及的に防止することができる。また、センターアシストガスの噴流の一部は、溶融ガラス部におけるアシストガスにより肉寄せされた部位を冷却することになるため、これによっても傾斜壁部の成形が助長される。
 分離切断後の各ガラス板の内、アシストガスの噴射元側のガラス板を製品とし、アシストガスの噴射先側のガラス板を非製品としてもよい。
 このようにすれば、アシストガスの噴射元側のガラス板を高品質なものとすることができ、噴射先側のガラス板を廃材とすることができる。
 以上のような第1の発明によれば、薄板ガラスの厚みとの相対的な関係で、薄板ガラスの溶断端面間の隙間が厳格に管理される。その結果、薄板ガラスの溶断端面近傍に形状を良好に維持することができる。また、溶断端面同士を接触させることなく、溶断された薄板ガラスを安全に分離することができる。
 以上のような第2の発明によれば、溶融状態にある切断部近傍が噴射されるガスによって下方に押圧される力を抑えることができるので、ガラス板の製品部の切断端面に形状不良を生じさせることなく、ガラス板を溶断により切断することが可能となる。
 以上のような第3の発明によれば、ガラス板の切断部に上下両側からアシストガスが噴射されると共に、そのアシストガスで吹き飛ばされた溶融異物がガラス板の上下両側で吸引されて捕捉される。したがって、ガラス板の製品部に溶融異物が付着するという事態を確実に低減することができ、製品部の清浄性を良好に維持することが可能となる。
 以上のような第4の発明によれば、ガラス板のレーザ溶断において、ガラス板の切断時における作業能率が改善されると共に、切断されたガラス板の切断面の品位向上が図られる。
第1の発明の第1実施形態に係るガラス板切断装置を示す縦断側面である。 図1のガラス板切断装置を示す平面図である。 図2のX-X断面図である。 第1実施形態に係るガラス板切断装置で溶断された直後のガラス基板の状態を模式的に示す図である。 第1の発明の第2実施形態に係るガラス板切断装置を示す縦断面図である。 第1の発明の第3実施形態に係るガラス板切断装置を示す縦断面図である。 第1の発明の第4実施形態に係るガラス板切断装置を示す縦断面図である。 第1の発明の第5実施形態に係るガラス板切断装置を示す縦断面図である。 図8の第2吸引ノズルを示す斜視図である。 第1の発明の第6実施形態に係るガラス板切断装置を示す縦断面図である。 第1の発明の溶断対象となるガラス板の他の一例を示す図である。 第1の発明の実施例において、ガラス板の強度評価を行っている状態を示す図である。 第6の発明の実施形態に係るガラス板のレーザ溶断方法に用いるガラス板のガラス板切断装置を示す断面図である。 図13のガラス板切断装置によるレーザ溶断の状況を示す断面図である。 図13のガラス板切断装置によるレーザ溶断の状況を示す断面図である。 図13のガラス板切断装置によるレーザ溶断の状況を示す断面図である。 図13のガラス板切断装置によるレーザ溶断の状況を示す断面図である。 ガラス板をレーザ溶断により切断した場合に生じる問題点を説明するための図である。
 以下に説明する第1~第4の発明の実施形態において、ガラス板は厚み500μm以下のフラットパネルディスプレイ用のガラス基板とするが、勿論、切断対象のガラス板は、フラットパネルディスプレイ用のガラス基板に限定されるものではない。例えば、太陽電池用、有機EL照明用、タッチパネル用、デジタルサイネージ用等、種々の分野に利用されるガラス基板や、その有機樹脂との積層体などに適用が可能である。なお、ガラス板の厚みは、特に限定されるものではないが、300μm以下、特に200μm以下であることが好ましい。
<第1の発明の実施形態>
 以下、上記の第1の発明の実施形態を図面を参照して説明する。なお、以下では、ガラス板は厚み500μm以下のフラットパネルディスプレイ用のガラス基板とするが、勿論、切断対象のガラス板は、フラットパネルディスプレイ用のガラス基板に限定されるものではない。例えば、太陽電池用、有機EL照明用、タッチパネル用、デジタルサイネージ用等、種々の分野に利用されるガラス基板や、その有機樹脂との積層体などに適用が可能である。
(1)第1実施形態
 図1に示すように、第1実施形態に係るガラス板切断装置1は、平置き姿勢のガラス板Gを下方から支持する支持ステージ2と、この支持ステージ2に支持されたガラス板Gを溶断分離するレーザ照射器3とを備えている。
 支持ステージ2は、ステージ本体21と、ステージ本体21の上面に沿って移動するコンベア22とを備えている。ガラス板Gは、コンベア22の移動により切断予定線CLに沿った搬送方向下流側(図中の矢印A方向)に搬送される。このとき、ステージ本体21は、コンベア22をガイドする役割を果たす。なお、コンベア22には図示しない多数の通気孔が形成されており、この通気孔を介してガラス板Gをコンベア22上に吸着保持しながら搬送するようになっている。勿論、ガラス板Gを吸着せずに、コンベアによってガラス板Gの幅方向端部を表裏両側から挟持して搬送するなど、他の搬送方法を採用してもよい。
 ステージ本体21及びコンベア22は、図2に示すように、ガラス板Gの幅方向に間隔を置いて2つに分離されており、ガラス板Gの切断予定線CLの下方位置に非支持空間Sを有している。この非支持空間Sでは、ガラス板Gの下面と支持ステージ2が接触しておらず、ガラス板Gの下面が非支持空間Sに対して露出している。
 レーザ照射器3は、図3に示すように、レーザLBを伝搬させる内部空間を有し、この空間内にレンズ31を備えている。この実施形態では、レンズ31で集光されたレーザLBは、微焦点に集光してガラス板Gの上面に焦点位置FPを合わせた状態で、切断部(レーザLBを照射して溶断を行なっている部分)Cに照射される。そして、このレーザLBの照射熱によって切断予定線CLに沿ってガラス板Gを溶断し、製品となる製品部Gaと、廃棄等され製品とならない非製品部Gbとに分離する。なお、レーザLBの焦点位置FPは、ガラス板Gの厚み方向中間位置であってもよい。また、レーザLBの焦点位置FPをガラス板Gの上方に設定し、レーザLBをデフォーカスした状態で切断部Cに照射するようにしてもよい。
 更に、ガラス板切断装置1は、製品部Gaとなる側の上方位置から切断部Cに向かって斜め下方にサイドアシストガスA1を噴射するサイドアシストガス噴射ノズル4を備えている。このサイドアシストガスA1は、ドロスなどの溶融異物を非製品部Gb側へ吹き飛ばす役割を果たす。
 以上のように構成されたガラス板切断装置1の動作を説明する。
 図1及び図2に示すように、支持ステージ2のコンベア22によってガラス板Gを搬送し、搬送経路上に静止状態で配置されたレーザ照射器3から照射されるレーザLBをガラス板Gの切断予定線CLに沿って走査する。
 そして、このようにレーザLBを照射しながら、図3に示すように、ガラス板Gの製品部Gaとなる側の上方位置に配置されたサイドアシストガス噴射ノズル4からガラス板Gの切断予定線CL上に位置する切断部Cに向かって斜め下方にサイドアシストガスA1を噴射する。これにより、切断部Cから溶融異物が除去され、溶断が効率的に行なわれる。また、溶融異物が非製品部Gb側へ吹き飛ばされるので、製品部Gaに溶融異物が付着する事態を防止することができる。ここで、「溶融異物」は、ガラス板Gの溶断時に発生するドロス等の異物を意味し、溶融状態にあるもの、固化状態にあるものの双方を含む。
 また、ガラス板Gの上方空間において、ガラス板Gに対してガスを噴射する手段は、サイドアシストガス噴射ノズル4のみである。そして、このサイドアシストガス噴射ノズル4は、ガラス板Gの切断部Cに対してサイドアシストガスA1を斜めに噴射するので、ガラス板Gの切断部Cに対して真上から略鉛直に噴射する場合(例えば、センターアシストガスを噴射する場合)に比べて、溶融状態にある切断部C近傍を下方に押圧する力は作用し難い。そのため、溶融状態にあるガラス板Gの切断部C近傍の下方への垂れ下がりを防止することができる。そして、このように切断部Cの垂れ下がりを防止した状態で、サイドアシストガスA1によって切断部Cに生じる溶融異物は非製品部Gbとなる側に優先的に飛散するため、製品部Gaの溶断端面Ga1に溶融異物が溜まり難くなる。
 更に、上記のようにガラス板Gを溶断すれば、ガラス板Gの切断部Cの一部が溶融除去され、製品部Gaの溶断端面Ga1と、非製品部Gbの溶断端面Gb1との間には隙間が形成される。そのため、この隙間の分だけ製品部Gaの溶断端面Ga1と、非製品部Gbの溶断端面Gb1とが離間しているので、溶断端面Ga1,Gb1同士が接触して破損する事態を防止しつつ、製品部Gaと非製品部Gbとを円滑に分離できる。
 詳細には、図4に示すように、ガラス板Gの厚みをaとし、溶断後における製品部Gaの溶断端面Ga1と非製品部Gbの溶断端面Gb1との間の最小隙間をbとした場合に、0.1≦b/a≦2なる関係を満足する最小隙間bを溶断により形成するように管理されている。このようにすれば、ガラス板Gの厚みとの相対的な関係で、製品部Gaの溶断端面Ga1と非製品部Gbの溶断端面Gb1間の隙間が厳格に管理されることから、製品部Gaの溶断端面Ga1近傍の形状を良好に維持しつつ、製品部Gaと非製品部Gbを安全に分離することができる。すなわち、b/aが2を超えると、溶断により溶融除去されるガラス板Gの量が多くなり過ぎて、製品部Gaの溶断端面Gb1に形状不良が生じるおそれがある。更には、歪によるガラス板Gの変形や破損のおそれもある。一方、b/aが0.1未満になると、溶断端面Ga1,Gb1同士が接近し過ぎ、分離時に溶断端面Ga1,Gb1同士が接触して製品部Ga(又は非製品部Gb)が破損するおそれがある。
 ここで、最小隙間bの大きさを調整する方法としては、(1)レーザLBの出力パワーを変更する、(2)ガラス板Gに対するスポット径の大きさを変更する、(3)ガラス板Gの表面(上面)に対するサイドアシストガスA1の仮想中心線L1の傾斜角α1(図3を参照)を変更する、(4)サイドアシストガスA1などのガラス板Gに供給されるガスの噴射圧を変更する、(5)レーザのパルス幅やパターンを変更する、などの溶断条件の変更が挙がられる。
 レーザLB及びサイドアシストガスA1の諸条件は、以下の通りである。なお、レーザLB及びサイドアシストガスA1の諸条件は、勿論、これに限定されるものではない。
 レーザLBのスポット径は、図4の最小隙間bよりも小さく設定される。
 レーザLBの照射エネルギーは、ガラス板Gの上面において、100~100000[W/mm]に設定される。
 サイドアシストガスA1の噴射圧は、0.01~0.5[MPa]に設定される。
 サイドアシストガスA1の傾斜角α1は、25°~60°、好ましくは30°~50°、より好ましくは35°~45°に設定される。すなわち、ガラス板Gの表面に対するサイドアシストガスA1の傾斜角が25°未満であると、サイドアシストガスA1がガラス板Gに浅く入射し過ぎて、切断部CにサイドアシストガスA1を効率よく供給できないという問題が生じるおそれがある。一方、ガラス板Gの表面に対するサイドアシストガスA1の傾斜角が60°を超えると、サイドアシストガスA1がガラス板Gに深く入射し過ぎて、切断部C近傍を下方に押圧する力が大きくなるおそれがある。したがって、サイドアシストガスA1の傾斜角α1は上記数値範囲内であることが好ましく、この範囲であれば、サイドアシストガスA1を切断部Cに効率よく供給しつつ、サイドアシストガスA1が切断部C近傍を下方に押圧する力を適切に抑えることができる。
 なお、製品部Gaへの溶融異物の付着を防止する観点からは、サイドアシストガスA1の傾斜角α1は、15°~45°に設定されることが好ましい。したがって、製品部Gaの溶断端面Ga1の形状と製品部Gaへの溶融異物の付着とを考慮した場合には、サイドアシストガスA1の傾斜角α1は、25°~45°に設定されることが好ましい。
 サイドアシストガスA1の指向方向は、切断部C近傍であればよい。例えば、図示例では、サイドアシストガスA1の仮想中心線L1が、切断部Cと交差するようにしているが、仮想中心線L1が、切断部Cよりも製品部Gaとなる側でガラス板Gの上面や下面と交差するようにしてもよい。
 サイドアシストガスA1としては、例えば、酸素(又は空気)、水蒸気、二酸化炭素、窒素、アルゴンなどのガスを単独又は他ガスと混同した状態で用いる。また、サイドアシストガスA1は、熱風として噴射してもよい。
 以上のようにして溶断されたガラス板Gは、次のような特徴を有する。
 第一に、図4に示すように、製品部Gaの溶断端面Ga1の形状が、略円弧状の良好な凸曲面形状となる。付言すれば、製品部Gaの溶断端面Ga1は、火造り面で構成される。なお、非製品部Gbの溶断端面Gb1には、サイドアシストガスA1によって吹き飛ばされた溶融異物(ドロスなど)が付着し、溶断端面Gb1の形状が、略円弧状から逸脱する場合もある。
 第二に、製品部Gaの溶断端面Ga1の算術平均粗さRaが、0.3μm以下で、且つ、その粗さ曲線要素の平均長さRSmが、150μm以上となる。ここで、Raの下限値およびRSmの上限値について説明するならば、Raは限りなく零に近いことが望ましく、RSmは限りなく無限大に近いことが望ましい。しかしながら、実用上は加工設備等による限界があるため、Raの下限値やRSmの上限値を規定する意義は乏しい。そのため、上記では、Raの下限値とRSmの上限値を設けていない。
 第三に、製品部Gaの溶断端面Ga1の残留圧縮応力が、20MPa~500MPaとなる。
(2)第2実施形態
 図5に示すように、第2実施形態に係るガラス板切断装置1は、第1実施形態に係るガラス板切断装置1の構成に、更に、センターアシストガス噴射ノズル5を付加したものである。以下、共通点についての説明は省略し、相違点についてのみ説明する。
 センターアシストガス噴射ノズル5は、レーザ照射器3の先端部に接続されており、レーザ照射器3の内部空間(レンズ31よりも下方の空間)にセンターアシストガスA2を供給する。レーザ照射器3の内部空間に供給されたセンターアシストガスA2は、レーザ照射器3の先端からガラス板Gの切断部Cに向かって真下に噴射される。すなわち、レーザ照射器3の先端からは、レーザLBが出射されると共に、センターアシストガスA2が噴射される。センターアシストガスA2は、ガラス板Gを溶断する際に生じる溶融異物をガラス板Gの切断部Cから除去する役割と、その溶融異物からレーザ照射器3のレンズ31等の光学部品を保護する役割、更には、レンズの熱を冷却する役割を果たす。
 そして、サイドアシストガスA1の噴射圧をP1、センターアシストガスA2の噴射圧をP2とした場合に、P2/P1は0~2に設定される。詳細には、例えば、センターアシストガスA2の噴射圧は、0~0.02[MPa]に設定され、サイドアシストガスA1の噴射圧は、0.01~0.5[MPa]に設定される。そして、好ましくは、サイドアシストガスA1の噴射圧が、センターアシストガスA2の噴射圧よりも大きく設定される。例えば、P2/P1は、0.1~0.5に設定される。この場合、センターアシストガスA2の噴射圧は、レーザ照射器3のレンズ31等の光学部品を溶融異物から保護できる程度の圧力に設定することが好ましい。
 このようにすれば、センターアシストガスA2の噴射圧が相対的に弱められることから、主として、サイドアシストガスA1によって切断部Cに生じる溶融異物を吹き飛ばすことになる。このサイドアシストガスA1は、製品部Gaとなる側の上方位置から切断部Cに向かって斜め下方に噴射されることから、センターアシストガスA2に比べて、溶融状態にあるガラス板Gの切断部C近傍を下方に押圧する力は弱い。したがって、サイドアシストガスA1の噴射圧を、センターアシストガスA2の噴射圧よりも大きくすることで、溶融状態にあるガラス板Gの切断部Cの垂れ下がりを防止することができる。そして、このように切断部Cの垂れ下がりを防止した状態で、サイドアシストガスA1によって切断部Cに生じる溶融異物は非製品部Gbとなる側に優先的に飛散するため、製品部Gaの溶断端面Ga1に溶融異物が溜まり難くなる。したがって、図4に示した場合と同様に、製品部Gaの溶断端面Ga1の形状を略円弧状の良好な形状に維持することが可能となる。
 サイドアシストガスA1とセンターアシストガスA2は、同種のガスであってもよいし、異種のガスであってもよい。
(3)第3実施形態
 図6に示すように、第3実施形態に係るガラス板切断装置1が、第1~2実施形態に係るガラス板切断装置1と相違するところは、ガラス板Gの下方空間に、補助サイドアシストガス噴射ノズル6を備えている点にある。以下、共通点についての説明は省略し、相違点についてのみ説明する。なお、図示例では、センターアシストガス噴射ノズル5を設けているが省略してもよい。
 補助サイドアシストガス噴射ノズル6は、ガラス板Gの製品部Gaとなる側の下方位置に配置され、切断部Cに向かって斜め上方に補助サイドアシストガスA3を噴射する。
 更に、この実施形態では、製品部Ga側のステージ本体21の非支持空間Sに面する側面部21aが、上方が下方よりもガラス板Gの切断部Cに接近するように傾斜したテーパ面をなしている。そして、このテーパ面をなす側面部21aによって、補助サイドアシストガス噴射ノズル6から噴射される補助サイドアシストガスA3を斜め上方に案内し、ガラス板Gの切断部Cに供給するようになっている。なお、図示例では、非製品部Gb側のステージ本体21の非支持空間Sに面する側面部21aも、上方が下方よりもガラス板Gの切断部Cに接近するように傾斜したテーパ面をなしている。勿論、製品部Ga側のステージ本体21の側面部21aのみをテーパ面としてもよい。
 以上のようにすれば、サイドアシストガスA1とサイドアシストガスA3によって、ガラス板Gの切断部Cに生じた溶融異物を、非製品部Gbとなる側に効率よく吹き飛ばすことが可能となる。また、ガラス板Gの下面に補助サイドアシストガスA3が作用することから、ガラス板Gの切断部C近傍を下方から支持する効果も期待でき、切断部C近傍の垂れ下がり防止に寄与するものと考えられる。
 補助サイドアシストガスA3の噴射圧は、例えば、0.01~0.5[MPa]に設定される。
 ガラス板Gの裏面(下面)に対する補助サイドアシストガスA3の傾斜角α2は、15°~70°、好ましくは20°~60°、より好ましくは25°~45°に設定される。
 補助サイドアシストガスA3の指向方向は、切断部C近傍であればよい。例えば、図示例では、補助サイドアシストガスA3の仮想中心線L2が、切断部Cと交差するようにしているが、仮想中心線L2が、切断部Cよりも製品部Gaとなる側でガラス板Gの上面や下面と交差するようにしてもよい。
 補助サイドアシストガスA3は、サイドアシストガスA1と同種のガスであってもよいし、異種のガスであってもよい。
 なお、この第3実施形態では、サイドアシストガスA1と補助サイドアシストガスA3は、同時にガラス板Gの切断部Cに噴射するようにしているが、これに限定されるものではない。例えば、ガラス板Gの切断部Cが貫通するまでは、サイドアシストガスA1で切断部Cの溶融異物を吹き飛ばし、ガラス板Gの切断部Cが貫通した後は、サイドアシストガスA1を止めて、補助サイドアシストガスA3で切断部Cの溶融異物を吹き飛ばすようにしてもよい。
(4)第4実施形態
 図7に示すように、第4実施形態に係るガラス板切断装置1が、第3実施形態に係るガラス板切断装置1と相違するところは、補助サイドアシストガスA3の供給方法にある。以下、共通点についての説明は省略し、相違点についてのみ説明する。
 第4実施形態では、支持ステージ2のステージ本体21に、斜め上方に向かって延在し、一端が非支持空間Sに連通するガス流通路21bが形成されている。このガス流通路21bの他端には、補助サイドアシストガス噴射ノズル6の噴射口が接続されている。補助サイドアシストガス噴射ノズル6から噴射された補助サイドアシストガスA3を、ガス流通路21bを通じて斜め上方に誘導して非支持空間Sに開放し、ガラス板Gの切断部Cに供給する。
(5)第5実施形態
 図8に示すように、第5実施形態に係るガラス板切断装置1が、第3実施形態に係るガラス板切断装置1と相違するところは、溶断過程で生じる溶融異物を吸引する構成を備えている点にある。以下、共通点についての説明は省略し、相違点についてのみ説明する。
 すなわち、非製品部Gbとなる側の上方位置に配置された第1吸引ノズル7と、非製品部Gbとなる側の下方位置に配置された第2吸引ノズル8とを備えている。
 第1吸引ノズル7は、その仮想中心線L3を切断部Cに指向させた状態で、サイドアシストガス噴射ノズル4と向かい合うように配置され、ガラス板Gの上方空間の溶融異物を吸引する。ガラス板Gの表面(上面)に対する第1吸引ノズル7の仮想中心線L3の傾斜角β1は、α1±15°以内、好ましくは、α1±10°以内、より好ましくはα1±5°以内の範囲に設定される。
 一方、第2吸引ノズル8は、その吸引口を上方に指向させた状態で、補助サイドアシストガス噴射ノズル6と向かい合うように配置されており、ガラス板Gの下方空間、換言すれば、非支持空間Sの溶融異物を吸引する。ここで、第2吸引ノズル8を、切断部Cの真下から非製品部Gb側に偏倚させて配置しているのは、サイドアシストガスA1や補助サイドアシストガスA3によって、溶融異物が非支持空間S内において非製品部Gb側に吹き飛ばされながら下降するからである。
 そして、第1吸引ノズル7及び第2吸引ノズル8は、サイドアシストガスA1及び補助サイドアシストガスA3によって非製品部Gb側に吹き飛ばされた溶融異物を吸引する。このようにすれば、サイドアシストガスA1及び補助サイドアシストガスA3によって切断部Cから吹き飛ばした溶融異物が、周辺空間に浮遊して再び製品部Gaに付着するという事態を確実に防止することができる。
 なお、この第5実施形態では、第1吸引ノズル7と第2吸引ノズル8によって、同時に溶融異物を吸引するようにしているが、これに限定されるものではない。例えば、ガラス板Gの切断部Cが貫通するまでは、第1吸引ノズル7で溶融異物を吸引し、ガラス板Gの切断部Cが貫通した後は、第2吸引ノズル8で溶融異物の溶融異物を吸引するようにしてもよい。また、第1吸引ノズル7を省略して、第2吸引ノズル8のみで溶融異物を吸引するようにしてもよい。
 ここで、ガラス板Gの下方空間に配置された第2吸引ノズル8は、図9に示すように、ガラス板Gの切断予定線CL方向に沿って長尺な吸引口81を有する。これは、ガラス板Gの下方空間において、溶融異物が切断予定線CL方向に沿った広範囲に飛散する傾向があるためである。なお、レーザ照射器3等によるスペース上の制約がなければ、ガラス板Gの上方空間に配置された第1吸引ノズル7も、切断予定線CLの延在方向に沿って長尺な吸引口を有するようにしてもよい。
(6)第6実施形態
 勿論、図10に示すように、第4実施形態に係るガラス板切断装置1(図7を参照)に、第1吸引ノズル7および第2吸引ノズル8を配置してもよい。
 なお、第1の発明は、上記第1~第6実施形態に限定されるものではなく、種々の変形が可能である。例えば、ガラス板Gをオーバーフローダウンドロー法などで成形した場合、図11に示すように、ガラス板Gの幅方向中央部の厚みよりも、ガラス板Gの幅方向両端部の厚みが相対的に分厚くなる。そして、幅方向中央部が製品部Gaとされ、幅方向両端部が非製品部(耳部と称される)Gbとされる。したがって、本発明に係る切断方法及び切断装置を、このようなガラス板Gの非製品部Gbとなる耳部の除去に利用してもよい。
 また、上記の実施形態では、溶断分離された薄板ガラスGの一方が製品部Gaで、他方が非製品部Gbの場合を説明したが、双方を製品部Gaとする場合にも適用することができる。
 第1の発明の実施例として、次のような対比試験を行った。試験条件は次のとおりである。まず、図3に示した態様で、アシストガスを吹き付けながら、縦300mm×横300mmの大きさの薄板ガラスの切断部に対して波長10.6μmのCO2レーザを照射して、薄板ガラスを溶断して切断する。次に、このように溶断された薄板ガラスの溶断端面近傍に対して、二次加工(例えば、レーザによるアニールや電気加熱によるアニール)することでアニール処理を施す。このような一連の切断工程を、薄板ガラスの厚みaと、溶断端面間の最小隙間bを変化させて行う。そして、それぞれの切断工程を経て溶断された薄板ガラスについて、(1)溶断端面の擦れの状態、(2)溶断端面の形状、(3)強度をそれぞれ検査した。なお、溶断された薄板ガラスの強度は、図12に示すように、それぞれの薄板ガラスGを順次、二枚の板状体9で挟み且つU字状に50mm/分の速度で長手方向に曲げが生じるように押し曲げていく二点曲げにより強度を評価した。この評価は、押し曲げにより破壊したときの二枚の板状体9の間隔に基づいて破壊強度を算出する。これらの試験結果は、下記に示すとおりである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上の表1及び表2によれば、b/aが0.1以上のとき、分離時に薄板ガラスの溶断端面同士の接触により生じる擦れが全くないか、或いは実質的に問題にならない程度に抑えることが可能であることが認識できる。そのため、このような範囲に管理すれば、分離時に薄板ガラスの溶断端面同士が接触して破損するという事態を確実に低減することができる。
 また、b/aが2以下のとき、薄板ガラスの溶断端面の形状が良好に維持されることが認識できる。そのため、このような範囲に管理すれば、薄板ガラスの製品品位が低下したり、或いは、後工程で溶断端面を起点として薄板ガラスが破損するという事態を確実に低減することができる。
 したがって、0.1≦b/a≦2なる関係を満足するように、最小隙間bを管理すれば、薄板ガラスの溶断端面近傍の形状を良好に維持しつつ、分離時やその後の工程で薄板ガラスが破損するという事態を確実に低減できる。なお、このような作用効果は、溶断するためにレーザを照射する以外に、予備加熱やアニール処理を要することなく享受できる。
 なお、より安定した品位を要求する場合は、溶断直後にレーザ等によるアニール処理を施してもよい。
 上記実施例8~10で形成された溶断端面の算術平均粗さRaは、0.08~0.18μmで、粗さ曲線要素の平均長さRSmは、250~400μmであり、溶断端面の汚れの除去を容易に行うことができた。一方、薄板ガラスをスクライブ線に沿って折り割りした後にダイヤ研磨を施した割断端面を比較例として挙げると、その割断端面は、Raが0.4~0.6μmで且つRSmが80~140μmであり、割断端面の汚れを十分に除去することができなかった。
 また、上記実施例1~10で形成された溶断端面の圧縮歪(残留圧縮応力)は、80~180MPaであった。端面に傷を入れて、クラックを発生させると、エッジに沿ってクラックが進展し、ガラス板としての性能を損なうことがなかった。一方、比較例として作製したレーザ割断された薄板ガラスの端面の圧縮歪は、0~15MPaであり、傷を入れてクラックを発生させると、クラックが面方向に進展して薄板ガラスが2つに割れ、ガラス板としての性能を失うに至った。
<第2の発明の実施形態>
 第2の発明の実施形態は、上記の第1の発明の第1~第6実施形態と共通するため省略する。
<第3の発明の実施形態>
 第3の発明の実施形態は、上記の第1の発明の第5~第6実施形態と共通するため省略する。
<第4の発明の実施形態>
 以下、第4の発明の実施形態に係るレーザ溶断方法について、添付図面に基づいて説明する。
 図13は、本実施形態に係るレーザ溶断方法に用いるガラス板切断装置1を示す断面図である。同図に示すように、ガラス板切断装置1は、レーザLの照射部Cを指向してガラス板Gの表面Sに対してαだけ傾斜した方向からアシストガスA1を噴射するアシストガス噴射ノズル2と、アシストガス噴射ノズル2と反対側から照射部Cを指向してガラス板Gの表面Sに対して傾斜した方向からサイドアシストガスA2を噴射するサイドアシストガス噴射ノズル4とを備えている。また、レーザLの照射部Cにおけるガラス板Gの表面Sと対向する位置には、照射部Cに向かって真上からレーザLを照射するレーザ照射器3が配設されている。
 レーザ照射器3の内部には、図示しないレーザ発振装置から発せられたレーザLを集光し、照射部Cに向かって照射する集光レンズ5が備えられており、同図に示す仮想切断線Zの線上、及びその延長線上にその焦点が位置するように調整されている。また、レーザ照射器3の側壁には、レーザ照射器3の照射口から照射部Cに向かって噴射されるセンターアシストガスA3をレーザ照射器3内に導入するセンターアシストガス導入路6が付設されている。
 上記のように構成されたガラス板切断装置1は、支持ステージ7上に載置されたガラス板Gを、レーザ溶断法によって、照射部C(仮想切断線Z)を境界としてアシストガスA1の噴射元側となる製品部G1と噴射先側となる非製品部G2とに切断するものである。
 ここで、サイドアシストガスA2の噴射圧は、アシストガスA1による照射部Cに生じた溶融ガラス部Mの飛散作用を損なわないように、アシストガスA1の噴射圧と比べて小さくなるように設定される。各ガスA1~A3の噴射圧としては、アシストガスA1:0.2~0.6MPa、サイドアシストガスA2:0.0~0.3MPa、センターアシストガスA3:0.0~0.3MPaであることが好ましく、より好ましくは、アシストガスA1:0.3~0.5MPa、サイドアシストガスA2:0.0~0.2MPa、センターアシストガスA3:0.0~0.2MPaである。また、アシストガスA1、サイドアシストガスA2、センターアシストガスA3としては、酸素、空気、水蒸気、窒素、二酸化炭素、及びアルゴンに代表される不活性ガス等を用いることができる。
 さらに、アシストガスA1の噴射角度αは、ガラス板Gの板厚と切断後のガラス板Gの切断面間に形成したい間隙との関係によって選択されるものである。例えば、上記の板厚と切断後に形成される間隙との比が、[0.1<(間隙/板厚)<2.0]であれば、切断後のガラス板Gの切断面同士(製品G1の切断面と非製品G2の切断面)の接触や摺動、及び不必要に溶融ガラスが飛散することを防止するため、20°<α<65°の範囲内に設定されることが好ましく、より好ましくは、25°<α<60°であり、最適値は板厚により調整される。
 また、レーザ溶断によって切断されるガラス板Gとしては無アルカリガラス、ソーダライムガラス、ホウケイ酸ガラス、鉛ガラス、結晶化ガラス等、また、物理強化ガラスや化学強化ガラス等を用いることができ、その厚みは1.0mm以下が好ましく、より好ましくは0.5mm以下であり、いずれの場合も厚みの下限値は0.02mmである。
 以下、上記ガラス板切断装置1を用いた本発明の実施形態に係るガラス板Gのレーザ溶断方法の実施状況について、添付の図14~図17に基づいて説明する。なお、本実施形態において、ガラス板Gとしては無アルカリガラスを用いており、切断されるガラス板Gの板厚は0.5mm、ガラス板Gの板厚と切断後のガラス板Gの切断面間に形成される間隙との比は(間隙/板厚)=1.0、アシストガスA1の噴射圧は0.5MPa、サイドアシストガスA2とセンターアシストガスA3の噴射圧は共に0.1MPaであり、噴射角αはα=35°である。
 図14に示すように、ガラス板Gの照射部Cに向かってレーザLを照射することにより、照射部Cに存するガラスはレーザLの照射熱によって溶融されて、同図にクロスハッチングを付した溶融ガラス部Mとなる。この時点で、アシストガスA1、サイドアシストガスA2、センターアシストガスA3は、照射部C(溶融ガラス部M)に向かって噴射されている。
 上記各ガスを噴射することにより、図15に示すように溶融ガラス部Mの表面側の一部が、主にアシストガスA1の圧力によって製品部G1側から非製品部G2側の方向に肉寄せされ且つ溶融ガラス部Mの残りの一部が同方向に飛散することで、照射部Cには凹部Hが形成される。そして、凹部HにおけるアシストガスA1が行き当たる壁部では、溶融ガラス部Mの一部が、上述のように肉寄せされることに起因して、アシストガスA1の噴射方向の傾きαと逆向きに傾斜した傾斜壁部Wが成形される。
 この傾斜壁部Wが成形されることにより、製品部G1側から非製品部G2側に斜め方向に流れるアシストガスA1の噴流は、傾斜壁部Wと衝突することで、照射部Cの厚み方向の中央部付近において湾曲し、その流れの方向が、傾斜壁部Wに沿って非製品部G2側から製品部G1側の方向に変化してガラス板Gの裏面B側に誘導される。この時点において、傾斜壁部Wの上端は、同図に示すようにガラス板Gの表面Sから隆起した状態となるため、アシストガスA1が裏面B側に誘導されやすくなる。
 この場合、サイドアシストガスA2は、その圧力によって不必要な溶融ガラス部Mの飛散を防止すると共に、凹部HにおけるアシストガスA1が行き当たる壁部を冷却し、該壁部に存する溶融ガラス部Mの再固化を促進させることで傾斜壁部Wの成形を補助する役割を果たす。また、アシストガスA1と比較してサイドアシストガスA2の噴射圧は小さいため、アシストガスA1による溶融ガラス部Mの飛散作用が損なわれることもない。
 さらにこのとき、センターアシストガスA3は、アシストガスA1による溶融ガラス部Mを飛散させる作用を補助すると共に、上記集光レンズ5に揮発した一部の溶融物M1が飛散し且つドロスとして付着することを防止するエアカーテンとしての役割を果たす。また、センターアシストガスA3は、サイドアシストガスA2と共に照射部Cに形成される凹部Hに対して、アシストガスA1が行き当たる壁部を冷却し、該壁部に存する溶融ガラス部Mの再固化を促進させることで傾斜壁部Wの成形を補助する役割も果たす。
 以上のように、アシストガスA1が行き当たる凹部Hの壁部が傾斜壁部Wとして成形されたことにより、図16に示すように、アシストガスA1の噴流の一部は、照射部Cの厚み方向の中央部付近において湾曲した流れとなる。このようなアシストガスA1の流れ及びその圧力によって、レーザLの照射熱により溶融し軟化した溶融ガラス部Mの一部が、漸次除去されることに由来して、ガラス板Gの切断が進行する。
 このような動作が継続して行なわれることにより、ガラス板Gの切断が完了すると、図17に示すように切断後の製品部G1の切断面Fは、厚み方向の中央部を境界として略対称となる凸曲面状の切断面Fとなる。この切断面Fには、欠け等を生じやすい角部が存在しないため、切断後に切断面Fに対して研磨加工を行う必要がなくなる。しかも、アシストガスA1をガラス板Gの表面Sに対して斜めに噴射し、且つ途中で方向転換させて裏面Bから斜めに抜け出させていることによって、ガラス板Gの表面Sに垂直にアシストガスA1を噴射する場合の不具合、すなわちアシストガスA1の噴射圧により照射部Cが強く押圧されて溶融ガラス部Mの一部が裏面Bで垂れ下がるという不具合を回避することも可能となる。以上の結果として、切断面Fの品質の向上という利点を得ることができる。
 ここで、本実施形態では、アシストガスA1、サイドアシストガスA2及びセンターアシストガスA3の計3つのガスを使用しているが、サイドアシストガスA2、センターアシストガスA3は必ずしも使用する必要はなく、アシストガスA1のみを使用するようにしてもよい。また、本実施形態において、サイドアシストガスA2は、ガラス板Gの切断開始から完了まで常時噴射しているが、照射部Cに傾斜壁部Wが形成され始めてから噴射するようにしてもよい。さらに、照射部Cに照射されるレーザLは、照射部Cの真上から照射されているが、これに代えて、センターアシストガスA3の噴射口とは別個にレーザ照射器3を設け、製品部G1の側、或いは非製品部G2の側から照射するようにしてもよい。また、レーザLの焦点は、必ずしも仮想切断線Zとガラス板Gの表面Sとの交差部に位置させる必要はなく、照射部Cの厚み方向中央部や裏面B、ガラス板Gの表面Sより上に焦点が位置するように調整してもよい。
 第4の発明の実施例として、下記の表7に掲載した6つの条件下(実施例4つ、及び比較例2つ)で、レーザ溶断方法により、ガラス板の切断試験を行った。その後、製品における切断面の品質評価として、以下の3つの項目について品質の良否の比較を行った。なお、溶断用のレーザとしては、波長10.6μmのCOレーザを使用した。
 項目1:製品の切断面におけるドロスの付着の有無
 項目2:製品の切断面における溶融物の垂れ下がりの有無
 項目3:製品の切断面の厚み方向における対称性の良否
 以下の表3に試験結果を示す。なお、表1において、アシストガス噴射圧、サイドアシストガス噴射圧が0.0MPaとは、アシストガス、サイドアシストガスを噴射しなかったことを意味している。
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、比較例1のようにアシストガスを使用しなかった場合、製品の切断面におけるドロスの付着が見られ、非製品部に傾斜壁部が形成されず、溶融ガラスの垂れ下がりも確認することができた。また、比較例2のようにセンターアシストガスをメインに使用し、サイドアシストガスを略照射部の真上から噴射した場合にも、非製品部に傾斜壁部が形成されず、各比較項目のいずれの項目においても良好な結果を得ることができなかった。これに対し、実施例1~4では、製品の切断面におけるドロスの付着は見られず、溶融ガラスの垂れ下がりも確認されなかった。また、切断面の厚み方向における対称性も非常に良好であった。
<第1の発明の実施形態の符号>
 1    ガラス板切断装置
 2    支持ステージ
 21   ステージ本体
 22   コンベア
 3    レーザ照射器
 31   レンズ
 4    サイドアシストガス噴射ノズル
 5    センターアシストガス噴射ノズル
 6    補助サイドアシストガス噴射ノズル
 7    第1吸引ノズル
 8    第2吸引ノズル
 A1   サイドアシストガス
 A2   センターアシストガス
 A3   補助サイドアシストガス
 C    切断部
 G    ガラス板
 Ga   製品部
 Ga1  溶断端面
 Gb   非製品部
 Gb1  溶断端面
 LB   レーザ
 S    非支持空間
<第4の発明の実施形態の符号>
 1    ガラス板切断装置
 2    アシストガス噴射ノズル
 3    レーザ照射器
 4    サイドアシストガス噴射ノズル
 5    集光レンズ
 6    センターアシストガス導入口
 7    支持ステージ
 A1   アシストガス
 A2   サイドアシストガス
 A3   センターアシストガス
 L    レーザ
 G    ガラス板
 G1   製品
 G2   非製品
 S    ガラス板の表面
 B    ガラス板の裏面
 C    照射部
 H    凹部
 F    製品の切断面
 W    傾斜壁部
 α    噴射角
 M    溶融ガラス部
 M1   揮発した溶融物
 Z    仮想切断線

Claims (31)

  1.  500μm以下の厚みのガラス板の切断部にレーザを照射し、前記薄板ガラスを溶断するガラス板の切断方法であって、
     前記ガラス板の厚みをa、前記切断部で対向する前記ガラス板の溶断端面間の最小隙間をbとした場合に、0.1≦b/a≦2なる関係を満足するように前記最小隙間を管理することを特徴とするガラス板の切断方法。
  2.  前記レーザをデフォーカスの状態で前記切断部に照射することを特徴とする請求項1に記載のガラス板の切断方法。
  3.  前記レーザのスポット径が、前記最小隙間よりも小さいことを特徴とする請求項1又は2に記載のガラス板の切断方法。
  4.  前記溶断端面が、凸曲面をなすことを特徴とする請求項1~3のいずれか1項に記載のガラス板の切断方法。
  5.  前記溶断端面が、火造り面であることを特徴とする請求項1~4のいずれか1項に記載のガラス板の切断方法。
  6.  前記溶断端面の算術平均粗さRaが、0.3μm以下であり、且つ、粗さ曲線要素の平均長さRSmが、150μm以上であることを特徴とする請求項1~5のいずれか1項に記載のガラス板の切断方法。
  7.  前記溶断端面の残留圧縮応力が、20MPa~500MPaであることを特徴とする請求項1~6のいずれか1項に記載のガラス板の切断方法。
  8.  レーザで溶断された溶断端面を有し、厚みが500μm以下のガラス板であって、
     前記溶断端面の算術平均粗さRaが、0.3μm以下であり、且つ、粗さ曲線要素の平均長さRSmが、150μm以上であることを特徴とするガラス板。
  9.  前記溶断端面の残留圧縮応力が、20MPa~500MPaであることを特徴とする請求項8に記載のガラス板。
  10.  ガラス板の切断部にアシストガスを噴射しながら、前記切断部に向かってレーザを照射し、前記切断部を境界として前記ガラス板を製品部と非製品部とに溶断分離するガラス板切断方法であって、
     前記アシストガスは、前記ガラス板の上方空間において、前記切断部の上方位置から前記切断部に向かって真下に噴射されるセンターアシストガスと、前記製品部となる側の上方位置から前記切断部に向かって斜め下方に噴射されるサイドアシストガスとを含み、
     前記サイドアシストガスの噴射圧が、前記センターアシストガスの噴射圧よりも強いことを特徴とするガラス板切断方法。
  11.  ガラス板の切断部にアシストガスを噴射しながら、前記切断部に向かってレーザを照射し、前記切断部を境界として前記ガラス板を製品部と非製品部とに溶断分離するガラス板切断方法であって、
     前記アシストガスは、前記ガラス板の上方空間において、前記製品部となる側の上方位置から前記切断部に向かって斜め下方に噴射されるサイドアシストガスのみを含むことを特徴とするガラス板切断方法。
  12.  前記サイドアシストガスが、前記ガラス板の上面に対して25°~60°の傾斜角をもって噴射されることを特徴とする請求項10又は11に記載のガラス板切断方法。
  13.  前記アシストガスは、前記ガラス板の下方空間において、前記製品部となる側の下方位置から前記切断部に向かって斜め上方に噴射される補助サイドアシストガスを含むことを特徴と請求項10~12のいずれか1項に記載するガラス板切断方法。
  14.  前記レーザが、前記ガラス板に対してデフォーカスで照射されることを特徴とする請求項10~13のいずれか1項に記載のガラス板切断方法。
  15.  ガラス板の切断部にアシストガス噴射手段からアシストガスを噴射しながら、前記切断部に向かってレーザ照射手段からレーザを照射し、前記切断部を境界として前記ガラス板を製品部と非製品部とに溶断分離するガラス板切断装置であって、
     前記アシストガス噴射手段が、前記ガラス板の上方空間において、前記切断部の上方位置から前記切断部に向かって真下にセンターアシストガスを噴射するセンターアシストガス噴射手段と、前記センターアシストガスよりも強い噴射圧で、前記製品部となる側の上方位置から前記切断部に向かって斜め下方にサイドアシストガスを噴射するサイドアシストガス噴射手段とを有することを特徴とするガラス板切断装置。
  16.  ガラス板の切断部にアシストガス噴射手段からアシストガスを噴射しながら、前記切断部に向かってレーザ照射手段からレーザを照射し、前記切断部を境界として前記ガラス板を製品部と非製品部とに溶断分離するガラス板切断装置であって、
     前記アシストガス噴射手段は、前記ガラス板の上方空間において、前記製品部となる側の上方位置から前記切断部に向かって斜め下方にサイドアシストガスを噴射するサイドアシストガス噴射手段のみを有することを特徴とするガラス板切断装置。
  17.  前記アシストガス噴射手段は、前記ガラス板の下方空間において、前記製品部となる側の下方位置から前記切断部に向かって斜め上方に補助サイドアシストガスを噴射する補助サイドアシストガス噴射手段を有することを特徴とする請求項15又は16に記載のガラス板切断装置。
  18.  ガラス板の切断部の下方位置に非支持空間を有する支持ステージの上に、ガラス板を載置した状態で、前記切断部にアシストガスを噴射しながら、前記切断部に向かってレーザを照射し、前記切断部を境界として前記ガラス板を製品部と非製品部とに溶断するガラス板切断装置であって、
     前記ガラス板の上方空間において、前記製品部となる側の上方位置に配置され、前記切断部に向かって斜め下方に前記アシストガスを噴射する第1のガス噴射手段と、前記非製品部となる側の上方位置に配置され、溶断過程で生じる溶融異物を吸引する第1の吸引手段とを備え、
     前記ガラス板の下方空間において、前記製品部となる側の下方位置に配置され、前記切断部に向かって斜め上方に前記アシストガスを噴射する第2のガス噴射手段と、前記非支持空間内の前記溶融異物を吸引する第2の吸引手段とを備えていることを特徴とするガラス板切断装置。
  19.  前記第2の吸引手段の吸引口が、前記切断部を含む切断予定線に沿って長尺であることを特徴とする請求項18に記載のガラス板切断装置。
  20.  前記第2の吸引手段が、前記非製品部となる側に偏倚して配置されていることを特徴とする請求項18又は19に記載のガラス板切断装置。
  21.  前記第1のガス噴射手段が、前記アシストガスをガラス板の上面に15°~45°の傾斜角をもって噴射することを特徴とする請求項18~20のいずれか1項に記載のガラス板切断装置。
  22.  前記製品部となる側で前記非支持空間に面する前記支持ステージの側面部が、前記第2のガス噴射手段から噴射される前記アシストガスを斜め上方へ案内するテーパ面をなすことを特徴とする請求項18~21のいずれか1項に記載のガラス板切断装置。
  23.  前記製品部となる側で前記非支持部に面する前記支持ステージは、前記第2のガス噴射手段から噴射された前記アシストガスを斜め上方に誘導して前記非支持空間に開放するガス流通路を有することを特徴とする請求項18~22のいずれか1項に記載のガラス板切断装置。
  24.  前記レーザが、前記ガラス板に対してデフォーカスで照射されることを特徴とする請求項18~23のいずれか1項に記載のガラス板切断装置。
  25.  ガラス板の切断部に沿って非支持空間を有する支持ステージの上に、ガラス板を載置した状態で、前記切断部にアシストガスを噴射しながら、前記切断部に向かってレーザを照射し、前記切断部を境界として前記ガラス板を製品部と非製品部とに溶断するガラス板切断方法であって、
     前記ガラス板の上方空間において、前記製品部となる側の上方位置から前記切断部に向かって斜め下方に前記アシストガスを噴射して、前記非製品部となる側の上方位置で溶断過程に生じる溶融異物を吸引すると共に、
     前記ガラス板の下方空間において、前記製品部となる側の下方位置から前記切断部に向かって斜め上方に前記アシストガスを噴射して、前記非支持空間内の前記溶融異物を吸引することを特徴とするガラス板切断方法。
  26.  ガラス板に表面側からレーザを照射して溶融ガラス部を生成しつつ、前記レーザの照射部にアシストガスを噴射することで、前記溶融ガラス部に凹部を形成し且つ該凹部を前記ガラス板の裏面まで進展させて、前記ガラス板を切断分離するガラス板のレーザ溶断方法であって、
     前記ガラス板の表面に対して傾斜した方向からアシストガスを噴射することで、前記ガラス板の溶融ガラス部の一部をアシストガスの噴射先側に肉寄せし且つ残りの一部をアシストガスの噴射先側に吹き飛ばして前記凹部を形成すると共に、前記肉寄せした溶融ガラスでアシストガスの噴射方向の傾斜と逆向きに傾斜した傾斜壁部を前記凹部に形成し、さらに継続して、前記アシストガスを前記傾斜壁部に沿って前記ガラス板の裏面側に誘導することで、前記凹部における前記傾斜壁部と対向する壁部を、凸曲面状をなす切断面に成形することを特徴とするガラス板のレーザ溶断方法。
  27.  前記アシストガスの噴射方向と、前記ガラス板の表面とのなす傾斜角度が20°~65°であることを特徴とする請求項26に記載のガラス板のレーザ溶断方法。
  28.  前記レーザの照射部に、該照射部を基準として前記アシストガスと反対側から且つ前記ガラス板の表面に対して傾斜した方向からサイドアシストガスを噴射することを特徴とする請求項26又は27に記載のガラス板のレーザ溶断方法。
  29.  前記サイドアシストガスの噴射圧は、前記アシストガスの噴射圧よりも小さいことを特徴とする請求項28に記載のガラス板のレーザ溶断方法。
  30.  前記レーザの照射部における前記ガラス板の表面と対向する位置から、該照射部に向かってセンターアシストガスを噴射することを特徴とする請求項26~29のいずれか1項に記載のガラス板のレーザ溶断方法。
  31.  前記分離切断後の各ガラス板の内、アシストガスの噴射元側のガラス板を製品とし、アシストガスの噴射先側のガラス板を非製品とすることを特徴とする請求項26~30のいずれか1項に記載のガラス板のレーザ溶断方法。
PCT/JP2012/073717 2011-09-15 2012-09-14 ガラス板切断方法およびガラス板切断装置 WO2013039229A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187014137A KR101949777B1 (ko) 2011-09-15 2012-09-14 유리판 절단방법 및 유리판 절단장치
EP12831681.7A EP2757077B1 (en) 2011-09-15 2012-09-14 Glass plate cutting method and use of glass plate cutting device
KR1020187014136A KR101962661B1 (ko) 2011-09-15 2012-09-14 유리판 절단방법 및 유리판 절단장치
CN201280030903.3A CN103619765B (zh) 2011-09-15 2012-09-14 玻璃板切断方法及玻璃板切断装置
EP15173829.1A EP2990389B1 (en) 2011-09-15 2012-09-14 Cutting method for glass sheet
KR1020137026761A KR101904797B1 (ko) 2011-09-15 2012-09-14 유리판 절단방법 및 유리판 절단장치

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-202141 2011-09-15
JP2011202142A JP5824998B2 (ja) 2011-09-15 2011-09-15 ガラス板切断方法およびガラス板切断装置
JP2011-202142 2011-09-15
JP2011202140 2011-09-15
JP2011202141A JP5861864B2 (ja) 2011-09-15 2011-09-15 ガラス板切断方法およびガラス板切断装置
JP2011-202140 2011-09-15
JP2012114582A JP5822143B2 (ja) 2012-05-18 2012-05-18 ガラス板のレーザ溶断方法
JP2012-114582 2012-05-18

Publications (1)

Publication Number Publication Date
WO2013039229A1 true WO2013039229A1 (ja) 2013-03-21

Family

ID=47883445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073717 WO2013039229A1 (ja) 2011-09-15 2012-09-14 ガラス板切断方法およびガラス板切断装置

Country Status (6)

Country Link
US (2) US9422184B2 (ja)
EP (2) EP2757077B1 (ja)
KR (3) KR101949777B1 (ja)
CN (3) CN105127603B (ja)
TW (1) TWI583644B (ja)
WO (1) WO2013039229A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077067A1 (ja) * 2012-11-13 2014-05-22 日本電気硝子株式会社 板ガラス
JP2014203335A (ja) * 2013-04-08 2014-10-27 日本写真印刷株式会社 タッチパネル用加飾カバー基材及びその製造方法
WO2015079849A1 (ja) * 2013-11-28 2015-06-04 日本電気硝子株式会社 強化ガラス板、及び強化ガラス板の製造方法
WO2015079850A1 (ja) * 2013-11-28 2015-06-04 日本電気硝子株式会社 強化ガラス板の製造方法
WO2017208677A1 (ja) * 2016-05-31 2017-12-07 日本電気硝子株式会社 ガラスフィルムの製造方法

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025908A1 (en) * 2009-08-28 2011-03-03 Corning Incorporated Methods for laser cutting articles from chemically strengthened glass substrates
WO2013039230A1 (ja) * 2011-09-15 2013-03-21 日本電気硝子株式会社 ガラス板切断方法
DE102011084128A1 (de) * 2011-10-07 2013-04-11 Schott Ag Verfahren zum Schneiden eines Dünnglases mit spezieller Ausbildung der Kante
JP5975344B2 (ja) 2012-11-13 2016-08-23 日本電気硝子株式会社 板ガラスのレーザー溶断方法
KR20150084758A (ko) * 2012-11-13 2015-07-22 니폰 덴키 가라스 가부시키가이샤 판 유리의 제조 방법 및 제조 장치
WO2014079478A1 (en) 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
US9701564B2 (en) * 2013-01-15 2017-07-11 Corning Incorporated Systems and methods of glass cutting by inducing pulsed laser perforations into glass articles
EP2754524B1 (de) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
EP2781296B1 (de) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US20150165560A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9884406B2 (en) * 2014-01-15 2018-02-06 Flow International Corporation High-pressure waterjet cutting head systems, components and related methods
KR102445217B1 (ko) 2014-07-08 2022-09-20 코닝 인코포레이티드 재료를 레이저 가공하는 방법 및 장치
CN107073642B (zh) * 2014-07-14 2020-07-28 康宁股份有限公司 使用长度和直径可调的激光束焦线来加工透明材料的系统和方法
CN107073641B (zh) 2014-07-14 2020-11-10 康宁股份有限公司 接口块;用于使用这种接口块切割在波长范围内透明的衬底的系统和方法
EP3169635B1 (en) 2014-07-14 2022-11-23 Corning Incorporated Method and system for forming perforations
WO2016010943A2 (en) 2014-07-14 2016-01-21 Corning Incorporated Method and system for arresting crack propagation
KR102223005B1 (ko) * 2014-10-20 2021-03-03 동우 화인켐 주식회사 유리 면취 방법
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
CN107406293A (zh) 2015-01-12 2017-11-28 康宁股份有限公司 使用多光子吸收方法来对经热回火的基板进行激光切割
EP3274306B1 (en) 2015-03-24 2021-04-14 Corning Incorporated Laser cutting and processing of display glass compositions
EP3274313A1 (en) 2015-03-27 2018-01-31 Corning Incorporated Gas permeable window and method of fabricating the same
KR102303244B1 (ko) 2015-04-15 2021-09-17 삼성디스플레이 주식회사 디스플레이 장치 및 그 제조방법
KR102499697B1 (ko) 2015-07-10 2023-02-14 코닝 인코포레이티드 유연한 기판 시트에서의 홀의 연속 제조 방법 및 이에 관한 물품
DE102015008820A1 (de) * 2015-07-10 2017-01-12 Lubas Maschinen Gmbh Vorrichtung für Schneidmaschinen
US10596717B2 (en) 2015-07-13 2020-03-24 Flow International Corporation Methods of cutting fiber reinforced polymer composite workpieces with a pure waterjet
JP2017088467A (ja) * 2015-11-16 2017-05-25 旭硝子株式会社 ガラス基板に孔を形成する装置および方法
KR102491874B1 (ko) 2015-11-26 2023-01-27 삼성디스플레이 주식회사 디스플레이 장치의 제조 방법 및 그 장치
WO2017167614A1 (de) 2016-03-22 2017-10-05 Siltectra Gmbh Kombinierte laserbehandlung eines zu splittenden festkörpers
CN109311725B (zh) 2016-05-06 2022-04-26 康宁股份有限公司 从透明基材激光切割及移除轮廓形状
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
WO2018022476A1 (en) 2016-07-29 2018-02-01 Corning Incorporated Apparatuses and methods for laser processing
CN110121398B (zh) 2016-08-30 2022-02-08 康宁股份有限公司 透明材料的激光加工
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
JP7066701B2 (ja) 2016-10-24 2022-05-13 コーニング インコーポレイテッド シート状ガラス基体のレーザに基づく加工のための基体処理ステーション
US20180118602A1 (en) * 2016-11-01 2018-05-03 Corning Incorporated Glass sheet transfer apparatuses for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
JP7256123B2 (ja) 2016-12-12 2023-04-11 ジルテクトラ ゲゼルシャフト ミット ベシュレンクテル ハフツング 構成部材を備えた固体層を薄くするための方法
CN106738400A (zh) * 2016-12-12 2017-05-31 惠科股份有限公司 玻璃碎屑清洁结构及搬运机
JP6450783B2 (ja) * 2017-01-19 2019-01-09 ファナック株式会社 レーザ加工ヘッド用ノズル
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
JP2018150191A (ja) * 2017-03-13 2018-09-27 日本電気硝子株式会社 ガラス板の製造方法
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10947148B2 (en) * 2017-08-07 2021-03-16 Seagate Technology Llc Laser beam cutting/shaping a glass substrate
JP6811697B2 (ja) 2017-09-22 2021-01-13 三菱重工業株式会社 レーザー切断装置及びレーザー切断方法
US10689286B2 (en) 2017-10-13 2020-06-23 Seagate Technology Llc Separation of glass shapes using engineered induced thermal gradients after process cutting
CN108177257B (zh) * 2018-01-19 2019-08-16 睢宁丰泰建设工程有限公司 高强度脆性材料加工装置
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
JP7028820B6 (ja) * 2019-03-18 2023-12-19 ファナック株式会社 ワークを切断するレーザ加工方法
WO2021034501A1 (en) * 2019-08-16 2021-02-25 Corning Incorporated Edge defect mitigation using laser based glass separation
WO2021043970A1 (de) 2019-09-06 2021-03-11 Andreas Wienkamp Verfahren und vorrichtung zum einbringen eines schnitts in ein werkstück
WO2021162109A1 (ja) * 2020-02-14 2021-08-19 日昌株式会社 ガラス及びガラス加工方法
JP2021137856A (ja) * 2020-03-06 2021-09-16 三菱重工業株式会社 レーザ加工装置
IT202000012499A1 (it) * 2020-05-27 2021-11-27 Scm Group Spa Macchina per la lavorazione di pezzi in legno comprendente un sistema laser e metodo di funzionamento relativo.
KR102375189B1 (ko) * 2020-06-05 2022-03-16 (주)한빛레이저 가스토치와 레이저를 이용한 유리관 절단방법 및 장치
KR102345239B1 (ko) * 2020-07-06 2021-12-30 주식회사 도우인시스 레이저를 이용한 박막 글라스 커팅 및 커팅면 형상 가공 방법
DE102021105035A1 (de) * 2021-03-02 2022-09-08 Cericom GmbH Vorrichtung zum Bearbeiten eines Werkstücks
CN114918558B (zh) * 2022-05-27 2023-11-24 武汉新芯集成电路制造有限公司 激光切割装置以及晶圆切割方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251138A (ja) 1984-05-28 1985-12-11 Hoya Corp ガラスの切断方法
JPH01215736A (ja) * 1988-02-20 1989-08-29 Semiconductor Energy Lab Co Ltd 薄板ガラス切断方法
JPH08116120A (ja) * 1994-10-13 1996-05-07 Hitachi Cable Ltd 基板材料の加工方法及びその装置
JPH08141764A (ja) 1994-11-16 1996-06-04 Hitachi Ltd レーザ切断方法
JP2001287076A (ja) * 2000-04-10 2001-10-16 Tanaka Engineering Works Ltd レーザ切断機のピアシング装置
JP2008063207A (ja) * 2006-09-11 2008-03-21 Tosoh Quartz Corp 石英ガラス部材の製造方法及び石英ガラス部材

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589351A (en) * 1970-03-16 1971-06-29 Westinghouse Electric Corp Cutting of rocks, glass and the like
US3965328A (en) * 1974-12-19 1976-06-22 Avco Corporation Laser deep cutting process
US4467168A (en) * 1981-04-01 1984-08-21 Creative Glassworks International Method of cutting glass with a laser and an article made therewith
JP3038295B2 (ja) 1994-10-15 2000-05-08 東光株式会社 平面アンテナ
DE4444547C2 (de) * 1994-12-14 1997-02-27 Schott Rohrglas Gmbh Verfahren zum wärmeweichen Trennen von dünnwandigen Glasrohren oder -platten
JPH10225787A (ja) * 1997-02-13 1998-08-25 Tanaka Seisakusho Kk レーザ切断装置およびレーザ切断方法
JP3500071B2 (ja) * 1998-07-23 2004-02-23 株式会社日平トヤマ レーザ加工方法及びレーザ加工装置
DE19858684A1 (de) * 1998-12-18 2000-06-21 Linde Tech Gase Gmbh Verfahren und Vorrichtung zur Lasermaterialbearbeitung mit großflächigem Gasstrom
DE60016185T2 (de) * 1999-09-13 2006-03-02 Asahi Glass Co., Ltd. Abdeckung
WO2001021362A2 (en) * 1999-09-21 2001-03-29 Hypertherm, Inc. Process and apparatus for cutting or welding a workpiece
JP2005021964A (ja) * 2003-07-02 2005-01-27 National Institute Of Advanced Industrial & Technology レーザーアブレーション加工方法およびその装置
TW200738388A (en) * 2006-04-12 2007-10-16 Chung Shan Inst Of Science Device for cutting glass piece and method for the same
JP2007319888A (ja) * 2006-05-31 2007-12-13 Sharp Corp 被加工脆性部材のレーザー溶断方法
US8093532B2 (en) * 2008-03-31 2012-01-10 Electro Scientific Industries, Inc. Laser machining of fired ceramic and other hard and/or thick materials
DE102008030079B3 (de) * 2008-06-25 2009-08-20 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Reduzieren der Anhaftung von Schlacke beim Einstechen eines Laserstrahls in ein Werkstück und Laserbearbeitungskopf
CN101613180A (zh) * 2009-07-24 2009-12-30 深圳市大族激光科技股份有限公司 一种激光切割玻璃的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251138A (ja) 1984-05-28 1985-12-11 Hoya Corp ガラスの切断方法
JPH01215736A (ja) * 1988-02-20 1989-08-29 Semiconductor Energy Lab Co Ltd 薄板ガラス切断方法
JPH08116120A (ja) * 1994-10-13 1996-05-07 Hitachi Cable Ltd 基板材料の加工方法及びその装置
JPH08141764A (ja) 1994-11-16 1996-06-04 Hitachi Ltd レーザ切断方法
JP2001287076A (ja) * 2000-04-10 2001-10-16 Tanaka Engineering Works Ltd レーザ切断機のピアシング装置
JP2008063207A (ja) * 2006-09-11 2008-03-21 Tosoh Quartz Corp 石英ガラス部材の製造方法及び石英ガラス部材

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077067A1 (ja) * 2012-11-13 2014-05-22 日本電気硝子株式会社 板ガラス
JP2014097907A (ja) * 2012-11-13 2014-05-29 Nippon Electric Glass Co Ltd 板ガラス
JP2014203335A (ja) * 2013-04-08 2014-10-27 日本写真印刷株式会社 タッチパネル用加飾カバー基材及びその製造方法
WO2015079849A1 (ja) * 2013-11-28 2015-06-04 日本電気硝子株式会社 強化ガラス板、及び強化ガラス板の製造方法
JP2015101533A (ja) * 2013-11-28 2015-06-04 日本電気硝子株式会社 強化ガラス板、及び強化ガラス板の製造方法
WO2015079850A1 (ja) * 2013-11-28 2015-06-04 日本電気硝子株式会社 強化ガラス板の製造方法
WO2017208677A1 (ja) * 2016-05-31 2017-12-07 日本電気硝子株式会社 ガラスフィルムの製造方法
JP2017214241A (ja) * 2016-05-31 2017-12-07 日本電気硝子株式会社 ガラスフィルムの製造方法
KR20190012138A (ko) * 2016-05-31 2019-02-08 니폰 덴키 가라스 가부시키가이샤 유리 필름의 제조 방법
TWI700141B (zh) * 2016-05-31 2020-08-01 日商日本電氣硝子股份有限公司 玻璃薄膜的製造方法
US10766804B2 (en) 2016-05-31 2020-09-08 Nippon Electric Glass Co., Ltd. Glass film production method
KR102246033B1 (ko) 2016-05-31 2021-04-29 니폰 덴키 가라스 가부시키가이샤 유리 필름의 제조 방법

Also Published As

Publication number Publication date
US20160280581A1 (en) 2016-09-29
TW201332920A (zh) 2013-08-16
KR20180057729A (ko) 2018-05-30
CN105366929A (zh) 2016-03-02
CN105127603B (zh) 2017-07-11
US9422184B2 (en) 2016-08-23
KR20180056799A (ko) 2018-05-29
TWI583644B (zh) 2017-05-21
EP2990389B1 (en) 2019-02-27
KR101962661B1 (ko) 2019-03-27
CN103619765A (zh) 2014-03-05
EP2757077A1 (en) 2014-07-23
CN105127603A (zh) 2015-12-09
EP2757077B1 (en) 2019-02-27
US9764979B2 (en) 2017-09-19
KR101949777B1 (ko) 2019-02-19
CN103619765B (zh) 2017-02-15
EP2990389A1 (en) 2016-03-02
EP2757077A4 (en) 2015-09-23
KR101904797B1 (ko) 2018-10-05
US20130122264A1 (en) 2013-05-16
KR20140062428A (ko) 2014-05-23

Similar Documents

Publication Publication Date Title
WO2013039229A1 (ja) ガラス板切断方法およびガラス板切断装置
JP5861864B2 (ja) ガラス板切断方法およびガラス板切断装置
TWI380963B (zh) Method for processing brittle material substrates
JP5437333B2 (ja) ガラス基板のスクライブ方法及び加工装置
JP5907019B2 (ja) 薄板ガラスの切断方法及び薄板ガラス
JPWO2011002089A1 (ja) 脆性材料基板の割断方法及び割断装置並びにその割断方法により得られる車両用窓ガラス
JP5824998B2 (ja) ガラス板切断方法およびガラス板切断装置
KR20160013841A (ko) 유리 기판의 절단 방법 및 유리 기판의 제조 방법
WO2014077066A1 (ja) 板ガラスのレーザー溶断方法
TWI603801B (zh) Method of cutting glass substrate and method of manufacturing glass substrate
JP5825551B2 (ja) ガラス板切断方法およびガラス板切断装置
JP5822143B2 (ja) ガラス板のレーザ溶断方法
JP6222439B2 (ja) ガラスフィルムの割断方法及びフィルム状ガラスの製造方法
JP5444158B2 (ja) 脆性材料基板の割断方法
JP2017019704A (ja) 硬質脆性板の割断方法及び装置
JPWO2019138990A1 (ja) ガラス物品の製造方法及び製造装置並びにガラス物品
JP5993684B2 (ja) 脆性材料基板の分断方法及びスクライブ装置
KR20140034343A (ko) 기판 절단 장치 및 방법
JP2014065629A (ja) 脆性材料基板の分断方法及びスクライブ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012831681

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137026761

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE