WO2013038770A1 - フィルム - Google Patents

フィルム Download PDF

Info

Publication number
WO2013038770A1
WO2013038770A1 PCT/JP2012/066119 JP2012066119W WO2013038770A1 WO 2013038770 A1 WO2013038770 A1 WO 2013038770A1 JP 2012066119 W JP2012066119 W JP 2012066119W WO 2013038770 A1 WO2013038770 A1 WO 2013038770A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
film
resin
acid
mass
Prior art date
Application number
PCT/JP2012/066119
Other languages
English (en)
French (fr)
Inventor
廣田真之
山村剛平
坂本純
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020147003680A priority Critical patent/KR20140059778A/ko
Priority to CN201280044063.6A priority patent/CN103814066A/zh
Publication of WO2013038770A1 publication Critical patent/WO2013038770A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a film containing a polylactic acid resin, an aliphatic polyester resin excluding the polylactic acid resin and / or an aliphatic aromatic polyester resin, in order to improve its flexibility and tear propagation resistance.
  • the present invention relates to a film containing a catalyst and / or a compound derived from a transesterification catalyst.
  • the polylactic acid-based resin has been attracting attention because it is compatible with both of them and is relatively advantageous in terms of cost.
  • the polylactic acid resin is rigid and brittle, its flexibility and tear propagation resistance when formed into a film are relatively small, and as a result, it is difficult to use as a substitute for a polyolefin-based soft film such as polyethylene. . Therefore, various attempts have been made to improve these properties of the polylactic acid-based resin and put it into practical use as a flexible film.
  • Patent Document 1 discloses a film made of a composition containing a polylactic acid-based resin and a plasticizer and defining elongation, thickness, and heat shrinkage rate.
  • Patent Document 2 discloses a biodegradable polymer composition mainly composed of a mixture of two or more of a polylactic acid resin, a glycol / aliphatic dicarboxylic acid copolymer, and polycaprolactone. Disclosed are compositions and shrink films that may contain agents, heat stabilizers, and the like.
  • Patent Document 3 discloses a composition having excellent impact resistance and transparency, which contains a biodegradable polyester resin and an alkylsulfonic acid metal.
  • JP 2009-138085 A Japanese Patent Laid-Open No. 9-169896 JP 2009-144152 A
  • the present invention solves such a conventional problem, whereby a film containing a polylactic acid-based resin, an aliphatic polyester-based resin excluding the polylactic acid-based resin and / or an aliphatic aromatic polyester-based resin, It is intended to improve tear propagation resistance.
  • the present invention proposes the following configuration. That is, (A) polylactic acid resin, (B) aliphatic polyester resin and / or aliphatic aromatic polyester resin excluding polylactic acid resin, and (C) transesterification catalyst and / or transesterification catalyst A film containing a compound.
  • the transesterification catalyst in the film of the present invention is preferably a metal salt or a sulfur acid.
  • the transesterification catalyst in the film of the present invention is a metal salt of an organic acid having an alkyl group having 0 to 5 carbon atoms, a halogenated metal salt, or an alkyl having 0 to 5 carbon atoms.
  • a sulfur acid having a group is more preferable.
  • the film of the present invention contains a block copolymer having a polylactic acid segment and an aliphatic polyester segment excluding polylactic acid, and / or a block copolymer having a polylactic acid segment and an aliphatic aromatic polyester segment. It is preferable.
  • the film of the present invention has a melting peak temperature derived from (A) polylactic acid-based resin in the first temperature raising process and Tm1, derived from (A) polylactic acid-based resin in the first temperature raising process.
  • Tm2 melting peak temperature
  • the film of the present invention preferably contains (E) a plasticizer.
  • the (E) plasticizer in the film of the present invention is preferably a block copolymer having a polylactic acid segment and a polyether segment.
  • polybutylene adipate terephthalate is contained as the aliphatic polyester resin excluding (B) the polylactic acid resin and / or the aliphatic aromatic polyester resin in the aliphatic aromatic polyester resin in the film of the present invention. .
  • the present invention it is possible to improve the flexibility and tear propagation resistance of a film containing a polylactic acid resin, an aliphatic polyester resin excluding the polylactic acid resin, and / or an aliphatic aromatic polyester resin. It becomes possible.
  • the film of the present invention is required to have high flexibility and high tear propagation resistance, agricultural and forestry applications such as agricultural multi-films and pine fumigation sheets, garbage bags and compost bags, and food products such as vegetables and fruits It can be preferably used for various packaging applications such as bags for industrial use and bags for various industrial products.
  • the film of the present invention is a polylactic acid resin, an aliphatic polyester resin excluding the polylactic acid resin and / or a film containing an aliphatic aromatic polyester resin, in order to improve its flexibility and tear propagation resistance, It contains a transesterification catalyst and / or a transesterification catalyst-derived compound.
  • the film of the present invention contains (A) a polylactic acid resin.
  • the polylactic acid-based resin is a polymer having an L-lactic acid unit and / or a D-lactic acid unit as main constituent components.
  • the main component means that the ratio of lactic acid units is the maximum in 100 mol% of all monomer units in the polymer, and preferably 70% of lactic acid units in 100 mol% of all monomer units. ⁇ 100 mol%.
  • the poly-L-lactic acid of the present invention refers to those having a L-lactic acid unit content of more than 50 mol% and not more than 100 mol% in 100 mol% of all lactic acid units in the polymer.
  • the poly D-lactic acid of the present invention refers to those having a D-lactic acid unit content of more than 50 mol% and not more than 100 mol% in 100 mol% of all lactic acid units in the polymer.
  • the (A) polylactic acid-based resin of the present invention includes (D) a block copolymer having a polylactic acid segment and an aliphatic polyester segment excluding polylactic acid described later, and a polylactic acid segment and an aliphatic aromatic.
  • the block copolymer having a polyester segment does not correspond to the (A) polylactic acid resin.
  • Poly L-lactic acid changes in the crystallinity of the resin itself depending on the content ratio of the D-lactic acid unit. That is, if the content ratio of D-lactic acid units in poly-L-lactic acid increases, the crystallinity of poly-L-lactic acid decreases and approaches amorphous, and conversely the content ratio of D-lactic acid units in poly-L-lactic acid. As the amount decreases, the crystallinity of poly-L-lactic acid increases. Similarly, the crystallinity of the resin itself of poly D-lactic acid varies depending on the content ratio of L-lactic acid units.
  • the content ratio of the L-lactic acid unit in the poly L-lactic acid used in the present invention, or the content ratio of the D-lactic acid unit in the poly D-lactic acid used in the present invention is a viewpoint for maintaining the mechanical strength of the composition. From 100 to 100 mol% of all lactic acid units, 80 to 100 mol% is preferable, and 85 to 100 mol% is more preferable.
  • the crystalline polylactic acid resin of the present invention is measured with a differential scanning calorimeter (DSC) at a temperature rising rate of 20 ° C./min after leaving the polylactic acid resin to stand for 1 hour under heating at 100 ° C.
  • DSC differential scanning calorimeter
  • it means a polylactic acid resin in which the heat of crystal melting derived from the polylactic acid component is observed.
  • the amorphous polylactic acid resin referred to in the present invention means a polylactic acid resin that does not exhibit a melting point when measured in the same manner.
  • the polylactic acid resin is preferably a mixture of a crystalline polylactic acid resin and an amorphous polylactic acid resin.
  • the polylactic acid resin used in the present invention may be randomly copolymerized with other monomer units other than lactic acid.
  • Other monomers include ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, glycerin, pentane Glycol compounds such as erythritol, bisphenol A, polyethylene glycol, polypropylene glycol and polytetramethylene glycol, oxalic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, cyclohexanedicarboxylic acid, terephthalic acid , Isophthalic acid, phthalic acid, na
  • the copolymerization amount of the other monomer units as described above is preferably 0 to 30 mol%, preferably 0 to 10 mol%, based on 100 mol% of the whole monomer units in the polylactic acid resin polymer. More preferably. In addition, it is preferable to select the component which has biodegradability among the above-mentioned monomer units according to a use.
  • the polylactic acid resin used in the present invention is poly D-lactic acid when the main component is poly L-lactic acid, and conversely poly poly-L-lactic acid when the main component is poly D-lactic acid. It is also preferable to mix a small amount. The reason is that the stereocomplex crystal formed thereby plays a role as a crystal nucleating agent for polylactic acid-based resins, and maintains transparency of the film compared to the case where a normal crystal nucleating agent is added. Because it can.
  • the mass average molecular weight of the polylactic acid mixed in a small amount is preferably smaller than the mass average molecular weight of the main component polylactic acid from the viewpoint of efficient formation of stereocomplex crystals.
  • the mass average molecular weight of the polylactic acid mixed in a small amount is preferably 0.5 to 50%, more preferably 1 to 40%, more preferably 2 to 30% of the mass average molecular weight of the main component polylactic acid. More preferably it is.
  • the polylactic acid resin used in the present invention is preferably a polylactic acid block copolymer composed of a segment composed of L-lactic acid units and a segment composed of D-lactic acid units, from the viewpoint of improving heat resistance.
  • the polylactic acid block copolymer since the polylactic acid block copolymer forms a stereocomplex crystal in the molecule, the melting point is higher than that of a normal crystal.
  • the segment length should satisfy Y ⁇ X / 2 with respect to the mass average molecular weight X of the polylactic acid block copolymer and the maximum mass average molecular weight Y of one segment. preferable.
  • the mass average molecular weight of the polylactic acid resin used in the present invention is preferably 50,000 to 500,000, more preferably 80,000 to 400,000 in order to satisfy practical mechanical properties. More preferably, it is ⁇ 300,000.
  • the mass average molecular weight in this invention means the molecular weight which measured with the chloroform solvent by the gel permeation chromatography (GPC), and was calculated by the polymethylmethacrylate conversion method.
  • a known polymerization method can be used, and examples thereof include a direct polymerization method from lactic acid and a ring-opening polymerization method via lactide.
  • the film of the present invention preferably contains 30 to 95% by mass of a polylactic acid resin in 100% by mass of the entire composition constituting the film.
  • a polylactic acid resin in 100% by mass of the entire composition constituting the film.
  • the content of the polylactic acid resin is more preferably 40 to 85% by mass and particularly preferably 40 to 70% by mass in 100% by mass of the entire composition constituting the film.
  • the film of the present invention needs to contain (B) an aliphatic polyester-based resin and / or an aliphatic aromatic polyester-based resin excluding the polylactic acid-based resin.
  • these resins also have biodegradability in order to develop biodegradability of the film. These resins also play a role of adjusting the biodegradation rate of the film and the melt viscosity of the entire composition constituting the film, and in particular, forming a stable bubble in the inflation film forming method.
  • aliphatic polyester resins other than polylactic acid resins include polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate / 3-hydroxyhexanoate), and poly (3-hydroxy Butyrate 3-hydroxyvalerate), polycaprolactone, or an aliphatic polyester comprising an aliphatic diol such as ethylene glycol or 1,4-butanediol and an aliphatic dicarboxylic acid such as succinic acid or adipic acid is preferably used.
  • poly (butylene succinate / terephthalate), poly (butylene adipate / terephthalate) and the like are preferably used.
  • the aliphatic polyester resin and / or aliphatic aromatic polyester resin excluding the polylactic acid resin of the present invention may be a blend and / or copolymer of those listed above.
  • a block copolymer having a polylactic acid segment and an aliphatic polyester segment excluding polylactic acid and a block copolymer having a polylactic acid segment and an aliphatic aromatic polyester segment are (B) a polylactic acid resin. It does not correspond to the aliphatic polyester resin and / or the aliphatic aromatic polyester resin except for.
  • (B) aliphatic polyester-based resins and / or aliphatic aromatic polyester-based resins excluding polylactic acid-based resins include polybutylene succinate, It is more preferably at least one selected from the group consisting of polybutylene succinate / adipate, polybutylene succinate / terephthalate, polybutylene adipate / terephthalate, and more preferably an aliphatic aromatic polyester resin. More preferred are polybutylene succinate terephthalate and / or polybutylene adipate terephthalate, and most preferred is polybutylene adipate terephthalate.
  • the content of the aliphatic polyester resin and / or the aliphatic aromatic polyester resin excluding the polylactic acid resin (B) contained in the film of the present invention is 5% in 100% by mass of the entire composition constituting the film. It is preferably ⁇ 80 mass%, more preferably 5 to 60 mass%. When it is 5% by mass or more, an effect of improving flexibility, tear resistance, and impact resistance is easily obtained, and when it is 80% by mass or less, more preferably 60% by mass or less, biodegradability particularly in agricultural and forestry applications. Can be imparted with appropriate biodegradability, and the degree of biomass is preferred.
  • the content of the aliphatic polyester resin and / or the aliphatic aromatic polyester resin excluding the polylactic acid resin (B) is 100 to 50% by mass in 100% by mass of the entire composition constituting the film. More preferably.
  • ((C) Transesterification catalyst and / or transesterification catalyst-derived compound) In order to improve flexibility and tear propagation resistance, it is important that the film of the present invention contains (C) a transesterification catalyst and / or a transesterification catalyst-derived compound.
  • the transesterification catalyst in the present invention is not particularly limited, and examples thereof include metals, metal salts, sulfur acids, and nitrogen-containing basic compounds.
  • metals include manganese, magnesium, titanium, zinc, iron, aluminum, cerium, calcium, barium, cobalt, lithium, sodium, potassium, cesium, lead, strontium, tin, antimony, germanium, yttrium, lanthanum, indium, Zirconium etc. are mentioned.
  • Examples of the metal salt include salts composed of the above metals and organic acids such as carboxylic acid, sulfur acid, carbonic acid and phenol, nitric acid, phosphoric acid and boric acid.
  • Examples of the metal salt include halides of the above metals (halogenated metal salts), hydroxides of the above metals (metal hydroxides), and the like.
  • the transesterification catalyst in the present invention is preferably a metal salt or a sulfur acid from the viewpoints of dispersibility in the resin, the degree of degradation of the resin and the molecular weight reduction, and the stability of film formation.
  • the metal salt has 0 to 0 carbon atoms.
  • a metal salt of an organic acid having 5 alkyl groups or a halogenated metal salt is preferred, and the sulfur acid is preferably a sulfur acid having an alkyl group having 0 to 5 carbon atoms.
  • an alkyl group having 0 carbon atoms means that there is no alkyl group in the molecule.
  • the transesterification catalyst contained in the film of the present invention considering the possibility of being used for agricultural and forestry applications and applications requiring biodegradability such as garbage bags and compost bags, It is preferable that it is highly safe to living organisms.
  • a metal salt of an organic acid having an alkyl group having 0 to 5 carbon atoms or a halogenated metal salt shown below is particularly preferable. Is mentioned.
  • specific examples of the metal salt of an organic acid having an alkyl group having 0 to 5 carbon atoms include, for example, a carboxylic acid having 1 to 5 carbon atoms having no hydroxyl group, magnesium, titanium, zinc, iron , A salt made of a metal selected from aluminum, calcium and potassium.
  • Specific examples of the halogenated metal salt are metal halides selected from, for example, magnesium, titanium, zinc, iron, aluminum, calcium, and potassium.
  • the most preferred transesterification catalyst includes metal salts of organic acids having an alkyl group having 0 to 5 carbon atoms as described below, or halogenated metal salts. That is, specific examples of the most preferable metal salt of an organic acid having an alkyl group having 0 to 5 carbon atoms include a carboxylic acid having 1 to 3 carbon atoms having no hydroxyl group, magnesium, zinc, iron, and calcium. A salt made of a metal selected from Further, specific examples of the most preferable halogenated metal salt are metal halides selected from magnesium, zinc, iron and calcium. In the film of the present invention, there is no problem in using two or more transesterification catalysts composed of these compounds in combination.
  • the polylactic acid-based resin and / or the aliphatic polyester-based resin and / or the aliphatic aromatic polyester-based resin excluding the polylactic acid-based resin already contain a transesterification catalyst derived from each production process.
  • a transesterification catalyst contained in these raw materials is added to the film of the present invention ( C) Since it is contained in the film as a transesterification catalyst and / or a transesterification catalyst-derived compound, it is preferable.
  • the content of the transesterification catalyst in the present invention is preferably an amount that satisfies the following conditions in the DSC measurement of the film. That is, in the DSC measurement, when the melting peak temperature derived from the polylactic acid resin in the first temperature raising process is Tm1, and the melting peak temperature derived from the polylactic acid resin in the second temperature raising process is Tm2, the following Having a relationship of
  • the transesterification catalyst contained in the film further promotes the transesterification reaction when the entire film is heated.
  • the first temperature raising process is performed, and in the second temperature raising process, the transesterification further proceeds as compared with the stage of the first temperature raising process.
  • the transesterification reaction proceeds between the polylactic acid resin and the aliphatic polyester resin and / or the aliphatic aromatic polyester resin excluding the polylactic acid resin, the polylactic acid resin is derived.
  • the melting peak temperature is reduced. Therefore, when a transesterification catalyst is included in the film of the present invention, Tm2 will be lower than Tm1.
  • the transesterification catalyst When the transesterification catalyst is contained in the film of the present invention, if Tm1-Tm2 is less than 0.1, the transesterification reaction is not sufficiently progressed, and the improvement in flexibility and tear propagation resistance of the film can be reduced. There is sex. On the other hand, when Tm1-Tm2 exceeds 1, the progress of the transesterification reaction is sufficient, but there is a possibility that the film-forming property of the film may be lowered due to the lowering of the molecule due to the side reaction. Therefore, it is preferable to adjust the addition amount of the transesterification catalyst so as to satisfy the formula of 0.1 ⁇ Tm1 ⁇ Tm2 ⁇ 1.
  • the standard of the content of the transesterification catalyst in the film of the present invention varies depending on the type thereof, it cannot be described unconditionally.
  • the content of the transesterification catalyst is 100% by mass.
  • the content of the transesterification catalyst is preferably 0.01% by mass or more and 5% by mass or less for the progress of the transesterification reaction and avoiding molecular weight reduction. More preferably, it is particularly preferably 0.05% by mass or more and 1% by mass or less, and most preferably 0.05% by mass or more and 0.5% by mass or less.
  • the transesterification catalyst-derived compound in the present invention means that the transesterification catalyst is an aliphatic polyester resin and / or an aliphatic aromatic polyester system excluding (A) polylactic acid resin and (B) polylactic acid resin in the film.
  • This is a compound that has no transesterification function as a result of the deactivation agent acting on the catalyst after the transesterification reaction has proceeded with the resin, and has a transesterification function in the transesterification catalyst.
  • the film of the present invention is preferably obtained by adding a quencher such as a phosphorus compound to (A) the polylactic acid resin.
  • the film of the present invention obtained by adding a quenching agent such as a phosphorus compound is preferable because it contains a transesterification catalyst-derived compound.
  • Examples of the deactivator used for converting the transesterification catalyst into the transesterification catalyst-derived compound include phosphorus compounds, carboxylic acids and derivatives thereof, sulfuric acid and derivatives thereof, nitric acid and derivatives thereof, and the like.
  • a phosphorus compound is preferable and phosphoric acid and phosphorous acid, these esters, and an inorganic metal salt are more preferable.
  • it is particularly preferably a phosphoric acid crystal or phosphorous acid crystal having a purity of 98% or more. These may be used alone or in combination of two or more.
  • timing of adding the deactivator for example, when a two-stage process of compounding and film formation is adopted, a method of adding the deactivator by dry blending after completion of the compound can be mentioned. Moreover, when using a biaxial extruder for a compound, and when forming a film directly using a biaxial extruder, the method of adding a quencher from the side feeder of a biaxial extruder is mentioned.
  • the hydrolysis resistance of the film after film formation is improved, and the change in physical properties with time is reduced.
  • the film of the present invention is obtained by adding 0.01 parts by weight or more and 10 parts by weight or less of a phosphorus compound to 100 parts by weight of a polylactic acid resin. It is particularly preferable that it is obtained by adding 0.01 parts by mass or more and 5 parts by mass or less.
  • the addition amount of the phosphorus compound with respect to 100 parts by mass of the polylactic acid resin when forming the film of the present invention is less than 0.01 parts by mass, the deactivation of the transesterification catalyst becomes insufficient, and the resin is produced at the time of production. May be reduced in molecular weight.
  • the content of the transesterification catalyst-derived compound in 100% by mass of the entire film is preferably 0.01% by mass or more and 10% by mass or less.
  • the content of the transesterification catalyst-derived compound in 100% by mass of the entire film is less than 0.01% by mass, the transesterification reaction and / or deactivation of the transesterification catalyst may be insufficient.
  • the detection and quantification can be performed using atomic absorption spectrometry.
  • transesterification catalyst and / or transesterification catalyst-derived compound is a sulfur acid, a nitrogen-containing basic compound, or a compound derived therefrom
  • the component in the film is extracted with cyclohexane or the like, and then gas chromatography is performed. Allows detection and quantification.
  • the film of the present invention comprises (A) a polylactic acid resin, (B) an aliphatic polyester resin and / or an aliphatic aromatic polyester resin excluding the polylactic acid resin, (C) a transesterification catalyst and / or a transesterification. Contains catalyst-derived compounds.
  • an aliphatic ester excluding (A) polylactic acid-based resin and (B) polylactic acid-based resin by the action of a transesterification catalyst.
  • a transesterification reaction may proceed between the polyester resin and / or the aliphatic aromatic polyester resin.
  • (D) a block copolymer having a polylactic acid segment and an aliphatic polyester segment excluding polylactic acid and / or a block copolymer having a polylactic acid segment and an aliphatic aromatic polyester segment are partially present. Generate automatically.
  • the block copolymer (D) thus produced functions as a compatibilizing agent in the film, (A) an aliphatic polyester resin excluding a polylactic acid resin and (B) a polylactic acid resin, and The compatibility with the aliphatic aromatic polyester resin is improved, thereby improving the flexibility and tear propagation resistance of the film. Therefore, the film of the present invention comprises (D) a block copolymer having a polylactic acid segment and an aliphatic polyester segment excluding polylactic acid, and / or a block copolymer having a polylactic acid segment and an aliphatic aromatic polyester segment. It is preferable to contain a coalescence.
  • the block copolymer of the above (D) is often included due to the influence of (C) the transesterification catalyst and / or the transesterification catalyst-derived compound. It will be.
  • the block copolymer (D) may be produced in advance by a melt-kneading method using a transesterification catalyst. That is, (A) a polylactic acid-based resin, (B) an aliphatic polyester-based resin and / or an aliphatic aromatic polyester-based resin excluding the polylactic acid-based resin, (C) a masterbatch containing a transesterification catalyst is prepared in advance. It is a method of adding it at the time of film forming. In that case, at the stage of preparation of the masterbatch, there is an ester exchange reaction between the (A) polylactic acid resin and the (B) aliphatic polyester resin and / or aliphatic aromatic polyester resin excluding the polylactic acid resin.
  • the content of the transesterification catalyst decreases, so that the low molecular weight of the resin due to side reactions is suppressed, and the physical properties of the resulting film There is an advantage that improvement is possible.
  • the addition amount in 100 mass% of the whole film is preferably 5 mass% or more and 30 mass% or less.
  • the addition amount 5% by mass or more the effect of adding the block copolymer (D) can be obtained.
  • the effect of molecular weight reduction suppression by a masterbatch method is acquired by making addition amount into 30 mass% or less.
  • the film of the present invention preferably contains (E) a plasticizer in order to mainly impart flexibility.
  • the plasticizer used in the present invention is not particularly limited, and examples thereof include phthalate esters such as diethyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, di-1-butyl adipate, di-n-octyl adipate, Aliphatic dibasic acid esters such as di-n-butyl sebacate and di-2-ethylhexyl azelate, phosphoric acid esters such as diphenyl-2-ethylhexyl phosphate and diphenyloctyl phosphate, tributyl acetylcitrate, acetyl Hydroxypolycarboxylic acid esters such as tri-2-ethylhexyl citrate and tributyl acetylcitrate, fatty acid esters such as methyl acetylricinoleate and amyl stearate, polyvalent alcohols such as glycerin tria
  • the solubility parameter of all the plasticizers contained in the composition constituting the film SP is (16-23) 1 / 2 MJ / m 3 is preferable, and (17 to 21) 1/2 MJ / m 3 is more preferable.
  • the method for calculating the solubility parameter is described in P.A. Small, J.M. Appl. Chem. 3, 71 (1953).
  • the plasticizer preferably used in the present invention is preferably a biodegradable plasticizer from the viewpoint of maintaining the biodegradability of the entire film.
  • plasticizer of the present invention is ) Or polyolefin hygiene council or the like.
  • plasticizers include triacetin, epoxidized soybean oil, epoxidized linseed oil, epoxidized linseed oil fatty acid butyl ester, adipic acid-based aliphatic polyester, acetyl citrate tributyl, acetyl ricinoleic acid ester, glycerin fatty acid ester, sucrose
  • plasticizers include triacetin, epoxidized soybean oil, epoxidized linseed oil, epoxidized linseed oil fatty acid butyl ester, adipic acid-based aliphatic polyester, acetyl citrate tributyl, acetyl ricinoleic acid ester, glycerin fatty acid ester, sucrose
  • fatty acid esters sorbitan fatty acid esters, adipic acid dial
  • the plasticizer used in the present invention is, for example, polyethylene glycol having a number average molecular weight of 1,000 or more at room temperature (20 ° C. ⁇ 15 ° C.). It is preferable that it is solid, that is, the melting point exceeds 35 ° C. Note that the upper limit of the melting point of the plasticizer is 150 ° C., in order to match the melt processing temperature with the polylactic acid resin, the aliphatic polyester resin and / or the aliphatic aromatic polyester resin other than the polylactic acid resin. .
  • the plasticizer used in the present invention is more preferably a block copolymer having a polylactic acid segment and a polyether segment.
  • it is the polyether segment that actually acts as a plasticizing component.
  • block copolymer plasticizer will be described below.
  • the mass ratio of the polylactic acid segment contained in the block copolymer plasticizer is preferably 50% by mass or less of the entire block copolymer plasticizer, since a desired flexibility can be imparted with a smaller amount of addition, preferably 5 mass. % Or more is preferable from the viewpoint of suppressing bleed-out.
  • the number average molecular weight of the polylactic acid segment in one molecule of the block copolymer plasticizer is preferably 1,200 to 10,000.
  • the polylactic acid segment of the block copolymer plasticizer is 1,200 or more, sufficient affinity is produced between the block copolymer plasticizer and the polylactic acid resin, and a part of the segment Is incorporated into crystals formed from polylactic acid-based resins and forms so-called eutectics, thereby causing the plasticizer to be anchored to the polylactic acid-based resin, resulting in suppression of bleed-out of the block copolymer plasticizer. Demonstrate great effect.
  • the number average molecular weight of the polylactic acid segment of the block copolymer plasticizer is more preferably 1,500 to 6,000, and further preferably 2,000 to 5,000.
  • the polylactic acid segment contained in the block copolymer plasticizer is such that L-lactic acid is 95 to 100% by mass or D-lactic acid is 95 to 100% by mass, and bleeding out is particularly suppressed. Therefore, it is preferable.
  • the block copolymer plasticizer has a polyether segment, but it is more preferable to have a segment made of a polyalkylene ether as the polyether segment from the viewpoint that a desired flexibility can be imparted with a smaller amount of addition.
  • the polyether segment include segments made of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol / polypropylene glycol copolymer, and the like.
  • the segment made of polyethylene glycol is a polylactic acid resin. It is preferable because it has a high affinity for and is excellent in reforming efficiency, and as a result, desired flexibility can be imparted with a small amount of plasticizer.
  • the block copolymer plasticizer has a segment composed of a polyalkylene ether
  • the polyalkylene ether segment tends to be easily oxidized or thermally decomposed when heated at the time of molding, etc. It is preferable to use a hindered amine-based antioxidant or a phosphorus-based heat stabilizer in combination.
  • the number average molecular weight of the polyether segment in one molecule of the block copolymer plasticizer is preferably 7,000 to 20,000.
  • the composition constituting the polylactic acid-based resin film has sufficient flexibility, and the melt viscosity of the entire composition constituting the film is set to an appropriate level, such as an inflation film forming method. The film forming processability can be stabilized.
  • block copolymer plasticizer there is no particular limitation on the order configuration of each of the polyether segment and the polylactic acid segment, but at least one block of the polylactic acid segment is more effectively suppressed from the viewpoint of suppressing bleed out. It is preferably at the end of the block copolymer plasticizer molecule.
  • a block copolymer type plasticizer and (A) a polylactic acid resin, (C) a transesterification catalyst and / or a transesterification catalyst-derived compound are simultaneously present, a polylactic acid segment of the block copolymer type plasticizer And (A) a polylactic acid-based resin undergoes a transesterification reaction, and the block copolymer plasticizer is easily incorporated into the (A) polylactic acid-based resin, resulting in film flexibility and bleed resistance. Is preferable.
  • PEG polyethylene glycol having a hydroxyl group at both ends
  • the number average molecular weight of PEG having hydroxyl ends at both ends (hereinafter, the number average molecular weight of PEG is M PEG ) is usually calculated from the hydroxyl value determined by a neutralization method or the like in the case of a commercially available product.
  • lactide w L parts by mass are added to w E parts by mass of PEG having hydroxyl groups at both ends, lactide is subjected to ring-opening addition polymerization at both hydroxyl groups of PEG and sufficiently reacted, so that PLA is substantially obtained.
  • a block copolymer of the -PEG-PLA type can be obtained (where "PLA" indicates polylactic acid).
  • the number average molecular weight of one polylactic acid segment contained in this block copolymer plasticizer can be substantially determined by (1/2) ⁇ (w L / w E ) ⁇ M PEG .
  • the mass percentage of the total block copolymer plasticizer of the polylactic acid segment component can be substantially determined by 100 ⁇ w L / (w L + w E)%.
  • the mass ratio of the plasticizer component excluding the polylactic acid segment component to the entire block copolymer plasticizer can be substantially calculated by 100 ⁇ w E / (w L + w E )%.
  • the plasticizer contained in the film of the present invention is preferably 5 to 30% by mass in 100% by mass of the entire film. By setting it to 5% by mass or more, the flexibility of the film becomes high, and by setting it to 30% by mass or less, the stiffness when made into a film is strong and the handling property, strength, durability, and bleed-out resistance of the plasticizer are improved. Get higher.
  • the content of the plasticizer is more preferably 7 to 25% by mass in 100% by mass of the entire composition. (Other resins)
  • the film of the present invention may contain a thermoplastic resin other than those described above for the purpose of improving various physical properties. The content is preferably 0.1 to 50% by mass, more preferably 0.3 to 40% by mass, and further preferably 0.5 to 30% by mass in 100% by mass of the entire film.
  • thermoplastic resins are polyacetal, polyethylene, polypropylene, polyamide, poly (meth) acrylate, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyimide, polyether imide, ethylene / glycidyl methacrylate copolymer Polyester elastomer, polyamide elastomer, ethylene / propylene terpolymer, ethylene / butene-1 copolymer, thermoplastic starch, starch-containing polymer, and the like.
  • thermoplastic resins other than polylactic acid resins examples include improving the high-temperature rigidity of polylactic acid films by containing poly (meth) acrylate, and polylactic acid films by containing polyester.
  • the polymer containing starch for example, Novamont's biodegradable resin “Matterby” can be used.
  • biodegradation promotion among the applications in which the film of the present invention is used, it is particularly important in agricultural and forestry applications such as agricultural multi-films and pine worm fumigation sheets.
  • the polylactic acid resin contained in the film of the present invention is preferably a mixture of a crystalline polylactic acid resin and an amorphous polylactic acid resin. This is because, by using a mixture, the advantages of both crystalline and amorphous polylactic acid resins can be achieved.
  • the inclusion of the crystalline polylactic acid resin is suitable for improving the tear propagation resistance, impact resistance, heat resistance, and blocking resistance of the film.
  • the crystalline polylactic acid-based resin forms a eutectic with the polylactic acid segment of the block copolymer plasticizer, thereby greatly improving the bleed-out resistance. Demonstrate the effect.
  • an amorphous polylactic acid resin is suitable for improving the flexibility and bleed-out resistance of the film. This has an effect of providing an amorphous part in which a component such as a plasticizer can be dispersed.
  • the crystalline polylactic acid-based resin used in the film of the present invention has a content ratio of L-lactic acid units in poly L-lactic acid or D in poly D-lactic acid from the viewpoint of improving tear resistance and impact resistance.
  • the content ratio of lactic acid units is preferably 96 to 100 mol%, more preferably 98 to 100 mol%, still more preferably 99 to 100 mol%, and particularly preferably 99.5 to 100 mol%, in 100 mol% of all lactic acid units. It is.
  • the ratio of the crystalline polylactic acid resin is preferably 5 to 60% by mass. More preferably, it is ⁇ 50% by mass, and further preferably 20 ⁇ 40%.
  • the film of the present invention preferably contains 0.1 to 5% by mass of an organic lubricant in 100% by mass of the whole film. In this case, blocking after winding can be favorably suppressed. In addition, problems such as a decrease in melt viscosity and deterioration of workability due to excessive addition of an organic lubricant, or poor appearance such as bleed out and haze up when formed into a film are less likely to occur.
  • organic lubricants include liquid paraffin, natural paraffin, synthetic paraffin, aliphatic hydrocarbons such as polyethylene, stearic acid, lauric acid, hydroxystearic acid, fatty castor oil such as hard castor oil, stearic acid amide, oleic acid amide, Fatty acid amides such as erucic acid amide, lauric acid amide, ethylene bis stearic acid amide, ethylene bis oleic acid amide, ethylene bis lauric acid amide, fatty acid metal salts such as aluminum stearate, lead stearate, calcium stearate, magnesium stearate , Fatty acid (partial) esters of polyhydric alcohols such as glycerin fatty acid esters and rubitan fatty acid esters, long chain fatty acid esters such as long chain ester waxes such as butyl stearate and montan wax And the like.
  • liquid paraffin such as polyethylene, stearic acid, lauric acid
  • fatty acid amide organic lubricants that are easy to obtain an effect in a small amount due to moderate compatibility with polylactic acid are preferred.
  • organic lubricants having a relatively high melting point such as ethylene bis stearic acid amide, ethylene bis oleic acid amide, and ethylene bis lauric acid amide are preferable from the viewpoint of expressing better blocking resistance.
  • Particles may be added to the film of the present invention for the purpose of improving the slipperiness and blocking resistance of the processed product.
  • inorganic particles include silicon oxide such as silica, various carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate, various sulfates such as calcium sulfate and barium sulfate, wollastonite, potassium titanate, aluminum boride, and zepiolite.
  • various composite oxides such as, various phosphates such as lithium phosphate, calcium phosphate and magnesium phosphate, various oxides such as aluminum oxide, titanium oxide, zirconium oxide and zinc oxide, water such as aluminum hydroxide and magnesium hydroxide Fine particles made of various salts such as oxide and lithium fluoride can be used.
  • These inorganic particles are surface-treated with fatty acids, resin acids, titanate coupling agents, silane coupling agents, phosphate esters, etc. for the purpose of increasing compatibility with the resin and preventing aggregation in the resin. May be applied.
  • organic particles fine particles made of calcium oxalate, terephthalate such as calcium, barium, zinc, manganese, magnesium, etc. are used.
  • crosslinked polymer particles include fine particles made of a vinyl monomer such as divinylbenzene, styrene, acrylic acid or methacrylic acid, or a copolymer.
  • organic fine particles such as polytetrafluoroethylene, benzoguanamine resin, thermosetting epoxy resin, unsaturated polyester resin, thermosetting urea resin, and thermosetting phenol resin are also preferably used.
  • the average particle size of both inorganic particles and organic particles is not particularly limited, but is preferably 0.01 to 5 ⁇ m, more preferably 0.1 to 4 ⁇ m, and most preferably 0.5 to 3 ⁇ m.
  • High molecular weight agent examples include polyvalent carboxylic acids, metal complexes, epoxy compounds, isocyanates, or mixtures thereof.
  • polyvalent carboxylic acids As polyvalent carboxylic acids, (anhydrous) phthalic acid, (anhydrous) maleic acid, trimethyladipic acid, trimesic acid, (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, (anhydrous) 3, 3 ', 4, Examples thereof include 4'-benzophenone tetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid, and the like, and mixtures thereof.
  • Metal complexes include lithium formate, sodium methoxide, potassium propionate, magnesium ethoxide, calcium propionate, manganese acetylacetonate, cobalt acetylacetonate, zinc acetylacetonate, cobalt acetylacetonate, iron acetylacetonate, aluminum Acetylacetonate, aluminum isopropoxide, tetrabutoxytitanium and the like can be mentioned, and divalent or higher metal complexes are particularly preferable.
  • Epoxy compounds include bisphenol A type diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, terephthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, ⁇ -phthalic acid diglycidyl ester,
  • 3,4-epoxycyclohexylmethyl-3,4 epoxycyclohexanecarboxylate, bis (3,4-epoxycyclohexyl) adipate, tetradecane-1,14-dicarboxylic acid glycidyl ester, and the like can be used.
  • Polyethers modified with diisocyanates compounds modified with polyfunctional alcohols with polyfunctional isocyanates, polyethers modified with polyisocyanates, polyesters modified with polyisocyanates, and mixtures thereof.
  • the amount of the high molecular weight agent to be added varies depending on the kind thereof, but is generally 0.001% by mass to 5% by mass, more preferably 0.01% by mass to 2% by mass with respect to 100% by mass of the whole film. % Is preferably added. If it exceeds 5% by mass, the polylactic acid resin or the aliphatic polyester resin and / or the aliphatic aromatic polyester resin excluding the polylactic acid resin may cause gelation, coloring, viscosity reduction, etc. Will increase.
  • the film of the present invention may contain additives other than those described above as long as the effects of the present invention are not impaired.
  • additives known antioxidants, crystal nucleating agents, UV stabilizers, anti-coloring agents, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, antioxidants, ion-exchange agents, and tackifying Agents, antifoaming agents, color pigments, dyes and the like.
  • antioxidants include hindered phenols and hindered amines.
  • Color pigments include inorganic pigments such as carbon black, titanium oxide, zinc oxide, iron oxide, cyanine, styrene, phthalocyanine, anthraquinone, perinone, isoindolinone, quinophthalone, and quinocridone.
  • Organic pigments such as thioindigo can be used.
  • Crystal nucleating agents include melamine compounds, phenylphosphonic acid metal salts, benzenecarboxamide derivatives, aliphatic / aromatic carboxylic acid hydrazides, sorbitol compounds, amino acid, polypeptides, organic nucleating agents such as metal phthalocyanines, and talc. Silicate minerals such as clay, mica and kaolinite, and inorganic crystal nucleating agents such as carbon black can be preferably used.
  • the elongation at break in the length direction and the width direction is preferably 150% or more and 700% or less.
  • the elongation at break When the elongation at break is 150% or more, the tear resistance and impact resistance are high, and the agricultural and forestry applications such as agricultural multi-film and pine worm fumigation sheets, garbage bags, compost bags, and various packaging applications It is difficult to break and improves practicality. Further, when the elongation at break is 700% or less, tarmi and wrinkles during roll-to-roll running and winding are less likely to occur, and the roll winding shape and unwinding property are improved.
  • the elongation at break in the length direction and the width direction is more preferably from 200% to 600%, more preferably from 230% to 500%, and even more preferably from 250% to 500%.
  • Examples of a method for adjusting the elongation at break in the length direction and the width direction to 150 to 700% include polylactic acid resins, aliphatic polyester resins other than polylactic acid resins, and / or aliphatic aromatic polyesters.
  • the method which makes the compounding quantity of a system resin, a transesterification catalyst / or a transesterification catalyst origin compound, and a plasticizer the preferable range mentioned above, respectively is mentioned.
  • the film of the present invention preferably has a tensile modulus in the length direction and the width direction of 100 to 1,500 MPa in order to impart sufficient flexibility.
  • the tensile elastic modulus is more preferably 100 to 1,000 MPa, further preferably 100 to 600 MPa, and further preferably 100 to 500 MPa.
  • Examples of a method for adjusting the tensile modulus in the length direction and the width direction to 100 to 1,500 MPa include polylactic acid resins, aliphatic polyester resins other than polylactic acid resins, and / or aliphatic aromatic polyester systems. Examples thereof include a method in which the blending amounts of the resin, the transesterification catalyst / and / or the transesterification catalyst-derived compound, and the plasticizer are within the preferable ranges described above.
  • the film of the present invention preferably has a film thickness of 5 to 200 ⁇ m. By setting the film thickness to 5 ⁇ m or more, the firmness of the film becomes strong, the handleability is excellent, and the roll winding shape and unwinding property are good.
  • the film thickness is more preferably 7 to 150 ⁇ m, further preferably 10 to 100 ⁇ m.
  • the film of the present invention preferably has a tear propagation resistance of 30 N / mm or more in both the length direction and the width direction.
  • the tear propagation resistance is 30 N / mm, when it is used for agricultural and forestry applications such as agricultural multi-film and pine worm fumigation sheets, garbage bags, compost bags, or various packaging applications, from the cut surface and holes It becomes difficult for tears to progress.
  • the tear propagation resistance in the length direction and the width direction is more preferably 40 N / mm or more, and further preferably 50 N / mm or more.
  • the upper limit of the tear propagation resistance value does not exist in particular, but since the main component is polylactic acid resin and aliphatic polyester resin and / or aliphatic aromatic polyester resin other than polylactic acid resin, The tear propagation resistance value is estimated to be about 500 N / mm.
  • Examples of a method for setting the elongation in the length direction and the width direction to 30 N / mm or more include polylactic acid resins, aliphatic polyester resins other than polylactic acid resins, and / or aliphatic aromatic polyester resins. , Transesterification catalyst / and / or transesterification catalyst-derived compound, and a method of setting the blending amount of the plasticizer within the above-mentioned preferred ranges. (Production method) Next, the method for producing the film of the present invention will be described in detail, but the production method is not limited to this.
  • the polylactic acid resin in the present invention can be obtained, for example, by the following method.
  • a lactic acid component of L-lactic acid or D-lactic acid is mainly used, and a hydroxycarboxylic acid other than the lactic acid component described above can be used in combination.
  • a cyclic ester intermediate of hydroxycarboxylic acid for example, lactide, glycolide, etc. can be used as a raw material.
  • dicarboxylic acids and glycols can also be used.
  • the polylactic acid resin can be obtained by a method of directly dehydrating and condensing the raw materials or a method of ring-opening polymerization of the cyclic ester intermediate.
  • lactic acid or lactic acid and hydroxycarboxylic acid are preferably subjected to azeotropic dehydration condensation in the presence of an organic solvent, particularly a phenyl ether solvent, and particularly preferably a solvent distilled by azeotropic distillation.
  • a polymer having a high molecular weight can be obtained by polymerizing by a method in which water is removed from the solvent and the solvent is brought into a substantially anhydrous state and returned to the reaction system.
  • a high molecular weight polymer can be obtained by subjecting a cyclic ester intermediate such as lactide to ring-opening polymerization under reduced pressure using a catalyst such as tin octylate.
  • a method for adjusting the conditions for removing moisture and low molecular weight compounds during heating and refluxing in an organic solvent, a method for suppressing the depolymerization reaction by deactivating the catalyst after completion of the polymerization reaction, and a method for heat-treating the produced polymer Can be used to obtain a polymer with a small amount of lactide.
  • compositions constituting the film of the present invention that is, polylactic acid resins, aliphatic polyester resins other than polylactic acid resins and / or aliphatic aromatic polyester resins, plasticizers, or other nucleating agents
  • polylactic acid resins aliphatic polyester resins other than polylactic acid resins and / or aliphatic aromatic polyester resins
  • plasticizers or other nucleating agents
  • the melt kneading method is not particularly limited, and a commonly used known mixer such as a kneader, roll mill, Banbury mixer, single-screw or twin-screw extruder can be used. Among these, from the viewpoint of productivity, it is preferable to use a single screw or twin screw extruder.
  • the temperature at the time of melt kneading is preferably in the range of 150 ° C. to 240 ° C., and more preferably in the range of 180 ° C. to 210 ° C. from the viewpoint of preventing the deterioration of the polylactic acid resin.
  • the polylactic acid-based film of the present invention can be obtained by an existing film production method such as a known inflation method or T-die casting method using, for example, the composition obtained by the above-described method.
  • the pellet is dried at 60 to 100 ° C. for 6 hours or more.
  • a composition containing a polylactic acid resin or the like having a water content of 1,200 ppm or less, preferably 500 ppm or less, more preferably 200 ppm or less.
  • the melt viscosity at the time of preparing a composition containing a resin or the like can be set to an appropriate level and the film forming process can be stabilized. From the same point of view, when pelletizing or melt-extrusion / film formation, a twin-screw extruder with a vent hole is used and melt extrusion is performed while removing volatiles such as moisture and low molecular weight substances. It is preferable.
  • the composition prepared by the above-described method is melt-extruded by a twin-screw extruder with a vent hole and led to an annular die, and is extruded from the annular die to the inside.
  • the thickness may be adjusted to 5 to 200 ⁇ m depending on the discharge amount from the annular die, the take-up speed of the nip roll, and the bubble blowing ratio.
  • the annular die is spiral. It is preferable to use a mold, and from the same viewpoint, it is preferable to use a rotary die.
  • the extrusion temperature of the composition constituting the film of the present invention is usually in the range of 150 to 240 ° C., but in order to promote effective crystallization in order to develop good tear resistance and impact resistance,
  • the temperature of the die is important, and the temperature of the annular die is in the range of 150 to 190 ° C, preferably 155 to 185 ° C.
  • the blow ratio of the bubble depends on the relationship between the discharge amount and the take-up speed of the nip roll, but the film may be anisotropic if it is too low or too high. It tends to be unstable and is usually in the range of 2.0 to 4.0.
  • various surface treatments may be applied for the purpose of improving printability, laminate suitability, coating suitability, and the like.
  • the surface treatment include corona discharge treatment, plasma treatment, flame treatment, acid treatment, etc., and any method can be used, but continuous treatment is possible, and equipment for existing film forming equipment is used.
  • Corona discharge treatment can be exemplified as the most preferable because of its easy installation and simple processing.
  • the film of the present invention is excellent in bleed resistance and blocking resistance, when the film is unwound from the film roll after being wound, it can be smoothly unwound.
  • the sample size was 63 mm in the tear direction ⁇ 76 mm in the direction perpendicular to the tear, and 20 mm incision was made in the tear direction, and the indicated value when the remaining 43 mm was torn was read. The measurement was performed 5 times, and the average value was calculated. This was calculated for each of the length direction and width direction of the film, and the average value was evaluated.
  • Tm1-Tm2 (° C) Using a differential scanning calorimeter RDC220 manufactured by Seiko Instruments Inc., 5 mg of a film sample is set on an aluminum pan, heated from 25 ° C. to 220 ° C. at a heating rate of 20 ° C./min, and melted at 220 ° C. for 5 minutes.
  • Tm1-Tm2 was calculated with Tm as the melting peak temperature derived from the polylactic acid resin in the first temperature raising process and Tm2 as the melting peak temperature derived from the polylactic acid resin in the first temperature raising process.
  • (A) Polylactic acid resin (4032D) Poly L-lactic acid, “4032D” manufactured by Natureworks, mass average molecular weight 200,000, D-form content 1.4%, melting point 166 ° C.
  • the mass average molecular weight was measured using Waters 2690 manufactured by Nippon Waters Co., Ltd., using polymethyl methacrylate as a standard, a column temperature of 40 ° C., and a chloroform solvent.
  • GS Pla Polybutylene succinate, “GS Pla” manufactured by Mitsubishi Chemical.
  • transesterification catalyst [(C) Transesterification catalyst and / or compound derived from transesterification catalyst (indicated as “transesterification catalyst” in the table)]
  • (Mg acetate) Magnesium acetate tetrahydrate, manufactured by Nacalai Tesque.
  • P-TSA p-Toluenesulfonic acid monohydrate, manufactured by Nacalai Tesque.
  • (Mg stearate) Made of magnesium stearate, Nacalai Tesque.
  • Pyridine Made of pyridine and Nacalai Tesque.
  • Mg chloride Magnesium chloride hexahydrate, manufactured by Wako Pure Chemical Industries.
  • the pellets of this composition were vacuum-dried at a temperature of 60 ° C. for 12 hours using a rotary drum type vacuum dryer to obtain a master batch of a transesterification catalyst (Mg_MB acetate).
  • Mg_MB chloride 13 parts by mass of polylactic acid resin (4032D), 34 parts by mass of polylactic acid resin (4060D), 30 parts by mass of aliphatic polyester resin and / or aliphatic aromatic polyester resin (Ecoflex) excluding polylactic acid resin,
  • a mixture of 0.5 parts by mass of a transesterification catalyst (Mg chloride), 19 parts by mass of a plasticizer (PLA-PEG), 1 part by mass of an organic lubricant (S-10), and 3 parts by mass of particles (CaCO 3 ) has a cylinder temperature of 190 ° C. Was used in a twin screw extruder with a vacuum diameter of 44 mm and melt-kneaded while degassing the vacuum vent, homogenized, and pelletized to obtain a
  • the pellets of this composition were vacuum-dried at a temperature of 60 ° C. for 12 hours using a rotary drum type vacuum dryer to obtain a master batch of a transesterification catalyst (MgCl_MB).
  • MgCl_MB transesterification catalyst
  • [(E) Plasticizer] (PLA-PEG) 62 parts by mass of polyethylene glycol having a number average molecular weight of 8,000, 38 parts by mass of L-lactide and 0.05 parts by mass of tin octylate are mixed and polymerized in a reaction vessel equipped with a stirrer at 160 ° C. for 3 hours in a nitrogen atmosphere.
  • plasticizer E1 having a polylactic acid segment having a number average molecular weight of 2,500 at both ends of polyethylene glycol having a number average molecular weight of 8,000 was obtained.
  • PEG Polyethylene glycol, “PEG-6000S” manufactured by Sanyo Chemical Industries.
  • [Phosphorus compounds] (phosphoric acid) Made of phosphoric acid, Nacalai Tesque.
  • Example 1 13 parts by mass of polylactic acid resin (4032D), 34 parts by mass of polylactic acid resin (4060D), 30 parts by mass of aliphatic polyester resin and / or aliphatic aromatic polyester resin (Ecoflex) excluding polylactic acid resin, A mixture of 0.3 part by mass of a transesterification catalyst (Mg acetate), 19 parts by mass of a plasticizer (PLA-PEG), 1 part by mass of an organic lubricant (S-10), and 3 parts by mass of particles (CaCO 3 ) was added at a cylinder temperature of 190 ° C. Was used in a twin screw extruder with a vacuum diameter of 44 mm and melt-kneaded while degassing the vacuum vent, homogenized, and pelletized to obtain a composition.
  • Mg acetate transesterification catalyst
  • PDA-PEG plasticizer
  • S-10 organic lubricant
  • CaCO 3 3 parts by mass of particles
  • the pellet of this composition was vacuum-dried at a temperature of 60 ° C. for 12 hours using a rotary drum type vacuum dryer. 100 parts by mass of the pellet of this composition and 1 part by mass of a phosphorus compound (phosphoric acid) were mixed, Finally, the composition shown in Table 1 was supplied to a single screw extruder with a screw diameter of 65 mm at an extruder cylinder temperature of 190 ° C., and a spiral annular die (Labtech Engineering) with a diameter of 250 mm, a lip clearance of 1.3 mm, and a temperature of 155 ° C.
  • the film of the present invention is a film containing a polylactic acid resin excellent in flexibility and tear propagation resistance, and an aliphatic polyester resin and / or an aliphatic aromatic polyester resin excluding the polylactic acid resin.
  • the film of the present invention is required to have high flexibility and high tear propagation resistance, agricultural and forestry applications such as agricultural multi-films and pine fumigation sheets, garbage bags and compost bags, and food products such as vegetables and fruits It can be preferably used for various packaging applications such as bags for industrial use and bags for various industrial products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明は、柔軟性および引裂伝播抵抗を向上させたフィルムを提供するものであり、 本発明は、(A)ポリ乳酸系樹脂、(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂、並びに、(C)エステル交換触媒および/またはエステル交換触媒由来化合物を含有するフィルムである。

Description

フィルム
 本発明は、ポリ乳酸系樹脂、ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂を含有するフィルムについて、その柔軟性および引裂伝播抵抗を向上させるため、エステル交換触媒および/またはエステル交換触媒由来化合物を含有するフィルムに関する。
 近年、環境意識の高まりから、プラスチック製品の廃棄による土壌汚染問題、また、同製品の焼却による二酸化炭素増大を一因とする地球温暖化問題が懸念されている。前者への対策として、土壌中の環境下において二酸化炭素分子と水分子にまで完全に分解される生分解性樹脂、後者への対策として、植物等の生物由来原料から合成され、焼却しても大気中に新たな二酸化炭素の負荷を与えないバイオマス樹脂に関する研究、開発が盛んに行われている。
 その両者に適合し、かつ、コスト面においても比較的有利なものとして、ポリ乳酸系樹脂に対する注目が高まっている。しかしながら、ポリ乳酸系樹脂は剛直かつ脆い性質であるため、フィルム化した際の柔軟性や引裂伝播抵抗が比較的小さく、結果としてポリエチレン等のポリオレフィン系軟質フィルムの代替として使用することが困難である。そのため、ポリ乳酸系樹脂のこれらの特性を改善し、軟質フィルムとして実用化するための各種試みがなされている。
 例えば、特許文献1には、ポリ乳酸系樹脂、可塑剤を含む組成物からなり、伸度、厚み、熱収縮率を規定したフィルムが開示されている。また、特許文献2には、ポリ乳酸系樹脂、グリコール/脂肪族ジカルボン酸共重合体、ポリカプロラクトンのうち二種以上の混合物を主成分とする生分解性ポリマー組成物であり、さらに滑剤、可塑剤、熱安定剤等を含有しうる組成物および収縮フィルムが開示されている。特許文献3には、生分解性ポリエステル樹脂およびアルキルスルホン酸金属を含む、耐衝撃性および透明性に優れた組成物が開示されている。
特開2009-138085号公報 特開平9-169896号公報 特開2009-144152号公報
 上記特許文献では、ポリ乳酸系樹脂フィルムの柔軟性および/または耐衝撃性の向上に関する記載は存在するものの、その引裂伝播抵抗の向上に関する技術は全く開示されていない。特に、フィルムの引裂伝播抵抗の向上に繋がる、エステル交換触媒の添加に関する技術思想については、既往の報告が十分ではない。
 本発明はかかる従来の課題を解決し、それによって、ポリ乳酸系樹脂、ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂を含有するフィルムについて、その柔軟性および引裂伝播抵抗の改善を図るものである。
 上記課題を解決するため、本発明は以下の構成を提案する。すなわち、(A)ポリ乳酸系樹脂、(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂、並びに、(C)エステル交換触媒および/またはエステル交換触媒由来化合物を含有するフィルムである。
 本発明のフィルムにおける(C)エステル交換触媒は、金属塩または硫黄酸であることが好ましい。
 さらに、本発明のフィルムにおける(C)エステル交換触媒は、炭素数が0~5個のアルキル基を有する有機酸の金属塩、ハロゲン化した金属塩、または、炭素数が0~5個のアルキル基を有する硫黄酸であることが、より好ましい。
 本発明のフィルムは、ポリ乳酸セグメントとポリ乳酸を除く脂肪族ポリエステルセグメントとを有するブロック共重合体、および/または、ポリ乳酸セグメントと脂肪族芳香族ポリエステルセグメントとを有するブロック共重合体を含有することが好ましい。
 本発明のフィルムは、DSC測定において、1回目の昇温過程における(A)ポリ乳酸系樹脂に由来する融解ピーク温度をTm1、2回目の昇温過程における(A)ポリ乳酸系樹脂に由来する融解ピーク温度をTm2とするとき、下記の関係を有することが好ましい。
 0.1≦Tm1-Tm2≦1
 また本発明のフィルムを製造する際には、(A)ポリ乳酸系樹脂100質量部に対して、リン化合物を0.01質量部以上10質量部以下添加することが好ましい。
 本発明のフィルムは、(E)可塑剤を含有することが好ましい。
 本発明のフィルムにおける(E)可塑剤は、ポリ乳酸セグメントとポリエーテルセグメントとを有するブロック共重合体であることが好ましい。
 本発明のフィルムにおける(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂における脂肪族芳香族ポリエステル系樹脂として、ポリブチレンアジペート・テレフタレートを含有することが好ましい。
 本発明によれば、ポリ乳酸系樹脂、ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂を含有するフィルムについて、その柔軟性および引裂伝播抵抗を向上することが可能となる。本発明のフィルムは、柔軟性および引裂伝播抵抗の高いことが要求される、農業用マルチフィルムや松くい虫燻蒸用シートなどの農林業用途、ゴミ袋や堆肥袋、あるいは野菜や果物など食料品用袋、各種工業製品の袋など各種包装用途などに好ましく用いることができる。
 本発明のフィルムは、ポリ乳酸系樹脂、ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂を含有するフィルムについて、その柔軟性および引裂伝播抵抗を向上させるため、エステル交換触媒および/またはエステル交換触媒由来化合物を含有することを特徴とする。
 以下、本発明のフィルムについて説明する。

 ((A)ポリ乳酸系樹脂)
 本発明のフィルムは、(A)ポリ乳酸系樹脂を含有することが重要である。ポリ乳酸系樹脂とは、L-乳酸ユニットおよび/またはD-乳酸ユニットを主たる構成成分とする重合体である。ここで、主たる構成成分とは、重合体中の単量体ユニット全体100mol%中において乳酸ユニットの割合が最大であることを意味し、好ましくは全単量体ユニット100mol%中、乳酸ユニットが70~100mol%である。
 本発明のポリL-乳酸とは、重合体中の全乳酸ユニット100mol%中、L-乳酸ユニットの含有割合が50mol%を超え100mol%以下のものを指す。一方、本発明のポリD-乳酸とは、重合体中の全乳酸ユニット100mol%中、D-乳酸ユニットの含有割合が50mol%を超え100mol%以下のものを指す。
 ただし、本発明の(A)ポリ乳酸系樹脂には、後述する(D)ポリ乳酸セグメントとポリ乳酸を除く脂肪族ポリエステルセグメントとを有するブロック共重合体、および、ポリ乳酸セグメントと脂肪族芳香族ポリエステルセグメントとを有するブロック共重合体は、(A)ポリ乳酸系樹脂には該当しないものとする。
 ポリL-乳酸は、D-乳酸ユニットの含有割合によって、樹脂自体の結晶性が変化する。つまり、ポリL-乳酸中のD-乳酸ユニットの含有割合が多くなれば、ポリL-乳酸の結晶性は低くなり非晶に近づき、逆にポリL-乳酸中のD-乳酸ユニットの含有割合が少なくなれば、ポリL-乳酸の結晶性は高くなっていく。同様に、ポリD-乳酸は、L-乳酸ユニットの含有割合によって、樹脂自体の結晶性が変化する。つまり、ポリD-乳酸中のL-乳酸ユニットの含有割合が多くなれば、ポリD-乳酸の結晶性は低くなり非晶に近づき、逆にポリD-乳酸中のL-乳酸ユニットの含有割合が少なくなれば、ポリD-乳酸の結晶性は高くなっていく。
 本発明で用いられるポリL-乳酸中のL-乳酸ユニットの含有割合、あるいは、本発明で用いられるポリD-乳酸中のD-乳酸ユニットの含有割合は、組成物の機械強度を維持する観点から全乳酸ユニット100mol%中、80~100mol%が好ましく、より好ましくは85~100mol%である。
 本発明の結晶性ポリ乳酸系樹脂とは、該ポリ乳酸系樹脂を100℃の加熱下で1時間放置した後に、昇温速度20℃/分の条件で示差走査熱量計(DSC)にて測定を行った場合、ポリ乳酸成分に由来する結晶融解熱が観測されるポリ乳酸系樹脂のことをいう。
 一方、本発明でいう非晶性ポリ乳酸系樹脂とは、同様に測定を行った場合、融点を示さないポリ乳酸系樹脂のことをいう。
 後述するように、ポリ乳酸系樹脂としては、結晶性ポリ乳酸系樹脂と非晶性ポリ乳酸系樹脂の混合物であることが好ましい。
 本発明で用いられるポリ乳酸系樹脂は、乳酸以外の他の単量体ユニットをランダム共重合してもよい。他の単量体としては、エチレングリコール、プロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオ-ル、デカンジオール、1,4-シクロヘキサンジメタノ-ル、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ビスフェノ-ルA、ポリエチレングリコール、ポリプロピレングリコールおよびポリテトラメチレングリコールなどのグリコール化合物、シュウ酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4´-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムイソフタル酸などのジカルボン酸、グリコール酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸、カプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5-オキセパン-2-オンなどのラクトン類を挙げることができる。上記のような他の単量体ユニットの共重合量は、ポリ乳酸系樹脂の重合体中の単量体ユニット全体100mol%に対し、0~30mol%であることが好ましく、0~10mol%であることがより好ましい。なお、上記した単量体ユニットの中でも、用途に応じて生分解性を有する成分を選択することが好ましい。
 また、本発明で用いられるポリ乳酸系樹脂について、その主成分がポリL-乳酸の場合はポリD-乳酸を、逆に、主成分がポリD-乳酸の場合はポリL-乳酸を、それぞれ少量混合することも好ましい。その理由は、これにより形成されるステレオコンプレックス結晶が、ポリ乳酸系樹脂の結晶核剤としての役割を果たすためであり、通常の結晶核剤を添加する場合と比較してフィルムの透明性を維持できるからである。このとき、少量混合するポリ乳酸の質量平均分子量は、ステレオコンプレックス結晶の効率的な形成の観点から、主成分のポリ乳酸の質量平均分子量よりも小さい方が好ましい。少量混合するポリ乳酸の質量平均分子量は、主成分であるポリ乳酸の質量平均分子量の0.5~50%であることが好ましく、1~40%であることがより好ましく、2~30%であることがさらに好ましい。
 さらに、本発明で用いられるポリ乳酸系樹脂は、L-乳酸ユニットからなるセグメントとD-乳酸ユニットからなるセグメントにより構成される、ポリ乳酸ブロック共重合体であることも耐熱性向上の点で好ましい。この場合、ポリ乳酸ブロック共重合体が分子内でステレオコンプレックス結晶を形成するため、通常の結晶よりも融点が高くなる。効率的なステレオコンプレックス結晶形成のためには、ポリ乳酸ブロック共重合体の質量平均分子量Xおよびセグメント1単位の最大質量平均分子量Yについて、Y<X/2を満たすようなセグメント長であることが好ましい。
 本発明で用いられるポリ乳酸系樹脂の質量平均分子量は、実用的な機械特性を満足させるため、5万~50万であることが好ましく、8万~40万であることがより好ましく、10万~30万であることがさらに好ましい。なお、本発明における質量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)でクロロホルム溶媒にて測定を行い、ポリメチルメタクリレート換算法により計算した分子量をいう。
 ポリ乳酸系樹脂の製造方法としては、既知の重合方法を用いることが可能であり、乳酸からの直接重合法、ラクチドを介する開環重合法などを挙げることができる。
 本発明のフィルムは、フィルムを構成する組成物全体100質量%中、ポリ乳酸系樹脂を30~95質量%含有することが好ましい。組成物中のポリ乳酸系樹脂含有量を30質量%以上とすることにより、フィルムの引裂伝播抵抗およびバイオマス度(植物由来原料の含有割合)が高くなる。一方、ポリ乳酸系樹脂を95質量%以下とすることにより、フィルムが柔軟性に優れたものとなる。なお、フィルムを構成する組成物全体100質量%中、ポリ乳酸系樹脂の含有率は、40~85質量%であることがさらに好ましく、40~70質量%であることが特に好ましい。

((B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂)
 本発明のフィルムは、柔軟性および引裂伝播抵抗を向上させるため、(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂を含むことが必要である。なお、フィルムの生分解性発現のため、これらの樹脂についても生分解性を有することが好ましい。また、これらの樹脂は、フィルムの生分解速度を調整する役割、およびフィルムを構成する組成物全体の溶融粘度を調整し、特にインフレーション製膜法において安定したバブルを形成する役割も果たす。
 ポリ乳酸系樹脂以外の脂肪族ポリエステル系樹脂としては、例えば、ポリグリコール酸、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート・3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート・3-ヒドロキシバリレート)、ポリカプロラクトン、あるいはエチレングリコール、1,4-ブタンジオールなどの脂肪族ジオールと、コハク酸、アジピン酸などの脂肪族ジカルボン酸よりなる脂肪族ポリエステルが好ましく用いられる。
 脂肪族芳香族ポリエステル系樹脂としては、例えば、ポリ(ブチレンサクシネート・テレフタレート)、ポリ(ブチレンアジペート・テレフタレート)などが好ましく用いられる。
 また、本発明の(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂として、上記に挙げたもののブレンドおよび/または共重合体であっても構わない。ただし、ポリ乳酸セグメントとポリ乳酸を除く脂肪族ポリエステルセグメントとを有するブロック共重合体、および、ポリ乳酸セグメントと脂肪族芳香族ポリエステルセグメントとを有するブロック共重合体は、(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂には該当しないものとする。
 なかでも、柔軟性および引裂伝播抵抗の改良効果が大きいという点から、(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂としては、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート、ポリブチレンサクシネート・テレフタレート、ポリブチレンアジペート・テレフタレートからなる群より選ばれる少なくとも一つであることがより好ましく、脂肪族芳香族ポリエステル系樹脂であることがさらに好ましいことから、ポリブチレンサクシネート・テレフタレートおよび/またはポリブチレンアジペート・テレフタレートであることがより好ましく、ポリブチレンアジペート・テレフタレートであることが最も好ましい。

 本発明のフィルムに含まれる、(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂の含有率は、フィルムを構成する組成物全体100質量%中、5~80質量%であることが好ましく、5~60質量%であることがより好ましい。5質量%以上であると、柔軟性、耐引き裂き性、耐衝撃性の改良効果が得られやすく、80質量%以下、より好ましくは60質量%以下であれば、特に農林業用途における生分解性が必要な分野において、適度な生分解性を付与することが可能となり、また、バイオマス度が高くなる点から好ましい。なお、フィルムを構成する組成物全体100質量%中、(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂の含有率は、15~50質量%であることがさらに好ましい。

 ((C)エステル交換触媒および/またはエステル交換触媒由来化合物)
 本発明のフィルムは、柔軟性および引裂伝播抵抗を向上させるため、(C)エステル交換触媒および/またはエステル交換触媒由来化合物を含むことが重要となる。
 本発明におけるエステル交換触媒としては、特に限定されるものではないが、例えば金属、金属塩、硫黄酸、含窒素塩基性化合物が挙げられる。
 金属の例としては、マンガン、マグネシウム、チタン、亜鉛、鉄、アルミニウム、セリウム、カルシウム、バリウム、コバルト、リチウム、ナトリウム、カリウム、セシウム、鉛、ストロンチウム、スズ、アンチモン、ゲルマニウム、イットリウム、ランタン、インジウム、ジルコニウム等が挙げられる。
 金属塩としては、上記の金属と、カルボン酸、硫黄酸、炭酸、フェノール等の有機酸、硝酸、リン酸、ホウ酸等から成る塩を挙げることができる。また金属塩としては、上記金属のハロゲン化物(ハロゲン化した金属塩)、上記金属の水酸化物(水酸化した金属塩)等も挙げられる。
 硫黄酸の例としては、硫酸、スルホン酸化合物、スルフィン酸化合物、スルフェン酸化合物が挙げられる。含窒素塩基性化合物としては、四級アミン塩類、三級アミン類、二級アミン類、一級アミン類、ピリジン類、イミダゾール類、アンモニア等を挙げることができる。

 中でも、樹脂への分散性、樹脂の分解および分子量低下の度合、フィルム製膜の安定性の観点から、本発明におけるエステル交換触媒としては、金属塩または硫黄酸であることが好ましい。さらに、製膜機および配管の腐食性が小さいもの、質量あたりのエステル交換触媒能が高いもの、およびフィルムからのブリードアウトが発生し難いものを選ぶ観点から、金属塩としては炭素数が0~5個のアルキル基を有する有機酸の金属塩、若しくはハロゲン化した金属塩であることが好ましく、硫黄酸としては炭素数が0~5個のアルキル基を有する硫黄酸であることが好ましい。なお、本発明において、炭素数が0個のアルキル基とは、分子内にアルキル基を有さないことを意味する。
 さらに、本発明のフィルムについて、農林業用の用途やゴミ袋、堆肥袋等の生分解性を必要とする用途に使用される可能性を考慮すると、本発明のフィルムに含まれるエステル交換触媒は、生物への安全性が高いものであることが好ましい。その上でエステル交換触媒としての能力を併せて選択すると、特に好ましいエステル交換触媒として、下記に示す炭素数が0~5個のアルキル基を有する有機酸の金属塩、もしくは、ハロゲン化した金属塩が挙げられる。すなわち、炭素数が0~5個のアルキル基を有する有機酸の金属塩の具体例は、例えば、水酸基を有さない炭素数が1~5個のカルボン酸と、マグネシウム、チタン、亜鉛、鉄、アルミニウム、カルシウム、カリウムから選ばれる金属からなる塩である。また、ハロゲン化した金属塩の具体例は、例えば、マグネシウム、チタン、亜鉛、鉄、アルミニウム、カルシウム、カリウムから選ばれる金属のハロゲン化物である。
 その中で最も好ましいエステル交換触媒として、下記に示す炭素数が0~5個のアルキル基を有する有機酸の金属塩、もしくは、ハロゲン化した金属塩が挙げられる。すなわち、最も好ましい炭素数が0~5個のアルキル基を有する有機酸の金属塩の具体例は、水酸基を有さない炭素数が1~3個のカルボン酸と、マグネシウム、亜鉛、鉄、カルシウムから選ばれる金属からなる塩である。また、最も好ましいハロゲン化した金属塩の具体例は、マグネシウム、亜鉛、鉄、カルシウムから選ばれる金属のハロゲン化物である。

 なお、本発明のフィルムにおいて、これらの化合物からなるエステル交換触媒を2種以上を併用することも問題ない。
 また、ポリ乳酸系樹脂、および/または、ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂が、それぞれの製造過程に由来してエステル交換触媒をすでに含有している場合に、これらを原料として用いてフィルムを製膜する際には、必ずしも新たにエステル交換触媒を添加する必要はなく、これらの原料中に含まれるエステル交換触媒が、本発明のフィルムに(C)エステル交換触媒および/またはエステル交換触媒由来化合物としてフィルム中に含有されることとなるので、好ましい。
 本発明におけるエステル交換触媒の含有量としては、フィルムのDSC測定において、下記条件を満たすような量であることが好ましい。すなわち、DSC測定において、1回目の昇温過程におけるポリ乳酸系樹脂に由来する融解ピーク温度をTm1、2回目の昇温過程におけるポリ乳酸系樹脂に由来する融解ピーク温度をTm2とするとき、下記の関係を有することである。
 0.1≦Tm1-Tm2≦1
 また、ポリ乳酸系樹脂に由来する融解ピーク温度が複数存在する場合には、それら全てがこの関係を満たすことが好ましい。
 本発明のフィルムにおいて、フィルム中に含まれるエステル交換触媒は、フィルム全体が加熱された際に、エステル交換反応をより促進させる。DSC測定において1回目の昇温過程を経ることにより、2回目の昇温過程においては、1回目昇温過程の段階よりもエステル交換がさらに進行した状態となる。本発明のフィルムにおいて、ポリ乳酸系樹脂と、ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂との間でエステル交換反応が進行すると、ポリ乳酸系樹脂に由来する融解ピーク温度は低下する。したがって、本発明のフィルムにおいてエステル交換触媒が含まれる場合、Tm2はTm1よりも低下することになる。
 本発明のフィルムにおいてエステル交換触媒を含有する場合、Tm1-Tm2が0.1を下回る場合には、エステル交換反応の進行が十分でなく、フィルムの柔軟性および引裂伝播抵抗の向上が小さくなる可能性がある。また、Tm1-Tm2が1を上回る場合には、エステル交換反応の進行は十分であるものの、副反応による低分子化等により、フィルムの製膜性が低下する可能性がある。したがって、エステル交換触媒の添加量は、0.1≦Tm1-Tm2≦1の式を満たすように調整することが好ましい。
 なお、本発明のフィルム中のエステル交換触媒の含有量の目安は、その種類により異なるため一概には述べられないものの、例えばエステル交換触媒が酢酸マグネシウムの場合には、フィルム全体100質量%に対して、エステル交換触媒の含有量が0.01質量%以上5質量%以下であることが、エステル交換反応の進行および低分子化回避のために好ましく、0.05質量%以上2質量%以下であることがより好ましく、0.05質量%以上1質量%以下であることが特に好ましく、0.05質量%以上0.5質量%以下であることが最も好ましい。

 本発明におけるエステル交換触媒由来化合物とは、エステル交換触媒が、フィルム中の(A)ポリ乳酸系樹脂と(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂との間でエステル交換反応を進行させた後に、該触媒に対して失活剤を作用させた結果、そのエステル交換機能を有さなくなった化合物であり、エステル交換触媒においてエステル交換機能を有する骨格の一部が失活剤の骨格の一部に置き換わった化合物、あるいはエステル交換触媒においてエステル交換機能を有する骨格の一部に失活剤の骨格の一部が配位した化合物である。エステル交換触媒としては前述の化合物が好適に用いられるので、エステル交換触媒由来化合物としては、その好適なエステル交換触媒から得られる化合物が好ましい

 本発明のフィルムは、(A)ポリ乳酸系樹脂に対して、リン化合物などの失活剤を添加することにより得られることが好ましい。リン化合物などの失活剤を添加することにより得られる本発明のフィルムは、エステル交換触媒由来化合物を含有することになるので、好ましい。
 エステル交換触媒をエステル交換触媒由来化合物に変換するために用いられる失活剤は、リン化合物、カルボン酸およびその誘導体、硫酸およびその誘導体、硝酸およびその誘導体などを挙げることができる。なかでも、本発明のエステル交換触媒に対する失活能という観点から、リン化合物が好ましく、リン酸および亜リン酸、およびこれらのエステル類や無機金属塩がより好ましい。また、ポリ乳酸系樹脂の耐加水分解性の点から、純度98%以上のリン酸結晶または亜リン酸結晶であることが特に好ましい。これらは1種のみで用いてもよいが、2種以上を混合して用いてもよい。
 失活剤を入れるタイミングとしては、例えば、コンパウンドと製膜の2段階プロセスを採用する場合には、コンパウンドの終了後にドライブレンドにより失活剤を添加する方法が挙げられる。また、コンパウンドに2軸押出機を使用する場合、および2軸押出機を使用して直接製膜を行う場合には、2軸押出機のサイドフィーダーから失活剤を添加する方法が挙げられる。
 失活剤を添加し、エステル交換触媒をエステル交換触媒由来化合物とすることにより、製膜後フィルムの耐加水分解性が向上し、物性の経時変化が小さくなる。
 失活剤としてリン化合物を添加する場合、本発明のフィルムは、ポリ乳酸系樹脂100質量部に対して、リン化合物を0.01質量部以上10質量部以下添加することにより得られるものであることが好ましく、0.01質量部以上5質量部以下添加することにより得られるものであることが特に好ましい。本発明のフィルムを製膜する際のポリ乳酸系樹脂100質量部に対するリン化合物の添加量が、0.01質量部を下回る場合には、エステル交換触媒の失活が不十分となり、製造時に樹脂が低分子化する場合がある。一方、10質量部を超えると、フィルム内において分散不良を発生させ、それによってフィルム物性が低下する可能性がある。

 フィルム全体100質量%におけるエステル交換触媒由来化合物の含有量は、0.01質量%以上10質量%以下であることが好ましい。フィルム全体100質量%におけるエステル交換触媒由来化合物の含有量が0.01質量%未満の場合は、エステル交換反応の進行および/またはエステル交換触媒の失活が不十分である可能性がある。フィルム全体100質量%におけるエステル交換触媒由来化合物の含有量が10質量%を超える場合には、エステル交換時の副反応である低分子化が進行し過ぎる可能性があること、およびフィルム内において分散不良を発生させ、それによってフィルム物性が低下する可能性がある。

 フィルムに含まれるエステル交換触媒および/またはエステル交換触媒由来化合物が金属、金属塩およびそれらの由来化合物である場合、その検出および定量は原子吸光分析法を用いて行うことが可能である。また、エステル交換触媒および/またはエステル交換触媒由来化合物が、硫黄酸、含窒素塩基性化合物およびそれらの由来化合物である場合には、フィルム中の該成分をシクロヘキサン等により抽出した後に、ガスクロマトグラフィーによって検出および定量が可能となる。
 フィルムに含まれる失活剤がリン化合物である場合、その検出および定量は蛍光X線分析法によって行うことが可能である。

 ((D)ポリ乳酸セグメントとポリ乳酸を除く脂肪族ポリエステルセグメントとを有するブロック共重合体、および/または、ポリ乳酸セグメントと脂肪族芳香族ポリエステルセグメントとを有するブロック共重合体)
 本発明のフィルムは、(A)ポリ乳酸系樹脂、(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂、(C)エステル交換触媒および/またはエステル交換触媒由来化合物を含有する。このような組成のフィルムを製膜するため、押出機内にて原料の溶融混練を行うと、エステル交換触媒の働きにより、(A)ポリ乳酸系樹脂と(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂との間にエステル交換反応が進行することがある。その結果として、(D)ポリ乳酸セグメントとポリ乳酸を除く脂肪族ポリエステルセグメントとを有するブロック共重合体、および/または、ポリ乳酸セグメントと脂肪族芳香族ポリエステルセグメントとを有するブロック共重合体が部分的に生成する。このようにして生成した(D)のブロック共重合体が、フィルム中で相溶化剤として機能するため、(A)ポリ乳酸系樹脂と(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂との相溶性が向上し、それによってフィルムの柔軟性および引裂伝播抵抗が向上する。そのため本発明のフィルムは、(D)ポリ乳酸セグメントとポリ乳酸を除く脂肪族ポリエステルセグメントとを有するブロック共重合体、および/または、ポリ乳酸セグメントと脂肪族芳香族ポリエステルセグメントとを有するブロック共重合体を含有することが好ましい。
 すなわち、本発明の必須要項である、(A)ポリ乳酸系樹脂、(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂、(C)エステル交換触媒および/またはエステル交換触媒由来化合物を含有したフィルムを製造した場合、多くの場合、(C)エステル交換触媒および/またはエステル交換触媒由来化合物の影響により、上記(D)のブロック共重合体が含まれることとなる。
 また、エステル交換触媒を使用する溶融混練法により、上記(D)のブロック共重合体をあらかじめ製造してもよい。すなわち、(A)ポリ乳酸系樹脂、(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂、(C)エステル交換触媒を含むマスターバッチをあらかじめ作製し、それを製膜時に添加するという方法である。その場合、マスターバッチ作製の段階では、(A)ポリ乳酸系樹脂と(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂との間でエステル交換反応が十分に進行し、マスターバッチを添加してコンパウンドおよび製膜を行う段階では、エステル交換触媒の含有率が低下するため、副反応による樹脂の低分子化が抑制され、結果として得られるフィルムの物性向上が可能となるという利点がある。
 マスターバッチの添加を行う場合、フィルム全体100質量%におけるその添加量は5質量%以上30質量%以下が好ましい。添加量を5質量%以上とすることにより、上記(D)のブロック共重合体添加の効果が得られる。また、添加量を30質量%以下とすることにより、マスターバッチ法による低分子化抑制の効果が得られる。

((E)可塑剤)
 本発明のフィルムは、主に柔軟性を付与するため、(E)可塑剤を含有することが好ましい。
 本発明に用いる可塑剤としては、特に限定されないが、例えば、フタル酸ジエチル、フタル酸ジオクチル、フタル酸ジシクロヘキシルなどのフタル酸エステル系、アジピン酸ジ-1-ブチル、アジピン酸ジ-n-オクチル、セバシン酸ジ-n-ブチル、アゼライン酸ジ-2-エチルヘキシルなどの脂肪族二塩基酸エステル系、リン酸ジフェニル-2-エチルヘキシル、リン酸ジフェニルオクチルなどのリン酸エステル系、アセチルクエン酸トリブチル、アセチルクエン酸トリ-2-エチルヘキシル、アセチルクエン酸トリブチルなどのヒドロキシ多価カルボン酸エステル系、アセチルリシノール酸メチル、ステアリン酸アミルなどの脂肪酸エステル系、グリセリントリアセテート、トリエチレングリコールジカプリレートなどの多価アルコールエステル系、エポキシ化大豆油、エポキシ化アマニ油脂肪酸ブチルエステル、エポキシステアリン酸オクチルなどのエポキシ系可塑剤、ポリプロピレングリコールセバシン酸エステルなどのポリエステル系可塑剤、ポリアルキレンエーテル系、エーテルエステル系、アクリレート系などが挙げられる。また、これらのうち複数種以上の混合物を用いることも可能である。
 可塑剤のブリードアウト抑制、かつフィルムの透明性維持および可塑化効率向上のため、フィルムを構成する組成物に含有されるすべての可塑剤の溶解性パラメータ:SPが、(16~23)1/2MJ/mであることが好ましく、(17~21)1/2MJ/mであることがより好ましい。なお、溶解性パラメータの計算方法は、P.Small、J.Appl.Chem.,3,71(1953)に示された手法によって計算できる。
 また、本発明で好適に用いられる可塑剤は、フィルム全体の生分解性を維持する観点から、生分解性可塑剤であることが好ましい。
 さらに、食品包装用途への適性や、農林業用途においては、一時的にせよコンポスト・農地への未分解物の残留の可能性を考慮すると、本発明の可塑剤は、米食品衛生局(FDA)やポリオレフィン等衛生協議会などから認可されたものであることが好ましい。かかる可塑剤としては、たとえばトリアセチン、エポキシ化大豆油、エポキシ化アマニ油、エポキシ化アマニ油脂肪酸ブチルエステル、アジピン酸系脂肪族ポリエステル、アセチルクエン酸トリブチル、アセチルリシノール酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、アジピン酸ジアルキルエステル、ビス(アルキルジグリコール)アジペートまたはポリエチレングリコール等が挙げられる。
 さらに、可塑剤の耐ブリードアウト性やフィルムの耐ブロッキング性の観点から、本発明に使用する可塑剤は、例えば数平均分子量1,000以上のポリエチレングリコールなど、常温(20℃±15℃)で固体状、つまり、融点が35℃を超えることが好ましい。なお、ポリ乳酸系樹脂、ポリ乳酸系樹脂以外の脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂との溶融加工温度を合わせる点で、可塑剤の融点は150℃が上限値となる。
 同様の観点から、本発明に使用する可塑剤は、ポリ乳酸セグメントとポリエーテルセグメントとを有するブロック共重合体であることがさらに好ましい。ここで、可塑化成分として実際に働くのは、ポリエーテルセグメントとなる。これらブロック共重合体(以下、「ブロック共重合体可塑剤」)について次に説明する。
 ブロック共重合体可塑剤の有するポリ乳酸セグメントの質量割合は、ブロック共重合体可塑剤全体の50質量%以下であることが、より少量の添加で所望の柔軟性を付与できるため好ましく、5質量%以上であることが、ブリードアウト抑制の点から好ましい。また、ブロック共重合体可塑剤1分子中のポリ乳酸セグメントの数平均分子量は1,200~10,000であることが好ましい。ブロック共重合体可塑剤の有するポリ乳酸セグメントが、1,200以上であると、ブロック共重合体可塑剤とポリ乳酸系樹脂との間に十分な親和性が生じ、また、該セグメントの一部はポリ乳酸系樹脂から形成される結晶中に取り込まれ、いわゆる共晶を形成することで、可塑剤をポリ乳酸系樹脂につなぎ止める作用を生じ、結果としてブロック共重合体可塑剤のブリードアウト抑制に大きな効果を発揮する。ブロック共重合体可塑剤のポリ乳酸セグメントの数平均分子量は、1,500~6,000であることがより好ましく、2,000~5,000であることがさらに好ましい。なお、ブロック共重合体可塑剤の有するポリ乳酸セグメントは、L-乳酸が95~100質量%であるか、あるいはD-乳酸が95~100質量%であることが、特にブリードアウトが抑制されるため好ましい。
 また、ブロック共重合体可塑剤はポリエーテルセグメントを有するが、より少量の添加で所望の柔軟性を付与できる観点から、ポリエーテルセグメントとしてポリアルキレンエーテルからなるセグメントを有することがより好ましい。具体的には、ポリエーテルセグメントとして、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール・ポリプロピレングリコール共重合体などからなるセグメントが挙げられるが、特にポリエチレングリコールからなるセグメントは、ポリ乳酸系樹脂との親和性が高いために改質効率に優れ、結果として少量の可塑剤添加で所望の柔軟性を付与できるため好ましい。
 なお、ブロック共重合体可塑剤がポリアルキレンエーテルからなるセグメントを有する場合、成形時などで加熱する際にポリアルキレンエーテルセグメントが酸化や熱分解され易い傾向があるため、後述するヒンダードフェノール系、ヒンダードアミン系などの酸化防止剤やリン系などの熱安定剤を併用することが好ましい。
 また、ブロック共重合体可塑剤の1分子中におけるポリエーテルセグメントの数平均分子量は、7,000~20,000であることが好ましい。上記範囲とすることで、ポリ乳酸系樹脂フィルムを構成する組成物に十分な柔軟性を持たせ、なおかつ、フィルムを構成する組成物全体の溶融粘度を適度なレベルとし、インフレーション製膜法などの製膜加工性を安定させることができる。
 ブロック共重合体可塑剤において、前記ポリエーテルセグメントと、ポリ乳酸セグメントの各セグメントの順序構成に特に制限は無いが、より効果的にブリードアウトを抑制する観点から、少なくとも1ブロックのポリ乳酸セグメントがブロック共重合体可塑剤分子の端にあることが好ましい。
 また、ブロック共重合体型可塑剤と、(A)ポリ乳酸系樹脂、(C)エステル交換触媒および/またはエステル交換触媒由来化合物の3成分が同時に存在すると、ブロック共重合型可塑剤のポリ乳酸セグメントと(A)ポリ乳酸系樹脂との間にエステル交換反応が進行し、ブロック共重合型可塑剤が(A)ポリ乳酸系樹脂に取り込まれやすくなるため、結果としてフィルムの柔軟性および耐ブリード性が向上するため、好ましい。
 次に、ポリエーテルセグメントとして、両末端に水酸基末端を有するポリエチレングリコール(以下、PEG)を採用した場合について具体的に説明する。
 両末端に水酸基末端を有するPEGの数平均分子量(以下、PEGの数平均分子量をMPEG)は、通常、市販品などの場合、中和法などにより求めた水酸基価から計算される。両末端に水酸基末端を有するPEGのw質量部に対し、ラクチドw質量部を添加した系において、PEGの両水酸基末端にラクチドを開環付加重合させ十分に反応させると、実質的にPLA-PEG-PLA型のブロック共重合体を得ることができる(ここで、「PLA」はポリ乳酸を示す)。この反応は、必要に応じてオクチル酸錫などの触媒併存下でおこなわれる。このブロック共重合体可塑剤中に含まれる一つのポリ乳酸セグメントの数平均分子量は、実質的に(1/2)×(w/w)×MPEGにより求めることができる。また、ポリ乳酸セグメント成分のブロック共重合体可塑剤全体に対する質量割合は、実質的に100×w/(w+w)%により求めることができる。さらに、ポリ乳酸セグメント成分を除いた可塑剤成分のブロック共重合体可塑剤全体に対する質量割合は、実質的に100×w/(w+w)%により求めることができる。
 本発明のフィルムに含有される可塑剤は、フィルム全体100質量%中、5~30質量%であることが好ましい。5質量%以上とすることで、フィルムの柔軟性が高くなり、30質量%以下とすることで、フィルムとした際のコシが強く取り扱い性、強度、耐久性、可塑剤の耐ブリードアウト性が高くなる。なお、可塑剤の含有率は、さらに好ましくは組成物全体100質量%中、7~25質量%である。

(その他の樹脂)
 本発明のフィルムには、様々な物性改良を目的に、上記以外の熱可塑性樹脂を含有することができる。含有量は、フィルム全体100質量%中、0.1~50質量%が好ましく、0.3~40質量%がより好ましく、0.5~30質量%がさらに好ましい。
 熱可塑性樹脂の例としては、ポリアセタール、ポリエチレン、ポリプロピレン、ポリアミド、ポリ(メタ)アクリレート、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、エチレン/グリシジルメタクリレート共重合体、ポリエステルエラストマー、ポリアミドエラストマー、エチレン/プロピレンターポリマー、エチレン/ブテン-1共重合体、熱可塑性デンプン、デンプンを含むポリマーなどが挙げられる。
 ポリ乳酸系樹脂以外の熱可塑性樹脂を含有することによる物性改良の例としては、ポリ(メタ)アクリレートを含有することによるポリ乳酸系フィルムの高温剛性向上、ポリエステルを含有することによるポリ乳酸系フィルムの耐衝撃性、靭性向上、熱可塑性デンプン、またはデンプンを含むポリマーを含有することによるポリ乳酸系フィルムの生分解性促進などが挙げられる。デンプンを含むポリマーとしては、例えば、ノバモント社の生分解性樹脂「マタービー」などが使用できる。生分解促進に関しては、本発明のフィルムが用いられる用途の中で、特に、農業用マルチフィルムや松くい虫燻蒸用シートなどの農林業用途において重要である。

(結晶性ポリ乳酸系樹脂と非晶性ポリ乳酸系樹脂の混合)
 本発明のフィルムに含有されるポリ乳酸系樹脂は、結晶性ポリ乳酸系樹脂と非晶性ポリ乳酸系樹脂の混合物であることが好ましい。混合物とすることにより、結晶性、非晶性、それぞれのポリ乳酸系樹脂の利点を両立できるからである。
 つまり、結晶性ポリ乳酸系樹脂の含有は、フィルムの引裂伝播抵抗、耐衝撃性、耐熱性、耐ブロッキング性向上に好適である。また、前述の可塑剤としてブロック共重合体可塑剤を用いる場合、結晶性ポリ乳酸系樹脂はブロック共重合体可塑剤が有するポリ乳酸セグメントと共晶を形成することで、耐ブリードアウト性に大きな効果を発揮する。
 一方、非晶性ポリ乳酸系樹脂の含有は、フィルムの柔軟性、耐ブリードアウト性の向上に好適である。これは、可塑剤等の成分が分散できる非晶部分を提供していることが影響している。
 本発明のフィルムに用いられる結晶性ポリ乳酸系樹脂は、耐引き裂き性、耐衝撃性向上の観点から、ポリL-乳酸中のL-乳酸ユニットの含有割合、あるいは、ポリD-乳酸中のD-乳酸ユニットの含有割合が全乳酸ユニット100mol%中、96~100mol%が好ましく、より好ましくは98~100mol%であり、さらに好ましくは99~100mol%であり、特に好ましくは99.5~100mol%である。
 本発明のフィルムにおける結晶性ポリ乳酸系樹脂と非晶性ポリ乳酸系樹脂の合計を100質量%としたとき、結晶性ポリ乳酸系樹脂の割合は5~60質量%であることが好ましく、10~50質量%であることがより好ましく、20~40%であることがさらに好ましい。

(有機滑剤)
 本発明のフィルムは、フィルム全体100質量%中、有機滑剤を0.1~5質量%含むことが好ましい。この場合、巻き取り後のブロッキングを良好に抑制できる。また、有機滑剤の添加過多による溶融粘度の低下や加工性の悪化、あるいはフィルムとした際のブリードアウトやヘイズアップなどの外観不良の問題も発生しにくい。
 有機滑剤としては、例えば、流動パラフィン、天然パラフィン、合成パラフィン、ポリエチレンなどの脂肪族炭化水素系、ステアリン酸、ラウリル酸、ヒドロキシステアリン酸、硬性ひまし油などの脂肪酸系、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、ラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスラウリン酸アミドなどの脂肪酸アミド系、ステアリン酸アルミ、ステアリン酸鉛、ステアリン酸カルシウム、ステアリン酸マグネシウムなどの脂肪酸金属塩、グリセリン脂肪酸エステル、ルビタン脂肪酸エステルなどの多価アルコールの脂肪酸(部分)エステル系、ステアリン酸ブチルエステル、モンタンワックスなどの長鎖エステルワックスなどの長鎖脂肪酸エステル系などが挙げられる。中でも、ポリ乳酸との適度な相溶性から少量で効果の得られやすい脂肪酸アミド系の有機滑剤が好ましい。さたにその中でも、より良好な耐ブロッキング性を発現する観点で、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスラウリン酸アミドなどの比較的高融点である有機滑剤が好ましい。

(粒子)
 本発明のフィルムには、加工品の易滑性や耐ブロッキング性の向上などを目的として、粒子を添加してもよい。
 例えば無機粒子としては、シリカ等の酸化ケイ素、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等の各種炭酸塩、硫酸カルシウム、硫酸バリウム等の各種硫酸塩、ウォラストナイト、チタン酸カリウム、ホウ化アルミニウム、ゼピオライト等の各種複合酸化物、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム等の各種リン酸塩、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化亜鉛等の各種酸化物、水酸化アルミニウム、水酸化マグネシウム等の水酸化物、フッ化リチウム等の各種塩等からなる微粒子を使用することができる。
 これらの無機粒子には、樹脂との相溶性を高める目的や、樹脂中での凝集を防止する目的で、脂肪酸、樹脂酸、チタネートカップリング剤、シランカップリング剤、リン酸エステル等で表面処理を施してもよい。
 また有機粒子としては、シュウ酸カルシウムや、カルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩などからなる微粒子が使用される。架橋高分子粒子としては、ジビニルベンゼン、スチレン、アクリル酸、メタクリル酸のビニル系モノマーの単独または共重合体からなる微粒子が挙げられる。その他、ポリテトラフルオロエチレン、ベンゾグアナミン樹脂、熱硬化エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性尿素樹脂、熱硬化性フェノール樹脂などの有機微粒子も好ましく使用される。
 無機粒子、有機粒子ともその平均粒径は、特に限定されないが、0.01~5μmが好ましく、より好ましくは0.1~4μm、最も好ましくは0.5~3μmである。

(高分子量化剤)
 本発明で使用される高分子量化剤としては、多価カルボン酸、金属錯体、エポキシ化合物、イソシアネートあるいはそれらの混合物を挙げることができる。多価カルボン酸としては、(無水)フタル酸、(無水)マレイン酸、トリメチルアジピン酸、トリメシン酸、(無水)トリメリット酸、(無水)ピロメリット酸、(無水)3,3’,4,4’-ベンゾフェノンテトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸等及びそれらの混合物が挙げられる。金属錯体としては、ギ酸リチウム、ナトリウムメトキシド、プロピオン酸カリウム、マグネシウムエトキシド、プロピオン酸カルシウム、マンガンアセチルアセトナート、コバルトアセチルアセトナート、亜鉛アセチルアセトナート、コバルトアセチルアセトネート、鉄アセチルアセトネート、アルミニウムアセチルアセトネート、アルミニウムイソプロポキシド、テトラブトキシチタンなどが挙げられ、とりわけ、2価以上の金属錯体が好ましい。エポキシ化合物としては、ビスフェノールA型ジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、テレフタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、ο-フタル酸ジグリシジルエステル、3,4-エポキシシクロヘキシルメチル-3,4エポキシシクロヘキサンカルボキシレート、ビス(3,4エポキシシクロヘキシル)アジペート、テトラデカン-1,14-ジカルボン酸グリシジルエステルなどを用いることができる。イソシアネートとしては、ヘキサメチレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、イソホロンジイソシアネート、水素化ジフェニルメタンジイソシアネート、ジイソシアネートで修飾したポリエーテル、ジイソシアネートで修飾したポリエステル、多価アルコールに2官能性イソシアネートで修飾した化合物、多価イソシアネートで修飾したポリエーテル、多価イソシアネートで修飾したポリエステルなど及びそれらの混合物が挙げられる。
 これらの高分子量化剤の中では、安全性、着色などから多価カルボン酸、金属錯体が好ましく、生分解性からは脂肪族系化合物が好ましい。高分子量化剤の添加量は、その種類によって異なるが、一般的には、フィルム全体100質量%対して、0.001質量%~5質量%を、更に好ましくは0.01質量%~2質量%を添加することが好ましい。5質量%を超える場合には、ポリ乳酸系樹脂、またはポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂が、ゲル化、着色、粘度低下等を起こす可能性が高まる。また、0.001質量部未満では、高分子量化の効果が不十分となる。

(添加剤)
 本発明のフィルムには、本発明の効果を損なわない範囲で前述した以外の添加剤を含有してもよい。例えば、公知の酸化防止剤、結晶核剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、抗酸化剤、イオン交換剤、粘着性付与剤、消泡剤、着色顔料、染料などが含有できる。
 酸化防止剤としてはヒンダードフェノール系、ヒンダードアミン系などが例示される。
 着色顔料としてはカーボンブラック、酸化チタン、酸化亜鉛、酸化鉄などの無機顔料の他、シアニン系、スチレン系、フタロシアイン系、アンスラキノン系、ペリノン系、イソインドリノン系、キノフタロン系、キノクリドン系、チオインディゴ系などの有機顔料等を使用することができる。
 結晶核剤としては、メラミン系化合物、フェニルホスホン酸金属塩、ベンゼンカルボアミド誘導体、脂肪族/芳香族カルボン酸ヒドラジド、ソルビトール系化合物、アミノ酸、ポリペプチド、金属フタロシアニン等の有機結晶核剤、およびタルク、クレー、マイカ、カオリナイト等の珪酸塩鉱物、カーボンブラック等の無機結晶核剤を好ましく使用することができる。

(破断点伸度)
 本発明のフィルムは、長さ方向および幅方向(長さ方向と垂直な方向)の破断点伸度が、いずれも150%以上700%以下であることが好ましい。破断点伸度が150%以上であると耐引き裂き性、耐衝撃性が高くなり、農業用マルチフィルムや松くい虫燻蒸用シートなどの農林業用途やゴミ袋、堆肥袋、あるいは各種包装用用途とした際に破れにくく実用性が向上する。また、破断点伸度が700%以下であると製膜時にロール間走行時や巻き取り時のタルミやシワが生じにくく、ロール巻姿や巻出し性が良好となる。長さ方向および幅方向の破断点伸度は、200%以上600%以下がより好ましく、230%以上500%以下がより好ましく、250%以上500%以下がさらに好ましい。

 長さ方向および幅方向の破断点伸度をいずれも150~700%とするための方法としては、ポリ乳酸系樹脂、ポリ乳酸系樹脂以外の脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂、エステル交換触媒/およびまたはエステル交換触媒由来化合物、可塑剤の配合量を、それぞれ前述した好ましい範囲とする方法が挙げられる。

(弾性率)
 本発明のフィルムは、十分な柔軟性を付与するために、長さ方向、幅方向それぞれの引張弾性率が100~1,500MPaであることが好ましい。引張弾性率は、100~1,000MPaであることがより好ましく、100~600MPaであることがさらに好ましく、100~500MPaであることがさらに好ましい。
 長さ方向、幅方向それぞれの引張弾性率を100~1,500MPaとするための方法としては、ポリ乳酸系樹脂、ポリ乳酸系樹脂以外の脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂、エステル交換触媒/およびまたはエステル交換触媒由来化合物、可塑剤の配合量を、それぞれ前述した好ましい範囲とする方法が挙げられる。

(厚み)
 本発明のフィルムは、フィルム厚みが5~200μmであることが好ましい。フィルム厚みを5μm以上とすることで、フィルムとした際のコシが強くなり、取り扱い性に優れ、また、ロール巻姿や巻出し性が良好となる。フィルム厚みを200μm以下とすることで柔軟性が向上し、農業用マルチフィルムや松くい虫燻蒸用シートなどの農林業用途やゴミ袋、堆肥袋、あるいは各種包装用用途とした際に取り扱い性に優れるものとなり、また、特にインフレーション製膜法においては、自重によりバブルが不安定化しない。フィルム厚みは、7~150μmがより好ましく、10~100μmがさらに好ましい。

(引裂伝播抵抗)
 本発明のフィルムは、長さ方向および幅方向の引裂伝播抵抗が、いずれも30N/mm以上であることが好ましい。引裂伝播抵抗が30N/mmとなることにより、農業用マルチフィルムや松くい虫燻蒸用シートなどの農林業用途やゴミ袋、堆肥袋、あるいは各種包装用用途とした際に、切断面および穴からの裂けが進行し難くなる。また、長さ方向および幅方向の引裂伝播抵抗は、40N/mm以上であることがより好ましく、50N/mm以上であることがさらに好ましい。なお、引裂伝播抵抗値の上限は特に存在しないが、ポリ乳酸系樹脂、およびポリ乳酸系樹脂以外の脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂を主成分とすることから、その引裂伝播抵抗値は500N/mm程度が限界と推測される。
 長さ方向および幅方向の伸度をいずれも30N/mm以上とするための方法としては、ポリ乳酸系樹脂、ポリ乳酸系樹脂以外の脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂、エステル交換触媒/およびまたはエステル交換触媒由来化合物、可塑剤の配合量を、それぞれ前述した好ましい範囲とする方法が挙げられる。

(製造方法)
 次に、本発明のフィルムを製造する方法について具体的に説明するが、製造方法はこれに限定されるものではない。
 本発明におけるポリ乳酸系樹脂は、例えば、次のような方法で得ることができる。原料としては、L-乳酸またはD-乳酸の乳酸成分を主体とし、前述した乳酸成分以外のヒドロキシカルボン酸を併用することができる。またヒドロキシカルボン酸の環状エステル中間体、例えば、ラクチド、グリコリド等を原料として使用することもできる。更にジカルボン酸類やグリコール類等も使用することができる。
 ポリ乳酸系樹脂は、上記原料を直接脱水縮合する方法、または上記環状エステル中間体を開環重合する方法によって得ることができる。例えば直接脱水縮合して製造する場合、乳酸類または乳酸類とヒドロキシカルボン酸類を好ましくは有機溶媒、特にフェニルエーテル系溶媒の存在下で共沸脱水縮合し、特に好ましくは共沸により留出した溶媒から水を除き実質的に無水の状態にした溶媒を反応系に戻す方法によって重合することにより高分子量のポリマーが得られる。
 また、ラクチド等の環状エステル中間体をオクチル酸錫等の触媒を用い減圧下開環重合することによっても高分子量のポリマーが得られることも知られている。このとき、有機溶媒中での加熱還流時の水分および低分子化合物の除去の条件を調整する方法や、重合反応終了後に触媒を失活させ解重合反応を抑える方法、製造したポリマーを熱処理する方法などを用いることにより、ラクチド量の少ないポリマーを得ることができる。
 本発明のフィルムを構成する組成物、つまり、ポリ乳酸系樹脂、ポリ乳酸系樹脂以外の脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂、可塑剤、あるいは結晶核剤などのその他の成分を含有する組成物を得るにあたっては、各成分を溶媒に溶かした溶液を均一混合した後、溶媒を除去して組成物を製造することも可能であるが、溶媒へ原料の溶解、溶媒除去等の工程が不要で、実用的な製造方法である、各成分を溶融混練することにより組成物を製造する溶融混練法を採用することが好ましい。その溶融混練方法については、特に制限はなく、ニーダー、ロールミル、バンバリーミキサー、単軸または二軸押出機等の通常使用されている公知の混合機を用いることができる。中でも生産性の観点から、単軸または二軸押出機の使用が好ましい。
 溶融混練時の温度は150℃~240℃の範囲が好ましく、ポリ乳酸系樹脂の劣化を防ぐ意味から、180℃~210℃の範囲とすることがより好ましい。
 本発明のポリ乳酸系フィルムは、例えば上記した方法により得られた組成物を用いて、公知のインフレーション法、Tダイキャスト法などの既存のフィルム製造法により得ることが可能である。
 本発明のフィルムを製造するにあたり、例えば前述した方法により得られた組成物を一旦ペレット化し、再度溶融混練して押出・製膜する際には、ペレットを60~100℃にて6時間以上乾燥するなどして、水分量を1,200ppm以下、好ましくは500ppm以下、より好ましくは200ppm以下としたポリ乳酸系樹脂等を含有する組成物を用いることが好ましい。さらに、真空度10Torr以下の高真空下で真空乾燥をすることで、ポリ乳酸系樹脂等を含有する組成物中のラクチド含有量を低減させることが好ましい。ポリ乳酸系樹脂等を含有する組成物の水分量を1,200ppm以下、ラクチド含有量を低減することで、溶融混練中の加水分解を防ぎ、それにより分子量低下を防ぐことができ、ポリ乳酸系樹脂等を含有する組成物とした際の溶融粘度を適度なレベルとし、製膜工程を安定させることができるためにも好ましい。また、同様の観点から、一旦ペレット化、あるいは溶融押出・製膜する際には、ベント孔付きの2軸押出機を使用し、水分や低分子量物などの揮発物を除去しながら溶融押出することが好ましい。
 本発明のフィルムをインフレーション法により製造する場合は、例えば、前述のような方法により調整した組成物をベント孔付き2軸押出機にて溶融押出して環状ダイスに導き、環状ダイスから押出して内部には乾燥エアーを供給して風船状(バブル)に形成し、さらにエアーリングにより均一に空冷固化させ、ニップロールでフラットに折りたたみながら所定の引き取り速度で引き取った後、必要に応じて両端、または片方の端を切り開いて巻き取れば良い。その後、フィルムの熱収縮を抑制するために加熱ロールやオーブン内で熱処理を施しても良い。
 この場合、環状ダイスからの吐出量とニップロールの引き取り速度、バブルのブロー比により、厚さが5~200μmとなるように調整すれば良いが、厚み精度、均一性の点から、環状ダイスはスパイラル型を用いることが好ましく、同様の観点から環状ダイスは回転式のものを用いることが好ましい。
 また、本発明のフィルムを構成する組成物の押出温度は通常150~240℃の範囲であるが、良好な耐引き裂き性、耐衝撃性を発現させるために有効な結晶化を進めるためには環状ダイスの温度が重要であり、環状ダイスの温度は150~190℃、好ましくは155~185℃の範囲である。
 バブルのブロー比は、吐出量とニップロールの引き取り速度との関係にもよるが、低過ぎても高過ぎてもフィルムに異方性を生じる場合があり、また、特に高過ぎる場合にはバブルが不安定となり易く、通常2.0~4.0の範囲である。
 さらに、フィルムに成形した後に、印刷性、ラミネート適性、コーティング適性などを向上させる目的で各種の表面処理を施しても良い。表面処理の方法としては、コロナ放電処理、プラズマ処理、火炎処理、酸処理などが挙げられ、いずれの方法をも用いることができるが、連続処理が可能であり、既存の製膜設備への装置設置が容易な点や処理の簡便さからコロナ放電処理が最も好ましいものとして例示できる。
 本発明のフィルムは、耐ブリード性、耐ブロッキング性に優れるので、巻き取った後のフィルムロールから、フィルムを巻き出す際に、問題なく滑らかに巻き出すことができる。
 以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれにより何ら制限を受けるものではない。
[測定および評価方法]
 実施例中に示す測定や評価は次に示すとおりの条件で行った。
(1)破断点伸度(%)
 (株)オリエンテック製TENSILON UCT-100を用いて応力-歪み測定を行った。具体的には、測定方向に長さ150mm、幅10mmの短冊状にサンプルを切り出し、初期引張チャック間距離50mm、引張速度200mm/分で、JIS K 7127(1999)に規定された方法に従って測定を行った。また、測定は5回行い、その平均値を算出した。これをフィルムの長さ方向および幅方向のそれぞれについて算出し、その平均値を評価した。
(2)弾性率(MPa)
 (1)に記載した方法で応力-歪み測定を行い、応力-歪み曲線の最初の直線部分を用いて、直線上の2点間の応力差を同じ2点間の歪み差で除し、引張弾性率を計算した。測定は5回行い、その平均値を算出した。これをフィルムの長さ方向および幅方向のそれぞれについて算出し、その平均値を評価した。
(3)引裂伝播抵抗(N/mm)
 (株)東洋精機製作所製の引裂伝播抵抗計(エレメンドルフ)を用いて、JIS K 7128-2(1998)に規定された方法に従って測定した。サンプルサイズは引き裂き方向63mm×引き裂きと垂直方向76mmで、引き裂き方向に20mmの切れ込みを入れ、残り43mmを引き裂いた時の指示値を読みとった。測定は5回行い、その平均値を算出した。これをフィルムの長さ方向および幅方向のそれぞれについて算出し、その平均値を評価した。
(4)Tm1-Tm2(℃)
 セイコーインスツル(株)製示差走査熱量計RDC220を用い、フィルム試料5mgをアルミニウム製受皿にセットし、25℃から昇温速度20℃/分で220℃まで昇温、220℃のまま5分間溶融保持したのち、25℃まで急冷した。さらに、同様の昇温、溶融保持、急冷の過程を繰り返した。そして、1回目の昇温過程におけるポリ乳酸系樹脂に由来する融解ピーク温度をTm1、2回目の昇温過程におけるポリ乳酸系樹脂に由来する融解ピーク温度をTm2として、Tm1-Tm2を計算した。

  [(A)ポリ乳酸系樹脂]
(4032D)
 ポリL-乳酸、Natureworks製“4032D”、質量平均分子量200,000、D体含有量1.4%、融点166℃。
(4060D)
 ポリL-乳酸、Natureworks製“4060D”、質量平均分子量200,000、D体含有量12.0%、融点なし。
 なお、質量平均分子量は、日本ウォーターズ(株)製Waters2690を用い、ポリメチルメタクリレートを標準とし、カラム温度40℃、クロロホルム溶媒を用いて測定した。

 [(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂(表中では“脂肪族and/or芳香族樹脂”と表記)]
(Ecoflex)
 ポリブチレンアジペート・テレフタレート、BASF製“エコフレックス C1200”。
(GS Pla)
 ポリブチレンサクシネート、三菱化学製“GS Pla”。

 [(C)エステル交換触媒および/またはエステル交換触媒由来化合物(表中では“エステル交換触媒”と表記)]
(酢酸Mg)
 酢酸マグネシウム四水和物、ナカライテスク製。
(p-TSA)
 p-トルエンスルホン酸一水和物、ナカライテスク製。
(ステアリン酸Mg)
 ステアリン酸マグネシウム、ナカライテスク製。
(ピリジン)
 ピリジン、ナカライテスク製。
(塩化Mg)
 塩化マグネシウム六水和物、和光純薬工業製。
(フッ化Li)
 フッ化リチウム、和光純薬工業製。
(プロピオン酸Zn)
 プロピオン酸亜鉛、和光純薬工業製。
(酢酸Mg_MB)
 ポリ乳酸系樹脂(4032D)13質量部、ポリ乳酸系樹脂(4060D)34質量部、ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂(Ecoflex)30質量部、エステル交換触媒(酢酸Mg)0.5質量部、可塑剤(PLA-PEG)19質量部、有機滑剤(S-10)1質量部、粒子(CaCO)3質量部の混合物をシリンダー温度190℃のスクリュー径44mmの真空ベント付き2軸押出機に供し、真空ベント部を脱気しながら溶融混練し、均質化した後にペレット化して組成物を得た。
 この組成物のペレットを、回転式ドラム型真空乾燥機を用いて、温度60℃で12時間真空乾燥して、エステル交換触媒(酢酸Mg_MB)のマスターバッチを得た。
(塩化Mg_MB)
 ポリ乳酸系樹脂(4032D)13質量部、ポリ乳酸系樹脂(4060D)34質量部、ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂(Ecoflex)30質量部、エステル交換触媒(塩化Mg)0.5質量部、可塑剤(PLA-PEG)19質量部、有機滑剤(S-10)1質量部、粒子(CaCO)3質量部の混合物をシリンダー温度190℃のスクリュー径44mmの真空ベント付き2軸押出機に供し、真空ベント部を脱気しながら溶融混練し、均質化した後にペレット化して組成物を得た。
 この組成物のペレットを、回転式ドラム型真空乾燥機を用いて、温度60℃で12時間真空乾燥して、エステル交換触媒(塩化Mg_MB)のマスターバッチを得た。

 [(E)可塑剤]
(PLA-PEG)
 数平均分子量8,000のポリエチレングリコール62質量部とL-ラクチド38質量部とオクチル酸スズ0.05質量部を混合し、撹拌装置付きの反応容器中で、窒素雰囲気下160℃で3時間重合することで、数平均分子量8,000のポリエチレングリコールの両末端に数平均分子量2,500のポリ乳酸セグメントを有する可塑剤E1を得た。
(PEG)
 ポリエチレングリコール、三洋化成工業製“PEG-6000S”。
 [有機滑剤]
(S-10)
 ステアリン酸アミド、日油製“アルフロー S-10”。
 [粒子]
(CaCO
 炭酸カルシウム、丸尾カルシウム製“カルテックスR”、平均粒子径2.8μm。
 [リン化合物]
(リン酸)
 リン酸、ナカライテスク製。
 [ポリ乳酸系フィルムの作製]
 (実施例1)
ポリ乳酸系樹脂(4032D)13質量部、ポリ乳酸系樹脂(4060D)34質量部、ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂(Ecoflex)30質量部、エステル交換触媒(酢酸Mg)0.3質量部、可塑剤(PLA-PEG)19質量部、有機滑剤(S-10)1質量部、粒子(CaCO)3質量部の混合物をシリンダー温度190℃のスクリュー径44mmの真空ベント付き2軸押出機に供し、真空ベント部を脱気しながら溶融混練し、均質化した後にペレット化して組成物を得た。
 この組成物のペレットを、回転式ドラム型真空乾燥機を用いて、温度60℃で12時間真空乾燥した
 この組成物のペレット100質量部、リン化合物(リン酸)1質量部を混合して、最終的に表1に示す組成物とし、押出機シリンダー温度190℃のスクリュー径65mmの一軸押出機に供給し、直径250mm、リップクリアランス1.3mm、温度155℃のスパイラル型環状ダイス(Labtech Engineering社製)より、ブロー比3.4にてバブル状に上向きに押出し、冷却リングにより空冷し、ダイス上方のニップロールで折りたたみながら22m/minにて引き取り、両端部をエッジカッターにて切断して2枚に切り開き、それぞれワインダーにて張力5.5kgfでフィルムを巻き取った。吐出量の調整により最終厚みが18μmのフィルムを得た。得られたフィルムの物性を表1に示した。
 実施例2~10、比較例1~5は、フィルムの組成を表1および表2のとおりに変更した以外は、実施例1と同様にしてフィルムを得た。
 また、実施例11~17、比較例6~8は、スパイラル型環状ダイスをプラスチック工学研究所製のものに変更して使用し、フィルムの組成を表3のとおりに変更した以外は、実施例1と同様にしてフィルムを得た。
 得られたフィルムの物性を表1~3に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、実施例7のフィルムについては、製膜直後の物性については表1に記載の通りであったものの、時間の経過と共に引裂伝播抵抗が低下する傾向にあった。
 本発明のフィルムは、柔軟性および引裂伝播抵抗に優れた、ポリ乳酸系樹脂、およびポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂を含有するフィルムである。本発明のフィルムは、柔軟性および引裂伝播抵抗の高いことが要求される、農業用マルチフィルムや松くい虫燻蒸用シートなどの農林業用途、ゴミ袋や堆肥袋、あるいは野菜や果物など食料品用袋、各種工業製品の袋など各種包装用途などに好ましく用いることができる。

Claims (9)

  1.  (A)ポリ乳酸系樹脂、(B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂、並びに、(C)エステル交換触媒および/またはエステル交換触媒由来化合物を含有するフィルム。
  2.  (C)エステル交換触媒が、金属塩または硫黄酸である、請求項1に記載のフィルム。
  3.  (C)エステル交換触媒が、炭素数が0~5個のアルキル基を有する有機酸の金属塩、ハロゲン化した金属塩、または、炭素数が0~5個のアルキル基を有する硫黄酸である、請求項2に記載のフィルム。
  4.  (D)ポリ乳酸セグメントとポリ乳酸を除く脂肪族ポリエステルセグメントとを有するブロック共重合体、および/または、ポリ乳酸セグメントと脂肪族芳香族ポリエステルセグメントとを有するブロック共重合体を含有する、請求項1~3のいずれかに記載のフィルム。
  5.  DSC測定において、1回目の昇温過程における(A)ポリ乳酸系樹脂に由来する融解ピーク温度をTm1、2回目の昇温過程における(A)ポリ乳酸系樹脂に由来する融解ピーク温度をTm2とするとき、下記の関係を有する、請求項1~4のいずれかに記載のフィルム。
     0.1≦Tm1-Tm2≦1
  6.  (A)ポリ乳酸系樹脂100質量部に対して、リン化合物を0.01質量部以上10質量部以下添加することにより得られる、請求項1~5のいずれかに記載のフィルム。
  7.  (E)可塑剤を含有する、請求項1~6のいずれかに記載のフィルム。
  8.  (E)可塑剤が、ポリ乳酸セグメントとポリエーテルセグメントとを有するブロック共重合体である、請求項7に記載のフィルム。
  9.  (B)ポリ乳酸系樹脂を除く脂肪族ポリエステル系樹脂および/または脂肪族芳香族ポリエステル系樹脂における脂肪族芳香族ポリエステル系樹脂として、ポリブチレンアジペート・テレフタレートを含有する、請求項1~8のいずれかに記載のフィルム。
PCT/JP2012/066119 2011-09-12 2012-06-25 フィルム WO2013038770A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147003680A KR20140059778A (ko) 2011-09-12 2012-06-25 필름
CN201280044063.6A CN103814066A (zh) 2011-09-12 2012-06-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011197951 2011-09-12
JP2011-197951 2011-09-12

Publications (1)

Publication Number Publication Date
WO2013038770A1 true WO2013038770A1 (ja) 2013-03-21

Family

ID=47883014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066119 WO2013038770A1 (ja) 2011-09-12 2012-06-25 フィルム

Country Status (4)

Country Link
JP (1) JPWO2013038770A1 (ja)
KR (1) KR20140059778A (ja)
CN (1) CN103814066A (ja)
WO (1) WO2013038770A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602968A (zh) * 2016-01-06 2018-09-28 尤尼吉可股份有限公司 无光泽的聚酰胺系膜及其制造方法
JP2020521834A (ja) * 2017-07-13 2020-07-27 山東農業大学 増強増靭増透マスターバッチの製造方法と応用
US11299622B2 (en) 2015-12-08 2022-04-12 Bioworks Corporation Polylactic acid resin composition and polylactic acid resin molded article
CN115785632A (zh) * 2022-11-30 2023-03-14 美瑞新材料股份有限公司 高流动性高韧性pla/pbs共混合金材料及其制备方法
EP4282910A1 (en) * 2022-05-23 2023-11-29 Ecovance Co. Ltd Biodegradable and polymerizable polyester composition, biodegradable polyester resin obtained therefrom, and preparation method thereof
WO2024022965A1 (en) * 2022-07-27 2024-02-01 Novamont S.P.A. Biodegradable film with a lactic acid polyester fluidised with a nitrogen component

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102465303B1 (ko) * 2014-12-22 2022-11-10 쓰리엠 이노베이티브 프로퍼티즈 캄파니 폴리락트산 중합체, 폴리비닐 아세테이트 중합체 및 가소제를 포함하는 조성물 및 필름
CN105778449A (zh) * 2016-04-26 2016-07-20 常州大学 一种聚乳酸/聚(对苯二甲酸丁二醇-co-己二酸丁二醇)酯的相容剂及制备方法
CN113122952B (zh) * 2021-03-30 2022-07-15 新疆蓝山屯河科技股份有限公司 一种pbat纤维及制备方法
KR102459032B1 (ko) * 2021-11-10 2022-10-26 주식회사 에코매스 바이오매스 기반의 생분해 수지 조성물 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283557A (ja) * 1995-04-12 1996-10-29 Shimadzu Corp 可塑化されたポリ乳酸組成物及びその成型品
JP2001335623A (ja) * 2000-03-22 2001-12-04 Dainippon Ink & Chem Inc 耐衝撃性付与剤及び該剤を含むポリエステル組成物
JP2002292665A (ja) * 2001-03-29 2002-10-09 Dainippon Ink & Chem Inc 乳酸系ポリマーシートの製造法
JP2003040990A (ja) * 2001-07-31 2003-02-13 Dainippon Ink & Chem Inc ポリヒドロキシカルボン酸系共重合体の製造方法
JP2009544826A (ja) * 2006-07-28 2009-12-17 バイオグレード・(ホンコン)・ピーティーワイ・リミテッド マスターバッチおよびポリマー組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283557A (ja) * 1995-04-12 1996-10-29 Shimadzu Corp 可塑化されたポリ乳酸組成物及びその成型品
JP2001335623A (ja) * 2000-03-22 2001-12-04 Dainippon Ink & Chem Inc 耐衝撃性付与剤及び該剤を含むポリエステル組成物
JP2002292665A (ja) * 2001-03-29 2002-10-09 Dainippon Ink & Chem Inc 乳酸系ポリマーシートの製造法
JP2003040990A (ja) * 2001-07-31 2003-02-13 Dainippon Ink & Chem Inc ポリヒドロキシカルボン酸系共重合体の製造方法
JP2009544826A (ja) * 2006-07-28 2009-12-17 バイオグレード・(ホンコン)・ピーティーワイ・リミテッド マスターバッチおよびポリマー組成物

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299622B2 (en) 2015-12-08 2022-04-12 Bioworks Corporation Polylactic acid resin composition and polylactic acid resin molded article
CN108602968A (zh) * 2016-01-06 2018-09-28 尤尼吉可股份有限公司 无光泽的聚酰胺系膜及其制造方法
CN108602968B (zh) * 2016-01-06 2020-08-04 尤尼吉可股份有限公司 无光泽的聚酰胺系膜及其制造方法
JP2020521834A (ja) * 2017-07-13 2020-07-27 山東農業大学 増強増靭増透マスターバッチの製造方法と応用
EP4282910A1 (en) * 2022-05-23 2023-11-29 Ecovance Co. Ltd Biodegradable and polymerizable polyester composition, biodegradable polyester resin obtained therefrom, and preparation method thereof
WO2024022965A1 (en) * 2022-07-27 2024-02-01 Novamont S.P.A. Biodegradable film with a lactic acid polyester fluidised with a nitrogen component
CN115785632A (zh) * 2022-11-30 2023-03-14 美瑞新材料股份有限公司 高流动性高韧性pla/pbs共混合金材料及其制备方法
CN115785632B (zh) * 2022-11-30 2024-01-16 美瑞新材料股份有限公司 高流动性高韧性pla/pbs共混合金材料及其制备方法

Also Published As

Publication number Publication date
KR20140059778A (ko) 2014-05-16
CN103814066A (zh) 2014-05-21
JPWO2013038770A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5867084B2 (ja) ポリ乳酸系フィルム
TWI510546B (zh) 聚乳酸系薄膜
WO2013038770A1 (ja) フィルム
JP5799809B2 (ja) 多孔性フィルム
JP5061868B2 (ja) ポリ乳酸系フィルム
JP5867406B2 (ja) 生分解性フィルム
JP2005281677A (ja) 脂肪族ポリエステル系樹脂組成物及びその成形体
JP2013155223A (ja) ポリ乳酸系フィルム
JP2014162799A (ja) ポリ乳酸系マルチフィルム
JP2004315659A (ja) 生分解性ポリエステル系フィルムおよびその製造方法
JP2004099671A (ja) 生分解性フィルムおよびその製造方法
JP2008239645A (ja) ポリ乳酸系樹脂組成物及びその製造方法、並びに成形品
JP5332552B2 (ja) ポリ乳酸系樹脂組成物からなるチップ状物
JP6102315B2 (ja) ポリエステル樹脂組成物及び該ポリエステル樹脂組成物を成形してなるフィルム
JP2008120865A (ja) ポリ乳酸系樹脂フィルムの製造方法
JP2014074126A (ja) フィルム
JP2004090522A (ja) ポリ乳酸系樹脂フィルム、及び、ポリ乳酸系樹脂溶断シール袋
JP4511099B2 (ja) 乳酸系樹脂組成物とそのシート状物、及び袋状製品
JP5957908B2 (ja) 生分解性フィルム
JP2004269606A (ja) 乳酸系樹脂組成物
JP2005219487A (ja) 積層フィルム
JP2013159747A (ja) ポリ乳酸系フィルム
JP2006131687A (ja) ポリ乳酸系樹脂組成物及びこれを用いた成形品
JP2009185227A (ja) ポリ乳酸系樹脂組成物からなるチップ状物
JP2005162259A (ja) ティッシュペーパー用包装箱

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012529996

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147003680

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832569

Country of ref document: EP

Kind code of ref document: A1