WO2013035608A1 - セラミックグリーンシートおよび積層セラミック電子部品 - Google Patents
セラミックグリーンシートおよび積層セラミック電子部品 Download PDFInfo
- Publication number
- WO2013035608A1 WO2013035608A1 PCT/JP2012/071939 JP2012071939W WO2013035608A1 WO 2013035608 A1 WO2013035608 A1 WO 2013035608A1 JP 2012071939 W JP2012071939 W JP 2012071939W WO 2013035608 A1 WO2013035608 A1 WO 2013035608A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- green sheet
- ceramic green
- ceramic
- acid
- group
- Prior art date
Links
- 0 C*1(C)C(C)=CCC1 Chemical compound C*1(C)C(C)=CCC1 0.000 description 5
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
- C04B35/4682—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/6342—Polyvinylacetals, e.g. polyvinylbutyral [PVB]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63424—Polyacrylates; Polymethacrylates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/6344—Copolymers containing at least three different monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
- C04B2235/3234—Titanates, not containing zirconia
- C04B2235/3236—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/448—Sulphates or sulphites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/449—Organic acids, e.g. EDTA, citrate, acetate, oxalate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6025—Tape casting, e.g. with a doctor blade
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the present invention relates to a ceramic green sheet and a multilayer ceramic electronic component produced using the ceramic green sheet, and more particularly to an improvement for improving the handling properties of a ceramic green sheet containing a basic ceramic material.
- a ceramic green sheet is obtained by forming a ceramic slurry into a sheet on a carrier film, and then the ceramic green sheet is peeled off from the carrier film or the ceramic Several processes for handling the ceramic green sheet are performed, such as printing a conductor pattern on the green sheet or laminating a plurality of ceramic green sheets.
- the ceramic slurry for obtaining the above-described ceramic green sheet for example, there is a slurry containing a basic ceramic material, a polymer dispersant, a non-aqueous solvent, and a binder.
- the ceramic green sheet obtained from the ceramic slurry having such a composition is required to have antistatic properties from the viewpoint of preventing foreign matter adhesion during molding or the like.
- Patent Document 1 discloses a technique paying attention to the above-described antistatic property.
- Patent Document 1 discloses a ceramic slurry in which a ceramic material is dispersed using a dispersant having antistatic properties containing organic hydrochloric acid containing an amidinium cation as a constituent component.
- the multilayer ceramic electronic components used therein are also required to be smaller and higher in performance.
- ceramics used in the production of multilayer ceramic electronic components are required. Green sheets are being made thinner and ceramic materials contained in ceramic green sheets are being reduced in particle size.
- Patent Document 1 describes the description of the peelability of the ceramic green sheet and further describes the improvement of the strength. Not done.
- an object of the present invention is to provide a ceramic green sheet having excellent handling properties.
- Another object of the present invention is to provide a multilayer ceramic electronic component manufactured using the above-described ceramic green sheet.
- the present invention is first directed to a ceramic green sheet containing a basic ceramic material, a dispersant, a non-aqueous solvent, and a binder.
- a nitrogen-containing complex is provided. It further comprises a cation compound containing an aromatic quaternary ammonium cation group.
- the nitrogen-containing heteroaromatic quaternary ammonium cation group is preferably represented by a cation group represented by the following general formula (1), a cation group represented by the following general formula (2), and the following general formula (3). It is at least one kind of cationic group selected from the group consisting of cationic groups.
- R1 represents an alkyl group having 1 to 4 carbon atoms
- R2, R3 and R4 may be the same or different from each other, and may be a hydrogen atom or a carbon atom having 1 to 4 carbon atoms.
- R5 and R6 may be the same or different from each other and each represent an alkyl group having 1 to 4 carbon atoms
- R7 and R8 may be the same or different from each other Represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and the alkyl group may have a hydroxyl group.
- R9 and R10 may be the same or different from each other, and each represents an alkyl group having 1 to 4 carbon atoms, and R11 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- the alkyl group may have a hydroxyl group.
- the cationic compound may be contained as a salt with an anionic compound.
- at least one acid selected from alkylsulfuric acid and aliphatic carboxylic acid is preferably used as the anionic compound.
- the present invention is also directed to a multilayer ceramic electronic component manufactured using the above-described ceramic green sheet according to the present invention. More specifically, the multilayer ceramic electronic component according to the present invention includes a step of forming the above-described ceramic green sheet on a carrier film, a step of peeling the ceramic green sheet from the carrier film, and laminating a plurality of ceramic green sheets.
- a multilayer ceramic electronic component obtained by carrying out a step of obtaining a green laminate and a step of firing the green laminate.
- a ceramic green sheet containing a basic ceramic and excellent in antistatic properties, peelability and toughness can be obtained.
- the triboelectric charge amount can be reduced even when transported by a transport facility such as a printing machine or a laminator. Can do. Therefore, it is possible to suppress charge adhesion to the conveyance path, and it is possible to increase the conveyance speed, and it is possible to improve the productivity of the multilayer ceramic electronic component using this.
- a cationic compound containing a cationic group represented by the general formula (2) and a cationic compound containing a cationic group represented by the general formula (3) it is more preferable to use a cationic compound containing a cationic group represented by the general formula (3).
- FIG. 1 is a cross-sectional view schematically showing a multilayer ceramic capacitor 1 as an example of a multilayer ceramic electronic component manufactured using a ceramic green sheet according to the present invention.
- a multilayer ceramic capacitor 1 as an example of a multilayer ceramic electronic component manufactured using a ceramic green sheet according to the present invention will be described with reference to FIG.
- the multilayer ceramic capacitor 1 includes a component body 2 having a multilayer structure.
- the component body 2 includes a plurality of laminated ceramic layers 5 and a plurality of layered internal electrodes 3 and 4 formed along an interface between the ceramic layers 5.
- the internal electrodes 3 and the internal electrodes 4 are alternately arranged when viewed in the stacking direction.
- the end portions of the plurality of internal electrodes 3 and the plurality of internal electrodes 4 are exposed on one and other end surfaces 6 and 7 of the component main body 2, respectively.
- external electrodes 8 and 9 are formed so as to electrically connect the end portions of the internal electrode 3 and the end portions of the internal electrode 4, respectively.
- the multilayer ceramic capacitor 1 In order to manufacture the multilayer ceramic capacitor 1, first, a ceramic slurry is prepared, and the ceramic slurry is formed into a sheet shape on a carrier film, whereby a ceramic green sheet is obtained. Next, a conductor film to be the internal electrodes 3 and 4 is formed on the ceramic green sheet, for example, by printing a conductive paste. Next, the ceramic green sheet is peeled off from the carrier film, and a plurality of ceramic green sheets are laminated, thereby obtaining the green laminate to be the component body 2 described above. Next, the green laminate is cut into a predetermined size as necessary, and then fired. Thereby, the component main body 2 is obtained. Next, the external electrodes 8 and 9 are formed on the component main body 2 to complete the multilayer ceramic capacitor 1.
- the ceramic layer 5 is provided by the ceramic green sheet according to the present invention.
- Ceramic green sheet A A basic ceramic material; B. A cationic compound; C. A dispersant, D. A non-aqueous solvent, E. Contains a binder.
- the ceramic slurry prepared for forming the ceramic green sheet can be produced, for example, by a production method including a step of mixing the dispersant, the basic ceramic material, and the non-aqueous solvent.
- a step of mixing the dispersant, the basic ceramic material, and the non-aqueous solvent together with zirconia beads and the like is performed. Thereafter, the remaining components including the cationic compound and the binder can be contained to obtain a ceramic slurry.
- the surface of a ceramic material has both acid and base points.
- the amount of base has a value larger than the amount of acid.
- the strength of the acid and base of the ceramic material in the non-aqueous solvent can be determined, for example, by a back titration method.
- inorganic compounds used as basic ceramic materials include metal oxides, metal carbonates, and composite oxides.
- metal oxides such as titanium oxide, magnesium oxide, barium oxide and aluminum oxide, metal carbonates such as magnesium carbonate and barium carbonate, and barium zirconate, calcium zirconate, calcium titanate and barium titanate
- composite oxides such as strontium titanate.
- the multilayer ceramic electronic component to be obtained is a multilayer ceramic capacitor
- a dielectric ceramic material such as a barium titanate ceramic material
- the multilayer ceramic electronic component may be an inductor, a thermistor, a piezoelectric component, or the like. Therefore, as the basic ceramic material, a magnetic ceramic material, a semiconductor ceramic material, a piezoelectric ceramic material, or the like can be used as the basic ceramic material in accordance with the function of the multilayer ceramic electronic component.
- a cation compound containing a nitrogen-containing heteroaromatic quaternary ammonium cation group is used.
- At least one cationic group selected from the group consisting of a cationic group represented by the following general formula (1), a cationic group represented by the following general formula (2), and a cationic group represented by the following general formula (3)
- a cationic compound containing is used.
- R1 is an alkyl group having 1 to 4 carbon atoms.
- a methyl group or an ethyl group It is preferably a group, and more preferably an ethyl group.
- R2, R3, and R4 may be the same or different from each other, and are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (the alkyl group may have a hydroxyl group).
- R2 is —H, —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —CH 2 OH, —C 2 H 4 OH , -C 3 H 6 OH, and -C 4 H 8 OH.
- R2, R3, and R4 are each a hydrogen atom or an alkyl group having 1 to 2 carbon atoms (the alkyl group may have a hydroxyl group) from the viewpoint of antistatic properties and the like as described above.
- the alkyl group may have a hydroxyl group
- a hydrogen atom, a methyl group or a hydroxymethyl group is more preferable.
- R5 and R6 may be the same as or different from each other, and are alkyl groups having 1 to 4 carbon atoms.
- at least one of R5 and R6 is preferably a methyl group or an ethyl group, and more preferably a methyl group.
- R7 and R8 may be the same or different from each other, and are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (the alkyl group may have a hydroxyl group).
- R7 and R8 are preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms (the alkyl group may have a hydroxyl group). It is more preferably a hydrogen atom, a methyl group or a hydroxymethyl group.
- R9 and R10 may be the same as or different from each other, and are alkyl groups having 1 to 4 carbon atoms.
- R9 and R10 are preferably a methyl group or an ethyl group, and more preferably a methyl group, from the viewpoint of improving the antistatic property, peelability, and toughness of the ceramic green sheet.
- R11 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (the alkyl group may have a hydroxyl group).
- R11 is A hydrogen atom or an alkyl group having 1 to 2 carbon atoms (the alkyl group may have a hydroxyl group) is preferable, and a hydrogen atom, a methyl group or a hydroxymethyl group is more preferable.
- cationic group represented by the general formula (1), (2) or (3) include 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1,2,3 Trimethylimidazolium, 1,2,3-triethylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 2-hydroxyethyl-1,3-dimethylimidazolium, 1-ethyl-2,3-dimethylimidazole And lithium, 1,2,4-trimethylpyrazolium, 1-ethyl-3-methylbilidinium and 1-ethyl-3-hydroxymethylbilidinium.
- 1-ethyl-3-methylimidazolium and 1-butyl 3-methylimidazolium are more preferable from the viewpoint of improving the antistatic property, peelability and toughness of the ceramic green sheet.
- the cationic groups represented by the general formulas (2) and (3) are preferable, and the cationic group represented by the general formula (3) is more preferable. .
- the molecular weight of the cationic group is more preferably lower, such as 300 or less, 200 or less, 150 or less, or 120 or less, from the viewpoint of improving the antistatic property, peelability, and toughness.
- the cation compound may contain the above-mentioned cation group itself as one aspect, but may be contained as a salt with an anion compound in another aspect.
- the anionic compound used is an organic anionic compound from the viewpoint of improving the antistatic property, releasability and toughness of the ceramic green sheet, and does not contain a halogen compound that may cause a decrease in electrical characteristics or rust. Preferably there is.
- organic anionic compounds include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, undecanoic acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, isobutyric acid, Isovaleric acid, isocaproic acid, ethylbutyric acid, methylvaleric acid, isocaprilic acid, propylvaleric acid, ethylcaproic acid, acrylic acid, crotonic acid, methacrylic acid, isocrotonic acid, 3-butenoic acid, pentenoic acid, hexenoic acid, heptonic acid , Saturated or unsaturated aliphatic carboxylic acids such as octenoic acid, nonenoic acid, decenoic acid, undecenoic acid, dodecenoic acid, oleic acid,
- alkyl oxalic acid alkyl sulfuric acid and aliphatic carboxylic acid are preferred, and methyl sulfuric acid, ethyl sulfuric acid and acetic acid are more preferred from the viewpoint of improving the antistatic property, peelability and toughness of the ceramic green sheet.
- the content of the cationic compound in the ceramic green sheet is preferably 0.05 parts by weight or more, based on 100 parts by weight of the basic ceramic material, from the viewpoint of improving antistatic properties, peelability, and toughness, and 0.1 parts by weight. The above is more preferable.
- the content of the cationic compound is 2 wt. Parts by weight or less, preferably 1.5 parts by weight or less.
- the content of the cationic compound in the ceramic green sheet is preferably 0.05 to 2 parts by weight, more preferably 0.1 to 1.5 parts by weight, with respect to 100 parts by weight of the basic ceramic material. Most preferred is 15 to 1 part by weight.
- the content of the cationic compound in the ceramic green sheet is 0.01 parts by weight or more with respect to 1.0 part by weight of a polyvinyl acetal resin as a binder described later, from the viewpoint of improving antistatic properties, peelability, and toughness. It is more preferable that the amount is more than 0.02 parts by weight, 0.03 parts by weight or more, 0.04 parts by weight or more.
- the content of the cationic compound is preferably 0.2 parts by weight or less with respect to 1.0 part by weight of the polyvinyl acetal resin as a binder, 0.15 parts by weight or less is more preferable, and 0.1 parts by weight or less is most preferable.
- the content of the cationic compound in the ceramic green sheet is 0.01 to 0.2 parts by weight, 0.02 to 0.2 parts by weight, 0.02 parts by weight with respect to 1.0 part by weight of the polyvinyl acetal resin as the binder. It is more preferable in the order of 03 to 0.15 parts by weight and 0.04 to 0.1 parts by weight.
- Dispersant examples include a cationic dispersant, a nonionic dispersant, and an anionic dispersant.
- One embodiment of the dispersant used in the ceramic green sheet according to the present invention is a vinyl copolymer that is soluble in a non-aqueous solvent.
- a vinyl copolymer include a vinyl copolymer of a radically unsaturated monomer mainly composed of (meth) acrylic acid ester or the like.
- (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl ( (Meth) aclute, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (Meth) acrylic acid ester having an alkyl group having 1 to 22 carbon atoms such as octyl (meth) aclute and isobornyl (meth) acrylate, and methoxypolyethylene glycol having a polyoxyalkylene
- Anionic dispersants can be obtained by copolymerizing such one or more (meth) acrylic acid esters with acidic monomers such as (meth) acrylic acid, crotonic acid, maleic acid, and itaconic acid.
- acidic monomers such as (meth) acrylic acid, crotonic acid, maleic acid, and itaconic acid.
- Commercially available products include Mariarim AKM-053, Mariarim AWS-0851, Mariarim AAB-0851, and Mariarim AFB-1521 manufactured by NOF Corporation.
- dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, butylaminoethyl (meth) acrylate, 2-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyridine, 2-ethyl-5- Cationic dispersants can be obtained by copolymerizing basic monomers such as vinylpyridine, N-vinylimidazole, 2-methyl-N-vinylimidazole, and (meth) acrylamide, vinylpyrrolidone, 2-hydroxyethyl (meta )
- a nonionic dispersant can be obtained by copolymerizing a monomer having a neutral functional group such as acrete, 2-hydroxypropyl (meth) aclute, and 3-hydroxypropyl (meth) acrylate.
- Antalon V-216 (vinyl pyrrolidone / hexadecene copolymer) and Antalon V-220 (vinyl pyrrolidone / eicosene copolymer) manufactured by ISP Japan.
- the dispersing agent is not limited to the above-mentioned vinyl copolymer, and a polyamide-based, polyurethane-based, polyester-based dispersing agent or the like can also be used.
- a polyamide-based, polyurethane-based, polyester-based dispersing agent or the like can also be used.
- DISPERBYK-130 "DISPERBYK-161”, “DISPERBYK-162”, “DISPERBYK-163”, “DISPERBYK-170”, “DISPERBYK-171”, “DISPERBYK-174", “DISPERBYK-180” manufactured by BYK Chemie ”,“ DISPERBYK-182 ”,“ DISPERBYK-183 ”,“ DISPERBYK-184 ”,“ DISPERBYK-185 ”,“ DISPERBYK-2000 ”,“ DISPERBYK-2001 ”,“ DISPERBYK-2020 ”,“ DISPERBYK-2050 ”, “DISPERBYK-2070”, “DISPERBYK-2096”, “DISPERBYK-2150”, “EFKA1503”, “EFKA4010”, “EFKA4020”, “EFKA4300”, “EFKA4330”, “EFKA4340”, “EFKA4520” manufactured by BASF, EFKA4530, EFKA5054,
- the optimum content of the dispersant in the ceramic green sheet varies depending on the specific surface area of the basic ceramic material, and the standard content is obtained by dividing the specific surface area [unit m 2 / g] by 5. It is done.
- the standard content of the dispersant with respect to 100 parts by weight of barium titanate is 1 part by weight if the particle size is 200 nm (specific surface area 5 m 2 / g). If the particle size is 100 nm (specific surface area 10 m 2 / g), then 2 parts by weight. If the particle size is 50 nm (specific surface area 20 m 2 / g), then 4 parts by weight.
- the content of the dispersant is 0.3 parts by weight with respect to 100 parts by weight of the basic ceramic material from the viewpoint of dispersibility of the basic ceramic material.
- the above is preferable, and 0.4 parts by weight or more is more preferable.
- 1.5 parts by weight with respect to 100 parts by weight of the basic ceramic material is preferable, and 1.2 parts by weight or less is more preferable.
- the content of the dispersant is 0.6 parts by weight with respect to 100 parts by weight of the basic ceramic material from the viewpoint of dispersibility of the basic ceramic material.
- the above is preferable, 0.8 parts by weight or more is more preferable, and on the other hand, 3 parts by weight or less with respect to 100 parts by weight of the basic ceramic material from the viewpoint of suppressing a decrease in peelability of the ceramic green sheet due to an excessive dispersant.
- the content of the dispersant is 1.2 parts by weight with respect to 100 parts by weight of the basic ceramic material from the viewpoint of dispersibility of the basic ceramic material.
- the above is preferable, and 1.6 parts by weight or more is more preferable.
- 6 parts by weight or less is required with respect to 100 parts by weight of the basic ceramic material.
- 4.8 parts by weight or less is more preferable.
- the non-aqueous solvent is not particularly limited as long as it is a non-aqueous (organic solvent).
- Non-aqueous solvents include methanol, ethanol, n-propanol, isopropanol (IPA), n-butanol, sec-butanol, n-octanol, ethylene glycol, diethylene glycol, diacetone alcohol, benzyl alcohol, terpineol, butyl carbitol, etc.
- Alcohols, cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), diisobutyl ketone (DIBK), ketones such as cyclohexanone, isophorone, N, N-dimethylacetamide, Amides such as N, N-dimethylformamide, N-methyl-2-pyrrolidone, methyl acetate, ethyl acetate, isopropyl acetate, n-butyl acetate, butyl carbonate Esters such as bi Torr acetate, ethyl ether, dioxane, tetrahydrofuran and the like, naphtha, n- hexane, hydrocarbons such as cyclohexane, toluene, xylene, aromatic compounds such as
- binder polyvinyl acetal resin is advantageously used.
- the polyvinyl acetal resin is obtained by acetalizing polyvinyl alcohol.
- the method of acetalization is not particularly limited.
- polyvinyl alcohol is dissolved in warm water, this polyvinyl alcohol aqueous solution is kept at a predetermined temperature, an aldehyde and an acid catalyst are added, and the acetalization reaction proceeds while stirring. Then, the reaction temperature is raised and ripened to complete the reaction, followed by neutralization, washing and drying.
- the aldehyde used in the acetalization reaction is not particularly limited.
- Aliphatic aldehydes such as 2-ethylhexyl aldehyde, n-hexyl aldehyde, n-octaldehyde, n-nonyl aldehyde, n-decyl aldehyde, amyl aldehyde, benzaldehyde, cinnamaldehyde, 2-methylbenzaldehyde, 3-methyl Benzaldehyde, 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phen
- aldehydes may be used alone or in combination of two or more.
- aldehyde butyraldehyde and acetaldehyde, which are excellent in acetalization reaction and can impart various properties such as adhesion, are preferable, and butyraldehyde is more preferable.
- the polyvinyl alcohol and the polyvinyl acetal resin may be appropriately manufactured or commercially available.
- Commercially available products include, for example, Kuraray Poval PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, PVA-126, PVA-135, PVA-CSA, PVA -CST, PVA-HC (above, Kuraray brand name), Gohsenol NH-26, NH-20, NH-18, N-300, NM-14, NM-11, NL-05 (above, Nippon Synthetic Chemical Saponified polyvinyl alcohols such as Denkapoval K-24E, K-17C, K-17E, K-05 (named above, trade name manufactured by Denki Kagaku Kogyo); Kuraray Poval PVA-617, PVA- 624, PVA-613, PVA-706, PVA-203, PVA-205, PVA-210, PVA-217, PVA-2
- the content of the polyvinyl acetal resin in the ceramic green sheet is preferably 0.5 parts by weight or more with respect to 100 parts by weight of the basic ceramic material from the viewpoint of maintaining the strength of the ceramic green sheet and exhibiting the binder function.
- the above is more preferable, and 2 parts by weight or more is most preferable.
- 20 parts by weight or less is preferable with respect to 100 parts by weight of the basic ceramic material from the viewpoint of easily reducing the viscosity of the slurry composition and forming a sheet. 15 parts by weight or less is more preferable, and 12 parts by weight or less is most preferable.
- the content of the polyvinyl acetal resin in the ceramic green sheet is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the basic ceramic material. Is most preferred.
- (Cationic compound A1) A commercially available 1-ethyl-3-methylimidazolium ethyl sulfate manufactured by Sigma-Aldrich was used.
- the cationic compounds A9 to A13 do not correspond to any of the cationic compounds having a cationic group represented by the general formulas (1) to (3), or R1 to R11 do not satisfy the above-mentioned conditions. is there.
- Dispersant preparation The following dispersants B1 to B7 were prepared.
- Dispersant B3 After aging at 65 ° C. for 3 hours, it was cooled to room temperature. Ethanol was added to adjust the concentration to obtain an ethanol solution of Dispersant B3.
- the nonvolatile content of the dispersant B3 solution was 33.6% by weight, and the weight average molecular weight of the dispersant B3 was 44200.
- Dispersant B5 After aging at 65 ° C. for 3 hours, it was cooled to room temperature. Ethanol was added to adjust the concentration to obtain an ethanol solution of Dispersant B5.
- the non-volatile content of the dispersant B5 solution was 53.2% by weight, and the weight average molecular weight of the dispersant B5 was 17400.
- dispersant B6 After aging at 65 ° C. for 3 hours, it was cooled to room temperature. Ethanol was added to adjust the concentration to obtain an ethanol solution of dispersant B6.
- the nonvolatile content of the dispersant B6 solution was 52.0% by weight, and the weight average molecular weight of the dispersant B6 was 8300.
- this ceramic slurry was formed into a sheet having a thickness of 1 ⁇ m by a doctor blade method on a silicone-treated carrier film to produce a ceramic green sheet.
- Example 2 A ceramic green sheet was produced in the same manner as in Example 1 except that the cationic compound A2 was used instead of the cationic compound A1 in Example 1, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 3 A ceramic green sheet was produced in the same manner as in Example 1 except that the cation compound A3 was used instead of the cation compound A1 in Example 1, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 4 A ceramic green sheet was produced in the same manner as in Example 1 except that the cation compound A4 was used instead of the cation compound A1 in Example 1, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 5 A ceramic green sheet was produced in the same manner as in Example 1 except that the cation compound A5 was used instead of the cation compound A1 in Example 1, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 6 A ceramic green sheet was produced in the same manner as in Example 1 except that the cation compound A6 was used instead of the cation compound A1 in Example 1, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 7 A ceramic green sheet was produced in the same manner as in Example 1 except that the cation compound A7 was used instead of the cation compound A1 in Example 1, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 8 A ceramic green sheet was produced in the same manner as in Example 1 except that the cationic compound A8 was used instead of the cationic compound A1 in Example 1, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 1 A ceramic green sheet was produced in the same manner as in Example 1 except that no cationic compound was added, and a multilayer ceramic capacitor was produced using the ceramic green sheet.
- Example 2 A ceramic green sheet was produced in the same manner as in Example 1 except that the cation compound A9 was used instead of the cation compound A1 in Example 1, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 3 A ceramic green sheet was produced in the same manner as in Example 1 except that the cation compound A10 was used instead of the cation compound A1 in Example 1, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 4 A ceramic green sheet was produced in the same manner as in Example 1 except that the cation compound A11 was used instead of the cation compound A1 in Example 1, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 5 A ceramic green sheet was produced in the same manner as in Example 1 except that the cation compound A12 was used instead of the cation compound A1 in Example 1, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 6 A ceramic green sheet was produced in the same manner as in Example 1 except that the cation compound A13 was used instead of the cation compound A1 in Example 1, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- the ceramic green sheet is cut into a test piece with a short side of 4 cm and a long side of 10 cm, and this test piece is on the side opposite to the ceramic slurry coated surface (film side) for 90 ° peel test.
- a double-sided adhesive tape it was fixed to the pedestal of a desktop precision testing machine (manufactured by Shimadzu Corporation: Autograph AGS-X) equipped with a jig.
- a desktop precision testing machine manufactured by Shimadzu Corporation: Autograph AGS-X
- one end of the short side of the test piece was peeled from the carrier film by 1 cm, and then sandwiched between clips to fix the clip to the load cell.
- the load cell is raised at a speed of 1 cm / sec to perform 90-degree peeling, and the electrostatic charge sensor having the maximum charge amount (peeling charge amount) on the peeling surface side of the ceramic green sheet is set at a distance of 3 cm from the peeling surface.
- peeling charge amount peeling charge amount
- peeling force In the above measurement of the peel charge amount, when the ceramic green sheet was peeled 90 degrees at a speed of 1 cm / second, the load applied to the load cell was measured. Specifically, the average value of the load applied to the load cell from the time when the load cell was raised by 3 cm to the time when it was raised by 6 cm was defined as the peeling force.
- the ceramic green sheet was cut into dumbbell-shaped No. 1 defined in JIS K6251. Before peeling the ceramic green sheet from the carrier film, the thickness was measured, and the thickness of the ceramic green sheet was determined from the difference from the thickness of the carrier film itself. Next, the peeled ceramic green sheet is attached to a load cell attached to a desktop precision tester (manufactured by Shimadzu Corporation: Autograph EZ-TEST), pulled at a test speed of 6 cm / min, and stress at the time of breaking the test piece And, the breaking strain (elongation) was measured.
- a desktop precision tester manufactured by Shimadzu Corporation: Autograph EZ-TEST
- a ceramic slurry was applied to a PET film as a carrier film having a width of 100 mm to form a ceramic green sheet.
- the ceramic green sheet was installed in the conveyance equipment comprised with the part which can draw out and wind up PET film at a fixed speed using a motor, and the roller which can rotate freely.
- An electrostatic sensor manufactured by Keyence Co., Ltd .: SK-200 installed at a distance of 3 cm from the surface of the ceramic green sheet where the distance between the freely rotatable rollers in the transport facility is 30 cm or more and there is no conductor within 30 cm.
- the initial short-circuit rate of the multilayer ceramic capacitor shown in Table 1 was measured by the following method.
- the resistance value of the multilayer ceramic capacitor was measured with a commercially available LCR meter (HP4284A) under the conditions of 1 kHz and 0.5 V. A resistance value of 1000 ⁇ or less was defined as a short circuit defect, and the ratio of the number of short circuits to the evaluation parameter was defined as a short circuit rate.
- the cationic compounds A1 to A5 used in Examples 1 to 5 are cationic compounds containing a cationic group represented by the general formula (3), and the cationic compound A6 used in Example 6 is represented by the general formula (2).
- the cationic compounds A7 and A8 containing a cationic group used in Examples 7 and 8 are cationic compounds containing a cationic group represented by the general formula (1). From the comparison between Examples 1 to 8, from the viewpoint of peelability, Examples 1 to 6 using a cationic compound containing a cationic group represented by General Formula (2) and General Formula (3) are more preferable. Further, from the viewpoint of toughness, there is a tendency that Examples 1 to 5 using a cationic compound containing a cationic group represented by the general formula (3) are most preferable.
- Example 2 2-1. Sample Preparation In Experimental Example 2, in preparing the following samples, as shown in Table 2, the cationic compound A1 was commonly used in all the samples for the cationic compound, and the dispersant B1 described above was used for the dispersant. Among B7, those shown in the column of “Dispersant” in Table 1 were used. In the column of “Dispersant” in Table 1, “ionicity” of the dispersant and “molecular weight” of the known dispersant are also shown.
- this ceramic slurry was formed into a sheet having a thickness of 1 ⁇ m by a doctor blade method on a silicone-treated carrier film to produce a ceramic green sheet.
- Example 10 A ceramic green sheet was produced in the same manner as in Example 9 except that Dispersant B2 was used instead of Dispersant B1 in Example 9, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 11 A ceramic green sheet was produced in the same manner as in Example 9 except that Dispersant B3 was used instead of Dispersant B1 in Example 9, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 12 A ceramic green sheet was produced in the same manner as in Example 9 except that Dispersant B4 was used instead of Dispersant B1 in Example 9, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 13 A ceramic green sheet was produced in the same manner as in Example 9 except that Dispersant B5 was used instead of Dispersant B1 in Example 9, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 14 A ceramic green sheet was produced in the same manner as in Example 9 except that Dispersant B6 was used instead of Dispersant B1 in Example 9, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 15 A ceramic green sheet was produced in the same manner as in Example 9 except that Dispersant B7 was used instead of Dispersant B1 in Example 9, and a multilayer ceramic capacitor was produced using the ceramic green sheet. .
- Example 7 A ceramic green sheet was produced in the same manner as in Example 9 except that no dispersant was added, and a multilayer ceramic capacitor was produced using the ceramic green sheet.
- any of cationic, nonionic, and anionic dispersants is used.
- the amount of charge to be peeled, the peel force, and the conveyance time are as follows. It can be seen that the amount of charge is all reduced, and the antistatic property, the peelability, and the antistatic property at the time of transportation in the transportation equipment of a printing machine or a laminating machine are excellent.
- Comparative Example 7 the charge amount at the time of conveyance was large, so that it was difficult to laminate the ceramic green sheets. Therefore, in Comparative Example 7, the initial short-circuit rate was not evaluated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
A.塩基性セラミック材料と、
B.カチオン化合物と、
C.分散剤と、
D.非水系溶媒と、
E.バインダと
を含有する。
一般に、セラミック材料の表面は、酸点および塩基点の両方を持っている。塩基性セラミック材料の場合には、塩基量が酸量よりも大きな値を持っている。非水系溶媒中におけるセラミック材料の酸および塩基の強度は、たとえば逆滴定法によって求めることができる。
カチオン化合物として、含窒素複素芳香族第4級アンモニウムカチオン基を含むカチオン化合物が用いられる。
分散剤としては、たとえば、カチオン性分散剤、ノニオン性分散剤、アニオン性分散剤が挙げられる。
非水系溶媒としては、非水系(有機溶剤)であれば特に限定されない。
バインダとして、ポリビニルアセタール樹脂が有利に用いられる。
1.カチオン化合物の準備
次のようなカチオン化合物A1~A8を準備した。
市販のシグマアルドリッチ社製の1-エチル-3-メチルイミダゾリウム エチルサルフェートを用いた。
市販のシグマアルドリッチ社製の1-エチル-3-メチルイミダゾリウムアセテートを用いた。
市販のシグマアルドリッチ社製の1-エチル-2,3-ジメチルイミダゾリウム エチルサルフェートを用いた。
市販のシグマアルドリッチ社製の1-ブチル-3-メチルイミダゾリウム エチルサルフェートを用いた。
市販のシグマアルドリッチ社製の1-ブチル-3-メチルイミダゾリウムアセテートを用いた。
市販のシグマアルドリッチ社製の1,2,4-トリメチルピラゾリウム メチルサルフェートを用いた。
市販の東京化成社製の1-エチル-3-メチルビリジニウム エチルサルフェートを用いた。
市販の東京化成社製の1-エチル-3-ヒドロキシメチルビリジニウム エチルサルフェートを用いた。
市販のシグマアルドリッチ社製の1-メチルイミダゾリウム ハイドロジェンサルフェートを用いた。
市販のシグマアルドリッチ社製のトリス(2-ヒドロキシエチル)メチルアンモニウム メチルサルフェートを用いた。
市販のシグマアルドリッチ社製のトリブチルメチルアンモニウム メチルサルフェートを用いた。
市販のシグマアルドリッチ社製のオクチル-2-ヒドロキシエチルイミダゾリニウム エチルサルフェートを用いた。
ラウリルアミンのエチレンオキシド2モル付加物を硫酸ジエチルと反応させることで合成した4級アンモニウム塩であるラウリルエチルビス(2-ヒドロキシエチル)アンモニウム エチルサルフェートを用いた。
次のような分散剤B1~B7を準備した。
市販のルブリゾール社製ソルスパース33000を用いた。
市販の味の素ファインテクノ社製アジスパーPB-821を用いた。
還流管、撹拌装置、温度計および窒素導入管を取り付けた、セパラブルフラスコに、メタクリル酸メチル(和光純薬工業社製):1.5g、メトキシポリエチレングリコール(23)メタクリレート(新中村化学社製:NK-エステル M-230G、エチレンオキサイドの平均付加モル数:23):5.5g、メタクリルアミド(和光純薬工業社製):3.0g、およびエタノール(和光純薬工業社製):12.25gを仕込み、窒素置換し、65℃に加熱した。
市販のアイエスピージャパン社製のアンタロンV-216を用いた。
還流管、撹拌装置、温度計および窒素導入管を取り付けた、セパラブルフラスコに、メトキシポリエチレングリコール(23)メタクリレート(新中村化学社製:NK-エステル M-230G、エチレンオキサイドの平均付加モル数:23):8.5g、メタクリル酸(和光純薬工業社製):1.5g、エタノール(和光純薬工業社製):10g、3-メルカプト-1,2-プロパンジオール(和光純薬工業社製):0.1gを仕込み、窒素置換し、65℃に加熱した。
還流管、撹拌装置、温度計および窒素導入管を取り付けた、セパラブルフラスコに、メタクリル酸メチル(和光純薬工業社製):1.5g、メトキシポリエチレングリコール(23)メタクリレート(新中村化学社製:NK-エステルM-230G、エチレンオキサイドの平均付加モル数:23):7.0g、メタクリル酸(和光純薬工業社製):1.5g、エタノール(和光純薬工業社製):15g、および3-メルカプト-1,2-プロパンジオール(和光純薬工業社製):0.3gを仕込み、窒素置換し、65℃に加熱した。
市販の日油社製のマリアリムAKM-0531を用いた。
1-1.試料の作製
実験例1では、以下の試料の作製にあたって、前述したカチオン化合物A1~A13のうち、表1の「カチオン化合物」の欄に示すものを用いた。なお、表1の「カチオン化合物」の欄には、カチオン基の「分子量」も示されている。
チタン酸バリウム(BET比表面積より計算した平均粒径:50nm):100gと、分散剤B6:4.0g(有効分)とを、直径1mmのジルコニアビーズ:500gと一緒に500mLの容器に入れ、トルエン/エタノール=48/52(容積比)の混合溶媒を加え、チタン酸バリウムの固形分濃度が50重量%になるように調整し、卓上型ボールミルにて、96時間、分散処理を行なった。
実施例1におけるカチオン化合物A1の代わりに、カチオン化合物A2を用いたことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例1におけるカチオン化合物A1の代わりに、カチオン化合物A3を用いたことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例1におけるカチオン化合物A1の代わりに、カチオン化合物A4を用いたことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例1におけるカチオン化合物A1の代わりに、カチオン化合物A5を用いたことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例1におけるカチオン化合物A1の代わりに、カチオン化合物A6を用いたことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例1におけるカチオン化合物A1の代わりに、カチオン化合物A7を用いたことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例1におけるカチオン化合物A1の代わりに、カチオン化合物A8を用いたことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
カチオン化合物を加えないことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例1におけるカチオン化合物A1の代わりに、カチオン化合物A9を用いたことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例1におけるカチオン化合物A1の代わりに、カチオン化合物A10を用いたことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例1におけるカチオン化合物A1の代わりに、カチオン化合物A11を用いたことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例1におけるカチオン化合物A1の代わりに、カチオン化合物A12を用いたことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例1におけるカチオン化合物A1の代わりに、カチオン化合物A13を用いたことを除いて、実施例1の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
表1に示すように、上記積層セラミックコンデンサの作製過程で得られたセラミックグリーンシートについて、キャリアフィルムからの剥離時の剥離帯電量、剥離力、破断応力および伸びの測定を以下のように行なった。
キャリアフィルムとともに、セラミックグリーンシートを短辺4cm、長辺10cmの寸法の試験片に裁断し、この試験片を、セラミックスラリー塗工面と反対側(フイルム側)を下にして、90度剥離試験用治具を装着した卓上型精密試験機(島津製作所社製:オートグラフAGS-X)の台座に両面粘着テープを用いて固定した。次に、試験片の短辺側の片端をキャリアフィルムから1cm剥離した後、クリップで挟み、クリップをロードセルに固定した。その後、ロードセルを1cm/秒の速度で上昇させて90度剥離を行ない、セラミックグリーンシートの剥離面側の帯電量(剥離帯電量)の最大値を、剥離面から3cmの距離に設置した静電気センサー(キーエンス社製:SK-200)にて測定した。
上記の剥離帯電量の測定において、セラミックグリーンシートを1cm/秒の速度にて90度剥離する際、ロードセルにかかる荷重を測定した。具体的には、ロードセルが3cm上昇してから6cm上昇するまでの間にロードセルにかかる荷重の平均値を剥離力とした。
セラミックグリーンシートをJIS K6251に規定されたダンベル状1号形に裁断した。セラミックグリーンシートをキャリアフィルムから剥離する前に、厚みを計測し、キャリアフィルム自身の厚みとの差分より、セラミックグリーンシートの厚みを求めた。次に、剥離したセラミックグリーンシートを卓上型精密試験機(島津製作所社製:オートグラフEZ-TEST)に装着されたロードセルに取り付け、6cm/分の試験速度で引っ張り、試験片の破断時の応力、および、破断歪(伸び)を測定した。
幅100mmのキャリアフィルムとしてのPETフィルムにセラミックスラリーを塗工し、セラミックグリーンシートを成形した。そして、モーターを用いて一定速度でPETフィルムを繰り出し、巻き取りできる部分と、自由に回転できるローラーとで構成した搬送設備にセラミックグリーンシートを設置した。搬送設備内の、自由に回転できるローラーの間隔が30cm以上でかつ周囲30cm以内に導電体が存在しない箇所で、セラミックグリーンシート表面から3cmの距離に設置した静電気センサー(キーエンス社製:SK-200)にて搬送時に発生する帯電量を測定した。
市販のLCRメーター(HP4284A)にて、1kHz、0.5Vの条件で、積層セラミックコンデンサの抵抗値を測定した。抵抗値が1000Ω以下をショート不良とし、評価母数に対するショート不良数の割合をショート率とした。
2-1.試料の作製
実験例2では、以下の試料の作製にあたって、表2に示すように、カチオン化合物については、カチオン化合物A1をすべての試料において共通に用いながら、分散剤については、前述した分散剤B1~B7のうち、表1の「分散剤」の欄に示すものを用いた。なお、表1の「分散剤」の欄には、分散剤の「イオン性」、およびわかっているものについて「分子量」も示されている。
チタン酸バリウム(BET比表面積より計算した平均粒径:50nm):20gと、分散剤B1:0.8g(有効分)とを、直径1mmのジルコニアビーズ:50gと一緒に100mLの容器に入れ、トルエン/エタノール=48/52(容積比)の混合溶媒を加え、チタン酸バリウムの固形分濃度が50重量%になるように調整し、卓上型ボールミルにて、96時間、分散処理を行なった。
実施例9における分散剤B1の代わりに、分散剤B2を用いたことを除いて、実施例9の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例9における分散剤B1の代わりに、分散剤B3を用いたことを除いて、実施例9の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例9における分散剤B1の代わりに、分散剤B4を用いたことを除いて、実施例9の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例9における分散剤B1の代わりに、分散剤B5を用いたことを除いて、実施例9の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例9における分散剤B1の代わりに、分散剤B6を用いたことを除いて、実施例9の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
実施例9における分散剤B1の代わりに、分散剤B7を用いたことを除いて、実施例9の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
分散剤を加えないことを除いて、実施例9の場合と同様にして、セラミックグリーンシートを作製し、それを用いて、積層セラミックコンデンサを作製した。
表2に示すように、上記積層セラミックコンデンサの作製過程で得られたセラミックグリーンシートについて、キャリアフィルムからの剥離時の剥離帯電量および剥離力の測定、セラミックグリーンシートの搬送時の帯電量を評価するため、搬送時帯電量の測定、ならびに、積層セラミックコンデンサの初期ショート率の測定を、実験例1の場合と同様の方法で行なった。
2 部品本体
5 セラミック層
Claims (4)
- 塩基性セラミック材料と、
含窒素複素芳香族第4級アンモニウムカチオン基を含むカチオン化合物と、
分散剤と、
非水系溶媒と、
バインダと
を含有する、セラミックグリーンシート。 - 前記カチオン基が、下記一般式(1)で表わされるカチオン基、下記一般式(2)で表わされるカチオン基および下記一般式(3)で表わされるカチオン基からなる群より選ばれる少なくとも1種のカチオン基である、請求項1に記載のセラミックグリーンシート。
式(2)中、R5およびR6は、互いに同一であっても異なっていてもよく、炭素数1~4のアルキル基を示し、R7およびR8は、互いに同一であっても異なっていてもよく、水素原子または炭素数1~4のアルキル基を示し、アルキル基は水酸基を有していてもよい。
式(3)中、R9およびR10は、互いに同一であっても異なっていてもよく、炭素数1~4のアルキル基を示し、R11は、水素原子または炭素数1~4のアルキル基を示し、アルキル基は水酸基を有していてもよい。 - 前記カチオン化合物は、アニオン化合物との塩として含有され、前記アニオン化合物が、アルキル硫酸および脂肪族カルボン酸からなる群から選ばれる少なくとも1種の酸である、請求項1または2に記載のセラミックグリーンシート。
- 請求項1ないし3のいずれかに記載のセラミックグリーンシートをキャリアフィルム上で成形する工程と、前記キャリアフィルムから前記セラミックグリーンシートを剥離する工程と、複数の前記セラミックグリーンシートを積層することによって、グリーン積層体を得る工程と、前記グリーン積層体を焼成する工程とを実施することによって得られた、積層セラミック電子部品。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147006113A KR101557893B1 (ko) | 2011-09-07 | 2012-08-30 | 세라믹 그린시트 및 적층 세라믹 전자부품 |
CN201280043633.XA CN103796972B (zh) | 2011-09-07 | 2012-08-30 | 陶瓷生片和层叠陶瓷电子部件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011194467A JP5316615B2 (ja) | 2011-09-07 | 2011-09-07 | 積層セラミック電子部品 |
JP2011-194467 | 2011-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013035608A1 true WO2013035608A1 (ja) | 2013-03-14 |
Family
ID=47832055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/071939 WO2013035608A1 (ja) | 2011-09-07 | 2012-08-30 | セラミックグリーンシートおよび積層セラミック電子部品 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5316615B2 (ja) |
KR (1) | KR101557893B1 (ja) |
CN (1) | CN103796972B (ja) |
TW (1) | TWI459423B (ja) |
WO (1) | WO2013035608A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2851355A1 (de) * | 2013-09-18 | 2015-03-25 | Kuraray Europe GmbH | Verwendung von Polyvinylisoacetalen für Keramikformulierungen |
CN110315631A (zh) * | 2018-03-29 | 2019-10-11 | 卓英社有限公司 | 分隔物及利用该分隔物的多个生片单元的烧制方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017085849A1 (ja) * | 2015-11-19 | 2017-05-26 | 三井金属鉱業株式会社 | 誘電体層を有するプリント配線板の製造方法 |
KR20190037611A (ko) | 2017-09-29 | 2019-04-08 | 최준영 | 팔찌 마우스 |
EP3873873B1 (en) | 2018-10-30 | 2023-01-04 | Byk-Chemie GmbH | Ceramic slurry composition and process for producing stacked ceramic component |
KR20230025146A (ko) | 2021-08-13 | 2023-02-21 | 김동균 | 손목 터널 증후군 방지가 가능한 착용형 마우스 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07155582A (ja) * | 1993-12-09 | 1995-06-20 | Sanyo Chem Ind Ltd | セラミック成形用界面活性剤およびその製造法 |
JPH07267739A (ja) * | 1994-03-29 | 1995-10-17 | Matsushita Electric Works Ltd | 窒化アルミニウムグリーンシートの製造方法 |
JP2002321981A (ja) * | 2001-04-23 | 2002-11-08 | Sanyo Chem Ind Ltd | セラミック材料用分散剤 |
JP2005290357A (ja) * | 2004-03-08 | 2005-10-20 | Nitto Denko Corp | 粘着剤組成物、粘着シート類及び表面保護フィルム |
JP2007073195A (ja) * | 2005-09-02 | 2007-03-22 | Murata Mfg Co Ltd | 誘電体アンテナ |
JP2011195436A (ja) * | 2010-02-26 | 2011-10-06 | Kao Corp | 塩基性セラミックス含有スラリー組成物 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7378479B2 (en) * | 2002-09-13 | 2008-05-27 | Lubrizol Advanced Materials, Inc. | Multi-purpose polymers, methods and compositions |
US20060235107A1 (en) * | 2005-04-15 | 2006-10-19 | 3M Innovative Properties Company | Method of reusing flexible mold and microstructure precursor composition |
CN102123968A (zh) * | 2008-08-27 | 2011-07-13 | 株式会社村田制作所 | 陶瓷成形体及层叠型陶瓷电子部件的制造方法 |
JP2011020916A (ja) * | 2009-06-18 | 2011-02-03 | Toudai Tlo Ltd | 焼結セラミックス成形用組成物、焼結セラミックスの製法、及びセラミックス |
-
2011
- 2011-09-07 JP JP2011194467A patent/JP5316615B2/ja active Active
-
2012
- 2012-08-30 KR KR1020147006113A patent/KR101557893B1/ko active IP Right Grant
- 2012-08-30 CN CN201280043633.XA patent/CN103796972B/zh active Active
- 2012-08-30 WO PCT/JP2012/071939 patent/WO2013035608A1/ja active Application Filing
- 2012-09-06 TW TW101132579A patent/TWI459423B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07155582A (ja) * | 1993-12-09 | 1995-06-20 | Sanyo Chem Ind Ltd | セラミック成形用界面活性剤およびその製造法 |
JPH07267739A (ja) * | 1994-03-29 | 1995-10-17 | Matsushita Electric Works Ltd | 窒化アルミニウムグリーンシートの製造方法 |
JP2002321981A (ja) * | 2001-04-23 | 2002-11-08 | Sanyo Chem Ind Ltd | セラミック材料用分散剤 |
JP2005290357A (ja) * | 2004-03-08 | 2005-10-20 | Nitto Denko Corp | 粘着剤組成物、粘着シート類及び表面保護フィルム |
JP2007073195A (ja) * | 2005-09-02 | 2007-03-22 | Murata Mfg Co Ltd | 誘電体アンテナ |
JP2011195436A (ja) * | 2010-02-26 | 2011-10-06 | Kao Corp | 塩基性セラミックス含有スラリー組成物 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2851355A1 (de) * | 2013-09-18 | 2015-03-25 | Kuraray Europe GmbH | Verwendung von Polyvinylisoacetalen für Keramikformulierungen |
JP2016538349A (ja) * | 2013-09-18 | 2016-12-08 | クラレイ ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツングKuraray Europe GmbH | セラミック配合物のためのポリビニルイソアセタールの使用 |
CN110315631A (zh) * | 2018-03-29 | 2019-10-11 | 卓英社有限公司 | 分隔物及利用该分隔物的多个生片单元的烧制方法 |
CN110315631B (zh) * | 2018-03-29 | 2021-06-18 | 卓英社有限公司 | 分隔物及利用该分隔物的多个生片单元的烧制方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5316615B2 (ja) | 2013-10-16 |
TW201324557A (zh) | 2013-06-16 |
TWI459423B (zh) | 2014-11-01 |
KR101557893B1 (ko) | 2015-10-05 |
CN103796972A (zh) | 2014-05-14 |
KR20140058614A (ko) | 2014-05-14 |
JP2013056783A (ja) | 2013-03-28 |
CN103796972B (zh) | 2016-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013035608A1 (ja) | セラミックグリーンシートおよび積層セラミック電子部品 | |
JP5698750B2 (ja) | ポリビニルアセタール樹脂、そのスラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ | |
KR101925479B1 (ko) | 슬러리 조성물, 세라믹 그린 시트 및 적층 세라믹 콘덴서 | |
TW201144254A (en) | Slurry composition for ceramic green sheet, ceramic green sheet, and multilayer ceramic capacitor | |
CN110168021A (zh) | 浆料组合物、陶瓷生片和涂覆片 | |
JP6239841B2 (ja) | セラミックグリーンシート用スラリー組成物 | |
WO2021060499A1 (ja) | ポリビニルアセタール樹脂 | |
WO2004067475A1 (ja) | グリーンシート用塗料とその製造方法、グリーンシートとその製造方法、及び電子部品の製造方法 | |
CN113168930A (zh) | 导电性糊剂 | |
JP2014198767A (ja) | 変性ポリビニルアセタール樹脂 | |
JP5885622B2 (ja) | 塩基性セラミックス含有スラリー組成物 | |
JP7557568B2 (ja) | ポリビニルアセタール樹脂 | |
JP2007138115A (ja) | セラミック成形用変性ポリビニルアセタール樹脂及びセラミックペースト | |
JP2006282490A (ja) | セラミックグリーンシート用セラミックペースト | |
WO2020203786A1 (ja) | セラミックグリーンシート用樹脂組成物、セラミックグリーンシート及び積層セラミックコンデンサ | |
JP2008282763A (ja) | 積層セラミックコンデンサ内部電極用導電ペースト | |
JP7389730B2 (ja) | ポリビニルアセタール樹脂 | |
JP4568513B2 (ja) | 導電ペースト | |
JP2015231924A (ja) | 積層セラミックコンデンサ製造用のスラリー組成物およびセラミックグリーンシート | |
JP6974021B2 (ja) | 燃料電池発電セル製造用バインダー | |
JP7432051B1 (ja) | ポリビニルアセタール樹脂及びセラミックグリーンシート用樹脂組成物 | |
JP7457853B1 (ja) | ポリビニルアセタール樹脂 | |
JP7493946B2 (ja) | セラミック成形体からの有機物成分の除去方法 | |
JP2023147266A (ja) | セラミックグリーンシート用樹脂組成物、セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ | |
JP2006210256A (ja) | 塗工ペースト用ビヒクル及び塗工ペースト |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280043633.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12830663 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147006113 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12830663 Country of ref document: EP Kind code of ref document: A1 |