WO2013031477A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2013031477A1
WO2013031477A1 PCT/JP2012/069754 JP2012069754W WO2013031477A1 WO 2013031477 A1 WO2013031477 A1 WO 2013031477A1 JP 2012069754 W JP2012069754 W JP 2012069754W WO 2013031477 A1 WO2013031477 A1 WO 2013031477A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
conductive material
positive electrode
electrode active
particle size
Prior art date
Application number
PCT/JP2012/069754
Other languages
English (en)
French (fr)
Inventor
匠 玉木
裕喜 永井
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020147007057A priority Critical patent/KR101649804B1/ko
Priority to CN201280041189.8A priority patent/CN103765636B/zh
Priority to US14/240,856 priority patent/US9520592B2/en
Priority to EP12828708.3A priority patent/EP2750223B1/en
Publication of WO2013031477A1 publication Critical patent/WO2013031477A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a lithium secondary battery. Specifically, the present invention relates to a lithium secondary battery including a current collector and an active material layer that is held by the current collector and includes active material particles and a conductive material.
  • a lithium secondary battery including a current collector and an active material layer that is held by the current collector and includes active material particles and a conductive material.
  • a lithium secondary battery that is lightweight and obtains a high energy density is preferably used as a high-output power source for mounting on a vehicle.
  • a lithium secondary battery includes a material (active material) capable of reversibly occluding and releasing lithium ions (Li ions) in positive and negative electrodes, and charging and charging are performed by Li ions traveling between the positive and negative electrodes. Discharge occurs.
  • the active material (positive electrode active material) used for the positive electrode of the lithium secondary battery is a lithium transition metal oxide containing lithium and a transition metal element.
  • a lithium transition metal oxide (nickel-containing lithium transition metal oxide) containing at least nickel (Ni) as the transition metal element and having a layered structure is preferably used. Since such a lithium transition metal oxide has low electronic conductivity, it can usually be used in combination with a conductive material such as carbon powder.
  • Patent document 1 is mentioned as a technical document regarding the active material and conductive material of a lithium secondary battery.
  • Patent Document 1 describes a technique of combining carbon powder and a positive electrode active material by a spray drying method in order to improve output characteristics.
  • the positive electrode active material is held around the carbon powder, the contact between the carbon powders is poor, and the mutual conductive path (conductive path) between the positive electrode active materials tends to be thin. .
  • the electron transfer between the positive electrode active material and the positive electrode current collector cannot be efficiently performed, and there is a possibility that a voltage drop may occur during high output use.
  • the reactivity of the positive electrode active material and the Li ion diffusibility in the positive electrode active material layer tend to decrease, so the above performance deterioration (such as voltage drop when using high power) is likely to occur.
  • the present invention aims to solve the above problems.
  • the lithium secondary battery according to the present invention includes a current collector and an active material layer that is held by the current collector and includes active material particles and a conductive material.
  • the active material particles have a shell portion made of a lithium transition metal oxide, a hollow portion formed inside the shell portion, and a through-hole penetrating the shell portion.
  • the electrically conductive material contained in the said active material layer is arrange
  • the conductive material (powder) contained in the active material layer is typically smaller than the active material particles (for example, about 4 to 5 ⁇ m) and penetrates between the active material particles.
  • a conductive path (conductive path) between the active material particles is formed by the conductive material disposed between the active material particles.
  • the active material particles have a hollow structure having a shell portion and a hollow portion formed therein, and a through-hole penetrating from the outside to the hollow portion is formed in the shell portion.
  • a part of the conductive material is smaller than the opening width (for example, about 1 ⁇ m) of the through hole, and enters the hollow portion of the active material particles through the through hole.
  • the conductive material disposed in the active material particle hollow portion and the conductive material between the active material particles are electrically connected through the through hole. As a result, a conductive path is also incorporated inside the active material particles.
  • a conductive path (conductive path) between the active material particles is secured by the conductive material disposed between the active material particles, and the inside of the active material particles is secured by the conductive material disposed in the active material particle hollow portion.
  • a conductive path is incorporated. Therefore, electrons can be exchanged inside the active material particles, and the utilization factor of the active material particles can be increased. Moreover, since the electronic conductivity inside the active material particles is improved, the internal resistance can be further reduced. By using such an electrode, it is possible to appropriately suppress a voltage drop due to internal resistance even when a high output is used in a low temperature environment (for example, a temperature environment of about ⁇ 30 ° C.). Therefore, according to the present invention, it is possible to provide a lithium secondary battery having greatly improved output characteristics in a low temperature environment.
  • lithium secondary battery refers to a secondary battery that uses lithium ions as electrolyte ions and is charged / discharged by the movement of charges accompanying the lithium ions between the positive and negative electrodes.
  • a battery generally referred to as a lithium ion battery is a typical example included in the lithium secondary battery in this specification.
  • the conductive material disposed in the active material particle hollow portion is formed separately from the active material particles. According to such a configuration, since the conductive material is arranged separately from the active material particles without combining the active material particles and the conductive material, the reaction of the active material is not inhibited. Therefore, better battery performance can be exhibited.
  • the particle size distribution obtained by laser diffraction of the conductive material corresponds to a cumulative 10% particle size (that is, a cumulative 10% particle size from the fine particle side in the volume-based particle size distribution).
  • the particle size; D10) is 0.25 ⁇ m or less
  • the cumulative 90% particle size that is, the particle size corresponding to 90% cumulative from the fine particle side in the volume-based particle size distribution; D90) is 1 ⁇ m or more.
  • the proportion of the conductive material disposed in the active material particle hollow portion is 3% by mass to 30% of the total mass of the conductive material contained in the active material layer. % By mass, preferably 10% by mass to 20% by mass.
  • the conductive material is disposed in the active material particle hollow portion.
  • a thick conductive path can be formed between the active material particles while appropriately exhibiting the battery performance improvement effect (for example, the effect of suppressing the voltage drop at the time of low temperature output). Therefore, better battery performance can be reliably exhibited.
  • the lithium transition metal oxide is preferably a layered compound containing at least nickel as a constituent element. According to the active material particles having such a composition, a higher performance lithium secondary battery can be constructed. For example, a layered compound containing nickel, cobalt, and manganese as constituent elements can be preferably employed.
  • This manufacturing method includes an active material particle having a perforated hollow structure having a shell portion made of a lithium transition metal oxide, a hollow portion formed inside the shell portion, and a through-hole penetrating the shell portion. Including preparing.
  • the manufacturing method also includes a step of forming an active material layer forming composition (that is, a paste-like or slurry-like composition) by mixing the active material particles, a conductive material, and a solvent (composition forming step). ).
  • the said manufacturing method also includes the process of obtaining the electrode by which the active material layer was formed on the said electrical power collector by providing the said active material formation composition on an electrical power collector.
  • a conductive material having a particle size distribution and a perforated hollow structure active material that realizes that a part of the conductive material can be disposed through the through hole into the hollow portion of the active material particle. It is characterized by using particles.
  • a conductive material can be arrange
  • a conductive material having a cumulative 10% particle size (D10) of 0.25 ⁇ m or less and a cumulative 90% particle size (D90) of 1 ⁇ m or more is used as the conductive material having the above particle size distribution.
  • D10 cumulative 10% particle size
  • D90 cumulative 90% particle size
  • the configuration using the conductive material having a cumulative 10% particle size of 0.25 ⁇ m or less is advantageous for disposing the conductive material in the active material particle hollow portion through the through hole.
  • the conductive material disposed between the active material particles is also reduced in diameter, so the conductive path (conductive path) between the active material particles tends to be narrow. .
  • the conductive material having a specific particle size distribution in which the cumulative 10% particle size (D10) is 0.25 ⁇ m or less and the cumulative 90% particle size (D90) is 1 ⁇ m or more as described above.
  • the composition forming step includes a first mixing stage in which the conductive material and the solvent are mixed to form a conductive material composition; A second mixing step of mixing the material composition and the active material particles to obtain the active material forming composition.
  • the conductive material is mixed while being pulverized so as to have a particle size distribution that realizes that a part of the conductive material can be disposed through the through hole into the active material particle hollow portion.
  • the composition for forming an active material in an embodiment including these first and second mixing steps, the conductive material contained in the active material layer is present in both the active material particle hollow portion and between the active material particles.
  • the arranged lithium secondary battery can be manufactured appropriately.
  • any of the lithium secondary batteries disclosed herein, as described above, can effectively suppress a voltage drop during low-temperature output.
  • a battery mounted on a vehicle such as an automobile (typically used as a drive power source)
  • the battery is suitable. Therefore, according to the present invention, there is provided a vehicle including any of the lithium secondary batteries disclosed herein (which may be in the form of an assembled battery in which a plurality of batteries are connected).
  • a vehicle for example, a plug-in hybrid vehicle (PHV) or an electric vehicle (EV) that can be charged with a household power source
  • PGV plug-in hybrid vehicle
  • EV electric vehicle
  • FIG. 1 is a cross-sectional view schematically showing an electrode used in an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing active material particles used in one embodiment of the present invention.
  • FIG. 3 is a process flow for explaining a composition forming process according to an embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing the particle size distribution of the conductive material used in one test example of the present invention.
  • FIG. 6 is a process flow for explaining the composition forming process of Sample 5.
  • FIG. 7 is a cross-sectional SEM image of the positive electrode active material layer according to Sample 1.
  • FIG. 8 is a cross-sectional SEM image of the positive electrode active material layer according to Sample 2.
  • FIG. 9 is a cross-sectional SEM image of the positive electrode active material layer according to Sample 3.
  • FIG. 10 is a cross-sectional SEM image of the positive electrode active material layer according to Sample 5.
  • FIG. 11 is a graph showing the relationship between the discharge voltage and time.
  • FIG. 12 is a side view schematically showing a vehicle equipped with a lithium secondary battery.
  • a lithium secondary battery 100 includes a current collector 12 and an electrode 10 having a porous active material layer 14.
  • FIG. 1 is a cross-sectional view of the positive electrode 10.
  • the positive electrode 10 of one embodiment disclosed herein has a positive electrode active material layer 14 including positive electrode active material particles 30, a conductive material 16, and a binder 18 on the surface of the positive electrode current collector 12 (here, both surfaces). ).
  • an aluminum foil or other metal foil suitable for the positive electrode is preferably used.
  • the positive electrode active material particles 30 one or more kinds of substances conventionally used in lithium secondary batteries can be used without particular limitation.
  • lithium and one kind of lithium nickel oxide (for example, LiNiO 2 ), lithium cobalt oxide (for example, LiCoO 2 ), lithium manganese oxide (for example, LiMn 2 O 4 ) or the like A positive electrode active material mainly containing an oxide (lithium transition metal oxide) containing two or more transition metal elements as constituent metal elements can be given.
  • the lithium transition metal oxide is a layered rock salt type compound containing nickel as a constituent element.
  • a positive electrode active material typically substantially, mainly composed of lithium nickel cobalt manganese composite oxide (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) containing nickel, cobalt and manganese. And a positive electrode active material comprising a lithium nickel cobalt manganese composite oxide).
  • the lithium nickel cobalt manganese composite oxide is an oxide containing Li, Ni, Co and Mn as constituent metal elements, and at least one additional element other than Li, Ni, Co and Mn. It is meant to include oxides containing.
  • additional elements include Group 1 (alkali metals such as sodium), Group 2 (alkaline earth metals such as magnesium and calcium), Group 4 (transition metals such as titanium and zirconium), Group 6 ( Any of those belonging to Group 8 (transition metals such as iron, etc.), Group 8 (transition metals such as iron), Group 13 (metals such as boron or metal which is a semimetal element) and Group 17 (halogens such as fluorine) Can be included.
  • Typical examples include W, Zr, Mg, Ca, Na, Fe, Cr, Zn, Si, Sn, Al, B, and F. The same applies to lithium nickel oxide, lithium cobalt oxide, and lithium manganese oxide.
  • the positive electrode active material particles 30 used in the present embodiment include a shell portion 35, a hollow portion 34 formed inside the shell portion 35, and a through hole 36 penetrating the shell portion 35.
  • the shell portion 35 has a form in which primary particles 38 are gathered in a spherical shell shape.
  • the positive electrode active material particle 30 has a hollow structure having secondary particles 32 in which primary particles 38 are aggregated and a hollow portion 34 formed inside thereof, and the secondary particles 32 are hollow from the outside. This is a perforated hollow active material particle in which a through hole 36 penetrating to the portion 34 is formed.
  • the D50 diameter of such secondary particles is about 1 ⁇ m to 25 ⁇ m (preferably about 1 ⁇ m to 10 ⁇ m, more preferably About 3 ⁇ m to 8 ⁇ m).
  • Examples of the conductive material 16 used for the positive electrode active material layer include carbon materials such as carbon powder and carbon fiber. One kind selected from such conductive materials may be used alone, or two or more kinds may be used in combination.
  • As the carbon powder various carbon blacks (for example, acetylene black, oil furnace black, graphitized carbon black, carbon black, graphite, ketjen black), graphite powder, and the like can be used.
  • the conductive material 16 is typically smaller in particle size than the positive electrode active material particles 30.
  • the binder 18 used for the positive electrode active material layer is for bonding the positive electrode active material particles 30 and the conductive material 16, and the material constituting the binder is used for a conventionally known positive electrode for a lithium secondary battery. It can be the same material as that obtained.
  • a solvent-based solvent a solution in which the dispersion medium is mainly an organic solvent
  • a polymer that is dispersed or dissolved in the solvent-based solvent is used. it can.
  • the polymer dispersed or dissolved in the solvent-based solvent for example, polymers such as polyvinylidene fluoride (PVDF) and polyvinylidene chloride (PVDC) can be preferably used.
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • the binder is dispersed or dissolved in water as the binder.
  • the polymer to be used can be preferably employed.
  • polymer dispersed or dissolved in water examples include styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), polytetrafluoroethylene (PTFE), polyethylene (PE), polyacrylic acid (PAA), and the like.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • PTFE polytetrafluoroethylene
  • PE polyethylene
  • PAA polyacrylic acid
  • the polymer material illustrated above may be used for the purpose of exhibiting functions as a thickener and other additives of the composition in addition to the function as a binder.
  • the positive electrode active material layer 30 disclosed above is bonded to the positive electrode active material particles 30 by the action of the binder 18. Since the positive electrode active material layer 14 is in a state where the positive electrode active material particles 30 are joined by the binder 18, there are many minute cavities between the particles.
  • the conductive material 16 is typically smaller than the positive electrode active material particles 30 and enters the gaps between the positive electrode active material particles 30.
  • the conductive material 16 a disposed between the positive electrode active material particles 30 forms a conductive path between the positive electrode active material particles 30, and the positive electrode active material particles 30 and the positive electrode current collector 12 are electrically connected.
  • the positive electrode active material particle 30 has a hollow structure having a shell portion 35 and a hollow portion 34 formed therein, and a through-hole 36 penetrating from the outside to the hollow portion 34 is formed in the shell portion 35. (See FIG. 2).
  • a part 16 b of the conductive material 16 is smaller than the opening width h of the through hole 36 and enters the hollow portion 34 of the positive electrode active material particles through the through hole 36.
  • the conductive material 16 b disposed in the positive electrode active material particle hollow portion 34 and the conductive material 16 a outside the active material are electrically connected through the through hole 36. Thereby, the conductive path is also incorporated in the positive electrode active material particles 30.
  • a conductive path between the positive electrode active material particles is ensured by the conductive material 16 a disposed between the positive electrode active material particles 30, and the conductive material disposed in the active material particle hollow portion 34.
  • a conductive path is also incorporated inside the positive electrode active material particles 30 by the material 16b. Therefore, electrons can be exchanged even inside the positive electrode active material particles, and the utilization factor of the positive electrode active material can be increased. Moreover, since the electronic conductivity inside the positive electrode active material particles 30 is improved, the internal resistance can be further reduced.
  • the positive electrode 10 By using the positive electrode 10, it is possible to appropriately suppress a voltage drop due to internal resistance even when a high rate is used in a low temperature environment (for example, a severe low temperature environment such as ⁇ 30 ° C.). Therefore, according to this configuration, it is possible to provide a lithium secondary battery having good output characteristics (particularly, greatly improving output characteristics in a low temperature environment).
  • a high rate for example, a severe low temperature environment such as ⁇ 30 ° C.
  • the ratio of the conductive material 16b disposed in the active material particle hollow portion 34 is in the range of approximately 3% by mass to 30% by mass with respect to the total mass of the conductive material 16 included in the positive electrode active material layer 14.
  • the content is preferably 10% by mass to 20% by mass.
  • the conductive material 16 b disposed in the active material particle hollow portion 34 may also include a conductive material disposed in the through hole 36. According to this configuration, since the ratio of the conductive material 16b disposed in the active material particle hollow portion 34 and the conductive material 16a disposed outside the active material is in an appropriate balance, the active material particle hollow portion 34 has a conductive material. It is possible to sufficiently secure the conductive path between the positive electrode active material particles 30 while appropriately exhibiting the battery performance improvement effect (for example, the effect of suppressing the voltage drop at the low temperature output) by arranging 16b. Therefore, better battery performance can be reliably exhibited.
  • the ratio of the positive electrode active material to the entire positive electrode active material layer is preferably about 50% by mass or more (typically 90 to 99% by mass), preferably about 95 to 99% by mass. It is preferable that The proportion of the binder in the entire positive electrode active material layer is preferably about 5% by mass or less, for example, about 1% by mass or less (for example, about 0.5 to 1% by mass, for example, 0.8% by mass). It is preferable. The proportion of the conductive material in the entire positive electrode active material layer is preferably about 10% by mass or less, more preferably about 9% by mass or less (for example, about 8% by mass).
  • the proportion of the conductive material is too large, the mass per unit volume of the positive electrode active material is reduced, so that a desired energy density may not be obtained. On the other hand, if the proportion of the conductive material is too small, the positive electrode active material layer Since the conductivity decreases, the internal resistance may increase.
  • the manufacture of the positive electrode 10 disclosed herein preferably includes the following steps. That is, a positive electrode having a perforated hollow structure having a shell portion 35 made of a lithium transition metal oxide, a hollow portion 34 formed inside the shell portion 35, and a through hole 36 penetrating the shell portion 35. It includes a step of preparing the active material particles 30 (preparation step). Moreover, the process (composition formation process) of forming the composition for positive electrode active material layer formation by mixing the positive electrode active material particle 30, the electrically conductive material 16, and a solvent is included.
  • a step of obtaining a positive electrode in which a positive electrode active material layer is formed on the positive electrode current collector by applying (typically coating and drying) the positive electrode active material forming composition onto the positive electrode current collector (coating Step).
  • a conductive material having a particle size distribution and a hollow hollow structure active material particle that realizes that a part of the conductive material can penetrate and be disposed in the hollow part of the active material particle through the through hole. use. If the conductive material having such a specific particle size distribution and the perforated hollow structure active material particles are used, both the positive electrode active material particle hollow portion 34 and the positive electrode active material particles 30 are electrically conductive through a subsequent coating process.
  • the positive electrode 10 in which the materials 16a and 16b are arranged can be obtained.
  • the preparation step includes a perforated hollow structure having a shell portion 35 made of a lithium transition metal oxide, a hollow portion 34 formed inside the shell portion 35, and a through hole 36 penetrating the shell portion 35.
  • the positive electrode active material particles 30 are prepared.
  • the positive electrode active material particles having a perforated hollow structure include, for example, at least one of transition metal elements contained in a lithium transition metal oxide constituting the active material particles (preferably a metal other than lithium contained in the oxide).
  • the transition metal hydroxide is precipitated from an aqueous solution containing all of the elements under appropriate conditions (raw material hydroxide generation step), and the transition metal hydroxide and lithium compound are mixed and fired. Can be manufactured.
  • the raw material hydroxide generation step includes a nucleation stage in which a transition metal hydroxide is precipitated from an aqueous solution at a pH of 12 or more and an ammonium ion concentration of 25 g / L or less, and the precipitated transition metal hydroxide is less than pH 12 and And a particle growth stage for growing at an ammonium ion concentration of 3 g / L or more.
  • the firing step is preferably performed so that the maximum firing temperature is 800 ° C. to 1100 ° C. According to such a production method, the active material particles having a preferred perforated hollow structure disclosed herein can be appropriately produced.
  • the mixing step is a step of forming a paste-form or slurry-form composition for forming a positive electrode active material layer by mixing the prepared perforated hollow structure positive electrode active material particles 30, the conductive material 16, a binder, and a solvent. .
  • a paste is also referred to as a paste.
  • the solvent examples include water or a mixed solvent mainly composed of water.
  • a solvent other than water constituting such a mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • it may be an organic solvent such as N-methylpyrrolidone (NMP), pyrrolidone, methyl ethyl ketone, methyl isobutyl ketone, ixahexanone, toluene, dimethylformamide, dimethylacetamide, or a combination of two or more thereof.
  • NMP N-methylpyrrolidone
  • pyrrolidone pyrrolidone
  • methyl ethyl ketone methyl isobutyl ketone
  • ixahexanone ixahexanone
  • toluene dimethylformamide, dimethylacetamide, or a combination of two or more thereof.
  • the conductive material 16 contained in the positive electrode active material layer is disposed both in the positive electrode active material particle hollow portion 34 and between the positive electrode active material particles 30. It is necessary to be.
  • a conductive material having a particle size distribution that realizes that a part of the conductive material can be disposed through the through-hole into the active material particle hollow portion is used. Can be mentioned.
  • a conductive material having a cumulative 10% particle size (D10) of 0.25 ⁇ m or less eg, 0.1 ⁇ m to 0.25 ⁇ m, preferably 0.1 ⁇ m to 0.2 ⁇ m, particularly preferably 0.1 ⁇ m to 0.15 ⁇ m
  • D10 cumulative 10% particle size
  • an appropriate amount of conductive material can be disposed in the active material particle hollow portion 34 through the through hole.
  • D90 cumulative 90% particle size
  • the configuration using the conductive material having a cumulative 10% particle size of 0.25 ⁇ m or less is advantageous for disposing the conductive material in the positive electrode active material particle hollow portion 34 through the through hole.
  • simply reducing the particle diameter of the conductive material also reduces the diameter of the conductive material disposed between the positive electrode active material particles 30, so that the conductive paths (conductive paths) between the positive electrode active material particles 30 are narrow. It tends to be.
  • a positive electrode active material can be obtained by using a conductive material having a relatively wide particle size distribution in which the cumulative 10% particle size (D10) is 0.25 ⁇ m or less and the cumulative 90% particle size (D90) is 1 ⁇ m or more.
  • An appropriate amount of conductive material is disposed in the particle hollow portion, and a relatively large conductive material is disposed between the positive electrode active material particles. Therefore, a thick conductive path can be formed between the positive electrode active material particles while arranging an appropriate amount of the conductive material in the active material particle hollow portion. Thereby, the electron transfer between the positive electrode active material layer 14 and the positive electrode current collector 12 can be performed more efficiently, and the conductivity of the positive electrode active material layer 14 can be further improved.
  • Preferred examples of the conductive material disclosed herein include D10 of 0.25 ⁇ m or less and D90 of 1 ⁇ m or more, D10 of 0.2 ⁇ m or less, and D90 of 5 ⁇ m or more, And those having D10 of 0.15 ⁇ m or less and D90 of 10 ⁇ m or more.
  • the cumulative 50% particle size that is, the particle size (median value) corresponding to 50% cumulative from the fine particle side in the volume-based particle size distribution; D50
  • the cumulative 50% particle size is 1 ⁇ m or less (for example, 0.
  • the volume average diameter is 0.5 ⁇ m or more (for example, 0.5 ⁇ m to 5 ⁇ m, preferably 1 ⁇ m to 4 ⁇ m).
  • Examples thereof include a conductive material having a certain particle size distribution. By using a conductive material having such a particle size distribution, an appropriate amount of conductive material can be disposed in the positive electrode active material particle hollow portion 34 while forming a thick conductive path between the positive electrode active material particles.
  • the preferred particle size distribution (D10, D90) of the conductive material may vary depending on the opening width h of the through hole 36 formed in the shell portion 35 of the positive electrode active material particle 30.
  • the opening width h of the through hole is a passing length in the narrowest portion in the path from the outside of the positive electrode active material particle to the hollow portion.
  • the cumulative 10% particle size (D10) of the conductive material is preferably smaller than the average opening width of the through holes, for example, more preferably about 1/2 or less of the average opening width, and about 1/3.
  • the cumulative 90% particle size (D90) of the conductive material is preferably larger than the average opening width of the through holes, for example, more preferably about twice or more of the average opening width, and about 3 or more times. It is particularly preferred.
  • the average value (average opening width) of the opening width of the through hole is, for example, the opening size of a part or all of the through holes of the positive electrode active material particles with respect to at least 10 positive electrode active material particles. It can be obtained by grasping and calculating their arithmetic average value.
  • the average opening width of the through-hole 36 disclosed herein may be in the range of about 0.1 ⁇ m to 0.2 ⁇ m or more (for example, 0.1 ⁇ m to 2 ⁇ m, preferably 0.5 ⁇ m to 2 ⁇ m).
  • a through hole having an average opening width of about 1 ⁇ m to 2 ⁇ m is particularly preferable. According to this aspect, the above-described effects can be more appropriately exhibited.
  • the above-described perforated hollow structure positive electrode active material particles, the conductive material, the binder, and the solvent are mixed to form a positive electrode active material layer forming paste.
  • the operation of mixing (kneading) the positive electrode active material particles, the conductive material, the binder, and the solvent can be performed using, for example, an appropriate disperser.
  • a disperser may be a media disperser or a medialess disperser.
  • ceramic beads such as glass and zirconia are put into a disperser such as a ball mill and mixed together with a conductive material.
  • the positive electrode active material layer forming paste containing the conductive material having the specific particle size distribution described above can be obtained by appropriately selecting the kneading conditions such as the kneading time and the processing rotation speed by the disperser.
  • a conductive material, a binder, and a solvent are first kneaded to form a conductive material composition (hereinafter also referred to as a conductive material paste).
  • the positive electrode active material particles may be added to the conductive material paste to form a positive electrode active material layer forming paste (second mixing step; S12).
  • the conductive material may be dispersed and mixed while being pulverized so that the particle size distribution of the conductive material becomes the specific particle size distribution described above.
  • the second mixing step (S20) it is preferable to perform dispersion mixing so that the conductive material adjusted to the specific particle size distribution, the positive electrode active material particles, and the binder can be uniformly dispersed.
  • the positive electrode active material particles, the conductive material and the binder are uniformly dispersed while appropriately controlling the particle size distribution of the conductive material.
  • a positive electrode active material layer forming paste is obtained.
  • the first mixing stage (S10) and the second mixing stage (S12) may be performed using the same disperser or different dispersers. From the viewpoint of productivity, it is preferable to use the same (common) disperser.
  • the dispersion force for dispersing the conductive material in the first mixing stage and the dispersion force for dispersing the positive electrode active material particles in the second mixing stage may be the same or different.
  • the kneading of the conductive material and the kneading of the positive electrode active material are performed separately, and by appropriately adjusting the relationship between the dispersion forces of the two, while maintaining the dispersibility of the positive electrode active material, The particle size distribution can be controlled more easily.
  • a conductive material (average particle size 50 ⁇ m), a binder, and a solvent are stirred and mixed at a rotational speed of 3500 to 5000 rpm for a predetermined time (for example, 60 minutes) using a homogenizer, and the above-mentioned specific particle size distribution is obtained.
  • the conductive material is kneaded while being crushed so as to form a conductive material paste (S10).
  • positive electrode active material particles for example, an average particle size of 4 to 5 ⁇ m
  • the mixture is stirred and mixed for 40 to 60 minutes using the homogenizer at a rotation speed of 5500 rpm to form a positive electrode active material layer forming paste. (S12).
  • a forming paste can be obtained.
  • Such kneading conditions can be appropriately changed according to the shape (for example, particle size) of the positive electrode active material to be used, other constituent materials, composition, design, and the like.
  • the electrically conductive material paste may contain the material which can function as a dispersing agent as needed. Thereby, the particle size distribution of the conductive material can be controlled more appropriately.
  • dispersant examples include polymer compounds having a hydrophobic chain and a hydrophilic group such as polyvinyl butyral and polyvinyl pyrrolidone.
  • anionic compounds having sulfates, sulfonates, phosphates and the like and cationic compounds such as amines are exemplified.
  • the positive electrode active material layer forming paste disclosed herein has a relatively low viscosity because the particle size distribution of the conductive material in the paste is adjusted as described above.
  • the viscosity of the positive electrode active material layer forming paste measured with a commercially available E-type viscometer at a liquid temperature of 25 ° C. and a shear rate of 2 s ⁇ 1 is 10000 mPa ⁇ s or less (eg, 4000 mPa ⁇ s to 10000 mPa ⁇ s).
  • the positive electrode active material layer forming paste whose viscosity is adjusted in this way, the positive electrode in which the conductive material contained in the positive electrode active material layer is disposed between both positive electrode active material particles and in the positive electrode active material particle hollow portion is stabilized. Can be manufactured.
  • a paste having such a viscosity range is also suitable from the viewpoint of handleability (for example, coating properties when the paste is applied to a positive electrode current collector to form an electrode).
  • the lower limit of the viscosity of the paste is not particularly limited, but if the viscosity is too low, the paste may sag when applied to the current collector. From the viewpoint of making the viscosity suitable for coating, it is generally 2000 mPa ⁇ s or more.
  • the positive electrode active material layer forming paste obtained by mixing and dispersing as described above is applied (typically applied and dried) to the positive electrode current collector to obtain a positive electrode active material layer.
  • the operation of applying (applying) the positive electrode active material layer forming paste to the positive electrode current collector can be performed in the same manner as in the case of producing a conventional positive electrode for a lithium secondary battery.
  • a suitable coating device slit coater, die coater, comma coater, etc.
  • the positive electrode current collector is coated with a predetermined amount of the positive electrode active material layer forming paste to a uniform thickness. Can be done.
  • the coating material is dried (typically 70 to 200 ° C.) by an appropriate drying means to remove the solvent in the positive electrode active material layer forming paste.
  • a positive electrode active material layer including a positive electrode active material, a conductive material, and a binder is formed.
  • the thickness and density of a positive electrode active material layer can be suitably adjusted by performing an appropriate press process (for example, roll press process) as needed.
  • the electrode obtained in this manner (positive electrode in this example) is held by the positive electrode current collector 12 with the positive electrode active material layer 14 including the positive electrode active material particles 30, the conductive material 16, and the binder 18. It has the structure made.
  • the positive electrode active material particle 30 has a hollow structure having a shell portion 35 and a hollow portion 34 formed therein, and a through-hole 36 penetrating from the outside to the hollow portion 34 is formed in the shell portion 35. .
  • the conductive material 16 can be pulverized so as to have a particle size distribution that realizes that a part of the conductive material can penetrate into the hollow portion of the active material particles.
  • the conductive material 16 is typically smaller than the positive electrode active material particles 30 and enters between the positive electrode active material particles 30. A part of the conductive material 16 is smaller than the opening width (for example, about 1 ⁇ m) of the through hole 36 and enters the positive electrode active material particle hollow portion 34 through the through hole 36.
  • a lithium secondary battery in which the conductive material 16 contained in the positive electrode active material layer 14 is disposed both between the positive electrode active material particle hollow portion 34 and the positive electrode active material particle 30 is appropriately manufactured. can do.
  • the conductive material 16 can be arranged separately from the positive electrode active material particles 30 without compositing the positive electrode active material particles 30 and the conductive material 16. Therefore, the reaction of the positive electrode active material 30 is not inhibited, and better battery performance can be exhibited.
  • Such an electrode can perform, for example, more efficient electron transfer between the active material layer and the current collector. Therefore, the constituent elements of the battery of various forms or the constituent elements of the electrode body (for example, it can be preferably used as a positive electrode).
  • a positive electrode manufactured by any of the methods disclosed herein, a negative electrode (which may be a negative electrode manufactured by applying the present invention), an electrolyte disposed between the positive and negative electrodes, Can be preferably used as a component of a lithium secondary battery including a separator that separates the positive and negative electrodes (can be omitted in a battery using a solid or gel electrolyte).
  • Structure for example, metal casing or laminate film structure
  • size of an outer container constituting such a battery or structure of an electrode body (for example, a wound structure or a laminated structure) having a positive / negative electrode current collector as a main component
  • the lithium secondary battery 100 includes a case 50 made of metal (a resin or a laminate film is also suitable).
  • the case (outer container) 50 includes a flat rectangular parallelepiped case main body 52 whose upper end is opened, and a lid 54 that closes the opening.
  • the upper surface of the case 50 (that is, the lid 54) is provided with a positive electrode terminal 70 that is electrically connected to the positive electrode 10 of the wound electrode body 80 and a negative electrode terminal 72 that is electrically connected to the negative electrode 20 of the electrode body.
  • a long sheet-like positive electrode (positive electrode sheet) 10 and a long sheet-like negative electrode (negative electrode sheet) 20 are laminated together with a total of two long sheet-like separators (separator sheets) 40.
  • a flat wound electrode body 80 produced by winding and then crushing the resulting wound body from the side direction and kidnapping is housed.
  • the positive electrode sheet 10 has a configuration in which the positive electrode active material layer 14 mainly composed of the positive electrode active material 30 (see FIG. 1) is provided on both surfaces of the long sheet-like positive electrode current collector 12.
  • the negative electrode sheet 20 has a configuration in which a negative electrode active material layer mainly composed of a negative electrode active material is provided on both surfaces of a long sheet-like negative electrode current collector.
  • active material layer non-formed portions 10 ⁇ / b> A and 10 ⁇ / b> B in which the active material layer is not provided on any surface are formed.
  • the positive electrode sheet 10 and the negative electrode active material layer non-formed part of the positive electrode sheet 10 and the negative electrode active material layer non-formed part of the negative electrode sheet 20 protrude from both sides of the separator sheet 40 in the width direction.
  • the negative electrode sheet 20 is overlaid with a slight shift in the width direction.
  • the active material layer non-formed portions 10A and 20A of the positive electrode sheet 10 and the negative electrode sheet 20 are respectively wound core portions (that is, the positive electrode active material layer of the positive electrode sheet 10).
  • a positive electrode lead terminal 74 and a negative electrode lead terminal 76 are respectively attached to the protruding portion (that is, the non-forming portion of the positive electrode active material layer) 10A and the protruding portion (that is, the non-forming portion of the negative electrode active material layer) 20A. Are electrically connected to the positive electrode terminal 70 and the negative electrode terminal 72 described above.
  • the constituent elements other than the positive electrode sheet 10 constituting the wound electrode body 80 may be the same as the electrode body of the conventional lithium secondary battery, and are not particularly limited.
  • the negative electrode sheet 20 can be formed by applying a negative electrode active material layer mainly composed of a negative electrode active material for a lithium secondary battery on a long negative electrode current collector.
  • a copper foil or other metal foil suitable for the negative electrode is preferably used.
  • the negative electrode active material one or more of materials conventionally used in lithium secondary batteries can be used without any particular limitation.
  • Preferable examples include carbon materials such as graphite carbon and amorphous carbon, lithium transition metal composite oxides (lithium titanium composite oxides, etc.), lithium transition metal composite nitrides, and the like.
  • separator sheet 40 used between the positive and negative electrode sheets 10 and 20 there may be mentioned one made of a porous polyolefin resin.
  • a separator may not be necessary (that is, in this case, the electrolyte itself can function as a separator).
  • the electrolyte may be a solution in which a supporting salt such as LiPF 6 is dissolved in a non-aqueous solvent.
  • a supporting salt such as LiPF 6
  • an electrolyte typically, a lithium salt such as LiPF 6 in an appropriate amount (for example, 1 M concentration) is dissolved in a non-aqueous solvent such as a mixed solvent of diethyl carbonate and ethylene carbonate (for example, a mass ratio of 1: 1). It can be used as an electrolyte solution.
  • the sealing process of the case 50 and the process of placing (injecting) the electrolyte may be the same as those used in the production of a conventional lithium secondary battery, and do not characterize the present invention. In this way, the construction of the lithium secondary battery 100 according to this embodiment is completed.
  • the lithium secondary battery 100 constructed in this way exhibits excellent battery performance because it is constructed using at least one electrode having a low internal resistance as described above. For example, by constructing a battery (for example, a lithium secondary battery) using the electrode, a battery having excellent output characteristics (particularly, output characteristics in a low temperature environment) can be provided.
  • test examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in the following test examples.
  • positive electrode active material particles having a perforated hollow structure were prepared.
  • the positive electrode sheet was produced by changing the particle size distribution of the conductive material.
  • the lithium secondary battery for evaluation tests was manufactured using this positive electrode sheet, and the performance was evaluated.
  • Example 1 As shown in FIG. 3, AB 9 parts by weight as a conductive material (average particle size 50 ⁇ m), 2.24 parts by weight of PVDF as a binder, 0.224 parts by weight of polyvinyl butyral as a dispersant, and NMP88.
  • the conductive material paste was formed by charging 536 parts by weight into a homogenizer and stirring and kneading at 3000 rpm for 60 minutes at 25 ° C. (first mixing stage; composition forming process).
  • first mixing stage composition forming process
  • Table 1 shows the values of cumulative 10% particle size (D10), cumulative 50% particle size (D50), cumulative 90% particle size (D90), and volume average diameter (MV). Further, when the viscosity of the conductive material paste was measured with an E-type viscometer (liquid temperature 25 ° C., shear rate 2 s ⁇ 1 ), it was about 10050 mPa ⁇ s.
  • the pore-shaped hollow structure positive electrode active material particles are prepared by appropriately devising the generation processing of the positive electrode active material particles (for example, the pH, ammonium ion concentration, maximum firing temperature, etc. in the raw material hydroxide generation step described above). did.
  • Example 2 A conductive material paste was formed in the same manner as Sample 1 except that the rotation speed of the homogenizer was 3500 rpm in the first mixing stage. Table 1 and FIG. 5 show the particle size distribution of the conductive material powder contained in the conductive material paste. Then, a positive electrode active material layer forming paste was obtained in the same manner as Sample 1.
  • Example 3 A conductive material paste was formed in the same manner as Sample 1 except that the rotation speed of the homogenizer was set to 4000 rpm in the first mixing stage. Table 1 and FIG. 5 show the particle size distribution of the conductive material powder contained in the conductive material paste. Then, a positive electrode active material layer forming paste was obtained in the same manner as Sample 1.
  • Example 4 A conductive material paste was formed in the same manner as Sample 1 except that the rotation speed of the homogenizer was set to 6000 rpm in the first mixing stage. Table 1 shows the particle size distribution of the conductive material powder contained in the conductive material paste. Then, a positive electrode active material layer forming paste was obtained in the same manner as Sample 1.
  • a positive electrode active material layer forming paste was formed without using a conductive material paste.
  • a conductive material paste 64.1 parts by weight of LiNi 1/3 Co 1/3 Mn 1/3 O 2 powder as a perforated hollow structure positive electrode active material and AB5.7 as a conductive material.
  • Part by weight and 28.8 parts by weight of NMP as a solvent were put into a planetary mixer and stirred and mixed (kneaded) at 25 ° C. for 60 minutes at a rotation speed of 40 rpm.
  • the positive electrode active material layer forming paste of Samples 1 to 5 is applied to both sides of a 15 ⁇ m thick aluminum foil positive electrode current collector and dried, and the positive electrode active material layer is formed on both sides of the positive electrode current collector.
  • a positive electrode sheet provided with was prepared.
  • the application amount of the positive electrode active material layer forming paste was adjusted so that the total amount of both surfaces was about 11.2 mg / cm 2 (based on solid content). After drying, the positive electrode active material layer was pressed to a thickness of about 66 ⁇ m.
  • FIGS. 7 to 10 show cross-sectional SEM images of Samples 1 to 3 and 5, respectively.
  • the spotted portion indicating the conductive material 16a is observed only between the positive electrode active material particles 30, and the positive electrode active material No conductive material was observed in the hollow portions 34 of the particles.
  • the spot portions indicating the conductive material 16a were observed only between the positive electrode active material particles 30, and no conductive material was observed in the hollow portion 34 of the positive electrode active material particles (FIG. 10).
  • the spot portions indicating the conductive material 16a are the positive electrode active material particles 30.
  • a spot portion indicating the conductive material 16b was also observed in the hollow portion 34 of the positive electrode active material particles. The conductive material 16b is connected to the conductive material 16a outside the positive electrode active material through the through hole.
  • the hollow portion 34 of the positive electrode active material particles and the positive electrode active material were obtained by using the active material particles having a hollow hollow structure and setting the cumulative 10% particle diameter (D10) of the conductive material to 0.25 ⁇ m or less. It was confirmed that the conductive materials 16a and 16b can be arranged in both the gaps between the particles 30.
  • the test lithium secondary battery was produced as follows.
  • ⁇ Preparation of negative electrode sheet> For forming a negative electrode active material layer, graphite powder as a negative electrode active material, SBR as a binder, and CMC as a thickener are mixed in water so that the mass ratio of these materials becomes 98: 1: 1.
  • a paste was prepared.
  • a negative electrode active material layer is provided on both surfaces of the negative electrode current collector by applying the negative electrode active material layer forming paste in a strip shape on both sides of a 10 ⁇ m thick copper foil negative electrode current collector and drying it.
  • the obtained negative electrode sheet was produced.
  • the coating amount of the negative electrode active material layer forming paste was adjusted so that the total amount of both surfaces was about 7.1 mg / cm 2 (based on solid content). Moreover, after drying, it pressed so that the thickness of a negative electrode active material layer might be set to about 73 micrometers.
  • the positive electrode sheet and the negative electrode sheet two separator sheets having a single layer structure made of porous polyethylene were used.
  • the flat wound electrode body was produced by laminating and winding through a), and crushing the rolled body from the lateral direction and causing it to be ablated.
  • This wound electrode body was housed in a box-type battery container together with a non-aqueous electrolyte, and the opening of the battery container was hermetically sealed.
  • LiPF 6 as a supporting salt in a mixed solvent containing ethylene carbonate (EC), diethyl carbonate (DEC), and methyl propionate in a volume ratio of 3: 5: 2 at a concentration of about 1 mol / liter.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • methyl propionate in a volume ratio of 3: 5: 2 at a concentration of about 1 mol / liter.
  • the rated capacity of the test lithium secondary battery constructed as described above was measured by the following procedures 1 to 3 at a temperature of 25 ° C. and a voltage range of 3.0 V to 4.1 V.
  • Procedure 1 Discharge to 3.0 V at a constant current of 1 C, then discharge at constant voltage for 2 hours and rest for 10 seconds.
  • Procedure 2 Charge to 4.1V with a constant current of 1 C, then charge at a constant voltage for 2.5 hours and rest for 10 seconds.
  • Procedure 3 Discharge to 3.0 V at a constant current of 0.5 C, then discharge at a constant voltage for 2 hours, and stop for 10 seconds.
  • the discharge capacity (CCCV discharge capacity) in the discharge from the constant current discharge in the procedure 3 to the constant voltage discharge was made into the rated capacity.
  • the rated capacity was about 4 Ah.
  • SOC adjustment For each test lithium secondary battery, the SOC was adjusted by the following procedures 1 and 2. In addition, in order to make the influence by temperature constant, SOC adjustment was performed in a temperature environment of 25 degreeC.
  • Procedure 1 Charging at a constant current of 3V to 1C to obtain a charged state (SOC 60%) of about 60% of the rated capacity.
  • SOC means State of Charge.
  • Procedure 2 After Procedure 1, charge at constant voltage for 2.5 hours. Thereby, the test lithium secondary battery can be adjusted to a predetermined state of charge.
  • the battery according to Samples 2 and 3 in which the conductive material is disposed between both the positive electrode active material particles and the hollow portion has a voltage higher than that of Samples 1 and 5 disposed only between the positive electrode active material particles.
  • the decline of the was suppressed. From this, it has been confirmed that the low temperature output characteristics can be improved by arranging the conductive material both between the positive electrode active material particles and the hollow part of the positive electrode active material particles.
  • the battery according to Sample 5 had lower low-temperature output characteristics than Samples 1 and 5 even though the conductive material was disposed between the positive electrode active material particles and in the hollow portion of the positive electrode active material particles.
  • the cumulative 90% particle size (D90) of the conductive material is preferably 1 ⁇ m or more.
  • the lithium secondary battery according to the present invention is excellent in low-temperature output characteristics as described above, it can be suitably used particularly as a power source for a motor (electric motor) mounted on a vehicle such as an automobile.
  • a vehicle 1 typically an automobile, in particular a hybrid automobile, an electric automobile, a fuel cell automobile
  • a battery 100 which may be in the form of an assembled battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明のリチウム二次電池は、集電体12と、集電体12に保持され、活物質粒子30と導電材16とを含む活物質層14とを備える。活物質粒子30は、リチウム遷移金属酸化物で構成された殻部と、殻部の内部に形成された中空部と、記殻部を貫通する貫通孔とを有する。そして、活物質層14中に含まれる導電材16が、活物質粒子中空部と活物質粒子30間との双方に配置されている。

Description

リチウム二次電池
 本発明はリチウム二次電池に関する。詳しくは、集電体と、該集電体に保持され、活物質粒子と導電材とを含む活物質層とを備えたリチウム二次電池に関する。
 なお、本国際出願は2011年8月26日に出願された日本国特許出願第2011-185333号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 近年、リチウムイオン電池、ニッケル水素電池その他の二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池は、車両搭載用高出力電源として好ましく用いられている。リチウム二次電池は、リチウムイオン(Liイオン)を可逆的に吸蔵および放出し得る材料(活物質)を正負の電極に備えており、正負の電極の間をLiイオンが行き来することによって充電及び放電が行われる。
 かかるリチウム二次電池の正極に用いられる活物質(正極活物質)の代表例として、リチウムと遷移金属元素とを含むリチウム遷移金属酸化物が挙げられる。例えば、上記遷移金属元素として少なくともニッケル(Ni)を含むリチウム遷移金属酸化物(ニッケル含有リチウム遷移金属酸化物)であって層状構造を有するものが好ましく用いられる。かかるリチウム遷移金属酸化物は、電子伝導性が低いため、通常、炭素粉等の導電材と混ぜ合わせて使用され得る。リチウム二次電池の活物質及び導電材に関する技術文献として特許文献1が挙げられる。
特開2003-173777号公報
 ところで、いわゆるハイブリッド車(プラグインハイブリッド車を含む)、電気自動車など、電気モータで車輪を駆動させる車両では、電池に蓄えられた電力のみでの走行が可能である。かかる車両は、寒冷地や冬季などの低い気温でも作動可能でなければならず、この場合に備えるべき動力源としての要件は、低温での優れた出力特性である。
 特許文献1には、出力特性の向上を図るべく、スプレードライ法により炭素粉と正極活物質とを複合化する技術が記載されている。しかし、かかる技術によると、炭素粉のまわりに正極活物質を保持させた構成となるため、炭素粉同士の接触が悪く、正極活物質間相互の導電パス(導電経路)が細くなりがちである。そのため、正極活物質と正極集電体との間の電子移動を効率よく行うことができず、高出力使用時に電圧低下が生じる虞がある。特に低温環境下では、正極活物質の反応性や正極活物質層内のLiイオン拡散性が低下傾向となるため、上記性能劣化(高出力使用時での電圧低下等)が起こりやすかった。本発明は上記課題を解決することを目的とする。
 本発明に係るリチウム二次電池は、集電体と、上記集電体に保持され、活物質粒子と導電材とを含む活物質層とを備える。上記活物質粒子は、リチウム遷移金属酸化物で構成された殻部と、上記殻部の内部に形成された中空部と、上記殻部を貫通する貫通孔とを有する。そして、上記活物質層中に含まれる導電材が、上記活物質粒子中空部と上記活物質粒子間との双方に配置されていることを特徴とする。
 本発明の構成では、活物質層中に含まれる導電材(粉末状)が、典型的には活物質粒子(例えば4~5μm程度)よりも小さく、活物質粒子間に入り込んでいる。かかる活物質粒子間に配置された導電材によって活物質粒子相互間の導電パス(導電経路)が形成されている。また、活物質粒子は、殻部とその内部に形成された中空部とを有する中空構造であって、その殻部に外部から中空部まで貫通する貫通孔が形成されている。導電材の一部は、上記貫通孔の開口幅(例えば1μm程度)よりも小さく、貫通孔を通して活物質粒子の中空部に入り込んでいる。かかる活物質粒子中空部に配置された導電材と、活物質粒子間の導電材とは、貫通孔を通して電気的に連結されている。これにより活物質粒子内部にも導電パスが組み込まれている。
 かかる構成によると、活物質粒子間に配置された導電材によって活物質粒子相互間の導電パス(導電経路)が確保されるとともに、活物質粒子中空部に配置された導電材によって活物質粒子内部にも導電パスが組み込まれている。そのため、活物質粒子内部でも電子の授受が可能になり、活物質粒子の利用率を高めることができる。また、活物質粒子内部の電子伝導性が向上するので、内部抵抗をより低くすることができる。かかる電極を用いれば、低温環境下(例えば-30℃程度の温度環境下)での高出力使用時でも、内部抵抗による電圧低下を適切に抑えることができる。従って、本発明によると、低温環境下における出力特性を大きく向上させたリチウム二次電池を提供することができる。
 なお、本明細書において「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。一般にリチウムイオン電池と称される電池は、本明細書におけるリチウム二次電池に包含される典型例である。
 ここに開示されるリチウム二次電池の好ましい一態様では、上記活物質粒子中空部に配置された導電材は、上記活物質粒子とは別体として形成されている。かかる構成によると、活物質粒子と導電材とを複合化することなく、導電材が活物質粒子と別体として配置されているので、活物質の反応が阻害されない。したがって、より良好な電池性能を発揮することができる。
 好ましい一態様では、上記導電材(典型的には粉末状)のレーザ回折により求められた粒度分布において、累積10%粒径(即ち体積基準の粒度分布において微粒子側からの累積10%に相当する粒径;D10)が0.25μm以下であり、かつ累積90%粒径(即ち体積基準の粒度分布において微粒子側からの累積90%に相当する粒径;D90)が1μm以上である。このような粒度分布を有する導電材を用いることにより、活物質粒子相互間に太い導電パス(導電経路)を形成しつつ、活物質粒子中空部に適量の導電材を配置することができる。
 ここに開示されるリチウム二次電池の好ましい一態様では、上記活物質粒子中空部に配置された導電材の割合が、上記活物質層中に含まれる導電材の全質量の3質量%~30質量%であり、好ましくは10質量%~20質量%である。かかる構成によると、活物質粒子中空部に配置された導電材と、活物質粒子間に配置された導電材との比率が適切なバランスにあるので、活物質粒子中空部に導電材を配置することによる電池性能向上効果(例えば、低温出力時における電圧低下を抑制する効果)を適切に発揮しつつ、活物質粒子相互間に太い導電パス(導電経路)を形成することができる。したがって、より良好な電池性能を確実に発揮することができる。
 上記リチウム遷移金属酸化物としては、少なくともニッケルを構成元素として含む層状構造の化合物が好ましい。かかる組成の活物質粒子によると、より高性能なリチウム二次電池が構築され得る。例えば、ニッケル、コバルトおよびマンガンを構成元素として含む層状構造の化合物を好ましく採用し得る。
 本発明によると、また、ここに開示されるいずれかのリチウム二次電池を製造する方法が提供される。この製造方法は、リチウム遷移金属酸化物で構成された殻部と、該殻部の内部に形成された中空部と、該殻部を貫通する貫通孔とを有する孔開き中空構造の活物質粒子を用意することを包含する。上記製造方法は、また、上記活物質粒子と導電材と溶媒とを混合することにより活物質層形成用組成物(即ち、ペースト状若しくはスラリー状の組成物)を形成する工程(組成物形成工程)を包含する。上記製造方法は、また、上記活物質形成用組成物を集電体上に付与することにより上記集電体上に活物質層が形成された電極を得る工程を包含する。さらに、上記電極を用いてリチウム二次電池を構築する工程を包含する。ここで上記組成物形成工程では、上記導電材の一部が上記貫通孔を通して上記活物質粒子中空部に侵入して配置され得ることを実現する粒度分布を有する導電材と孔開き中空構造活物質粒子とを使用することを特徴とする。かかる製造方法によると、活物質層中に含まれる導電材が、活物質粒子中空部と活物質粒子間との双方に配置されたリチウム二次電池を適切に製造することができる。また、上記製造方法によると、活物質粒子と導電材とを複合化することなく、導電材を活物質粒子と別体として配置することができる。そのため、活物質粒子の反応が阻害されず、より高性能なリチウム二次電池を製造することができる。
 好ましくは、上記粒度分布を有する導電材として、累積10%粒径(D10)が0.25μm以下であり、かつ累積90%粒径(D90)が1μm以上である導電材を使用する。上述のように、累積10%粒径が0.25μm以下である導電材を用いる構成は、貫通孔を通して活物質粒子中空部に導電材を配置するのに有利である。その一方、導電材の粒径を単純に小さくするだけでは、活物質粒子間に配置される導電材も小径化するため、活物質粒子相互間の導電パス(導電経路)が細くなりがちである。ここに開示される製造方法によると、上記のように累積10%粒径(D10)が0.25μm以下であり、なおかつ累積90%粒径(D90)が1μm以上である特定粒度分布の導電材を用いることにより、活物質粒子中空部に適量の導電材が配置され、かつ活物質粒子間に比較的大きな導電材が配置され得る。そのため、活物質粒子中空部に適量の導電材を配置しつつ、活物質粒子相互間に太い導電パス(導電経路)を形成することができる。
 ここで開示されるリチウム二次電池製造方法の好ましい一態様では、上記組成物形成工程は、上記導電材と上記溶媒とを混合して導電材組成物を形成する第一混合段階と、上記導電材組成物と上記活物質粒子とを混合して上記活物質形成用組成物を得る第二混合段階とを含む。上記第一混合段階では、上記導電材の一部が上記貫通孔を通して上記活物質粒子中空部に侵入して配置され得ることを実現する粒度分布となるように上記導電材を粉砕しつつ混合する。これら第一および第二の混合段階を含む態様で上記活物質形成用組成物を形成することにより、活物質層中に含まれる導電材が活物質粒子中空部と活物質粒子間との双方に配置されたリチウム二次電池が適切に製造され得る。
 ここに開示される何れかのリチウム二次電池は、上記のとおり、低温出力時における電圧低下が有効に抑えられることから、例えば自動車等の車両に搭載される電池(典型的には駆動電源用途の電池)として好適である。したがって本発明によると、ここに開示される何れかのリチウム二次電池(複数の電池が接続された組電池の形態であり得る。)を備える車両が提供される。特に、該リチウム二次電池を動力源として備える車両(例えば家庭用電源で充電できるプラグインハイブリッド車(PHV)や電気自動車(EV)等)が提供される。
図1は本発明の一実施形態に用いられる電極を模式的に示す断面図である。 図2は本発明の一実施形態に用いられる活物質粒子を模式的に示す断面図である。 図3は本発明の一実施形態に係る組成物形成工程を説明するための工程フローである。 図4は本発明の一実施形態に係るリチウム二次電池を模式的に示す図である。 図5は本発明の一試験例に用いられる導電材の粒度分布を示す図である。 図6はサンプル5の組成物形成工程を説明するための工程フローである。 図7はサンプル1に係る正極活物質層の断面SEM像である。 図8はサンプル2に係る正極活物質層の断面SEM像である。 図9はサンプル3に係る正極活物質層の断面SEM像である。 図10はサンプル5に係る正極活物質層の断面SEM像である。 図11は放電電圧と時間との関係を示すグラフである。 図12はリチウム二次電池を搭載した車両を模式的に示す側面図である。
 以下、本発明の好適な実施形態を図面に基づいて説明する。各図面は、模式的に描いており、必ずしも実物を反映しない。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 本発明の一実施形態に係るリチウム二次電池100は、図1に示すように、集電体12と、多孔質の活物質層14を有する電極10を備えている。特に限定することを意図したものではないが、以下では主としてアルミニウム製の箔状正極集電体(アルミニウム箔)12を有するリチウム二次電池100用の正極(正極シート)10を例として、本実施形態に用いられる電極について説明する。図1は、正極10の断面図である。
 ここで開示される一態様の正極10は、図1に示すように、正極活物質粒子30と導電材16とバインダ18を含む正極活物質層14が正極集電体12の表面(ここでは両面)に保持された構造を有する。正極集電体12にはアルミニウム箔その他の正極に適する金属箔が好適に使用される。
 上記の正極活物質粒子30には、従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。ここに開示される技術の好ましい適用対象として、リチウムニッケル酸化物(例えばLiNiO)、リチウムコバルト酸化物(例えばLiCoO)、リチウムマンガン酸化物(例えばLiMn)等の、リチウムと一種または二種以上の遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)を主成分とする正極活物質が挙げられる。好ましくは、上記リチウム遷移金属酸化物は、ニッケルを構成元素として含む層状岩塩型構造の化合物である。中でも、ニッケル、コバルトおよびマンガンを含有するリチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/3)を主成分とする正極活物質(典型的には、実質的にリチウムニッケルコバルトマンガン複合酸化物からなる正極活物質)への適用が好ましい。
 ここで、リチウムニッケルコバルトマンガン複合酸化物とは、Li,Ni,Co及びMnを構成金属元素とする酸化物のほか、Li,Ni,Co及びMn以外に他の少なくとも一種の付加的な元素を含む酸化物をも包含する意味である。かかる付加的な元素としては、周期表の1族(ナトリウム等のアルカリ金属)、2族(マグネシウム、カルシウム等のアルカリ土類金属)、4族(チタン、ジルコニウム等の遷移金属)、6族(クロム、タングステン等の遷移金属)、8族(鉄等の遷移金属)、13族(半金属元素であるホウ素、若しくはアルミニウムのような金属)および17族(フッ素のようなハロゲン)に属するいずれかの元素を含むことができる。典型例として、W、Zr、Mg、Ca、Na、Fe、Cr、Zn、Si、Sn、Al、BおよびFが例示される。リチウムニッケル酸化物、リチウムコバルト酸化物、及びリチウムマンガン酸化物についても同様である。
≪中空構造≫
 本実施形態に用いられる正極活物質粒子30は、図2に示すように、殻部35と、殻部35の内部に形成された中空部34と、殻部35を貫通した貫通孔36とを含んでいる。殻部35は、一次粒子38が球殻状に集合した形態を有する。換言すれば、正極活物質粒子30は、一次粒子38が集合した二次粒子32と、その内側に形成された中空部34とを有する中空構造であって、その二次粒子32に外部から中空部34まで貫通する貫通孔36が形成された孔開き中空活物質粒子である。かかる二次粒子のD50径(レーザ光散乱法に基づく粒度分布測定器によって測定される粒度分布から求められるメジアン径(d50))は、約1μm~25μm(好ましくは約1μm~10μm、より好ましくは約3μm~8μm)である。
≪導電材≫
 正極活物質層に用いられる導電材16は、例えば、カーボン粉末やカーボンファイバーなどのカーボン材料が例示される。このような導電材から選択される一種を単独で用いてもよく二種以上を併用してもよい。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、オイルファーネスブラック、黒鉛化カーボンブラック、カーボンブラック、黒鉛、ケッチェンブラック)、グラファイト粉末、などのカーボン粉末を用いることができる。ここでは導電材16は、典型的には正極活物質粒子30よりも粒径が小さい。
≪バインダ≫
 正極活物質層に用いられるバインダ18は、上記正極活物質粒子30や導電材16を結合するためのものであり、該バインダを構成する材料自体は、従来公知のリチウム二次電池用正極に用いられるものと同様の材料であり得る。
 例えば、後述する正極活物質層形成用組成物が溶剤系の溶媒(分散媒が主として有機溶媒である溶液)組成物である場合には、溶剤系の溶媒に分散または溶解するポリマーを用いることができる。溶剤系溶媒に分散または溶解するポリマーとしては、例えばポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)などのポリマーを好ましく採用することができる。また、正極活物質層形成用組成物が水系の溶媒(分散媒として水または水を主成分とする混合溶媒を用いた溶液)組成物である場合には、上記バインダとして、水に分散または溶解するポリマーを好ましく採用し得る。水に分散または溶解するポリマーとしては、例えば、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン(PE)、ポリアクリル酸(PAA)、等が例示される。なお、上記で例示したポリマー材料は、バインダとしての機能の他に、上記組成物の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。
≪導電材の配置≫
 ここで開示される正極活物質層14は、図1に示すように、上記バインダ18の作用によって、上述した正極活物質粒子30が結合している。かかる正極活物質層14は、正極活物質粒子30がバインダ18によって接合された状態なので、各粒子間に微小な空洞が多く存在している。また、導電材16は、典型的には正極活物質粒子30に比べて小さく、正極活物質粒子30間の隙間に入り込んでいる。かかる正極活物質粒子30間に配置された導電材16aによって正極活物質粒子30相互間の導電パスが形成され、正極活物質粒子30と正極集電体12とが電気的に接続されている。
 また、正極活物質粒子30は、殻部35とその内部に形成された中空部34とを有する中空構造であって、その殻部35に外部から中空部34まで貫通する貫通孔36が形成されている(図2参照)。導電材16の一部16bは、貫通孔36の開口幅hよりも小さく、貫通孔36を通して正極活物質粒子の中空部34に入り込んでいる。かかる正極活物質粒子中空部34に配置された導電材16bと、活物質外部の導電材16aとは、貫通孔36を通して電気的に連結されている。これにより、正極活物質粒子30内部にも導電パスが組み込まれている。
 かかる構成のリチウム二次電池100では、正極活物質粒子30間に配置された導電材16aによって正極活物質粒子相互間の導電パスが確保されるとともに、活物質粒子中空部34に配置された導電材16bによって正極活物質粒子30内部にも導電パスが組み込まれている。そのため、正極活物質粒子内部でも電子の授受が可能になり、正極活物質の利用率を高めることができる。また、正極活物質粒子30内部の電子伝導性が向上するので、内部抵抗をより低くすることができる。かかる正極10を用いれば、低温環境下(例えば-30℃といった厳しい低温環境下)でのハイレート使用時でも、内部抵抗による電圧低下を適切に抑えることができる。従って、本構成によると、出力特性の良い(特に、低温環境下における出力特性を大きく向上させた)リチウム二次電池を提供することができる。
 この場合、活物質粒子中空部34に配置された導電材16bの割合が、正極活物質層14中に含まれる導電材16の全質量の概ね3質量%~30質量%の範囲内であり、好ましくは10質量%~20質量%である。ここで活物質粒子中空部34に配置された導電材16bには、貫通孔36に配置された導電材も含まれ得る。かかる構成によると、活物質粒子中空部34に配置された導電材16bと、活物質外部に配置された導電材16aとの比率が適切なバランスにあるので、活物質粒子中空部34に導電材16bを配置することによる電池性能向上効果(例えば、低温出力時における電圧低下を抑制する効果)を適切に発揮しつつ、正極活物質粒子30相互間の導電パスを十分に確保することができる。したがって、より良好な電池性能を確実に発揮することができる。
 特に限定されるものではないが、正極活物質層全体に占める正極活物質の割合は凡そ50質量%以上(典型的には90~99質量%)であることが好ましく、凡そ95~99質量%であることが好ましい。また、正極活物質層全体に占めるバインダの割合を例えば凡そ5質量%以下とすることが好ましく、凡そ1質量%以下(例えば凡そ0.5~1質量%、例えば0.8質量%)とすることが好ましい。また、正極活物質層全体に占める導電材の割合は凡そ10質量%以下とすることが好ましく、凡そ9質量%以下(例えば凡そ8質量%)とすることが好ましい。導電材の割合が多すぎると、正極活物質の単位体積当たりの質量が減るので、所望のエネルギー密度が得られない場合があり、一方、導電材の割合が少なすぎると、正極活物質層の導電性が低下するので、内部抵抗が増大する場合があり得る。
 次に、ここで開示される電池用電極(ここでは電池用正極)の製造方法について説明する。
<製造方法>
 ここに開示される正極10の製造は、以下の工程を包含することが好ましい。即ち、リチウム遷移金属酸化物で構成された殻部35と、該殻部35の内部に形成された中空部34と、該殻部35を貫通する貫通孔36とを有する孔開き中空構造の正極活物質粒子30を用意する工程(用意工程)を包含する。また、正極活物質粒子30と導電材16と溶媒とを混合することにより正極活物質層形成用組成物を形成する工程(組成物形成工程)を包含する。さらに、正極活物質形成用組成物を正極集電体上に付与(典型的には塗布、乾燥)することにより正極集電体上に正極活物質層が形成された正極を得る工程(塗工工程)を包含する。そして、組成物形成工程では、上記導電材の一部が貫通孔を通じて活物質粒子中空部に侵入して配置され得ることを実現する粒度分布を有する導電材と孔空き中空構造活物質粒子とを使用する。このような特定粒度分布を有する導電材と孔開き中空構造活物質粒子とを用いれば、その後の塗工工程を経て、正極活物質粒子中空部34と正極活物質粒子30間との双方に導電材16a、16bが配置された正極10を得ることができる。
 用意工程は、リチウム遷移金属酸化物で構成された殻部35と、該殻部35の内部に形成された中空部34と、該殻部35を貫通する貫通孔36とを有する孔開き中空構造の正極活物質粒子30を用意する工程である。この孔開き中空構造の正極活物質粒子は、例えば、該活物質粒子を構成するリチウム遷移金属酸化物に含まれる遷移金属元素の少なくとも一つ(好ましくは、該酸化物に含まれるリチウム以外の金属元素の全部)を含む水性溶液から、該遷移金属の水酸化物を適切な条件で析出させ(原料水酸化物生成工程)、その遷移金属水酸化物とリチウム化合物とを混合して焼成する方法により製造され得る。
 この場合、原料水酸化物生成工程は、pH12以上かつアンモニウムイオン濃度25g/L以下で水性溶液から遷移金属水酸化物を析出させる核生成段階と、その析出した遷移金属水酸化物をpH12未満かつアンモニウムイオン濃度3g/L以上で成長させる粒子成長段階とを含んでいるとよい。また、焼成工程は、最高焼成温度が800℃~1100℃となるように行うとよい。かかる製造方法によると、ここに開示される好ましい孔開き中空構造を有する活物質粒子が適切に製造され得る。
 混合工程は、上記用意した孔開き中空構造正極活物質粒子30と導電材16とバインダと溶媒とを混合することによりペースト状若しくはスラリー状の正極活物質層形成用組成物を形成する工程である。以下、かかる組成物をペーストとも称する。
 上記溶媒としては、水または水を主体とする混合溶媒が挙げられる。かかる混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。あるいは、N‐メチルピロリドン(NMP)、ピロリドン、メチルエチルケトン、メチルイソブチルケトン、シクサヘキサノン、トルエン、ジメチルホルムアミド、ジメチルアセトアミド、等の有機系溶媒またはこれらの2種以上の組み合わせであってもよい。正極活物質層形成用ペーストにおける溶媒の含有率は特に限定されないが、ペースト全体の40~90質量%、特には50質量%程度が好ましい。
 上述のとおり、ここで開示される電池用正極10は、正極活物質層中に含まれる導電材16が、正極活物質粒子中空部34と、正極活物質粒子30間との双方に配置されていることが必要である。かかる電池用正極10を実現する好適な条件の一つとして、導電材の一部が貫通孔を通して活物質粒子中空部に侵入して配置され得ることを実現する粒度分布を有する導電材を使用することが挙げられる。例えば、累積10%粒径(D10)が0.25μm以下(例えば0.1μm~0.25μm、好ましくは0.1μm~0.2μm、特に好ましくは0.1μm~0.15μm)である導電材16の使用が好ましい。累積10%粒径(D10)が0.25μm以下である導電材を用いることにより、貫通孔を通して活物質粒子中空部34に適量の導電材を配置することができる。
 さらには、導電材として、累積90%粒径(D90)が1μm以上(例えば1μm~15μm、好ましくは3μm~12μm)である粒度分布を持つ導電材を用いることが好ましい。上述のように、累積10%粒径が0.25μm以下である導電材を用いる構成は、貫通孔を通して正極活物質粒子中空部34に導電材を配置するのに有利である。その一方、導電材の粒径を単純に小さくするだけでは、正極活物質粒子30間に配置される導電材も小径化するため、正極活物質粒子30相互間の導電パス(導電経路)が細くなりがちである。これに対し、累積10%粒径(D10)が0.25μm以下であり、なおかつ累積90%粒径(D90)が1μm以上である粒度分布が比較的広い導電材を用いることにより、正極活物質粒子中空部に適量の導電材が配置され、かつ正極活物質粒子間に比較的大きな導電材が配置される。そのため、活物質粒子中空部に適量の導電材を配置しつつ、正極活物質粒子相互間に太い導電パスを形成することができる。これにより正極活物質層14と正極集電体12との間の電子移動をより効率よく行うことができ、正極活物質層14の導電性をさらに向上させることができる。
 ここで開示される導電材の好適例として、D10が0.25μm以下であり、かつD90が1μm以上であるのもの、D10が0.2μm以下であり、かつD90が5μm以上であるのもの、D10が0.15μm以下であり、かつD90が10μm以上であるのもの、等が挙げられる。また、導電材の更なる好適例として、累積50%粒径(即ち体積基準の粒度分布において微粒子側からの累積50%に相当する粒径(メジアン値);D50)が1μm以下(例えば0.2μm~1μm、好ましくは0.3μm~0.8μm)であり、かつ、体積平均径(MEAN Volume Diameter:MV値)が0.5μm以上(例えば0.5μm~5μm、好ましくは1μm~4μm)である粒度分布を持つ導電材が挙げられる。このような粒度分布を持つ導電材を用いることにより、正極活物質粒子相互間に太い導電パスを形成しつつ、正極活物質粒子中空部34に適量の導電材を配置することができる。
 なお、好ましい導電材の粒度分布(D10,D90)は、正極活物質粒子30の殻部35に形成された貫通孔36の開口幅hによっても異なり得る。ここで、貫通孔の開口幅hは、該貫通孔が正極活物質粒子の外部から中空部に至る経路で最も狭い部分における差渡し長さである。通常は、導電材の累積10%粒径(D10)が貫通孔の平均開口幅よりも小さいことが好ましく、例えば、平均開口幅の凡そ1/2以下であることがより好ましく、凡そ1/3以下であることが特に好ましい。また、導電材の累積90%粒径(D90)が貫通孔の平均開口幅よりも大きいことが好ましく、例えば、平均開口幅の凡そ2倍以上であることがより好ましく、凡そ3倍以上であることが特に好ましい。なお、上記貫通孔の開口幅の平均値(平均開口幅)は、例えば、少なくとも10個の正極活物質粒子について、該正極活物質粒子の有する貫通孔の一部個数または全個数の開口サイズを把握し、それらの算術平均値を求めることにより得ることができる。ここに開示される貫通孔36の平均開口幅は、凡そ0.1μm~0.2μmまたはそれ以上の範囲(例えば0.1μm~2μm、好ましくは0.5μm~2μm)にあるものであり得る。平均開口幅が凡そ1μm~2μmの貫通孔であることが特に好ましい。かかる態様によると、上述した効果がより適切に発揮され得る。
 上記ペースト形成工程では、上述した孔空き中空構造正極活物質粒子と導電材とバインダと溶媒とを混ぜ合わせ、正極活物質層形成用ペーストを形成する。正極活物質粒子と導電材とバインダと溶媒とを混ぜ合わせる(混練する)操作は、例えば、適当な分散機を用いて行うことができる。かかる分散機は、メディア分散機であってもよく、メディアレス分散機であっても構わない。メディア分散機の場合、ボールミル等の分散機に、ガラス、ジルコニア等のセラミックビーズを投入し、導電材とともに混ぜ合わせるとよい。さらに高圧ホモジナイザー、ジェットミル、超音波分散機、プラネタリーミキサー、ディスパー等のメディアレス分散機と組み合わせて使用してもよい。この際、分散機に投入した導電材の一部が活物質粒子中空部に侵入して配置され得ることを実現する粒度分布となるように導電材を粉砕しつつ分散混合することが好ましい。換言すれば、上記分散機による混練時間や処理回転数等の混練条件を適切に選択することで、上述した特定粒度分布を有する導電材を含む正極活物質層形成用ペーストを得ることができる。
 好ましくは、まず、図3に示すように、正極活物質粒子の添加に先立って、導電材とバインダと溶媒とを先に混練して導電材組成物(以下、導電材ペーストともいう。)を形成し(第一混合段階;S10)、その後、導電材ペーストに正極活物質粒子を加えて正極活物質層形成用ペーストを形成するとよい(第二混合段階;S12)。第一混合段階(S10)では、導電材の粒度分布が前述した特定粒度分布となるように導電材を粉砕しつつ分散混合するとよい。また、第二混合段階(S20)では、上記特定粒度分布に調整された導電材と正極活物質粒子とバインダとが均一に分散し得るように分散混合を行うとよい。このように、導電材の分散混合と正極活物質の分散混合とを別々に行うことにより、上記導電材の粒度分布を適切に制御しつつ、正極活物質粒子と導電材とバインダとが均一分散した正極活物質層形成用ペーストが得られる。
 なお、上記第1混合段階(S10)と第2混合段階(S12)とは同一の分散機を用いて行ってもよく異なる分散機を用いて行ってもよい。生産性の観点からは同一(共通)の分散機を用いることが好ましい。同一の分散機を用いる場合には、第1混合段階において導電材を分散させる分散力と、第2混合段階において正極活物質粒子を分散させる分散力とは同じでもよく異なっていてもよい。このように導電材の混練と正極活物質の混練とを別々に行い、かつ、両者の分散力の関係を適切に調整することにより、正極活物質の分散性を良好に保ちつつ、導電材の粒度分布をより容易に制御することができる。
 一好適例としては、まず、ホモジナイザーを用いて導電材(平均粒径50μm)とバインダと溶媒とを回転数3500~5000rpmで所定時間(例えば60分間)攪拌混合して、上述した特定粒度分布となるように導電材を粉砕しつつ混練を行い、導電材ペーストを形成する(S10)。次いで、正極活物質粒子(例えば平均粒径4~5μm)を加えて、上記ホモジナイザーを用いて回転数5500rpmの条件で40~60分間攪拌混合して、正極活物質層形成用ペーストを形成するとよい(S12)。これにより、正極活物質層中に含まれる導電材が、正極活物質粒子間および正極活物質粒子中空部の双方に配置され得るように導電材の粒度分布が適切に調整された正極活物質層形成用ペーストを得ることができる。かかる混練条件は、使用する正極活物質の形状(例えば粒径等)、他の構成材料、組成、設計等に応じて適宜変更することができる。
 なお、導電材ペーストは、必要に応じて分散剤として機能し得る材料を含んでいてもよい。これにより、導電材の粒度分布をより適切に制御し得る。該分散剤としては、疎水性鎖と親水性基をもつ高分子化合物、例えばポリビニルブチラール、ポリビニルピロリドンなどが挙げられる。また、硫酸塩、スルホン酸塩、リン酸塩などを有するアニオン性化合物やアミンなどのカチオン性化合物が例示される。
 ここに開示される正極活物質層形成用ペーストは、該ペースト中の導電材の粒度分布が上記のように調整されているため、比較的粘度が低くなる。典型的には、市販のE型粘度計を用いて液温25℃、せん断速度2s-1で測定した正極活物質層形成用ペーストの粘度は、10000mPa・s以下(例えば4000mPa・s~10000mPa・s)、好ましくは9000mPa・s以下(例えば4000mPa・s~9000mPa・s)、より好ましくは8000mPa・s以下(例えば4000mPa・s~8000mPa・s))という、比較的低い粘度を示す。このように粘度調整した正極活物質層形成用ペーストを用いることによって、正極活物質層中に含まれる導電材が正極活物質粒子間および正極活物質粒子中空部の双方に配置された正極を安定して製造することができる。かかる粘度範囲のペーストは、取扱性(例えば該ペーストを正極集電体に塗工して電極を作るときの塗工性)の観点からも好適である。ペーストの粘度の下限値は特に制限されないが、該粘度が低すぎると、該ペーストを集電体に塗布した際にペーストが垂れてしまう虞がある。塗工に適した粘度にする観点からは概ね2000mPa・s以上である。
 塗工工程では、上記のような混合分散により得られた正極活物質層形成用ペーストを、正極集電体に付与(典型的には塗布し乾燥)することによって、正極活物質層を得る。正極活物質層形成用ペーストを正極集電体に付与(ここでは塗布)する操作は、従来の一般的なリチウム二次電池用正極を作製する場合と同様にして行うことができる。例えば、適当な塗布装置(スリットコーター、ダイコーター、コンマコーター等)を使用して、上記正極集電体に所定量の上記正極活物質層形成用ペーストを均一な厚さにコーティングすることにより製造され得る。その後、適当な乾燥手段で塗布物を乾燥(典型的には70~200℃)することによって、正極活物質層形成用ペースト中の溶媒を除去する。正極活物質層形成用ペーストから溶媒を除去することによって、正極活物質と導電材とバインダとを含む正極活物質層が形成される。このようにして、正極集電体上に正極活物質層が形成された正極を得ることができる。なお、乾燥後、必要に応じて適当なプレス処理(例えばロールプレス処理)を施すことによって、正極活物質層の厚みや密度を適宜調整することができる。
 このようにして得られた電極(この例では正極)は、図1に示すように、正極活物質粒子30と導電材16とバインダ18を含む正極活物質層14が正極集電体12に保持された構成を有する。正極活物質粒子30は、殻部35とその内部に形成された中空部34とを有する中空構造であって、その殻部35に外部から中空部34まで貫通する貫通孔36が形成されている。導電材16は、ペースト形成工程の第一混合段階において、導電材の一部が活物質粒子中空部に侵入して配置され得ることを実現する粒度分布となるように粉砕され得る。かかる導電材16は、典型的には正極活物質粒子30に比べて小さく、正極活物質粒子30間に入り込んでいる。また、かかる導電材16の一部は、貫通孔36の開口幅(例えば1μm程度)よりも小さく、貫通孔36を通して正極活物質粒子中空部34に入り込んでいる。かかる製造方法によると、正極活物質層14中に含まれる導電材16が、正極活物質粒子中空部34と正極得活物質粒子30間との双方に配置されたリチウム二次電池を適切に製造することができる。また、上記製造方法によると、正極活物質粒子30と導電材16とを複合化することなく、導電材16を正極活物質粒子30と別体として配置することができる。そのため、正極活物質30の反応が阻害されず、より良好な電池性能を発揮することができる。
 かかる電極は、例えば、活物質層と集電体との間の電子移動をより効率よく行うことができることから、種々の形態の電池の構成要素または該電池に内蔵される電極体の構成要素(例えば正極)として好ましく利用され得る。例えば、ここに開示されるいずれかの方法により製造された正極と、負極(本発明を適用して製造された負極であり得る。)と、該正負極間に配置される電解質と、典型的には正負極間を離隔するセパレータ(固体状またはゲル状の電解質を用いた電池では省略され得る。)と、を備えるリチウム二次電池の構成要素として好ましく使用され得る。かかる電池を構成する外容器の構造(例えば金属製の筐体やラミネートフィルム構造物)やサイズ、あるいは正負極集電体を主構成要素とする電極体の構造(例えば捲回構造や積層構造)等について特に制限はない。
 以下、上述した方法を適用して製造された正極(正極シート)10を用いて構築されるリチウム二次電池の一実施形態につき、図4に示す模式図を参照しつつ説明する。図示するように、本実施形態に係るリチウム二次電池100は、金属製(樹脂製又はラミネートフィルム製も好適である。)のケース50を備える。このケース(外容器)50は、上端が開放された扁平な直方体状のケース本体52と、その開口部を塞ぐ蓋体54とを備える。ケース50の上面(すなわち蓋体54)には、捲回電極体80の正極10と電気的に接続する正極端子70および該電極体の負極20と電気的に接続する負極端子72が設けられている。ケース50の内部には、例えば長尺シート状の正極(正極シート)10および長尺シート状の負極(負極シート)20を計二枚の長尺シート状セパレータ(セパレータシート)40とともに積層して捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される扁平形状の捲回電極体80が収容される。  
 正極シート10は、上述したように、長尺シート状の正極集電体12の両面に正極活物質30(図1参照)を主成分とする正極活物質層14が設けられた構成を有する。また、負極シート20も正極シート10と同様に、長尺シート状の負極集電体の両面に負極活物質を主成分とする負極活物質層が設けられた構成を有する。これらの電極シート10、20の幅方向の一端には、いずれの面にも上記活物質層が設けられていない活物質層非形成部分10A、10Bが形成されている。
 上記積層の際には、正極シート10の正極活物質層非形成部分と負極シート20の負極活物質層非形成部分とがセパレータシート40の幅方向の両側からそれぞれはみ出すように、正極シート10と負極シート20とを幅方向にややずらして重ね合わせる。その結果、捲回電極体80の捲回方向に対する横方向において、正極シート10および負極シート20の活物質層非形成部分10A、20Aがそれぞれ捲回コア部分(すなわち正極シート10の正極活物質層形成部分と負極シート20の負極活物質層形成部分と二枚のセパレータシート40とが密に捲回された部分)から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極活物質層の非形成部分)10Aおよび負極側はみ出し部分(すなわち負極活物質層の非形成部分)20Aには、正極リード端子74および負極リード端子76がそれぞれ付設されており、上述の正極端子70および負極端子72とそれぞれ電気的に接続される。
 なお、捲回電極体80を構成する正極シート10以外の構成要素は、従来のリチウム二次電池の電極体と同様でよく、特に制限はない。例えば、負極シート20は、長尺状の負極集電体の上にリチウム二次電池用負極活物質を主成分とする負極活物質層が付与されて形成され得る。負極集電体には銅箔その他の負極に適する金属箔が好適に使用される。負極活物質は従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム遷移金属複合酸化物(リチウムチタン複合酸化物等)、リチウム遷移金属複合窒化物等が例示される。
 また、正負極シート10、20間に使用されるセパレータシート40の好適例としては、多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。なお、電解質として固体電解質もしくはゲル状電解質を使用する場合には、セパレータが不要な場合(すなわちこの場合には電解質自体がセパレータとして機能し得る。)があり得る。
 そして、ケース本体52の上端開口部から該本体52内に捲回電極体80を収容するとともに適当な電解質を含む電解液をケース本体52内に配置(注液)する。電解質は例えばLiPF等の支持塩を非水溶媒に溶解したものであり得る。例えば、適当量(例えば濃度1M)のLiPF等のリチウム塩をジエチルカーボネートとエチレンカーボネートとの混合溶媒(例えば質量比1:1)のような非水溶媒に溶解して電解質(典型的には電解液)として使用することができる。
 その後、上記開口部を蓋体54との溶接等により封止し、本実施形態に係るリチウム二次電池100の組み立てが完成する。ケース50の封止プロセスや電解質の配置(注液)プロセスは、従来のリチウム二次電池の製造で行われている手法と同様でよく、本発明を特徴付けるものではない。このようにして本実施形態に係るリチウム二次電池100の構築が完成する。このようにして構築されたリチウム二次電池100は、上記のように内部抵抗の低い電極を少なくとも一方の電極に用いて構築されていることから、優れた電池性能を示すものである。例えば、上記電極を用いて電池(例えばリチウム二次電池)を構築することにより、出力特性(特に低温環境下での出力特性)に優れる電池を提供することができる。
 以下、本発明に関する試験例を説明するが、本発明を以下の試験例に示すものに限定することを意図したものではない。この試験例では、孔空き中空構造を有する正極活物質粒子を用意した。そして、導電材の粒度分布を変えて、正極シートを作製した。そして、該正極シートを用いて評価試験用のリチウム二次電池を製作し、その性能を評価した。
<活物質層形成用ペーストの形成>
[サンプル1]
 図3に示すように、導電材(平均粒径50μm)としてのAB9重量部と、バインダとしてのPVDF2.24重量部と、分散剤としてのポリビニルブチラール0.224重量部と、溶媒としてのNMP88.536重量部とをホモジナイザーに投入し、3000rpmで60分間、25℃で攪拌混練することにより導電材ペーストを形成した(第一混合段階;組成物形成工程)。導電材ペースト中に含まれる導電材粉末の粒度分布を市販のレーザ回折式粒度分布測定装置を用いて測定したところ、表1及び図5に示す通りであった。表1は、累積10%粒径(D10)、累積50%粒径(D50)、累積90%粒径(D90)、体積平均径(MV)の各値を示している。また、導電材ペーストの粘度をE型粘度計(液温25℃、せん断速度2s-1)で測定したところ、概ね10050mPa・sであった。
 上記得られた導電材ペーストに、孔空き中空構造正極活物質粒子としてのLiNi1/3Co1/3Mn1/3粉末50.3重量部を投入し、上記ホモジナイザーにて回転数5500rpmで40分間、攪拌混練することにより、正極活物質層形成用ペーストを得た(第二混合段階;ペースト形成工程)。なお、孔空き中空構造正極活物質粒子は、該正極活物質粒子の生成処理(例えば、前述した原料水酸化物生成工程のpH、アンモニウムイオン濃度、最高焼成温度等)を適宜工夫することにより作製した。
[サンプル2]
 第一混合段階においてホモジナイザーの回転数を3500rpmにしたこと以外はサンプル1と同様にして導電材ペーストを形成した。該導電材ペースト中に含まれる導電材粉末の粒度分布を表1及び図5に示す。そして、サンプル1と同様にして正極活物質層形成用ペーストを得た。
[サンプル3]
 第一混合段階においてホモジナイザーの回転数を4000rpmにしたこと以外はサンプル1と同様にして導電材ペーストを形成した。該導電材ペースト中に含まれる導電材粉末の粒度分布を表1及び図5に示す。そして、サンプル1と同様にして正極活物質層形成用ペーストを得た。
[サンプル4]
 第一混合段階においてホモジナイザーの回転数を6000rpmにしたこと以外はサンプル1と同様にして導電材ペーストを形成した。該導電材ペースト中に含まれる導電材粉末の粒度分布を表1に示す。そして、サンプル1と同様にして正極活物質層形成用ペーストを得た。
Figure JPOXMLDOC01-appb-T000001
[サンプル5]
 組成物形成工程において導電材ペーストを用いずに正極活物質層形成用ペーストを形成した。具体的には、図6に示すように、孔空き中空構造正極活物質としてのLiNi1/3Co1/3Mn1/3粉末64.1重量部と、導電材としてのAB5.7重量部と、溶媒としてのNMP28.8重量部とをプラネタリーミキサーに投入し、回転数40rpmで60分間、25℃で攪拌混合(固練り)した。次いで、バインダとしてのPVDF1.4重量部と、溶媒としてのNMP15.2重量部とをプラネタリーミキサーに追加投入し、回転数50rpmで30分間、攪拌分散することにより、正極活物質層形成用ペーストを得た。
<正極シートの作製>
 上記のサンプル1~5の正極活物質層形成用ペーストを長尺シート状の厚み15μmのアルミニウム箔の正極集電体の両面に塗布して乾燥し、正極集電体の両面に正極活物質層が設けられた正極シートを作製した。なお、正極活物質層形成用ペーストの塗布量は、両面合わせて約11.2mg/cm(固形分基準)となるように調節した。乾燥後、正極活物質層の厚みが約66μmとなるようにプレスした。
 こうして得られた正極シートの正極活物質層の断面を走査電子顕微鏡(Scanning Electron Microscope:SEM)によって観察した。結果を図7~図10に示す。図7~図10は、サンプル1~3,5の断面SEM像を示している。
 図7に示すように、導電材の累積10%粒径(D10)を0.268μmとしたサンプル1では、導電材16aを示す斑点部分が正極活物質粒子30間のみに観察され、正極活物質粒子の中空部34に導電材は観察されなかった。導電材ペーストを用いなかったサンプル5も同様に、導電材16aを示す斑点部分が正極活物質粒子30間のみに観察され、正極活物質粒子の中空部34に導電材は観察されなかった(図10)。一方、導電材の累積10%粒径(D10)をサンプル1よりも小さくしたサンプル2~4は、図8及び図9に示されるように、導電材16aを示す斑点部分が正極活物質粒子30間に観察され、さらに、正極活物質粒子の中空部34にも導電材16bを示す斑点部分が観察された。かかる導電材16bは、貫通孔を通して正極活物質外部の導電材16aと繋がっていた。この結果から、孔空き中空構造の活物質粒子を用い、かつ導電材の累積10%粒径(D10)を0.25μm以下にすることで、正極活物質粒子の中空部34と、正極活物質粒子30間の隙間との双方に導電材16a,16bを配置し得ることが確認できた。
 次に、作製したサンプル1~5に係る正極シートを用いて試験用のリチウム二次電池を作製し、低温出力特性を評価した。試験用リチウム二次電池は、以下のようにして作製した。
<負極シートの作製>
 負極活物質としてのグラファイト粉末とバインダとしてのSBRと増粘剤としてのCMCとを、これらの材料の質量比が98:1:1となるように水中で混合して、負極活物質層形成用ペーストを調製した。この負極活物質層形成用ペーストを長尺シート状の厚み10μmの銅箔の負極集電体の両面に帯状に塗布して乾燥することにより、負極集電体の両面に負極活物質層が設けられた負極シートを作製した。負極活物質層形成用ペーストの塗布量は、両面合わせて約7.1mg/cm(固形分基準)となるように調節した。また、乾燥後、負極活物質層の厚みが約73μmとなるようにプレスした。
<リチウム二次電池の作製>
 正極シート及び負極シートを2枚のセパレータシート多孔質ポリエチレン製の単層構造のものを使用した。)を介して積層して捲回し、その捲回体を側面方向から押しつぶして拉げさせることによって扁平状の捲回電極体を作製した。この捲回電極体を非水電解液とともに箱型の電池容器に収容し、電池容器の開口部を気密に封口した。非水電解液としてはエチレンカーボネート(EC)とジエチルカーボネート(DEC)とプロピオン酸メチルとを3:5:2の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させた非水電解液を使用した。このようにしてリチウム二次電池を組み立てた。その後、常法により初期充放電処理(コンディショニング)を行って試験用のリチウム二次電池を得た。
<定格容量の測定>
 次に、上記のように構築した試験用リチウム二次電池について、温度25℃、3.0Vから4.1Vの電圧範囲で、次の手順1~3によって定格容量を測定した。
手順1:1Cの定電流で3.0Vまで放電し、続いて2時間、定電圧で放電し、10秒間休止する。
手順2:1Cの定電流で4.1Vまで充電し、続いて2.5時間、定電圧で充電し、10秒間休止する。
手順3:0.5Cの定電流で3.0Vまで放電し、続いて2時間、定電圧で放電し、10秒間停止する。
 そして、手順3における定電流放電から定電圧放電に至る放電における放電容量(CCCV放電容量)を定格容量とした。この試験用リチウム二次電池では、定格容量が凡そ4Ahとなった。
<SOC調整>
 各試験用リチウム二次電池について、次の1、2の手順によりSOCを調整した。なお、温度による影響を一定にするため、25℃の温度環境下でSOC調整を行った。
手順1:3Vから1Cの定電流で充電し、定格容量の凡そ60%の充電状態(SOC60%)にする。ここで、「SOC」は、State of Chargeを意味する。
手順2:手順1の後、2.5時間、定電圧で充電する。
これにより、試験用リチウム二次電池は、所定の充電状態に調整することができる。
<-30℃、SOC27%の充電状態での出力特性>
 以上のように得られた試験用リチウム二次電池について、-30℃、かつ、SOC27%の充電状態での出力特性を測定した。該出力特性は、以下の手順で測定した。
手順1:常温(ここでは、25℃)の温度環境において、3.0Vから1Cの定電流充電でSOC27%(ここでは3.57V)に調整し、続いて1時間、定電圧で充電する。
手順2:上記SOC27%に調整した電池を-30℃の恒温槽にて6時間放置する。
手順3:手順2の後、-30℃の温度環境において、SOC27%から10Cにて放電する。このときの放電電圧を縦軸に、時間を横軸にプロットする。
 結果を図11に示す。図11は、放電電圧と時間との関係を示すグラフである。
 図11に示すように、導電材を正極活物質粒子間と中空部の双方に配置したサンプル2,3に係る電池は、正極活物質粒子間のみに配置したサンプル1,5に比べて、電圧の低下が抑えられていた。このことから、導電材を正極活物質粒子間と正極活物質粒子の中空部との双方に配置することで、低温出力特性を向上し得ることが確認できた。なお、サンプル5に係る電池は、導電材を正極活物質粒子間および正極活物質粒子の中空部の双方に配置したにもかかわらず、サンプル1,5に比べて低温出力特性が低下した。これは、サンプル5では、導電材の粒度分布を小さくし過ぎたため、正極活物質粒子間に配置される導電材が小径化し、正極活物質粒子相互間の導電パスが細くなったことが原因として考えられる。正極活物質粒子相互間に太い導電パスを形成する観点からは、導電材の累積90%粒径(D90)を1μm以上にすることが好ましい。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
 本発明に係るリチウム二次電池は、上記のとおり低温出力特性に優れることから、特に自動車等の車両に搭載されるモータ(電動機)用電源として好適に使用し得る。したがって本発明は、図12に示すように、かかる電池100(組電池の形態であり得る。)を電源として備える車両1(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供する。
 本発明によれば、低温環境下における出力特性を大きく向上させたリチウム二次電池を提供することができる。
 

Claims (10)

  1.  集電体と、
     前記集電体に保持され、活物質粒子と導電材とを含む活物質層と
    を備え、
     前記活物質粒子は、
     リチウム遷移金属酸化物で構成された殻部と、
     前記殻部の内部に形成された中空部と、
     前記殻部を貫通する貫通孔と
    を有し、
     前記活物質層中に含まれる導電材が、前記活物質粒子中空部と前記活物質粒子間との双方に配置されている、リチウム二次電池。
  2.  前記活物質粒子中空部に配置された導電材は、前記活物質粒子とは別体として形成されている、請求項1に記載のリチウム二次電池。
  3.  前記活物質粒子中空部に配置された導電材と、前記活物質粒子間の導電材とは、前記貫通孔を通して電気的に連結されている、請求項1または2に記載のリチウム二次電池。
  4.  前記導電材のレーザ回折により求められた粒度分布において、累積10%粒径(D10)が0.25μm以下であり、かつ累積90%粒径(D90)が1μm以上である、請求項1~3の何れか一つに記載のリチウム二次電池。
  5.  前記活物質粒子中空部に配置された導電材の割合が、前記活物質層中に含まれる導電材の全質量の3質量%~30質量%である、請求項1~4の何れか一つに記載のリチウム二次電池。
  6.  前記リチウム遷移金属酸化物は、少なくともニッケルを構成元素として含む層状結晶構造の化合物である、請求項1~5の何れか一つに記載のリチウム二次電池。
  7.  車両の駆動電源として用いられる、請求項1~6の何れか一つに記載のリチウム二次電池。
  8.  リチウム遷移金属酸化物で構成された殻部と、該殻部の内部に形成された中空部と、該殻部を貫通する貫通孔とを有する孔開き中空構造の活物質粒子を用意する工程と、
     前記活物質粒子と導電材と溶媒とを混合することにより活物質層形成用組成物を形成する工程と、
     前記活物質形成用組成物を集電体上に付与することにより前記集電体上に活物質層が形成された電極を得る工程と、
     前記電極を用いてリチウム二次電池を構築する工程と
    を包含し、
     ここで前記組成物形成工程では、前記導電材の一部が前記貫通孔を通して前記活物質粒子中空部に侵入して配置され得ることを実現する粒度分布を有する導電材と孔開き中空構造活物質粒子とを使用する、リチウム二次電池の製造方法。
  9.  前記粒度分布を有する導電材として、累積10%粒径(D10)が0.25μm以下であり、かつ累積90%粒径(D90)が1μm以上である導電材を使用する、請求項8に記載の製造方法。
  10.  前記組成物形成工程は、
     前記導電材と前記溶媒とを混合して導電材組成物を形成する第一混合段階と、
     前記導電材組成物と前記活物質粒子とを混合して前記活物質形成用組成物を得る第二混合段階と
    を含み、
     前記第一混合段階では、前記導電材の一部が前記貫通孔を通して前記活物質粒子中空部に侵入して配置され得ることを実現する粒度分布となるように前記導電材を粉砕しつつ混合する、請求項8または9に記載の製造方法。
     
PCT/JP2012/069754 2011-08-26 2012-08-02 リチウム二次電池 WO2013031477A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147007057A KR101649804B1 (ko) 2011-08-26 2012-08-02 리튬 2차 전지
CN201280041189.8A CN103765636B (zh) 2011-08-26 2012-08-02 锂二次电池
US14/240,856 US9520592B2 (en) 2011-08-26 2012-08-02 Lithium secondary battery
EP12828708.3A EP2750223B1 (en) 2011-08-26 2012-08-02 Lithium rechargeable battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-185333 2011-08-26
JP2011185333A JP5839221B2 (ja) 2011-08-26 2011-08-26 リチウム二次電池

Publications (1)

Publication Number Publication Date
WO2013031477A1 true WO2013031477A1 (ja) 2013-03-07

Family

ID=47755980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069754 WO2013031477A1 (ja) 2011-08-26 2012-08-02 リチウム二次電池

Country Status (6)

Country Link
US (1) US9520592B2 (ja)
EP (1) EP2750223B1 (ja)
JP (1) JP5839221B2 (ja)
KR (1) KR101649804B1 (ja)
CN (1) CN103765636B (ja)
WO (1) WO2013031477A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2755260A1 (en) * 2013-01-11 2014-07-16 GS Yuasa International Ltd. Electric storage device and method for producing electric storage device
JP2017016793A (ja) * 2015-06-29 2017-01-19 トヨタ自動車株式会社 正極活物質層、全固体リチウム電池および正極活物質層の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136785B2 (ja) * 2013-09-05 2017-05-31 トヨタ自動車株式会社 導電ペーストの評価方法、及び、正極板の製造方法
JP6278679B2 (ja) * 2013-12-09 2018-02-14 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. 導電組成物、正極、およびリチウムイオン二次電池。
JP6057137B2 (ja) * 2014-04-18 2017-01-11 トヨタ自動車株式会社 非水電解質二次電池用の正極とその製造方法
CN104577091A (zh) * 2014-12-31 2015-04-29 深圳市贝特瑞纳米科技有限公司 一种具有良好导电性锂电池电极材料及其制备方法
JP6394987B2 (ja) * 2015-08-06 2018-09-26 トヨタ自動車株式会社 非水電解液二次電池
JP6284040B2 (ja) * 2015-08-07 2018-02-28 トヨタ自動車株式会社 リチウム二次電池用正極材料及びその製造方法
JP6720488B2 (ja) * 2015-09-08 2020-07-08 株式会社豊田自動織機 複数の正極活物質、導電助剤、結着剤及び溶剤を含む組成物の製造方法
US11309541B2 (en) 2017-09-01 2022-04-19 Lg Energy Solution, Ltd. Negative electrode slurry for lithium secondary battery and method of preparing the same
KR102268078B1 (ko) * 2017-09-19 2021-06-23 주식회사 엘지에너지솔루션 리튬 이차전지용 전극의 설계 방법 및 이를 포함하는 리튬 이차전지용 전극의 제조방법
JP7024640B2 (ja) 2018-07-17 2022-02-24 トヨタ自動車株式会社 粒子集合体の製造方法、電極板の製造方法及び粒子集合体
JP7033258B2 (ja) * 2018-08-30 2022-03-10 トヨタ自動車株式会社 非水電解質二次電池用の正極
JP7337106B2 (ja) * 2021-01-15 2023-09-01 プライムアースEvエナジー株式会社 リチウムイオン二次電池、及びリチウムイオン二次電池用正極の製造方法
CN115084440B (zh) * 2022-06-30 2024-01-16 蜂巢能源科技股份有限公司 一种低阻抗正极极片及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328813A (ja) * 2000-05-16 2001-11-27 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムマンガン複合酸化物およびその製造方法
JP2003173777A (ja) 2001-12-07 2003-06-20 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質と導電助材の複合方法およびその複合材料、それを用いた正極および非水系リチウム二次電池
JP2004288644A (ja) * 1995-03-17 2004-10-14 Canon Inc 正極活物質の製造方法、負極活物質の製造方法及びリチウムを利用する二次電池の製造方法
JP2005044722A (ja) * 2003-07-25 2005-02-17 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質および非水電解液二次電池
JP2008034378A (ja) * 2006-06-27 2008-02-14 Kao Corp リチウム電池正極用複合材料の製造方法
JP2009117241A (ja) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp リチウム二次電池用正極活物質材料及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2009224239A (ja) * 2008-03-18 2009-10-01 Nissan Motor Co Ltd 電池用電極
JP2009224288A (ja) * 2008-03-19 2009-10-01 Hitachi Vehicle Energy Ltd リチウム二次電池用正極及びこれを用いたリチウム二次電池
WO2011067982A1 (ja) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 活物質粒子およびその利用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3581474B2 (ja) * 1995-03-17 2004-10-27 キヤノン株式会社 リチウムを利用する二次電池
US6270926B1 (en) * 1996-07-16 2001-08-07 Murata Manufacturing Co., Ltd. Lithium secondary battery
JP2000082464A (ja) * 1998-09-02 2000-03-21 Kao Corp 非水系二次電池
JP4096754B2 (ja) * 2003-02-18 2008-06-04 日亜化学工業株式会社 非水電解液二次電池用正極活物質
JP5098192B2 (ja) * 2005-06-29 2012-12-12 パナソニック株式会社 リチウム二次電池用複合粒子とその製造方法、それを用いたリチウム二次電池
EP2034541B1 (en) 2006-06-27 2015-06-03 Kao Corporation Method for producing composite material for positive electrode of lithium battery
KR101114122B1 (ko) * 2006-06-27 2012-03-13 닛산 지도우샤 가부시키가이샤 리튬이온 전지용 복합 양극재료 및 이것을 이용한 전지
CN103493261A (zh) * 2011-04-18 2014-01-01 日本碍子株式会社 锂二次电池的正极活性物质
WO2012153379A1 (ja) 2011-05-06 2012-11-15 トヨタ自動車株式会社 リチウムイオン二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288644A (ja) * 1995-03-17 2004-10-14 Canon Inc 正極活物質の製造方法、負極活物質の製造方法及びリチウムを利用する二次電池の製造方法
JP2001328813A (ja) * 2000-05-16 2001-11-27 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムマンガン複合酸化物およびその製造方法
JP2003173777A (ja) 2001-12-07 2003-06-20 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質と導電助材の複合方法およびその複合材料、それを用いた正極および非水系リチウム二次電池
JP2005044722A (ja) * 2003-07-25 2005-02-17 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質および非水電解液二次電池
JP2008034378A (ja) * 2006-06-27 2008-02-14 Kao Corp リチウム電池正極用複合材料の製造方法
JP2009117241A (ja) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp リチウム二次電池用正極活物質材料及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2009224239A (ja) * 2008-03-18 2009-10-01 Nissan Motor Co Ltd 電池用電極
JP2009224288A (ja) * 2008-03-19 2009-10-01 Hitachi Vehicle Energy Ltd リチウム二次電池用正極及びこれを用いたリチウム二次電池
WO2011067982A1 (ja) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 活物質粒子およびその利用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2750223A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2755260A1 (en) * 2013-01-11 2014-07-16 GS Yuasa International Ltd. Electric storage device and method for producing electric storage device
JP2014150052A (ja) * 2013-01-11 2014-08-21 Gs Yuasa Corp 蓄電素子及びその製造方法
US9660251B2 (en) 2013-01-11 2017-05-23 Gs Yuasa International Ltd. Electric storage device and manufacturing method thereof
JP2017016793A (ja) * 2015-06-29 2017-01-19 トヨタ自動車株式会社 正極活物質層、全固体リチウム電池および正極活物質層の製造方法

Also Published As

Publication number Publication date
JP2013045761A (ja) 2013-03-04
EP2750223A1 (en) 2014-07-02
CN103765636A (zh) 2014-04-30
EP2750223A4 (en) 2015-04-22
KR20140052039A (ko) 2014-05-02
EP2750223B1 (en) 2016-10-19
US20140199590A1 (en) 2014-07-17
CN103765636B (zh) 2017-04-19
JP5839221B2 (ja) 2016-01-06
US9520592B2 (en) 2016-12-13
KR101649804B1 (ko) 2016-08-19

Similar Documents

Publication Publication Date Title
JP5839221B2 (ja) リチウム二次電池
JP5561559B2 (ja) リチウム二次電池の製造方法
US8900653B2 (en) Method of producing electrode for electricity storage device
WO2011067982A1 (ja) 活物質粒子およびその利用
US10535870B2 (en) Electrical device
US20130330615A1 (en) Lithium-ion secondary battery and method for manufacturing the same
TW201417380A (zh) 鋰離子二次電池用電極材料、此電極材料的製造方法及鋰離子二次電池
JP6358470B2 (ja) 二次電池用負極の製造方法
JP2008047512A (ja) 非水電解質二次電池用正極
JP6380808B2 (ja) 二次電池用電極の製造方法
JP4984422B2 (ja) 二次電池用電極の製造方法
JP5483092B2 (ja) 電池と電池用電極およびその製造方法
JP4740415B2 (ja) 電気自動車或いはハイブリッド自動車用リチウム二次電池
JP2012138217A (ja) 電池の製造方法
JP5527597B2 (ja) リチウム二次電池の製造方法
JP5682793B2 (ja) リチウム二次電池およびその製造方法
JP5807807B2 (ja) リチウムイオン二次電池の正極板の製造方法
JP5605614B2 (ja) リチウム二次電池の製造方法
JP2017091701A (ja) 非水電解質二次電池用電極の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP2013069579A (ja) リチウムイオン二次電池とその製造方法
JP2014235856A (ja) 非水電解質二次電池
JP2013161689A (ja) 二次電池用電極とその製造方法
JP5586113B2 (ja) 二次電池用電極の製造方法
JP2014143064A (ja) 二次電池およびその製造方法
JP2001313027A (ja) リチウム二次電池用電極スラリーの調製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828708

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14240856

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147007057

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012828708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012828708

Country of ref document: EP