WO2013021942A1 - 透明フィルム、透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置 - Google Patents

透明フィルム、透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置 Download PDF

Info

Publication number
WO2013021942A1
WO2013021942A1 PCT/JP2012/069840 JP2012069840W WO2013021942A1 WO 2013021942 A1 WO2013021942 A1 WO 2013021942A1 JP 2012069840 W JP2012069840 W JP 2012069840W WO 2013021942 A1 WO2013021942 A1 WO 2013021942A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
represented
group
polyimide
spiro
Prior art date
Application number
PCT/JP2012/069840
Other languages
English (en)
French (fr)
Inventor
伸一 小松
彬 椎橋
理恵子 藤代
龍一 上野
松本 隆也
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to US14/237,635 priority Critical patent/US9768328B2/en
Priority to JP2013528008A priority patent/JP5973442B2/ja
Priority to KR1020147005940A priority patent/KR101891374B1/ko
Priority to CN201280039129.2A priority patent/CN103733274B/zh
Priority to EP12822029.0A priority patent/EP2743936A4/en
Publication of WO2013021942A1 publication Critical patent/WO2013021942A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide

Definitions

  • the present invention relates to a transparent film, a transparent conductive laminate, and a touch panel, a solar cell and a display device using the same.
  • a polyimide resin is known as a resin excellent in heat resistance and dimensional stability.
  • the wholly aromatic polyimide resin obtained by polycondensation reaction of aromatic tetracarboxylic dianhydride and aromatic diamines can be used under high temperature conditions of 400 ° C. or higher. Since the coefficient of linear expansion (CTE) is 12-32ppm and excellent in dimensional stability, it has been applied to various fields, mainly in the aerospace industry, electronics industry, etc. as films, wire coatings, adhesives, paints, etc. It was.
  • Patent Document 1 a transparent conductive thin film is laminated on a substrate film made of an aliphatic polyimide having a repeating unit having an aliphatic group having 4 to 39 carbon atoms.
  • a transparent conductive laminate is disclosed.
  • the transparent conductive laminate as described in Patent Document 1 is a heating step (for example, liquid crystal) employed in the manufacturing process of a solar cell or a liquid crystal display device when used as an electrode of a solar cell or a liquid crystal display device.
  • a thin film made of a transparent conductive material may be cracked due to a process temperature of about 400 ° C. in the process of creating a TFT [Thin Film Transistor].
  • the conventional transparent conductive laminate as described in Patent Document 1 is not necessarily sufficiently resistant to an impact (heat shock) due to heat such as heating in the manufacturing process of a solar cell or a liquid crystal display device. It was not necessarily sufficient in terms of thermal shock resistance. Therefore, a polyimide having excellent heat resistance and a sufficiently low linear expansion coefficient, which can be suitably used for a transparent conductive laminate sufficiently excellent in thermal shock resistance and a substrate film of such a transparent conductive laminate.
  • the present invention has been made in view of the above-mentioned problems of the prior art, has a sufficiently high thermal shock resistance, and is heated at a high temperature as employed in the manufacturing process of solar cells and liquid crystal display devices. It aims at providing the transparent conductive laminated body which can fully suppress deterioration of quality also on conditions, a touch panel using the same, a solar cell, and a display apparatus. Another object of the present invention is to provide a transparent film made of polyimide having excellent heat resistance and having a sufficiently low linear expansion coefficient, which can be suitably used as a substrate film for the transparent conductive laminate. .
  • the inventors of the present invention have a transparent conductive laminate including a substrate film made of polyimide and a thin film made of a conductive material laminated on the substrate film.
  • the polyimide contains at least one repeating unit represented by the following general formula (1), has a glass transition temperature of 350 ° C. to 450 ° C., and a temperature rising rate of 5 ° C./min in a nitrogen atmosphere.
  • a polyimide having a linear expansion coefficient of 30 ppm / ° C. or less obtained by measuring a change in length in a temperature range of 50 ° C. to 200 ° C.
  • the solar cell has a sufficiently high thermal shock resistance.
  • quality deterioration can be sufficiently suppressed even under high-temperature heating conditions such as those employed in the manufacturing process of batteries, liquid crystal display devices, etc. Was Tsu.
  • the transparent conductive laminate of the present invention comprises a substrate film made of polyimide, and a thin film made of a conductive material laminated on the substrate film,
  • the polyimide has the following general formula (1):
  • R 1, R 2, R 3 are each independently a hydrogen atom, it represents one selected from the group consisting of alkyl groups and fluorine atoms having 1 to 10 carbon atoms, R 4 is Represents an aryl group having 6 to 40 carbon atoms, and n represents an integer of 0 to 12.
  • R 1, R 2, R 3 are each independently a hydrogen atom, it represents one selected from the group consisting of alkyl groups and fluorine atoms having 1 to 10 carbon atoms
  • R 4 is Represents an aryl group having 6 to 40 carbon atoms
  • n represents an integer of 0 to 12.
  • R 4 in the general formula (1) is represented by the following general formulas (2) to (5):
  • R 5 represents one selected from the group consisting of a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, and a trifluoromethyl group.
  • Q represents a formula: —O—, —S—, —CO—, —CONH—, —C 6 H 4 —, —COO—, —SO 2 —, —C (CF 3 ) 2 —, —C (CH 3 ) 2 —, —CH 2 —, —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —SO 2 —C 6 H 4 —O—, —C ( CH 3) 2 -C 6 H 4 -C (CH 3) 2 -, - from O-C 6 H 4 -C 6 H 4 -O- and -O-C 6 group represented by H 4 -O- 1 type
  • the polyimide is represented by the general formula (1), and R 4 in the formula is a group represented by the general formula (4); And a group represented by the general formula (5), wherein Q is one of groups represented by —CONH—, —COO—, —CO—, —C 6 H 4 —; A repeating unit which is one group selected; Wherein R 4 is a group represented by the general formula (2); and the Q is —O—, —S—, —CH 2 —, — A repeating unit which is one group selected from the group consisting of the group represented by the general formula (5) which is one of the groups represented by O—C 6 H 4 —O—; It is preferable to contain.
  • the polyimide is represented by the general formula (1), and R 4 in the formula is a group represented by the general formula (4);
  • Q is a group represented by the general formula (5) which is one of the groups represented by —CONH— and —COO—, and a repeating unit which is one group selected from the group consisting of When, In the general formula (5), represented by the general formula (1), and R 4 in the formula is one of the groups represented by Q being —O— or —CH 2 —.
  • the touch panel, solar cell, and display device of the present invention each include the transparent conductive laminate of the present invention.
  • the transparent film of the present invention has the following general formula (1):
  • R 1, R 2, R 3 are each independently a hydrogen atom, it represents one selected from the group consisting of alkyl groups and fluorine atoms having 1 to 10 carbon atoms, R 4 is Represents an aryl group having 6 to 40 carbon atoms, and n represents an integer of 0 to 12.
  • Such a transparent film of the present invention can be suitably used for a substrate film or the like provided in the transparent conductive laminate of the present invention.
  • the present invention has sufficiently high thermal shock resistance and sufficiently suppresses deterioration of quality even under high-temperature heating conditions such as those employed in the manufacturing process of solar cells and liquid crystal display devices. It is possible to provide a transparent conductive laminate that can be used, and a touch panel, a solar cell, and a display device using the same. In addition, according to the present invention, it is possible to provide a transparent film made of polyimide having excellent heat resistance and having a sufficiently low linear expansion coefficient, which can be suitably used as a substrate film or the like of the transparent conductive laminate. It becomes.
  • Norbornane-2-spiro-2′-cyclopentanone-5′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic dianhydride obtained in Synthesis Example 1 It is a graph of IR spectrum.
  • Norbornane-2-spiro-2′-cyclopentanone-5′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic dianhydride obtained in Synthesis Example 1 1 is a graph of 1 H-NMR (DMSO-d 6 ) spectrum.
  • Example 1 is a graph of 13 C-NMR (DMSO-d 6 ) spectrum.
  • 2 is a graph of IR spectrum of polyimide obtained in Example 1.
  • FIG. 3 is a graph of IR spectrum of polyimide obtained in Example 2.
  • 4 is a graph of IR spectrum of polyimide obtained in Example 3.
  • 6 is a graph of IR spectrum of polyimide obtained in Example 4.
  • 6 is a graph of IR spectrum of polyimide obtained in Example 5.
  • 4 is a graph of IR spectrum of polyimide obtained in Comparative Example 1.
  • the transparent conductive laminate of the present invention comprises a substrate film made of polyimide, and a thin film made of a conductive material laminated on the substrate film,
  • the polyimide has the following general formula (1):
  • R 1, R 2, R 3 are each independently a hydrogen atom, it represents one selected from the group consisting of alkyl groups and fluorine atoms having 1 to 10 carbon atoms, R 4 is Represents an aryl group having 6 to 40 carbon atoms, and n represents an integer of 0 to 12.
  • R 1, R 2, R 3 are each independently a hydrogen atom, it represents one selected from the group consisting of alkyl groups and fluorine atoms having 1 to 10 carbon atoms
  • R 4 is Represents an aryl group having 6 to 40 carbon atoms
  • n represents an integer of 0 to 12.
  • the polyimide according to the present invention contains at least one repeating unit represented by the general formula (1).
  • the alkyl group that can be selected as R 1 , R 2 , or R 3 in the general formula (1) is an alkyl group having 1 to 10 carbon atoms. When such carbon number exceeds 10, glass transition temperature will fall and sufficient thermal shock resistance will no longer be obtained for the obtained substrate film. Further, the number of carbon atoms of the alkyl group that can be selected as R 1 , R 2 , or R 3 is preferably 1 to 6 and is preferably 1 to 5 from the viewpoint of easier purification. Is more preferably 1 to 4, particularly preferably 1 to 3. Further, such an alkyl group that can be selected as R 1 , R 2 , or R 3 may be linear or branched. Further, such an alkyl group is more preferably a methyl group or an ethyl group from the viewpoint of ease of purification.
  • the glass transition temperature can be more efficiently set to 350 ° C. to 450 ° C. and sufficiently high heat resistance
  • a hydrogen atom or an alkyl group having 1 to 10 carbon atoms are preferably independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and above all, from the viewpoint of easy availability of raw materials and easier purification.
  • a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group is more preferable, and a hydrogen atom or a methyl group is particularly preferable.
  • it is especially preferable that several R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 > in such a formula is the same from viewpoints, such as the ease of refinement
  • the aryl group that can be selected as R 4 in the general formula (1) is an aryl group having 6 to 40 carbon atoms. Further, such a carbon number is preferably 6 to 30, and more preferably 12 to 20. If the number of carbons exceeds the upper limit, the glass transition temperature cannot be set to 350 ° C. to 450 ° C., and sufficient thermal shock resistance tends to be not obtained. It tends to be difficult to form a substrate film because the solubility of the polyimide in the solvent decreases.
  • R 4 in the general formula (1) has a sufficiently high glass transition temperature and a sufficiently low linear expansion coefficient, and from the viewpoint of exhibiting these characteristics in a well-balanced manner, the following general formula (2 ) To (5):
  • R 5 represents one selected from the group consisting of a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, and a trifluoromethyl group.
  • Q represents a formula: —O—, —S—, —CO—, —CONH—, —C 6 H 4 —, —COO—, —SO 2 —, —C (CF 3 ) 2 —, —C (CH 3 ) 2 —, —CH 2 —, —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —SO 2 —C 6 H 4 —O—, —C ( CH 3) 2 -C 6 H 4 -C (CH 3) 2 -, - from O-C 6 H 4 -C 6 H 4 -O- and -O-C 6 group represented by H 4 -O- 1 type
  • R 5 in the general formula (4) is a hydrogen atom, a fluorine atom, a methyl group or an ethyl group from the viewpoint that the glass transition temperature and the linear expansion coefficient are balanced and have a higher level.
  • a hydrogen atom is particularly preferable.
  • Q in the general formula (5) is a formula: —O—, —S—, —CONH— from the viewpoint of achieving a higher balance between the glass transition temperature and the linear expansion coefficient.
  • —COO—, —CO—, —C 6 H 4 —, —CH 2 —, —O—C 6 H 4 —O— are preferred.
  • a group represented by —, —COO— or —CH 2 — is more preferred, and a group represented by the formula: —O— or —CONH— is particularly preferred.
  • the glass transition temperature can be set to a sufficiently high temperature, and the linear expansion coefficient is a sufficiently low value.
  • the group represented by the general formula (4) or (5) is more preferable.
  • R 4 is a group represented by the general formula (4) or the general formula (5
  • Q is a group represented by —CONH—, —COO—, —CO—, —C 6 H 4 — (more preferably a group represented by —CONH— or —COO—, particularly preferably Is preferably at least one selected from the group represented by —CONH—.
  • R 4 from the viewpoint that a higher degree of flexibility (flexibility) can be imparted to the obtained substrate film made of polyimide, a group represented by the general formula (2), or general At least one of the groups represented by the formula (5) and the Q is represented by —O—, —S—, —CH 2 —, —O—C 6 H 4 —O— (more preferably — It is preferably a group that is one of the groups represented by O— and —CH 2 —, more preferably a group represented by —O—.
  • n represents an integer of 0 to 12. If the value of n exceeds the upper limit, purification becomes difficult.
  • the upper limit of the numerical value range of n in the general formula (1) is more preferably 5 and particularly preferably 3 from the viewpoint of easier purification.
  • the lower limit of the numerical value range of n in such General formula (1) is the monomer (For example, tetracarboxylic dianhydride represented by the following General formula (6)) used for manufacture of a polyimide. From the viewpoint of the stability of the raw material, 1 is more preferable, and 2 is particularly preferable.
  • n in the general formula (1) is particularly preferably an integer of 2 to 3.
  • the polyimide has a sufficiently high glass transition temperature, a sufficiently low linear expansion coefficient, and sufficient flexibility (flexibility) of the obtained substrate film from the viewpoint of having a well-balanced balance at a higher level.
  • those containing a plurality of (two or more) repeating units having different types of R 4 are preferred.
  • the polyimide containing the plural types of repeating units is represented by the general formula (1), and R 4 in the formula is A group represented by the general formula (4); and one of the groups in which Q is represented by —CONH—, —COO—, —CO—, —C 6 H 4 — (more preferably —CONH A group represented by the above general formula (5) which is a group represented by-or -COO-, particularly preferably a group represented by -CONH-).
  • What contains a repeating unit (B) is more preferable.
  • R 4 in the general formula (1) is a group represented by the general formula (5) from the viewpoint of easy availability of the monomer at the time of production.
  • Q in the formula (5) is one of groups represented by —O—, —CH 2 —, —O—C 6 H 4 —O— (more preferably —O—, —CH More preferably, it is one of the groups represented by 2 —, more preferably a group represented by —O—.
  • the content ratio of the repeating unit (A) to the repeating unit (B) is 9: 1 in terms of molar ratio ((A) :( B)). It is preferable that it is ⁇ 6: 4 (more preferably 8: 2 to 7: 3). If the content ratio of the repeating unit (A) is less than the lower limit, it tends to be difficult to obtain a polyimide having a lower linear expansion coefficient. On the other hand, if the content exceeds the upper limit, the flexibility of the obtained substrate film decreases. Tend to. Moreover, when it contains repeating unit (A) and (B), the structure of substituents other than R ⁇ 4 > in the said General formula (1) is the same from a viewpoint that a polyimide can be prepared more efficiently. Is preferred.
  • R 4 is a group represented by the general formula (5) and the Q is represented by —CONH—
  • the linear expansion coefficient can be lowered at a higher level while having sufficient heat resistance (for example, the linear expansion coefficient is 20 ppm /
  • the content ratio of the repeating unit (C) is 60 on the basis of the total amount of the repeating unit represented by the general formula (1) in the polyimide. It is preferably at least mol%, more preferably at least 75 mol%, even more preferably at least 90 mol%, particularly preferably at least 100 mol%.
  • the polyimide according to the present invention has a glass transition temperature of 350 ° C. to 450 ° C.
  • the glass transition temperature is lower than the lower limit, the thermal shock resistance of the substrate film is not sufficient, and the quality of the transparent conductive laminate is deteriorated (cracked) in the heating process in the manufacturing process of solar cells and liquid crystal display devices.
  • the above upper limit is exceeded, a solid film polymerization reaction does not proceed simultaneously with the thermal ring-closing condensation reaction of the polyamic acid when the polyimide is produced, resulting in a brittle film Tend to be.
  • the glass transition temperature of the polyimide is more preferably 360 ° C.
  • the glass transition temperature of such a polyimide a differential scanning calorimeter (for example, trade name “DSC7020” manufactured by SII Nano Technology Co., Ltd.) is used as a measuring device, and the rate of temperature increase is 10 ° C./min.
  • Speed A value obtained by scanning between 30 ° C. and 440 ° C. in a nitrogen atmosphere under a condition of 30 ° C./min can be employed.
  • the above-mentioned scanning temperature is changed from 30 degreeC to 470 degreeC, and a glass transition temperature is measured.
  • the polyimide according to the present invention has a linear expansion coefficient of 30 ppm / ° C. or less.
  • a linear expansion coefficient exceeds the upper limit, sufficient thermal shock resistance cannot be obtained, and a thin film made of a conductive material is cracked in the manufacturing process of a solar cell or a liquid crystal display device, resulting in deterioration of quality. It is difficult to sufficiently suppress this.
  • the linear expansion coefficient is more preferably 25 ppm / ° C. or less, and further preferably 20 ppm / ° C. or less.
  • the lower limit of the linear expansion coefficient is preferably 5 ppm / ° C., more preferably 10 ppm / ° C.
  • thermomechanical analyzer (trade name “TMA8310 made by Rigaku” is used as a measuring device. )
  • the glass transition temperature and the linear expansion coefficient of such a polyimide can be changed by appropriately changing the type of R 1 to R 4 in the general formula (1) or the repeating unit represented by the general formula (1). By containing a plurality of types (two or more types), it can be within the above numerical range.
  • the polyimide film is stretched (longitudinal stretching, lateral stretching, oblique stretching, press stretching, etc.), the polyamide acid film that is a polyimide precursor is stretched before heat treatment, or the polyamide acid film that is a polyimide precursor is stretched. Even if heat treatment is performed while fixing, the linear expansion coefficient can be finely adjusted within the numerical range.
  • such a polyimide preferably has a 5% weight loss temperature of 450 ° C. or more, more preferably 460 to 550 ° C. If such a 5% weight loss temperature is less than the lower limit, sufficient thermal shock resistance tends to be not obtained. On the other hand, if it exceeds the upper limit, it tends to be difficult to produce a polyimide having such characteristics. It is in.
  • 5% weight reduction temperature is obtained by gradually heating from room temperature (25 ° C.) while flowing nitrogen gas in a nitrogen gas atmosphere, and measuring the temperature at which the weight of the used sample is reduced by 5%. Can be sought.
  • the film after thermal imidization may be difficult to dissolve in a general-purpose organic solvent, so the molecular weight is evaluated using the intrinsic viscosity [ ⁇ ] of the precursor polyamic acid. Measurements can be made.
  • the intrinsic viscosity [ ⁇ ] of the polyamic acid is preferably from 0.1 to 8.0, more preferably from 0.1 to 6.0, and more preferably from 0.1 to 3.0. Further preferred is 0.4 to 2.0. When the intrinsic viscosity is less than the lower limit, sufficient thermal shock resistance tends to be difficult to achieve. On the other hand, when the upper limit is exceeded, casting film formation (cast film formation) tends to be difficult.
  • Such intrinsic viscosity [ ⁇ ] can be measured as follows.
  • a measurement sample (solution) in which N, N-dimethylacetamide is used as a solvent and the polyamic acid is dissolved in the N, N-dimethylacetamide so as to have a concentration of 0.5 g / dL. obtain.
  • the viscosity of the measurement sample is measured using a kinematic viscometer under a temperature condition of 30 ° C., and the obtained value is adopted as the intrinsic viscosity [ ⁇ ].
  • a kinematic viscometer an automatic viscometer (trade name “VMC-252”) manufactured by Koiso Co., Ltd. is used.
  • the repeating unit represented by the said General formula (1) is all repeating units. 50 to 100 mol%, particularly preferably 80 to 100 mol%).
  • the other repeating unit may be included in the range which does not impair the effect of this invention.
  • limit especially as such another repeating unit What is necessary is just to select suitably and use the other repeating unit derived from a well-known monomer according to a use etc.
  • the shape and size of such a substrate film made of polyimide can be appropriately designed according to the application and the like, and the thickness of the substrate film is 1 to 200 ⁇ m, although not particularly limited. It is preferably 5 to 100 ⁇ m. If the thickness of the substrate film is less than the lower limit, the mechanical strength tends to decrease and weaken. On the other hand, if the thickness exceeds the upper limit, film forming tends to be difficult.
  • substrate film which consists of such a polyimide from a viewpoint of obtaining a transparent conductive laminated body with higher transparency, a thing with high transparency is preferable, and a total light transmittance is 80% or more (more preferably 85 % Or more, particularly preferably 87% or more) is more preferable.
  • a total light transmittance can be easily achieved by appropriately selecting the type of polyimide or the like of the substrate film.
  • a value measured using a trade name “Haze Meter NDH-5000” manufactured by Nippon Denshoku Industries Co., Ltd. can be adopted as a measuring device.
  • the substrate film made of such a polyimide preferably has a refractive index of 1.50 to 1.70, more preferably 1.55 to 1.65. If the refractive index is less than the lower limit, the refractive index difference between the polyimide and the conductive thin film is large, and the total light transmittance tends to decrease. On the other hand, if the upper limit is exceeded, the polyimide tends to be colored. At the same time, synthesis itself tends to be difficult.
  • a refractive index a value measured under a temperature condition of 23 ° C. under a light source of 589 nm using a refractive index measuring device (trade name “NAR-1T SOLID” manufactured by Atago Co., Ltd.) is adopted. be able to.
  • R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n is 0 Indicates an integer of ⁇ 12.
  • Norbornane-2-spiro- ⁇ -cycloalkanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic dianhydrides represented by Formula (7):
  • R 4 represents an aryl group having 6 to 40 carbon atoms.
  • step (I) of preparing a polyamic acid containing at least one repeating unit represented by The step of applying the polyamic acid solution onto a substrate and imidizing the polyamic acid to obtain a substrate film made of polyimide having a repeating unit represented by the general formula (1) (step (II))
  • step (II) When, The manufacturing method of the board
  • step (I) and step (II) will be described separately.
  • step (I) norbornane-2-spiro- ⁇ -cycloalkanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′ represented by the above general formula (6) is present in the presence of an organic solvent.
  • 6,6 ′′ -tetracarboxylic dianhydrides hereinafter simply referred to as “compound represented by general formula (6)” or “tetracarboxylic dianhydrides represented by general formula (6)”
  • the aromatic diamine represented by the general formula (7) to prepare a polyamic acid having a repeating unit represented by the general formula (8). It is a process to obtain.
  • R 1, R 2, R 3, n in the general formula (6) is similar to the R 1, R 2, R 3 and n in formula (1), the suitable The thing is the same as that of the suitable thing of R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 > and n in the said General formula (1).
  • R 1 , R 2 , R 3 and n in the general formula (6) may be appropriately changed according to the structure of the target polyimide.
  • Examples of the tetracarboxylic dianhydrides represented by the general formula (6) include, for example, norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5.
  • tetracarboxylic dianhydrides represented by the general formula (6) one kind may be used alone or two or more kinds may be used in combination depending on the design of the substrate film made of polyimide. May be.
  • the glass transition temperature and linear expansion coefficient of the resulting polyimide can be changed within the above numerical range by appropriately changing the type. It is possible to adjust appropriately to the numerical value within.
  • a method for producing such tetracarboxylic dianhydrides represented by the general formula (6) will be described later.
  • a diamine compound represented by, the R 4 in the formula (7) is the same as the R 4 in the general formula (1)
  • the preferred one is the same as the preferred one for R 4 in the general formula (1).
  • R 4 in the general formula (7) may be appropriately changed depending on the configuration of the polyimide of interest.
  • Examples of the aromatic diamine represented by the general formula (7) include 4,4′-diaminodiphenylmethane, 4,4 ′′ -diamino-p-terphenyl, 3,3′-diaminodiphenylmethane, 4 , 4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2 , 2-bis (4-aminophenoxyphenyl) propane, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl ] Sulfone, bis [4- (3-aminophenoxy) phenyl] sul
  • R 4 of the aromatic diamine represented by the general formula (7) is represented by the general formula (4).
  • the aromatic diamine R 4 represented by the general formula (7) is represented by the general formula (2).
  • R 4 of the aromatic diamine represented by the general formula (7) is a group in which the Q is represented by —O—, —CH 2 —, —O—C 6 H 4 —O—.
  • the glass transition temperature and the linear expansion coefficient are within the above ranges, and the glass transition temperature, the linear expansion coefficient, and the obtained substrate film
  • a plurality of (two or more) aromatic diamines having different types of R 4 in the general formula (7) are preferably used in combination.
  • R 4 in the general formula (7) is the above general formula (7) as the plural types (two or more types) of aromatic diamines having different types of R 4.
  • a group represented by the general formula (5) which is a group represented by —COO—, particularly preferably a group represented by —CONH—, and a fragrance which is one group selected from the group consisting of A group diamine and R 4 in the general formula (7) is a group represented by the general formula (2); and the Q is —O—, —S—, —CH 2 —, —O—C 6.
  • H 4 -O- in one (more preferably of the group represented -O -, - CH 2 - with one of the groups represented by More preferably an aromatic diamine which is one group selected from the group consisting of the group represented by the general formula (5) which is a group represented by —O—. More preferred.
  • both the tetracarboxylic dianhydrides represented by the said General formula (6) and the aromatic diamine represented by the said General formula (7) are melt
  • An organic solvent that can be used is preferable.
  • organic solvents examples include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, propylene carbonate, tetramethylurea, 1,3- Aprotic polar solvents such as dimethyl-2-imidazolidinone, hexamethylphosphoric triamide, pyridine; phenol solvents such as m-cresol, xylenol, phenol, halogenated phenol; tetrahydrofuran, dioxane, cellosolve, glyme And ether solvents such as benzene, toluene, xylene, 2-chloro-4-hydroxytoluene and the like. Such organic solvents may be used alone or in combination of two or more.
  • the use ratio of the tetracarboxylic dianhydride represented by the said General formula (6) and the aromatic diamine represented by the said General formula (7) is the said General formula ( 7)
  • the acid anhydride group of the tetracarboxylic dianhydrides represented by the general formula (6) is 0.2 to 2 equivalents relative to 1 equivalent of the amino group of the aromatic diamine represented by 7). It is preferable that the amount be 0.3 to 1.2 equivalents. When such a use ratio is less than the lower limit, the polymerization reaction does not proceed efficiently and a high molecular weight polyamic acid tends to be not obtained. There is no tendency.
  • the total amount of the aromatic diamine represented by the tetracarboxylic dianhydrides represented by the said General formula (6) and the said General formula (7) is mentioned.
  • the amount is preferably 0.1 to 50% by mass (more preferably 10 to 30% by mass) with respect to the total amount of the reaction solution. If the amount of the organic solvent used is less than the lower limit, the polyamic acid tends not to be obtained efficiently. On the other hand, if it exceeds the upper limit, stirring tends to be difficult due to the increase in viscosity.
  • the reaction rate is improved when the tetracarboxylic dianhydride represented by the general formula (6) is reacted with the aromatic diamine represented by the general formula (7).
  • a basic compound may be further added to the organic solvent. Examples of such basic compounds include, but are not limited to, triethylamine, tetrabutylamine, tetrahexylamine, 1,8-diazabicyclo [5.4.0] -undecene-7, pyridine, isoquinoline, N-methylpiperidine, ⁇ -picoline and the like can be mentioned.
  • the amount of such a basic compound used is preferably 0.001 to 10 equivalents relative to 1 equivalent of the tetracarboxylic dianhydrides represented by the general formula (6), It is more preferable that the amount be 0.1 equivalent. If the amount of such a basic compound used is less than the lower limit, the effect of addition tends not to be seen. On the other hand, if the amount exceeds the upper limit, coloring tends to be caused.
  • the reaction temperature when the tetracarboxylic dianhydride represented by the general formula (6) is reacted with the aromatic diamine represented by the general formula (7) is as follows.
  • the temperature may be appropriately adjusted to a temperature at which the compound can be reacted, and is not particularly limited, but is preferably 80 ° C. or less, and preferably ⁇ 30 to 30 ° C.
  • a method of reacting the tetracarboxylic dianhydride represented by the above general formula (6) and the aromatic diamine represented by the above general formula (7) that can be employed in such step (I).
  • Can appropriately utilize a method capable of performing a polymerization reaction of tetracarboxylic dianhydride and aromatic diamine and is not particularly limited.
  • a method capable of performing a polymerization reaction of tetracarboxylic dianhydride and aromatic diamine is not particularly limited.
  • the tetracarboxylic dianhydride represented by the general formula (6) is added at the reaction temperature, and then reacted for 10 to 48 hours. May be. If the reaction temperature or reaction time is less than the lower limit, it tends to be difficult to react sufficiently.
  • the upper limit is exceeded, the mixing probability of substances (such as oxygen) that degrade the polymer increases, and the molecular weight increases. It tends to decrease.
  • the general formula (8) Polyamic acid having at least one repeating unit represented can be obtained.
  • the polyamic acid having the repeating unit represented by the above general formula (8) thus obtained is isolated and then dissolved again in a solvent (for example, the organic solvent etc.). It may be a solution of the polyamic acid used in II), or may be represented by the general formula (6) in an organic solvent without isolating the polyamic acid having the repeating unit represented by the general formula (8).
  • Reaction solution obtained by reacting tetracarboxylic dianhydrides with an aromatic diamine represented by the above general formula (7) (polyamic acid having a repeating unit represented by the above general formula (8) It is good also as a solution of the polyamic acid used for process (II) as it is.
  • polyamic acid which has a repeating unit represented by the said General formula (8) from the said reaction liquid it does not restrict
  • Such known methods can be adopted as appropriate, and for example, a method of isolating as a reprecipitate may be adopted.
  • R 1 in the general formula (8), R 2, R 3, R 4 and n are of the general formula (1) in the same manner as R 1, R 2, R 3 , R 4 and n
  • the preferred ones are also the same as R 1 , R 2 , R 3 , R 4 and n in the general formula (1).
  • the polyamic acid having a repeating unit represented by the general formula (8) preferably has an intrinsic viscosity [ ⁇ ] of 0.1 to 8.0, preferably 0.1 to 6.0. More preferably, it is more preferably 0.1 to 3.0 dL / g, and particularly preferably 0.4 to 2.0 dL / g.
  • the intrinsic viscosity [ ⁇ ] is smaller than 0.1 dL / g, when a film-like polyimide is produced using the intrinsic viscosity [ ⁇ ], the resulting film tends to become brittle, while 8.0 dL / g is reduced.
  • Such intrinsic viscosity [ ⁇ ] can be measured as follows. That is, first, a measurement sample (solution) in which N, N-dimethylacetamide is used as a solvent and the polyamic acid is dissolved in the N, N-dimethylacetamide so as to have a concentration of 0.5 g / dL. obtain. Next, using the measurement sample, the viscosity of the measurement sample is measured using a kinematic viscometer under a temperature condition of 30 ° C., and the obtained value is adopted as the intrinsic viscosity [ ⁇ ]. As such a kinematic viscometer, an automatic viscometer (trade name “VMC-252”) manufactured by Koiso Co., Ltd. is used.
  • the general formula You may employ
  • the method using the diamine compound may be employed, and furthermore, both of these methods may be employed.
  • tetracarboxylic dianhydrides other than the tetracarboxylic dianhydrides represented by the above general formula (6) include butanetetracarboxylic dianhydride and 1,2,3,4-cyclobutane.
  • the well-known diamine compound which can be used for manufacture of a polyimide or a polyamic acid can be used suitably, for example, aliphatic diamine, An alicyclic diamine or the like can be used as appropriate.
  • aliphatic diamines include ethylene diamine, propylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, and polyoxyalkylene diamine.
  • Examples of the alicyclic diamine include 4,4′-diamino-dicyclohexylmethane, 3,3′-dimethyl-4,4′-diamino-dicyclohexylmethane, and 3,3′-diethyl-4,4′-.
  • a method for producing tetracarboxylic dianhydrides represented by the general formula (6) used in the step (I) will be described.
  • the method for producing such tetracarboxylic dianhydrides represented by the general formula (6) is not particularly limited, and for example, the following general formula (9):
  • R 1 , R 2 , R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom; An integer from 0 to 12 is shown.
  • 5-norbornene-2-spiro- ⁇ -cycloalkanone- ⁇ ′-spiro-2 ′′ -5 ′′ -norbornenes represented by the formula (hereinafter referred to simply as “compound represented by the general formula (9)”)
  • compound represented by the general formula (9) By using a known method or the like as appropriate to form a tetracarboxylic dianhydride, thereby obtaining a tetracarboxylic dianhydride represented by the above general formula (6). Also good.
  • the method for converting the compound represented by the general formula (9) into a tetracarboxylic dianhydride is not particularly limited, and a known method can be appropriately used.
  • Macromolecules (Vol. 27, published in 1994) ) May be employed as described on page 1117. That is, as a method for making such a tetracarboxylic dianhydride, the compound represented by the above general formula (9) is prepared by adding carbon monoxide and methanol in the presence of a Pd catalyst, copper (II) chloride and sodium acetate.
  • the resulting tetramethyl ester was subjected to a transesterification reaction with formic acid in the presence of an acid catalyst such as p-toluenesulfonic acid to obtain a tetracarboxylic acid, and then into the reaction system of this transesterification reaction.
  • an acid catalyst such as p-toluenesulfonic acid
  • a method in which acetic anhydride is allowed to coexist and the tetracarboxylic acid is converted to tetracarboxylic dianhydride with acetic anhydride may be employed.
  • thermal dehydration is performed in a sublimation purification apparatus under vacuum conditions. You may employ
  • R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom
  • R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 6 to 20 carbon atoms.
  • n represents an integer of 0 to 12.
  • R 1 in the general formula (9) in, R 2, R 3, n is R 1 in the general formula (6), R 2, R 3, n and are those same, is the same as the preferred ones also R 1 in the general formula (6), R 2, R 3, n.
  • Examples of the compound represented by the general formula (9) include 5-norbornene-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -5 ′′ -norbornene (also known as “5” -Norbornene-2-spiro-2'-cyclopentanone-5'-spiro-2 "-5 ''-norbornene”), methyl-5-norbornene-2-spiro- ⁇ -cyclopentanone- ⁇ '- Spiro-2 ′′-(methyl-5 ′′ -norbornene), 5-norbornene-2-spiro- ⁇ -cyclohexanone- ⁇ ′-spiro-2 ′′ -5 ′′ -norbornene (also known as “5-norbornene-2” -Spiro-2'-cyclohexanone-6'-spiro-2 "-5 ''-norbornene”), methyl-5-norbornene-2-spiro- ⁇ -cyclohe
  • R 1, R 2, R 3, n in the general formula (10) in the, R 1 in the general formula (6), R 2, R 3 and n, and the preferred ones are also the same as R 1 , R 2 , R 3 and n in the general formula (6).
  • the alkyl group that can be selected as R 6 , R 7 , R 8 , or R 9 in the general formula (10) is an alkyl having 1 to 10 carbon atoms. It is a group. When the carbon number of such an alkyl group exceeds 10, purification becomes difficult.
  • the number of carbon atoms of the alkyl group that can be selected as R 6 , R 7 , R 8 , or R 9 is more preferably 1 to 5 from the viewpoint of easier purification. 3 is more preferable.
  • such an alkyl group that can be selected as R 6 , R 7 , R 8 , and R 9 may be linear or branched.
  • the cycloalkyl group that can be selected as R 6 , R 7 , R 8 , R 9 in the general formula (10) is a cycloalkyl group having 3 to 10 carbon atoms. If the number of carbon atoms in such a cycloalkyl group exceeds 10, purification becomes difficult.
  • the number of carbon atoms of the cycloalkyl group that can be selected as R 6 , R 7 , R 8 , or R 9 is more preferably 3 to 8 from the viewpoint of easier purification. More preferably, it is .about.6.
  • the alkenyl group that can be selected as R 6 , R 7 , R 8 , R 9 in the general formula (10) is an alkenyl group having 2 to 10 carbon atoms.
  • the carbon number of such an alkenyl group exceeds 10, purification becomes difficult.
  • the number of carbon atoms of the alkenyl group that can be selected as R 6 , R 7 , R 8 , R 9 is more preferably 2 to 5 from the viewpoint of easier purification. 3 is more preferable.
  • the aryl group that can be selected as R 6 , R 7 , R 8 , R 9 in the general formula (10) is an aryl group having 6 to 20 carbon atoms. If the number of carbon atoms in such an aryl group exceeds 20, purification becomes difficult. Further, the number of carbon atoms of the aryl group that can be selected as R 6 , R 7 , R 8 , or R 9 is more preferably 6 to 10 from the viewpoint of easier purification. More preferably, it is 8.
  • the aralkyl group that can be selected as R 6 , R 7 , R 8 , R 9 in the general formula (10) is an aralkyl group having 7 to 20 carbon atoms. If the number of carbon atoms in such an aralkyl group exceeds 20, purification becomes difficult.
  • the number of carbon atoms of the aralkyl group that can be selected as R 6 , R 7 , R 8 , R 9 is more preferably 7-10, from the viewpoint of easier purification. More preferably, it is 9.
  • R 6 , R 7 , R 8 , and R 9 in the general formula (10) are each independently a hydrogen atom, a methyl group, an ethyl group, or n-propyl, from the viewpoint of easier purification.
  • R 6 , R 7 , R 8 and R 9 may be the same or different, but from the viewpoint of synthesis, they may be the same. More preferred.
  • Examples of the compound represented by the general formula (10) include norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 '' -Tetracarboxylic acid tetramethyl ester, norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2 ''-norbornane-5,5 '', 6,6 ''-tetracarboxylic acid tetraethyl ester Norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acid tetrapropyl ester, norbornane-2-spiro- ⁇ -Cyclopentanone- ⁇ '-spiro-2 "-norbornane-5,5", 6,6 "-tetracarboxylic
  • R 1, R 2, R 3, n has the same meaning as R 1, R 2, R 3, n in the general formula (6), form an amine each R is independently A monovalent organic group (for example, a straight-chain saturated hydrocarbon group having 1 to 20 carbon atoms, etc.), and X ⁇ represents a monovalent ion (for example, a halogen ion, which can form an ammonium salt with an amine). Hydrogen sulfate ion, acetate ion, etc.).
  • a method for producing a compound represented by the general formula (9) can be employed by utilizing a reaction represented by Such a method represented by the reaction formula (I) includes a cycloalkanone represented by the general formula (I-1) (cyclopentanone, cyclohexanone, etc.) and 2 equivalents or more of the cycloalkanone.
  • Ammonium salts of secondary amines eg hydrochlorides, sulfates, acetates, etc .: compounds represented by the formula: NHR 2 HX in reaction formula (I)), formaldehyde derivatives, acids (hydrochloric acid, sulfuric acid, acetic acid, etc.)
  • the reaction solution is heated at 30 to 180 ° C.
  • the reaction solution may be an organic solvent (any organic solvent that can be used for Diels-Alder reaction, preferably tetrahydrofuran, methanol, ethanol, isopropanol, butanol, acetonitrile, methyl cellosolve, ethyl cellosolve).
  • organic solvent any organic solvent that can be used for Diels-Alder reaction, preferably tetrahydrofuran, methanol, ethanol, isopropanol, butanol, acetonitrile, methyl cellosolve, ethyl cellosolve).
  • An organic solvent such as ethylene glycol, propylene glycol monomethyl ether, and propylene glycol) and a cyclopentadiene (which may have a substituent similar to the group that can be selected as R 1 in the general formula (6) ( 2 equivalents or more with respect to the Mannich base) is added to make a mixture, and then a base is introduced into the mixture to make it neutral or basic, under conditions of 0 to 150 ° C. (preferably about 60 ° C.). The mixture is stirred in the mixture for 0.1 to 48 hours.
  • the divinyl ketone represented by the general formula (I-3) is synthesized by desorbing an amine compound from the Mannich base during stirring of the mixture at 0 to 150 ° C.
  • Examples of the cycloalkanone represented by the general formula (I-1) in the reaction formula (I) include cyclopropanone, cyclobutanone, cyclopentanone, cyclohexanone, cycloheptanone, and cyclooctanone.
  • Examples of the secondary amine ammonium salt include dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, di-t-butylamine, Dipentylamine, dicyclopentylamine, dihexylamine, dicyclohexylamine, diheptylamine, dioctylamine, di (2-ethylhexyl) amine, dinonylamine, didecylamine, diundecylamine, didodecylamine, ditridecylamine, ditetradecylamine, di Pentadecylamine, dihexadecylamine, diheptadecylamine, dioctadecylamine, dinonadecylamine, morpholine, diethanolamine, aziridine, azetidine, pyrrolidine, pipet
  • X ⁇ is a so-called counter anion, for example, F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , CH 3 COO ⁇ , CF 3 COO ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , C 6 H 5 SO 3 ⁇ , CH 3 C 6 H 4 SO 3 ⁇ , HOSO 3 ⁇ and H 2 PO 4 — and the like can be mentioned.
  • the divinyl ketone is synthesized by desorbing an amine compound from the Mannich base during stirring of the mixture at 0 to 150 ° C.
  • R 10 OH (11) [In formula (11), R 10 is other than a hydrogen atom among atoms and groups that can be selected as R 6 , R 7 , R 8, or R 9 in general formula (10). ] It is preferable that it is alcohol represented by these.
  • Specific examples of such alcohols include methanol, ethanol, butanol, allyl alcohol, cyclohexanol, benzyl alcohol, etc. Among them, methanol and ethanol are preferred from the viewpoint that purification of the resulting compound is easier. Is more preferable, and methanol is particularly preferable.
  • Such alcohols may be used alone or in combination of two or more.
  • ester group represented by the above formula (the ester group may have the same or different R 10 at each introduced position), and norbornane-2 represented by the general formula (10) -Spiro- ⁇ -cycloalkanone- ⁇ '-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -reaction to obtain tetracarboxylic acid esters (esterification reaction).
  • the amount of alcohol used in such esterification reaction is not particularly limited as long as it is an amount capable of obtaining the compound represented by the general formula (10).
  • the alcohol may be added to a theoretically necessary amount (theoretical amount) for obtaining the compound represented, and the excess alcohol may be used as a solvent as it is.
  • the required amount of carbon monoxide can be supplied to the reaction system. Therefore, it is not necessary to use a high-purity gas of carbon monoxide as the gas for supplying the carbon monoxide, and a mixture in which a gas inert to the esterification reaction (for example, nitrogen) and carbon monoxide is mixed. Gas may be used, and further, synthesis gas, coal gas, or the like may be used. Further, the pressure of such carbon monoxide is not particularly limited, but is preferably normal pressure (about 0.1 MPa [1 atm]) or more and 10 MPa or less.
  • the palladium catalyst used in the first step is not particularly limited, and a known catalyst containing palladium can be appropriately used.
  • a known catalyst containing palladium can be appropriately used.
  • Specific examples of such a palladium catalyst include palladium chloride, palladium nitrate, palladium sulfate, palladium acetate, palladium acetate trimer, palladium propionate, palladium carbon, palladium alumina, palladium black, and Pd having various ligands. Complex etc. are mentioned.
  • the amount of the palladium catalyst used is such that the molar amount of palladium in the palladium catalyst is 0.001 to 0.1 times the molar amount of the compound represented by the general formula (9). Is preferred.
  • the Pd 0 can be oxidized to Pd 2+.
  • Any material can be used without particular limitation, and examples thereof include copper compounds, iron compounds, oxygen, air, and hydrogen peroxide.
  • Specific examples of such oxidizing agents include cupric chloride, cupric nitrate, cupric sulfate, cupric acetate, ferric chloride, ferric nitrate, ferric sulfate, and acetic acid ferrous. Examples include ferric iron, manganese dioxide, and manganese acetate.
  • Such an oxidizing agent is used in an amount of 5-norbornene-2-spiro- ⁇ -cycloalkanone- ⁇ ′-spiro-2 ′′ -5 ′′ -norbornene represented by the general formula (9). It is preferably 2 to 16 times mol (more preferably about 8 times mol).
  • a solvent for the reaction (esterification reaction) of the compound represented by the general formula (9) with alcohol and carbon monoxide is not particularly limited, and examples thereof include hydrocarbon solvents such as n-hexane, cyclohexane, heptane, pentane, and toluene.
  • a base may be added to remove the acid.
  • fatty acid salts such as sodium acetate, sodium propionate and sodium butyrate are preferable.
  • the amount of such base used may be appropriately adjusted according to the amount of acid generated.
  • the reaction temperature conditions for the esterification reaction are not particularly limited, but are preferably 0 ° C. to 100 ° C. (more preferably about room temperature (25 ° C.)). When the reaction temperature exceeds the upper limit, the yield tends to decrease, and when the reaction temperature is lower than the lower limit, the reaction rate tends to decrease.
  • the reaction time for the esterification reaction is not particularly limited, but is preferably about 30 minutes to 24 hours.
  • R 6 , R 7 , R 8 or R 9 in the general formula (10) a hydrogen atom
  • Decomposition treatment or transesterification with carboxylic acid may be performed.
  • the method for such a reaction is not particularly limited, and a known method in which the group represented by the formula: —COOR 10 can be changed to the formula: —COOH can be appropriately employed.
  • a purification step such as recrystallization may be appropriately performed in order to obtain a compound with higher purity.
  • a purification method is not particularly limited, and a known method can be appropriately employed.
  • the norbornane-2-spiro- ⁇ -cycloalkanone- ⁇ ′-spiro-2 ′′ -norbornane-5 of the present invention represented by the general formula (10) is represented. 5 ′′, 6,6 ′′ -tetracarboxylic acid esters can be obtained efficiently.
  • the second step of the method (A) for producing the tetracarboxylic dianhydrides will be described.
  • the norbornane-2-spiro- ⁇ -cycloalkanone- ⁇ ′-spiro is obtained using a lower carboxylic acid (formic acid, acetic acid, propionic acid, etc.), an acid catalyst, and acetic anhydride.
  • the acid catalyst used in the second step is not particularly limited, but from the viewpoint of acid strength, p-toluenesulfonic acid, benzenesulfonic acid, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoroacetic acid, Amberlist and amberlite are preferable, and p-toluenesulfonic acid is more preferable.
  • the amount of the acid catalyst used in the second step is preferably 0.01 to 0.2 times mol with respect to the compound represented by the general formula (10). When the amount of the acid catalyst used is less than the lower limit, the reaction rate tends to decrease. On the other hand, when the amount exceeds the upper limit, the yield tends to decrease.
  • the amount of the lower carboxylic acid (for example, formic acid, acetic acid, propionic acid) used in the second step is not particularly limited, but is 4 to 100 times mol with respect to the compound represented by the general formula (10). It is preferable to do. If the amount of such a lower carboxylic acid (formic acid, acetic acid, propionic acid, etc.) used is less than the lower limit, the reaction rate tends to decrease, whereas if it exceeds the upper limit, the yield tends to decrease.
  • the amount of acetic anhydride used in the second step is not particularly limited, but it is preferably 4 to 100 times mol with respect to the compound represented by the general formula (10).
  • the amount of acetic anhydride used is less than the lower limit, the reaction rate tends to decrease, and when it exceeds the upper limit, the yield tends to decrease.
  • the second step is not particularly limited, but preferably includes the following steps (A) to (C), for example. That is, as such a second step, a mixed solution of the compound represented by the general formula (10), a lower carboxylic acid (formic acid, acetic acid, propionic acid, etc.) and an acid catalyst is prepared, and the mixed solution is Heating and refluxing step (A), part of the liquid in the mixed solution is distilled off under reduced pressure to concentrate the mixed solution, and a lower carboxylic acid (formic acid or the like) is added again to the obtained concentrated solution and heated.
  • a mixed solution of the compound represented by the general formula (10), a lower carboxylic acid (formic acid, acetic acid, propionic acid, etc.) and an acid catalyst is prepared, and the mixed solution is Heating and refluxing step (A), part of the liquid in the mixed solution is distilled off under reduced pressure to concentrate the mixed solution, and a lower carboxylic acid (formic acid or the like) is added again to the obtained concentrated solution and heated.
  • the compound represented by the general formula (6) can be obtained from the compound represented by the general formula (10) more efficiently.
  • step (B) the step of adding and concentrating lower carboxylic acid such as formic acid, acetic acid and propionic acid to the concentrated solution in step (B) is repeated (preferably 1 to 5). It is preferable to carry out the process repeatedly, or alternatively, in the step (B), after the produced carboxylic acid methyl ester and water are distilled off together with the lower carboxylic acid, the reduced amount of the lower carboxylic acid is continuously added. Is preferred.
  • R 6 , R 7 , R in the general formula (10) are repeatedly carried out by repeatedly adding and concentrating lower carboxylic acid such as formic acid, acetic acid, propionic acid to the concentrated solution.
  • the step (C) to be carried out thereafter can be more efficiently represented by the general formula (6). It becomes possible to obtain the compound to be obtained.
  • the amount of the lower carboxylic acid (formic acid, acetic acid, propionic acid, etc.) used in the production of the mixed solution in the step (A) is about 50 times mol with respect to the compound represented by the general formula (10). It is preferable that Moreover, it is preferable that the amount of the lower carboxylic acid (formic acid or the like) added to the concentrate in the steps (B) and (C) is approximately the same as the amount of the liquid distilled off during the concentration.
  • the method for concentrating (depressurizing distillation) of the mixed solution in the step (B) is not particularly limited, and a known method can be appropriately employed.
  • the temperature condition for heating and refluxing in the steps (A) to (C) is preferably 100 ° C. to 180 ° C., more preferably 100 ° C. to 140 ° C.
  • the heating reflux temperature is less than the lower limit, the yield tends to decrease.
  • the upper limit is exceeded, by-products increase and coloring tends to decrease and the transparency tends to decrease.
  • the heating and refluxing time is preferably about 30 minutes to 24 hours.
  • the norbornane-2-spiro- ⁇ -cycloalkanone- ⁇ ′-spiro-2 ′′ -norbornane-5 of the present invention represented by the general formula (6) is represented. , 5 ′′, 6,6 ′′ -tetracarboxylic dianhydrides can be obtained in high yield.
  • the norbornane-- represented by the general formula (10) is obtained by carrying out the first step.
  • 2-spiro- ⁇ -cycloalkanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acid esters such norbornane-2-spiro- ⁇ -cycloalkanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acid ester is hydrolyzed in the presence of an acid catalyst or a base catalyst to give norbornane -2-Spiro- ⁇ -cycloalkanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acid was prepared, and the resulting norbornane-2- Spir
  • step (II) a polyamic acid solution having the repeating unit represented by the general formula (8) obtained in the step (I) is applied onto a substrate, and then the polyamic acid is imidized, This is a step (step (II)) of obtaining a substrate film made of polyimide having a repeating unit represented by the general formula (1).
  • the base material for applying such a polyamic acid solution is not particularly limited, and can be used for forming a substrate film made of a polymer, depending on the shape of the substrate film made of polyimide and the like.
  • a base material for example, a glass plate or a metal plate
  • made of a known material can be used as appropriate.
  • the method for applying the polyamic acid solution on the substrate is not particularly limited, and examples thereof include spin coating, spray coating, dip coating, dropping, gravure printing, screen printing, and relief printing.
  • Known methods such as a method, a die coating method, a curtain coating method, and an ink jet method can be appropriately employed.
  • the thickness of the polyamic acid coating film formed on the substrate is preferably 1 to 200 ⁇ m, more preferably 5 to 100 ⁇ m after drying. If the thickness is less than the lower limit, the mechanical strength tends to decrease and weaken, whereas if the thickness exceeds the upper limit, film forming tends to be difficult.
  • the temperature condition in such a drying treatment method is preferably 0 to 100 ° C., more preferably 20 to 80 ° C. If the temperature condition in such a drying process is less than the lower limit, the solvent tends not to be dried. On the other hand, if the temperature condition exceeds the upper limit, the solvent tends to boil and form a film containing bubbles and voids.
  • the atmosphere in such a drying treatment method is preferably an inert gas atmosphere (for example, a nitrogen atmosphere).
  • the pressure condition in such a drying process is preferably 1 to 200 mmHg.
  • the imidization method of the polyamic acid is not particularly limited as long as it can imidize the polyamic acid, and a known method can be appropriately employed.
  • the general formula (8) It is preferable to employ a method of imidizing by performing a dehydration reaction by performing a heat treatment on the polyamic acid having a repeating unit represented by) or a method of imidizing using a so-called “imidizing agent”. .
  • an organic solvent is used without isolating the polyamic acid having the repeating unit represented by the general formula (8).
  • the reaction solution obtained by reacting the tetracarboxylic dianhydride represented by the general formula (6) and the aromatic diamine represented by the general formula (7) (the general formula (8)
  • the reaction solution containing the polyamic acid having a repeating unit represented by the above is used as the polyamic acid solution as it is, and the polyamic acid solution (reaction solution) is subjected to the drying treatment as described above to remove the solvent.
  • a method of imidizing by performing a heat treatment in the temperature range.
  • imidization is performed in a solution of a polyamic acid having a repeating unit represented by the general formula (8) in the presence of an imidizing agent. It is preferable to do.
  • the organic solvent described in the step (I) can be preferably used. Therefore, in the case of employing a method of imidizing using an imidizing agent, the above general formula is not contained in the organic solvent without isolating the polyamic acid having the repeating unit represented by the general formula (8).
  • Reaction liquid obtained by reacting the tetracarboxylic dianhydride represented by (6) with the aromatic diamine represented by the above general formula (7) (repeated by the above general formula (8)) More preferably, the reaction solution containing the polyamic acid having a unit) is used as it is as the polyamic acid solution, and an imidizing agent is added to the polyamic acid solution (reaction solution) for imidization.
  • an imidizing agent a known imidizing agent can be appropriately used.
  • acid anhydrides such as acetic anhydride, propionic anhydride, trifluoroacetic anhydride
  • pyridine collidine
  • lutidine triethylamine
  • N -Tertiary amines such as methylpiperidine and ⁇ -picoline
  • the reaction temperature at the time of imidation is preferably 0 to 180 ° C, and more preferably 60 to 150 ° C.
  • the reaction time is preferably 0.1 to 48 hours. If the reaction temperature or time is less than the lower limit, it tends to be difficult to sufficiently imidize. On the other hand, if the upper limit is exceeded, the mixing probability of a substance (such as oxygen) that degrades the polymer increases and the molecular weight increases. It tends to decrease.
  • the amount of such an imidizing agent is not particularly limited, and is several millimoles to several moles (preferably 0.00. 05 to 1.0 mol).
  • a polyimide containing at least one repeating unit represented by the general formula (1) can be obtained.
  • the above general formula (1) is obtained by heating and curing the polyamic acid obtained as a dry coating film on the substrate as described above.
  • the method (a) for obtaining a substrate film made of polyimide having a repeating unit represented may be adopted, or polyimide obtained as a dry coating film on a substrate as described above or as described above Using the polyimide solution imidized by adding an imidizing agent, this is added to a solvent having poor solubility of the polyimide, and subjected to filtration, washing, drying, etc.
  • the polyimide containing the repeating unit represented is isolated, the isolated polyimide is dissolved in an organic solvent to prepare a polyimide solution, and the polyimide The liquid is applied to the base material, the coating film is dried, and the dried coating film of polyimide containing the repeating unit represented by the general formula (1) is heat-cured and represented by the general formula (1).
  • the method for heat-curing the dried polyimide coating film employed in such methods (a) and (b) is not particularly limited, but is a temperature in the vicinity of the glass transition temperature of the polyimide (more preferably glass transition temperature ⁇ 40). It is preferable to employ a method of heating at 0.1 ° C., more preferably glass transition temperature ⁇ 20 ° C., particularly preferably glass transition temperature ⁇ 10 ° C. for 0.1 to 10 hours (preferably 0.5 to 2 hours). If the heating temperature and time are less than the lower limit, the solid phase polymerization reaction does not proceed sufficiently and the film tends to be brittle and weak. On the other hand, if the upper limit is exceeded, coloration or molecular weight reduction due to thermal decomposition may occur. It tends to happen.
  • the atmosphere at the time of heat curing of such a dried coating film is preferably an inert gas atmosphere (for example, nitrogen atmosphere), and the pressure condition at the time of heat curing is 0.01 to 760 mmHg. It is preferable that it is 0.01 to 200 mmHg.
  • the heat treatment for imidization and the heat treatment for subsequent heat curing may be performed simultaneously as a series of heat treatments.
  • the heating treatment at the time of the imidization described above is preferably performed continuously at a constant temperature as a temperature within the temperature range adopted at the time of the heat curing. That is, in the case of adopting the method (a), a coating film is cured as it is after imidation by a series of heat treatment (imidation and heat curing are one heat treatment) to obtain a substrate film. You can also.
  • the said method (b) although it does not restrict
  • the solvent for the polyimide solution in the method (b) the same solvent as that for the polyamic acid solution described above can be used.
  • the polyimide solution applied in the method (b) can be used.
  • a method for drying the film a method similar to the method for drying the coating film of the polyamic acid solution described above can be employed.
  • At least one repeating unit represented by the general formula (1) is contained, and the glass transition temperature is 350 ° C. to 450 ° C.
  • a substrate film made of polyimide having a linear expansion coefficient of 30 ppm / ° C. or less can be obtained.
  • the polyimide substrate film thus obtained has sufficiently high heat resistance and a sufficiently low coefficient of linear expansion, and has sufficiently high resistance to thermal shock (change in ambient temperature). It will have.
  • the thin film made of a conductive material according to the present invention is laminated on the substrate film made of the polyimide.
  • Such a conductive material is not particularly limited as long as it is a conductive material, and a known conductive material that can be used for a solar cell, an organic EL element, a transparent electrode of a liquid crystal display device, or the like.
  • the film thickness of such a thin film made of a conductive material can be appropriately changed depending on the application and is not particularly limited. It is preferably 10 nm to 1000 nm, more preferably 20 nm to 500 nm, and particularly preferably 20 nm to 200 nm. If the thickness of such a conductive thin film is less than the lower limit, the surface resistance value is not sufficiently low, and the photoelectric conversion efficiency tends to decrease when used in a solar cell. There is a tendency that the production efficiency decreases due to a decrease in film formation time or a long film formation time.
  • a method for laminating a thin film made of such a conductive material on the substrate film is not particularly limited, and a known method can be used as appropriate. For example, a sputtering method, a vacuum deposition method, A method of laminating the thin film on the substrate film by forming a thin film of the conductive material by a vapor deposition method such as an ion plating method or a plasma CVD method may be adopted.
  • a gas barrier film may be formed on the substrate film in advance, and the thin film may be laminated on the substrate film via the gas barrier film.
  • Such a gas barrier film is not particularly limited, and a known film that can be used for a solar cell, an organic EL element, a transparent electrode of a liquid crystal display device, or the like can be appropriately used, and a formation method thereof is also a known method. Can be used as appropriate.
  • the substrate film is made of polyimide having a glass transition temperature of 350 ° C. to 450 ° C. and a linear expansion coefficient of 30 ppm / ° C. or less.
  • an existing sputtering apparatus for manufacturing an ITO glass substrate for example, an existing ITO glass used for an electron beam heating vacuum deposition method, a DC magnetron sputtering method, etc.
  • the transparent conductive laminate of the present invention forms a metal thin film on a plastic substrate such as a PET film such as a low energy ion plating method, application of a strong magnetic field, or DC / RF superposition type magnetron sputtering method. It is not always necessary to use a special damage-free sputtering apparatus such as that used in the above, and the existing equipment that can be used when manufacturing a metal thin film on a glass substrate is used, and the polyimide is used as a substitute for the glass substrate.
  • a transparent conductive laminate can also be produced using a substrate film, which can be said to be highly useful from the viewpoint of production costs including capital investment.
  • a metal thin film such as ITO is formed on a plastic substrate such as a PET film by a low-temperature process near normal temperature, a process of annealing and crystallizing to improve the conductivity and reliability of the obtained amorphous film
  • this step can be eliminated.
  • the substrate film made of polyimide is lightweight, so that the final product (for example, tablet terminal) using the same It is possible to reduce the weight of the touch panel.
  • the transparent conductive laminate of the present invention is obtained by laminating a thin film made of the conductive material on a substrate film made of the polyimide.
  • “transparent” means that the total light transmittance is 78% or more (more preferably 80% or more, still more preferably 82% or more).
  • Such a total light transmittance is easily obtained by appropriately selecting the type of polyimide of the substrate film made of the polyimide according to the present invention and the type of conductive material that is a thin film material laminated on the substrate film. Can be achieved.
  • a value measured using a trade name “Haze Meter NDH-5000” manufactured by Nippon Denshoku Industries Co., Ltd. can be used as a measuring device.
  • the thin film made of the conductive material preferably has a surface resistivity (sheet resistance) of 1 to 100 ⁇ / ⁇ (more preferably 10 to 70 ⁇ / ⁇ ). If the surface resistivity is less than the lower limit, the thin film made of a conductive material tends to be thick and the total light transmittance tends to decrease. On the other hand, if the upper limit is exceeded, the thin film made of a conductive material becomes thin and the total light transmittance is reduced. Although the rate is improved, it tends to not reach the surface resistivity (sheet resistance) required for the transparent electrode of the touch panel of the solar cell, the organic EL element, the liquid crystal display device, or the tablet terminal.
  • sheet resistance surface resistivity
  • Such a surface resistivity can be easily obtained by laminating a conductive thin film on the polyimide of the present invention under an ordinary temperature condition (for example, 250 to 350 ° C.) using an existing sputtering apparatus for producing an ITO glass substrate. Can be achieved.
  • a surface resistance meter for example, “Loresta surface resistance meter MCP-TESTER Loresta-FP” manufactured by Mitsubishi Yuka Co., Ltd.
  • the sample size is not particularly limited.
  • a value measured by adopting a four-probe method based on JIS K7194 (1994) can be adopted.
  • the required resistivity value is constant regardless of the shape and size of the sample, so the sample size may be changed as appropriate,
  • the length may be 40 mm
  • the width is 40 mm
  • the thickness is 0.05 mm.
  • Such a transparent conductive laminate of the present invention can obtain a sufficiently high thermal shock resistance by the substrate film made of the polyimide, even if it is exposed to high temperatures in the manufacturing process of solar cells and display devices, Since it is possible to sufficiently suppress the occurrence of cracks and cracks in a thin film made of a conductive material, it is particularly useful as a transparent electrode for solar cells, a transparent electrode for display devices (organic EL display devices, liquid crystal display devices, etc.), etc. .
  • the touch panel, solar cell, and display device of the present invention each include the transparent conductive laminate of the present invention.
  • the “display device” is not particularly limited as long as the transparent conductive laminate can be used, and examples thereof include a liquid crystal display device and an organic EL display device.
  • a touch panel, a solar cell, and a display device other configurations are not particularly limited, except that each of the touch panel, the solar cell, and the display device includes the transparent conductive laminate of the present invention. Can be adopted as appropriate.
  • a configuration for example, a configuration in which a touch panel includes a transparent electrode and another transparent electrode arranged with a gap interposed therebetween, and a solar cell includes a transparent electrode, a semiconductor layer, and a conductive layer for a counter electrode.
  • the organic EL display device includes a transparent electrode, an organic layer, and a conductive layer for a counter electrode
  • the liquid crystal display device includes a transparent electrode, a liquid crystal layer, and a conductive layer for a counter electrode.
  • the structure which includes is mentioned. Moreover, it does not restrict
  • the transparent conductive laminate of the present invention as the transparent electrode, a high temperature that is normally employed in the manufacturing process of touch panels, solar cells, and display devices (liquid crystal display devices and organic EL display devices). Even if it is exposed to the conditions, the transparent electrode layer (thin film made of a conductive material) is sufficiently suppressed from cracking, etc., so that it produces high quality touch panels, solar cells, and display devices with high yield. It becomes possible to do.
  • the transparent film of the present invention has the following general formula (1):
  • R 1, R 2, R 3 are each independently a hydrogen atom, it represents one selected from the group consisting of alkyl groups and fluorine atoms having 1 to 10 carbon atoms, R 4 is Represents an aryl group having 6 to 40 carbon atoms, and n represents an integer of 0 to 12. ] In a temperature range of 50 ° C. to 200 ° C. under a nitrogen atmosphere under a temperature rising rate of 5 ° C./min. It is a transparent film made of polyimide having a linear expansion coefficient of 30 ppm / ° C. or less determined by measuring a change in length.
  • transparent means that the total light transmittance is 80% or more (more preferably 85% or more, particularly preferably 87% or more).
  • the polyimide which forms such a transparent film of this invention is the same as what was demonstrated as a polyimide which forms the board
  • the transparent film of the present invention is basically the same as the above-described substrate film, and can be manufactured by employing the same method as the above-described method for manufacturing a substrate film.
  • the transparent film of this invention should just be a transparent film which consists of said polyimide, According to a use etc., the design of the suitable thickness, a magnitude
  • Such a transparent film of the present invention is not only sufficiently high in transparency, but also has a sufficiently high heat resistance and a very low linear expansion coefficient, so that it is exposed to high temperatures in the manufacturing process of solar cells and display devices. Since it is possible to sufficiently suppress the occurrence of cracks and cracks, for example, a substrate film for laminating transparent electrodes for touch panels and solar cells, and transparent electrodes for display devices (organic EL display devices, liquid crystal display devices, etc.) are laminated.
  • FPC optical waveguide
  • image sensor LED reflector
  • LED illumination cover skeleton FPC
  • cover lay film chip-on film
  • high ductility composite substrate liquid crystal alignment film
  • polyimide coating material Buffer coating materials for DRAM, flash memory, next-generation LSI, etc.
  • semiconductor resists various types It is particularly useful as films for use in applications material or the like.
  • Identification of the molecular structure of the compound obtained in each synthesis example, each example, etc. is performed using an infrared spectroscopic analyzer (manufactured by JASCO Corporation, FT / IR-460, FT / IR-4100, Thermo Fisher Scientific Co., Ltd.). The measurement was carried out by measuring IR and NMR spectra using a company-made, NICOLET 380FT-IR) and an NMR measuring machine (VARIAN, trade name: UNITY INOVA-600 and JEOL Ltd. JNM-Lambda500).
  • Tg glass transition temperature
  • the glass transition temperature (Tg) of the substrate film or the like obtained in each Example and Comparative Example was determined by using a differential scanning calorimeter (trade name “DSC7020” manufactured by SII Nano Technology Co., Ltd.). : Measurement was performed by scanning the range of 30 ° C. to 440 ° C. under a nitrogen atmosphere under the conditions of 10 ° C./min and the temperature decreasing rate: 30 ° C./min.
  • the intrinsic viscosity [ ⁇ ] of the polyamic acid obtained as an intermediate when producing a substrate film or the like in each Example and Comparative Example 1 was measured using an automatic viscosity measuring apparatus (trade name “VMC-252”) manufactured by Koiso Co., Ltd.
  • VMC-252 automatic viscosity measuring apparatus
  • a measurement sample of polyamic acid having a concentration of 0.5 g / dL was prepared using N, N-dimethylacetamide as a solvent, and measurement was performed at a temperature of 30 ° C.
  • the linear expansion coefficients of the substrate films and the like obtained in Examples 1 to 7 and Comparative Examples 1 and 2 are 20 mm in length, 5 mm in width, and 0.05 mm (50 ⁇ m) in thickness.
  • the change in length was measured, and the average value of the change in length per 1 ° C. in the temperature range of 50 ° C. to 200 ° C. was measured.
  • the linear expansion coefficient was measured like Example 1 except the thickness of the sample having been 0.1 mm (100 micrometers).
  • the total light transmittance of the substrate laminates obtained in each example and each comparative example and the conductive laminate obtained in each example and each comparative example is a product manufactured by Nippon Denshoku Industries Co., Ltd. as a measuring device. The measurement was performed according to JIS K7361-1 using the name “Haze Meter NDH-5000”.
  • thermal shock resistance thermal shock resistance of substrate film and conductive laminate
  • Evaluation tests of the thermal shock resistance of the films (substrate films and the like) obtained in Examples 1 to 12 and Comparative Examples 1 and 3 and the conductive laminates are the films (substrate films and the like) obtained in each Example and the like.
  • the conductive laminate was placed in a 350 ° C. vacuum oven for 1 hour, then cooled to 100 ° C., returned to normal pressure, taken out, and the surface condition of the substrate film and the conductive laminate was confirmed. (First thermal shock resistance evaluation test (measurement temperature condition: 350 ° C.)).
  • Example 3 For the conductive laminates obtained in each Example and Comparative Example 3, the same method as the first thermal shock resistance evaluation test was adopted except that the temperature condition of the vacuum oven was 400 ° C. The second thermal shock resistance was also measured (second thermal shock evaluation test (measurement temperature condition: 400 ° C.)).
  • the dropping funnel was set in the two-necked flask, and the hydrochloric acid aqueous solution was dropped into the dimethylamine aqueous solution under ice-cooling to prepare dimethylamine hydrochloride in the two-necked flask.
  • 2.78 g (92.4 mmol) of paraformaldehyde and 2.59 g (30.8 mmol) of cyclopentanone were further added to the two-necked flask.
  • the inside of the two-necked flask was replaced with nitrogen. Thereafter, the two-necked flask was submerged in a 90 ° C.
  • the heated mixture is cooled to room temperature (25 ° C.) and then transferred to a 200 ml separatory funnel. After adding n-heptane (80 ml), the n-heptane layer is recovered and the first extraction operation is performed. Went. Next, n-heptane (40 ml) was added to the remaining methyl cellosolve layer, and the n-heptane layer was recovered and subjected to a second extraction operation. The n-heptane layers obtained by the first and second extraction operations were mixed to obtain an n-heptane extract.
  • the n-heptane extract was washed once with a 5% by mass sodium hydroxide (NaOH) aqueous solution (25 ml) and then once with 5% by mass hydrochloric acid (25 ml). Subsequently, the n-heptane extract after washing with the hydrochloric acid solution was washed once with 5% by mass of sodium bicarbonate water (25 ml), and further washed once with saturated saline (25 ml). Next, the n-heptane extract thus washed was dried over anhydrous magnesium sulfate, and the anhydrous magnesium sulfate was filtered to obtain a filtrate.
  • NaOH sodium hydroxide
  • IR and NMR ( 1 H-NMR and 13 C-NMR) measurements of the obtained compound were performed.
  • the IR spectrum of the compound thus obtained is shown in FIG. 1
  • the 1 H-NMR (DMSO-d 6 ) spectrum is shown in FIG. 2
  • the 13 C-NMR (DMSO-d 6 ) spectrum is shown in FIG. .
  • Norbornane-2-spiro-2′-cyclopentanone-5′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic dianhydride was confirmed.
  • the total yield of such norbornane-2-spiro-2′-cyclopentanone-5′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic dianhydride The rate was 88%.
  • Example 1 First, a 30 ml three-necked flask was heated with a heat gun and sufficiently dried. Next, the atmosphere gas in the three-necked flask that was sufficiently dried was replaced with nitrogen, and the inside of the three-necked flask was changed to a nitrogen atmosphere. Next, 0.1337 g (0.63 mmol: manufactured by Tokyo Chemical Industry Co., Ltd .: OTD) and 0.0541 g (0.27 mmol: Wakayama Seika Kogyo Co., Ltd.) of 4,4′-diaminodiphenyl ether were placed in the three-necked flask.
  • N, N-dimethylacetamide was further added and stirred to add an aromatic diamine compound (o-tolidine (OTD) to the N, N-dimethylacetamide.
  • OTD aromatic diamine compound
  • DDE 4,4′-diaminodiphenyl ether
  • a dimethylacetamide solution having a polyamic acid concentration of 0.5 g / dL was prepared by using a part of the reaction solution (polyamic acid dimethylacetamide solution), and the intrinsic viscosity of the polyamic acid as the reaction intermediate was prepared. [ ⁇ ] was measured. The intrinsic viscosity of such polyamic acid is shown in Table 1.
  • the reaction solution obtained as described above is cast on a glass plate (length: 200 mm, width 200 mm) so that the thickness of the heat-cured coating film becomes 50 ⁇ m, and is coated on the glass plate.
  • a film was formed.
  • the glass plate on which the coating film has been formed is put into a vacuum oven, heated under a temperature condition of 40 ° C. for 12 hours under a pressure of 100 mmHg, and further under a temperature condition of 400 ° C. under a pressure of 1 mmHg.
  • the film was cured by heating for 1 hour to form a polyimide film on the glass plate.
  • the glass plate on which the film made of polyimide is formed is taken out from the vacuum oven, immersed in water at 25 ° C. for 12 hours, the film made of polyimide is recovered from the glass plate, the end portion is cut off, and the polyimide plate is made
  • a colorless and transparent substrate film (length 100 mm, width 100 mm, thickness 50 ⁇ m) was obtained.
  • the IR spectrum of the compound forming the substrate film thus obtained was measured.
  • the IR spectrum of the obtained compound is shown in FIG.
  • substrate film is the measurement result of the kind of the monomer (The tetracarboxylic dianhydride and aromatic diamine compound (OTD, DDE) which were obtained by the synthesis example 1) used, and IR spectrum. From the above, it was found that it contains a repeating unit represented by the general formula (1).
  • the polyimide is represented by the general formula (1)
  • R 4 in the formula (1) is a group represented by the general formula (4)
  • R 5 in the formula (4) is a methyl group
  • a group represented by the general formula (1) and R 4 in the formula (1) is represented by the general formula (5) (Q in the formula (5) is —O— It was found that it was a polyimide containing a repeating unit.
  • Example 2 First, a 30 ml three-necked flask was heated with a heat gun and sufficiently dried. Next, the atmosphere gas in the three-necked flask that was sufficiently dried was replaced with nitrogen, and the inside of the three-necked flask was changed to a nitrogen atmosphere. Next, 0.1432 g (0.63 mmol: manufactured by Tokyo Chemical Industry Co., Ltd .: DBA) and 4,4′-diaminodiphenyl ether 0.0541 (0.27 mmol: Wakayama) were placed in the three-necked flask.
  • NDE aromatic diamine compound
  • DBA 4,4′-Diaminobenzanilide
  • DDE 4,4′-diaminodiphenyl ether
  • a dimethylacetamide solution having a polyamic acid concentration of 0.5 g / dL was prepared by using a part of the reaction solution (polyamic acid dimethylacetamide solution), and the intrinsic viscosity of the polyamic acid as the reaction intermediate was prepared. [ ⁇ ] was measured. The intrinsic viscosity of such polyamic acid is shown in Table 1.
  • the reaction solution obtained as described above is cast on a glass plate (length: 200 mm, width 200 mm) so that the thickness of the heat-cured coating film becomes 50 ⁇ m, and is coated on the glass plate.
  • a film was formed.
  • the glass plate on which the coating film has been formed is put into a vacuum oven, heated under a temperature condition of 40 ° C. for 12 hours under a pressure of 100 mmHg, and further under a temperature condition of 400 ° C. under a pressure of 1 mmHg.
  • the film was cured by heating for 1 hour to form a polyimide film on the glass plate.
  • the glass plate on which the film made of polyimide is formed is taken out from the vacuum oven, immersed in water at 25 ° C. for 12 hours, the film made of polyimide is recovered from the glass plate, the end portion is cut off, and the polyimide plate is made
  • a colorless and transparent substrate film (length 100 mm, width 100 mm, thickness 50 ⁇ m) was obtained.
  • FIG. 5 shows the IR spectrum of the obtained compound.
  • C ⁇ O stretching vibration of imide carbonyl was confirmed at 1696.8 cm ⁇ 1
  • the obtained substrate film was made of polyimide. confirmed.
  • substrate film is the measurement result of the kind of monomer (The tetracarboxylic dianhydride and aromatic diamine compound (DBA, DDE) which were obtained by the synthesis example 1) used, and IR spectrum. From the above, it was found that it contains a repeating unit represented by the general formula (1).
  • the polyimide is represented by the general formula (1) and R 4 in the formula (1) is represented by the general formula (5) (Q in the formula (5) is represented by —CONH—.
  • a group represented by the general formula (1) and R 4 in the formula (1) is represented by the general formula (5) (Q in the formula (5) is- It was found to be a polyimide containing a repeating unit which is a group represented by O-).
  • Example 3 First, a 30 ml three-necked flask was heated with a heat gun and sufficiently dried. Next, the atmosphere gas in the three-necked flask that was sufficiently dried was replaced with nitrogen, and the inside of the three-necked flask was changed to a nitrogen atmosphere. Next, after introducing 0.2045 g (0.90 mmol: Tokyo Chemical Industry Co., Ltd .: DBA) of 4,4′-diaminobenzanilide into the three-necked flask, 2.7 g of N, N-dimethylacetamide was further added. By adding and stirring, the aromatic diamine compound (4,4′-diaminobenzanilide (DBA)) was dissolved in the N, N-dimethylacetamide to obtain a solution (DBA partially dissolved) ).
  • DBA aromatic diamine compound
  • a dimethylacetamide solution having a polyamic acid concentration of 0.5 g / dL was prepared by using a part of the reaction solution (polyamic acid dimethylacetamide solution), and the intrinsic viscosity of the polyamic acid as the reaction intermediate was prepared. [ ⁇ ] was measured. The intrinsic viscosity of such polyamic acid is shown in Table 2.
  • the reaction solution obtained as described above is cast on a glass plate (length: 200 mm, width 200 mm) so that the thickness of the heat-cured coating film becomes 50 ⁇ m, and is coated on the glass plate.
  • a film was formed.
  • the glass plate on which the coating film has been formed is put into a vacuum oven, heated under a temperature condition of 40 ° C. for 12 hours under a pressure of 100 mmHg, and further under a temperature condition of 400 ° C. under a pressure of 1 mmHg.
  • the film was cured by heating for 1 hour to form a polyimide film on the glass plate.
  • the glass plate on which the film made of polyimide is formed is taken out from the vacuum oven, immersed in water at 25 ° C. for 12 hours, the film made of polyimide is recovered from the glass plate, the end portion is cut off, and the polyimide plate is made.
  • a colorless and transparent film (length 100 mm, width 100 mm, thickness 50 ⁇ m) was obtained.
  • FIG. 6 shows the IR spectrum of the obtained compound.
  • C ⁇ O stretching vibration of imide carbonyl was confirmed at 1697.6 cm ⁇ 1, and it was confirmed that the obtained film was made of polyimide. It was done.
  • the said polyimide contains the repeating unit represented by the said General formula (1) from the measurement result of such IR spectrum, the kind of used monomer, etc. That is, the polyimide is represented by the general formula (1) and R 4 in the formula (1) is represented by the general formula (5) (Q in the formula (5) is represented by —CONH—. It was found to be a polyimide containing a repeating unit.
  • Example 4 First, a 30 ml three-necked flask was heated with a heat gun and sufficiently dried. Next, the atmosphere gas in the three-necked flask that was sufficiently dried was replaced with nitrogen, and the inside of the three-necked flask was changed to a nitrogen atmosphere. Next, 0.1528 g (0.72 mmol: manufactured by Tokyo Chemical Industry Co., Ltd .: OTD) and 0.0360 g (0.18 mmol: Wakayama Seika Kogyo Co., Ltd.) of 4,4′-diaminodiphenyl ether were placed in the three-necked flask.
  • N, N-dimethylacetamide was further added and stirred to add an aromatic diamine compound (o-tolidine (OTD) to the N, N-dimethylacetamide.
  • OTD aromatic diamine compound
  • DDE 4,4′-diaminodiphenyl ether
  • a dimethylacetamide solution having a polyamic acid concentration of 0.5 g / dL was prepared by using a part of the reaction solution (polyamic acid dimethylacetamide solution), and the intrinsic viscosity of the polyamic acid as the reaction intermediate was prepared. [ ⁇ ] was measured. The intrinsic viscosity of such polyamic acid is shown in Table 2.
  • the reaction solution obtained as described above is cast on a glass plate (length: 200 mm, width 200 mm) so that the thickness of the heat-cured coating film becomes 50 ⁇ m, and is coated on the glass plate.
  • a film was formed.
  • the glass plate on which the coating film has been formed is put into a vacuum oven, heated under a temperature condition of 40 ° C. for 12 hours under a pressure of 100 mmHg, and further under a temperature condition of 400 ° C. under a pressure of 1 mmHg.
  • the film was cured by heating for 1 hour to form a polyimide film on the glass plate.
  • the glass plate on which the film made of polyimide is formed is taken out from the vacuum oven, immersed in water at 25 ° C. for 12 hours, the film made of polyimide is recovered from the glass plate, the end portion is cut off, and the polyimide plate is made.
  • a colorless and transparent film (length 100 mm, width 100 mm, thickness 50 ⁇ m) was obtained.
  • FIG. 7 shows the IR spectrum of the obtained compound.
  • the C ⁇ O stretching vibration of imide carbonyl was confirmed at 1700.5 cm ⁇ 1 and it was confirmed that the obtained film was made of polyimide. It was done.
  • the polyimide which forms the obtained film is based on the types of monomers used (tetracarboxylic dianhydride and aromatic diamine compound (OTD, DDE) obtained in Synthesis Example 1), and IR spectrum measurement results. These were found to contain repeating units represented by the above general formula (1).
  • the polyimide is represented by the general formula (1), and R 4 in the formula (1) is a group represented by the general formula (4) (R 5 in the formula (4) is a methyl group. And a repeating unit represented by the general formula (1), wherein R 4 is represented by the general formula (5) (Q in the formula (5) is represented by —O—). It was found to be a polyimide containing a repeating unit which is a group).
  • Example 5 First, a 30 ml three-necked flask was heated with a heat gun and sufficiently dried. Next, the atmosphere gas in the three-necked flask that was sufficiently dried was replaced with nitrogen, and the inside of the three-necked flask was changed to a nitrogen atmosphere. Next, 0.0876 g (0.81 mmol: Aldrich: PPD) of p-phenylenediamine and 0.018 g (0.09 mmol: Wakayama Seika Kogyo Co., Ltd.) of 4,4′-diaminodiphenyl ether are placed in the three-necked flask.
  • PPD p-phenylenediamine
  • 0.018 g 0.09 mmol: Wakayama Seika Kogyo Co., Ltd.
  • DDE is further introduced, and 2.7 g of N, N-dimethylacetamide is further added and stirred, whereby the aromatic diamine compound (p-phenylenediamine (PPD)) is added to the N, N-dimethylacetamide. And 4,4′-diaminodiphenyl ether (DDE)) were dissolved to obtain a solution.
  • PPD p-phenylenediamine
  • DDE 4,4′-diaminodiphenyl ether
  • a dimethylacetamide solution having a polyamic acid concentration of 0.5 g / dL was prepared by using a part of the reaction solution (polyamic acid dimethylacetamide solution), and the intrinsic viscosity of the polyamic acid as the reaction intermediate was prepared. [ ⁇ ] was measured. The intrinsic viscosity of such polyamic acid is shown in Table 2.
  • the reaction solution obtained as described above is cast on a glass plate (length: 200 mm, width 200 mm) so that the thickness of the heat-cured coating film becomes 50 ⁇ m, and is coated on the glass plate.
  • a film was formed.
  • the glass plate on which the coating film has been formed is put into a vacuum oven, heated under a temperature condition of 40 ° C. for 12 hours under a pressure of 100 mmHg, and further under a temperature condition of 400 ° C. under a pressure of 1 mmHg.
  • the film was cured by heating for 1 hour to form a polyimide film on the glass plate.
  • the glass plate on which the film made of polyimide is formed is taken out from the vacuum oven, immersed in water at 25 ° C. for 12 hours, the film made of polyimide is recovered from the glass plate, the end portion is cut off, and the polyimide plate is made.
  • a colorless and transparent film (length 100 mm, width 100 mm, thickness 50 ⁇ m) was obtained.
  • the IR spectrum of the compound forming the film thus obtained was measured.
  • the IR spectrum of the obtained compound is shown in FIG.
  • C ⁇ O stretching vibration of imidecarbonyl was confirmed at 1699.0 cm ⁇ 1, and it was confirmed that the obtained film was made of polyimide. It was done.
  • the polyimide which forms the obtained film is based on the types of monomers used (tetracarboxylic dianhydride and aromatic diamine compound (PPD, DDE) obtained in Synthesis Example 1), and IR spectrum measurement results. These were found to contain repeating units represented by the above general formula (1).
  • the polyimide is represented by the general formula (1), and R 4 in the formula is a group represented by the general formula (2), and the general formula (1) and A polyimide containing a repeating unit in which R 4 in the formula (1) is a group represented by the general formula (5) (Q in the formula (5) is a group represented by —O—) It turns out that.
  • Example 6 First, a 30 ml three-necked flask was heated with a heat gun and sufficiently dried. Next, the atmosphere gas in the three-necked flask that was sufficiently dried was replaced with nitrogen, and the inside of the three-necked flask was changed to a nitrogen atmosphere. Next, 0.1841 g (0.81 mmol: manufactured by Tokyo Chemical Industry Co., Ltd .: DBA) and 4,4′-diaminodiphenyl ether 0.0180 (0.09 mmol: Wakayama) were placed in the three-necked flask.
  • NDE aromatic diamine compound
  • DBA 4,4′-Diaminobenzanilide
  • DDE 4,4′-diaminodiphenyl ether
  • a dimethylacetamide solution having a polyamic acid concentration of 0.5 g / dL was prepared by using a part of the reaction solution (polyamic acid dimethylacetamide solution), and the intrinsic viscosity of the polyamic acid as the reaction intermediate was prepared. [ ⁇ ] was measured. The intrinsic viscosity of such polyamic acid is shown in Table 2.
  • the reaction solution obtained as described above is cast on a glass plate (length: 200 mm, width 200 mm) so that the thickness of the heat-cured coating film becomes 50 ⁇ m, and is coated on the glass plate.
  • a film was formed.
  • the glass plate on which the coating film has been formed is put into a vacuum oven, heated under a temperature condition of 40 ° C. for 12 hours under a pressure of 100 mmHg, and further under a temperature condition of 400 ° C. under a pressure of 1 mmHg.
  • the film was cured by heating for 1 hour to form a polyimide film on the glass plate.
  • the glass plate on which the film made of polyimide is formed is taken out from the vacuum oven, immersed in water at 25 ° C. for 12 hours, the film made of polyimide is recovered from the glass plate, the end portion is cut off, and the polyimide plate is made.
  • a colorless and transparent film (length 100 mm, width 100 mm, thickness 50 ⁇ m) was obtained.
  • the polyimide which forms the obtained film is based on the types of monomers used (tetracarboxylic dianhydride and aromatic diamine compound (DBA, DDE) obtained in Synthesis Example 1), and IR spectrum measurement results. These were found to contain repeating units represented by the above general formula (1). That is, the polyimide is represented by the general formula (1) and R 4 in the formula (1) is represented by the general formula (5) (Q in the formula (5) is represented by —CONH—. And a group represented by the general formula (1) and R 4 in the formula (1) is represented by the general formula (5) (Q in the formula (5) is- It was found to be a polyimide containing a repeating unit which is a group represented by O-).
  • Example 7 First, a 30 ml three-necked flask was heated with a heat gun and sufficiently dried. Next, the atmosphere gas in the three-necked flask that was sufficiently dried was replaced with nitrogen, and the inside of the three-necked flask was changed to a nitrogen atmosphere. Subsequently, 0.1636 g (0.72 mmol: manufactured by Tokyo Chemical Industry Co., Ltd .: DBA) and 4,4′-diaminodiphenyl ether 0.0360 (0.18 mmol: Wakayama) were placed in the three-necked flask.
  • NDE aromatic diamine compound
  • DBA 4,4′-Diaminobenzanilide
  • DDE 4,4′-diaminodiphenyl ether
  • a dimethylacetamide solution having a polyamic acid concentration of 0.5 g / dL was prepared by using a part of the reaction solution (polyamic acid dimethylacetamide solution), and the intrinsic viscosity of the polyamic acid as the reaction intermediate was prepared. [ ⁇ ] was measured. The intrinsic viscosity of such polyamic acid is shown in Table 2.
  • the reaction solution obtained as described above is cast on a glass plate (length: 200 mm, width 200 mm) so that the thickness of the heat-cured coating film becomes 50 ⁇ m, and is coated on the glass plate.
  • a film was formed.
  • the glass plate on which the coating film has been formed is put into a vacuum oven, heated under a temperature condition of 40 ° C. for 12 hours under a pressure of 100 mmHg, and further under a temperature condition of 400 ° C. under a pressure of 1 mmHg.
  • the film was cured by heating for 1 hour to form a polyimide film on the glass plate.
  • the glass plate on which the film made of polyimide is formed is taken out from the vacuum oven, immersed in water at 25 ° C. for 12 hours, the film made of polyimide is recovered from the glass plate, the end portion is cut off, and the polyimide plate is made.
  • a colorless and transparent film (length 100 mm, width 100 mm, thickness 50 ⁇ m) was obtained.
  • the IR spectrum of the compound forming the film thus obtained was measured.
  • C ⁇ O stretching vibration of imide carbonyl was confirmed at 1699.1 cm ⁇ 1. It was confirmed that it consisted of
  • the polyimide which forms the obtained film is based on the types of monomers used (tetracarboxylic dianhydride and aromatic diamine compound (DBA, DDE) obtained in Synthesis Example 1), and IR spectrum measurement results. These were found to contain repeating units represented by the above general formula (1). That is, the polyimide is represented by the general formula (1) and R 4 in the formula (1) is represented by the general formula (5) (Q in the formula (5) is represented by —CONH—.
  • a repeating unit represented by the general formula (1), and R 4 in the formula (1) is a group represented by the general formula (5) (Q in the formula (5) is- It was found to be a polyimide containing a repeating unit which is a group represented by O-).
  • the reaction solution obtained as described above is cast on a glass plate (length: 200 mm, width 200 mm) so that the thickness of the heat-cured coating film becomes 50 ⁇ m, and is coated on the glass plate.
  • a film was formed.
  • the glass plate on which the coating film has been formed is put into a vacuum oven, heated under a temperature condition of 40 ° C. for 12 hours under a pressure of 100 mmHg, and further under a temperature condition of 400 ° C. under a pressure of 1 mmHg.
  • the film was cured by heating for 1 hour to form a polyimide film on the glass plate.
  • the glass plate on which the polyimide film is formed is taken out from the vacuum oven and immersed in water at 25 ° C. for 12 hours.
  • a brown substrate film (length 80 mm, width 80 mm, thickness 50 ⁇ m) was obtained.
  • the polyimide thus obtained was obtained by a polycondensation reaction between pyromellitic anhydride, which is an aromatic tetracarboxylic dianhydride, and 4,4′-diaminodiphenyl ether, which is an aromatic diamine compound. It was a family polyimide.
  • FIG. 9 shows an IR spectrum of the obtained substrate film made of polyimide.
  • C O stretching vibration of imide carbonyl was confirmed at 1712.7 cm ⁇ 1
  • the obtained substrate film was made of polyimide. It was confirmed that.
  • a conductive laminate for comparison was obtained in which a thin film made of ITO was laminated on the substrate film made of the aromatic polyimide.
  • Example 2 A substrate film made of polyimide containing the repeating unit represented by the general formula (1) is not produced, and instead of the substrate film, a commercially available PET film (trade name “Tetron Film G2” manufactured by Teijin DuPont Films Ltd.) On the substrate film (PET) in the same manner as in Example 1, except that the substrate film was used as a substrate film and the temperature of the substrate film was changed from 300 ° C. to 150 ° C. in the sputtering method. A conductive laminate for comparison, in which a thin film made of ITO was laminated, was obtained.
  • Example 3 A substrate film made of polyimide containing the repeating unit represented by the above general formula (1) was not produced, and instead of the substrate film, a commercially available polyimide film (trade name “Neoprim L-3430 manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used. ”, Length: 40 mm, width 40 mm, thickness 100 ⁇ m), except that a substrate film was used as in Example 1, and a conductive film for comparison in which a thin film made of ITO was laminated on a substrate film (Neoprim). A laminate was obtained.
  • a commercially available polyimide film (trade name “Neoprim L-3430 manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used. ”, Length: 40 mm, width 40 mm, thickness 100 ⁇ m), except that a substrate film was used as in Example 1, and a conductive film for comparison in which a thin film made of ITO was laminated on a substrate film (Neoprim). A laminate was obtained.
  • Table 1 shows the measurement results of the characteristics of the substrate films obtained in Examples 1 and 2 and the transparent conductive laminates obtained in Examples 1 and 2.
  • Table 1 shows the measurement results of the characteristics of the substrate films used in Comparative Examples 1 to 3 and the conductive laminates obtained in Comparative Examples 1 to 3.
  • SBNA is norbornane-2-spiro-2′-cyclopentanone-5′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic dianhydride
  • DDE represents 4,4′-diaminodiphenyl ether
  • OTD represents o-tolidine
  • DBA represents 4,4′-diaminobenzanilide
  • PMDA represents pyromellitic anhydride.
  • the microscope (20 Magnification) photographs are shown in FIG. 10 (Example 1) and FIG. 11 (Comparative Example 3), respectively.
  • the substrate film itself has sufficiently excellent thermal shock resistance (resistance to ambient temperature changes). It turns out to have.
  • the linear expansion coefficient is 30 ppm / ° C. or less
  • the glass transition temperature (Tg) is 350 ° C. or more. The present inventors speculate that this is because the linear expansion coefficient and the glass transition temperature (Tg) are balanced at a high level.
  • the present inventors speculate that this is because a very high thermal shock resistance that can sufficiently maintain the quality of the laminate was exhibited. Further, it was confirmed that all of the transparent conductive laminates of the present invention (Examples 1 and 2) had a sufficiently low sheet resistance. From these results, it was found that the transparent conductive laminate (Examples 1 and 2) of the present invention can be effectively used for transparent electrodes of solar cells and display devices.
  • the conductive laminate obtained in Comparative Example 1 has a brown substrate film and a total light transmittance of 56%, which is not sufficient in terms of transparency. It turned out that it does not fully function as transparent electrodes, such as a solar cell.
  • the conductive laminate obtained in Comparative Example 2 is a PET film and has a low Tg of 83 ° C., so it is not necessary to conduct a first thermal shock evaluation test. It can be seen that this is not sufficient.
  • the electroconductive laminate obtained in Comparative Example 3 shows white turbidity in both the first and second thermal shock resistance evaluation tests. A severe crack was confirmed in the thin film made of ITO.
  • the transparent conductive laminate of the present invention (Example 1) was compared with the conductive laminate for comparison (Comparative Examples 1 to 3).
  • ⁇ 2) has a very high thermal shock resistance and is found to be a material that can be suitably used in the production of organic EL elements and solar cells that employ a process temperature of around 400 ° C in the production process. It was.
  • SBNA is norbornane-2-spiro-2′-cyclopentanone-5′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic dianhydride
  • DDE represents 4,4′-diaminodiphenyl ether
  • OTD represents o-tolidine
  • DBA represents 4,4′-diaminobenzanilide
  • PPD represents p-phenylenediamine.
  • the linear expansion coefficient was 15.4 ppm / ° C. or less, and it was confirmed that the film had a lower linear expansion coefficient. It was. It was also found that all of the transparent films of the present invention (Examples 3 to 7) have sufficiently excellent thermal shock resistance (resistance to ambient temperature changes). As a result, all the polyimides forming the transparent films of the present invention (Examples 3 to 7) are represented by the above general formula (1), the linear expansion coefficient is 30 ppm / ° C. or less, and the glass transition temperature ( The present inventors speculate that this is a polyimide having a Tg) of 350 ° C.
  • the transparent films of the present invention are all transparent conductive films as in the case of the substrate films obtained in Examples 1 and 2. It can be seen that it is sufficiently useful as a substrate film for use in a conductive laminate and can exhibit sufficiently high thermal shock resistance.
  • Example 8 to 12 As the colorless and transparent substrate film made of polyimide, in the same manner as in Example 1 except that the colorless and transparent film made of polyimide obtained in Examples 3 to 7 (length 100 mm, width 100 mm, thickness 50 ⁇ m) was used. Transparent conductive laminates in which a thin film made of ITO was laminated on a substrate film made of polyimide were produced.
  • the colorless and transparent films (100 mm in length, 100 mm in width, 50 ⁇ m in thickness) made of polyimide obtained in Examples 3 to 7 were used as substrate films, respectively.
  • a SRV4320 type sputtering device manufactured by Shinko Seiki Co., Ltd.
  • using a target made of indium tin oxide (ITO, In: Sn 9: 1), pressure: 0.12 Pa, substrate film temperature: 300
  • ITO indium tin oxide
  • argon flow rate 18 sccm
  • oxygen flow rate 2 sccm
  • film formation time 11 minutes and 30 seconds
  • RF power supply VDC ⁇ 130 W
  • a 102 nm thick indium tin oxide (ITO) is formed by sputtering.
  • the transparent conductive laminates (Examples 8 to 12) of the present invention using the films obtained in Examples 3 to 7 as substrate films have transparency. It is sufficiently high and made of ITO even after the first thermal shock resistance evaluation test (measurement temperature condition: 350 ° C.) and the second thermal shock resistance evaluation test (measurement temperature condition: 400 ° C.). It was confirmed that there was no change in the surface state of the thin film, and it had a very high thermal shock resistance. From these results, the transparent conductive laminate (Examples 8 to 12) of the present invention has a very high thermal shock resistance, and an organic EL that employs a process temperature of around 400 ° C. in the manufacturing process.
  • the present invention has a sufficiently high thermal shock resistance, and the quality deteriorates even under high-temperature heating conditions such as those employed in the manufacturing process of solar cells and liquid crystal display devices. It is possible to provide a transparent conductive laminate that can sufficiently suppress the above, and a touch panel, a solar cell, and a display device using the same. In addition, according to the present invention, it is possible to provide a transparent film made of polyimide having excellent heat resistance and having a sufficiently low linear expansion coefficient, which can be suitably used as a substrate film or the like of the transparent conductive laminate. It becomes.
  • Such a transparent conductive laminate of the present invention is particularly useful as a material for a transparent electrode such as a display device such as a liquid crystal display device or an organic EL display device, a solar cell, or a touch panel because it is excellent in transparency and thermal shock resistance. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Position Input By Displaying (AREA)
  • Photovoltaic Devices (AREA)
  • Organic Insulating Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 ポリイミドからなる基板フィルムと、該基板フィルム上に積層された導電性材料からなる薄膜とを備え、 前記ポリイミドが、下記一般式(1): [式(1)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、Rは炭素数6~40のアリール基を示し、nは0~12の整数を示す。] で表される繰り返し単位を少なくとも1種含有し、ガラス転移温度が350℃~450℃であり、且つ、窒素雰囲気下、昇温速度5℃/分の条件で50℃~200℃の温度範囲において長さの変化を測定して求められる線膨張係数が30ppm/℃以下であるポリイミドである、透明導電性積層体。

Description

透明フィルム、透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置
 本発明は、透明フィルム、透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置に関する。
 従来からポリイミド樹脂は耐熱性や寸法安定性に優れる樹脂として知られている。このようなポリイミド樹脂の中でも、特に、芳香族テトラカルボン酸二無水物と芳香族ジアミン類との重縮合反応により得られる全芳香族ポリイミド樹脂は、400℃以上の高温条件下においても使用できるとともに、線膨張係数(CTE)が12~32ppmと寸法安定性にも優れることから、フィルム、電線被覆、接着剤、塗料等として、航空宇宙産業、電子産業等を中心に様々な分野に応用されてきた。しかしながら、このような全芳香族ポリイミド樹脂は、淡黄色から赤褐色に着色しているため、透明性が必要となるような電子・光デバイス等の材料等の用途(例えば、液晶表示装置、有機EL表示装置及びタッチパネル等の透明電極用の基板フィルムの材料等)に応用することができなかった。そのため、電子・光デバイス等の材料等の用途のような透明性が必要となる用途にも応用することが可能となるように、透明性に優れる脂肪族ポリイミドの開発が進められてきた。そして、近年では、脂肪族ポリイミドからなる基板フィルムを用いた導電性積層体等も開発されている。例えば、特開2004-111152号公報(特許文献1)には、炭素数が4~39の脂肪族基を有する繰り返し単位を備える脂肪族ポリイミドからなる基板フィルム上に透明導電性薄膜が積層された透明導電性積層体が開示されている。
特開2004-111152号公報
 しかしながら、特許文献1に記載のような透明導電性積層体は、太陽電池や液晶表示装置の電極として利用する場合に、太陽電池や液晶表示装置の製造過程において採用される加熱工程(例えば、液晶表示装置においてTFT[Thin Film Transistor]を作成する工程における400℃前後のプロセス温度など)により、透明導電性材料からなる薄膜に割れ(亀裂)等が生じる場合もあり、太陽電池や液晶表示装置等を必ずしも効率よく製造することができなかった。このように、特許文献1に記載のような従来の透明導電性積層体は、太陽電池や液晶表示装置の製造過程における加熱等の熱による衝撃(ヒートショック)に対して必ずしも十分な耐性を有しておらず、耐熱衝撃性の点で必ずしも十分なものではなかった。そのため、耐熱衝撃性に十分に優れる透明導電性積層体や、そのような透明導電性積層体の基板フィルム等に好適に用いることが可能な、耐熱性に優れ且つ線膨張係数が十分に低いポリイミドからなる透明フィルムの出現が望まれていた。
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、十分に高度な耐熱衝撃性を有しており、太陽電池や液晶表示装置等の製造過程において採用されるような高温加熱条件下においても品質の劣化を十分に抑制することが可能な透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置を提供することを目的とする。また、本発明は、前記透明導電性積層体の基板フィルム等として好適に用いることが可能な、耐熱性に優れ且つ線膨張係数が十分に低いポリイミドからなる透明フィルムを提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ポリイミドからなる基板フィルムと、前記基板フィルム上に積層された導電性材料からなる薄膜とを備える透明導電性積層体において、前記ポリイミドを、下記一般式(1)で表される繰り返し単位を少なくとも1種含有し、ガラス転移温度が350℃~450℃であり、且つ、窒素雰囲気下、昇温速度5℃/分の条件で50℃~200℃の温度範囲において長さの変化を測定して求められる線膨張係数が30ppm/℃以下であるポリイミドとすることにより、十分に高度な耐熱衝撃性を有しており、太陽電池や液晶表示装置等の製造過程において採用されるような高温加熱条件下においても品質の劣化を十分に抑制することが可能となることを見出し、本発明を完成するに至った。
 すなわち、本発明の透明導電性積層体は、ポリイミドからなる基板フィルムと、該基板フィルム上に積層された導電性材料からなる薄膜とを備え、
 前記ポリイミドが、下記一般式(1):
Figure JPOXMLDOC01-appb-C000004
[式(1)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、Rは炭素数6~40のアリール基を示し、nは0~12の整数を示す。]
で表される繰り返し単位を少なくとも1種含有し、ガラス転移温度が350℃~450℃であり、且つ、窒素雰囲気下、昇温速度5℃/分の条件で50℃~200℃の温度範囲において長さの変化を測定して求められる線膨張係数が30ppm/℃以下であるポリイミドである、ものである。
 また、上記本発明の透明導電性積層体においては、前記一般式(1)中のRが、下記一般式(2)~(5):
Figure JPOXMLDOC01-appb-C000005
[式(4)中、Rは、水素原子、フッ素原子、メチル基、エチル基及びトリフルオロメチル基よりなる群から選択される1種を示し、式(5)中、Qは、式:-O-、-S-、-CO-、-CONH-、-C-、-COO-、-SO-、-C(CF-、-C(CH-、-CH-、-O-C-C(CH-C-O-、-O-C-SO-C-O-、-C(CH-C-C(CH-、-O-C-C-O-及び-O-C-O-で表される基よりなる群から選択される1種を示す。]
で表される基のうちの1種であることが好ましい。
 さらに、上記本発明の透明導電性積層体においては、前記ポリイミドが、前記一般式(1)で表され、且つ、該式中のRが、前記一般式(4)で表される基;及び前記Qが-CONH-、-COO-、-CO-、-C-で表される基のうちの1種である前記一般式(5)で表される基;からなる群から選択される1種の基である繰り返し単位と、
 前記一般式(1)で表され、且つ、該式中のRが、前記一般式(2)で表される基;及び前記Qが-O-、-S-、-CH-、-O-C-O-で表される基のうちの1種である前記一般式(5)で表される基;からなる群から選択される1種の基である繰り返し単位と、
を含有してなることが好ましい。
 また、上記本発明の透明導電性積層体においては、前記ポリイミドが、前記一般式(1)で表され、且つ、該式中のRが、前記一般式(4)で表される基;及び前記Qが-CONH-、-COO-で表される基のうちの1種である前記一般式(5)で表される基;からなる群から選択される1種の基である繰り返し単位と、
 前記一般式(1)で表され、且つ、該式中のRが、前記Qが-O-、-CH-で表される基のうちの1種である前記一般式(5)で表される基からなる群から選択される1種の基である繰り返し単位と、
を含有してなることがより好ましい。
 また、本発明のタッチパネル、太陽電池、表示装置は、それぞれ、上記本発明の透明導電性積層体を備えるものである。
 さらに、本発明の透明フィルムは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000006
[式(1)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、Rは炭素数6~40のアリール基を示し、nは0~12の整数を示す。]
で表される繰り返し単位を少なくとも1種含有し、ガラス転移温度が350℃~450℃であり、且つ、窒素雰囲気下、昇温速度5℃/分の条件で50℃~200℃の温度範囲において長さの変化を測定して求められる線膨張係数が30ppm/℃以下であるポリイミドからなる透明フィルムである。このような本発明の透明フィルムは、上記本発明の透明導電性積層体が備える基板フィルム等に好適に用いることが可能なものである。
 本発明によれば、十分に高度な耐熱衝撃性を有しており、太陽電池や液晶表示装置等の製造過程において採用されるような高温加熱条件下においても品質の劣化を十分に抑制することが可能な透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置を提供することが可能となる。また、本発明によれば、前記透明導電性積層体の基板フィルム等として好適に用いることが可能な、耐熱性に優れ且つ線膨張係数が十分に低いポリイミドからなる透明フィルムを提供することが可能となる。
合成例1で得られたノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物のIRスペクトルのグラフである。 合成例1で得られたノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物のH-NMR(DMSO-d)スペクトルのグラフである。 合成例1で得られたノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物の13C-NMR(DMSO-d)スペクトルのグラフである。 実施例1で得られたポリイミドのIRスペクトルのグラフである。 実施例2で得られたポリイミドのIRスペクトルのグラフである。 実施例3で得られたポリイミドのIRスペクトルのグラフである。 実施例4で得られたポリイミドのIRスペクトルのグラフである。 実施例5で得られたポリイミドのIRスペクトルのグラフである。 比較例1で得られたポリイミドのIRスペクトルのグラフである。 第一の耐熱衝撃性の評価試験(測定温度条件:350℃)を実施した際の実施例1で得られた透明導電性積層体中のITOからなる薄膜の表面状態を示す顕微鏡写真である。 第一の耐熱衝撃性の評価試験(測定温度条件:350℃)を実施した際の比較例3で得られた導電性積層体中のITOからなる薄膜の表面状態を示す顕微鏡写真である。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 [透明導電性積層体]
 先ず、本発明の透明導電性積層体について説明する。すなわち、本発明の透明導電性積層体は、ポリイミドからなる基板フィルムと、該基板フィルム上に積層された導電性材料からなる薄膜とを備え、
 前記ポリイミドが、下記一般式(1):
Figure JPOXMLDOC01-appb-C000007
[式(1)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、Rは炭素数6~40のアリール基を示し、nは0~12の整数を示す。]
で表される繰り返し単位を少なくとも1種含有し、ガラス転移温度が350℃~450℃であり、且つ、窒素雰囲気下、昇温速度5℃/分の条件で50℃~200℃の温度範囲において長さの変化を測定して求められる線膨張係数が30ppm/℃以下であるポリイミドである、ものである。
 <ポリイミドからなる基板フィルム>
 本発明にかかるポリイミドは、上記一般式(1)で表される繰り返し単位を少なくとも1種含有するものである。
 このような一般式(1)中のR、R、Rとして選択され得るアルキル基は、炭素数が1~10のアルキル基である。このような炭素数が10を超えると、ガラス転移温度が低下し、得られる基板フィルムに十分な耐熱衝撃性が得られなくなる。また、このようなR、R、Rとして選択され得るアルキル基の炭素数としては、精製がより容易となるという観点から、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このようなR、R、Rとして選択され得るアルキル基は直鎖状であっても分岐鎖状であってもよい。更に、このようなアルキル基としては精製の容易さの観点から、メチル基、エチル基がより好ましい。
 前記一般式(1)中のR、R、Rとしては、ポリイミドを製造した際に、ガラス転移温度をより効率よく350℃~450℃とすることができ、十分に高度な耐熱性が得られるという観点から、それぞれ独立に、水素原子又は炭素数1~10のアルキル基であることがより好ましく、中でも、原料の入手が容易であることや精製がより容易であるという観点から、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であることがより好ましく、水素原子又はメチル基であることが特に好ましい。また、このような式中の複数のR、R、Rは精製の容易さ等の観点から、同一のものであることが特に好ましい。
 また、前記一般式(1)中のRとして選択され得るアリール基は、炭素数が6~40のアリール基である。また、このような炭素数としては6~30であることが好ましく、12~20であることがより好ましい。このような炭素数が前記上限を超えると、ガラス転移温度を350℃~450℃とすることができず、十分な耐熱衝撃性が得られなくなる傾向にあり、他方、前記下限未満では、得られたポリイミドの溶媒に対する溶解性が低下して基板フィルムを形成することが困難となる傾向にある。
 また、前記一般式(1)中のRとしては、十分に高いガラス転移温度と十分に低い線膨張係数とを有し、これらの特性をバランスよく発揮するという観点から、下記一般式(2)~(5):
Figure JPOXMLDOC01-appb-C000008
[式(4)中、Rは、水素原子、フッ素原子、メチル基、エチル基及びトリフルオロメチル基よりなる群から選択される1種を示し、式(5)中、Qは、式:-O-、-S-、-CO-、-CONH-、-C-、-COO-、-SO-、-C(CF-、-C(CH-、-CH-、-O-C-C(CH-C-O-、-O-C-SO-C-O-、-C(CH-C-C(CH-、-O-C-C-O-及び-O-C-O-で表される基よりなる群から選択される1種を示す。]
で表される基のうちの1種であることが好ましい。
 このような一般式(4)中のRとしては、ガラス転移温度と線膨張係数とをバランスよく、より高水準なものとするという観点からは、水素原子、フッ素原子、メチル基又はエチル基がより好ましく、水素原子が特に好ましい。
 また、上記一般式(5)中のQとしては、ガラス転移温度と線膨張係数とをバランスよく、より高水準なものとするという観点から、式:-O-、-S-、-CONH-、-COO-、-CO-、-C-、-CH-、-O-C-O-で表される基であることが好ましく、式:-O-、-CONH-、-COO-、-CH-で表される基であることがより好ましく、式:-O-又は-CONH-で表される基であることが特に好ましい。
 また、このようなRとして選択され得る一般式(2)~(5)で表される基としては、ガラス転移温度を十分に高い温度とすることができるとともに線膨張係数を十分に低い値とすることができ、これらの特性のバランスが向上し、より高度な耐熱衝撃性が得られるという観点からは、一般式(4)又は(5)で表される基であることがより好ましい。中でも、線膨張係数をより低いものとすることができ、更に高度な耐熱衝撃性が得られるという観点からは、Rが、一般式(4)で表される基、又は、一般式(5)で表され且つ前記Qが-CONH-、-COO-、-CO-、-C-で表される基(より好ましくは-CONH-又は-COO-で表される基、特に好ましくは-CONH-で表される基)のうちの少なくとも1種であることが好ましい。更に、Rとしては、得られるポリイミドからなる基板フィルムに、より高度なフレキシブル性(柔軟性)を付与することができるという観点からは、一般式(2)で表される基、又は、一般式(5)で表され且つ前記Qが-O-、-S-、-CH-、-O-C-O-で表される基のうちの少なくとも1種(より好ましくは-O-、-CH-で表される基のうちの1種、更に好ましくは-O-で表される基)である基であることが好ましい。
 また、前記一般式(1)中のnは0~12の整数を示す。このようなnの値が前記上限を超えると、精製が困難になる。また、このような一般式(1)中のnの数値範囲の上限値は、より精製が容易となるといった観点から、5であることがより好ましく、3であることが特に好ましい。また、このような一般式(1)中のnの数値範囲の下限値は、ポリイミドの製造に用いるモノマー(例えば、後述の一般式(6)で表されるテトラカルボン酸二無水物類)の原料の安定性の観点から、1であることがより好ましく、2であることが特に好ましい。このように、一般式(1)中のnとしては、2~3の整数であることが特に好ましい。
 さらに、前記ポリイミドとしては、十分に高いガラス転移温度と、十分に低い線膨張係数と、得られる基板フィルムの十分なフレキシブル性(柔軟性)とを、更に高度な水準でバランスよく有するという観点から、前記一般式(1)中のRの種類が異なる繰り返し単位を複数種(2種以上)含有するものが好ましい。また、同様の観点から、より高い効果が得られることから、前記複数種の繰り返し単位を含有するポリイミドとしては、前記一般式(1)で表され、且つ、該式中のRが、前記一般式(4)で表される基;及び前記Qが-CONH-、-COO-、-CO-、-C-で表される基のうちの1種(より好ましくは、-CONH-、-COO-で表される基、特に好ましくは-CONH-で表される基)である前記一般式(5)で表される基;からなる群から選択される1種の基である繰り返し単位(A)と、前記一般式(1)で表され、且つ、該式中のRが、前記一般式(2)で表される基;及び前記Qが-O-、-S-、-CH-、-O-C-O-で表される基のうちの1種(より好ましくは-O-、-CH-で表される基のうちの1種、更に好ましくは-O-で表される基)である前記一般式(5)で表される基;からなる群から選択される1種の基である繰り返し単位(B)と、を含有するものがより好ましい。また、このような繰り返し単位(B)としては、製造時のモノマーの入手の容易性の観点からは、前記一般式(1)中のRが前記一般式(5)で表される基であり且つ前記式(5)中のQが-O-、-CH-、-O-C-O-で表される基のうちの1種(より好ましくは-O-、-CH-で表される基のうちの1種、更に好ましくは-O-で表される基)であるものがより好ましい。
 このような繰り返し単位(A)及び(B)を含有する場合には、繰り返し単位(A)と繰り返し単位(B)との含有比率がモル比((A):(B))で9:1~6:4(より好ましくは8:2~7:3)であることが好ましい。前記繰り返し単位(A)の含有比率が前記下限未満では、線膨張係数がより低いポリイミドを得ることが困難となる傾向にあり、他方、前記上限を超えると、得られる基板フィルムのフレキシブル性が低下する傾向にある。また、繰り返し単位(A)及び(B)を含有する場合には、より効率よくポリイミドを調製できるという観点から、前記一般式(1)中のR以外の置換基の構成が同じであることが好ましい。
 また、本発明にかかるポリイミドにおいては、上述のように、線膨張係数をより低いものとすることができ、更に高度な耐熱衝撃性が得られるという観点からは、前記一般式(1)中のRが、一般式(5)で表され且つ前記Qが-CONH-で表される基であることが特に好ましいことから、繰り返し単位として、前記一般式(1)で表され且つ該式中のRが、前記Qが-CONH-で表される基である前記一般式(5)で表される基である繰り返し単位(以下、便宜上、場合により「繰り返し単位(C)」という。)を含有していることが特に好ましい。なお、ポリイミドが繰り返し単位(C)を含有する場合において、十分な耐熱性を有しつつ、線膨張係数をより高度な水準で低下させることが可能となること(例えば、線膨張係数を20ppm/℃以下、更には10ppm/℃以下とすることも可能となること)から、繰り返し単位(C)の含有比率が、ポリイミド中の一般式(1)で表される繰り返し単位の総量を基準として60モル%以上であることが好ましく、75モル%以上であることがより好ましく、90モル%以上であることが更に好ましく、100モル%であることが特に好ましい。
 本発明にかかるポリイミドは、ガラス転移温度が350℃~450℃のものである。このようなガラス転移温度が前記下限未満では、基板フィルムの耐熱衝撃性が十分なものとならず、太陽電池や液晶表示装置の製造過程における加熱工程において透明導電性積層体の品質の劣化(割れの発生等)を十分に抑制することが困難となり、他方、前記上限を超えると、ポリイミドを製造する際にポリアミド酸の熱閉環縮合反応と同時に十分な固相重合反応が進行せず脆いフィルムになる傾向がある。また、同様の観点から、より高度な効果が得られることから、前記ポリイミドのガラス転移温度は360℃~420℃であることがより好ましく、370~410℃とすることが更に好ましい。このようなポリイミドのガラス転移温度としては、測定装置として示差走査熱量計(例えば、エスアイアイ・ナノテクノロジー株式会社製の商品名「DSC7020」)を使用し、昇温速度:10℃/分及び降温速度:30℃/分の条件で、窒素雰囲気下、30℃から440℃の間を走査することにより求められる値を採用することができる。なお、走査温度30℃から440℃の間にガラス転移温度を有さないポリイミドについては、前述の走査温度を30℃から470℃に変更してガラス転移温度を測定する。
 また、本発明にかかるポリイミドは、線膨張係数が30ppm/℃以下のものである。このような線膨張係数が前記上限を超えると、十分な耐熱衝撃性を得ることができず、太陽電池や液晶表示装置の製造過程において導電性材料からなる薄膜に割れ等が生じて品質の劣化を十分に抑制することが困難となる。また、同様の観点から、前記線膨張係数は、25ppm/℃以下であることがより好ましく、20ppm/℃以下であることが更に好ましい。また、このような線膨張係数の下限値としては、薄膜に使用する導電性材料の線膨張係数の観点から、5ppm/℃であることが好ましく、10ppm/℃であることがより好ましい。また、このようなポリイミドの線膨張係数としては、縦20mm、横5mm、厚み0.05mm(50μm)の大きさの試料を用い、測定装置として熱機械的分析装置(リガク製の商品名「TMA8310」)を利用して、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件を採用して、50℃~200℃における前記試料の縦方向の長さの変化を測定して、50℃~200℃の温度範囲における1℃あたりの長さの変化の平均値を求めることにより得られる値を採用することができる。なお、このようなポリイミドのガラス転移温度及び線膨張係数は、前記一般式(1)中のR~Rの種類等を適宜変更したり、前記一般式(1)で表される繰り返し単位を複数種(2種以上)含有したりすることによって前記数値範囲内のものとすることができる。さらに、ポリイミド膜を延伸(縦延伸、横延伸、斜め延伸、プレス延伸など)したり、ポリイミドの前駆体であるポリアミド酸膜を熱処理前に延伸したり、ポリイミドの前駆体であるポリアミド酸膜を固定しながら熱処理しても、線膨張係数を前記数値範囲内に微調整することもできる。
 また、このようなポリイミドとしては、5%重量減少温度が450℃以上のものが好ましく、460~550℃のものがより好ましい。このような5%重量減少温度が前記下限未満では十分な耐熱衝撃性が得られなくなる傾向にあり、他方、前記上限を超えると、そのような特性を有するポリイミドを製造することが困難となる傾向にある。なお、このような5%重量減少温度は、窒素ガス雰囲気下、窒素ガスを流しながら室温(25℃)から徐々に加熱して、用いた試料の重量が5%減少する温度を測定することにより求めることができる。
 さらに、このようなポリイミドの分子量に関しては、熱イミド化後の膜が汎用の有機溶媒に溶けにくい場合もあるので、その分子量の評価は前駆体であるポリアミド酸の固有粘度[η]を用いて測定を行なうことができる。そのポリアミド酸の固有粘度[η]としては、0.1~8.0であることが好ましく、0.1~6.0であることがより好ましく、0.1~3.0であることが更に好ましく、0.4~2.0であることが特に好ましい。このような固有粘度が前記下限未満では十分な耐熱衝撃性が達成困難となる傾向にあり、他方、前記上限を超えると流延成膜(キャスト成膜)が困難となる傾向にある。このような固有粘度[η]は、以下のようにして測定することができる。すなわち、先ず、溶媒としてN,N-ジメチルアセトアミドを用い、そのN,N-ジメチルアセトアミド中に前記ポリアミド酸を濃度が0.5g/dLとなるようにして溶解している測定試料(溶液)を得る。次に、前記測定試料を用いて、30℃の温度条件下において動粘度計を用いて、前記測定試料の粘度を測定し、求められた値を固有粘度[η]として採用する。なお、このような動粘度計としては、離合社製の自動粘度測定装置(商品名「VMC-252」)を用いる。
 また、このようなポリイミドとしては、上記一般式(1)で表される繰り返し単位を主として含有するもの(更に好ましくは上記一般式(1)で表される繰り返し単位の全含有量が全繰り返し単位に対して50~100モル%、特に好ましくは80~100モル%であること)がより好ましい。このように、前記ポリイミドにおいては、本発明の効果を損なわない範囲において他の繰り返し単位を含んでいてもよい。なお、このような他の繰り返し単位としては特に制限されず、用途等に応じて公知のモノマーに由来する他の繰り返し単位を適宜選択して利用すればよい。
 また、このようなポリイミドからなる基板フィルムとしては、その形状や大きさは用途等に応じて適宜設計できるものであり、特に制限されるものではないが、基板フィルムの厚みが1~200μmであることが好ましく、5~100μmであることがより好ましい。このような基板フィルムの厚みが前記下限未満では機械強度が低下し弱くなる傾向にあり、他方、前記上限を超えると成膜加工が困難となる傾向にある。
 また、このようなポリイミドからなる基板フィルムとしては、より透明性の高い透明導電性積層体を得るという観点から、透明性が高いものが好ましく、全光線透過率が80%以上(更に好ましくは85%以上、特に好ましくは87%以上)であるものがより好ましい。このような全光線透過率は、基板フィルムのポリイミドの種類等を適宜選択することにより容易に達成することができる。なお、このような全光線透過率としては、測定装置として、日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」を用いて測定した値を採用することができる。
 さらに、このようなポリイミドからなる基板フィルムは、屈折率が1.50~1.70であることが好ましく、1.55~1.65であることがより好ましい。このような屈折率が前記下限未満ではポリイミドと導電性薄膜との屈折率差が大きく全光線透過率が低下する傾向にあり、他方、前記上限を超えるとポリイミドが着色していく傾向が見られるとともに、合成自体も困難となる傾向にある。なお、このような屈折率としては、屈折率測定装置(株式会社アタゴ製の商品名「NAR-1T SOLID」)を用い、589nmの光源下、23℃の温度条件で測定される値を採用することができる。
 次に、このようなポリイミドからなる基板フィルムを製造するための方法について説明する。このようなポリイミドからなる基板フィルムを製造するための方法としては特に制限されないが、以下に示すような基板フィルムの製造方法を好適に採用することができる。すなわち、このような基板フィルムの製造方法としては、有機溶媒の存在下、下記一般式(6):
Figure JPOXMLDOC01-appb-C000009
[式(6)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示す。]
で表されるノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物類と、下記一般式(7):
Figure JPOXMLDOC01-appb-C000010
[式(7)中、Rは炭素数6~40のアリール基を示す。]
で表される芳香族ジアミンとを反応させて、下記一般式(8):
Figure JPOXMLDOC01-appb-C000011
[式(8)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、Rは炭素数6~40のアリール基を示し、nは0~12の整数を示す。]
で表される繰り返し単位を少なくとも1種含有するポリアミド酸を調製し、ポリアミド酸の溶液を得る工程(工程(I))と、
 前記ポリアミド酸の溶液を基材上に塗布した後、前記ポリアミド酸をイミド化して、上記一般式(1)で表される繰り返し単位を有するポリイミドからなる基板フィルムを得る工程(工程(II))と、
を含む基板フィルムの製造方法を好適に利用することができる。以下、工程(I)と工程(II)を分けて説明する。
 (工程(I))
 工程(I)は、有機溶媒の存在下、上記一般式(6)で表されるノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物類(以下、場合により単に「一般式(6)で表される化合物」又は「一般式(6)で表されるテトラカルボン酸二無水物類」という。)と、上記一般式(7)で表される芳香族ジアミンとを反応させて、上記一般式(8)で表される繰り返し単位を有するポリアミド酸を調製し、ポリアミド酸の溶液を得る工程である。
 このような一般式(6)中のR、R、R、nは、上記一般式(1)中のR、R、R及びnと同様のものであり、その好適なものも上記一般式(1)中のR、R、R及びnの好適なものと同様である。このような一般式(6)中のR、R、R、nは、目的とするポリイミドの構成に応じて適宜変更すればよい。
 このような一般式(6)で表されるテトラカルボン酸二無水物類としては、例えば、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(別名「ノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物」)、メチルノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(別名「ノルボルナン-2-スピロ-2’-シクロヘキサノン-6’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物」)、メチルノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロプロパノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロブタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロヘプタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロオクタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロノナノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロウンデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロドデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロトリデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロテトラデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロペンタデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-(メチルシクロペンタノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-(メチルシクロヘキサノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物等が挙げられる。このような一般式(6)で表されるテトラカルボン酸二無水物類としては、ポリイミドからなる基板フィルムの設計に応じて、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。複数種の一般式(6)で表されるテトラカルボン酸二無水物類を用いる場合においては、その種類を適宜変更することによっても、得られるポリイミドのガラス転移温度及び線膨張係数を前記数値範囲内の数値に適宜調整することができる。なお、このような一般式(6)で表されるテトラカルボン酸二無水物類を製造するための方法は後述する。
 また、前記工程(I)に用いる上記一般式(7)で表されるジアミン化合物において、その式(7)中のRは、上記一般式(1)中のRと同様のものであり、その好適なものも上記一般式(1)中のRの好適なものと同様である。このような一般式(7)中のRは、目的とするポリイミドの構成に応じて適宜変更すればよい。
 このような一般式(7)で表される芳香族ジアミンとしては、例えば、4,4’-ジアミノジフェニルメタン、4,4''-ジアミノ-p-ターフェニル、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエタン、3,3’-ジアミノジフェニルエタン、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,2-ビス(4-アミノフェノキシフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、9,9-ビス(4-アミノフェニル)フルオレン、p-ジアミノベンゼン(別名:p-フェニレンジアミン)、m-ジアミノベンゼン、o-ジアミノベンゼン、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、3,4’-ジアミノビフェニル、2,6-ジアミノナフタレン、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、4,4’-[1,3-フェニレンビス(1-メチル-エチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチル-エチリデン)]ビスアニリン、2,2’-ジメチル-4,4’-ジアミノビフェニル(別名:o-トリジン)、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノベンズアニリド、4,4’-ジアミノフェニルベンゾエート(別名:4,4’-ジアミノジフェニルエステル)、9,9’-ビス(4-アミノフェニル)フルオレン、o-トリジンスルホン、1,3’-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン、2,3,5,6-テトラメチル-1,4-フェニレンジアミン、3,3’,5,5’-テトラメチルベンジジン、1,5-ビス(4-アミノフェノキシ)ペンタン、ジエチルトルエンジアミン、アミノベンジルアミン、ビスアニリンM、ビスアニリンP等が挙げられる。このような芳香族ジアミンを製造するための方法としては特に制限されず、公知の方法を適宜採用することができる。また、このような芳香族ジアミンとしては市販のものを適宜用いてもよい。
 また、得られるポリイミドの線膨張係数を前記数値の範囲内においてより低い値とすることが可能であることから、一般式(7)で表される芳香族ジアミンのRが、一般式(4)又は(5)で表される基であることがより好ましく、中でも、一般式(4)で表される基、及び、一般式(5)で表され且つ前記Qが-CONH-、-COO-、-CO-、-C-で表される基のうちの少なくとも1種(より好ましくは、-CONH-、-COO-で表される基、特に好ましくは-CONH-で表される基)である基であることが好ましい。また、得られるポリイミドからなる基板フィルムに、より高度なフレキシブル性も併せて付与するといった観点からは、一般式(7)で表される芳香族ジアミンのRが、前記一般式(2)で表される基;及び前記Qが-O-、-S-、-CH-、-O-C-O-で表される基のうちの1種である前記一般式(5)で表される基;からなる群から選択される1種の基であることが好ましい。また、入手容易性の観点からは、一般式(7)で表される芳香族ジアミンのRは前記Qが-O-、-CH-、-O-C-O-で表される基のうちの1種(より好ましくは-O-、-CH-で表される基のうちの1種、更に好ましくは-O-で表される基)である前記一般式(5)で表される基であることが好ましい。
 さらに、前記一般式(7)で表される芳香族ジアミンとしては、ガラス転移温度及び線膨張係数が前記数値の範囲内となり、且つ、ガラス転移温度と、線膨張係数と、得られる基板フィルムのフレキシブル性とを、更に高度な水準でバランスよく発揮できるポリイミドをより確実に調製するという観点から、前記一般式(7)中のRの種類が異なる複数種(2種以上)の芳香族ジアミンを組み合わせて用いることが好ましい。また、同様の観点から、より高い効果が得られることから、前記Rの種類が異なる複数種(2種以上)の芳香族ジアミンとしては、前記一般式(7)中のRが前記一般式(4)で表される基;及び前記Qが-CONH-、-COO-、-CO-、-C-で表される基のうちの少なくとも1種(より好ましくは-CONH-、-COO-で表される基、特に好ましくは-CONH-で表される基)である前記一般式(5)で表される基;からなる群から選択される1種の基である芳香族ジアミンと、前記一般式(7)中のRが、前記一般式(2)で表される基;及び前記Qが-O-、-S-、-CH-、-O-C-O-で表される基のうちの1種(より好ましくは-O-、-CH-で表される基のうちの1種、更に好ましくは-O-で表される基)である前記一般式(5)で表される基;からなる群から選択される1種の基である芳香族ジアミンと、を少なくとも含有するものがより好ましい。
 また、工程(I)において用いる有機溶媒としては、上記一般式(6)で表されるテトラカルボン酸二無水物類と、上記一般式(7)で表される芳香族ジアミンとの両者を溶解することが可能な有機溶媒であることが好ましい。このような有機溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、プロピレンカーボネート、テトラメチル尿素、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホリックトリアミド、ピリジンなどの非プロトン系極性溶媒;m-クレゾール、キシレノール、フェノール、ハロゲン化フェノールなどのフェノール系溶媒;テトラハイドロフラン、ジオキサン、セロソルブ、グライムなどのエーテル系溶媒;ベンゼン、トルエン、キシレン、2-クロル-4-ヒドロキシトルエンなどの芳香族系溶媒;などが挙げられる。このような有機溶媒は、1種を単独であるいは2種以上を混合して使用してもよい。
 また、工程(I)においては、上記一般式(6)で表されるテトラカルボン酸二無水物類と上記一般式(7)で表される芳香族ジアミンとの使用割合は、上記一般式(7)で表される芳香族ジアミンが有するアミノ基1当量に対して、上記一般式(6)で表されるテトラカルボン酸二無水物類の酸無水物基を0.2~2当量とすることが好ましく、0.3~1.2当量とすることがより好ましい。このような使用割合が前記下限未満では重合反応が効率よく進行せず高分子量のポリアミド酸が得られない傾向にあり、他方、前記上限を超えると前記と同様に高分子量のポリアミド酸が得られない傾向にある。
 さらに、工程(I)における前記有機溶媒の使用量としては、上記一般式(6)で表されるテトラカルボン酸二無水物類と上記一般式(7)で表される芳香族ジアミンの総量が、反応溶液の全量に対して0.1~50質量%(より好ましくは10~30質量%)になるような量であることが好ましい。このような有機溶媒の使用量が前記下限未満では効率よくポリアミド酸を得ることができなくなる傾向にあり、他方、前記上限を超えると高粘度化により攪拌が困難となる傾向にある。
 また、工程(I)においては、上記一般式(6)で表されるテトラカルボン酸二無水物類と上記一般式(7)で表される芳香族ジアミンとを反応させる際に、反応速度向上と高重合度のポリアミド酸を得るという観点から、前記有機溶媒中に塩基化合物を更に添加してもよい。このような塩基性化合物としては特に制限されないが、例えば、トリエチルアミン、テトラブチルアミン、テトラヘキシルアミン、1,8-ジアザビシクロ[5.4.0]-ウンデセン-7、ピリジン、イソキノリン、N-メチルピペリジン、α-ピコリン等が挙げられる。また、このような塩基化合物の使用量は、上記一般式(6)で表されるテトラカルボン酸二無水物類1当量に対して、0.001~10当量とすることが好ましく、0.01~0.1当量とすることがより好ましい。このような塩基化合物の使用量が前記下限未満では添加効果が見られなくなる傾向にあり、他方、前記上限を超えると着色等の原因になる傾向にある。
 また、工程(I)において、上記一般式(6)で表されるテトラカルボン酸二無水物類と上記一般式(7)で表される芳香族ジアミンとを反応させる際の反応温度は、これらの化合物を反応させることが可能な温度に適宜調整すればよく、特に制限されないが、80℃以下とすることが好ましく、-30~30℃とすることが好ましい。また、このような工程(I)において採用し得る上記一般式(6)で表されるテトラカルボン酸二無水物類と上記一般式(7)で表される芳香族ジアミンとを反応させる方法としては、テトラカルボン酸二無水物と芳香族ジアミンの重合反応を行うことが可能な方法を適宜利用でき、特に制限されないが、例えば、大気圧中、窒素、ヘリウム、アルゴン等の不活性雰囲気下において、芳香族ジアミン類を溶媒に溶解させた後、前記反応温度において上記一般式(6)で表されるテトラカルボン酸二無水物類を添加し、その後、10~48時間反応させる方法を採用してもよい。このような反応温度や反応時間が前記下限未満では十分に反応させることが困難となる傾向にあり、他方、前記上限を超えると重合物を劣化させる物質(酸素等)の混入確率が高まり分子量が低下する傾向にある。
 このようにして、上記一般式(6)で表されるテトラカルボン酸二無水物類と上記一般式(7)で表される芳香族ジアミンとを反応させることにより、上記一般式(8)で表される繰り返し単位を少なくとも1種有するポリアミド酸を得ることができる。また、このようにして得られる上記一般式(8)で表される繰り返し単位を有するポリアミド酸は、これを単離した後に、再度、溶媒(例えば、前記有機溶媒等)に溶解させて工程(II)に用いるポリアミド酸の溶液としてもよく、あるいは、上記一般式(8)で表される繰り返し単位を有するポリアミド酸を単離することなく、有機溶媒中において上記一般式(6)で表されるテトラカルボン酸二無水物類と上記一般式(7)で表される芳香族ジアミンとを反応させて得られた反応液(上記一般式(8)で表される繰り返し単位を有するポリアミド酸を含有する反応液)をそのまま工程(II)に用いるポリアミド酸の溶液としてもよい。なお、前記反応液から上記一般式(8)で表される繰り返し単位を有するポリアミド酸を単離して利用する場合、その単離方法としては特に制限されず、ポリアミド酸を単離することが可能な公知の方法を適宜採用することができ、例えば、再沈殿物として単離する方法などを採用してもよい。
 また、前記一般式(8)中のR、R、R、R及びnは一般式(1)中のR、R、R、R及びnと同様のものであり、その好適なものも上記一般式(1)中のR、R、R、R及びnと同様である。
 また、このような一般式(8)で表される繰り返し単位を有するポリアミド酸としては、固有粘度[η]が0.1~8.0であることが好ましく、0.1~6.0であることがより好ましく、0.1~3.0dL/gであることが更に好ましく、0.4~2.0dL/gであることが特に好ましい。このような固有粘度[η]が0.1dL/gより小さいと、これを用いてフィルム状のポリイミドを製造した際に、得られるフィルムが脆くなる傾向にあり、他方、8.0dL/gを超えると、粘度が高すぎて加工性が低下し、例えばフィルムを製造した場合に均一なフィルムを得ることが困難となる。また、このような固有粘度[η]は、以下のようにして測定することができる。すなわち、先ず、溶媒としてN,N-ジメチルアセトアミドを用い、そのN,N-ジメチルアセトアミド中に前記ポリアミド酸を濃度が0.5g/dLとなるようにして溶解している測定試料(溶液)を得る。次に、前記測定試料を用いて、30℃の温度条件下において動粘度計を用いて、前記測定試料の粘度を測定し、求められた値を固有粘度[η]として採用する。なお、このような動粘度計としては、離合社製の自動粘度測定装置(商品名「VMC-252」)を用いる。
 さらに、本発明によって得られるポリイミドを、上記一般式(1)で表される繰り返し単位とともに、他の繰り返し単位を含有するものとする場合には、例えば、上記工程(I)において、上記一般式(6)で表されるテトラカルボン酸二無水物類とともに他のテトラカルボン酸二無水物を用いる方法を採用してもよく、また、上記一般式(7)で表される芳香族ジアミンとともに他のジアミン化合物を用いる方法を採用してもよく、更には、これらの方法を両方とも採用してもよい。
 このような上記一般式(6)で表されるテトラカルボン酸二無水物類以外の他のテトラカルボン酸二無水物としては、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,5,6-トリカルボキシノルボルナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-5-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-8-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物などの脂肪族または脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物などの芳香族テトラカルボン酸二無水物等が挙げられる。なお、芳香族テトラカルボン酸を使用する場合は、分子内CTによる着色を防止するため、その使用量は得られるポリイミドが十分な透明性を有することが可能となるような範囲内で適宜変更することが好ましい。
 また、前記芳香族系ジアミン以外の他のジアミン化合物としては特に制限されず、ポリイミド又はポリアミド酸の製造に用いることが可能な公知のジアミン化合物を適宜用いることができ、例えば、脂肪族系ジアミン、脂環式系ジアミン等を適宜用いることができる。このような脂肪族系ジアミンとしては、エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ポリオキシアルキレンジアミン等が挙げられる。また、前記脂環式系ジアミンとしては、4,4’-ジアミノ-ジシクロヘキシルメタン、3,3’-ジメチル-4,4’-ジアミノ-ジシクロヘキシルメタン、3,3’-ジエチル-4,4’-ジアミノ-ジシクロヘキシルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノ-ジシクロヘキシルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノ-ジシクロヘキシルメタン、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、ビシクロ[2.2.1]ヘプタンジメタンアミン、ノルボルナンジアミン等が挙げられる。
 ここで、工程(I)に用いる一般式(6)で表されるテトラカルボン酸二無水物類を製造するための方法について説明する。このような一般式(6)で表されるテトラカルボン酸二無水物類を製造するための方法としては、特に制限されず、例えば、下記一般式(9):
Figure JPOXMLDOC01-appb-C000012
[式(9)中、R、R、R、は、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示す。]
で表される5-ノルボルネン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-5’’-ノルボルネン類(以下、場合により単に「一般式(9)で表される化合物」という。)を、公知の方法等を適宜利用して、テトラカルボン酸二無水物化することにより、上記一般式(6)で表されるテトラカルボン酸二無水物類を得る方法を利用してもよい。このような一般式(9)で表される化合物をテトラカルボン酸二無水物化する方法としては特に制限されず、公知の方法を適宜利用することができ、例えば、1994年発行のMacromolecules(27巻)の1117頁に記載のような方法を採用してもよい。すなわち、このようなテトラカルボン酸二無水物化する方法としては、上記一般式(9)で表される化合物をPd触媒と塩化銅(II)および酢酸ナトリウムの存在下、一酸化炭素とメタノール等のアルコールでテトラエステル化し、得られたテトラメチルエステルをp-トルエンスルホン酸等の酸触媒の存在下、ギ酸とエステル交換反応させてテトラカルボン酸を得た後に、このエステル交換反応の反応系中に無水酢酸を共存させ、前記テトラカルボン酸を無水酢酸でテトラカルボン酸二無水物化する方法を採用してもよいし、前記テトラカルボン酸を一旦単離後、昇華精製装置で真空条件下、熱脱水反応させる方法を採用してもよい。
 また、一般式(6)で表されるテトラカルボン酸二無水物類を製造するための好適な方法としては、パラジウム触媒及び酸化剤の存在下において、上記一般式(9)で表される化合物を、アルコール及び一酸化炭素と反応させて下記一般式(10):
Figure JPOXMLDOC01-appb-C000013
[式(10)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、R、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数2~10のアルケニル基、炭素数6~20のアリール基及び炭素数7~20のアラルキル基よりなる群から選択される1種を示し、nは0~12の整数を示す。]
で表されるノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸及びそのエステル類(以下、場合により単に「一般式(10)で表される化合物」という。)のうちの少なくとも1種の化合物を得る工程(第1工程)と、
 低級カルボン酸(ギ酸、酢酸、プロピオン酸等)と、酸触媒と、無水酢酸とを用いて、前記化合物から上記一般式(6)で表されるノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物類を得る工程(第2工程)と、
を含む方法(以下、場合により「テトラカルボン酸二無水物類の製造方法(A)」という。)を利用してもよい。
 前記一般式(9)で表される化合物において、その一般式(9)中のR、R、R、nは一般式(6)中のR、R、R、nと同様のものであり、その好適なものも上記一般式(6)中のR、R、R、nと同様である。
 また、前記一般式(9)で表される化合物としては、例えば、5-ノルボルネン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-5’’-ノルボルネン(別名「5-ノルボルネン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-5’’-ノルボルネン」)、メチル-5-ノルボルネン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-(メチル-5’’-ノルボルネン)、5-ノルボルネン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-5’’-ノルボルネン(別名「5-ノルボルネン-2-スピロ-2’-シクロヘキサノン-6’-スピロ-2’’-5’’-ノルボルネン」)、メチル-5-ノルボルネン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-(メチル-5’’-ノルボルネン)、5-ノルボルネン-2-スピロ-α-シクロプロパノン-α’-スピロ-2’’-5’’-ノルボルネン、5-ノルボルネン-2-スピロ-α-シクロブタノン-α’-スピロ-2’’-5’’-ノルボルネン、5-ノルボルネン-2-スピロ-α-シクロヘプタノン-α’-スピロ-2’’-5’’-ノルボルネン、5-ノルボルネン-2-スピロ-α-シクロオクタノン-α’-スピロ-2’’-5’’-ノルボルネン、5-ノルボルネン-2-スピロ-α-シクロノナノン-α’-スピロ-2’’-5’’-ノルボルネン、5-ノルボルネン-2-スピロ-α-シクロデカノン-α’-スピロ-2’’-5’’-ノルボルネン、5-ノルボルネン-2-スピロ-α-シクロウンデカノン-α’-スピロ-2’’-5’’-ノルボルネン、5-ノルボルネン-2-スピロ-α-シクロドデカノン-α’-スピロ-2’’-5’’-ノルボルネン、5-ノルボルネン-2-スピロ-α-シクロトリデカノン-α’-スピロ-2’’-5’’-ノルボルネン、5-ノルボルネン-2-スピロ-α-シクロテトラデカノン-α’-スピロ-2’’-5’’-ノルボルネン、5-ノルボルネン-2-スピロ-α-シクロペンタデカノン-α’-スピロ-2’’-5’’-ノルボルネン、5-ノルボルネン-2-スピロ-α-(メチルシクロペンタノン)-α’-スピロ-2’’-5’’-ノルボルネン、5-ノルボルネン-2-スピロ-α-(メチルシクロヘキサノン)-α’-スピロ-2’’-5’’-ノルボルネン等が挙げられる。このような一般式(9)で表される化合物を製造するための方法は後述する。
 また、前記一般式(10)で表される化合物において、前記一般式(10)中のR、R、R、nは、上記一般式(6)中のR、R、R、nと同様のものであり、その好適なものも上記一般式(6)中のR、R、R、nと同様のものである。
 また、前記一般式(10)で表される化合物において、その前記一般式(10)中のR、R、R、Rとして選択され得るアルキル基は炭素数が1~10のアルキル基である。このようなアルキル基の炭素数が10を超えると、精製が困難となる。また、このようなR、R、R、Rとして選択され得るアルキル基の炭素数としては、精製がより容易となるという観点から、1~5であることがより好ましく、1~3であることが更に好ましい。また、このようなR、R、R、Rとして選択され得るアルキル基は直鎖状であっても分岐鎖状であってもよい。
 また、前記一般式(10)中のR、R、R、Rとして選択され得るシクロアルキル基は、炭素数が3~10のシクロアルキル基である。このようなシクロアルキル基の炭素数が10を超えると精製が困難となる。また、このようなR、R、R、Rとして選択され得るシクロアルキル基の炭素数としては、精製がより容易となるという観点から、3~8であることがより好ましく、5~6であることが更に好ましい。
 さらに、前記一般式(10)中のR、R、R、Rとして選択され得るアルケニル基は、炭素数が2~10のアルケニル基である。このようなアルケニル基の炭素数が10を超えると、精製が困難となる。また、このようなR、R、R、Rとして選択され得るアルケニル基の炭素数としては、精製がより容易となるという観点から、2~5であることがより好ましく、2~3であることが更に好ましい。
 また、前記一般式(10)中のR、R、R、Rとして選択され得るアリール基は、炭素数が6~20のアリール基である。このようなアリール基の炭素数が20を超えると精製が困難となる。また、このようなR、R、R、Rとして選択され得るアリール基の炭素数としては、精製がより容易となるという観点から、6~10であることがより好ましく、6~8であることが更に好ましい。
 また、前記一般式(10)中のR、R、R、Rとして選択され得るアラルキル基は、炭素数が7~20のアラルキル基である。このようなアラルキル基の炭素数が20を超えると精製が困難となる。また、このようなR、R、R、Rとして選択され得るアラルキル基の炭素数としては、精製がより容易となるという観点から、7~10であることがより好ましく、7~9であることが更に好ましい。
 さらに、前記一般式(10)中のR、R、R、Rとしては、精製がより容易となるという観点から、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル、t-ブチル、2-エチルヘキシル基、シクロヘキシル基、アリル基、フェニル基又はベンジル基であることが好ましく、メチル基であることが特に好ましい。なお、前記一般式(10)中のR、R、R、Rは同一のものであっても異なっていてもよいが、合成上の観点からは、同一のものであることがより好ましい。
 このような一般式(10)で表される化合物としては、例えば、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラエチルエステル、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラプロピルエステル、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラブチルエステル、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラ(2-エチルヘキシル)エステル、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラアリルエステル、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラシクロヘキシルエステル、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラフェニルエステル、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラベンジルエステル、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、メチルノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラエチルエステル、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラプロピルエステル、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラブチルエステル、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラ(2-エチルヘキシル)エステル、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラアリルエステル、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラシクロヘキシルエステル、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラフェニルエステル、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラベンジルエステル、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、メチルノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロプロパノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロブタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロヘプタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロオクタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロノナノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロウンデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロドデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロトリデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロテトラデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロペンタデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸等が挙げられる。
 また、上記一般式(9)で表される化合物を製造するための方法は特に制限されないが、例えば、下記反応式(I):
Figure JPOXMLDOC01-appb-C000014
[反応式(I)中、R、R、R、nは上記一般式(6)中のR、R、R、nと同義であり、Rはそれぞれ独立にアミンを形成し得る一価の有機基(例えば炭素原子数1~20の直鎖状の飽和炭化水素基等)を示し、Xはアミンとアンモニウム塩を形成し得る一価のイオン(例えば、ハロゲンイオン、硫酸水素イオン、酢酸イオン等)を示す。]
で表されるような反応を利用することにより一般式(9)で表される化合物を製造する方法を採用することができる。このような反応式(I)で表される方法は、一般式(I-1)で表されるシクロアルカノン(シクロペンタノンやシクロヘキサノン等)と、前記シクロアルカノンに対して2当量以上の二級アミンのアンモニウム塩(例えば塩酸塩、硫酸塩、酢酸塩等:反応式(I)中において式:NHRHXで表される化合物)と、ホルムアルデヒド誘導体と、酸(塩酸、硫酸、酢酸等)とを用いて酸性の反応液を得た後、前記反応液を不活性ガス雰囲気下において30~180℃で0.5~10時間加熱し、反応液中において、カルボニル基の両隣に活性なα水素を有する環状ケトン類とホルムアルデヒド類と二級アミン類のマンニッヒ反応を進行せしめて、一般式(I-2)で表されるマンニッヒ塩基を合成し、次いで、得られたマンニッヒ塩基を単離することなく、その反応液中に、有機溶媒(ディールスアルダー反応に利用可能な有機溶媒であればよく、好ましくは、テトラハイドロフラン、メタノール、エタノール、イソプロパノール、ブタノール、アセトニトリル、メチルセロソルブ、エチルセロソルブ、エチレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコール等の有機溶媒)と、上記一般式(6)中のRとして選択され得る基と同様の基を置換基として有していてもよいシクロペンタジエン(前記マンニッヒ塩基に対して2当量以上)とを添加して混合物とした後、前記混合物に塩基を導入して中性又は塩基性とし、0~150℃(好ましくは60℃程度)の条件下において、前記混合物を0.1~48時間撹拌することにより、混合物中において、一般式(I-2)で表されるマンニッヒ塩基から一般式(I-3)で表されるジビニルケトンを合成せしめた後、その一般式(I-3)で表されるジビニルケトンと上記置換基を有していてもよいシクロペンタジエンとを反応(ディールスアルダー反応)させて、前記一般式(9)で表される化合物を製造する方法である。なお、前記ホルムアルデヒド誘導体としては、マンニッヒ塩基の製造に用いられる公知のホルムアルデヒドの誘導体を適宜利用でき、例えば、ホルマリン、パラホルムアルデヒド、トリオキサン、1,3-ジオキソラン等を適宜用いることができる。また、前記ジビニルケトンは、前記混合物の0~150℃の条件下における撹拌中に前記マンニッヒ塩基からアミン化合物が脱離して合成される。
 また、このような反応式(I)中、一般式(I-1)で表されるシクロアルカノンとしては、例えば、シクロプロパノン、シクロブタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、シクロノナノン、シクロデカノン、シクロウンデカノン、シクロドデカノン、シクロトリデカノン、シクロテトラデカノン、シクロペンタデカノン、3-メチルシクロブタノン、3-メチルシクロペンタノン、3-メチルシクロヘキサノン、3-メチルシクロヘプタノン、3-メチルシクロオクタノン、3-メチルシクロノナノン、3-メチルシクロデカノン、3-メチルシクロウンデカノン、3-メチルシクロドデカノン、3-メチルシクロトリデカノン、3-メチルシクロテトラデカノン、3-メチルシクロペンタデカノン等が挙げられる。また、前記二級アミンのアンモニウム塩としては、例えば、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-sec-ブチルアミン、ジ-t-ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、ジノニルアミン、ジデシルアミン、ジウンデシルアミン、ジドデシルアミン、ジトリデシルアミン、ジテトラデシルアミン、ジペンタデシルアミン、ジヘキサデシルアミン、ジヘプタデシルアミン、ジオクタデシルアミン、ジノナデシルアミン、モルホリン、ジエタノールアミン、アジリジン、アゼチジン、ピロリジン、ピペリジン、インドリン、イソインドリン等の2級アミンの塩(上記Xがカウンターアニオンとなる2級アミンの塩)が挙げられる。また、反応式(I)中、Xは、いわゆるカウンターアニオンであり、例えば、F、Cl、Br、I、CHCOO、CFCOO、CHSO 、CFSO 、CSO 、CHSO 、HOSO 及びHPO 等が挙げられる。更に、前記ジビニルケトンは、前記混合物の0~150℃の条件下における撹拌中に前記マンニッヒ塩基からアミン化合物が脱離して合成される。
 また、前記テトラカルボン酸二無水物類の製造方法(A)において、前記第1工程に用いられるアルコールとしては、下記一般式(11):
  R10OH    (11)
[式(11)中、R10は、前記一般式(10)中のR、R、R又はRとして選択され得る原子及び基のうちの水素原子以外のものである。]
で表されるアルコールであることが好ましい。すなわち、このようなアルコールとしては、炭素数が1~10のアルキルアルコール、炭素数が3~10のシクロアルキルアルコール、炭素数が2~10のアルケニルアルコール、炭素数が6~20のアリールアルコール、炭素数が7~20のアラルキルアルコールを用いることが好ましい。このようなアルコールとしては、具体的には、メタノール、エタノール、ブタノール、アリルアルコール、シクロヘキサノール、ベンジルアルコール等が挙げられ、中でも、得られる化合物の精製がより容易となるという観点から、メタノール、エタノールがより好ましく、メタノールが特に好ましい。また、このようなアルコールは1種を単独であるいは2種以上を混合して用いてもよい。
 このようなアルコールを用いる第1工程における反応は、パラジウム触媒及び酸化剤の存在下、前記アルコール(R10OH)及び一酸化炭素(CO)と、前記一般式(9)で表される化合物とを反応せしめて、前記一般式(9)で表される化合物中のオレフィン部位に、それぞれ下記一般式(12):
  -COOR10    (12)
[式(12)中、R10は前記一般式(10)中のR、R、R又はRとして選択され得る原子及び基のうちの水素原子以外のものである。]
で表されるエステル基(かかるエステル基は導入される位置ごとにR10が同一であっても異なっていてもよい。)を導入して、前記一般式(10)で表されるノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸エステル類を得る反応(エステル化反応)である。
 このようなエステル化反応におけるアルコールの使用量は、前記一般式(10)で表される化合物を得ることが可能な量であればよく、特に制限されず、例えば、前記一般式(10)で表される化合物を得るために理論上必要となる量(理論量)以上に前記アルコールを加えて、余剰のアルコールをそのまま溶媒として使用してもよい。
 また、前記エステル化反応においては、前記一酸化炭素は必要量を反応系に供給できればよい。そのため、前記一酸化炭素を供給するためのガスとしては、一酸化炭素の高純度ガスを用いる必要は無く、前記エステル化反応に不活性なガス(例えば窒素)と一酸化炭素とを混合した混合ガスを用いてもよく、更には、合成ガスや石炭ガス等を用いてもよい。また、このような一酸化炭素の圧力は特に制限されないが、常圧(約0.1MPa[1atm])以上10MPa以下であることが好ましい。
 また、前記第1工程に用いられる前記パラジウム触媒としては特に制限されず、パラジウムを含有する公知の触媒を適宜用いることができ、例えば、パラジウムの無機酸塩、パラジウムの有機酸塩、担体にパラジウムを担持した触媒等が挙げられる。このようなパラジウム触媒としては、具体的には、塩化パラジウム、硝酸パラジウム、硫酸パラジウム、酢酸パラジウム、酢酸パラジウム三量体、プロピオン酸パラジウム、パラジウム炭素、パラジウムアルミナ、パラジウム黒及び種々のリガンドを有するPd錯体等が挙げられる。このようなパラジウム触媒の使用量としては、前記パラジウム触媒中のパラジウムのモル量が前記一般式(9)で表される化合物に対して0.001~0.1倍モルとなる量とすることが好ましい。
 さらに、前記第1工程において用いられる酸化剤としては、前記エステル化反応において、前記パラジウム触媒中のPd2+がPdに還元された場合に、そのPdをPd2+に酸化することが可能なものであればよく、特に制限されず、例えば、銅化合物、鉄化合物、酸素、空気、過酸化水素等が挙げられる。このような酸化剤としては、具体的には、塩化第二銅、硝酸第二銅、硫酸第二銅、酢酸第二銅、塩化第二鉄、硝酸第二鉄、硫酸第二鉄、酢酸第二鉄、二酸化マンガン、酢酸マンガン等が挙げられる。このような酸化剤の使用量は、一般式(9)で表される5-ノルボルネン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-5’’-ノルボルネン類に対して2~16倍モル(より好ましくは8倍モル程度)とすることが好ましい。
 また、前記一般式(9)で表される化合物とアルコール及び一酸化炭素との反応(エステル化反応)には溶媒を用いることが好ましい。このような溶媒としては特に制限されず、例えば、n-ヘキサン、シクロヘキサン、ヘプタン、ペンタン、トルエン等の炭化水素系溶媒が挙げられる。
 さらに、前記エステル化反応においては、前記酸化剤等から酸が副生されることから、かかる酸を除去するために塩基を添加してもよい。このような塩基としては、酢酸ナトリウム、プロピオン酸ナトリウム、酪酸ナトリウム等の脂肪酸塩が好ましい。また、このような塩基の使用量は酸の発生量等に応じて適宜調整すればよい。
 また、前記エステル化反応の際の反応温度条件としては特に制限されないが、0℃~100℃であること{より好ましくは常温(25℃)程度}が好ましい。反応温度が前記上限を超えると、収量が低下する傾向にあり、反応温度が前記下限未満では、反応速度が低下する傾向にある。また、前記エステル化反応の反応時間は特に制限されないが、30分~24時間程度とすることが好ましい。
 また、一般式(10)中のR、R、R又はRを水素原子とするために、前記エステル化反応により上記式:-COOR10で表される基を導入した後に、加水分解処理や、カルボン酸とのエステル交換反応を施してもよい。このような反応の方法は特に制限されず、式:-COOR10で表される基を式:-COOHとすることが可能な公知の方法を適宜採用することができる。
 また、このようにしてエステル化反応や加水分解等を行った後においては、より純度の高い化合物を得るために、再結晶等の精製工程を適宜実施してもよい。このような精製の方法は特に制限されず、公知の方法を適宜採用することができる。そして、このような第1の工程により、前記一般式(10)で表される上記本発明のノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸エステル類を効率よく得ることができる。
 次いで、前記テトラカルボン酸二無水物類の製造方法(A)の第2工程について説明する。このような第2工程は、低級カルボン酸(ギ酸、酢酸、プロピオン酸等)と、酸触媒と、無水酢酸とを用いて、前記ノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸及びそのエステル類のうちの少なくとも1種の化合物から前記一般式(6)で表されるノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物類を得る工程である。
 このような第2工程に用いる酸触媒としては特に制限されないが、酸強度の観点から、p-トルエンスルホン酸、ベンゼンスルホン酸、塩酸、硝酸、硫酸、リン酸、メタンスルホン酸、トリフルオロ酢酸、アンバーリスト、アンバーライトが好ましく、p-トルエンスルホン酸がより好ましい。このような第2工程に用いる酸触媒の使用量としては、前記一般式(10)で表される化合物に対して0.01~0.2倍モルとすることが好ましい。このような酸触媒の使用量が前記下限未満では、反応速度が低下する傾向にあり、他方、前記上限を超えると、収量が低下する傾向にある。
 また、第2工程に用いる低級カルボン酸(例えば、ギ酸、酢酸、プロピオン酸)の使用量としては特に制限されないが、前記一般式(10)で表される化合物に対して4~100倍モルとすることが好ましい。このような低級カルボン酸(ギ酸、酢酸、プロピオン酸等)の使用量が前記下限未満では反応速度が低下する傾向にあり、他方、前記上限を超えると収量が低下する傾向にある。
 さらに、第2工程に用いる無水酢酸の使用量としては特に制限されないが、前記一般式(10)で表される化合物に対して4~100倍モルとすることが好ましい。このような無水酢酸の使用量が前記下限未満では、反応速度が低下する傾向にあり、他方、前記上限を超えると、収量が低下する傾向にある。
 また、このような第2工程は特に制限されないが、例えば、以下に示す工程(A)~(C)を含むことが好ましい。すなわち、このような第2工程としては、前記一般式(10)で表される化合物と低級カルボン酸(ギ酸、酢酸、プロピオン酸等)と酸触媒との混合液を調製し、前記混合液を加熱還流する工程(A)と、前記混合液中の液体の一部を減圧留去して前記混合液を濃縮し、得られた濃縮液に再度低級カルボン酸(ギ酸等)を添加して加熱還流した後、得られた混合液中の液体の一部を減圧留去して再度濃縮することにより濃縮液を得る工程(B)と、前記濃縮液に低級カルボン酸(ギ酸、酢酸、プロピオン酸等)と無水酢酸とを加えて加熱還流することにより前記一般式(6)で表される化合物を得る工程(C)とを含むことが好ましい。このような方法を採用することにより、より効率よく、前記一般式(10)で表される化合物から、前記一般式(6)で表される化合物を得ることが可能となる。
 また、このような方法を採用する場合には、工程(B)において、前記濃縮液に対するギ酸、酢酸、プロピオン酸等の低級カルボン酸の添加・濃縮を行う工程を繰り返し実施(好ましくは1~5回繰り返し実施)することが好ましく、あるいは、工程(B)において、生成されるカルボン酸メチルエステルや水を低級カルボン酸とともに留去した後、減少した分の低級カルボン酸を連続的に追加することが好ましい。工程(B)において、濃縮液に対してギ酸、酢酸、プロピオン酸等の低級カルボン酸の添加・濃縮を行う工程を繰り返し実施することにより、一般式(10)中のR、R、R又はRが水素原子以外の基である場合にテトラエステルを完全にテトラカルボン酸にすることが可能となり、その後に実施する工程(C)により、より効率よく前記一般式(6)で表される化合物を得ることが可能となる。更に、前記工程(A)において混合液を製造する際における低級カルボン酸(ギ酸、酢酸、プロピオン酸等)の使用量は、前記一般式(10)で表される化合物に対して50倍モル程度とすることが好ましい。また、工程(B)及び(C)において濃縮液に添加する低級カルボン酸(ギ酸等)の量は濃縮の際に留去した液体の量と同程度とすることが好ましい。
 また、前記工程(B)における混合液の濃縮(減圧留去)の方法は特に制限されず、公知の方法を適宜採用することができる。また、前記工程(A)~(C)における加熱還流の温度条件としては、100℃~180℃とすることが好ましく、100℃~140℃とすることがより好ましい。このような加熱還流の温度が前記下限未満では収量が低下する傾向があり、他方、前記上限を超えると、副生物が増加するとともに着色して透明性が低下する傾向にある。また、このような加熱還流の時間としては30分から24時間程度とすることが好ましい。
 さらに、このような第2工程においては、前記一般式(10)で表される化合物から前記一般式(6)で表される化合物の粗生成物を得た後に、その粗生成物に対して再結晶、昇華等の精製工程を適宜実施してもよい。このような精製工程により、より高純度の一般式(6)で表される化合物を得ることが可能となる。このような精製の方法としては、特に制限されず、公知の方法を適宜採用することができる。なお、酸触媒としてアンバーライト等の固体酸を用いた場合には、ろ過のみによって酸触媒を除去し、得られたろ液を濃縮することによって、濃縮と同時に再結晶精製を実施することもできる。
 このようにして第2工程を実施することにより、前記一般式(6)で示される上記本発明のノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物類を高収率で得ることができる。
 また、一般式(6)で表されるテトラカルボン酸二無水物類を製造するための好適な他の方法としては、前記第1工程を実施して前記一般式(10)で示されるノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸エステル類を得た後、かかるノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸エステル類を酸触媒又は塩基触媒の存在下において加水分解して、ノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸を製造し、その後、得られたノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸を加熱により或いは脱水剤を用いることにより脱水閉環せしめ、前記一般式(6)で表されるノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物類を製造する方法が挙げられる。
 (工程(II))
 次に、工程(II)について説明する。工程(II)は、工程(I)により得られた上記一般式(8)で表される繰り返し単位を有するポリアミド酸の溶液を基材上に塗布した後、前記ポリアミド酸をイミド化して、上記一般式(1)で表される繰り返し単位を有するポリイミドからなる基板フィルムを得る工程(工程(II))である。
 このようなポリアミド酸の溶液を塗布するための基材としては特に制限されず、目的とするポリイミドからなる基板フィルムの形状等に応じて、重合体からなる基板フィルムの形成に用いることが可能な公知の材料からなる基材(例えば、ガラス板や金属板)を適宜用いることができる。
 また、前記基材上に前記ポリアミド酸の溶液を塗布する方法としては特に限定されず、例えば、スピンコート法、スプレーコート法、ディップコート法、滴下法、グラビア印刷法、スクリーン印刷法、凸版印刷法、ダイコート法、カーテンコート法、インクジェット法等の公知の方法を適宜採用することができる。
 また、基材上に形成される前記ポリアミド酸の塗膜の厚みとしては、乾燥後の塗膜の厚みを1~200μmとすることが好ましく、5~100μmであることがより好ましい。このような厚みが前記下限未満では機械強度が低下し弱くなる傾向にあり、他方、前記上限を超えると成膜加工が困難となる傾向にある。
 また、前記基材上に前記ポリアミド酸の溶液を塗布して塗膜を形成した後には、乾燥処理を施すことが好ましい。このような乾燥処理の方法における温度条件としては0~100℃であることが好ましく、20~80℃であることがより好ましい。このような乾燥処理における温度条件が前記下限未満では溶媒が乾燥しない傾向にあり、他方、前記上限を超えると溶媒が沸騰し気泡やボイドを含むフィルムになる傾向にある。また、このような乾燥処理の方法における雰囲気としては、不活性ガス雰囲気(例えば窒素雰囲気)とすることが好ましい。また、より効率よく乾燥を行うという観点から、このような乾燥処理における圧力の条件としては、1~200mmHgであることが好ましい。このような乾燥処理により、上記一般式(8)で表される繰り返し単位を有するポリアミド酸をフィルム状などの形態として単離でき、その後に加熱処理を施すこと等が可能となる。
 さらに、このようなポリアミド酸のイミド化の方法としては、ポリアミド酸をイミド化し得る方法であればよく、特に制限されず、公知の方法を適宜採用することができ、例えば、上記一般式(8)で表される繰り返し単位を有するポリアミド酸に対して加熱処理を施して脱水反応を行うことによりイミド化する方法や、いわゆる「イミド化剤」を用いてイミド化する方法を採用することが好ましい。
 このように、ポリアミド酸のイミド化の方法として加熱処理を施して脱水反応を行う場合においては、200~450℃(好ましくは250~440℃、より好ましくは300~430℃、更に好ましくは350~420℃、特に好ましくは360℃~410℃)の温度条件で加熱処理を施すことが好ましい。このような加熱処理を施して脱水反応を行うことによりイミド化する方法を採用する場合において、前記加熱温度が200℃未満ではポリアミド酸が脱水閉環しポリイミドになる反応よりも酸二無水物とアミンに分解する平衡反応が有利になる傾向にあり、他方、前記上限を超えると着色したり、熱分解による分子量低下などが起きる傾向にある。
 また、加熱処理を施すことによりイミド化する方法を採用する場合においては、工程(I)において、上記一般式(8)で表される繰り返し単位を有するポリアミド酸を単離することなく、有機溶媒中において上記一般式(6)で表されるテトラカルボン酸二無水物類と上記一般式(7)で表される芳香族ジアミンとを反応させて得られた反応液(上記一般式(8)で表される繰り返し単位を有するポリアミド酸を含有する反応液)をそのまま前記ポリアミド酸の溶液として用い、前記ポリアミド酸の溶液(反応液)に対して前述のような乾燥処理を施して溶媒を除去した後、前記温度範囲において加熱処理を施すことによりイミド化する方法を採用することが好ましい。このように、工程(I)で得られた反応液をそのまま基材(例えばガラス板)上に塗布し、前記乾燥処理及び加熱処理を施す方法によれば、簡便な方法でポリイミドからなる基板フィルムを製造することが可能となる。
 また、いわゆる「イミド化剤」を利用してイミド化する方法を採用する場合、イミド化剤の存在下、上記一般式(8)で表される繰り返し単位を有するポリアミド酸の溶液中でイミド化することが好ましい。このような溶液の溶媒としては工程(I)において説明した有機溶媒を好適に用いることができる。そのため、イミド化剤を利用してイミド化する方法を採用する場合においては、上記一般式(8)で表される繰り返し単位を有するポリアミド酸を単離することなく、有機溶媒中において上記一般式(6)で表されるテトラカルボン酸二無水物類と上記一般式(7)で表される芳香族ジアミンとを反応させて得られた反応液(上記一般式(8)で表される繰り返し単位を有するポリアミド酸を含有する反応液)をそのまま前記ポリアミド酸の溶液として用い、前記ポリアミド酸の溶液(反応液)にイミド化剤を添加してイミド化する方法を採用することがより好ましい。
 このようなイミド化剤としては、公知のイミド化剤を適宜利用することができ、例えば、無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物;ピリジン、コリジン、ルチジン、トリエチルアミン、N-メチルピペリジン、β-ピコリンなどの3級アミン;などを挙げることができる。
 また、イミド化剤を添加してイミド化する場合におけるイミド化の際の反応温度は、0~180℃であることが好ましく、60~150℃であることがより好ましい。また、反応時間は0.1~48時間とすることが好ましい。このような反応温度や時間が前記下限未満では十分にイミド化することが困難となる傾向にあり、他方、前記上限を超えると重合物を劣化させる物質(酸素等)の混入確率が高まり分子量が低下する傾向にある。また、このようなイミド化剤の使用量としては、特に制限されず、ポリアミド酸中の上記一般式(8)で表される繰り返し単位1モルに対して数ミリモル~数モル(好ましくは0.05~1.0モル程度)とすればよい。
 このようにして前記ポリアミド酸をイミド化することにより、上記一般式(1)で表される繰り返し単位を少なくとも1種含有するポリイミドを得ることができる。そして、このようなポリイミドからなる基板フィルムを得る方法としては、前述のようにして基材上の乾燥塗膜として得られたポリアミド酸を、そのまま加熱硬化せしめることにより、上記一般式(1)で表される繰り返し単位を有するポリイミドからなる基板フィルムを得る方法(a)を採用してもよく、あるいは、前述のようにして基材上の乾燥塗膜として得られたポリイミド又は前述のようにしてイミド化剤を添加してイミド化したポリイミド溶液を用いて、これを該ポリイミドの溶解性が乏しい溶媒中に添加し、ろ過、洗浄、乾燥等を適宜施すことにより、上記一般式(1)で表される繰り返し単位を含有するポリイミドを単離し、その単離したポリイミドを有機溶剤中に溶解させてポリイミドの溶液を調製し、かかるポリイミドの溶液を前記基材に塗布して塗膜を乾燥し、上記一般式(1)で表される繰り返し単位を含有するポリイミドの乾燥塗膜を加熱硬化して、上記一般式(1)で表される繰り返し単位を有するポリイミドからなる基板フィルムを得る方法(b)を採用してもよい。
 このような方法(a)及び(b)で採用されるポリイミドの乾燥塗膜の加熱硬化の方法としては特に制限されないが、該ポリイミドのガラス転移温度近傍の温度(より好ましくはガラス転移温度±40℃、更に好ましくはガラス転移温度±20℃、特に好ましくはガラス転移温度±10℃)で0.1~10時間(好ましくは0.5~2時間)加熱する方法を採用することが好ましい。このような加熱温度及び時間が前記下限未満では十分に固相重合反応が進行せず脆くて弱い膜となる傾向にあり、他方、前記上限を超えると着色したり、熱分解による分子量低下などが起きる傾向にある。また、このような乾燥塗膜の加熱硬化の際の雰囲気としては、不活性ガス雰囲気(例えば窒素雰囲気)とすることが好ましく、加熱硬化の際の圧力の条件としては、0.01~760mmHgであることが好ましく、0.01~200mmHgであることがより好ましい。なお、このような方法(a)を採用する場合においては、イミド化のための加熱処理とその後の加熱硬化のための加熱処理とを同時に一連の加熱処理として行ってもよく、この場合には、前述のイミド化の際の加熱温度を、前記加熱硬化の際に採用される温度範囲内の温度として一定の温度で連続して加熱処理を施すことが好ましい。すなわち、方法(a)を採用する場合においては、一連の加熱処理(イミド化と加熱硬化とを一つの加熱処理とすること)により、イミド化後にそのまま塗膜を硬化させて基板フィルムを得ることもできる。
 また、前記方法(b)において、上記一般式(1)で表される繰り返し単位を含有するポリイミドを単離する際に用いる該ポリイミドの溶解性が乏しい溶媒としては、特に制限されないが、例えばメタノール、エタノール、イソプロパノール、アセトン、酢酸エチル、ヘキサン、トルエン等を用いることができる。また、前記方法(b)におけるポリイミドの溶液の溶媒としては、前述のポリアミド酸の溶液の溶媒と同様のものを用いることができ、更に、前記方法(b)において採用されるポリイミドの溶液の塗膜を乾燥させる方法としては、前述のポリアミド酸の溶液の塗膜の乾燥処理の方法と同様の方法を採用することができる。
 このようにして、上記工程(I)及び工程(II)を実施することにより、上記一般式(1)で表される繰り返し単位を少なくとも1種含有し、前記ガラス転移温度が350℃~450℃であり且つ前記線膨張係数が30ppm/℃以下であるポリイミドからなる基板フィルムを得ることができる。このようにして得られる前記ポリイミドからなる基板フィルムは、耐熱性が十分に高いものであるとともに線膨張係数が十分に低いものであり、熱による衝撃(周囲温度の変化)に十分に高い耐性を有するものとなる。
 <導電性材料からなる薄膜>
 本発明にかかる導電性材料からなる薄膜は、前記ポリイミドからなる基板フィルム上に積層されるものである。
 このような導電性材料としては、導電性を有する材料であればよく特に制限されず、太陽電池や有機EL素子、液晶表示装置の透明電極等に用いることが可能な公知の導電性の材料を適宜利用することができ、例えば、金、銀、クロム、銅、タングステンなどの金属;スズ、インジウム、亜鉛、カドミウム、チタン等の金属酸化物に他の元素(例えば、スズ、テルル、カドミウム、モリブデン、タングステン、フッ素、亜鉛、ゲルマニウム、アルミニウム等)をドープした複合体(例えば、Indium Tin Oxide(ITO(In:Sn))、Fluorine doped Tin Oxide(FTO(SnO:F))、Aluminum doped Zinc Oxide(AZO(ZnO:Al))、Indium doped Zinc Oxide(IZO(ZnO:I))、Germanium doped Zinc Oxide(GZO(ZnO:Ge))等);等が挙げられる。また、このような導電性材料の中でも、透明性と導電性とをより高い水準でバランスよく発揮できることから、ITO(特に好ましくは、スズを3~15質量%含有したITO)を用いることが好ましい。
 このような導電性材料からなる薄膜(導電性薄膜)の膜厚としては、用途等に応じて設計を適宜変更することができるものであり、特に制限されるものではないが、1~2000nmであることが好ましく、10nm~1000nmであることがより好ましく、20~500nmであることが更に好ましく、20~200nmであることが特に好ましい。このような導電性薄膜の厚みが前記下限未満では表面抵抗値が十分に低くならず、太陽電池に用いた場合等に光電変換効率が落ちる傾向にあり、他方、前記上限を超えると、透過率が低下したり、成膜時間が長くかかって生産効率が低下する傾向にある。
 このような導電性材料からなる薄膜を前記基板フィルム上に積層する方法としては特に制限されず、公知の方法を適宜利用することができ、例えば、前記基板フィルム上にスパッタ法、真空蒸着法、イオンプレーティング法、プラズマCVD法等の気相堆積法により前記導電性材料の薄膜を形成することにより、前記薄膜を前記基板フィルム上に積層する方法を採用してもよい。なお、このように基板フィルム上に前記薄膜を積層する際には、予め前記基板フィルム上にガスバリア膜を形成しておき、そのガスバリア膜を介して基板フィルム上に前記薄膜を積層してもよい。また、このようなガスバリア膜としては特に制限されず、太陽電池や有機EL素子、液晶表示装置の透明電極等に利用され得る公知の膜を適宜利用することができ、その形成方法も公知の方法を適宜利用することができる。
 また、本発明においては、前記基板フィルムが、前記ガラス転移温度が350℃~450℃であり且つ前記線膨張係数が30ppm/℃以下であるポリイミドからなるものであるため、耐熱性と線膨張係数とのバランスが高く、既存のITOガラス基板の製造用のスパッタ装置等を用いて前記薄膜を製造する場合(例えば、電子ビーム加熱法による真空蒸着法やDCマグネトロンスパッタ法等に用いる既存のITOガラス基板製造用のスパッタ装置を用いて薄膜の形成過程において通常の温度条件(例えば250~350℃)を採用して薄膜を製造する場合)においても、得られる導電性材料からなる薄膜に割れ(亀裂)が生じることがなく、十分に高度な品質の導電性積層体を得ることができる。このように、本発明の透明導電性積層体は、低エネルギーイオンプレーティング法や、強磁場印加、DC・RF重畳型マグネトロンスパッタ法のようなPETフィルム等のプラスチック基板に金属薄膜を形成するために用いるような特殊なダメージフリーのスパッタ装置を必ずしも利用する必要がなく、ガラス基板に対して金属薄膜を製造する際に利用できる既存の設備を用いて、ガラス基板の代替品として前記ポリイミドからなる基板フィルムを用いて透明導電性積層体を製造することもでき、設備投資等も含めた製造コストの観点等からも有用性が高いものと言える。さらにPETフィルム等のプラスチック基板に常温付近の低温プロセスでITOなどの金属薄膜を形成させた場合、得られた非晶膜の導電性や信頼性を向上させるためにアニール処理して結晶化させる工程が必要となるが、この工程も無くすことが可能となる。また、ガラス基板の代替品として前記ポリイミドからなる基板フィルムを用いて透明導電性積層体を製造した場合には、ポリイミドからなる基板フィルムが軽量であるため、それを利用した最終製品(例えばタブレット端末のタッチパネル等)の軽量化も図ることが可能となる。
 <透明導電性積層体>
 本発明の透明導電性積層体は、前記ポリイミドからなる基板フィルム上に前記導電性材料からなる薄膜が積層されてなるものである。このような透明導電性積層体において「透明」とは全光線透過率が78%以上(より好ましくは80%以上、更に好ましくは82%以上)であることをいう。このような全光線透過率は、上記本発明にかかるポリイミドからなる基板フィルムのポリイミドの種類や該基板フィルム上に積層する薄膜の材料である前記導電性材料の種類等を適宜選択することにより容易に達成することができる。なお、このような全光線透過率としては、測定装置として、日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」を用いて測定した値を採用することができる。
 また、本発明の透明導電性積層体は、前記導電性材料からなる薄膜の表面抵抗率(シート抵抗)が1~100Ω/□(より好ましくは10~70Ω/□)であることが好ましい。このような表面抵抗率が前記下限未満では導電性材料からなる薄膜が厚くなり全光線透過率が低下する傾向にあり、他方、前記上限を超えると導電性材料からなる薄膜は薄くなり全光線透過率は向上するが、太陽電池や有機EL素子、液晶表示装置、タブレット端末のタッチパネルの透明電極に要求される表面抵抗率(シート抵抗)に到達しない傾向にある。なお、このような表面抵抗率は、本発明のポリイミドを既存のITOガラス基板製造用のスパッタ装置を用いて通常の温度条件(例えば250~350℃)で導電性薄膜を積層することにより容易に達成することができる。なお、このような表面抵抗率としては、測定装置として表面抵抗計(例えば三菱油化株式会社製の商品名「Loresta表面抵抗計 MCP-TESTER Loresta-FP」)を用い、試料サイズが特に制限されない以外はJIS K7194(1994年)に準拠した四探針法を採用して測定した値を採用することができる。なお、このような四探針法による表面抵抗の測定においては求められる抵抗率の値は試料の形状やサイズによらず、一定のものとなることから、試料サイズは適宜変更してもよく、例えば、縦40mm、横40mm、厚み0.05mmとしてもよい。
 このような本発明の透明導電性積層体は、前記ポリイミドからなる基板フィルムにより十分に高度な耐熱衝撃性を得ることができるため、太陽電池や表示装置の製造過程において高温に晒されても、導電性材料からなる薄膜に割れや亀裂が生じることを十分に抑制できることから、例えば、太陽電池の透明電極、表示装置(有機EL表示装置、液晶表示装置等)の透明電極等として特に有用である。
 [タッチパネル、太陽電池、表示装置]
 本発明のタッチパネル、太陽電池、表示装置は、それぞれ、上記本発明の透明導電性積層体を備えるものである。
 ここにいう「表示装置」としては、透明導電性積層体を利用可能なものであればよく、特に制限されないが、液晶表示装置、有機EL表示装置が挙げられる。また、このようなタッチパネル、太陽電池、表示装置としては、それぞれ、上記本発明の透明導電性積層体を備える以外、他の構成は特に制限されず、目的とする設計に応じて、公知の構成を適宜採用することができる。このような構成としては、例えば、タッチパネルとしては透明電極と空隙を挟んで配置される他の透明電極とを含むような構成が挙げられ、太陽電池としては透明電極、半導体層及び対極用導電層を含むような構成が挙げられ、有機EL表示装置としては透明電極、有機層及び対極用導電層を含むような構成が挙げられ、液晶表示装置としては透明電極、液晶層及び対極用導電層を含むような構成が挙げられる。また、このような有機層や液晶層や半導体層等の各層の材料としては特に制限されず、公知の材料を適宜利用することができる。また、本発明のタッチパネル、太陽電池、表示装置においては、それぞれ、上記本発明の透明導電性積層体を前記透明電極として利用することが好ましい。このように、上記本発明の透明導電性積層体を前記透明電極として利用することで、タッチパネル、太陽電池、表示装置(液晶表示装置、有機EL表示装置)の製造過程において通常採用するような高温条件に晒されても、透明電極層(導電性材料からなる薄膜)に割れ等が生じることが十分に抑制されているため、品質が十分に高い、タッチパネル、太陽電池、表示装置を歩留りよく製造することが可能となる。
 [透明フィルム]
 本発明の透明フィルムは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000015
[式(1)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、Rは炭素数6~40のアリール基を示し、nは0~12の整数を示す。]
で表される繰り返し単位を少なくとも1種含有し、ガラス転移温度が350℃~450℃であり、且つ、窒素雰囲気下、昇温速度5℃/分の条件で50℃~200℃の温度範囲において長さの変化を測定して求められる線膨張係数が30ppm/℃以下であるポリイミドからなる透明フィルムである。
 本発明の透明フィルムにおいて「透明」とは全光線透過率が80%以上(更に好ましくは85%以上、特に好ましくは87%以上)であることをいう。また、このような本発明の透明フィルムを形成するポリイミドは、上記本発明の透明導電性積層体が備える基板フィルムを形成するポリイミドとして説明したものと同様のものである。そのため、本発明の透明フィルムは、十分に高度な耐熱性と極めて低い線膨張係数を有するものとなり、透明導電性積層体が備える基板フィルムに好適に用いることが可能なものである。このように、本発明の透明フィルムは、上述の基板フィルムと基本的に同様のものであり、上述の基板フィルムの製造方法と同様の方法を採用して製造することが可能なものである。なお、本発明の透明フィルムは、前記ポリイミドからなる透明フィルムであればよく、用途等に応じて、その好適な厚みや大きさ等の設計は適宜変更することができる。
 このような本発明の透明フィルムは、透明性が十分に高いばかりか、十分に高度な耐熱性と極めて低い線膨張係数を有するため、太陽電池や表示装置などの製造過程において高温に晒されても、割れや亀裂が生じることを十分に抑制できることから、例えば、タッチパネルや太陽電池の透明電極を積層させるための基板フィルム、表示装置(有機EL表示装置、液晶表示装置等)の透明電極を積層させるための基板フィルムの他、FPC、光導波路、イメージセンサー、LED反射板、LED照明用カバー、スケルトン型FPC、カバーレイフィルム、チップオンフィルム、高延性複合体基板、液晶配向膜、ポリイミドコーティング材(DRAM、フラッシュメモリ、次世代LSIなどのバッファーコート材)、半導体向けレジスト、各種の電材等の用途に用いるフィルム等として特に有用である。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 先ず、各合成例、各実施例、各比較例で得られた化合物や基板フィルム等の特性の評価方法について説明する。
 <分子構造の同定>
 各合成例、各実施例等で得られた化合物の分子構造の同定は、赤外分光分析装置(日本分光株式会社製、FT/IR-460、FT/IR-4100、サーモフィッシャーサイエンティフィック株式会社製、NICOLET380FT-IR)及びNMR測定機(VARIAN社製、商品名:UNITY INOVA-600及び日本電子株式会社製JNM-Lambda500)を用いて、IR及びNMRスペクトルを測定することにより行った。
 <ガラス転移温度(Tg)の測定>
 各実施例及び比較例で得られた基板フィルム等のガラス転移温度(Tg)は、示差走査熱量計(エスアイアイ・ナノテクノロジー株式会社製の商品名「DSC7020」)を使用して、昇温速度:10℃/分及び降温速度:30℃/分の条件で、窒素雰囲気下、30℃から440℃の範囲を走査することで測定を行なった。
 <5%重量減少温度の測定>
 各実施例及び各比較例で得られた基板フィルム等を構成する化合物の5%重量減少温度は、測定装置としてTG/DTA7200熱重量分析装置(エスアイアイ・ナノテクノロジー株式会社製)を使用して、窒素ガスを流しながら、室温(25℃)から600℃の範囲で10℃/分の条件で加熱して、用いた試料の重量が5%減少する温度を測定することにより求めた。
 <固有粘度[η]の測定>
 各実施例及び比較例1で基板フィルム等を製造する際に中間体として得られたポリアミド酸の固有粘度[η]は、離合社製の自動粘度測定装置(商品名「VMC-252」)を用い、N,N-ジメチルアセトアミドを溶媒として、濃度0.5g/dLのポリアミド酸の測定試料を調整し、30℃の温度条件下において測定した。
 <基板フィルム等の線膨張係数の測定>
 実施例1~7及び比較例1~2で得られた基板フィルム等の線膨張係数は、縦20mm、横5mm、厚み0.05mm(50μm)の大きさの試料を用い、測定装置として熱機械的分析装置(リガク製の商品名「TMA8310」)を利用して、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件を採用して、50℃~200℃における前記試料の長さの変化を測定して、50℃~200℃の温度範囲における1℃あたりの長さの変化の平均値を求めることにより測定した。なお、比較例3で用いた基板フィルムについては試料の厚みを0.1mm(100μm)とした以外は実施例1と同様にして線膨張係数を測定した。
 <基板フィルム等の屈折率の測定>
 各実施例及び各比較例で得られた基板フィルム等の屈折率は、測定装置として屈折率測定装置(株式会社アタゴ製の商品名「NAR-1T SOLID」)を用い、589nmの光源下、23℃の温度条件で測定した。
 <全光線透過率の測定>
 各実施例及び各比較例で得られた基板フィルム等と各実施例及び各比較例で得られた導電性積層体の全光線透過率は、それぞれ測定装置として日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」を用いてJIS K7361-1に準拠して測定した。
 <導電性積層体の表面抵抗率(シート抵抗)の測定>
 測定装置として表面抵抗計(三菱油化株式会社製の商品名「Loresta表面抵抗計 MCP-TESTER Loresta-FP」)を用い、実施例1~2、実施例8~12及び各比較例で得られた導電性積層体からそれぞれ作成した縦:40mm、横:40mmのサイズの試料(試料の厚みは各実施例及び各比較例で得られた導電性積層体の厚みのままとした。)を測定用試料として用いた以外はJIS K7194(1994年)に準拠した四探針法を採用して、各導電性積層体の表面抵抗率(シート抵抗)を測定した。
 <基板フィルム及び導電性積層体の熱衝撃に対する耐性(耐熱衝撃性)の評価試験>
 実施例1~12及び比較例1、3で得られたフィルム(基板フィルム等)及び導電性積層体の耐熱衝撃性の評価試験は、各実施例等で得られたフィルム(基板フィルム等)及び導電性積層体を350℃の真空オーブンに入れて1時間放置した後100℃まで冷却し、常圧に戻して取り出し、該基板フィルム及び導電性積層体の表面状態をそれぞれ確認することにより行った(第一の耐熱衝撃性の評価試験(測定温度条件:350℃))。また、各実施例及び比較例3で得られた導電性積層体については、前記真空オーブンの温度条件を400℃とする以外は第一の耐熱衝撃性の評価試験と同様の方法を採用して、第二の耐熱衝撃性も測定した(第二の耐熱衝撃性の評価試験(測定温度条件:400℃))。
 (合成例1:テトラカルボン酸二無水物の合成)
 先ず、100mlの二口フラスコに、50質量%ジメチルアミン水溶液を6.83g(ジメチルアミン:75.9mmol)添加した。次に、100mlの滴下ロートに35質量%塩酸水溶液を8.19g(塩化水素:78.9mmol)添加した。次いで、前記二口フラスコに前記滴下ロートをセットし、氷冷下において前記ジメチルアミン水溶液中に前記塩酸水溶液を滴下し、前記二口フラスコ中でジメチルアミン塩酸塩を調製した。次に、前記二口フラスコ中に、パラホルムアルデヒド2.78g(92.4mmol)と、シクロペンタノン2.59g(30.8mmol)とを更に添加した。次いで、前記二口フラスコに玉付きコンデンサーをセットした後、前記二口フラスコの内部を窒素で置換した。その後、前記二口フラスコを90℃のオイルバスに沈め、3時間加熱攪拌を行なって、上記一般式(I-2)で表される化合物であって式中のnが2であり、R及びRがいずれも水素原子であり且つRがいずれもメチル基であるマンニッヒ塩基を含有する反応液を得た。なお、このようにして得られた反応液に対してガスクロマトグラフィー分析(GC分析:検出器としてAgilent Technologies社製の商品名「6890N」を使用)を行った結果、シクロペンタノンの転化率は99%であることが確認された。
 次に、前記二口フラスコ中の前記反応液を50℃に冷却した後、前記二口フラスコ中の前記反応液に対してメチルセロソルブ(50ml)と、50質量%ジメチルアミン水溶液1.12g(12.4mmol)と、シクロペンタジエン7.13g(108mmol)とを添加し、混合液を得た。次いで、前記二口フラスコの内部を窒素置換し、前記二口フラスコを120℃のオイルバスに沈め、前記混合液を90分間加熱した。
 前記加熱後の混合液を室温(25℃)まで冷却した後、200mlの分液ロートに移し変え、n-ヘプタン(80ml)を添加した後、n-ヘプタン層を回収して1回目の抽出操作を行った。次に、残ったメチルセロソルブ層に対して、n-ヘプタン(40ml)を添加し、n-ヘプタン層を回収して2回目の抽出操作を行った。そして、1回目及び2回目の抽出操作により得られたn-ヘプタン層を混合してn-ヘプタン抽出液を得た。
 次に、前記n-ヘプタン抽出液を5質量%の水酸化ナトリウム(NaOH)水溶液(25ml)で1回洗浄した後、5質量%の塩酸水(25ml)で1回洗浄した。次いで、前記塩酸水で洗浄した後の前記n-ヘプタン抽出液を、5質量%の重曹水(25ml)で1回洗浄した後、更に、飽和食塩水(25ml)で1回洗浄した。次いで、このようにして洗浄したn-ヘプタン抽出液を無水硫酸マグネシウムで乾燥し、無水硫酸マグネシウムをろ過することにより、濾液を得た。次いで、得られた濾液をエバポレーターを用いて濃縮し、n-ヘプタンを留去して、粗生成物(5-ノルボルネン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-5’’-ノルボルネン)を7.4g(粗収率99%)得た。次に、このようにして得られた粗生成物に対してクーゲルロア蒸留(沸点:105℃/0.1mmHg)を行い、5-ノルボルネン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-5’’-ノルボルネンを4.5g(収率61%)得た。
 次いで、このようにして得られた5-ノルボルネン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-5’’-ノルボルネンを用い、1994年に発行されたMacromolecules(27巻)の1117頁に記載の方法に従って、テトラカルボン酸二無水物を製造した。
 このようにしてテトラカルボン酸二無水物を製造した後において、得られた化合物のIR及びNMR(H-NMR及び13C-NMR)測定を行った。このようにして得られた化合物のIRスペクトルを図1に示し、H-NMR(DMSO-d)スペクトルを図2に示し、13C-NMR(DMSO-d)スペクトルを図3に示す。
 図1~3に示す結果からも明らかなように、合成例1で得られたテトラカルボン酸二無水物は、下記一般式(13):
Figure JPOXMLDOC01-appb-C000016
で表される、ノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物であることが確認された。なお、このようなノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物の全収率は88%であった。
 (実施例1)
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素に置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内にo-トリジン0.1337g(0.63mmol:東京化成工業株式会社製:OTD)と、4,4’-ジアミノジフェニルエーテル0.0541g(0.27mmol:和歌山精化工業株式会社製:DDE)とを導入した後、更に、N,N-ジメチルアセトアミドを2.7g添加し、攪拌することにより、前記N,N-ジメチルアセトアミド中に、芳香族ジアミン化合物(o-トリジン(OTD)及び4,4’-ジアミノジフェニルエーテル(DDE))を溶解させて、溶解液を得た。次いで、前記溶解液を含有する三口フラスコを、ドライアイス-アセトン浴中に沈めて冷却し、前記溶解液を固化させた。
 次に、このようにして固化させた溶解液を含有する三口フラスコ内に、窒素雰囲気下、合成例1で得られたノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物を0.3459g(0.90mmol)添加した後、前記溶解液の温度を室温(25℃)に戻し、窒素雰囲気下、室温(25℃)で12時間攪拌して、反応液を得た。このようにして反応液中にポリアミド酸を形成した。なお、かかる反応液(ポリアミド酸のジメチルアセトアミド溶液)の一部を利用して、ポリアミド酸の濃度が0.5g/dLとなるジメチルアセトアミド溶液を調製し、反応中間体であるポリアミド酸の固有粘度[η]を測定した。このようなポリアミド酸の固有粘度を表1に示す。
 次いで、上述のようにして得られた反応液をガラス板(縦:200mm、横200mm)上に、加熱硬化後の塗膜の厚みが50μmとなるようにして流延し、ガラス板上に塗膜を形成した。その後、前記塗膜の形成されたガラス板を減圧オーブンに投入し、100mmHgの圧力下において、40℃の温度条件で12時間加熱した後、更に、1mmHgの圧力下において、400℃の温度条件で1時間加熱して塗膜を硬化せしめて、ガラス板上にポリイミドからなるフィルムを形成した。次いで、前記ポリイミドからなるフィルムの形成されたガラス板を減圧オーブンから取り出し、25℃の水に12時間浸け、ガラス板上からポリイミドからなるフィルムを回収して、端部を切り取って、ポリイミドからなる無色透明の基板フィルム(縦100mm、横100mm、厚み50μm)を得た。
 このようにして得られた基板フィルムを形成する化合物のIRスペクトルを測定した。得られた化合物のIRスペクトルを図4に示す。図4に示す結果からも明らかなように、得られた化合物においては1699.0cm-1にイミドカルボニルのC=O伸縮振動が確認され、得られた基板フィルムがポリイミドからなるものであることが確認された。また、得られた基板フィルムを形成するポリイミドは、用いたモノマー(合成例1で得られたテトラカルボン酸二無水物及び芳香族ジアミン化合物(OTD,DDE))の種類や、IRスペクトルの測定結果から、上記一般式(1)で表される繰り返し単位を含有するものであることが分かった。すなわち、前記ポリイミドが、前記一般式(1)で表され且つ式(1)中のRが前記一般式(4)で表される基(式(4)中のRがメチル基である。)である繰り返し単位と、前記一般式(1)で表され且つ式(1)中のRが前記一般式(5)で表される基(式(5)中のQは-O-で表される基である。)である繰り返し単位とを含有するポリイミドであることが分かった。
 次いで、前記ポリイミドからなる基板フィルムの表面上に、スパッタ装置として「神港精機株式会社製のSRV4320型スッパタリング装置」を使用し、酸化インジウム・スズ(ITO、In:Sn=9:1)からなるターゲットを用い、圧力:0.12Pa、基板フィルムの温度:300℃、アルゴン流量:18sccm、酸素流量:2sccm、成膜時間:11分30秒、RF電源:VDC・130Wの条件を採用することにより、スパッタ法にて、厚さ102nmの酸化インジウム・スズ(ITO、In:Sn=9:1)からなる透明の薄膜を積層した。このようにして、前記ポリイミドからなる基板フィルム上にITOからなる薄膜が積層された透明導電性積層体を得た。
 (実施例2)
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素に置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内に、4,4’-ジアミノベンズアニリド0.1432g(0.63mmol:東京化成工業株式会社製:DBA)と4,4’-ジアミノジフェニルエーテル0.0541(0.27mmol:和歌山精化工業株式会社製:DDE)とを導入した後、更に、N,N-ジメチルアセトアミドを2.7g添加し、攪拌することにより、前記N,N-ジメチルアセトアミド中に、芳香族ジアミン化合物(4,4’-ジアミノベンズアニリド(DBA)及び4,4’-ジアミノジフェニルエーテル(DDE))を溶解させて溶解液を得た(DBAは一部溶解)。次いで、前記溶解液を含有する三口フラスコを、ドライアイス-アセトン浴中に沈めて冷却し、前記溶解液を固化させた。
 次に、このようにして固化させた溶解液を含有する三口フラスコ内に、窒素雰囲気下、合成例1で得られたノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物を0.3459g(0.90mmol)添加した後、前記溶解液の温度を室温(25℃)に戻し、窒素雰囲気下、室温(25℃)で12時間攪拌して、反応液を得た。このようにして反応液中にポリアミド酸を形成した。なお、かかる反応液(ポリアミド酸のジメチルアセトアミド溶液)の一部を利用して、ポリアミド酸の濃度が0.5g/dLとなるジメチルアセトアミド溶液を調製し、反応中間体であるポリアミド酸の固有粘度[η]を測定した。このようなポリアミド酸の固有粘度を表1に示す。
 次いで、上述のようにして得られた反応液をガラス板(縦:200mm、横200mm)上に、加熱硬化後の塗膜の厚みが50μmとなるようにして流延し、ガラス板上に塗膜を形成した。その後、前記塗膜の形成されたガラス板を減圧オーブンに投入し、100mmHgの圧力下において、40℃の温度条件で12時間加熱した後、更に、1mmHgの圧力下において、400℃の温度条件で1時間加熱して塗膜を硬化せしめて、ガラス板上にポリイミドからなるフィルムを形成した。次いで、前記ポリイミドからなるフィルムの形成されたガラス板を減圧オーブンから取り出し、25℃の水に12時間浸け、ガラス板上からポリイミドからなるフィルムを回収して、端部を切り取って、ポリイミドからなる無色透明の基板フィルム(縦100mm、横100mm、厚み50μm)を得た。
 このようにして得られた基板フィルムを形成する化合物のIRスペクトルを測定した。得られた化合物のIRスペクトルを図5に示す。図5に示す結果からも明らかなように、得られた化合物においては1696.8cm-1にイミドカルボニルのC=O伸縮振動が確認され、得られた基板フィルムがポリイミドからなるものであることが確認された。なお、得られた基板フィルムを形成するポリイミドは、用いたモノマー(合成例1で得られたテトラカルボン酸二無水物及び芳香族ジアミン化合物(DBA、DDE))の種類や、IRスペクトルの測定結果から、上記一般式(1)で表される繰り返し単位を含有するものであることが分かった。すなわち、前記ポリイミドが、前記一般式(1)で表され且つ式(1)中のRが前記一般式(5)で表される基(式(5)中のQが-CONH-で表される基)である繰り返し単位と、前記一般式(1)で表され且つ式(1)中のRが前記一般式(5)で表される基(式(5)中のQは-O-で表される基である。)である繰り返し単位とを含有するポリイミドであることが分かった。
 次いで、前記ポリイミドからなる基板フィルムの表面上に、スパッタ装置として「神港精機株式会社製のSRV4320型スッパタリング装置」を使用し、酸化インジウム・スズ(ITO、In:Sn=9:1)からなるターゲットを用い、圧力:0.12Pa、基板フィルムの温度:300℃、アルゴン流量:18sccm、酸素流量:2sccm、成膜時間:11分30秒、RF電源:VDC・130Wの条件を採用することにより、スパッタ法にて、厚さ102nmの酸化インジウム・スズ(ITO、In:Sn=9:1)からなる透明の薄膜を積層した。このようにして、前記ポリイミドからなる基板フィルム上にITOからなる薄膜が積層された透明導電性積層体を得た。
 (実施例3)
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素に置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内に、4,4’-ジアミノベンズアニリド0.2045g(0.90mmol:東京化成工業株式会社製:DBA)を導入した後、更に、N,N-ジメチルアセトアミドを2.7g添加し、攪拌することにより、前記N,N-ジメチルアセトアミド中に、芳香族ジアミン化合物(4,4’-ジアミノベンズアニリド(DBA))を溶解させて溶解液を得た(DBAは一部溶解)。
 次に、前記溶解液を含有する三口フラスコ内に、窒素雰囲気下、合成例1で得られたノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物を0.3459g(0.90mmol)添加した後、窒素雰囲気下、室温(25℃)で12時間攪拌して、反応液を得た。このようにして反応液中にポリアミド酸を形成した。なお、かかる反応液(ポリアミド酸のジメチルアセトアミド溶液)の一部を利用して、ポリアミド酸の濃度が0.5g/dLとなるジメチルアセトアミド溶液を調製し、反応中間体であるポリアミド酸の固有粘度[η]を測定した。このようなポリアミド酸の固有粘度を表2に示す。
 次いで、上述のようにして得られた反応液をガラス板(縦:200mm、横200mm)上に、加熱硬化後の塗膜の厚みが50μmとなるようにして流延し、ガラス板上に塗膜を形成した。その後、前記塗膜の形成されたガラス板を減圧オーブンに投入し、100mmHgの圧力下において、40℃の温度条件で12時間加熱した後、更に、1mmHgの圧力下において、400℃の温度条件で1時間加熱して塗膜を硬化せしめて、ガラス板上にポリイミドからなるフィルムを形成した。次いで、前記ポリイミドからなるフィルムの形成されたガラス板を減圧オーブンから取り出し、25℃の水に12時間浸け、ガラス板上からポリイミドからなるフィルムを回収して、端部を切り取って、ポリイミドからなる無色透明のフィルム(縦100mm、横100mm、厚み50μm)を得た。
 このようにして得られたフィルムのIRスペクトルを測定した。得られた化合物のIRスペクトルを図6に示す。図6に示す結果からも明らかなように、得られた化合物においては1697.6cm-1にイミドカルボニルのC=O伸縮振動が確認され、得られたフィルムがポリイミドからなるものであることが確認された。また、このようなIRスペクトルの測定結果と用いたモノマーの種類等から、前記ポリイミドは、上記一般式(1)で表される繰り返し単位を含有するものであることが分かった。すなわち、前記ポリイミドは、前記一般式(1)で表され且つ式(1)中のRが前記一般式(5)で表される基(式(5)中のQが-CONH-で表される基)である繰り返し単位を含有するポリイミドであることが分かった。
 (実施例4)
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素に置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内にo-トリジン0.1528g(0.72mmol:東京化成工業株式会社製:OTD)と、4,4’-ジアミノジフェニルエーテル0.0360g(0.18mmol:和歌山精化工業株式会社製:DDE)とを導入した後、更に、N,N-ジメチルアセトアミドを2.7g添加し、攪拌することにより、前記N,N-ジメチルアセトアミド中に、芳香族ジアミン化合物(o-トリジン(OTD)及び4,4’-ジアミノジフェニルエーテル(DDE))を溶解させて、溶解液を得た。
 次に、前記溶解液を含有する三口フラスコ内に、窒素雰囲気下、合成例1で得られたノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物を0.3459g(0.90mmol)添加した後、窒素雰囲気下、室温(25℃)で12時間攪拌して、反応液を得た。このようにして反応液中にポリアミド酸を形成した。なお、かかる反応液(ポリアミド酸のジメチルアセトアミド溶液)の一部を利用して、ポリアミド酸の濃度が0.5g/dLとなるジメチルアセトアミド溶液を調製し、反応中間体であるポリアミド酸の固有粘度[η]を測定した。このようなポリアミド酸の固有粘度を表2に示す。
 次いで、上述のようにして得られた反応液をガラス板(縦:200mm、横200mm)上に、加熱硬化後の塗膜の厚みが50μmとなるようにして流延し、ガラス板上に塗膜を形成した。その後、前記塗膜の形成されたガラス板を減圧オーブンに投入し、100mmHgの圧力下において、40℃の温度条件で12時間加熱した後、更に、1mmHgの圧力下において、400℃の温度条件で1時間加熱して塗膜を硬化せしめて、ガラス板上にポリイミドからなるフィルムを形成した。次いで、前記ポリイミドからなるフィルムの形成されたガラス板を減圧オーブンから取り出し、25℃の水に12時間浸け、ガラス板上からポリイミドからなるフィルムを回収して、端部を切り取って、ポリイミドからなる無色透明のフィルム(縦100mm、横100mm、厚み50μm)を得た。
 このようにして得られたフィルムを形成する化合物のIRスペクトルを測定した。得られた化合物のIRスペクトルを図7に示す。図7に示す結果からも明らかなように、得られた化合物においては1700.5cm-1にイミドカルボニルのC=O伸縮振動が確認され、得られたフィルムがポリイミドからなるものであることが確認された。また、得られたフィルムを形成するポリイミドは、用いたモノマー(合成例1で得られたテトラカルボン酸二無水物及び芳香族ジアミン化合物(OTD,DDE))の種類や、IRスペクトルの測定結果から、上記一般式(1)で表される繰り返し単位を含有するものであることが分かった。すなわち、前記ポリイミドが、前記一般式(1)で表され且つ式(1)中のRが前記一般式(4)で表される基(式(4)中のRがメチル基である。)である繰り返し単位と、前記一般式(1)で表され且つ該式中のRが前記一般式(5)で表される基(式(5)中のQが-O-で表される基)である繰り返し単位とを含有するポリイミドであることが分かった。
 (実施例5)
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素に置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内にp-フェニレンジアミン0.0876g(0.81mmol:Aldrich社製:PPD)と、4,4’-ジアミノジフェニルエーテル0.018g(0.09mmol:和歌山精化工業株式会社製:DDE)とを導入した後、更に、N,N-ジメチルアセトアミドを2.7g添加し、攪拌することにより、前記N,N-ジメチルアセトアミド中に、芳香族ジアミン化合物(p-フェニレンジアミン(PPD)及び4,4’-ジアミノジフェニルエーテル(DDE))を溶解させて、溶解液を得た。
 次に、前記溶解液を含有する三口フラスコ内に、窒素雰囲気下、合成例1で得られたノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物を0.3459g(0.90mmol)添加した後、窒素雰囲気下、室温(25℃)で12時間攪拌して、反応液を得た。このようにして反応液中にポリアミド酸を形成した。なお、かかる反応液(ポリアミド酸のジメチルアセトアミド溶液)の一部を利用して、ポリアミド酸の濃度が0.5g/dLとなるジメチルアセトアミド溶液を調製し、反応中間体であるポリアミド酸の固有粘度[η]を測定した。このようなポリアミド酸の固有粘度を表2に示す。
 次いで、上述のようにして得られた反応液をガラス板(縦:200mm、横200mm)上に、加熱硬化後の塗膜の厚みが50μmとなるようにして流延し、ガラス板上に塗膜を形成した。その後、前記塗膜の形成されたガラス板を減圧オーブンに投入し、100mmHgの圧力下において、40℃の温度条件で12時間加熱した後、更に、1mmHgの圧力下において、400℃の温度条件で1時間加熱して塗膜を硬化せしめて、ガラス板上にポリイミドからなるフィルムを形成した。次いで、前記ポリイミドからなるフィルムの形成されたガラス板を減圧オーブンから取り出し、25℃の水に12時間浸け、ガラス板上からポリイミドからなるフィルムを回収して、端部を切り取って、ポリイミドからなる無色透明のフィルム(縦100mm、横100mm、厚み50μm)を得た。
 このようにして得られたフィルムを形成する化合物のIRスペクトルを測定した。得られた化合物のIRスペクトルを図8に示す。図8に示す結果からも明らかなように、得られた化合物においては1699.0cm-1にイミドカルボニルのC=O伸縮振動が確認され、得られたフィルムがポリイミドからなるものであることが確認された。また、得られたフィルムを形成するポリイミドは、用いたモノマー(合成例1で得られたテトラカルボン酸二無水物及び芳香族ジアミン化合物(PPD,DDE))の種類や、IRスペクトルの測定結果から、上記一般式(1)で表される繰り返し単位を含有するものであることが分かった。すなわち、前記ポリイミドが、前記一般式(1)で表され且つ該式中のRが前記一般式(2)で表される基である繰り返し単位と、前記一般式(1)で表され且つ式(1)中のRが前記一般式(5)で表される基(式(5)中のQは-O-で表される基である。)である繰り返し単位とを含有するポリイミドであることが分かった。
 (実施例6)
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素に置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内に、4,4’-ジアミノベンズアニリド0.1841g(0.81mmol:東京化成工業株式会社製:DBA)と4,4’-ジアミノジフェニルエーテル0.0180(0.09mmol:和歌山精化工業株式会社製:DDE)とを導入した後、更に、N,N-ジメチルアセトアミドを2.7g添加し、攪拌することにより、前記N,N-ジメチルアセトアミド中に、芳香族ジアミン化合物(4,4’-ジアミノベンズアニリド(DBA)及び4,4’-ジアミノジフェニルエーテル(DDE))を溶解させて溶解液を得た(DBAは一部溶解)。
 次に、溶解液を含有する三口フラスコ内に、窒素雰囲気下、合成例1で得られたノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物を0.3459g(0.90mmol)添加した後、窒素雰囲気下、室温(25℃)で12時間攪拌して、反応液を得た。このようにして反応液中にポリアミド酸を形成した。なお、かかる反応液(ポリアミド酸のジメチルアセトアミド溶液)の一部を利用して、ポリアミド酸の濃度が0.5g/dLとなるジメチルアセトアミド溶液を調製し、反応中間体であるポリアミド酸の固有粘度[η]を測定した。このようなポリアミド酸の固有粘度を表2に示す。
 次いで、上述のようにして得られた反応液をガラス板(縦:200mm、横200mm)上に、加熱硬化後の塗膜の厚みが50μmとなるようにして流延し、ガラス板上に塗膜を形成した。その後、前記塗膜の形成されたガラス板を減圧オーブンに投入し、100mmHgの圧力下において、40℃の温度条件で12時間加熱した後、更に、1mmHgの圧力下において、400℃の温度条件で1時間加熱して塗膜を硬化せしめて、ガラス板上にポリイミドからなるフィルムを形成した。次いで、前記ポリイミドからなるフィルムの形成されたガラス板を減圧オーブンから取り出し、25℃の水に12時間浸け、ガラス板上からポリイミドからなるフィルムを回収して、端部を切り取って、ポリイミドからなる無色透明のフィルム(縦100mm、横100mm、厚み50μm)を得た。
 このようにして得られたフィルムを形成する化合物のIRスペクトルを測定したところ、得られた化合物においては1698.9cm-1にイミドカルボニルのC=O伸縮振動が確認され、得られたフィルムがポリイミドからなるものであることが確認された。また、得られたフィルムを形成するポリイミドは、用いたモノマー(合成例1で得られたテトラカルボン酸二無水物及び芳香族ジアミン化合物(DBA,DDE))の種類や、IRスペクトルの測定結果から、上記一般式(1)で表される繰り返し単位を含有するものであることが分かった。すなわち、前記ポリイミドが、前記一般式(1)で表され且つ式(1)中のRが前記一般式(5)で表される基(式(5)中のQが-CONH-で表される基)である繰り返し単位と、前記一般式(1)で表され且つ式(1)中のRが前記一般式(5)で表される基(式(5)中のQは-O-で表される基である。)である繰り返し単位とを含有するポリイミドであることが分かった。
 (実施例7)
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素に置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内に、4,4’-ジアミノベンズアニリド0.1636g(0.72mmol:東京化成工業株式会社製:DBA)と4,4’-ジアミノジフェニルエーテル0.0360(0.18mmol:和歌山精化工業株式会社製:DDE)とを導入した後、更に、N,N-ジメチルアセトアミドを2.7g添加し、攪拌することにより、前記N,N-ジメチルアセトアミド中に、芳香族ジアミン化合物(4,4’-ジアミノベンズアニリド(DBA)及び4,4’-ジアミノジフェニルエーテル(DDE))を溶解させて溶解液を得た(DBAは一部溶解)。
 次に、溶解液を含有する三口フラスコ内に、窒素雰囲気下、合成例1で得られたノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物を0.3459g(0.90mmol)添加した後、窒素雰囲気下、室温(25℃)で12時間攪拌して、反応液を得た。このようにして反応液中にポリアミド酸を形成した。なお、かかる反応液(ポリアミド酸のジメチルアセトアミド溶液)の一部を利用して、ポリアミド酸の濃度が0.5g/dLとなるジメチルアセトアミド溶液を調製し、反応中間体であるポリアミド酸の固有粘度[η]を測定した。このようなポリアミド酸の固有粘度を表2に示す。
 次いで、上述のようにして得られた反応液をガラス板(縦:200mm、横200mm)上に、加熱硬化後の塗膜の厚みが50μmとなるようにして流延し、ガラス板上に塗膜を形成した。その後、前記塗膜の形成されたガラス板を減圧オーブンに投入し、100mmHgの圧力下において、40℃の温度条件で12時間加熱した後、更に、1mmHgの圧力下において、400℃の温度条件で1時間加熱して塗膜を硬化せしめて、ガラス板上にポリイミドからなるフィルムを形成した。次いで、前記ポリイミドからなるフィルムの形成されたガラス板を減圧オーブンから取り出し、25℃の水に12時間浸け、ガラス板上からポリイミドからなるフィルムを回収して、端部を切り取って、ポリイミドからなる無色透明のフィルム(縦100mm、横100mm、厚み50μm)を得た。
 このようにして得られたフィルムを形成する化合物のIRスペクトルを測定したところ、得られた化合物においては1699.1cm-1にイミドカルボニルのC=O伸縮振動が確認され、得られたフィルムがポリイミドからなるものであることが確認された。また、得られたフィルムを形成するポリイミドは、用いたモノマー(合成例1で得られたテトラカルボン酸二無水物及び芳香族ジアミン化合物(DBA,DDE))の種類や、IRスペクトルの測定結果から、上記一般式(1)で表される繰り返し単位を含有するものであることが分かった。すなわち、前記ポリイミドが、前記一般式(1)で表され且つ式(1)中のRが前記一般式(5)で表される基(式(5)中のQが-CONH-で表される基)である繰り返し単位と、前記一般式(1)で表され且つ式(1)中のRが前記一般式(5)で表される基(式(5)中のQが-O-で表される基である。)である繰り返し単位とを含有するポリイミドであることが分かった。
 (比較例1)
 30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素に置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内に、4,4’-ジアミノジフェニルエーテル0.1802g(0.90mmol:和歌山精化工業株式会社製:DDE)を入れた後、N,N-ジメチルアセトアミドを2.7g添加し、攪拌することにより、前記N,N-ジメチルアセトアミド中に4,4’-ジアミノジフェニルエーテル(DDE)を溶解させて溶解液を得た。次いで、前記溶解液を含有する三口フラスコをドライアイス-アセトン浴中に沈めて冷却し、前記溶解液を固化させた。
 次に、このようにして固化させた溶解液を含有する三口フラスコ内に、窒素雰囲気下、無水ピロメリット酸を0.1963g(0.90mmol:東京化成工業株式会社製)添加し、前記溶解液の温度を室温(25℃)に戻し、窒素雰囲気下、室温(25℃)で12時間攪拌し、反応液を得た。なお、このようにして得られた反応液中にはポリアミド酸が形成されているため、かかる反応液(ポリアミド酸のジメチルアセトアミド溶液)を一部利用して、ポリアミド酸の濃度が0.5g/dLとなるジメチルアセトアミド溶液を調製して、反応中間体であるポリアミド酸の固有粘度[η]を測定した。このようなポリアミド酸の固有粘度を表1に示す。
 次いで、上述のようにして得られた反応液をガラス板(縦:200mm、横200mm)上に、加熱硬化後の塗膜の厚みが50μmとなるようにして流延し、ガラス板上に塗膜を形成した。その後、前記塗膜の形成されたガラス板を減圧オーブンに投入し、100mmHgの圧力下において、40℃の温度条件で12時間加熱した後、更に、1mmHgの圧力下において、400℃の温度条件で1時間加熱して塗膜を硬化せしめて、ガラス板上にポリイミドからなるフィルムを形成した。次いで、前記ポリイミドからなるフィルムの形成されたガラス板を減圧オーブンから取り出し、25℃の水に12時間浸け、ガラス板上からポリイミドからなるフィルムを回収して、端部を切り取って、ポリイミドからなる褐色の基板フィルム(縦80mm、横80mm、厚み50μm)を得た。なお、このようにして得られたポリイミドは、芳香族テトラカルボン酸二無水物である無水ピロメリット酸と芳香族ジアミン化合物である4,4’-ジアミノジフェニルエーテルとの重縮合反応により得られた芳香族系のポリイミドであった。
 このような芳香族系のポリイミドからなる基板フィルムのIRスペクトルを測定した。得られたポリイミドからなる基板フィルムのIRスペクトルを図9に示す。図9に示す結果からも明らかなように、得られたポリイミドからなる基板フィルムにおいては1712.7cm-1にイミドカルボニルのC=O伸縮振動が確認され、得られた基板フィルムがポリイミドからなるものであることが確認された。
 次いで、前記芳香族系のポリイミドからなる基板フィルムの表面上に、スパッタ装置として「神港精機株式会社製のSRV4320型スッパタリング装置」を使用し、酸化インジウム・スズ(ITO、In:Sn=9:1)からなるターゲットを用い、圧力:0.12Pa、基板フィルムの温度:300℃、アルゴン流量:18sccm、酸素流量:2sccm、成膜時間:11分30秒、RF電源:VDC・130Wの条件を採用することにより、スパッタ法にて、厚さ102nmの酸化インジウム・スズ(ITO、In:Sn=9:1)からなる透明の薄膜を積層した。このようにして、前記芳香族系のポリイミドからなる基板フィルム上にITOからなる薄膜が積層された比較のための導電性積層体を得た。
 (比較例2)
 上記一般式(1)で表される繰り返し単位を含有するポリイミドからなる基板フィルムを製造せず、該基板フィルムの代わりに市販のPETフィルム(帝人デュポンフィルム株式会社製の商品名「テトロンフィルムG2」、縦:40mm、横40mm、厚み50μm)を基板フィルムとして用い、スパッタ法において基板フィルムの温度を300℃から150℃に変更した以外は、実施例1と同様にして、基板フィルム(PET)上にITOからなる薄膜が積層された比較のための導電性積層体を得た。
 (比較例3)
 上記一般式(1)で表される繰り返し単位を含有するポリイミドからなる基板フィルムを製造せず、該基板フィルムの代わりに市販のポリイミドフィルム(三菱ガス化学株式会社製の商品名「ネオプリムL-3430」、縦:40mm、横40mm、厚み100μm)を基板フィルムとして用いた以外は、実施例1と同様にして、基板フィルム(ネオプリム)上にITOからなる薄膜が積層された比較のための導電性積層体を得た。
 実施例1~2で得られた基板フィルム及び実施例1~2で得られた透明導電性積層体の特性の測定結果を表1に示す。また、比較例1~3で用いた基板フィルム及び比較例1~3で得られた導電性積層体の特性の測定結果を表1に示す。なお、表1中、SBNAはノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物を示し、DDEは、4,4’-ジアミノジフェニルエーテルを示し、OTDはo-トリジンを示し、DBAは4,4’-ジアミノベンズアニリドを示し、PMDAは無水ピロメリット酸を示す。また、第一の耐熱衝撃性の評価試験(測定温度条件:350℃)を行った実施例1及び比較例3で得られた透明導電性積層体のITOからなる薄膜の表面状態の顕微鏡(20倍)写真を図10(実施例1)及び図11(比較例3)にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000017
 表1に示した結果から明らかなように、本発明の透明導電性積層体(実施例1~2)においては、基板フィルム自体も十分に優れた耐熱衝撃性(周囲の温度変化に対する耐性)を有することが分かった。このような結果は、基板フィルムを形成するポリイミドがいずれも上記一般式(1)で表され、線形膨張係数が30ppm/℃以下であり且つガラス転移温度(Tg)が350℃以上であるポリイミドであり、線形膨張係数とガラス転移温度(Tg)とが高い水準でバランスよいものとなっていることに起因するものと本発明者らは推察する。また、表1に示した結果並びに図10に示した結果からも明らかなように、本発明の透明導電性積層体(実施例1~2)はいずれも、透明性が十分に高く、しかも、第一の耐熱衝撃性の評価試験(測定温度条件:350℃)及び第二の耐熱衝撃性の評価試験(測定温度条件:400℃)を実施した後においてもITOからなる薄膜の表面状態に変化はなく、非常に高度な耐熱衝撃性を有するものであることが確認された。このような結果は、実施例1~2で用いた基板フィルムを形成するポリイミドがいずれも線膨張係数とガラス転移温度(Tg)とを高い水準でバランスよく有するものとなっていることに起因して、周囲に高温の温度変化があっても(高い温度に晒された場合であっても)、積層体中の導電性材料からなる薄膜にクラック等が生じることなく、周囲の高温の温度変化に対して積層体の品質を十分に維持できるような非常に高度な耐熱衝撃性が発揮されたためであると本発明者らは推察する。また、本発明の透明導電性積層体(実施例1~2)はいずれも、シート抵抗が十分に低いものであることが確認された。このような結果から、本発明の透明導電性積層体(実施例1~2)は、太陽電池や表示装置等の透明電極等に有効に利用できるものであることが分かった。
 これに対して、比較例1で得られた導電性積層体は、基板フィルム自体が褐色であって全光線透過率が56%となっており、透明性の点において十分なものとはならず、太陽電池等の透明電極としては十分に機能しないものであることが分かった。また、比較例2で得られた導電性積層体は、基板フィルムがPETフィルムであってTgが83℃と低いため、第一の耐熱衝撃性の評価試験を実施するまでもなく、耐熱衝撃性の点で十分なものとはならないことが分かる。更に、比較例3で得られた導電性積層体は、表1及び図11に示す結果からも明らかなように、第一及び第二の耐熱衝撃性の評価試験のいずれにおいても白濁が見られ、ITOからなる薄膜に激しいクラックが確認された。また、比較例3で用いた基板フィルムに対する耐熱衝撃性の評価試験の結果から、基板フィルムが350℃程度の加熱により変形してしまうことが分かった。このように、比較例3で得られた導電性積層体は耐熱衝撃性の点で十分なものとはならず、高温条件下においてITOからなる薄膜に割れ等が発生してしまうことが分かった。
 上述のような結果(特に、図10及び図11に示す結果)から、比較のための導電性積層体(比較例1~3)に対して、本発明の透明導電性積層体(実施例1~2)は、非常に高度な耐熱衝撃性を有し、製造過程において400℃前後のプロセス温度を採用するような有機EL素子や太陽電池の製造にも好適に利用できる材料であることが分かった。
 また、実施例3~7で得られたフィルムの特性の測定結果を表2に示す。なお、表2中、SBNAはノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物を示し、DDEは、4,4’-ジアミノジフェニルエーテルを示し、OTDはo-トリジンを示し、DBAは4,4’-ジアミノベンズアニリドを示し、PPDは、p-フェニレンジアミンを示す。
Figure JPOXMLDOC01-appb-T000018
 表2に示したフィルムの特性の結果から明らかなように、実施例3~7で得られたフィルムはいずれも、上記一般式(1)で表される繰り返し単位を含有し、線形膨張係数が30ppm/℃以下であり且つガラス転移温度(Tg)が350℃以上であるポリイミドからなり、透明性も十分に高いものであることが分かった。このような表2に示す結果と表1に示す結果とを併せ考慮すると(例えば比較例1で得られたフィルムは褐色であって全光線透過率が56%となっていること等を併せ考慮すると)、実施例3~7で得られたフィルム(本発明の透明フィルム)は、透明性が十分に高いばかりか、線形膨張係数とガラス転移温度(Tg)とが十分に高い水準でバランスよいものとなっていることが分かった。特に、実施例3~4及び6~7で得られたフィルムにおいては、線膨張係数が15.4ppm/℃以下となっており、より低い線膨張係数を有するものとなっていることが確認された。また、本発明の透明フィルム(実施例3~7)はいずれも、十分に優れた耐熱衝撃性(周囲の温度変化に対する耐性)を有することも分かった。このような結果は、本発明の透明フィルム(実施例3~7)を形成するポリイミドがいずれも上記一般式(1)で表され、線形膨張係数が30ppm/℃以下であり且つガラス転移温度(Tg)が350℃以上であるポリイミドであり、線形膨張係数とガラス転移温度(Tg)とが高い水準でバランスよいものとなっていることに起因するものと本発明者らは推察する。そして、このような表1~2に示す結果を考慮すれば、本発明の透明フィルム(実施例3~7)はいずれも、実施例1~2で得られた基板フィルムと同様に、透明導電性積層体に用いる基板フィルムとして十分に有用であり、十分に高度な耐熱衝撃性を発揮できるものであることが分かる。
 (実施例8~12)
 ポリイミドからなる無色透明の基板フィルムとして、実施例3~7で得られたポリイミドからなる無色透明のフィルム(縦100mm、横100mm、厚み50μm)をそれぞれ用いた以外は実施例1と同様にして、ポリイミドからなる基板フィルム上にITOからなる薄膜が積層された透明導電性積層体をそれぞれ製造した。
 すなわち、実施例3~7で得られたポリイミドからなる無色透明のフィルム(縦100mm、横100mm、厚み50μm)をそれぞれ基板フィルムとして用い、前記ポリイミドからなる基板フィルムの表面上に、スパッタ装置として「神港精機株式会社製のSRV4320型スッパタリング装置」を使用し、酸化インジウム・スズ(ITO、In:Sn=9:1)からなるターゲットを用い、圧力:0.12Pa、基板フィルムの温度:300℃、アルゴン流量:18sccm、酸素流量:2sccm、成膜時間:11分30秒、RF電源:VDC・130Wの条件を採用することにより、スパッタ法にて、厚さ102nmの酸化インジウム・スズ(ITO、In:Sn=9:1)からなる透明の薄膜を積層した。このようにして、実施例3~7で得られた各ポリイミドからなるフィルム(基板フィルム)上にITOからなる薄膜が積層された透明導電性積層体をそれぞれ得た。このようにして得られた実施例8~12で得られた透明導電性積層体の特性の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000019
 表3に示す結果からも明らかなように、実施例3~7で得られたフィルムを基板フィルムとして利用した本発明の透明導電性積層体(実施例8~12)はいずれも、透明性が十分に高く、しかも、第一の耐熱衝撃性の評価試験(測定温度条件:350℃)及び第二の耐熱衝撃性の評価試験(測定温度条件:400℃)を実施した後においてもITOからなる薄膜の表面状態に変化はなく、非常に高度な耐熱衝撃性を有するものであることが確認された。このような結果から、本発明の透明導電性積層体(実施例8~12)は、非常に高度な耐熱衝撃性を有し、製造過程において400℃前後のプロセス温度を採用するような有機EL素子や太陽電池の製造にも好適に利用できる材料であることが分かった。なお、このような結果は、基板フィルムとして利用した実施例3~7で得られたフィルムを形成するポリイミドがいずれも線膨張係数とガラス転移温度(Tg)とを高い水準でバランスよく有するものとなっていることに起因して、周囲に高温の温度変化があっても(高い温度に晒された場合であっても)、積層体中の導電性材料からなる薄膜にクラック等が生じることなく、周囲の高温の温度変化に対して積層体の品質を十分に維持できるような非常に高度な耐熱衝撃性が発揮されたためであると本発明者らは推察する。また、本発明の透明導電性積層体(実施例8~12)はいずれも、シート抵抗が十分に低いものであることが確認された。このような結果から、本発明の透明導電性積層体(実施例8~12)は、太陽電池や表示装置等の透明電極等に有効に利用できるものであることが分かった。
 以上説明したように、本発明によれば、十分に高度な耐熱衝撃性を有しており、太陽電池や液晶表示装置等の製造過程において採用されるような高温加熱条件下においても品質の劣化を十分に抑制することが可能な透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置を提供することが可能となる。また、本発明によれば、前記透明導電性積層体の基板フィルム等として好適に用いることが可能な、耐熱性に優れ且つ線膨張係数が十分に低いポリイミドからなる透明フィルムを提供することが可能となる。
 このような本発明の透明導電性積層体は、透明性及び耐熱衝撃性に優れるため、液晶表示装置や有機EL表示装置等の表示装置、太陽電池、タッチパネル等の透明電極の材料等として特に有用である。

Claims (8)

  1.  ポリイミドからなる基板フィルムと、該基板フィルム上に積層された導電性材料からなる薄膜とを備え、
     前記ポリイミドが、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、Rは炭素数6~40のアリール基を示し、nは0~12の整数を示す。]
    で表される繰り返し単位を少なくとも1種含有し、ガラス転移温度が350℃~450℃であり、且つ、窒素雰囲気下、昇温速度5℃/分の条件で50℃~200℃の温度範囲において長さの変化を測定して求められる線膨張係数が30ppm/℃以下であるポリイミドである、透明導電性積層体。
  2.  前記一般式(1)中のRが、下記一般式(2)~(5):
    Figure JPOXMLDOC01-appb-C000002
    [式(4)中、Rは、水素原子、フッ素原子、メチル基、エチル基及びトリフルオロメチル基よりなる群から選択される1種を示し、式(5)中、Qは、式:-O-、-S-、-CO-、-CONH-、-C-、-COO-、-SO-、-C(CF-、-C(CH-、-CH-、-O-C-C(CH-C-O-、-O-C-SO-C-O-、-C(CH-C-C(CH-、-O-C-C-O-及び-O-C-O-で表される基よりなる群から選択される1種を示す。]
    で表される基のうちの1種である請求項1に記載の透明導電性積層体。
  3.  前記ポリイミドが、前記一般式(1)で表され、且つ、該式中のRが、前記一般式(4)で表される基;及び前記Qが-CONH-、-COO-、-CO-、-C-で表される基のうちの1種である前記一般式(5)で表される基;からなる群から選択される1種の基である繰り返し単位と、
     前記一般式(1)で表され、且つ、該式中のRが、前記一般式(2)で表される基;及び前記Qが-O-、-S-、-CH-、-O-C-O-で表される基のうちの1種である前記一般式(5)で表される基;からなる群から選択される1種の基である繰り返し単位と、
    を含有してなる請求項2に記載の透明導電性積層体。
  4.  前記ポリイミドが、前記一般式(1)で表され、且つ、該式中のRが、前記一般式(4)で表される基;及び前記Qが-CONH-、-COO-で表される基のうちの1種である前記一般式(5)で表される基;からなる群から選択される1種の基である繰り返し単位と、
     前記一般式(1)で表され、且つ、該式中のRが、前記Qが-O-、-CH-で表される基のうちの1種である前記一般式(5)で表される基からなる群から選択される1種の基である繰り返し単位と、
    を含有してなる請求項2又は3に記載の透明導電性積層体。
  5.  請求項1~4のうちのいずれか一項に記載の透明導電性積層体を備えるタッチパネル。
  6.  請求項1~4のうちのいずれか一項に記載の透明導電性積層体を備える太陽電池。
  7.  請求項1~4のうちのいずれか一項に記載の透明導電性積層体を備える表示装置。
  8.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000003
    [式(1)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、Rは炭素数6~40のアリール基を示し、nは0~12の整数を示す。]
    で表される繰り返し単位を少なくとも1種含有し、ガラス転移温度が350℃~450℃であり、且つ、窒素雰囲気下、昇温速度5℃/分の条件で50℃~200℃の温度範囲において長さの変化を測定して求められる線膨張係数が30ppm/℃以下であるポリイミドからなるフィルムである、透明フィルム。
     
PCT/JP2012/069840 2011-08-08 2012-08-03 透明フィルム、透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置 WO2013021942A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/237,635 US9768328B2 (en) 2011-08-08 2012-08-03 Transparent film, transparent electro-conductive laminate, and touch panel, solar cell, and display device using the same
JP2013528008A JP5973442B2 (ja) 2011-08-08 2012-08-03 透明フィルム、透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置
KR1020147005940A KR101891374B1 (ko) 2011-08-08 2012-08-03 투명 필름, 투명 도전성 적층체, 및 그것을 이용한 터치 패널, 태양 전지 및 표시 장치
CN201280039129.2A CN103733274B (zh) 2011-08-08 2012-08-03 透明薄膜、透明导电性层叠体、以及使用其的触摸屏、太阳能电池和显示装置
EP12822029.0A EP2743936A4 (en) 2011-08-08 2012-08-03 TRANSPARENT FILM, TRANSPARENT LEADING LAMINATE AND TOUCH SCREEN, SOLAR CELL AND DISPLAY DEVICE THEREWITH

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011173204 2011-08-08
JP2011-173204 2011-08-08
JP2012-019090 2012-01-31
JP2012019090 2012-01-31

Publications (1)

Publication Number Publication Date
WO2013021942A1 true WO2013021942A1 (ja) 2013-02-14

Family

ID=47668450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069840 WO2013021942A1 (ja) 2011-08-08 2012-08-03 透明フィルム、透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置

Country Status (7)

Country Link
US (1) US9768328B2 (ja)
EP (1) EP2743936A4 (ja)
JP (2) JP5973442B2 (ja)
KR (1) KR101891374B1 (ja)
CN (1) CN103733274B (ja)
TW (1) TWI548678B (ja)
WO (1) WO2013021942A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179727A1 (ja) * 2012-05-28 2013-12-05 宇部興産株式会社 ポリイミド前駆体及びポリイミド
WO2014034760A1 (ja) * 2012-08-31 2014-03-06 Jx日鉱日石エネルギー株式会社 ポリイミド及びその製造に用いる脂環式テトラカルボン酸二無水物
JP2014200740A (ja) * 2013-04-04 2014-10-27 コニカミノルタ株式会社 印刷方法及び加熱条件の決定方法
WO2015107987A1 (ja) * 2014-01-20 2015-07-23 Jx日鉱日石エネルギー株式会社 5-ノルボルネン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-5''-ノルボルネン類の製造方法
WO2015178261A1 (ja) * 2014-05-21 2015-11-26 Jx日鉱日石エネルギー株式会社 カルボン酸無水物の製造方法
KR20160024979A (ko) * 2013-06-27 2016-03-07 우베 고산 가부시키가이샤 폴리이미드 전구체, 및 폴리이미드
WO2016063988A1 (ja) * 2014-10-23 2016-04-28 宇部興産株式会社 ポリイミド前駆体、ポリイミド、及びポリイミドフィルム
US9456495B2 (en) 2012-09-26 2016-09-27 Jx Nippon Oil & Energy Corporation Norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic acid and ester thereof, method for producing norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, polyimide obtained by using the same, and method for producing polyimide
WO2017002663A1 (ja) * 2015-06-30 2017-01-05 Jxエネルギー株式会社 ポリイミドフィルム、有機エレクトロルミネッセンス素子、透明導電性積層体、タッチパネル、太陽電池、及び、表示装置
WO2017026448A1 (ja) * 2015-08-07 2017-02-16 東京応化工業株式会社 ポリイミド前駆体組成物
WO2017030019A1 (ja) * 2015-08-14 2017-02-23 Jxエネルギー株式会社 テトラカルボン酸二無水物、カルボニル化合物、ポリアミド酸、ポリイミド及びそれらの製造方法、ポリアミド酸を用いた溶液、並びに、ポリイミドを用いたフィルム
KR20170072929A (ko) 2014-10-23 2017-06-27 우베 고산 가부시키가이샤 폴리이미드 필름, 폴리이미드 전구체 및 폴리이미드
US9783640B2 (en) 2012-09-18 2017-10-10 Ube Industries, Ltd. Polyimide precursor, polyimide, polyimide film, varnish, and substrate
WO2017191822A1 (ja) 2016-05-06 2017-11-09 三菱瓦斯化学株式会社 ポリイミド樹脂
WO2018037490A1 (ja) * 2016-08-23 2018-03-01 リンテック株式会社 ハードコートフィルム
WO2018143314A1 (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 ポリイミド前駆体組成物
JP2018123297A (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 ポリイミド前駆体組成物
JP2018122582A (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 積層体、フレキシブルデバイスおよび積層体の製造方法
WO2018147373A1 (ja) * 2017-02-13 2018-08-16 Jxtgエネルギー株式会社 テトラカルボン酸二無水物、カルボニル化合物、ポリイミド前駆体樹脂及びポリイミド
US10696845B2 (en) 2015-03-27 2020-06-30 Tokyo Ohka Kogyo Co., Ltd. Energy-sensitive resin composition
JPWO2019065522A1 (ja) * 2017-09-29 2020-09-10 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
USRE48273E1 (en) * 2015-11-20 2020-10-20 Dongwoo Fine-Chem Co., Ltd. Flexible image display device
US11136435B2 (en) * 2016-01-20 2021-10-05 Eneos Corporation Method for producing polyimide film, polyimide film, polyamic acid solution, and photosensitive composition

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104571660A (zh) * 2013-10-22 2015-04-29 杰圣科技股份有限公司 触控结构及其制造方法
JP2017014377A (ja) * 2015-06-30 2017-01-19 Jxエネルギー株式会社 ポリイミドフィルム、有機エレクトロルミネッセンス素子、透明導電性積層体、タッチパネル、太陽電池、及び、表示装置
US20180208766A1 (en) * 2015-07-16 2018-07-26 Ube Industries, Ltd. Polyamic acid solution composition and polyimide film
CN105499091A (zh) * 2016-01-04 2016-04-20 京东方科技集团股份有限公司 一种配向液的涂布方法及涂布装置
CN107815109B (zh) * 2017-10-30 2021-03-30 苏州柔彩新材料科技有限公司 一种用于柔性基板的聚酰亚胺(pi)材料及其制备方法
JP6796116B2 (ja) * 2018-08-28 2020-12-02 双葉電子工業株式会社 センサフィルム、タッチセンサ及び該センサの製造方法
CN110452251B (zh) * 2019-09-02 2021-04-20 北京八亿时空液晶科技股份有限公司 一种二酸酐化合物及其制备方法与应用
CN110511229A (zh) * 2019-09-02 2019-11-29 北京八亿时空液晶科技股份有限公司 一种二酸酐化合物及其制备方法与应用
US11188396B2 (en) 2019-09-09 2021-11-30 International Business Machines Corporation Pending notification deletion through autonomous removal triggering
EP4112296A4 (en) * 2020-03-27 2024-03-27 Lintec Corporation LAMINATE FOR TRANSPARENT CONDUCTIVE FILM, TRANSPARENT CONDUCTIVE FILM, AND METHOD FOR MANUFACTURING TRANSPARENT CONDUCTIVE FILM
KR20220096105A (ko) * 2020-12-30 2022-07-07 엘지디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111152A (ja) 2002-09-17 2004-04-08 Mitsubishi Gas Chem Co Inc 透明導電性フィルム
JP2010184898A (ja) * 2009-02-12 2010-08-26 Tokyo Kogei Univ ドデカハイドロ−1,4:5,8−ジメタノアントラセン−9,10−ジオン−2,3,6,7−テトラカルボン酸−2,3:6,7−二無水物類、ドデカハイドロ−1,4:5,8−ジメタノアントラセン−9,10−ジオン−2,3,6,7−テトラカルボン酸テトラエステル類、及び、その製造方法
WO2011099518A1 (ja) * 2010-02-09 2011-08-18 Jx日鉱日石エネルギー株式会社 ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸及びそのエステル類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類の製造方法、それを用いて得られるポリイミド、並びに、ポリイミドの製造方法
JP2011162479A (ja) * 2010-02-09 2011-08-25 Jx Nippon Oil & Energy Corp 5−ノルボルネン−2−スピロ−α−シクロアルカノン−α’−スピロ−2’’−5’’−ノルボルネン類、及び、その製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343308C (zh) * 2002-10-31 2007-10-17 东丽株式会社 脂环式或芳族聚酰胺、聚酰胺膜、使用所述聚酰胺或聚酰胺膜的光学部件以及聚酰胺的共聚物
KR100869802B1 (ko) * 2006-11-17 2008-11-21 삼성에스디아이 주식회사 염료감응 태양전지용 전해질, 이를 포함하는 염료감응태양전지, 및 이의 제조방법
WO2010137548A1 (ja) * 2009-05-29 2010-12-02 Dic株式会社 熱硬化性樹脂組成物およびその硬化物
KR20150021527A (ko) 2012-05-28 2015-03-02 우베 고산 가부시키가이샤 폴리이미드 전구체 및 폴리이미드
KR102073449B1 (ko) 2012-09-18 2020-02-04 우베 고산 가부시키가이샤 폴리이미드 전구체, 폴리이미드, 폴리이미드 필름, 바니시, 및 기판

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111152A (ja) 2002-09-17 2004-04-08 Mitsubishi Gas Chem Co Inc 透明導電性フィルム
JP2010184898A (ja) * 2009-02-12 2010-08-26 Tokyo Kogei Univ ドデカハイドロ−1,4:5,8−ジメタノアントラセン−9,10−ジオン−2,3,6,7−テトラカルボン酸−2,3:6,7−二無水物類、ドデカハイドロ−1,4:5,8−ジメタノアントラセン−9,10−ジオン−2,3,6,7−テトラカルボン酸テトラエステル類、及び、その製造方法
WO2011099518A1 (ja) * 2010-02-09 2011-08-18 Jx日鉱日石エネルギー株式会社 ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸及びそのエステル類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類の製造方法、それを用いて得られるポリイミド、並びに、ポリイミドの製造方法
JP2011162479A (ja) * 2010-02-09 2011-08-25 Jx Nippon Oil & Energy Corp 5−ノルボルネン−2−スピロ−α−シクロアルカノン−α’−スピロ−2’’−5’’−ノルボルネン類、及び、その製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULES, vol. 27, 1994, pages 1117
RYOSUKE KIMURA ET AL.: "Colorless and Thermally Stable Polymer-An Alicyclic Polyimide with Cyclopentanone Bis- spironorbornane Structure", JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, vol. 68, no. 3, 25 March 2011 (2011-03-25), pages 127 - 131, XP008173116 *
See also references of EP2743936A4

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066017A (ja) * 2012-05-28 2018-04-26 宇部興産株式会社 ポリイミド前駆体及びポリイミド
US10781288B2 (en) 2012-05-28 2020-09-22 Ube Industries, Ltd. Polyimide precursor and polyimide
JPWO2013179727A1 (ja) * 2012-05-28 2016-01-18 宇部興産株式会社 ポリイミド前駆体及びポリイミド
WO2013179727A1 (ja) * 2012-05-28 2013-12-05 宇部興産株式会社 ポリイミド前駆体及びポリイミド
WO2014034760A1 (ja) * 2012-08-31 2014-03-06 Jx日鉱日石エネルギー株式会社 ポリイミド及びその製造に用いる脂環式テトラカルボン酸二無水物
US9399703B2 (en) 2012-08-31 2016-07-26 Jx Nippon Oil & Energy Corporation Polyimide and alicyclic tetracarboxylic dianhydride used for producing the same
US9783640B2 (en) 2012-09-18 2017-10-10 Ube Industries, Ltd. Polyimide precursor, polyimide, polyimide film, varnish, and substrate
US9456495B2 (en) 2012-09-26 2016-09-27 Jx Nippon Oil & Energy Corporation Norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic acid and ester thereof, method for producing norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, polyimide obtained by using the same, and method for producing polyimide
JP2014200740A (ja) * 2013-04-04 2014-10-27 コニカミノルタ株式会社 印刷方法及び加熱条件の決定方法
KR20160024979A (ko) * 2013-06-27 2016-03-07 우베 고산 가부시키가이샤 폴리이미드 전구체, 및 폴리이미드
KR102190722B1 (ko) 2013-06-27 2020-12-14 우베 고산 가부시키가이샤 폴리이미드 전구체, 및 폴리이미드
JPWO2014208704A1 (ja) * 2013-06-27 2017-02-23 宇部興産株式会社 ポリイミド前駆体、及びポリイミド
JP2015137235A (ja) * 2014-01-20 2015-07-30 Jx日鉱日石エネルギー株式会社 5−ノルボルネン−2−スピロ−α−シクロアルカノン−α’−スピロ−2’’−5’’−ノルボルネン類の製造方法
WO2015107987A1 (ja) * 2014-01-20 2015-07-23 Jx日鉱日石エネルギー株式会社 5-ノルボルネン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-5''-ノルボルネン類の製造方法
JP2015218160A (ja) * 2014-05-21 2015-12-07 Jx日鉱日石エネルギー株式会社 カルボン酸無水物の製造方法
WO2015178261A1 (ja) * 2014-05-21 2015-11-26 Jx日鉱日石エネルギー株式会社 カルボン酸無水物の製造方法
KR20170007768A (ko) * 2014-05-21 2017-01-20 제이엑스 에네루기 가부시키가이샤 카르복실산 무수물의 제조 방법
KR102370253B1 (ko) 2014-05-21 2022-03-04 에네오스 가부시키가이샤 카르복실산 무수물의 제조 방법
KR20170072929A (ko) 2014-10-23 2017-06-27 우베 고산 가부시키가이샤 폴리이미드 필름, 폴리이미드 전구체 및 폴리이미드
JPWO2016063988A1 (ja) * 2014-10-23 2017-08-31 宇部興産株式会社 ポリイミド前駆体、ポリイミド、及びポリイミドフィルム
KR20170072930A (ko) 2014-10-23 2017-06-27 우베 고산 가부시키가이샤 폴리이미드 전구체, 폴리이미드 및 폴리이미드 필름
WO2016063988A1 (ja) * 2014-10-23 2016-04-28 宇部興産株式会社 ポリイミド前駆体、ポリイミド、及びポリイミドフィルム
US10696845B2 (en) 2015-03-27 2020-06-30 Tokyo Ohka Kogyo Co., Ltd. Energy-sensitive resin composition
WO2017002663A1 (ja) * 2015-06-30 2017-01-05 Jxエネルギー株式会社 ポリイミドフィルム、有機エレクトロルミネッセンス素子、透明導電性積層体、タッチパネル、太陽電池、及び、表示装置
US20180186935A1 (en) * 2015-06-30 2018-07-05 Jxtg Nippon Oil & Energy Corporation Polyimide film, organic electroluminescent element, transparent electro-conductive laminate, touch panel, solar cell, and display device
JPWO2017026448A1 (ja) * 2015-08-07 2018-05-31 東京応化工業株式会社 ポリイミド前駆体組成物
TWI708815B (zh) * 2015-08-07 2020-11-01 日商東京應化工業股份有限公司 聚醯亞胺前驅體組合物
WO2017026448A1 (ja) * 2015-08-07 2017-02-16 東京応化工業株式会社 ポリイミド前駆体組成物
US10954340B2 (en) 2015-08-07 2021-03-23 Tokyo Ohka Kogyo Co., Ltd. Polyimide precursor composition
JPWO2017030019A1 (ja) * 2015-08-14 2018-05-31 Jxtgエネルギー株式会社 テトラカルボン酸二無水物、カルボニル化合物、ポリアミド酸、ポリイミド及びそれらの製造方法、ポリアミド酸を用いた溶液、並びに、ポリイミドを用いたフィルム
WO2017030019A1 (ja) * 2015-08-14 2017-02-23 Jxエネルギー株式会社 テトラカルボン酸二無水物、カルボニル化合物、ポリアミド酸、ポリイミド及びそれらの製造方法、ポリアミド酸を用いた溶液、並びに、ポリイミドを用いたフィルム
USRE48273E1 (en) * 2015-11-20 2020-10-20 Dongwoo Fine-Chem Co., Ltd. Flexible image display device
US11136435B2 (en) * 2016-01-20 2021-10-05 Eneos Corporation Method for producing polyimide film, polyimide film, polyamic acid solution, and photosensitive composition
KR20190005851A (ko) 2016-05-06 2019-01-16 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지
WO2017191822A1 (ja) 2016-05-06 2017-11-09 三菱瓦斯化学株式会社 ポリイミド樹脂
TWI787182B (zh) * 2016-08-23 2022-12-21 日商琳得科股份有限公司 重複彎曲之可撓性顯示器
WO2018037490A1 (ja) * 2016-08-23 2018-03-01 リンテック株式会社 ハードコートフィルム
JP7039214B2 (ja) 2017-02-03 2022-03-22 東京応化工業株式会社 ポリイミド前駆体組成物
JP2018122582A (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 積層体、フレキシブルデバイスおよび積層体の製造方法
JP2018123297A (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 ポリイミド前駆体組成物
JP2022094356A (ja) * 2017-02-03 2022-06-24 東京応化工業株式会社 ポリイミド前駆体組成物
WO2018143314A1 (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 ポリイミド前駆体組成物
JP7402398B2 (ja) 2017-02-03 2023-12-21 東京応化工業株式会社 ポリイミド前駆体組成物
JPWO2018147373A1 (ja) * 2017-02-13 2019-12-12 Jxtgエネルギー株式会社 テトラカルボン酸二無水物、カルボニル化合物、ポリイミド前駆体樹脂及びポリイミド
TWI740001B (zh) * 2017-02-13 2021-09-21 日商Jxtg能源股份有限公司 四羧酸二酐、羰基化合物、聚醯亞胺前驅物樹脂及聚醯亞胺
WO2018147373A1 (ja) * 2017-02-13 2018-08-16 Jxtgエネルギー株式会社 テトラカルボン酸二無水物、カルボニル化合物、ポリイミド前駆体樹脂及びポリイミド
JP7033559B2 (ja) 2017-02-13 2022-03-10 Eneos株式会社 テトラカルボン酸二無水物、カルボニル化合物、ポリイミド前駆体樹脂及びポリイミド
US11667754B2 (en) 2017-02-13 2023-06-06 Eneos Corporation Tetracarboxylic dianhydride, carbonyl compound, polyimide precursor resin, and polyimide
JPWO2019065522A1 (ja) * 2017-09-29 2020-09-10 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7255489B2 (ja) 2017-09-29 2023-04-11 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム

Also Published As

Publication number Publication date
US20140224318A1 (en) 2014-08-14
JP6246274B2 (ja) 2017-12-13
KR101891374B1 (ko) 2018-08-24
JPWO2013021942A1 (ja) 2015-03-05
TW201321432A (zh) 2013-06-01
CN103733274B (zh) 2016-04-13
TWI548678B (zh) 2016-09-11
JP5973442B2 (ja) 2016-08-23
EP2743936A1 (en) 2014-06-18
US9768328B2 (en) 2017-09-19
KR20140056324A (ko) 2014-05-09
EP2743936A4 (en) 2015-04-08
JP2016194089A (ja) 2016-11-17
CN103733274A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP6246274B2 (ja) ポリイミドからなるフィルムの製造方法、ポリアミド酸の溶液、及び、ポリアミド酸の溶液の製造方法
JP6077550B2 (ja) ポリイミド及びその製造に用いる脂環式テトラカルボン酸二無水物
JP5345709B2 (ja) ノルボルナン−2−スピロ−α−シクロアルカノン−α’−スピロ−2’’−ノルボルナン−5,5’’,6,6’’−テトラカルボン酸二無水物類、ノルボルナン−2−スピロ−α−シクロアルカノン−α’−スピロ−2’’−ノルボルナン−5,5’’,6,6’’−テトラカルボン酸及びそのエステル類、ノルボルナン−2−スピロ−α−シクロアルカノン−α’−スピロ−2’’−ノルボルナン−5,5’’,6,6’’−テトラカルボン酸二無水物類の製造方法、それを用いて得られるポリイミド、並びに、ポリイミドの製造方法
JP6485358B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
US9456495B2 (en) Norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic acid and ester thereof, method for producing norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, polyimide obtained by using the same, and method for producing polyimide
TW202017912A (zh) 四羧酸二酐、聚醯亞胺前驅物樹脂、聚醯亞胺、聚醯亞胺前驅物樹脂溶液、聚醯亞胺溶液及聚醯亞胺薄膜
WO2015053312A1 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
CN103228704A (zh) 聚酰亚胺前体、聚酰亚胺及其制备中所用的材料
JP2009286854A (ja) ポリエステルイミド前駆体およびポリエステルイミド
JP2008101187A (ja) ポリエステルイミドおよびその製造方法
JP2022116052A (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、及び基板、並びにポリイミドの製造に使用されるテトラカルボン酸二無水物
CN108026272B (zh) 聚酰亚胺树脂及聚酰亚胺薄膜
JP2008163088A (ja) エステル基含有脂環式テトラカルボン酸無水物及びその製造方法
JP2009286853A (ja) ポリエステルイミド前駆体およびポリエステルイミド
JP6443579B2 (ja) ポリイミドフィルム
WO2018147373A1 (ja) テトラカルボン酸二無水物、カルボニル化合物、ポリイミド前駆体樹脂及びポリイミド
TWI853333B (zh) 聚醯亞胺前驅體組合物、及其製造方法
JPWO2015151924A1 (ja) 酸二無水物およびその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528008

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147005940

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012822029

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14237635

Country of ref document: US