WO2013015101A1 - 炭素繊維強化炭素複合体およびその製造方法 - Google Patents

炭素繊維強化炭素複合体およびその製造方法 Download PDF

Info

Publication number
WO2013015101A1
WO2013015101A1 PCT/JP2012/067433 JP2012067433W WO2013015101A1 WO 2013015101 A1 WO2013015101 A1 WO 2013015101A1 JP 2012067433 W JP2012067433 W JP 2012067433W WO 2013015101 A1 WO2013015101 A1 WO 2013015101A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
carbon fiber
composite
fiber reinforced
carbon composite
Prior art date
Application number
PCT/JP2012/067433
Other languages
English (en)
French (fr)
Inventor
敏行 堀井
関 均
伸也 久保
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to KR1020147002237A priority Critical patent/KR102008540B1/ko
Priority to CN201280035157.7A priority patent/CN103649015B/zh
Priority to JP2013519301A priority patent/JP5327412B2/ja
Priority to US14/232,436 priority patent/US10549503B2/en
Publication of WO2013015101A1 publication Critical patent/WO2013015101A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5272Fibers of the same material with different length or diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • C04B2237/582Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different additives
    • C04B2237/584Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different additives the different additives being fibers or whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • C04B2237/586Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different densities
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/82Two substrates not completely covering each other, e.g. two plates in a staggered position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24124Fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]

Definitions

  • the present invention relates to a carbon fiber reinforced carbon composite and a method for producing the same, and in particular, is a long carbon fiber reinforced carbon composite having a large bending elastic modulus in the longitudinal direction, a liquid crystal substrate, a printed circuit board, and a glass substrate.
  • the present invention relates to a carbon fiber reinforced carbon composite suitable as a conveying member for a thin plate-like workpiece, and a method for producing the carbon fiber reinforced carbon composite.
  • the present invention also relates to a conveying member made of this carbon fiber reinforced carbon composite.
  • a member made of metal mainly Al or stainless steel), ceramic, or carbon fiber reinforced resin composite material (CFRP) is used as a member for transporting a thin plate-like workpiece such as a liquid crystal substrate, a printed circuit board or a glass substrate.
  • CFRP carbon fiber reinforced resin composite material
  • CFRP conveyance member if it is a CFRP conveyance member, it is lightweight and has high bending rigidity and excellent vibration damping characteristics, but since it is a resin material, its heat resistance is limited, and it is 300 ° C. or higher. It cannot be applied in such a high temperature use environment.
  • carbon fiber reinforced carbon composite materials composed of carbon fibers and a carbonaceous matrix have high heat resistance, light weight, and excellent wear resistance.
  • C / C composite materials composed of carbon fibers and a carbonaceous matrix have high heat resistance, light weight, and excellent wear resistance.
  • Patent Documents 4, 5, and 6 are used mainly as space and aircraft materials.
  • C / C composites are light and have high heat resistance, and are excellent in mechanical properties such as wear resistance. Therefore, C / C composites are promising as constituent materials for conveying members used in high temperature environments.
  • the material is a long member such as a conveying member, the bending elastic modulus in the longitudinal direction is not sufficient, and good vibration damping characteristics can be exhibited with the same bending rigidity as the CFRP conveying member. There wasn't.
  • Patent Document 3 in order to improve the strength of the CFRP conveying member, a carbon fiber woven fabric (cross) layer is provided as a laminated structure, and such a laminated structure is a C / C composite.
  • a carbon fiber woven fabric (cross) layer is provided as a laminated structure, and such a laminated structure is a C / C composite.
  • the present invention solves the above-mentioned conventional problems, and provides a carbon fiber reinforced carbon composite that has a remarkably high bending elastic modulus in the longitudinal direction, is easy to manufacture and process, and has no problems of warping, peeling, and cracking. Let it be an issue.
  • the present inventors are not simply a carbon fiber reinforced carbon composite in which carbon fibers are aligned in the longitudinal direction, but carbon fibers on the outermost layer of one or both plate surfaces. Are arranged in the longitudinal direction, and a carbon fiber reinforced carbon composite layer (first carbon fiber reinforced carbon composite layer) is provided, and the arrangement of carbon fibers is different from that of the first carbon fiber reinforced carbon composite layer in other portions.
  • first carbon fiber reinforced carbon composite layer By using a carbon fiber reinforced carbon composite layer, the flexural modulus in the longitudinal direction is greatly improved, there is no problem of warping, peeling or cracking during use, and delamination caused by gas generation during production is also suppressed. I found out that
  • the present invention has been achieved on the basis of such knowledge, and the gist thereof is as follows.
  • the carbon fiber reinforced carbon composite of the first aspect is a plate-like carbon fiber reinforced carbon composite composed of carbon fibers and a carbonaceous matrix, and the ratio of the length in the longitudinal direction to the length in the width direction exceeds 1.
  • the first carbon fiber reinforced carbon composite layer in which the carbon fibers are oriented in the longitudinal direction in the carbonaceous matrix and the first carbon fiber reinforced carbon composite layer are different in the arrangement of the carbon fibers.
  • the thickness of the first carbon fiber reinforced carbon composite layer is 70% or more of the thickness of the carbon fiber reinforced carbon composite, and the bending elastic modulus in the longitudinal direction is It is characterized by being 150 GPa or more That.
  • the carbon fiber reinforced carbon composite of the second aspect is characterized in that, in the first aspect, the carbon fibers in the second carbon fiber reinforced carbon composite layer are oriented in a direction crossing the longitudinal direction.
  • the FAW of the first carbon fiber reinforced carbon composite layer is 1,000 to 20,000 g / m 2
  • FAW of carbon fiber reinforced carbon composite layer is 200 ⁇ 5,000g / m 2
  • FAW of carbon fiber reinforced carbon composite material characterized in that it is a 1,200 ⁇ 25,000g / m 2.
  • the carbon fiber reinforced carbon composite of the fourth aspect is characterized in that, in any one of the first to third aspects, the carbon fiber is a pitch-based carbon fiber.
  • the carbon fiber reinforced carbon composite of the fifth aspect is characterized in that, in any one of the first to fourth aspects, the volume content of the carbon fiber is 40 to 70%.
  • the carbon fiber reinforced carbon composite of the sixth aspect is characterized in that, in any one of the first to fifth aspects, the bulk density is 1.65 g / cm 3 or more.
  • the carbon fiber reinforced carbon composite of the seventh aspect is the alignment direction of the carbon fibers according to any one of the first to sixth aspects, wherein a plurality of unidirectional prepregs in which the carbon fibers are aligned in the fiber axis direction. And a carbon fiber reinforced resin molded product obtained by heating and press-molding the obtained laminated product is fired and carbonized.
  • the carbon fiber reinforced carbon composite according to the eighth aspect is characterized in that, in the seventh aspect, the prepreg has a thermosetting resin content of 15 to 45% by weight.
  • the carbon fiber reinforced carbon composite of the ninth aspect is the following (1) and (2) with respect to a preform obtained by firing and carbonizing the carbon fiber reinforced resin molded body in the seventh or eighth aspect. It is obtained by performing the densification process consisting of the process of at least once.
  • Impregnation step of impregnating the preform with at least one impregnation material selected from the group consisting of coal tar pitch, petroleum tar pitch, and resin (2) After the impregnation step, firing is performed to carbonize the impregnation material Carbonization process
  • the conveying member according to the tenth aspect includes the carbon fiber reinforced carbon composite according to any one of the first to ninth aspects.
  • the manufacturing method of the carbon fiber reinforced carbon composite of the eleventh aspect is a method of manufacturing the carbon fiber reinforced carbon composite of any one of the first to ninth aspects, wherein the carbon fibers are aligned in the fiber axis direction.
  • a plurality of unidirectional prepregs are laminated so that the alignment directions of the carbon fibers cross each other, and the obtained laminate is heated and pressed to obtain a carbon fiber reinforced resin molded body, and the carbon fiber reinforced resin molded body Is fired and carbonized, then impregnated with at least one impregnating material selected from the group consisting of coal tar pitch, petroleum tar pitch, and resin, and fired again to carbonize the impregnating material.
  • the method for producing a carbon fiber reinforced carbon composite according to a twelfth aspect is characterized in that, in the eleventh aspect, the impregnation and subsequent calcination carbonization are repeated a plurality of times.
  • the carbon fiber reinforced carbon composite of the present invention has a remarkably high bending elastic modulus in the longitudinal direction, is easy to manufacture and process, and does not cause problems of warping, peeling, and cracking.
  • the carbon fiber provided on the outermost layer of one or both plate surfaces of the carbon fiber reinforced carbon composite is oriented in the longitudinal direction of the carbon fiber reinforced carbon composite.
  • a first carbon fiber reinforced carbon composite layer and a second carbon fiber reinforced carbon composite layer having a carbon fiber arrangement different from the first carbon fiber reinforced carbon composite layer With the structure in which the layers are laminated, the bending modulus of elasticity in the longitudinal direction can be sufficiently secured by the first carbon fiber reinforced carbon composite layer as the outermost layer. Further, by laminating the second carbon fiber reinforced carbon composite layer on the first carbon fiber reinforced carbon composite layer, warping or peeling (cracking) that becomes a problem only in the case of the first carbon fiber reinforced carbon composite layer. The problem can be suppressed.
  • the first carbon fiber reinforced carbon composite layer which is the outermost layer on at least one of the plate surfaces, is a carbon fiber alignment layer, so that the gas generated in the firing and carbonization step is reinforced with the first carbon fiber reinforced It is possible to discharge smoothly through the carbon composite layer, and it is possible to prevent the occurrence of defects such as delamination due to defective degassing of the generated gas.
  • Carbon fiber reinforced carbon composite The carbon fiber reinforced carbon composite of the present invention (hereinafter sometimes referred to as “C / C composite”) is composed of carbon fibers and a carbonaceous matrix, and has a length in the longitudinal direction and a length in the width direction.
  • the “composite layer” is referred to as “C / C composite layer”, and the layer in which the carbon fibers are oriented in the longitudinal direction may be referred to as “longitudinal C / C composite layer”), and the first C / C At least two C / C composite layers with a second C / C composite layer having a different carbon fiber arrangement from the C composite layer are laminated, and the first C / C composite layer is at least a C / C composite layer.
  • Layer is provided, the thickness of the first C / C composite layer is at least 70% of the thickness of the C / C composite, longitudinal flexural modulus and wherein the at least 150 GPa.
  • the term “carbon fibers are oriented in the longitudinal direction of the C / C composite” means that the carbon fibers are oriented at an angle within ⁇ 10 ° with respect to the longitudinal direction of the C / C composite (ie, carbon It means that the axial direction of the fiber is present at an angle within ⁇ 10 ° with respect to the longitudinal direction of the C / C composite.
  • the carbon fibers are oriented in the short direction of the C / C composite, which will be described later.
  • the carbon fibers are ⁇ 10 with respect to the short direction perpendicular to the long direction of the C / C composite. It means that it is oriented at an angle within °.
  • a layer in which carbon fibers are oriented in a direction intersecting with the longitudinal direction, preferably in a transverse direction perpendicular to the longitudinal direction (hereinafter, sometimes referred to as “lateral direction C / C composite layer”).
  • the C / C composite layer in the short-side direction is preferable in terms of production efficiency, reinforcing effect, warp, anti-peeling effect, and excellent effects even in large-sized products.
  • the C / C composite of the present invention has a short C / C composite layer 2 between the longitudinal C / C composite layers 1 and 1 as shown in FIG. Composite 10A, as shown in FIG. 1 (b), C / C composite 10B having a cross C / C composite layer 3 between the longitudinal C / C composite layers 1 and 1, as shown in FIG. 1 (c).
  • Examples thereof include a C / C composite 10C having a random C / C composite layer 4 between the longitudinal C / C composite layers 1 and 1.
  • the longitudinal C / C composite layer which is the first C / C composite layer is present on at least one outermost layer of the plate surface of the C / C composite, and other than that It is sufficient that a C / C composite layer different from the longitudinal C / C composite layer is laminated at the site of the laminate, a laminate of the longitudinal C / C composite layer and the short C / C composite layer, It may be a two-layer laminate such as a laminate of a directional C / C composite layer and a cross C / C composite layer, or a laminate of a longitudinal C / C composite layer and a random C / C composite layer. It may be a laminate of more than one layer. When it has four or more C / C composite layers, a longitudinal C / C composite layer may exist in addition to the outermost layer.
  • the “outermost layer” is a layer on the surface side of a C / C composite composed of carbon fibers and a carbonaceous matrix, on which a surface layer such as plating, vapor deposition, or coating is formed. It does not mean the surface layer in the case of forming. That is, as described later, the C / C composite of the present invention can be further subjected to surface treatment such as plating on the longitudinal C / C composite layer which is the outermost layer. This does not correspond to the outermost layer according to the present invention.
  • the thickness of the longitudinal C / C composite layer which is the first C / C composite layer constituting the outermost layer, is sufficient for the bending elastic modulus in the longitudinal direction of the C / C composite.
  • the thickness of the longitudinal C / C composite layer is too thin, a sufficient flexural modulus cannot be achieved.
  • the thickness of the C / C composite layer in the longitudinal direction of the outermost layer is the configuration of the longitudinal C / C composite layer Depending on the carbon fiber content ratio, bulk density, etc., the type of C / C composite layer used as the second C / C composite layer, and the total thickness of the C / C composite, the entire C / C composite 70% or more of the thickness.
  • the thickness ratio of the longitudinal C / C composite layer is too large, the effect of the present invention by providing the second C / C composite layer cannot be sufficiently obtained.
  • the total thickness of the C / C composite when there are two or more longitudinal C / C composite layers is 70 to 90%, particularly 75 to 85% of the total thickness of the C / C composite. Preferably there is.
  • the FAW (carbon fiber weight per unit area) of the longitudinal C / C composite layer which is the first C / C composite layer of the C / C composite of the present invention is excessively low, the flexural elasticity in the longitudinal direction will be described. The rate cannot be made large enough. However, if this FAW is too large, the carbon matrix is small and the fibers are exposed, which may cause appearance defects and dust, and may cause delamination. Therefore, the FAW of the longitudinal C / C composite layer of the first C / C composite layer (the total FAW when there are two or more longitudinal C / C composite layers in the C / C composite) is 1,000. It is preferably ⁇ 20,000 g / m 2 , particularly preferably 5,000 to 15,000 g / m 2 .
  • the FAW for the second C / C composite layer, if the FAW is excessively small, the effect of preventing warpage and peeling due to the provision of the second C / C composite layer cannot be sufficiently obtained. However, if this FAW is too large, the carbonaceous matrix is small and the interlaminar adhesive strength may be lowered, and the bending elastic modulus in the longitudinal direction may be lowered, which is disadvantageous. Therefore, it is preferable FAW of the second C / C composite layer 200 ⁇ 5,000 g / m 2, in particular 400 ⁇ 4,000g / m 2.
  • the FAW of the C / C composite itself of the present invention is 1,200 to 25,000 g / m 2 in order to satisfy the FAW of the first C / C composite layer and the second C / C composite layer.
  • it is preferably 5,400 to 19,000 g / m 2 .
  • the carbon fiber of the C / C composite of the present invention has a high elastic modulus, a high carbon content, and the chemical stability of the composite material is maintained, coal tar pitch, petroleum tar pitch, etc.
  • Pitch-based carbon fibers are preferably used, but PAN-based carbon fibers having the same elastic modulus as these pitch-based carbon fibers may be used.
  • the tensile elastic modulus of the carbon fiber is preferably 500 GPa or more, and more preferably 600 GPa or more.
  • the pitch-based carbon fiber is preferable for the carbon fiber of the carbon fiber woven fabric of the prepreg for the cross C / C composite layer described later for forming the second C / C composite layer, the PAN-based carbon fiber is preferable. There is also.
  • the method for producing the C / C composite of the present invention is not particularly limited, but a carbon fiber reinforced resin composite sheet (hereinafter referred to as “first prepreg”) for forming the first C / C composite layer. And a carbon fiber reinforced resin composite sheet (hereinafter sometimes referred to as “second prepreg”) for forming the second C / C composite layer, and the required number of each prepreg. Lamination is performed, and the resulting prepreg laminate is heated and pressed to form a carbon fiber reinforced resin molded body (hereinafter sometimes referred to as “C / P molded body”), and the C / P molded body is fired. There is a method in which the carbonization is carried out and further densification treatment is performed.
  • the resin content is preferably 15 to 45% by weight, particularly 25 to 35% by weight.
  • the resin content of the prepreg is preferably 15 to 45% by weight, particularly 25 to 35% by weight.
  • the carbon fiber content is relatively low, so that the reinforcing effect by the carbon fiber cannot be sufficiently obtained.
  • the resin content of the prepreg is too small, C / When the carbonaceous matrix of the C composite is reduced, the resulting C / C composite may become brittle.
  • thermosetting resins such as phenol resin and furan resin can be used. These resins are used as an impregnating liquid prepared to have an appropriate viscosity by dissolving or dispersing in a solvent such as alcohol, acetone or anthracene oil.
  • thermosetting resin In addition, petroleum-based or coal-based pitches can be used in place of the thermosetting resin.
  • pitch-based carbon fibers such as coal tar pitch and petroleum tar pitch
  • a carbon fiber of the carbon fiber woven fabric a PAN-based carbon fiber may be preferable.
  • the FAW of each prepreg obtains a suitable FAW of the first C / C composite layer and the second C / C composite layer described above, and a suitable carbon fiber volume content of the C / C composite of the present invention described later.
  • the FAW is preferably 200 to 500 g / m 2 , particularly 250 to 450 g / m 2 for the first prepreg, and the FAW is 100 to 500 g for the second prepreg. / M 2 , particularly 150 to 450 g / m 2 is preferable.
  • the bending elastic modulus in the longitudinal direction of the C / C composite of the present invention cannot be sufficiently increased, and if it is too large, the smoothness of the C / C composite surface is maintained. Difficult to do.
  • the second prepreg is used for preventing warpage and peeling rather than improving the longitudinal elastic modulus of the C / C composite of the present invention.
  • the FAW is too high, the C / C composite of the present invention is used. Since the expression of the high bending elastic modulus performance in the longitudinal direction of the body becomes insufficient, it is preferably slightly lower than the FAW of the first prepreg. However, if the second prepreg is too small in FAW, the above-described effect by providing the second prepreg cannot be sufficiently obtained.
  • the first C / C composite layer is a longitudinal C / C composite layer in which the carbon fibers are oriented in the longitudinal direction of the C / C composite. Accordingly, the first prepreg has a plurality of prepregs.
  • This is a UD prepreg (unidirectional prepreg) in which carbon fiber filaments are aligned in one direction and the aligned carbon fibers are impregnated with a thermosetting resin.
  • the fiber diameter and the number of filaments of the carbon fiber used for this unidirectional prepreg are not particularly limited as long as they can satisfy the FAW of the first prepreg and the FAW of the first C / C composite layer.
  • the fiber diameter is preferably 5 to 15 ⁇ m and the number of filaments is preferably 6,000 to 15,000.
  • carbon fiber itself is also elastic.
  • a material having a large modulus is preferable, and it is preferable that the tensile elastic modulus measured by a universal testing machine is 400 GPa or more, particularly 600 GPa or more in accordance with JIS R 7606.
  • the carbon fiber has a tensile modulus of 800 GPa or less because handling properties and workability deteriorate if it is excessively large.
  • the short direction C / C composite layer as the second C / C composite layer is a carbon fiber in a direction perpendicular to the orientation direction of the carbon fiber of the longitudinal direction C / C composite layer of the first C / C composite layer. Is an oriented C / C composite layer. Therefore, as the prepreg for the short-side C / C composite layer, a prepreg laminated body is manufactured by using the same prepreg manufactured as described above, and the prepreg is laminated. The prepreg may be used so that the orientation directions of the carbon fibers are orthogonal.
  • the long C / C composite layer prepreg is not manufactured separately.
  • the prepreg may be used by changing the orientation of the carbon fibers at the time of lamination, which is preferable in that the labor for producing the second C / C composite layer prepreg can be saved.
  • the prepreg for the cross C / C composite layer for forming the cross C / C composite layer as the second C / C composite layer can be produced by impregnating a carbon fiber woven fabric with a thermosetting resin. it can.
  • the carbon fiber woven fabric only needs to satisfy the FAW of the second prepreg and the FAW of the second C / C composite layer, and the weaving method and the carbon fiber diameter are particularly limited. There is no.
  • carbon fibers having a fiber diameter of 5 to 15 ⁇ m used in the first prepreg are preferably used.
  • a woven fabric such as plain weave and satin weave can be used.
  • the random C / C composite layer as the second C / C composite layer is, for example, opened by cutting a bundle of carbon fibers having a fiber diameter of about 5 to 15 ⁇ m to about 10 to 50 mm, and the second C / C composite layer described above. It can be produced by impregnating a thermosetting resin into a two-dimensional random sheet (nonwoven fabric) that can satisfy the FAW of the prepreg and the FAW of the second C / C composite layer.
  • the prepreg laminate is then molded by heating and pressing to form a C / P molded body.
  • the heating and pressing conditions vary depending on the thermosetting resin used, but in general, the temperature is 100 to 500 ° C., preferably 100 to 200 ° C., and the pressure is 1 to 20 kg / cm 2 , preferably 5 to It is about 10 kg / cm 2 .
  • the holding time for this heating and pressurization is about 60 to 180 minutes.
  • the C / P molded body carbonizes the resin by firing at a temperature of about 700 to 2,500 ° C., preferably about 700 to 1,600 ° C. in an inert gas atmosphere such as nitrogen gas.
  • a product obtained by firing and carbonization is referred to as a “preform”).
  • Preform densification in order to increase the bulk density of the obtained C / C composite and to make the bending elastic modulus in the longitudinal direction and other mechanical properties sufficiently high, it is preferably obtained by firing and carbonization. Densify the preform.
  • the preform is impregnated with a thermosetting resin such as a phenol resin and / or an impregnating material such as a thermoplastic material such as tar or pitch, and then calcined to carbonize the impregnating material.
  • a thermosetting resin such as a phenol resin and / or an impregnating material such as a thermoplastic material such as tar or pitch
  • a method of performing at least one impregnation / carbonization process in which pitch is impregnated as an impregnation material and carbonized is preferable.
  • the firing temperature in the carbonization process is preferably about 700 to 2,500 ° C, particularly about 700 to 1,600 ° C.
  • the atmosphere in the carbonization process is preferably an inert gas atmosphere such as nitrogen gas.
  • a C / C composite having a bulk density and porosity suitable for the present invention described later can be obtained by adjusting the number of impregnation and carbonization processes. Specifically, the greater the number of impregnation / carbonization processes, the higher the bulk density and the lower the porosity.
  • the C / C composite of the present invention is obtained by further performing a graphitization treatment as necessary.
  • This C / C composite contains carbon derived from a thermosetting resin, pitch or the like as a carbonaceous matrix.
  • the graphitization treatment can be performed, for example, by firing the densified C / C composite at 1,600 to 2,800 ° C. in an inert gas atmosphere.
  • the ratio of the length in the longitudinal direction to the length in the width direction (short direction) (longitudinal direction / width direction) exceeds 1, and preferably this ratio is 5 or more. More preferably, they are 20 or more long plate-like members.
  • this ratio is 100 or less, preferably 90 or less, more preferably 80 or less.
  • the length and thickness in the longitudinal direction and width direction (short direction) of the C / C composite of the present invention are not particularly limited, and are appropriately determined according to the application and the scale of production equipment.
  • the length in the longitudinal direction of the C / C composite of the present invention is usually 200 to 5,000 mm, preferably 500 to 2,000 mm, more preferably 800 to 1,800 mm, particularly preferably 1,000.
  • the length in the width direction is usually 10 to 100 mm, preferably 20 to 80 mm, more preferably 25 to 70 mm, particularly preferably 30 to 60 mm, and the thickness is usually It is 1 to 40 mm, preferably 1 to 30 mm, preferably 1 to 25 mm, more preferably 5 to 25 mm, and particularly preferably 8 to 20 mm. If the thickness of the C / C composite is too thin, the rigidity will be insufficient, and if it is too thick, the weight will be excessive and the application will be limited.
  • the longitudinal direction of the C / C composite of the present invention is the longest part, and is the direction in which the axial direction of the carbon fibers in the first C / C composite layer is oriented.
  • the thickness direction is the laminating direction of the first C / C composite layer and the second C / C composite layer
  • the width direction (short direction) is the longitudinal direction and the thickness direction. The direction perpendicular to it.
  • the C / C composite of the present invention is characterized in that the bending elastic modulus in the longitudinal direction is 150 GPa or more. If the bending elastic modulus in the longitudinal direction is less than 150 GPa, the bending rigidity and vibration damping characteristics are insufficient, and, for example, load deflection and vibration when loading a loaded object in applications as a conveying member increase, and stable use. It becomes difficult.
  • the bending elastic modulus in the longitudinal direction of the C / C composite of the present invention is preferably 160 to 300 GPa, more preferably 180 to 280 GPa, and particularly preferably 180 to 250 GPa.
  • the bending elastic modulus in the longitudinal direction of the C / C composite is measured by the method described in the section of Examples described later.
  • the C / C composite of the present invention preferably has a high bending strength in the longitudinal direction from the viewpoint of impact resistance. However, if the bending strength in the longitudinal direction is excessively high, the rigidity may be lowered, which is disadvantageous.
  • the bending strength in the longitudinal direction of the C / C composite of the present invention is preferably 100 to 700 MPa, more preferably 200 to 600 MPa, and particularly preferably 300 to 500 MPa.
  • the bending strength in the longitudinal direction of the C / C composite is measured by the method described in the section of Examples described later.
  • the bulk density of the C / C composite of the present invention is preferably 1.65 g / cm 3 or more.
  • the higher the bulk density of the C / C composite the better in terms of improving the mechanical strength, but in order to produce a C / C composite having such a high bulk density, the above-mentioned firing, carbonization and densification are required. It is necessary to perform the process many times, which causes an increase in manufacturing cost.
  • the bulk density capable of obtaining sufficient mechanical strength without excessively increasing the production cost is preferably 1.65 to 1.80 g / cm 3 , more preferably 1.68 to 1.75 g / cm 3. It is.
  • ⁇ Porosity> For the same reason as the above bulk density, there is a preferable range for the porosity (volume ratio of voids) of the C / C composite of the present invention, and if the porosity of the C / C composite is too high, bending in the longitudinal direction will occur. A C / C composite having a sufficiently high elastic modulus and other mechanical strength cannot be obtained. The lower the porosity of the C / C composite, the better in terms of improving the mechanical strength, but in order to produce a C / C composite with such a low porosity, the above-described densification treatment is performed a plurality of times. This is necessary and causes the manufacturing cost to increase.
  • the porosity with which sufficient mechanical strength can be obtained without excessively increasing the production cost is usually 10 to 25%, preferably 15 to 20%.
  • the volume content of carbon fibers in the C / C composite of the present invention (volume ratio of carbon fibers in the volume of the C / C composite) is preferably higher as the flexural modulus can be increased. If it is high, the amount of carbonaceous matrix is relatively reduced, and there is concern about the occurrence of delamination, which is disadvantageous. Therefore, the carbon fiber volume content of the C / C composite of the present invention is preferably 40% or more and less than 70%, particularly 45 to 65%, particularly 48 to 60%.
  • volume content of the carbon fiber of the C / C composite is calculated by the method described in the section of the example described later.
  • the conveying member of the present invention includes the C / C composite of the present invention as described above.
  • the length in the longitudinal direction of the conveying member of the present invention is usually 300 to 5,000 mm, preferably 500 to 4,500 mm, more preferably 1,000 to 4,000 mm, and particularly preferably 1, although it depends on the application.
  • the length in the width direction (short direction) is usually 10 to 100 mm, preferably 20 to 80 mm, more preferably 25 to 70 mm, particularly preferably 30 to 60 mm, and the thickness is 500 to 3,700 mm. Usually, it is 5 to 100 mm, preferably 10 to 80 mm, more preferably 15 to 60 mm, and particularly preferably 20 to 50 mm.
  • C / C composite of the present invention having the above-described dimensions may be used as the conveying member of the present invention.
  • a plurality of C / C composites of the present invention may be used. They may be joined together with an adhesive or the like in an appropriate arrangement and used together.
  • a plurality of C / C composites having the same dimensions and the same layer structure may be used, or those having different dimensions and layer structures may be used in combination.
  • FIG. 2 shows an embodiment of the conveying member of the present invention using the carbon fiber reinforced carbon composite of the present invention
  • FIG. 2 (a) shows one C / C composite of the present invention.
  • Such a conveying member of the present invention may be subjected to plating treatment such as electrolytic plating and electroless plating and other surface treatments as necessary.
  • plating treatment such as electrolytic plating and electroless plating and other surface treatments as necessary.
  • the thickness of the plating layer is usually The thickness is 1 to 100 ⁇ m, preferably 3 to 50 ⁇ m, more preferably 5 to 20 ⁇ m, and particularly preferably 5 to 10 ⁇ m.
  • the C / C composite of the present invention is particularly preferably used as a conveying member for a thin plate-like workpiece such as a liquid crystal substrate, a printed board or a glass substrate, but is not limited to a conveying member at all. It is suitably used for various members that are required to have a large length ratio in the width direction, a high mechanical strength, in particular, a large bending elastic modulus in the longitudinal direction, and a light weight and excellent heat resistance and corrosion resistance.
  • UD prepreg ⁇ Manufacture of UD prepreg> Pitch-based carbon fibers having 12,000 filaments (“DIALEAD” manufactured by Mitsubishi Plastics, fiber diameter: 10 ⁇ m, tensile elastic modulus: 640 GPa) are aligned in one direction and impregnated with a phenol resin diluted with methanol. Thereafter, it was dried to obtain a UD prepreg having a FAW of 400 g / m 2 , a phenol resin content of 30% by weight and a thickness of 0.2 mm.
  • DIALEAD manufactured by Mitsubishi Plastics, fiber diameter: 10 ⁇ m, tensile elastic modulus: 640 GPa
  • a pitch-based carbon fiber having a filament number of 12,000 (fiber diameter: 10 ⁇ m, tensile modulus: 196 GPa) cut to a length of 30 mm is opened with a random weber, and the pitch-based carbon short fibers are two-dimensionally random.
  • a sheet oriented in this manner was obtained. This sheet was impregnated with a phenol resin diluted with ethanol, and then dried to produce a random prepreg having a FAW of 200 g / m 2 , a phenol resin content of 30% by weight, and a thickness of 0.1 mm.
  • the carbon fiber reinforced carbon composites produced in the examples and comparative examples were evaluated by the following method.
  • the test piece used for each evaluation is a wet precision cutting machine (Maruto Seiki Co., Ltd. water from the center part in the longitudinal direction of the C / C composite body (base plate) manufactured in the following examples and comparative examples.
  • Cutter which is obtained by cutting using a model AC500CFS
  • the thickness of the test piece is the same as the thickness of the C / C composite (base plate) shown in Table 1.
  • this test piece dimension made constant the ratio (L / D) of the length (L) and thickness (D) of a test piece longitudinal direction. Specifically, L / D ⁇ 30. Measurements were performed using test pieces of various lengths (L) to confirm the effect of the present invention. In all of the following evaluations, three test pieces described above were cut to obtain an average value of measurement results of the test pieces.
  • ⁇ Bulk density> The dimensions (length / width / thickness) of the bending specimen were measured with a caliper and multiplied to calculate the volume. Moreover, the weight was measured with the balance. The bulk density was calculated by dividing the measured weight value by the calculated volume value.
  • Example 1 Two laminated prepregs are prepared by laminating two UD prepregs so that the alignment direction of the carbon fibers is the longitudinal direction, and the alignment direction of the carbon fibers is perpendicular to the longitudinal direction between these laminated prepregs ( A prepreg laminate was formed by laminating through one UD prepreg so as to be approximately 90 °. This prepreg laminate was held in an autoclave apparatus at a temperature of 177 ° C. and a pressure of 6 kg / cm 2 for 120 minutes to cure the phenolic resin, and the Vf C / P molded bodies shown in Table 1 were obtained. .
  • This C / P molded body was fired in a nitrogen gas atmosphere at 750 ° C. for 5 hours to be carbonized, then impregnated with pitch, and fired again under the same conditions.
  • the pitch impregnation and firing steps were performed a plurality of times to obtain a C / C composite of layer structure, dimensions and FAW shown in Table 1.
  • the evaluation results of the obtained C / C composite are shown in Table 1.
  • Example 2 Two prepregs are prepared by laminating two UD prepregs so that the alignment direction of the carbon fibers is the longitudinal direction, and a prepreg laminate is obtained by laminating the laminated prepregs via one cross prepreg. It was.
  • This prepreg laminate was held in a press apparatus at a temperature of 200 ° C. and a pressure of 15 kg / cm 2 for 30 minutes, and the phenol resin was cured to obtain a C / P molded body of Vf shown in Table 1. .
  • firing, pitch impregnation, and firing were performed in the same manner as in Example 1 to obtain a C / C composite having the layer configuration, dimensions, and FAW shown in Table 1.
  • the evaluation results of the obtained C / C composite are shown in Table 2.
  • Examples 3 and 4> Except for changing the number of laminated UD prepregs, the Vf C / P molded body shown in Table 1 and the layer configuration, dimensions, and FAW C / C composite shown in Table 1 were obtained in the same manner as in Example 1. . The evaluation results of the obtained C / C composite are shown in Table 2.
  • Example 5 A phenol prepreg was used in the same manner as in Example 2 except that one UD prepreg was used so that the alignment direction of the carbon fibers was the longitudinal direction, and this UD prepreg and one random prepreg were laminated to form a prepreg laminate.
  • the resin was cured, molded, fired, pitch impregnated, and fired to obtain a Vf C / P molded body shown in Table 1, a layer configuration, dimensions and FAW C / C composites shown in Table 1.
  • the evaluation results of the obtained C / C composite are shown in Table 2.
  • Example 6 Two prepregs are prepared by laminating two UD prepregs so that the alignment direction of the carbon fibers is the longitudinal direction, and a prepreg laminate obtained by laminating through one random prepreg is used between these laminated prepregs The phenol resin was cured, molded, fired, pitch impregnated and fired in the same manner as in Example 2 to obtain a Vf C / P molded body shown in Table 1, a layer configuration shown in Table 1, dimensions, and C / P of FAW. C complex was obtained. The evaluation results of the obtained C / C composite are shown in Table 2.
  • Example 7 The Vf C / P molded body shown in Table 1 was obtained in the same manner as in Example 2 except that the number of laminated UD prepregs was changed, and the layers shown in Table 1 were obtained by firing, pitch impregnation and firing in the same manner. A C / C composite with composition, dimensions and FAW was obtained. Note that minute cracks were observed inside the C / C composite. The evaluation results of the obtained C / C composite are shown in Table 2.
  • Example 6 ⁇ Comparative Examples 1 and 2>
  • the Vf C / P molded body shown in Table 1 the layer configuration shown in Table 1, dimensions, and the FAW C / C composite Got the body.
  • the evaluation results of the obtained C / C composite are shown in Table 2.
  • a C / C composite layer formed by using a UD prepreg and having carbon fibers oriented in the longitudinal direction is referred to as “UD (longitudinal)”, and the carbon fibers are disposed in a short direction perpendicular to the longitudinal direction.
  • An oriented C / C composite layer is described as “UD (short)”
  • a C / C composite layer formed using a cross prepreg is described as “cross”
  • the C / C composite layer is described as “random”.
  • Tables 1 and 2 show the following. Even in the laminated structure of UD (longitudinal) / random / UD (longitudinal), Comparative Examples 1 and 2 where the thickness of the UD (longitudinal) C / C composite layer is thin cannot achieve a high longitudinal bending elastic modulus. . Comparative Example 3 using UD (longitudinal) as an intermediate layer as random / UD (longitudinal) / random also has a low longitudinal bending elastic modulus.
  • the high bending bending modulus of 150 GPa or more in the longitudinal direction is used.
  • Elastic modulus can be achieved.
  • a UD (longitudinal) C / C composite layer is provided on both plate surfaces of the C / C composite and the thickness thereof is increased, a high flexural modulus can be achieved.
  • Example 1 and Example 7 it is clear that the effect of the present invention can be obtained even in a large C / C composite. Further, when both are compared, it is clear that Example 1 with UD (short) as an intermediate layer is superior in physical properties such as flexural modulus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 長手方向の長さと幅方向の長さの比が1を超える板状の炭素繊維強化炭素複合体であって、炭素質マトリックス内に炭素繊維が前記長手方向に配向している第1の炭素繊維強化炭素複合層と、第1の炭素繊維強化炭素複合層とは炭素繊維の配置が異なる第2の炭素繊維強化炭素複合層との少なくとも2層が積層され、第1の炭素繊維強化炭素複合層が少なくとも一方の板面の最表層を形成し、その厚みが、炭素繊維強化炭素複合体の厚みの70%以上であり、長手方向の曲げ弾性率が150GPa以上である炭素繊維強化炭素複合体。一方又は双方の板面の最表層のみに炭素繊維を長手方向に引き揃えた第1の炭素繊維強化炭素複合層を設け、他の部位は、この第1の炭素繊維強化炭素複合層とは炭素繊維の配置が異なる炭素繊維強化炭素複合層とすることにより、長手方向の曲げ弾性率が大きく向上すると共に、使用時の反りや剥がれ、割れ、製造時のガス発生に起因する層間剥離も抑制される。

Description

炭素繊維強化炭素複合体およびその製造方法
 本発明は炭素繊維強化炭素複合体およびその製造方法に係り、詳しくは長尺状の炭素繊維強化炭素複合体であって、その長手方向の曲げ弾性率が大きく、液晶基板、プリント基板やガラス基板等の薄板状ワークの搬送用部材として好適な炭素繊維強化炭素複合体と、この炭素繊維強化炭素複合体を製造する方法に関する。
 本発明はまた、この炭素繊維強化炭素複合体よりなる搬送用部材に関する。
 液晶基板、プリント基板やガラス基板等の薄板状ワークの搬送用部材としては、従来、金属(主としてAl又はステンレス)、セラミック、炭素繊維強化樹脂複合材料(CFRP)よりなるものが用いられているが(特許文献1~3)、金属又はセラミック製の搬送用部材では、部材重量が重く、取り扱い性、操作性が悪いという欠点があり、セラミック製搬送用部材では、脆く、耐衝撃性が劣る点も問題となる。
 これに対して、CFRP製の搬送用部材であれば、軽量で高い曲げ剛性を有し、優れた振動減衰特性を有するが、樹脂材料であることから耐熱性に限界があり、300℃以上というような高温の使用環境では適用し得ない。
 一方、炭素繊維と炭素質マトリックスとからなる炭素繊維強化炭素複合材料(C/C複合材)は、耐熱性が高く、軽量で耐摩耗性等にも優れることから、従来より、ロケットノズルや航空機のブレーキ材など、主として宇宙、航空機用材料等として用いられている(特許文献4,5,6)。
特開2003-62786号公報 特開2010-127340号公報 特開2009-160685号公報 特開昭60-191057号公報 特開平3-205359号公報 特開2011-46543号公報
 C/C複合材は、軽量かつ高耐熱性で、耐摩耗性等の機械特性にも優れることから、高温環境下で使用される搬送用部材の構成材料として有望であるが、C/C複合材は、搬送用部材のような長尺部材とした場合、その長手方向の曲げ弾性率が十分でなく、CFRP製搬送用部材と同等の曲げ剛性で良好な振動減衰特性を発揮することはできなかった。
 C/C複合材製長尺部材において、長手方向の曲げ弾性率を大きくしようとした場合、炭素繊維をその長手方向に引き揃えて配向させることが考えられるが、このように単に炭素繊維を長手方向に引き揃えて製造されたC/C複合材製長尺部材では、反りや剥がれ(割れ)の問題があり、実用に耐えない。
 また、特許文献3では、CFRP製搬送用部材の強度を改善するために、炭素繊維織布(クロス)の層を層間に設けた積層構成としているが、このような積層構成をC/C複合材に適用した場合、焼成、炭化工程で発生したガスのガス抜き性が悪いことに起因して、割れ、層間剥離が起こるという問題があった。
 また、C/C複合材に用いる炭素繊維として、それ自体高弾性のものを用い、これを長手方向に引き揃えて配向させることにより、長手方向の曲げ弾性率が大きい長尺部材を製造しようとすると、炭素繊維が高弾性であるために取り扱い性が悪く、特にプリプレグ化、裁断、積層等の各工程での作業が困難であり、工業レベルでの生産には不適当であった。
 本発明は、上記従来の問題点を解決し、長手方向の曲げ弾性率が著しく高く、製造、加工が容易で、反り、剥がれ、割れの問題もない炭素繊維強化炭素複合体を提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、単に長手方向に炭素繊維を引き揃えた炭素繊維強化炭素複合体ではなく、一方又は双方の板面の最表層に炭素繊維を長手方向に引き揃えた炭素繊維強化炭素複合層(第1の炭素繊維強化炭素複合層)を設け、他の部位は、この第1の炭素繊維強化炭素複合層とは炭素繊維の配置が異なる炭素繊維強化炭素複合層とすることにより、長手方向の曲げ弾性率が大きく向上すると共に、使用時の反りや剥がれ、割れの問題もなく、また、製造時のガス発生に起因する層間剥離も抑制されることを見出した。
 本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。
 第1態様の炭素繊維強化炭素複合体は、炭素繊維と炭素質マトリックスとで構成され、長手方向の長さと幅方向の長さの比が1を超える板状の炭素繊維強化炭素複合体であって、炭素質マトリックス内に炭素繊維が前記長手方向に配向している第1の炭素繊維強化炭素複合層と、該第1の炭素繊維強化炭素複合層とは炭素繊維の配置が異なる第2の炭素繊維強化炭素複合層との少なくとも2層の炭素繊維強化炭素複合層が積層された炭素繊維強化炭素複合体であり、該第1の炭素繊維強化炭素複合層が該炭素繊維強化炭素複合体の少なくとも一方の板面の最表層を形成し、前記第1の炭素繊維強化炭素複合層の厚みが、該炭素繊維強化炭素複合体の厚みの70%以上であり、該長手方向の曲げ弾性率が150GPa以上であることを特徴とする。
 第2態様の炭素繊維強化炭素複合体は、第1態様において、前記第2の炭素繊維強化炭素複合層内の炭素繊維が前記長手方向と交叉する方向に配向していることを特徴とする。
 第3態様の炭素繊維強化炭素複合体は、第1又は第2態様において、前記第1の炭素繊維強化炭素複合層のFAWが1,000~20,000g/mであり、前記第2の炭素繊維強化炭素複合層のFAWが200~5,000g/mであり、炭素繊維強化炭素複合体のFAWが1,200~25,000g/mであることを特徴とする。
 第4態様の炭素繊維強化炭素複合体は、第1ないし第3のいずれか1態様において、炭素繊維がピッチ系炭素繊維であることを特徴とする。
 第5態様の炭素繊維強化炭素複合体は、第1ないし第4のいずれか1態様において、炭素繊維の体積含有率が40~70%であることを特徴とする。
 第6態様の炭素繊維強化炭素複合体は、第1ないし第5のいずれか1態様において、嵩密度が1.65g/cm以上であることを特徴とする。
 第7態様の炭素繊維強化炭素複合体は、第1ないし第6のいずれか1態様において、炭素繊維が繊維軸方向に引き揃えられた一方向プリプレグの複数枚を、該炭素繊維の引き揃え方向が交叉するように積層し、得られた積層体を加熱加圧成形して得られる炭素繊維強化樹脂成形体を焼成、炭化してなることを特徴とする。
 第8態様の炭素繊維強化炭素複合体は、第7態様において、前記プリプレグの熱硬化性樹脂含有率が15~45重量%であることを特徴とする。
 第9態様の炭素繊維強化炭素複合体は、第7又は第8態様において、前記炭素繊維強化樹脂成形体を焼成、炭化して得られたプリフォームに対して、以下の(1)及び(2)の工程よりなる緻密化処理を少なくとも1回行うことにより得られたものであることを特徴とする。
(1)コールタール・ピッチ、石油タール・ピッチ、および樹脂からなる群より選ばれる少なくとも1種の含浸材をプリフォームに含浸させる含浸工程
(2)含浸工程後、焼成して前記含浸材を炭化させる炭化工程
 第10態様の搬送用部材は、第1ないし第9のいずれか1態様の炭素繊維強化炭素複合体を備えることを特徴とする。
 第11態様の炭素繊維強化炭素複合体の製造方法は、第1ないし第9のいずれか1態様の炭素繊維強化炭素複合体を製造する方法であって、炭素繊維が繊維軸方向に引き揃えられた一方向プリプレグの複数枚を、該炭素繊維の引き揃え方向が交叉するように積層し、得られた積層体を加熱加圧して炭素繊維強化樹脂成形体を得、該炭素繊維強化樹脂成形体を焼成して炭化させた後、コールタール・ピッチ、石油タール・ピッチ、および樹脂からなる群より選ばれる少なくとも1種の含浸材を含浸させ、再度焼成して該含浸材を炭化させることを特徴とする。
 第12態様の炭素繊維強化炭素複合体の製造方法は、第11態様において、前記含浸とその後の焼成炭化を複数回繰り返し行うことを特徴とする。
 本発明の炭素繊維強化炭素複合体は、長手方向の曲げ弾性率が著しく高く、製造、加工が容易で、反り、剥がれ、割れが問題となることもない。
 即ち、本発明の炭素繊維強化炭素複合体は、炭素繊維強化炭素複合体の一方又は双方の板面の最表層に設けられた、炭素繊維が炭素繊維強化炭素複合体の長手方向に配向している第1の炭素繊維強化炭素複合層と、この第1の炭素繊維強化炭素複合層とは炭素繊維の配置が異なる第2の炭素繊維強化炭素複合層との少なくとも2層の炭素繊維強化炭素複合層が積層された構造を有し、最表層の第1の炭素繊維強化炭素複合層により、長手方向の曲げ弾性率を十分に確保することができる。また、この第1の炭素繊維強化炭素複合層に第2の炭素繊維強化炭素複合層を積層することにより、第1の炭素繊維強化炭素複合層のみの場合に問題となる反りや剥離(割れ)の問題を抑制することができる。また、少なくとも一方の板面の最表層の第1の炭素繊維強化炭素複合層が、炭素繊維の引き揃え層であることにより、焼成、炭化工程で発生するガスを、この第1の炭素繊維強化炭素複合層を介して円滑に排出することができ、発生ガスのガス抜き不良に起因する層間剥離などの欠陥の発生を防止することができる。
 また、このように、炭素繊維強化炭素複合層の炭素繊維の引き揃え方向ないしは配置により曲げ弾性率を高めることから、炭素繊維として過度に高弾性のものを用いる必要がない。このため、裁断、加工、その他の取り扱い性に優れた炭素繊維を用いて、良好な作業性のもとに炭素繊維強化炭素複合体を製造することができる。
本発明の炭素繊維強化炭素複合体の炭素繊維強化炭素複合層の積層構成の実施の形態を示す模式的な分解斜視図である。 本発明の炭素繊維強化炭素複合体を用いた本発明の搬送用部材の実施の形態を示す斜視図である。
 以下に本発明の実施の形態を詳細に説明する。
[炭素繊維強化炭素複合体]
 本発明の炭素繊維強化炭素複合体(以下、「C/C複合体」と称す場合がある。)は、炭素繊維と炭素質マトリックスとで構成され、長手方向の長さと幅方向の長さの比が1を超える板状のC/C複合体であって、炭素質マトリックス内に炭素繊維が前記長手方向に配向している第1の炭素繊維強化炭素複合層(以下、「炭素繊維強化炭素複合層」を「C/C複合層」と称し、炭素繊維が長手方向に配向している層を「長手方向C/C複合層」と称す場合がある。)と、該第1のC/C複合層とは炭素繊維の配置が異なる第2のC/C複合層との少なくとも2層のC/C複合層が積層され、第1のC/C複合層がC/C複合体の少なくとも一方の板面の最表層を形成する、即ち、C/C複合体の一方又は双方の板面の最表層に第1のC/C複合層が設けられており、第1のC/C複合層の厚みがC/C複合体の厚みの70%以上であり、長手方向の曲げ弾性率が150GPa以上であることを特徴とする。
 本発明において、炭素繊維がC/C複合体の長手方向に配向するとは、炭素繊維がC/C複合体の長手方向に対して±10°以内の角度で配向していること(即ち、炭素繊維の軸方向がC/C複合体の長手方向に対して±10°以内の角度となるように存在すること)を意味する。
 また、後述の、炭素繊維がC/C複合体の短手方向に配向していることについても同様に、炭素繊維がC/C複合体の長手方向と直交する短手方向に対して±10°以内の角度で配向していることを意味する。
 上記第2のC/C複合層の炭素繊維の配置には特に制限はなく、第2のC/C複合層としては、
(1) 上記長手方向と交叉する方向、好ましくは直交する短手方向に炭素繊維が配向している層(以下「短手方向C/C複合層」と称す場合がある。)
(2) 炭素繊維が2次元織物(織布)とされている層(以下「クロスC/C複合層」と称す場合がある。)
(3) 炭素繊維がランダム配向(不織布)とされている層(以下「ランダムC/C複合層」と称す場合がある。)
などが挙げられるが、好ましくは、生産効率、補強効果、および反り、剥離防止効果、そして大寸法製品においても優れた効果を奏するなどの面で短手方向C/C複合層である。
 従って、例えば、本発明のC/C複合体は、図1(a)に示すように、長手方向C/C複合層1,1間に短手方向C/C複合層2を有するC/C複合体10A、図1(b)に示すように、長手方向C/C複合層1,1間にクロスC/C複合層3を有するC/C複合体10B、図1(c)に示すように、長手方向C/C複合層1,1間にランダムC/C複合層4を有するC/C複合体10Cなどが挙げられる。
 ただし、本発明のC/C複合体は、C/C複合体の板面の少なくとも一方の最表層に第1のC/C複合層である長手方向C/C複合層が存在し、それ以外の部位には、長手方向C/C複合層とは異なるC/C複合層が積層されていればよく、長手方向C/C複合層と短手方向C/C複合層との積層体、長手方向C/C複合層とクロスC/C複合層との積層体、長手方向C/C複合層とランダムC/C複合層との積層体などの2層積層体であってもよく、更に4層以上の積層体であってもよい
 4層以上のC/C複合層を有する場合において、最表層以外にも長手方向C/C複合層が存在してもよい。
 なお、本発明において、「最表層」とは、炭素繊維と炭素質マトリックスとで構成されるC/C複合体の表面側の層であり、この上に、メッキ、蒸着、塗装等の表面層を形成した場合の表面層を意味するものではない。即ち、後述の如く、本発明のC/C複合体には、最表層である長手方向C/C複合層上に更にメッキ等の表面処理を行うことができるが、このような表面処理層は、本発明に係る最表層には該当しない。
 本発明のC/C複合体において、最表層を構成する第1のC/C複合層である長手方向C/C複合層の厚みは、C/C複合体の長手方向の曲げ弾性率を十分に高くする上で重要であり、この長手方向C/C複合層の厚みが薄過ぎると十分な曲げ弾性率を達成し得ない。最表層の長手方向C/C複合層の厚み(C/C複合体に長手方向C/C複合層が2層以上ある場合はその合計の厚み)は、当該長手方向C/C複合層の構成(炭素繊維含有割合や嵩密度等)や、第2のC/C複合層として用いるC/C複合層の種類やC/C複合体の総厚みによっても異なるが、C/C複合体の全体の厚みの70%以上である。ただし、この長手方向C/C複合層の厚み割合が大きすぎると、第2のC/C複合層を設けることによる本発明の効果を十分に得ることができないため、長手方向C/C複合層の厚み(C/C複合体に長手方向C/C複合層が2層以上ある場合はその合計の厚み)は、C/C複合体の総厚みの70~90%、特に75~85%であることが好ましい。
 また、本発明のC/C複合体の第1のC/C複合層である長手方向C/C複合層のFAW(単位面積当たりの炭素繊維重量)が過度に低いと、長手方向の曲げ弾性率を十分に大きくすることができない。ただし、このFAWが大き過ぎると炭素質マトリックスが少なく繊維がむき出しとなり外観不良、塵の原因となったり、また層間剥離が生ずる場合があり、不利である。従って、第1のC/C複合層の長手方向C/C複合層のFAW(C/C複合体に長手方向C/C複合層が2層以上ある場合はその合計のFAW)は1,000~20,000g/m、特に5,000~15,000g/mであることが好ましい。また、第2のC/C複合層についても、FAWが過度に小さいと、第2のC/C複合層を設けたことによる反りや剥離の防止効果を十分に得ることができない。ただし、このFAWが大き過ぎると炭素質マトリックスが少なく層間接着力が低下したり、長手方向の曲げ弾性率が低下する場合があり、不利である。従って、第2のC/C複合層のFAWは200~5,000g/m、特に400~4,000g/mであることが好ましい。
 また、本発明のC/C複合体自体のFAWは、上記第1のC/C複合層及び第2のC/C複合層のFAWを満たすために、1,200~25,000g/m、特に5,400~19,000g/mであることが好ましい。
 本発明のC/C複合体の炭素繊維としては、高弾性率で、炭素含有率が高く、複合材料の化学的安定性が保たれることから、コールタール・ピッチ、石油タール・ピッチ等のピッチ系炭素繊維を用いることが好ましいが、これらピッチ系炭素繊維と同程度の弾性率を有するPAN系炭素繊維でもよい。炭素繊維の引張弾性率は、500GPa以上、中でも600GPa以上であることが好ましい。尚、第2のC/C複合層を形成するための後述のクロスC/C複合層用プリプレグの炭素繊維織布の炭素繊維についてもピッチ系炭素繊維が好ましいが、PAN系炭素繊維が好ましい場合もある。
[C/C複合体の製造方法]
 本発明のC/C複合体を製造する方法としては特に制限はないが、第1のC/C複合層を形成するための炭素繊維強化樹脂複合シート(以下「第1のプリプレグ」と称す場合がある。)と、第2のC/C複合層を形成するための炭素繊維強化樹脂複合シート(以下「第2のプリプレグ」と称す場合がある。)を準備し、各プリプレグの必要枚数を積層し、得られたプリプレグ積層体を加熱加圧成形して炭素繊維強化樹脂成形体(以下「C/P成形体」と称す場合がある。)とし、このC/P成形体を焼成することにより炭化させ、更に、緻密化処理を行う方法が挙げられる。
{プリプレグの製造}
 第1のプリプレグ、第2のプリプレグのいずれにおいても、樹脂含有率は15~45重量%、特に25~35重量%であることが好ましい。
 プリプレグの樹脂含有率が多過ぎると相対的に炭素繊維の含有割合が少なくなることにより、炭素繊維による補強効果を十分に得ることができず、プリプレグの樹脂含有率が少な過ぎると得られるC/C複合体の炭素質マトリックスが少なくなることにより、得られるC/C複合体が脆くなる場合がある。
 炭素繊維に含浸させる樹脂としては、フェノール樹脂、フラン樹脂等の熱硬化性樹脂の1種又は2種以上を用いることができる。
 これらの樹脂は、アルコール、アセトン、アントラセン油等の溶媒に溶解ないし分散させて適度な粘度に調製された含浸液として用いられる。
 なお、熱硬化性樹脂の代りに石油系、石炭系等のピッチを用いることもできる。
 また、第1のプリプレグ、第2のプリプレグのいずれにおいても、前述の如く、炭素繊維としては、コールタール・ピッチ、石油タール・ピッチ等のピッチ系炭素繊維を用いることが好ましいが、前述の如く、炭素繊維織布の炭素繊維としては、PAN系炭素繊維が好ましい場合もある。
 各プリプレグのFAWは、前述の第1のC/C複合層及び第2のC/C複合層の好適なFAWを得ると共に、後述の本発明のC/C複合体の好適な炭素繊維体積含有率が得られる範囲において任意であるが、第1のプリプレグについてはFAWは200~500g/m、特に250~450g/mであることが好ましく、第2のプリプレグについてはFAWは100~500g/m、特に150~450g/mであることが好ましい。
 第1のプリプレグのFAWが少な過ぎると、本発明のC/C複合体の長手方向の曲げ弾性率を十分に大きくすることができず、多過ぎるとC/C複合体表面の平滑性を維持することが困難である。
 第2のプリプレグについては、本発明のC/C複合体の長手方向の曲げ弾性率の向上よりもむしろ反りや剥離防止のために用いられ、FAWが高すぎると、本発明のC/C複合体が有する長手方向の高い曲げ弾性率性能の発現が不十分となるので、第1のプリプレグのFAWよりも若干低いことが好ましい。ただし、この第2のプリプレグについても過度にFAWが少な過ぎると第2のプリプレグを設けることによる上記効果を十分に得ることができない。
<第1のプリプレグ>
 第1のC/C複合層は、炭素繊維がその軸方向がC/C複合体の長手方向に配向された長手方向C/C複合層であり、従って、第1のプリプレグは、複数本の炭素繊維フィラメントを一方向に引き揃え、この引き揃えた炭素繊維に熱硬化性樹脂を含浸させてなるUDプリプレグ(一方向プリプレグ)である。
 この一方向プリプレグに用いる炭素繊維の繊維径、フィラメント数については、前述の第1のプリプレグのFAW、及び第1のC/C複合層のFAWを満足し得るものであればよく、特に制限はないが、繊維径は5~15μm、フィラメント数は6,000~15,000本であることが好ましい。
 なお、この第1のC/C複合層に用いるUDプリプレグの炭素繊維については、得られるC/C複合体の長手方向の曲げ弾性率を十分に高いものとするために、炭素繊維自体も弾性率の大きいものが好ましく、JIS R 7606に準拠し、万能試験機で測定された引張弾性率が400GPa以上、特に600GPa以上であることが好ましい。この炭素繊維の引張弾性率は、過度に大きいと取り扱い性、加工性が悪くなることから800GPa以下であることが好ましい。
<第2のプリプレグ>
(短手方向C/C複合層用プリプレグ)
 第2のC/C複合層としての短手方向C/C複合層は、第1のC/C複合層の長手方向C/C複合層の炭素繊維の配向方向とは直交する方向に炭素繊維が配向したC/C複合層である。従って、この短手方向C/C複合層用プリプレグとしては、前述の第1のプリプレグと同様にして製造されたものを用い、プリプレグを積層してプリプレグ積層体を製造する際に、第1のプリプレグとは炭素繊維の配向方向が直交するように用いればよい。
 このため、第2のC/C複合層として短手方向C/C複合層を設ける場合、この短手方向C/C複合層用プリプレグを別途製造することなく、長手方向C/C複合層用プリプレグを積層時の炭素繊維の向きを変えて用いればよく、第2のC/C複合層用プリプレグの製造の手間を省くことができる点において好ましい。
(クロスC/C複合層用プリプレグ)
 第2のC/C複合層としてのクロスC/C複合層を形成するためのクロスC/C複合層用プリプレグは、炭素繊維の織布に熱硬化性樹脂を含浸させることにより製造することができる。
 この炭素繊維の織布としては、前述の第2のプリプレグのFAW、及び第2のC/C複合層のFAWを満足し得るものであればよく、その織方や炭素繊維径については特に制限はない。好ましくは例えば、炭素繊維として前述の第1のプリプレグで用いた、繊維径が5~15μmのものを用いることが好ましい。炭素繊維の織布としては、例えば、平織、朱子織などの織布を用いることができる。
(ランダムC/C複合層用プリプレグ)
 第2のC/C複合層としてのランダムC/C複合層は、例えば、繊維径5~15μm程度の炭素繊維の束を10~50mm程度に切断したものを開繊して、前述の第2のプリプレグのFAW、及び第2のC/C複合層のFAWを満足し得る二次元ランダムシート(不織布)としたものに、熱硬化性樹脂を含浸させることにより製造することができる。
{プリプレグの積層}
 第1のプリプレグと第2のプリプレグとを用い、それぞれその必要枚数を積層してプリプレグ積層体を得る。
 各プリプレグの積層枚数は、製造するC/C複合体の各層の厚みとFAWを満たすことができるように適宜調整される。
{プリプレグ積層体の成形}
 プリプレグ積層体は次いで加熱加圧することにより成形してC/P成形体とする。この加熱加圧条件は、用いた熱硬化性樹脂によっても異なるが、通常の場合、温度は100~500℃、好ましくは100~200℃で、圧力は1~20kg/cm、好ましくは5~10kg/cm程度である。また、この加熱加圧の保持時間は60~180分程度である。
{C/P成形体の焼成・炭化}
 C/P成形体は、窒素ガス等の不活性ガス雰囲気中、700~2,500℃、好ましくは700~1,600℃程度の温度で焼成することにより、樹脂を炭化(本発明において、この焼成、炭化により得られるものを「プリフォーム」と称す。)させる。
{プリフォームの緻密化}
 本発明においては、得られるC/C複合体の嵩密度を高め、長手方向の曲げ弾性率、その他の機械的特性を十分に高いものとするために、好ましくは、焼成、炭化により得られたプリフォームを緻密化する。
 緻密化の方法としては、プリフォームにフェノール樹脂等の熱硬化性樹脂、及び/又は、タール、ピッチ等の熱可塑性物質などの含浸材を含浸させた後、焼成して含浸材を炭化させる含浸・炭化プロセスを少なくとも1回行う方法;或いはメタン、プロパンなどの炭化水素ガスを熱分解して炭素を得るCVD法等が挙げられる。特に高熱容量且つ高熱伝導性のC/C複合材が得られることから、含浸材としてピッチを含浸させて炭化させる含浸・炭化プロセスを少なくとも1回行う方法が好ましい。
 炭化プロセスでの焼成温度は700~2,500℃、特に700~1,600℃程度であることが好ましい。炭化プロセスでの雰囲気は、窒素ガスなどの不活性ガス雰囲気が好ましい。
 本発明では、この含浸・炭化プロセスの回数を調整することにより、後述の本発明に好適な嵩密度、及び気孔率を有するC/C複合体を得ることができる。具体的には、含浸・炭化プロセスの回数が多いほど嵩密度は高く、気孔率は小さくなる傾向にある。
 このようにして、緻密化処理した後は、更に必要に応じて黒鉛化処理を行うことにより本発明のC/C複合体が得られる。このC/C複合体は、炭素質マトリックスとして、熱硬化性樹脂、ピッチ等に由来する炭素を含有する。
 黒鉛化処理は、例えば、緻密化処理後のC/C複合体を不活性ガス雰囲気中で1,600~2,800℃で焼成することにより行うことができる。
[C/C複合体の大きさ、形状]
 本発明のC/C複合体は、長手方向の長さと幅方向(短手方向)の長さの比(長手方向/幅方向)が1を超えるものであり、好ましくは、この比が5以上、より好ましくは20以上の長尺状の板状部材である。長手方向/幅方向の長さ比が大きい程、長手方向の曲げ弾性率を大きくするという本発明の効果を顕著に得ることができるが、工業的な生産性やC/C複合体の用途から、通常、この比は100以下、好ましくは90以下、より好ましくは80以下である。
 本発明のC/C複合体の長手方向及び幅方向(短手方向)の長さ及び厚みについては特に制限はなく、用途と生産設備の規模に応じて適宜決定される。
 一般的には、本発明のC/C複合体の長手方向の長さは通常200~5,000mm、好ましくは500~2,000mm、より好ましくは800~1,800mm、特に好ましくは1,000~1,500mmであり、幅方向(短手方向)の長さは、通常10~100mm、好ましくは20~80mm、より好ましくは25~70mm、特に好ましくは30~60mmであり、厚みは、通常1~40mm、好ましくは1~30mm、中でも好ましくは1~25mm、より好ましくは5~25mm、特に好ましくは8~20mmである。C/C複合体の厚みが薄過ぎると剛性が不足し、厚過ぎると重量過多となり、用途が制限されることとなる。
 なお、本発明のC/C複合体の長手方向とは、その最も長さの長い部分であり、前述の第1のC/C複合層内の炭素繊維の軸方向が配向している方向であり、厚み方向とは、前述の第1のC/C複合層と第2のC/C複合層との積層方向であり、幅方向(短手方向)とは、この長手方向及び厚み方向と直交する方向をさす。
[C/C複合体の物性]
<曲げ弾性率>
 本発明のC/C複合体は、長手方向の曲げ弾性率が150GPa以上であることを特徴とする。長手方向の曲げ弾性率が150GPa未満であると、曲げ剛性、振動減衰特性が不足し、例えば、搬送用部材としての用途において搬送物を積載した際の荷重撓みや振動が大きくなり、安定した使用が困難となる。
 本発明のC/C複合体の長手方向の曲げ弾性率は、高い程使用時の安定性等の面では好ましいが、過度に高いと、切削加工等の加工が困難であるなどの不具合が生じることから、通常350GPa以下である。本発明のC/C複合体の長手方向の曲げ弾性率は、好ましくは160~300GPa、より好ましくは180~280GPa、特に好ましくは180~250GPaである。
 なお、C/C複合体の長手方向の曲げ弾性率は、後述の実施例の項に記載される方法で測定される。
<曲げ強度>
 上記の曲げ弾性率と同様に、本発明のC/C複合体は、長手方向の曲げ強度が高いことが耐衝撃性の点で好ましい。ただし、長手方向の曲げ強度が過度に高いと、剛性が低下する場合があるので不利である。
 本発明のC/C複合体の長手方向の曲げ強度は、好ましくは100~700MPa、より好ましくは200~600MPa、特に好ましくは300~500MPaである。
 なお、C/C複合体の長手方向の曲げ強度は、後述の実施例の項に記載される方法で測定される。
<嵩密度>
 本発明のC/C複合体の嵩密度は、1.65g/cm以上であることが好ましい。C/C複合体の嵩密度が上記下限未満であると、長手方向の曲げ弾性率やその他の機械的強度が十分に高いC/C複合体を得ることができない。C/C複合体の嵩密度は高い程機械的強度の向上の面で好ましいが、このように嵩密度の高いC/C複合体を製造するためには、前述の焼成、炭化及び緻密化の工程を多数回行う必要があり、製造コストが嵩む原因となる。製造コストを過度に高くすることなく、十分な機械的強度を得ることができる嵩密度として、好ましくは1.65~1.80g/cm、より好ましくは1.68~1.75g/cmである。
 なお、C/C複合体の嵩密度は、後述の実施例の項に記載される方法で算出される。
<気孔率>
 上記嵩密度と同様な理由から、本発明のC/C複合体の気孔率(ボイドの体積割合)にも好適範囲が存在し、C/C複合体の気孔率が高過ぎると長手方向の曲げ弾性率やその他の機械的強度が十分に高いC/C複合体を得ることができない。C/C複合体の気孔率は低い程機械的強度の向上の面で好ましいが、このように気孔率の低いC/C複合体を製造するためには、前述の緻密化処理を複数回行う必要があり、製造コストが嵩む原因となる。製造コストを過度に高くすることなく、十分な機械的強度を得ることができる気孔率として、通常10~25%、好ましくは15~20%である。
 なお、C/C複合体の気孔率は、後述の実施例の項に記載される方法で測定される。
<炭素繊維の体積含有率>
 本発明のC/C複合体中の炭素繊維の体積含有率(C/C複合体の体積に占める炭素繊維の体積割合)は、高い程曲げ弾性率を高くすることができ好ましいが、過度に高いと相対的に炭素質マトリックス量が減ることで層間剥離などの発生が懸念され、不利である。従って、本発明のC/C複合体の炭素繊維の体積含有率は40%以上70%未満であることが好ましく、特に45~65%、とりわけ48~60%であることが好ましい。
 なお、C/C複合体の炭素繊維の体積含有率は、後述の実施例の項に記載される方法で算出される。
[搬送用部材]
 本発明の搬送用部材は、上述のような本発明のC/C複合体を備えるものである。
 用途によっても異なるが、本発明の搬送用部材の長手方向の長さは通常300~5,000mm、好ましくは500~4,500mm、より好ましくは1,000~4,000mm、特に好ましくは1,500~3,700mmであり、幅方向(短手方向)の長さは、通常10~100mm、好ましくは20~80mm、より好ましくは25~70mm、特に好ましくは30~60mmであり、厚みは、通常5~100mm、好ましくは10~80mm、より好ましくは15~60mm、特に好ましくは20~50mmである。
 従って、前述のような寸法の本発明のC/C複合体を一つのみ用いて本発明の搬送用部材としてもよく、寸法を調整するために本発明のC/C複合体の複数本を適当な配置で接着剤等により接合し、継ぎ合わせて用いてもよい。この場合、同一寸法で同一の層構成のC/C複合体を複数本用いてもよく、寸法や層構成の異なるものを組み合わせて用いてもよい。
 図2は、本発明の炭素繊維強化炭素複合体を用いた本発明の搬送用部材の実施の形態を示すものであり、図2(a)は、1本の本発明のC/C複合体10よりなるものを示し、この搬送用部材11の寸法は、例えば長さ=1,500mm、幅=50mm、厚みd=15mmである。
 図2(b)は、本発明のC/C複合体10を6本用い、板面を接着剤で接合したものを示し、この搬送用部材12の寸法は、例えば、長さ=4,000mm、幅=30mm、厚みd=50mmである。
 図2(c)は、本発明のC/C複合体10を4本用い、板面を接着剤で接合したものを示し、この搬送用部材13の寸法は、例えば、長さ=2,500mm、幅=45mm、厚みd=20mmである。
 このような本発明の搬送用部材は、必要に応じて電解メッキ、無電解メッキ等のメッキ処理、その他の表面処理が施されていてもよく、メッキ処理を施す場合、メッキ層の厚みは通常1~100μm、好ましくは3~50μm、より好ましくは5~20μm、特に好ましくは5~10μmである。
[用途]
 本発明のC/C複合体は、特に液晶基板、プリント基板やガラス基板等の薄板状ワークの搬送用部材として好適に用いられるが、何ら搬送用部材に限定されるものではなく、長手方向/幅方向の長さ比が大きく、機械的強度、特に長手方向の曲げ弾性率が大きいことが要求され、更に軽量で耐熱性、耐食性に優れることが要求される各種部材に好適に使用される。
 以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。
[プリプレグの製造]
 実施例及び比較例におけるC/C複合体の製造に用いたプリプレグは以下のようにして製造した。
<UDプリプレグの製造>
 フィラメント数12,000本のピッチ系炭素繊維(三菱樹脂(株)製「ダイアリード」、繊維径:10μm、引張弾性率:640GPa)を一方向に並べ、メタノールで希釈したフェノール樹脂を含浸させた後、乾燥してFAW400g/m、フェノール樹脂含有率30重量%、厚さ0.2mmのUDプリプレグを得た。
<クロスプリプレグの製造>
 PAN系炭素繊維織布(繊維径:7μm、引張弾性率:230GPa、製品名:三菱レイヨン(株)製「パイロフィル織物(クロス)TR3110M、平織り、FAW200g/m)に、メタノールで希釈したフェノール樹脂を含浸させた後、乾燥してFAW200g/m、フェノール樹脂含有率30重量%、厚さ0.1mmのクロスプリプレグを得た。
<ランダムプリプレグの製造>
 フィラメント数12,000本のピッチ系炭素繊維(繊維径:10μm、引張弾性率:196GPa)を30mmの長さに切断したものをランダムウェバーにて開繊し、ピッチ系炭素短繊維が二次元ランダムに配向したシートを得た。このシートに、エタノールで希釈したフェノール樹脂を含浸させた後、乾燥してFAW200g/m、フェノール樹脂含有率30重量%、厚さ0.1mmのランダムプリプレグを製造した。
[炭素繊維強化炭素複合体の評価]
 実施例及び比較例で製造した炭素繊維強化炭素複合体の評価は以下の方法で行った。また各評価に用いた試験片は、以下の実施例、比較例にて製造したC/C複合体(元板)の長手方向における中央部から、湿式精密切断機(丸東精機株式会社製 ウォーターカッター。型式AC500CFS)を用いて切削して得たものであり、その長手方向及び短手方向の寸法は各々表1に示す通りである。試験片の厚みについては、表1に示すC/C複合体(元板)の厚みと同一である。
 また、この試験片寸法は、試験片長手方向の長さ(L)と厚み(D)との比(L/D)を一定とした。具体的には、L/D≒30である。様々な長さ(L)の試験片を用いて測定を行い、本発明の効果を確認した。尚、以下の評価は全て、上述の各試験片を3本切削して各々の試験片における測定結果の平均値とした。
<嵩密度>
 曲げ試験片寸法(長さ・幅・厚み)をノギスによって測定し、それらを掛け合わせて体積を算出した。また、天秤により重量を測定した。重量の測定値を体積の計算値で割ることにより、嵩密度を算出した。
<曲げ弾性率>
 試験片寸法を上記の通りとしたこと以外は、JIS K 7074に準拠して測定した。
<曲げ強度>
試験片寸法を上記の通りとしたこと以外は、JIS K 7074に準拠して測定した。
<炭素繊維体積含有率(Vf)>
 C/P成形体を焼成炭化することによって発生する重量減少分を焼成炭化前重量から差し引いて求めた炭素繊維重量を、全体体積、炭素繊維の比重の数値で割り、その百分率を求めることにより算出した。
<気孔率>
 水銀ポロシメーターで測定した。
<層厚み>
 ランダムに選んだ3点につき、顕微鏡観察にて厚みを実測し、その平均値を求めた。
[C/C複合体の製造および評価]
<実施例1>
 UDプリプレグ2枚を炭素繊維の引き揃え方向が長手方向となるように積層した積層プリプレグを2つ用意し、これらの積層プリプレグの間に、炭素繊維の引き揃え方向が、長手方向と直交方向(略90°)となるようにUDプリプレグ1枚を介して積層することによりプリプレグ積層体とした。このプリプレグ積層体をオートクレーブ装置にて、177℃の温度、6kg/cmの圧力をかけて120分間保持し、フェノール樹脂を硬化させて、表1に示すVfのC/P成形体を得た。
 このC/P成形体を、窒素ガス雰囲気中、750℃で5時間焼成して炭化させた後、ピッチを含浸させて再度同一の条件で焼成した。このピッチ含浸、焼成の工程を複数回行って、表1に示す層構成、寸法及びFAWのC/C複合体を得た。
 得られたC/C複合体の評価結果を表1に示す。
<実施例2>
 UDプリプレグ2枚を炭素繊維の引き揃え方向が長手方向となるように積層した積層プリプレグを2つ用意し、これらの積層プリプレグの間に、クロスプリプレグ1枚を介して積層することによりプリプレグ積層体とした。
 このプリプレグ積層体をプレス装置にて、200℃の温度、15kg/cmの圧力をかけて30分間保持し、フェノール樹脂を硬化させて、表1に示すVfのC/P成形体を得た。
 このC/P成形体を用いて、実施例1と同様にして、焼成、ピッチ含浸、焼成を行って、表1に示す層構成、寸法及びFAWのC/C複合体を得た。
 得られたC/C複合体の評価結果を表2に示す。
<実施例3,4>
 UDプリプレグの積層枚数を変えたこと以外は実施例1と同様にして、表1に示すVfのC/P成形体、表1に示す層構成、寸法及びFAWのC/C複合体を得た。
 得られたC/C複合体の評価結果を表2に示す。
<実施例5>
 UDプリプレグ1枚を炭素繊維の引き揃え方向が長手方向となるように用い、このUDプリプレグと、ランダムプリプレグ1枚を積層してプリプレグ積層体としたこと以外は、実施例2と同様にしてフェノール樹脂の硬化、成形、焼成、ピッチ含浸、焼成を行って、表1に示すVfのC/P成形体、表1に示す層構成、寸法及びFAWのC/C複合体を得た。
 得られたC/C複合体の評価結果を表2に示す。
<実施例6>
 UDプリプレグ2枚を炭素繊維の引き揃え方向が長手方向となるように積層した積層プリプレグを2つ用意し、これらの積層プリプレグの間に、ランダムプリプレグ1枚を介して積層したプリプレグ積層体を用い、実施例2と同様にしてフェノール樹脂の硬化、成形、焼成、ピッチ含浸、焼成を行って、表1に示すVfのC/P成形体、表1に示す層構成、寸法及びFAWのC/C複合体を得た。
 得られたC/C複合体の評価結果を表2に示す。
<実施例7>
 UDプリプレグの積層枚数を変えたこと以外は実施例2と同様にして、表1に示すVfのC/P成形体を得、同様に焼成、ピッチ含浸、焼成を行って、表1に示す層構成、寸法及びFAWのC/C複合体を得た。尚、このC/C複合体内部には、微少なクラックが見られた。
 得られたC/C複合体の評価結果を表2に示す。
<比較例1,2>
 実施例6において、UDプリプレグとランダムプリプレグの積層枚数を変えたこと以外は同様にして、表1に示すVfのC/P成形体、表1に示す層構成、寸法及びFAWのC/C複合体を得た。
 得られたC/C複合体の評価結果を表2に示す。
<比較例3>
 2枚のランダムプリプレグの間に、UDプリプレグ2枚を炭素繊維の引き揃え方向が長手方向となるように積層した積層プリプレグを介して積層したプリプレグ積層体を用い、実施例2と同様にしてフェノール樹脂の硬化、成形、焼成、ピッチ含浸、焼成を行って、表1に示すVfのC/P成形体、表1に示す層構成、寸法及びFAWのC/C複合体を得た。
 得られたC/C複合体の評価結果を表2に示す。
 なお、表1中、UDプリプレグを用いて形成された、炭素繊維が長手方向に配向しているC/C複合層を「UD(長手)」、炭素繊維が長手方向と直交する短手方向に配向しているC/C複合層を「UD(短手)」と記載し、クロスプリプレグを用いて形成されたC/C複合層を「クロス」と記載し、ランダムプリプレグを用いて形成されたC/C複合層を「ランダム」と記載する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1,2より、以下のことが分かる。
 UD(長手)/ランダム/UD(長手)の積層構成であっても、UD(長手)C/C複合層の厚みが薄い比較例1,2では、高い長手方向曲げ弾性率を達成し得ない。ランダム/UD(長手)/ランダムとして、UD(長手)を中間層とした比較例3も長手方向曲げ弾性率が低い。
 これに対して、一方又は双方の板面の最表層にUD(長手)C/C複合層を配置した実施例1~6のC/C複合体では、長手方向曲げ弾性率150GPa以上の高い曲げ弾性率を達成することができる。
 特に、C/C複合体の双方の板面にUD(長手)C/C複合層を設け、その厚みを厚くした場合には、高い曲げ弾性率を達成することができる。
 また、実施例1と実施例7より、大型のC/C複合体においても、本発明の効果を奏することが明白である。そして更にこの両者を比較すると、UD(短手)を中間層とした実施例1の方が、曲げ弾性率等の物性に優れることが明白である。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2011年7月28日付で出願された日本特許出願(特願2011-165542)に基づいており、その全体が引用により援用される。
 1 長手方向 C/C複合層
 2 短手方向 C/C複合層
 3 クロス C/C複合層
 4 ランダム C/C複合層
 10,10A,10B,10C C/C複合体
 11,12,13 搬送用部材

Claims (12)

  1.  炭素繊維と炭素質マトリックスとで構成され、長手方向の長さと幅方向の長さの比が1を超える板状の炭素繊維強化炭素複合体であって、
     炭素質マトリックス内に炭素繊維が前記長手方向に配向している第1の炭素繊維強化炭素複合層と、該第1の炭素繊維強化炭素複合層とは炭素繊維の配置が異なる第2の炭素繊維強化炭素複合層との少なくとも2層の炭素繊維強化炭素複合層が積層された炭素繊維強化炭素複合体であり、
     該第1の炭素繊維強化炭素複合層が該炭素繊維強化炭素複合体の少なくとも一方の板面の最表層を形成し、
     前記第1の炭素繊維強化炭素複合層の厚みが、該炭素繊維強化炭素複合体の厚みの70%以上であり、
     該長手方向の曲げ弾性率が150GPa以上であることを特徴とする炭素繊維強化炭素複合体。
  2.  前記第2の炭素繊維強化炭素複合層内の炭素繊維が前記長手方向と交叉する方向に配向していることを特徴とする請求項1に記載の炭素繊維強化炭素複合体。
  3.  前記第1の炭素繊維強化炭素複合層のFAWが1,000~20,000g/mであり、前記第2の炭素繊維強化炭素複合層のFAWが200~5,000g/mであり、炭素繊維強化炭素複合体のFAWが1,200~25,000g/mであることを特徴とする請求項1又は2のいずれか1項に記載の炭素繊維強化炭素複合体。
  4.  炭素繊維がピッチ系炭素繊維であることを特徴とする請求項1ないし3のいずれか1項に記載の炭素繊維強化炭素複合体。
  5.  炭素繊維の体積含有率が40~70%であることを特徴とする請求項1ないし4のいずれか1項に記載の炭素繊維強化炭素複合体。
  6.  嵩密度が1.65g/cm以上であることを特徴とする請求項1ないし5のいずれか1項に記載の炭素繊維強化炭素複合体。
  7.  炭素繊維が繊維軸方向に引き揃えられた一方向プリプレグの複数枚を、該炭素繊維の引き揃え方向が交叉するように積層し、得られた積層体を加熱加圧成形して得られる炭素繊維強化樹脂成形体を焼成、炭化してなることを特徴とする請求項1ないし6のいずれか1項に記載の炭素繊維強化炭素複合体。
  8.  前記プリプレグの熱硬化性樹脂含有率が15~45重量%であることを特徴とする請求項7に記載の炭素繊維強化炭素複合体。
  9.  前記炭素繊維強化樹脂成形体を焼成、炭化して得られたプリフォームに対して、以下の(1)及び(2)の工程よりなる緻密化処理を少なくとも1回行うことにより得られたものであることを特徴とする請求項7又は8に記載の炭素繊維強化炭素複合体。
    (1)コールタール・ピッチ、石油タール・ピッチ、および樹脂からなる群より選ばれる少なくとも1種の含浸材をプリフォームに含浸させる含浸工程
    (2)含浸工程後、焼成して前記含浸材を炭化させる炭化工程
  10.  請求項1ないし9のいずれか1項に記載の炭素繊維強化炭素複合体を備えることを特徴とする搬送用部材。
  11.  炭素繊維が繊維軸方向に引き揃えられた一方向プリプレグの複数枚を、該炭素繊維の引き揃え方向が交叉するように積層し、得られた積層体を加熱加圧して炭素繊維強化樹脂成形体を得、該炭素繊維強化樹脂成形体を焼成して炭化させた後、コールタール・ピッチ、石油タール・ピッチ、および樹脂からなる群より選ばれる少なくとも1種の含浸材を含浸させ、再度焼成して該含浸材を炭化させることを特徴とする請求項1ないし9のいずれか1項に記載の炭素繊維強化炭素複合体の製造方法。
  12.  前記含浸とその後の焼成炭化を複数回繰り返し行うことを特徴とする請求項11に記載の炭素繊維強化炭素複合体の製造方法。
PCT/JP2012/067433 2011-07-28 2012-07-09 炭素繊維強化炭素複合体およびその製造方法 WO2013015101A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147002237A KR102008540B1 (ko) 2011-07-28 2012-07-09 탄소 섬유 강화 탄소 복합체 및 그의 제조 방법
CN201280035157.7A CN103649015B (zh) 2011-07-28 2012-07-09 碳纤维强化碳复合体及其制造方法
JP2013519301A JP5327412B2 (ja) 2011-07-28 2012-07-09 炭素繊維強化炭素複合体およびその製造方法
US14/232,436 US10549503B2 (en) 2011-07-28 2012-07-09 Carbon fiber-reinforced carbon composite and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-165542 2011-07-28
JP2011165542 2011-07-28

Publications (1)

Publication Number Publication Date
WO2013015101A1 true WO2013015101A1 (ja) 2013-01-31

Family

ID=47600954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067433 WO2013015101A1 (ja) 2011-07-28 2012-07-09 炭素繊維強化炭素複合体およびその製造方法

Country Status (6)

Country Link
US (1) US10549503B2 (ja)
JP (2) JP5327412B2 (ja)
KR (1) KR102008540B1 (ja)
CN (1) CN103649015B (ja)
TW (1) TW201311609A (ja)
WO (1) WO2013015101A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160009054A1 (en) * 2013-03-07 2016-01-14 Mitsubishi Rayon Co., Ltd. Carbon-fiber-reinforced thermoplastic-resin composite material and molded body using the same
CN105992791A (zh) * 2013-11-27 2016-10-05 株式会社丰田自动织机 纤维强化复合材料
JP2017219214A (ja) * 2016-06-03 2017-12-14 株式会社デンソー 熱交換器
JP2018533503A (ja) * 2015-10-26 2018-11-15 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 多層繊維複合体
JP2021195269A (ja) * 2020-06-10 2021-12-27 株式会社Cfcデザイン 異方性不織布を使用した炭素/炭素複合材料
WO2023145879A1 (ja) * 2022-01-28 2023-08-03 東洋炭素株式会社 C/cコンポジット及びイオンエンジン用グリッド

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767472A1 (en) * 2013-02-19 2014-08-20 Composite Designs EU GmbH Component for a lightweight aircraft passenger seat assembly
KR101582836B1 (ko) * 2014-05-08 2016-01-08 한국세라믹기술원 전기전도막용 2차원 하이브리드 소재 제조 방법
KR101659591B1 (ko) 2014-12-18 2016-09-23 한국세라믹기술원 하이브리드 세라믹 섬유강화 복합재료 제조방법 및 이에 의해 제조된 하이브리드 세라믹 섬유강화 복합재료
CN104691041B (zh) * 2015-03-20 2018-03-13 陕西斯福特电力科技有限公司 碳纤维板材及碳纤维板材的制备工艺
CN105000463B (zh) * 2015-06-09 2018-05-22 云南电网有限责任公司曲靖供电局 220kV带电作业用碳纤维板垂直双分裂提线钩卡具
CN104967046B (zh) * 2015-06-09 2018-05-22 云南电网有限责任公司曲靖供电局 220kV带电作业用碳纤维板大刀卡卡具
CN105426600B (zh) * 2015-11-10 2018-12-07 西安交通大学 一种层叠碳纤维复合材料的层间连接弹性模量计算方法
KR20170120417A (ko) * 2016-04-21 2017-10-31 (주)엘지하우시스 연속섬유 강화 복합재
WO2017207068A1 (de) * 2016-06-03 2017-12-07 Schunk Kohlenstofftechnik Gmbh Verfahren zur herstellung einer trägerplatte und trägerplatte
CN106222804B (zh) * 2016-08-31 2021-06-15 孙旭阳 一种微纳膜状碳纤维及其制备方法
DE102016219214A1 (de) * 2016-10-04 2018-04-05 Schunk Kohlenstofftechnik Gmbh Verfahren zur Herstellung eines Bauelements und Bauelement
KR101876375B1 (ko) * 2016-12-20 2018-07-09 주식회사씨앤에프 탄소복합재 프리폼 제조방법
WO2018135562A1 (ja) * 2017-01-20 2018-07-26 三井化学株式会社 積層体及びテープワインディングパイプ
CN110545994A (zh) * 2017-03-19 2019-12-06 沙特基础工业全球技术公司 薄高刚度层压材料、包括其的便携电子装置外壳及制备层压材料和便携电子装置外壳的方法
WO2020045645A1 (ja) * 2018-08-31 2020-03-05 旭化成株式会社 炭素フォーム、複合体及び製造方法
JP7005557B2 (ja) * 2019-06-06 2022-01-21 双葉電子工業株式会社 炭素繊維強化プラスチック板および炭素繊維強化プラスチック板の製造方法
CN114761225A (zh) * 2019-12-02 2022-07-15 东洋钢钣株式会社 层叠复合体
US20220177378A1 (en) * 2020-12-03 2022-06-09 Raytheon Technologies Corporation Ceramic component
CN113403725A (zh) * 2021-06-30 2021-09-17 北京化工大学 一种多取向层叠碳纤维布的制造方法
CN115353405B (zh) * 2022-09-19 2023-02-10 陕西美兰德炭素有限责任公司 一种高强度碳/碳紧固件的制备方法
KR102593198B1 (ko) * 2023-02-07 2023-10-25 주식회사 도완 레이크 어셈블리 제조방법 및 그로부터 제조된 레이크 어셈블리

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116031A (ja) * 1992-10-07 1994-04-26 Hitachi Chem Co Ltd 擬似一方向強化c/c複合材及びその製造法
JPH111376A (ja) * 1997-06-10 1999-01-06 Toyo Tanso Kk ガラス容器製造用治具材料
JP2000086365A (ja) * 1998-09-17 2000-03-28 Toyo Tanso Kk 熱処理炉用治具

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712136A (en) * 1980-06-25 1982-01-22 Sumitomo Electric Ind Ltd Manufacture of disk brake pad
JPS60191057A (ja) 1984-03-12 1985-09-28 東レ株式会社 炭素繊維/炭素複合材料
JPH03205359A (ja) 1989-12-29 1991-09-06 Kawasaki Steel Corp 炭素繊維強化炭素複合材料の製造法
US5205888A (en) * 1990-07-03 1993-04-27 Mitsubishi Gas Chemical Company, Inc. Process for producing carbon fiber reinforced carbon materials
DE69229007T2 (de) 1991-01-16 1999-10-21 Sgl Carbon Composites Inc Verbundwerkstoffe aus siliciumcarbidfaserarmiertem Kohlenstoff
JP2888664B2 (ja) * 1991-03-30 1999-05-10 日本石油株式会社 Cfrp製光学用筒
JP3288408B2 (ja) * 1991-11-26 2002-06-04 川崎重工業株式会社 汎用炭素繊維強化炭素材料の製造法
JPH06263537A (ja) * 1993-03-15 1994-09-20 Hitachi Chem Co Ltd 擬似一方向強化c/c複合材料及びその製造方法
JP3272852B2 (ja) * 1994-03-02 2002-04-08 株式会社アクロス 炭素繊維炭素複合材料製シート
JP3522023B2 (ja) * 1994-10-03 2004-04-26 株式会社アクロス ゴルフ用クラブヘッド
EP0892099A1 (en) * 1997-07-15 1999-01-20 Mitsubishi Chemical Corporation Carbon fiber woven fabric
JP2003062786A (ja) 2001-08-24 2003-03-05 Komatsu Ltd ロボットハンド
TW200401704A (en) * 2002-07-29 2004-02-01 Du Pont Carbon fiber composite transfer member with reflective surfaces
CN102514284B (zh) * 2004-09-24 2015-08-19 伊藤忠商事株式会社 薄层层压材料
JP2007268735A (ja) * 2006-03-30 2007-10-18 Toho Tenax Co Ltd 炭素繊維シート及びその製造方法
ATE486828T1 (de) * 2006-04-11 2010-11-15 Sgl Carbon Se Verfahren zum imprägnieren von kurzfaserbündeln aus carbonfasern
JP5189843B2 (ja) 2008-01-04 2013-04-24 Jx日鉱日石エネルギー株式会社 Cfrp製搬送用部材及びそれを用いたロボットハンド
JP5352893B2 (ja) 2008-04-14 2013-11-27 東洋炭素株式会社 炭素繊維炭素複合成形体及び炭素繊維強化炭素複合体材料並びにその製造方法
JP5207934B2 (ja) 2008-11-26 2013-06-12 京セラ株式会社 セラミック部材の組立体およびこれを有する搬送用部材
JP2011046543A (ja) 2009-08-25 2011-03-10 Sunstar Engineering Inc 炭素繊維強化炭素複合材料及びその製造方法
US20110111123A1 (en) * 2009-11-12 2011-05-12 Honeywell International Inc. Increased area weight segments with pitch densification to produce lower cost and higher density aircraft friction materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116031A (ja) * 1992-10-07 1994-04-26 Hitachi Chem Co Ltd 擬似一方向強化c/c複合材及びその製造法
JPH111376A (ja) * 1997-06-10 1999-01-06 Toyo Tanso Kk ガラス容器製造用治具材料
JP2000086365A (ja) * 1998-09-17 2000-03-28 Toyo Tanso Kk 熱処理炉用治具

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160009054A1 (en) * 2013-03-07 2016-01-14 Mitsubishi Rayon Co., Ltd. Carbon-fiber-reinforced thermoplastic-resin composite material and molded body using the same
US10843437B2 (en) * 2013-03-07 2020-11-24 Mitsubishi Chemical Corporation Carbon-fiber-reinforced thermoplastic-resin composite material and molded body using the same
CN105992791A (zh) * 2013-11-27 2016-10-05 株式会社丰田自动织机 纤维强化复合材料
CN105992791B (zh) * 2013-11-27 2019-04-19 株式会社丰田自动织机 纤维强化复合材料
JP2018533503A (ja) * 2015-10-26 2018-11-15 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 多層繊維複合体
JP2017219214A (ja) * 2016-06-03 2017-12-14 株式会社デンソー 熱交換器
JP2021195269A (ja) * 2020-06-10 2021-12-27 株式会社Cfcデザイン 異方性不織布を使用した炭素/炭素複合材料
JP7153688B2 (ja) 2020-06-10 2022-10-14 株式会社Cfcデザイン 異方性不織布を使用した炭素/炭素複合材料
WO2023145879A1 (ja) * 2022-01-28 2023-08-03 東洋炭素株式会社 C/cコンポジット及びイオンエンジン用グリッド

Also Published As

Publication number Publication date
TW201311609A (zh) 2013-03-16
KR20140058516A (ko) 2014-05-14
CN103649015B (zh) 2015-12-23
CN103649015A (zh) 2014-03-19
KR102008540B1 (ko) 2019-08-07
JP6044436B2 (ja) 2016-12-14
JP2013166693A (ja) 2013-08-29
US20140170370A1 (en) 2014-06-19
JPWO2013015101A1 (ja) 2015-02-23
JP5327412B2 (ja) 2013-10-30
US10549503B2 (en) 2020-02-04

Similar Documents

Publication Publication Date Title
JP6044436B2 (ja) 炭素繊維強化炭素複合体およびその製造方法
US7407901B2 (en) Impact resistant, thin ply composite structures and method of manufacturing same
KR101472850B1 (ko) 고온-내성 복합재
WO2011118757A1 (ja) C/cコンポジット材及びその製造方法
US20130224479A1 (en) Carbon-fiber-reinforced silicon-carbide-based composite material and braking material
WO2015064733A1 (ja) コイルバネ
JP6623011B2 (ja) 炭素繊維強化炭素複合材および炭素繊維強化炭素複合材の製造方法
JP7373498B2 (ja) 炭素繊維成形断熱材及びその製造方法
CN109311282B (zh) 制造承载板的方法及承载板
JP2011046543A (ja) 炭素繊維強化炭素複合材料及びその製造方法
JP6916706B2 (ja) 成形断熱材の製造方法
JP6864588B2 (ja) 炭素繊維シート積層体及びその製造方法
JP3983459B2 (ja) 炭素繊維強化炭素複合材料製ネジ
JP2014224017A (ja) 耐摩耗部材
CN108248139B (zh) 三维编织碳碳复合材料板及其制备方法
CN113248273A (zh) 一种陶瓷基复合标签材料及其制备方法
JP2022067653A (ja) 炭素繊維強化複合材及びその製造方法
Anilas et al. Carbon-Carbon Composites–A Review
Wu et al. Improvement of Interlaminar Fracture Toughness in Glass Fiber Reinforced Plastic Laminates with Inorganic Nanofiber Sheet Interleaf
JPH0532457A (ja) 炭素繊維強化炭素複合材料及びその製造方法
JP2001181062A (ja) 樹脂含浸炭素繊維強化炭素複合材とその製造方法
WO2021206168A1 (ja) C/cコンポジット及びその製造方法、並びに熱処理用治具及びその製造方法
JP3969600B2 (ja) C/c複合材およびその製造方法
Ju A Hybrid Composite Material by Co-curing Lay-up Process for Enhanced Multifunctional Properties
JPH0659726B2 (ja) 高温断熱構造材料およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519301

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14232436

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147002237

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817640

Country of ref document: EP

Kind code of ref document: A1