WO2011118757A1 - C/cコンポジット材及びその製造方法 - Google Patents

C/cコンポジット材及びその製造方法 Download PDF

Info

Publication number
WO2011118757A1
WO2011118757A1 PCT/JP2011/057309 JP2011057309W WO2011118757A1 WO 2011118757 A1 WO2011118757 A1 WO 2011118757A1 JP 2011057309 W JP2011057309 W JP 2011057309W WO 2011118757 A1 WO2011118757 A1 WO 2011118757A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
carbon
fibers
layered body
laminate
Prior art date
Application number
PCT/JP2011/057309
Other languages
English (en)
French (fr)
Inventor
洋 町野
平岡 利治
裕二 富田
友二 藤岡
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to US13/636,026 priority Critical patent/US20130011602A1/en
Priority to KR20127026769A priority patent/KR20130004335A/ko
Priority to CN2011800157924A priority patent/CN102822119A/zh
Priority to EP11759561.1A priority patent/EP2554526A4/en
Publication of WO2011118757A1 publication Critical patent/WO2011118757A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63468Polyamides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24124Fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/50FELT FABRIC

Definitions

  • the present invention relates to a C / C composite material and a method for producing the same, and in particular, a C / C composite material capable of improving the thermal conductivity in the stacking direction at room temperature without reducing bending strength or interlaminar shear strength and the same. It relates to a manufacturing method.
  • ⁇ C / C composite materials have high strength and high toughness by combining with carbon fibers in addition to the corrosion resistance and heat resistance of carbon.
  • the C / C composite material is also characterized by being lighter than metals because of the low specific gravity of carbon. Because of these characteristics, it has been studied for use in aerospace, semiconductor and solar cell panel manufacturing, nuclear materials, metal heat treatment jig applications, etc. In addition to the above, high thermal conductivity is required. In particular, when it is necessary to support a material having a large area, it is often necessary to improve the thermal conductivity in the stacking direction of the C / C composite material.
  • Patent Document 1 In order to increase the strength and high thermal conductivity of the C / C composite material, for example, the thermal conductivity is improved by impregnating pyrolytic carbon inside the carbonaceous felt, and the bulk density is regulated. Thus, the strength is improved (see Patent Document 1 below). Although the purpose is different, in order to optimize the strength characteristics and thermal conductivity of the C / C composite material, proposals have been made to regulate the bending strength and the thermal conductivity in the stacking direction (see below). Patent Document 2).
  • Patent Document 1 it is possible to improve the thermal conductivity in the direction perpendicular to the stacking direction, but it is difficult to improve the thermal conductivity in the stacking direction. Further, the strength of the C / C composite material cannot be sufficiently increased simply by regulating the bulk density. Further, the technique described in Patent Document 2 cannot improve the thermal conductivity at a low temperature (normal temperature) to a desired value.
  • an object of the present invention is to provide a C / C composite material that can improve the thermal conductivity in the stacking direction at room temperature while improving the bending strength and interlaminar shear strength, and a method for producing the same.
  • the present invention provides a carbon fiber selected from a raw material group consisting of a layered body using continuous fibers, a layered body using chopped fibers, a 2D woven fabric, and a layered body using felt.
  • a C / C composite material having a laminate in which at least two or more raw materials are laminated, and including a matrix component inside the laminate, wherein the bending strength is 100 MPa or more at room temperature.
  • the thermal conductivity in the direction is 30 W / (m ⁇ K) or more. If it is the said structure, the thermal conductivity of the lamination direction at normal temperature can be improved, aiming at the improvement of bending strength.
  • the layered body using continuous fibers refers to a layered body in which, for example, integrated long carbon fibers arranged in one direction up to both ends in the plane direction are arranged in parallel, and a layered body using chopped fibers.
  • a short carbon fiber is two-dimensionally randomly spread in a thin and flat surface and pressed to form a layered body.
  • a 2D woven fabric is, for example, a long strip of long carbon fibers arranged in parallel.
  • the tow formed in a shape is arranged vertically and horizontally, and the tows are intersected with each other to form a woven fabric, and the layered body using felt, for example, gathers short carbon fibers randomly in three dimensions, A layered body that is pressed at a certain pressure.
  • the present invention is a carbon selected from a raw material group consisting of a layered body using continuous fibers, a layered body using chopped fibers, a 2D woven fabric, and a layered body using felt.
  • a C / C composite material having a laminate in which at least two raw materials containing fibers are laminated, and containing a matrix component inside the laminate, and having an interlayer shear strength of 10 MPa or more and a lamination direction
  • the thermal conductivity is 30 W / (m ⁇ K) or more. If it is the said structure, the thermal conductivity of the lamination direction at normal temperature can be improved, aiming at the improvement of interlayer shear strength.
  • the matrix component is composed of vapor-phase pyrolytic carbon or pitch-derived carbon.
  • the matrix can be easily produced, and the bending strength and interlaminar shear strength can be further improved, and the thermal conductivity in the stacking direction at room temperature can be further improved.
  • carbon fibers are arranged in the stacking direction of the laminate. With such a configuration, since heat conduction is performed by the carbon fiber, the thermal conductivity in the stacking direction at room temperature can be further improved.
  • the present invention has a laminate having a structure in which two or more laminar bodies containing carbon fibers having two or more cloths made of continuous fibers and felt are laminated, and the laminate.
  • C / C composite material containing a matrix component inside, wherein the fibers of the cloth are extended in one direction in a plane perpendicular to the lamination direction, and at least one cloth in the layered body is other The fibers extend in a direction different from the cloth, and a part of the felt fibers penetrates the cloth in the stacking direction.
  • both strengths of the C / C composite material can be further increased.
  • both strengths of the C / C composite material can be increased in multiple directions instead of one direction.
  • both strengths of the C / C composite material can be further increased.
  • the extending direction of the fibers in the one cloth and the extending direction of the fibers in the other cloth are perpendicular to each other. As long as the extending direction of one fiber is configured to be perpendicular to the extending direction of the other fibers, both strengths of the C / C composite material can be increased in any direction.
  • the matrix component is composed of vapor-phase pyrolytic carbon or pitch-derived carbon. Such a configuration is desirable for the same reason as described above.
  • the present invention provides at least two or more selected from a raw material group consisting of a layered body using continuous fibers, a layered body using chopped fibers, a 2D woven fabric, and a layered body using felt.
  • the present invention it is possible to improve the thermal conductivity in the stacking direction at room temperature while improving the bending strength and the interlaminar shear strength.
  • a PAN-based carbon fiber tow (single fiber diameter of about 7 ⁇ m, tensile strength of about 5 GPa, number of filaments of about 12,000) is made, and then a plurality of PAN-based carbon fiber tows are bundled in a hook shape using nylon fibers.
  • a carbon fiber unidirectional cloth was produced. This carbon fiber unidirectional cloth has high bending strength and high thermal conductivity in the extending direction of the PAN-based carbon fiber tow. However, when these are laminated, the heat conduction in the laminating direction between adjacent carbon fiber unidirectional cloths. The degree is lowered.
  • the same PAN-based carbon fiber was cut to about 25 mm to produce a felt (bulk density: about 0.1 g / cm 3 ) in which the carbon fibers were randomly oriented.
  • a C / C composite in which a felt is impregnated with a matrix component is inferior in bending strength or the like, but has high thermal conductivity in all directions.
  • the two felts 10 and the two carbon fiber unidirectional cloths 11 and 12 are arranged in order from the top, the felt 10, the carbon fiber unidirectional cloth 12, the felt 10, A layered body 1 was produced by laminating carbon fiber unidirectional cloths 11.
  • the extending direction of the carbon fibers in one carbon fiber unidirectional cloth 11 is arranged so as to be perpendicular to the extending direction of the carbon fibers in the other carbon fiber unidirectional cloth 12.
  • each layer is formed by penetrating all layers with a needle having a reverse barb and entangled with the carbon fiber of the felt.
  • a carbon fiber preform having a thickness of about 10 mm and a bulk density of about 0.6 g / cm 3 (a laminated body, hereinafter sometimes referred to as a 2.5D preform) was produced.
  • the needle punch provided opening holes with a diameter of 0.3 to 0.6 mm at an average interval of about 2 mm.
  • the carbon fibers of the felt are arranged so as to penetrate the carbon fiber unidirectional cross in the laminating direction, so that the thermal conductivity in the laminating direction at room temperature can be improved.
  • the layers are firmly bonded, the bending strength and interlayer shear strength of the C / C composite material can be increased.
  • the 2.5D preform was CVI-treated. Specifically, under the condition that the temperature is about 1000 ° C. and the pressure is 10 Torr, the above 2 in the mixed gas flow of hydrogen and propane (the volume ratio of hydrogen to propane is about 90:10). The 5D preform was held for about 1000 hours to deposit the gas phase pyrolytic carbon as a matrix component in the 2.5D preform. As a result, a C / C composite material having a bulk density increased to about 1.7 g / cm 3 was obtained. Finally, the C / C composite material was heat-treated at about 2000 ° C. The C / C composite material had a thickness of about 10 mm.
  • the carbon fiber preform has a relatively small thickness of about 10 mm, so that the needle is penetrated through all layers by needle punching, but the needle is penetrated through all layers.
  • Example 1 As Example 1, the C / C composite material shown in the above embodiment was used.
  • the C / C composite material thus produced is hereinafter referred to as the present invention material A1.
  • Example 2 Same as Example 1 except that heat treatment was performed at about 1000 ° C. for about 1 hour in a nitrogen atmosphere after removing 2.5D preform and before CVI treatment to remove nylon fibers in the 2.5D preform. Thus, a C / C composite material was produced.
  • the C / C composite material thus produced is hereinafter referred to as the present invention material A2.
  • Example 3 A C / C composite material was produced in the same manner as in Example 1 except that the C / C composite material was further heat-treated (at about 3000 ° C. for about 24 hours) using an Acheson graphitization furnace.
  • the C / C composite material thus produced is hereinafter referred to as the present invention material A3.
  • Example 4 A C / C composite material was produced in the same manner as in Example 2 except that the C / C composite material was further heat-treated (at about 3000 ° C. for about 24 hours) using an Acheson graphitization furnace.
  • the C / C composite material thus produced is hereinafter referred to as the present invention material A4.
  • Example 5 When forming the matrix on the 2.5D preform, a C / C composite material was produced in the same manner as in Example 1 above, except that pitch-derived carbon was used instead of vapor-phase pyrolytic carbon. Specifically, the same 2.5D preform as in Example 1 above was impregnated with a phenol resin and fired in a nitrogen atmosphere at about 1000 ° C. for about 1 hour to obtain a low-density C / C composite material. Next, this low density C / C composite material is impregnated with coal pitch and fired at about 1000 ° C. for about 1 hour five times to increase the bulk density to about 1.6 g / cm 3. A C / C composite material was obtained. Finally, this was heat-treated at about 2000 ° C.
  • the matrix component is mainly composed of carbon derived from pitch.
  • the C / C composite material thus produced is hereinafter referred to as the present invention material A5.
  • a plain weave cloth is produced using a tow composed of about 12,000 carbon fiber filaments, impregnated with a phenol resin, and laminated with a hot platen press to form a laminate (a low-density C / C composite material).
  • a laminate a low-density C / C composite material
  • it may be referred to as a 2D cloth laminate.
  • the laminate is fired at about 1000 ° C. for about 1 hour in a nitrogen atmosphere and then impregnated with petroleum pitch and fired at about 1000 ° C. for about 1 hour, the bulk density is about 1 A C / C composite material increased to 0.6 g / cm 3 was obtained. Finally, this was heat-treated at about 2000 ° C. for about 1 hour.
  • the C / C composite material thus produced is hereinafter referred to as a comparative material Z1.
  • Comparative Example 2 A C / C composite material was produced in the same manner as in Comparative Example 1 except that the C / C composite material was further heat-treated (at about 3000 ° C. for about 1 hour) using an Acheson graphitization furnace.
  • the C / C composite material thus produced is hereinafter referred to as a comparative material Z2.
  • Comparative Example 3 After sandwiching the laminate obtained by laminating 40 layered bodies used in Example 1 between two metal plates with a distance of about 10 mm without needle punching, impregnating with phenol resin and further curing, A laminate having a thickness of about 10 mm was obtained. This laminate was fired in a nitrogen atmosphere at about 1000 ° C. for about 1 hour to produce a low density C / C composite. A C / C composite material having a bulk density increased to about 1.6 g / cm 3 was obtained by repeating the process of impregnating the coal pitch and firing at about 1000 ° C. for about 1 hour 5 times. Finally, this was heat-treated at about 2000 ° C. for about 1 hour. The C / C composite material thus produced is hereinafter referred to as comparative material Z3.
  • thermal conductivity // the thermal conductivity in the plane direction (the thermal conductivity in the direction perpendicular to the stacking direction, which may be hereinafter referred to as thermal conductivity //), was examined by the following method. Is shown in Table 1. The experiment was performed at room temperature (23 ° C.). 3 and 4 show the relationship between the bending strength and the thermal conductivity ⁇ of these materials and the relationship between the thermal conductivity ⁇ ⁇ and the interlaminar shear strength, respectively.
  • ILSS internal shear strength
  • Thermal conductivity ⁇ , Thermal conductivity // A test piece having a diameter of about 10 ⁇ and a thickness of 3 mm (measurement direction is the thickness direction) was prepared, and the thermal diffusivity was measured using a laser flash method. This results in the bulk density (using the value of the graphite.
  • Inventive materials A1 and A2 obtained by densifying the 2.5D preform by CVI treatment have a bending strength of 100 Mpa or more, an interlayer shear strength of 10 MPa or more, and a thermal conductivity of 30 W / (m ⁇ K) or more.
  • the present invention materials A3 and A4 which differ from the present invention materials A1 and A2 in that heat treatment (graphitization treatment) of about 3000 ° C. is applied, respectively, in comparison with the present invention materials A1 and A2, the bending strength and interlaminar shear strength. are slightly decreased (however, the bending strength is 100 Mpa or more and the interlaminar shear strength is 10 MPa or more). It is recognized that the material is greatly improved as compared with the materials A1 and A2.
  • the present invention material A5 which is different from the present invention material A1 in that the matrix component is composed of pitch-derived carbon, has a slightly lower thermal conductivity than the present invention material A1 (however, heat conduction).
  • the rate is 30 W / (m ⁇ K) or more), but it is recognized that the bending strength and the interlaminar shear strength are substantially the same as the material A1 of the present invention. From the above, it can be seen that all of the inventive materials A1 to A5 have a bending strength of 100 Mpa or more, an interlayer shear strength of 10 MPa or more, and a thermal conductivity of 30 W / (m ⁇ K) or more.
  • the comparative materials Z1 and Z2 which are different from the material A1 of the present invention in that a laminate of 2D cloth is used instead of the 2.5D preform, have a bending strength of 100 Mpa or more, but both have thermal conductivity. It is recognized that the soot is less than 30 W / (m ⁇ K), and that the interlaminar shear strength is less than 10 MPa in the comparative material Z2. Further, in the comparative material Z3 different from the material A5 of the present invention in that the preform is not subjected to needle punching, the bending strength is 100 Mpa or more, but the thermal conductivity ⁇ ⁇ is less than 30 W / (m ⁇ K). It is recognized that the interlaminar shear strength is also less than 10 MPa.
  • the bending strength is 100 MPa or more and the thermal conductivity in the stacking direction is 30 W / (m ⁇ K) or more, or the interlayer shear strength is 10 MPa or more and the thermal conductivity in the stacking direction is It can be seen that the configuration of the present invention is desirable in order to achieve 30 W / (m ⁇ K) or more. This is apparent from FIGS. 3 and 4.
  • the layered body 1 is not limited to the above structure.
  • the extending direction of the carbon fiber in one carbon fiber unidirectional cloth 11 is the other carbon fiber unidirectional.
  • the cross fiber 12 may not be perpendicular to the extending direction of the carbon fibers.
  • three carbon fiber unidirectional crosses 11, 12, and 13 may be arranged, and the extending directions of these carbon fibers may be different from each other (in FIG. 6, adjacent carbon fiber unidirectional
  • the angle formed by the extending direction of the carbon fibers in the cloth is 60 °).
  • FIG. 7 when the strength in one direction (for example, the A direction in FIG.
  • the extending direction of the carbon fibers in the carbon fiber unidirectional cloths 11 and 12 is set together.
  • the direction A may be adopted, and only the carbon fiber unidirectional cross 13 may be a direction other than the A direction.
  • the felt 10 in the layered body 1 is not limited to one as described above, and may be two or more, and the carbon fiber unidirectional cloth and felt as shown in FIG. It is good also as a form laminated
  • the laminate 2 is not limited to the one having the above-described structure.
  • a 2D woven fabric 22 is disposed between laminates 21 and 21 made of 2.5D preform.
  • the structure may be a structure in which a 2D woven fabric 22 is arranged on one surface of a laminate 21 made of 2.5D preform.
  • at least two raw materials selected from a raw material group consisting of a layered body using continuous fibers, a layered body using chopped fibers, a 2D woven fabric, and a layered body using felt are used as the laminate 2.
  • the bending strength is 100 MPa or more and the thermal conductivity in the stacking direction is 30 W / (m ⁇ K) or more, or the interlayer shear strength is 10 MPa or more and the thermal conductivity in the stacking direction is 30 W / ( Any structure may be used as long as it is m ⁇ K) or more.
  • the diameter of the carbon fiber tow and the single fiber constituting the carbon fiber felt is not limited as described above, but is preferably about 5 to 20 ⁇ m. If the diameter of the single fiber is less than 5 ⁇ m, the strength per single fiber becomes too low and the strength may decrease. On the other hand, if the diameter of the single fiber exceeds 20 ⁇ m, it may be difficult to handle or needle There may be a disadvantage that the fiber is easily broken during punching.
  • the carbon fiber length of the carbon fiber felt is preferably about 10 to 100 mm. When the carbon fiber length is less than 10 mm, the fibers are not easily entangled with each other, and there is a disadvantage that the shape of the felt as a fiber aggregate is difficult to be formed. On the other hand, there may be a disadvantage that it is difficult to manufacture the felt.
  • the size of the hole formed by the needle punch is not limited as described above, but the diameter is preferably about 0.1 to 1.0 mm. If the hole diameter is less than 0.1 mm, the amount of felt fibers penetrating the cloth in the laminating direction decreases, and the thermal conductivity in the laminating direction at normal temperature may not be sufficiently improved. If the diameter of the hole exceeds 1.0 mm, the area of the hole becomes too large, and the strength of the C / C composite material may be reduced.
  • the C / C composite material of the present invention can be used for aerospace use, semiconductor and solar cell panel production, nuclear materials, metal heat treatment jig applications, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Abstract

 曲げ強度や層間せん断強度の向上を図りつつ、常温での積層方向の熱伝導度を向上させることができるC/Cコンポジット材及びその製造方法を提供することを目的としている。 炭素繊維一方向クロス11、12とフェルト10とを有する層状体1が2以上積層された積層体を有し、且つ、当該積層体の内部に気相熱分解炭素から成るマトリックス成分が含まれたC/Cコンポジット材であって、上記炭素繊維一方向クロス11における炭素繊維の延設方向は、炭素繊維一方向クロス12における炭素繊維の延設方向とは直角を成すように配置されており、且つ、ニードルパンチにより、積層体の積層方向にはフェルト10の炭素繊維が配されていることを特徴とする。

Description

C/Cコンポジット材及びその製造方法
 本発明はC/Cコンポジット材及びその製造方法に関し、特に、曲げ強度や層間せん断強度を低下させることなく、常温での積層方向の熱伝導度を向上させることができるC/Cコンポジット材及びその製造方法に関するものである。
 C/Cコンポジット材は炭素の持つ耐食性、耐熱性に加え、炭素繊維との複合化により、高強度、高靱性を持つに至っている。またC/Cコンポジット材は、炭素の比重が小さいことから、金属に比べ軽量であることも特徴である。このような特徴から、航空宇宙用、半導体及び太陽電池パネル製造用、原子力用諸材料、金属熱処理治具用途等に使用することが検討されており、これらの用途に用いる場合には、高強度であることの他に、高い熱伝導性が要求される。特に大面積のものを支持することが必要な場合には、C/Cコンポジット材の積層方向における熱伝導率を向上させることが必要となる場合が多くある。
 ここで、C/Cコンポジット材の高強度化と高熱伝導性とを図るため、例えば、炭素質フェルト内部に熱分解炭素が含浸させることによって熱伝導率の向上を図り、かさ密度を規制することによって強度の向上を図っている(下記特許文献1参照)。
 また、目的は異なるが、C/Cコンポジット材の強度特性と熱伝導率との最適化を図るため、曲げ強度と、積層方向の熱伝導率とを規制するような提案がなされている(下記特許文献2参照)。
特開平5-306168号公報 特開2002-255664号公報
 しかしながら、特許文献1に記載の技術では、積層方向と垂直方向の熱伝導度を向上させることはできるが、積層方向の熱伝導度を向上させることは困難である。また、単に、かさ密度を規制するだけでは、C/Cコンポジット材の強度を十分に高めることはできない。
 また、特許文献2に記載の技術では、低温(常温)での熱伝導率を所望の値にまで向上させることはできない。
 そこで本発明は、曲げ強度や層間せん断強度の向上を図りつつ、常温での積層方向の熱伝導度を向上させることができるC/Cコンポジット材及びその製造方法を提供することを目的としている。
 本発明は上記目的を達成するために、連続繊維を用いた層状体、チョップド繊維を用いた層状体、2D織布、及び、フェルトを用いた層状体から成る原料群から選択される炭素繊維を含む少なくとも2以上の原料が積層された積層体を有し、且つ、当該積層体の内部にマトリックス成分を含むC/Cコンポジット材であって、常温において、曲げ強度が100MPa以上で、且つ、積層方向の熱伝導度が30W/(m・K)以上であることを特徴とする。
 上記構成であれば、曲げ強度の向上を図りつつ、常温での積層方向の熱伝導度を向上させることができる。
 ここで、連続繊維を用いた層状体とは、例えば面方向両端に至るまで一方向に配置された一体の長炭素繊維を平行に並べて形成させた層状体をいい、チョップド繊維を用いた層状体とは、例えば短炭素繊維を二次元でランダムに隙間無く薄く面状に敷き詰めて、プレスして層状体としたものをいい、2D織布とは、例えば長炭素繊維を平行に配置して短冊状に形成したトウを縦横に配置し、該トウを互いに交差させて織布状に形成したものをいい、フェルトを用いた層状体とは、例えば短炭素繊維を三次元にランダムに集合させ、ある程度の圧力でプレスして層状体としたものをいう。
 また、本発明は上記目的を達成するために、連続繊維を用いた層状体、チョップド繊維を用いた層状体、2D織布、及び、フェルトを用いた層状体から成る原料群から選択される炭素繊維を含む少なくとも2以上の原料が積層された積層体を有し、且つ、当該積層体の内部にマトリックス成分を含むC/Cコンポジット材であって、層間せん断強度が10MPa以上で、且つ積層方向の熱伝導度が30W/(m・K)以上であることを特徴とする。
 上記構成であれば、層間せん断強度の向上を図りつつ、常温での積層方向の熱伝導度を向上させることができる。
 上記マトリックス成分の一部もしくは全部が、気相熱分解炭素又はピッチ由来の炭素により構成されることが望ましい。
 このような構成であればマトリックスを容易に作製でき、曲げ強度や層間せん断強度の更なる向上、及び、常温における積層方向の熱伝導度の更なる向上を図ることができる。
 上記積層体の積層方向に炭素繊維が配されていることが望ましい。
 このような構成であれば、炭素繊維により熱伝導がなされるため、常温における積層方向の熱伝導度を一層向上させることができる。
 本発明は上記目的を達成するために、連続繊維から成るクロスを2枚以上とフェルトとを有する炭素繊維を含む層状体が2以上積層された構造の積層体を有し、且つ、当該積層体の内部にマトリックス成分を含むC/Cコンポジット材であって、上記クロスの繊維は、積層方向とは垂直の平面内における1方向に延設され、且つ、上記層状体における少なくとも1のクロスは他のクロスと異なる方向に繊維が延設され、しかも、上記フェルトの繊維の一部は、上記クロスを積層方向に貫通していることを特徴とする。
 上記構成であれば、曲げ強度と層間せん断強度(以下、両強度と称するときがある)の高い連続繊維から成るクロスが存在しているので、C/Cコンポジット材の両強度を高めることができる。また、熱伝導度の高いフェルトの繊維の一部がクロスを積層方向に貫通していることにより、C/Cコンポジット材において、常温での積層方向の熱伝導度を向上させることができる。更に、フェルトの繊維がクロスを積層方向に貫通することにより、各層が強固に結合されるので、C/Cコンポジット材の両強度を一層高めることができる。また、層状体における少なくとも1のクロスは他のクロスと異なる方向に繊維が延設されているので、一方向ではなく、多方向において、C/Cコンポジット材の両強度を高めることができる。加えて、積層体の内部にマトリックス成分を含んでいるので、C/Cコンポジット材の両強度を更に高めることができる。
 上記1のクロスにおける繊維の延設方向と上記他のクロスにおける繊維の延設方向とが、直角となるように構成されることが望ましい。
 1の繊維の延設方向は他の繊維の延設方向とは直角となるように構成されていれば、何れの方向においても、C/Cコンポジット材の両強度を高めることができる。
 上記マトリックス成分の一部もしくは全部が、気相熱分解炭素又はピッチ由来の炭素により構成されることが望ましい。
 このような構成が望ましいのは、上述した理由と同様の理由である。
 本発明は上記目的を達成するために、連続繊維を用いた層状体、チョップド繊維を用いた層状体、2D織布、及び、フェルトを用いた層状体から成る原料群から選択される少なくとも2以上の原料が積層された積層体を作製するステップと、ニードルパンチを用いて、積層体の積層方向に炭素繊維を配するステップを有する、上記積層体の内部にマトリックス成分を配置するステップと、を有することを特徴とする。
 このような方法であれば、上記C/Cコンポジット材を容易に作製することができる。また、ニードルパンチを用いれば、積層体の積層方向に炭素繊維を容易に配することができるので、常温における積層方向の熱伝導度の向上を低コストで実施することができ、しかも、各層が強固に結合されるので、C/Cコンポジット材の強度が高くなる。
 本発明によれば、曲げ強度や層間せん断強度の向上を図りつつ、常温での積層方向の熱伝導度を向上させることができるといった優れた効果を奏する。
本発明に用いる層状体の分解斜視図である。 本発明に用いる炭素繊維質プリフォームの分解斜視図である。 本発明材料A1~A5及び比較材料Z1~Z3における熱伝導率と曲げ強度との関係を示すグラフである。 本発明材料A1~A5及び比較材料Z1~Z3における層間せん断強度と熱伝導率との関係を示すグラフである。 本発明に用いる層状体の変形例を示す分解斜視図である。 本発明に用いる層状体の他の変形例を示す分解斜視図である。 本発明に用いる層状体の更に他の変形例を示す分解斜視図である。 本発明に用いる積層体の変形例を示す分解斜視図である。 本発明に用いる積層体の他の変形例を示す分解斜視図である。
 以下、本発明の実施形態を以下に説明する。
 先ず、PAN系炭素繊維トウ(単繊維直径約7μm、引っ張り強度約5GPa、フィラメント数約12000本)を作製した後、ナイロン繊維を用いて、複数のPAN系炭素繊維トウを筏状に束ねることにより炭素繊維一方向クロスを作製した。この炭素繊維一方向クロスは曲げ強度は高く、PAN系炭素繊維トウの延設方向における熱伝導率は高いが、これを積層した場合には隣接する炭素繊維一方向クロス同士の積層方向の熱伝導度は低くなる。
 これと並行して、上記同じPAN系炭素繊維を約25mmにカットし、炭素繊維がランダムに配向したフェルト(かさ密度:約0.1g/cm)を作製した。このフェルトにマトリックス成分を含浸させたC/Cコンポジットは曲げ強度等には劣っているが、あらゆる方向において熱伝導度は高い。
 次に、図1に示すように、2枚の上記フェルト10と、2枚の上記炭素繊維一方向クロス11、12とを、上から順に、フェルト10、炭素繊維一方向クロス12、フェルト10、炭素繊維一方向クロス11を積層して層状体1を作製した。この際、一の炭素繊維一方向クロス11における炭素繊維の延設方向は、他の炭素繊維一方向クロス12における炭素繊維の延設方向とは直角を成すように配置されている。このように炭素繊維一方向クロス11、12を配置することにより、C/Cコンポジット材を作製した際に、両方向(図1のA方向とB方向)における曲げ強度の向上を図ることができる。
 次いで、図2に示すように、上記層状体1を8枚積層した後、逆とげを有する針を全層に貫通させることにより、ニードルパンチを施してフェルトの炭素繊維により絡合することにより各層を結合し、これによって、厚さ約10mm、かさ密度約0.6g/cmの炭素繊維質プリフォーム(積層体であって、以下、2.5Dプリフォームと称するときがある)を作製した。尚、上記ニードルパンチにより、直径0.3~0.6mmの開口孔が平均約2mm間隔で設けられた。このように、ニードルパンチを施せば、フェルトの炭素繊維が炭素繊維一方向クロスを積層方向に貫通するように配されるので、常温での積層方向の熱伝導度を向上させることができる。加えて、各層が強固に結合されるので、C/Cコンポジット材の曲げ強度と層間せん断強度とを高めることができる。
 しかる後、上記2.5DプリフォームをCVI処理した。具体的には、温度が約1000℃で、圧力が10Torrの条件下、水素とプロパンとの混合気流中(水素とプロパンとの体積比は、約90:10となっている)に、上記2.5Dプリフォームを約1000時間保持することにより、マトリックス成分である気相熱分解炭素を2.5Dプリフォーム内に沈積させた。これにより、かさ密度が約1.7g/cmまで高められたC/Cコンポジット材が得られた。最後に、C/Cコンポジット材を約2000℃で熱処理した。尚、当該C/Cコンポジット材の厚さは約10mmであった。
 尚、上記実施形態においては、炭素繊維質プリフォームは約10mmと比較的厚みの小さいものであるため、ニードルパンチにより針を全層に貫通させているが、全層に針を貫通させるのが困難な程に厚みの大きい炭素繊維質プリフォームを形成する際には、ある程度の数の層状体を重ねてニードルパンチを施し、更に層状体を重ねてニードルパンチを施す工程を繰り返すことで、フェルトの繊維を積層方向に貫通させるようにしてもよい。
(実施例1)
 実施例1としては、上記形態で示したC/Cコンポジット材を用いた。
 このようにして作製したC/Cコンポジット材を、以下、本発明材料A1と称する。
(実施例2)
 2.5Dプリフォーム中のナイロン繊維を除去するため、2.5Dプリフォーム作製後CVI処理前に、窒素雰囲気下約1000℃で約1時間の熱処理を行なった以外は、上記実施例1と同様にしてC/Cコンポジット材を作製した。
 このようにして作製したC/Cコンポジット材を、以下、本発明材料A2と称する。
(実施例3)
 アチェソン黒鉛化炉を用いて、C/Cコンポジット材に更に熱処理(約3000℃で約24時間)を施した以外は、上記実施例1と同様にしてC/Cコンポジット材を作製した。
 このようにして作製したC/Cコンポジット材を、以下、本発明材料A3と称する。
(実施例4)
 アチェソン黒鉛化炉を用いて、C/Cコンポジット材に更に熱処理(約3000℃で約24時間)を施した以外は、上記実施例2と同様にしてC/Cコンポジット材を作製した。
 このようにして作製したC/Cコンポジット材を、以下、本発明材料A4と称する。
(実施例5)
 2.5Dプリフォームにマトリックスを形成する際、気相熱分解炭素を用いずピッチ由来の炭素を用いた以外は、上記実施例1と同様にしてC/Cコンポジット材を作製した。
 具体的には、上記実施例1と同様の2.5Dプリフォームにフェノール樹脂を含浸し、窒素雰囲気中約1000℃で約1時間焼成して低密度のC/Cコンポジット材を得た。次に、この低密度のC/Cコンポジット材に石炭ピッチを含浸して約1000℃で約1時間焼成するという工程を5回繰り返すことにより、かさ密度が約1.6g/cmまで高められたC/Cコンポジット材を得た。最後に、これを約2000℃で約1時間熱処理した。尚、上述の如く、2.5Dプリフォームに石炭ピッチを含浸して焼成するという工程を繰り返しているので、マトリックス成分は主にピッチ由来の炭素により構成されることになる。
 このようにして作製したC/Cコンポジット材を、以下、本発明材料A5と称する。
(比較例1)
 先ず、約12000本の炭素繊維フィラメントからなるトウを用いて平織りクロス作製し、これにフェノール樹脂を含浸し、積層後に熱盤プレスで成形して積層体(低密度のC/Cコンポジット材であって、以下、2Dクロスの積層体と称することがある)を得た。次に、この積層体を窒素雰囲気中約1000℃で約1時間焼成した後、石油ピッチを含浸して約1000℃で約1時間焼成するという工程を5回繰り返すことにより、かさ密度が約1.6g/cmまで高められたC/Cコンポジット材を得た。最後に、これを約2000℃で約1時間熱処理した。
 このようにして作製したC/Cコンポジット材を、以下、比較材料Z1と称する。
(比較例2)
 アチェソン黒鉛化炉を用いて、C/Cコンポジット材に更に熱処理(約3000℃で約1時間)を施した以外は、上記比較例1と同様にしてC/Cコンポジット材を作製した。
 このようにして作製したC/Cコンポジット材を、以下、比較材料Z2と称する。
(比較例3)
 実施例1で用いた層状体を40枚積層した積層体をニードルパンチせずに、間隔を約10mmとした2枚の金属板間に挟んだ後、フェノール樹脂を含浸し、更に硬化させて、厚さ約10mmの積層体を得た。この積層体を、窒素雰囲気中約1000℃で約1時間焼成し、低密度のC/Cコンポジットを作製した。これに、石炭ピッチを含浸して約1000℃で約1時間焼成するという工程を5回繰り返すことにより、かさ密度が約1.6g/cmまで高められたC/Cコンポジット材を得た。最後に、これを約2000℃で約1時間熱処理した。
 このようにして作製したC/Cコンポジット材を、以下、比較材料Z3と称する。
(実験)
 上記本発明材料A1~A5及び比較材料Z1~Z3のかさ密度と、曲げ強度と、層間せん断強度(ILSS)と、積層方向の熱伝導率(以下、熱伝導率⊥と表示することがある)と、平面方向の熱伝導率(積層方向と垂直方向の熱伝導率であって、以下、熱伝導率//と表示することがある)とを、以下に示す方法により調べたので、その結果を表1に示す。尚、実験は常温(23℃)で行った。また、これら材料の曲げ強度と熱伝導率⊥との関係、及び、熱伝導率⊥と層間せん断強度との関係について、それぞれ図3及び図4に示す。
〔曲げ強度〕
 長さ60mm、幅10mm、高さ3mm(積層方向を高さとする)である直方体形状のテストピースを準備し、スパン間距離40mm、クロスヘッドスピードを0.5mm/分として3点曲げ試験を行い、最大荷重より下記(1)式を用いて曲げ強度を算出した。
 曲げ強度=3PL/(2wh)・・・(1)
 尚、(1)式において、Pは荷重、Lはスパン間距離、wは幅、hは高さである。
〔ILSS(層間せん断強度)〕
 長さ50mm、幅10mm、高さ6mm(積層方向を高さとする)である直方体形状のテストピースを準備し、スパン間距離30mm、クロスヘッドスピードを0.5mm/分として3点曲げ試験を行い、最大荷重より下記(2)式を用いて層間せん断強度を算出した。
 ILSS=3P/(4wh)・・・(2)
 尚、(2)式において、Pは荷重、wは幅、hは高さである。
〔熱伝導率⊥、熱伝導率//〕
 直径約10φ、厚さ3mm(測定方向は厚さ方向)のテストピースを準備し、レーザーフラッシュ法を用いて熱拡散率を測定した。これと、かさ密度、比熱(黒鉛の値を使用した。尚、出典は、JANAF Thermochemical Tables,3rded.等である)を乗ずることにより熱伝導率を算出した。
Figure JPOXMLDOC01-appb-T000001
<表1に示す結果の考察>
 2.5DプリフォームにCVI処理を施して緻密化した本発明材料A1、A2は、曲げ強度が100Mpa以上、層間せん断強度が10MPa以上、熱伝導率⊥が30W/(m・K)以上となっていることが認められる。
 また、それぞれ約3000℃の熱処理(黒鉛化処理)を加えた点において本発明材料A1、A2と異なる本発明材料A3、A4は、本発明材料A1、A2に比べて、曲げ強度と層間せん断強度とが若干が低下している(但し、曲げ強度が100Mpa以上で、層間せん断強度が10MPa以上である)が、両熱伝導率(熱伝導率⊥と熱伝導率//)については、本発明材料A1、A2に比べて大幅に向上していることが認められる。
 更に、マトリックス成分をピッチ由来の炭素で構成した点において本発明材料A1とは異なる本発明材料A5は、本発明材料A1に比べて、両熱伝導率が若干低下している(但し、熱伝導率⊥が30W/(m・K)以上ではある)が、曲げ強度と層間せん断強度とについては本発明材料A1と略同等となっていることが認められる。
 以上のことから、本発明材料A1~A5では、全て、曲げ強度が100Mpa以上、層間せん断強度が10MPa以上、熱伝導率⊥が30W/(m・K)以上となっていることがわかる。
 これに対して、2.5Dプリフォームの代わりに2Dクロスの積層体を用いた点において本発明材料A1と異なる比較材料Z1、Z2では、曲げ強度は100Mpa以上であるが、両者共に熱伝導率⊥が30W/(m・K)未満であり、更に、比較材料Z2では層間せん断強度も10MPa未満となっていることが認められる。
 また、プリフォームの形成においてニードルパンチを施していない点において本発明材料A5と異なる比較材料Z3では、曲げ強度は100Mpa以上であるが、熱伝導率⊥が30W/(m・K)未満であり、層間せん断強度も10MPa未満となっていることが認められる。
 以上のことから、曲げ強度が100MPa以上で、且つ、積層方向の熱伝導度が30W/(m・K)以上である、或いは、層間せん断強度が10MPa以上で、且つ積層方向の熱伝導度が30W/(m・K)以上であるためには、本発明のような構成とするのが望ましいことがわかる。尚、このことは、図3及び図4から明らかである。
(その他の事項)
(1)上記層状体1としては上記の構造に限定するものではなく、例えば図5に示すように、一の炭素繊維一方向クロス11における炭素繊維の延設方向は、他の炭素繊維一方向クロス12における炭素繊維の延設方向とは直角でなくても良い。
 また、図6に示すように、炭素繊維一方向クロス11,12,13を3枚配置し、これらの炭素繊維の延設方向をそれぞれ異ならしめても良い(図6では、隣接する炭素繊維一方向クロスにおける炭素繊維の延設方向の成す角度は60°となっている)。
 更に、図7に示すように、一の方向(例えば、図7ではA方向)における強度が特に必要とされる場合には、炭素繊維一方向クロス11,12における炭素繊維の延設方向を共にA方向とし、炭素繊維一方向クロス13のみをA方向以外の方向としても良い。
 加えて、層状体1におけるフェルト10は、上記の如く1枚に限定するものではなく、2枚以上であっても良く、また図1に示したような炭素繊維一方向クロスとフェルトとを交互に積層する形態としても良い。
(2)積層体2としては、上述した構造のものに限定するものではなく、例えば図8に示すように、2.5Dプリフォームから成る積層体21、21間に2D織布22を配置する構造や、図9に示すように、2.5Dプリフォームから成る積層体21の一方の面に2D織布22を配置する構造であっても良い。更には、積層体2としては、連続繊維を用いた層状体、チョップド繊維を用いた層状体、2D織布、及び、フェルトを用いた層状体から成る原料群から選択される少なくとも2以上の原料が積層されたもので、曲げ強度が100MPa以上で且つ積層方向の熱伝導度が30W/(m・K)以上、或いは、層間せん断強度が10MPa以上で且つ積層方向の熱伝導度が30W/(m・K)以上であれば、如何なる構造であっても良い。
(3)炭素繊維トウ及び炭素繊維フェルトを構成する単繊維の直径は、上述のように限定されるものではないが、5~20μm程度であることが好ましい。単繊維の直径が5μm未満であると、単繊維一本当たりの強度が低くなり過ぎ、強度が低下するという不都合が生じることがある一方、単繊維の直径が20μmを超えると、取り扱い時やニードルパンチ時などで繊維が折損し易くなるという不都合が生じることがある。
 また、炭素繊維フェルトの炭素繊維長は、10~100mm程度であることが好ましい。炭素繊維長が10mm未満であると、繊維同士が絡みにくく繊維集合体としてのフェルトの形状が形成されにくいという不都合が生じることがある一方、炭素繊維長が100mmを超えると、繊維同士が絡まり過ぎて逆にフェルトの製造が困難になるという不都合が生じることがある。
(4)ニードルパンチにより形成される孔の大きさは、上述のように限定されるものではないが、直径が0.1~1.0mm程度であることが好ましい。孔の直径が0.1mm未満であると、フェルトの繊維がクロスを積層方向に貫通する量が少なくなって、常温での積層方向の熱伝導度を十分に向上させることができないおそれがある一方、孔の直径が1.0mmを超えると、孔の面積が大きくなり過ぎて、C/Cコンポジット材の強度低下を招くおそれがある。
 本発明のC/Cコンポジット材は、航空宇宙用、半導体及び太陽電池パネル製造用、原子力用諸材料、金属熱処理治具用途等に用いることができる。
  1 層状体
 10 フェルト
 11 炭素繊維一方向クロス
 12 炭素繊維一方向クロス

Claims (10)

  1.  連続繊維を用いた層状体、チョップド繊維を用いた層状体、2D織布、及び、フェルトを用いた炭素繊維を含む層状体から成る原料群から選択される少なくとも2以上の原料が積層された積層体を有し、且つ、当該積層体の内部にマトリックス成分を含むC/Cコンポジット材であって、
     常温において、曲げ強度が100MPa以上で、且つ、積層方向の熱伝導度が30W/(m・K)以上であることを特徴とするC/Cコンポジット材。
  2.  連続繊維を用いた層状体、チョップド繊維を用いた層状体、2D織布、及び、フェルトを用いた炭素繊維を含む層状体から成る原料群から選択される少なくとも2以上の原料が積層された積層体を有し、且つ、当該積層体の内部にマトリックス成分を含むC/Cコンポジット材であって、
     層間せん断強度が10MPa以上で、且つ積層方向の熱伝導度が30W/(m・K)以上であることを特徴とするC/Cコンポジット材。
  3.  上記マトリックス成分の一部もしくは全部が気相熱分解炭素により構成される、請求項1又は2に記載のC/Cコンポジット材。
  4.  上記マトリックス成分の一部もしくは全部がピッチ由来の炭素により構成される、請求項1又は2に記載のC/Cコンポジット材。
  5.  上記積層体の積層方向に炭素繊維が配されている、請求項1~4の何れか1項に記載のC/Cコンポジット材。
  6.  連続繊維から成るクロスを2枚以上とフェルトとを有する炭素繊維を含む層状体が2以上積層された構造の積層体を有し、且つ、当該積層体の内部にマトリックス成分を含むC/Cコンポジット材であって、
     上記クロスの繊維は、積層方向とは垂直の平面内における1方向に延設され、且つ、上記層状体における少なくとも1のクロスは他のクロスと異なる方向に繊維が延設され、しかも、上記フェルトの繊維の一部は、上記クロスを積層方向に貫通していることを特徴とするC/Cコンポジット材。
  7.  上記1のクロスにおける繊維の延設方向と上記他のクロスにおける繊維の延設方向とが、直角となるように構成される、請求項6に記載のC/Cコンポジット材。
  8.  上記マトリックス成分の一部もしくは全部が気相熱分解炭素により構成される、請求項6又は7に記載のC/Cコンポジット材。
  9.  上記マトリックス成分の一部もしくは全部がピッチ由来の炭素により構成される、請求項6又は7に記載のC/Cコンポジット材。
  10.  連続繊維を用いた層状体、チョップド繊維を用いた層状体、2D織布、及び、フェルトを用いた層状体から成る原料群から選択される少なくとも2以上の原料が積層された積層体を作製するステップと、
     ニードルパンチを用いて、積層体の積層方向に炭素繊維を配するステップを有する、
     上記積層体の内部にマトリックス成分を配置するステップと、
     を有することを特徴とするC/Cコンポジット材の製造方法。
PCT/JP2011/057309 2010-03-26 2011-03-25 C/cコンポジット材及びその製造方法 WO2011118757A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/636,026 US20130011602A1 (en) 2010-03-26 2011-03-25 C/c composite material and method of manufacturing the same
KR20127026769A KR20130004335A (ko) 2010-03-26 2011-03-25 C/c 컴포지트재 및 그 제조 방법
CN2011800157924A CN102822119A (zh) 2010-03-26 2011-03-25 碳/碳复合材料及其制造方法
EP11759561.1A EP2554526A4 (en) 2010-03-26 2011-03-25 CARBON / CARBON COMPOSITE MATERIAL AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-072849 2010-03-26
JP2010072849A JP2011201750A (ja) 2010-03-26 2010-03-26 C/cコンポジット材及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011118757A1 true WO2011118757A1 (ja) 2011-09-29

Family

ID=44673298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057309 WO2011118757A1 (ja) 2010-03-26 2011-03-25 C/cコンポジット材及びその製造方法

Country Status (7)

Country Link
US (1) US20130011602A1 (ja)
EP (1) EP2554526A4 (ja)
JP (1) JP2011201750A (ja)
KR (1) KR20130004335A (ja)
CN (1) CN102822119A (ja)
TW (1) TW201207177A (ja)
WO (1) WO2011118757A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102731133A (zh) * 2012-07-05 2012-10-17 湖南金博复合材料科技有限公司 碳/碳/碳化硅复合材料紧固件及制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2546215B1 (en) * 2011-07-11 2017-05-31 SGL Carbon SE Composite refractory for an inner lining of a blast furnace
JP5972831B2 (ja) * 2013-06-06 2016-08-17 東洋炭素株式会社 熱処理炉用治具
CN103482995B (zh) * 2013-08-06 2015-01-07 江苏天鸟高新技术股份有限公司 连续碳纤维增强的坩埚预制体及其制备方法
JP6286963B2 (ja) * 2013-09-17 2018-03-07 住友ベークライト株式会社 積層体および筐体
CN103568385B (zh) * 2013-10-18 2015-04-22 四川创越炭材料有限公司 一种复合碳纤维硬质保温毡及其制备方法
JP6358645B2 (ja) * 2013-10-31 2018-07-18 東洋炭素株式会社 コイルバネ
JP2016097654A (ja) * 2014-11-26 2016-05-30 積水化学工業株式会社 繊維基材、樹脂シート、繊維基材の製造方法及び樹脂シートの製造方法
JP6662626B2 (ja) * 2015-12-08 2020-03-11 株式会社Cfcデザイン 炭素/炭素複合材製コイルスプリング
CN108046797A (zh) * 2017-11-30 2018-05-18 华中科技大学 一种利用晶须增韧氧化锆薄板的制备方法及其产品
CN109809828A (zh) * 2019-02-26 2019-05-28 航天材料及工艺研究所 一种三向均衡导热碳/碳复合材料的制备方法
CN111004407A (zh) * 2019-11-26 2020-04-14 航天特种材料及工艺技术研究所 一种预浸料及制备方法
CN113403725A (zh) * 2021-06-30 2021-09-17 北京化工大学 一种多取向层叠碳纤维布的制造方法
CN113896561B (zh) * 2021-11-18 2022-09-16 杭州幄肯新材料科技有限公司 一种液相-气相沉积碳纤维/碳复合热场材料及其制备方法
CN117135871A (zh) * 2023-01-30 2023-11-28 荣耀终端有限公司 复合材料件及其加工方法、零部件和电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306168A (ja) 1992-04-30 1993-11-19 Toyo Tanso Kk 炭素繊維強化炭素複合材料及びその製造方法
JPH06116031A (ja) * 1992-10-07 1994-04-26 Hitachi Chem Co Ltd 擬似一方向強化c/c複合材及びその製造法
JPH06263537A (ja) * 1993-03-15 1994-09-20 Hitachi Chem Co Ltd 擬似一方向強化c/c複合材料及びその製造方法
JPH07241945A (ja) * 1994-03-02 1995-09-19 Akurosu:Kk 炭素繊維炭素複合材料製シート
JPH07300373A (ja) * 1994-04-28 1995-11-14 Nippon Carbon Co Ltd 一方向に高い熱伝導率を有する炭素繊維強化炭素 材料
JP2000143360A (ja) * 1998-11-11 2000-05-23 Toyo Tanso Kk 層間強化した炭素繊維強化炭素複合材料
JP2002255664A (ja) 2001-03-05 2002-09-11 Tokai Carbon Co Ltd C/c複合材及びその製造方法
JP2002541002A (ja) * 1999-04-14 2002-12-03 サイテック・カーボン・ファイバーズ・エルエルシー 繊維−強化製品用のコーダルプレフォーム及びその製造方法
JP2005272164A (ja) * 2004-03-23 2005-10-06 Matsushita Electric Ind Co Ltd 高熱伝導性部材及びその製造方法、並びにそれを用いた放熱システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2090600A1 (en) * 1990-08-31 1992-03-01 Peter Geoffrey Lawton Production of shaped filamentary structures
CA2077130C (en) * 1991-09-04 2003-04-29 Edward Lee Morris Carbon fiber reinforced carbon/carbon composite and method of its manufacture
US5334414A (en) * 1993-01-22 1994-08-02 Clemson University Process for coating carbon fibers with pitch and composites made therefrom
GB9310592D0 (en) * 1993-05-22 1993-07-14 Dunlop Ltd Ultra-high performance carbon composites
DE69709716T2 (de) * 1996-04-12 2002-08-14 Honeywell Int Inc Verfahren zur herstellung eines kohlenstoff/kohlenstoff wärmetauschers
US20050159062A1 (en) * 2002-03-20 2005-07-21 Osaka Gas Company Limited Carbon fiber felts and heat insulating materials
WO2009006163A2 (en) * 2007-06-29 2009-01-08 Itt Manufacturing Enterprises, Inc. Thermally conductive structural composite material and method
FR2968001B1 (fr) * 2010-11-26 2015-11-20 Messier Bugatti Procede de realisation d'une preforme fibreuse tridimensionnelle pour la fabrication d'une piece annulaire en materiau composite carbone-carbone

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306168A (ja) 1992-04-30 1993-11-19 Toyo Tanso Kk 炭素繊維強化炭素複合材料及びその製造方法
JPH06116031A (ja) * 1992-10-07 1994-04-26 Hitachi Chem Co Ltd 擬似一方向強化c/c複合材及びその製造法
JPH06263537A (ja) * 1993-03-15 1994-09-20 Hitachi Chem Co Ltd 擬似一方向強化c/c複合材料及びその製造方法
JPH07241945A (ja) * 1994-03-02 1995-09-19 Akurosu:Kk 炭素繊維炭素複合材料製シート
JPH07300373A (ja) * 1994-04-28 1995-11-14 Nippon Carbon Co Ltd 一方向に高い熱伝導率を有する炭素繊維強化炭素 材料
JP2000143360A (ja) * 1998-11-11 2000-05-23 Toyo Tanso Kk 層間強化した炭素繊維強化炭素複合材料
JP2002541002A (ja) * 1999-04-14 2002-12-03 サイテック・カーボン・ファイバーズ・エルエルシー 繊維−強化製品用のコーダルプレフォーム及びその製造方法
JP2002255664A (ja) 2001-03-05 2002-09-11 Tokai Carbon Co Ltd C/c複合材及びその製造方法
JP2005272164A (ja) * 2004-03-23 2005-10-06 Matsushita Electric Ind Co Ltd 高熱伝導性部材及びその製造方法、並びにそれを用いた放熱システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102731133A (zh) * 2012-07-05 2012-10-17 湖南金博复合材料科技有限公司 碳/碳/碳化硅复合材料紧固件及制备方法

Also Published As

Publication number Publication date
CN102822119A (zh) 2012-12-12
US20130011602A1 (en) 2013-01-10
EP2554526A1 (en) 2013-02-06
JP2011201750A (ja) 2011-10-13
TW201207177A (en) 2012-02-16
EP2554526A4 (en) 2013-11-27
KR20130004335A (ko) 2013-01-09

Similar Documents

Publication Publication Date Title
WO2011118757A1 (ja) C/cコンポジット材及びその製造方法
KR102008540B1 (ko) 탄소 섬유 강화 탄소 복합체 및 그의 제조 방법
JP5205671B2 (ja) 耐熱複合材料
EP1305268B1 (en) Carbon-matrix composites compositions and methods related thereto
US20120219778A1 (en) Composite material containing soft carbon fiber felt and hard carbon fiber felt
KR102664327B1 (ko) 일방향으로 배향된 탄소 섬유를 포함하는 탄소 기재 및 이를 채용한 기체확산층
JP2017172790A (ja) 表面層付き成形断熱材及びその製造方法
JP6742855B2 (ja) 成形断熱材及びその製造方法
JP2015174807A (ja) 炭素繊維系断熱材及びその製造方法
EP2634159A1 (en) Carbon-fiber-reinforced silicon-carbide-based composite material and braking material
WO2019087846A1 (ja) 表面層付き成形断熱材及びその製造方法
WO1999019273A1 (fr) Materiau composite fibreux et son procede de fabrication
WO2015064733A1 (ja) コイルバネ
JP6623011B2 (ja) 炭素繊維強化炭素複合材および炭素繊維強化炭素複合材の製造方法
JP7373498B2 (ja) 炭素繊維成形断熱材及びその製造方法
JPH02227244A (ja) 成形断熱材
JP6864588B2 (ja) 炭素繊維シート積層体及びその製造方法
JP7293823B2 (ja) 繊維強化複合材料およびその製造方法
JP2006265093A (ja) 炭化シートの製造方法
JP2012184135A (ja) 成形断熱材及びその製造方法
US5935359A (en) Process for producing carbonaceous preform
KR101222467B1 (ko) 니들펀치 탄소복합재 제조방법
JP6780972B2 (ja) 炭素/炭素複合材製のつづら折り状に屈曲した板状スプリング
JP2009073715A (ja) 炭素繊維質断熱材の製造方法
JP2017008272A (ja) 炭素繊維寄与率の高い、高機能炭素/炭素複合材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015792.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759561

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13636026

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201004814

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20127026769

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011759561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8999/DELNP/2012

Country of ref document: IN