WO2012165240A1 - 樹脂組成物、プリプレグ、および積層板 - Google Patents

樹脂組成物、プリプレグ、および積層板 Download PDF

Info

Publication number
WO2012165240A1
WO2012165240A1 PCT/JP2012/063130 JP2012063130W WO2012165240A1 WO 2012165240 A1 WO2012165240 A1 WO 2012165240A1 JP 2012063130 W JP2012063130 W JP 2012063130W WO 2012165240 A1 WO2012165240 A1 WO 2012165240A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
epoxy resin
parts
hydrogen atom
Prior art date
Application number
PCT/JP2012/063130
Other languages
English (en)
French (fr)
Inventor
豪志 信國
禎啓 加藤
環 伊藤
知樹 濱嶌
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US14/119,342 priority Critical patent/US9512329B2/en
Priority to EP12793587.2A priority patent/EP2716676B1/en
Priority to KR1020137031185A priority patent/KR101877089B1/ko
Priority to SG2013086376A priority patent/SG195098A1/en
Priority to JP2013517988A priority patent/JP6010871B2/ja
Priority to CN201280027133.7A priority patent/CN103582664B/zh
Publication of WO2012165240A1 publication Critical patent/WO2012165240A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0212Resin particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2008Fabric composed of a fiber or strand which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2951Coating or impregnation contains epoxy polymer or copolymer or polyether

Definitions

  • the present invention relates to a resin composition, and more specifically, a resin composition used for a prepreg for printed wiring boards, a prepreg obtained by impregnating or coating a resin composition on a substrate, and obtained by curing the prepreg. It relates to a laminated board.
  • Patent Documents 1 to 5 As another method for reducing the thermal expansion in the surface direction, it is known that an organic filler having rubber elasticity is blended in a resin composition (for example, Patent Documents 1 to 5). However, the laminated board containing such an organic filler has the fault that a flame retardance falls.
  • Patent Document 6 silicone rubber powder instead of organic filler
  • Japanese Patent No. 3173332 Japanese Patent Laid-Open No. 8-48001 JP 2000-158589 A JP 2003-246849 A JP 2006-143973 A JP 2009-035728 A
  • the present inventors specify specific silicone rubber powder and inorganic filler.
  • the thermal expansion coefficient of the printed wiring board using the resin composition can be reduced, and while maintaining the moldability, a printed wiring board excellent in heat resistance and flame retardancy can be obtained. And gained knowledge.
  • the present invention is based on this finding.
  • an object of the present invention is to provide a resin composition that is excellent in heat resistance, flame retardancy, and moldability and that can reduce the coefficient of thermal expansion of a cured resin.
  • Another object of the present invention is to provide a prepreg using the above resin composition and a laminate thereof.
  • the resin composition according to the present invention is a resin composition comprising a cyanate ester compound (A), a maleimide compound (B), an epoxy resin (C), a silicone rubber powder (D), and an inorganic filler (E).
  • the cyanate ester compound (A) is represented by the following formula (I): (In the formula, R represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.)
  • Comprising a compound represented by The silicone rubber powder (D) is contained in an amount of 40 to 150 parts by mass with respect to 100 parts by mass in total of the cyanate ester compound (A), the maleimide compound (B) and the epoxy resin (C).
  • the inorganic filler (E) is contained in an amount of 100 to 340 parts by mass with respect to 100 parts by mass in total of the cyanate ester compound (A), the maleimide compound (B) and the epoxy resin (C). And the total content of the said silicone rubber powder (D) and the said inorganic filler (E) is 100 mass of the total amount of the said cyanate ester compound (A), the said maleimide compound (B), and the said epoxy resin (C). 140 to 380 parts by mass with respect to parts.
  • the inorganic filler (E) is composed of silicas, metal hydrates, zinc borate, aluminum oxide, boron nitride, magnesium oxide, aluminum nitride, silicon nitride, and magnesium carbonate. Is at least one selected from the group consisting of
  • the inorganic filler (E) contains silicas.
  • the epoxy resin (C) is represented by the following formula (II): (Where Ar independently represents a naphthylene group or a phenylene group, and at least one hydrogen atom of both groups may be substituted with an alkyl group or a phenylene group having 1 to 4 carbon atoms, R 1 represents a hydrogen atom or a methyl group, R 2 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or the following formula (III): (Wherein R 4 and R 5 each independently represents a hydrogen atom or a methyl group, Ar represents a phenylene group or a naphthylene group, and 1 to 3 hydrogen atoms of the phenylene group or naphthylene group are (It may be substituted with an alkyl group having 1 to 4 carbon atoms, and o is a real number of 0.1 to 4 on average.) Represents an aralkyl group represented by R 3 represents a hydrogen
  • p is an integer of 1 or 2
  • the bonding position to the naphthalene structure site may be any of the 1st to 8th positions.
  • the polyoxynaphthylene type epoxy resin represented by these is included.
  • Ar in the formula (II) is substituted with a naphthylene group (provided that at least one hydrogen atom in the naphthylene group is substituted with an alkyl group or a phenylene group having 1 to 4 carbon atoms). May be.)
  • the epoxy resin (C) includes at least one selected from the group consisting of compounds represented by the following formula (V) and the following formula (VI).
  • R 7 represents a hydrogen atom or a methyl group
  • R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group represented by the above formula (III)).
  • R 9 represents a hydrogen atom or a methyl group
  • R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group represented by the above formula (III)).
  • the epoxy resin (C) includes a polyoxynaphthylene type epoxy resin represented by the formula (II) and an anthracene type epoxy resin.
  • the anthracene type epoxy resin contains a dihydroanthracene type epoxy resin represented by the following formula (VII). (Wherein R 11 to R 20 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 0 or more.)
  • the cyanate ester compound (A) has a ratio (CN / Ep) between the cyanate group of the cyanate ester compound (A) and the number of epoxy groups of the epoxy resin (C). It is included in an amount ranging from 0.65 to 2.5.
  • the maleimide compound (B) is based on 100 parts by mass of the total amount of the cyanate ester compound (A), the maleimide compound (B), and the epoxy resin (C). 3 to 50 parts by mass are included.
  • the prepreg according to the present invention is obtained by impregnating or applying the above resin composition to a substrate.
  • the substrate is a glass cloth made of S glass or T glass.
  • the number of warps to be driven is X (lines / inch) and the number of wefts to be driven
  • the sum of X and Y is 110 to 200, where Y is Y (lines / inch).
  • the number of warps to be driven is X (lines / inch)
  • the total of X and Y is 130 to 240 when the number of driving is Y (lines / inch).
  • a laminate obtained by curing the prepreg is also provided.
  • a metal foil-clad laminate obtained by laminating and curing the prepreg and metal foil.
  • the silicone rubber powder and the inorganic filler are specified.
  • the silicone rubber powder and the inorganic filler are specified.
  • the resin composition according to the present invention contains a cyanate ester compound (A), a maleimide compound (B), an epoxy resin (C), a silicone rubber powder (D), and an inorganic filler (E) as essential components.
  • A cyanate ester compound
  • B maleimide compound
  • C epoxy resin
  • D silicone rubber powder
  • E inorganic filler
  • the cyanate ester compound (A) used in the present invention is a polymer or prepolymer represented by the above formula (I).
  • Examples of the cyanate ester compound (A) include naphthols such as ⁇ -naphthol and ⁇ -naphthol, p-xylylene glycol, ⁇ , ⁇ ′-dimethoxy-p-xylene, 1,4-di (2
  • a naphthol aralkyl resin obtained by reaction with -hydroxy-2-propyl) benzene or the like is obtained by condensing with cyanic acid, and its production method is not particularly limited, and any existing method as a cyanate ester synthesis May be manufactured.
  • the cyanate ester compound (A) can be produced by reacting a naphthol aralkyl resin represented by the following formula (VIII) with cyanogen halide in the presence of a basic compound in an inert organic solvent. . Further, a salt is formed from the naphthol aralkyl resin and the basic compound in a solution containing water, and then a two-phase interfacial reaction between the salt and cyanogen halide is performed, whereby a cyanate ester compound ( A) can also be produced.
  • VIII naphthol aralkyl resin represented by the following formula (VIII)
  • VIII cyanogen halide
  • each R independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • n is preferably 10 or less.
  • the above-described cyanate ester compound (A) is a ratio between the number of cyanate groups of the cyanate ester compound (A) and the number of epoxy groups of the epoxy resin (C) (CN). / Ep) is preferably contained in the resin composition so as to be in the range of 0.65 to 2.5.
  • the cyanate ester compound (A) may be added to the resin composition as a bismaleimide-triazine resin (also referred to as BT resin) prepolymerized with a maleimide compound described later.
  • BT resin bismaleimide-triazine resin
  • the maleimide compound (B) used in the present invention can be used without particular limitation as long as it is a compound having one or more maleimide groups in one molecule.
  • maleimide compound individually or in combination of 2 or more types.
  • bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, and bis (3-ethyl-5) -Methyl-4-maleimidophenyl) methane can be preferably used.
  • the maleimide compound (B) is represented by the general formula (IX): (In the formula, R represents a hydrogen atom or a methyl group, and n represents an integer of 1 to 10 as an average value.) Or a prepolymer of a maleimide compound and an amine compound represented by the general formula (IX) can also be used. Since the compound having the above structure has a novolak structure, it has many crosslinking points and is effective in increasing the glass transition temperature of the cured product.
  • a commercially available maleimide compound represented by the general formula (IX) may be used, and examples thereof include BMI-2300 manufactured by Daiwa Kasei Kogyo Co., Ltd.
  • the maleimide compound (B) is preferably contained in an amount of 3 to 50 parts by mass with respect to 100 parts by mass of the total amount of the cyanate ester compound (A), the maleimide compound (B) and the epoxy resin (C). From the viewpoints of heat resistance and flame resistance, 5 to 30 parts by mass is more preferable.
  • Epoxy resin (C) used in the present invention is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule and having no halogen atom in the molecular skeleton, and a known one is used. be able to.
  • polyoxynaphthylene type epoxy resin polyoxynaphthylene type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional Double bonds such as phenol type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, biphenyl type epoxy resin, aralkyl novolac type epoxy resin, alicyclic epoxy resin, polyol type epoxy resin, glycidylamine, glycidyl ester, butadiene, etc.
  • epoxy resins (C) may be used alone or in combination of two or more.
  • the above-described epoxy resin (C) may be in any form of a monomer, an oligomer, and a resin.
  • polyoxynaphthylene type epoxy resins are preferred, and in particular, polyoxynaphthylene type epoxy resins represented by the following formula (II) can be suitably used.
  • Ar independently represents a naphthylene group or a phenylene group, but at least one hydrogen atom of both groups may be substituted with an alkyl group or phenylene group having 1 to 4 carbon atoms
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or the following formula (III):
  • R 4 and R 5 each independently represents a hydrogen atom or a methyl group
  • Ar represents a phenylene group or a naphthylene group, and 1 to 3 hydrogen atoms of the phenylene group or naphthylene group are (It may be substituted with an alkyl group having 1 to 4 carbon atoms, and o is a real number of 0.1 to 4 on average.)
  • R 3 is a hydrogen atom, an aralkyl group represented by the formula (II), or the following formula (III):
  • R 7 represents a hydrogen atom or a methyl group
  • R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group represented by the above formula (III)).
  • R 9 represents a hydrogen atom or a methyl group
  • R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group represented by the above formula (III)).
  • the above-mentioned polyoxynaphthylene type epoxy resin can be produced by a known method, for example, by the method described in JP-A-2006-307162. Further, a commercially available polyoxynaphthylene type epoxy resin may be used.
  • anthracene type epoxy resin means an epoxy resin having a structure including an anthracene skeleton in the main chain.
  • anthracene type epoxy resin used in combination with the polyoxynaphthylene type epoxy resin a dihydroanthracene type epoxy resin represented by the following formula (VII) can be suitably used.
  • R 11 to R 20 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 0 or more.
  • anthracene type epoxy resin can be produced by a known method, for example, by the method described in JP-A-2006-249144. Moreover, you may use the commercially available anthracene type epoxy resin.
  • the epoxy resin (C) is preferably contained in an amount of 25 to 65 parts by mass with respect to 100 parts by mass of the total amount of the cyanate ester compound (A), the maleimide compound (B) and the epoxy resin (C). From the viewpoints of heat resistance and flame resistance, it is more preferably contained in an amount of 30 to 55 parts by mass.
  • content of anthracene type epoxy resin is cyanate ester compound (A), maleimide compound (B), and epoxy resin (
  • the total amount of C) and 100) is preferably 1 to 30 parts by mass, and by including the polyoxynaphthylene type epoxy resin and the anthracene type epoxy resin at such a content, While reducing a thermal expansion coefficient, heat resistance and a flame retardance can be improved, maintaining a moldability.
  • the silicone rubber powder (D) used in the present invention is a fine powder made of an addition polymer of vinyl group-containing dimethylpolysiloxane and methylhydrogenpolysiloxane.
  • silicone rubber powder By adding silicone rubber powder to the resin composition, there is an effect of reducing the coefficient of thermal expansion of the cured resin.
  • silicone rubber powder has high cohesiveness, and the dispersibility in the resin composition may be insufficient. Therefore, it is preferable to use a silicone rubber powder in which the surface of the fine powder is coated with a silicone resin to improve dispersibility.
  • silicone resin covering the surface polymethylsilsesquioxane in which siloxane bonds are crosslinked in a three-dimensional network can be preferably used.
  • the form of the silicone rubber powder is not particularly limited, but it is preferable to use one having an average particle diameter (D50) in the range of 0.5 to 15 ⁇ m from the viewpoint of dispersibility.
  • D50 is the median diameter, which is the particle diameter when the number or mass on the large side is equal to the number or mass on the small side when the particle size distribution of the measured powder is divided into two.
  • the D50 value is generally measured by a wet laser diffraction / scattering method.
  • the silicone rubber powder (D) is added in a specific amount if it is a resin composition containing the above-described components. That is, the silicone rubber powder (D) is added in a ratio of 40 to 150 parts by mass with respect to 100 parts by mass of the total amount of the cyanate ester compound (A), the maleimide compound (B) and the epoxy resin (C).
  • the silicone rubber powder (D) is added in a ratio of 40 to 150 parts by mass with respect to 100 parts by mass of the total amount of the cyanate ester compound (A), the maleimide compound (B) and the epoxy resin (C).
  • This range is an addition amount far exceeding the conventional addition amount, and it was unexpected that the moldability could be maintained even with such an addition amount. From the viewpoint of formability and coefficient of thermal expansion, the range of 45 to 130 parts by mass is preferable, and the range of 50 to 120 parts by mass is more preferable.
  • the inorganic filler (E) used in the present invention can be used without particular limitation as long as it is an inorganic filler usually used in a resin composition for an electric wiring board.
  • natural silica, fused silica, amorphous silica, hollow silica, etc. aluminum hydroxide, aluminum hydroxide heat-treated product (aluminum hydroxide is heat-treated to reduce part of crystal water), boehmite, Metal hydrates such as magnesium hydroxide, molybdenum compounds such as molybdenum oxide and zinc molybdate, zinc borate, zinc stannate, aluminum oxide, clay, kaolin, boron nitride, magnesium oxide, aluminum nitride, silicon nitride, magnesium carbonate , Talc, calcined clay, calcined kaolin, calcined talc, mica, short glass fibers (glass fine powders such as E glass and D glass), hollow glass and the like.
  • silica aluminum hydroxide, aluminum hydroxide heat-treated product (a product obtained by heat-treating aluminum hydroxide and reducing a portion of crystal water), boehmite, magnesium hydroxide Metal hydrates such as zinc borate, aluminum oxide, boron nitride, magnesium oxide, aluminum nitride, silicon nitride, magnesium carbonate, etc. are preferable, and silicas can be particularly preferably used.
  • silica as the inorganic filler (E)
  • these inorganic fillers may be used alone or in combination of two or more.
  • the inorganic filler (E) preferably has an average particle diameter (D50) of 0.2 to 5 ⁇ m from the viewpoint of dispersibility.
  • D50 average particle diameter
  • two or more inorganic fillers having different particle size distributions and average particle diameters may be used in appropriate combination.
  • the resin composition includes the above-described components, both moldability and low expansion coefficient can be achieved even if the inorganic filler (E) is added in a specific amount. That is, the inorganic filler (E) is added at a ratio of 100 to 340 parts by mass with respect to 100 parts by mass of the total amount of the cyanate ester compound (A), the maleimide compound (B) and the epoxy resin (C).
  • the inorganic filler (E) is added at a ratio of 100 to 340 parts by mass with respect to 100 parts by mass of the total amount of the cyanate ester compound (A), the maleimide compound (B) and the epoxy resin (C).
  • This range is an addition amount that exceeds the conventional addition amount, but it was unexpected that the moldability could be maintained even with such an addition amount. From the viewpoint of the coefficient of thermal expansion, the range of 110 to 330 parts by mass is preferable, and the range of 120 to 310 parts by mass is more preferable.
  • the total blending amount of the silicone rubber powder (D) and the inorganic filler (E) is important from the viewpoint of achieving both a coefficient of thermal expansion and moldability. That is, the total content of the silicone rubber powder (D) and the inorganic filler (E) is 100 parts by mass of the total amount of the cyanate ester compound (A), the maleimide compound (B), and the epoxy resin (C). Both of them need to be added so as to be 140 to 380 parts by mass. By setting it as content of such a range, the resin hardened
  • the resin composition according to the present invention contains the silicone rubber powder (D) and the inorganic filler (E) at the content as described above, so that the linear expansion coefficient of the obtained resin cured product is 5 ppm / ° C. or less. can do.
  • the inorganic filler (D) may be added to the resin composition alone, but in order to improve the dispersibility of the inorganic filler and the adhesive strength between the resin and the inorganic filler or glass cloth, It may be added in combination with a wetting and dispersing agent.
  • the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances.
  • aminosilanes such as ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, epoxysilanes such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -Vinylsilanes such as methacryloxypropyltrimethoxysilane, cationic silanes such as N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride, phenylsilanes, etc.
  • silane coupling agent individually or in combination of 2 or more types as appropriate.
  • any dispersion stabilizer generally used for paints can be used without any particular limitation.
  • Commercially available dispersion stabilizers may be used.
  • Disperbyk-110, 111, 180, 161, BYK-W996, W9010, and W903 manufactured by Big Chemie Japan, Inc. can be preferably used. .
  • the resin composition according to the present invention may contain other components as necessary in addition to the above-described components.
  • a curing accelerator may be included to appropriately adjust the curing rate.
  • Any curing accelerator can be used without particular limitation as long as it is generally used as a curing accelerator such as epoxy resin, cyanate ester compound, and phenol resin. Examples include, but are not limited to, organic metal salts such as copper, zinc, cobalt, nickel, imidazoles and derivatives thereof, and tertiary amines.
  • the resin composition according to the present invention may contain a silicone resin powder as a flame retardant aid, if necessary.
  • the amount of silicone resin powder added is not particularly limited, but from the viewpoint of moldability, the total amount of cyanate ester compound (A), maleimide compound (B) and epoxy resin (C) is 100 parts by mass. On the other hand, it is preferably added in the range of 30 parts by mass or less, more preferably 25 parts by mass or less.
  • the silicone resin powder is also used for the surface coating of the silicone rubber powder (D) as described above, but the content described above is an amount excluding the amount used for the surface coating of the silicone rubber powder (D). Means.
  • the resin composition according to the present invention can be used in other thermosetting resins, thermoplastic resins, various polymer compounds such as oligomers and elastomers, and other flame retardants as long as desired properties are not impaired. May be added. These can be used without particular limitation as long as they are generally used.
  • the flame retardant compound include phosphorus compounds such as phosphate esters and melamine phosphate, nitrogen-containing compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, and silicon compounds.
  • Additives include UV absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, brighteners A polymerization inhibitor and the like, and may be used alone or in appropriate combination of two or more thereof, if necessary.
  • the resin composition according to the present invention may contain an organic solvent, if necessary. By containing the organic solvent, the viscosity of the resin composition is reduced, so that the handling property can be improved.
  • Any organic solvent can be used without particular limitation as long as the mixture of the cyanate ester compound (A) and the epoxy resin (B) is compatible. Examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, and xylene, and amides such as dimethylformamide and dimethylacetamide, but are not limited thereto. is not. These organic solvents may be used alone or in combination of two or more.
  • the resin composition according to the present invention includes the above-described cyanate ester compound (A), maleimide compound (B), epoxy resin (C), silicone rubber powder (D), inorganic filler (E), and others as required. These components can be obtained by mixing.
  • the mixing method is not particularly limited, and the cyanate ester compound (A), the maleimide compound (B) and the epoxy resin (C) are dissolved in a suitable organic solvent, and the silicone rubber powder (D) is dissolved in the solution.
  • the resin composition can be produced by adding the inorganic filler (E) and stirring with a dissolver or homomixer for 30 to 120 minutes.
  • the prepreg according to the present invention is obtained by impregnating or coating the above-described resin composition on a substrate.
  • a base material the well-known thing used for various printed wiring board materials can be used. Examples thereof include inorganic fibers such as E glass, D glass, S glass, NE glass, and quartz, and organic fibers such as polyimide, polyamide, polyester, and polyparaphenylene benzobisoxazole, and can be appropriately selected depending on the intended use and performance. Moreover, you may use these base materials individually or in combination of 2 or more types as needed. Among these base materials, glass cloth made of S glass or T glass can be suitably used. By combining these base materials and the resin composition according to the present invention, resin curing with a lower coefficient of thermal expansion is possible. You can get things.
  • a woven fabric woven from yarns in which 50 to 400 glass monofilaments having an average diameter in a cross section of 3.5 to 7.5 ⁇ m are bundled can be preferably used.
  • the number of warps to be driven is X (lines / inch) and the number of wefts to be driven is Y (lines / inch).
  • a glass cloth having a total of X and Y in the range of 110 to 200 can be suitably used.
  • the total of X and Y is more preferably 120 to 200.
  • the number of warps to be driven is X (lines / inch) and the number of wefts to be driven is Y (lines / inch).
  • a glass cloth having a total of X and Y of 130 to 240 can be preferably used.
  • the total of X and Y is particularly preferably 150 to 240.
  • the thickness of the glass cloth is not particularly limited, but usually a thickness of about 0.01 to 0.30 mm is preferably used.
  • the prepreg according to the present invention can be produced by impregnating or applying the above resin composition to a substrate.
  • the resin is semi-cured by heating in a dryer at 100 to 200 ° C. for 1 to 60 minutes.
  • the adhesion amount of the resin composition (including the inorganic filler) to the substrate is preferably in the range of 20 to 90% by mass with respect to the entire prepreg.
  • the laminate according to the present invention is obtained by laminating and molding (curing) the above-described prepreg.
  • a laminated board is manufactured by superimposing one or two or more of the above-described prepregs, placing a metal foil such as copper or aluminum on one side or both sides as desired, laminating, and molding (curing).
  • the metal foil to be used any metal foil can be used without particular limitation as long as it is used for printed wiring board materials.
  • the method of the normal laminated board for printed wiring boards and a multilayer board is employable for lamination molding. For example, as the conditions for lamination molding, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, etc.
  • the temperature is 100 to 300 ° C.
  • the pressure is 2 to 100 kgf / cm 2
  • the heating time is 0.05 to A range of 5 hours is common.
  • it can also be set as a multilayer board by carrying out lamination molding combining the above-mentioned prepreg and the wiring board for inner layers prepared separately.
  • Example 1 48 parts by mass of ⁇ -naphthol aralkyl-type cyanate ester compound (cyanate equivalent: 261 g / eq.) Prepared in Synthesis Example and bis (3-ethyl-5-methyl-4maleimidophenyl) methane (BMI-70, manufactured by KAI Kasei Co., Ltd.) ) 17 parts by mass, 20 parts by mass of polyoxynaphthylene type epoxy resin (EXA-7311, epoxy equivalent: 277 g / eq., Manufactured by DIC Corporation), phenol biphenyl aralkyl type epoxy resin (NC-3000-FH, epoxy equivalent) : 320 g / ep., 10 parts by mass of Nippon Kayaku Co., Ltd., 5 parts by mass of a naphthalene skeleton type epoxy resin (EXA-4032, epoxy equivalent: 140 g / ep., Manufactured by Dainippon Ink
  • This varnish is diluted with methyl ethyl ketone, has a thickness of 0.1 mm, a mass of 104 g / m 2 , an average monofilament diameter of 7 ⁇ m, and a total number of warp and weft threads driven of 116 T-glass woven fabric was impregnated and dried by heating at 160 ° C. for 4 minutes to obtain a prepreg having a resin content of 50% by mass.
  • Example 2 35 parts by mass of ⁇ -naphthol aralkyl type cyanate ester compound used in Example 1, 15 parts by mass of bis (3-ethyl-5-methyl-4maleimidophenyl) methane, polyoxynaphthylene type epoxy used in Example 1 30 parts by mass of resin, 10 parts by mass of phenol biphenyl aralkyl type epoxy resin used in Example 1, 10 parts by mass of dihydroanthracene type epoxy resin (YX8800, epoxy equivalent: 180 g / ep., Manufactured by Japan Epoxy Resins Co., Ltd.) 2 parts by weight of the wetting and dispersing agent used in Example 1, 5 parts by weight of the wetting and dispersing agent (disperbyk-111, manufactured by Big Chemie Japan), 300 parts by weight of spherical fused silica, silicone resin powder (Tospearl) 120, Momentive Performance Ma Riaruzu Japan Ltd.
  • Example 3 37 parts by mass of ⁇ -naphthol aralkyl cyanate ester compound used in Example 1, 25 parts by mass of bis (3-ethyl-5-methyl-4maleimidophenyl) methane, polyoxynaphthylene type epoxy used in Example 1 35 parts by mass of resin and 3 parts by mass of dihydroanthracene type epoxy resin used in Example 2 were dissolved and mixed with methyl ethyl ketone, and 1 part by mass of wetting and dispersing agent used in Example 1, 170 parts by mass of spherical fused silica, 120 parts by mass of the used silicone rubber powder and 0.02 parts by mass of zinc octylate were mixed to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated with the T glass woven fabric used in Example 1, and dried by heating at 160 ° C. for 4 minutes to obtain a prepreg having a resin content of 50 mass%.
  • Example 4 45 parts by mass of ⁇ -naphthol aralkyl type cyanate ester compound used in Example 1, 10 parts by mass of bis (3-ethyl-5-methyl-4maleimidophenyl) methane, phenol biphenyl aralkyl type epoxy resin used in Example 1 30 parts by mass, 15 parts by mass of the dihydroanthracene type epoxy resin used in Example 2 were dissolved and mixed with methyl ethyl ketone, 1 part by mass of the wetting and dispersing agent used in Example 1, 150 parts by mass of spherical fused silica, and 50 parts by mass of silicone rubber powder. Part and 0.02 part by mass of zinc octylate were mixed to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated with the T glass woven fabric used in Example 1, and dried by heating at 160 ° C. for 4 minutes to obtain a prepreg having a resin content of 50 mass%.
  • Example 5 45 parts by mass of ⁇ -naphthol aralkyl type cyanate ester compound used in Example 1, 10 parts by mass of bis (3-ethyl-5-methyl-4maleimidophenyl) methane, polyoxynaphthylene type epoxy used in Example 1 15 parts by mass of resin, 20 parts by mass of phenol biphenyl aralkyl type epoxy resin and 10 parts by mass of dihydroanthracene type epoxy resin used in Example 2 were dissolved and mixed with methyl ethyl ketone, and 1 part by mass of the wetting and dispersing agent used in Example 1 was spherical.
  • a varnish was obtained by mixing 150 parts by mass of fused silica, 50 parts by mass of silicone rubber powder, and 0.02 parts by mass of zinc octylate. This varnish was diluted with methyl ethyl ketone, impregnated with the T glass woven fabric used in Example 1, and dried by heating at 160 ° C. for 4 minutes to obtain a prepreg having a resin content of 50 mass%.
  • Example 6 35 parts by mass of ⁇ -naphthol aralkyl type cyanate ester compound used in Example 1, 15 parts by mass of bis (3-ethyl-5-methyl-4maleimidophenyl) methane, polyoxynaphthylene type epoxy used in Example 1 30 parts by mass of resin, 10 parts by mass of phenol biphenyl aralkyl type epoxy resin, and 10 parts by mass of dihydroanthracene type epoxy resin used in Example 2 were dissolved and mixed with methyl ethyl ketone, and 2 parts by mass of the wetting and dispersing agent used in Example 1 were spherical.
  • Varnish was obtained by mixing 300 parts by mass of fused silica, 10 parts by mass of the silicone resin powder used in Example 2, 40 parts by mass of the silicone rubber powder used in Example 1, and 0.02 parts by mass of zinc octylate.
  • This varnish is diluted with methyl ethyl ketone, has a thickness of 0.1 mm, a mass of 114 g / m 2 , an average monofilament diameter of 7 ⁇ m, and a total number of warp and weft threads driven of 130 T was impregnated and dried by heating at 160 ° C. for 4 minutes to obtain a prepreg having a resin content of 46% by mass.
  • Comparative Example 1 A prepreg was obtained in the same manner as in Example 1 except that 250 parts by mass of spherical fused silica was changed to 90 parts by mass.
  • Comparative Example 2 A prepreg was obtained in the same manner as in Example 1 except that 220 parts by mass was used instead of 250 parts by mass of spherical fused silica and 20 parts by mass was used instead of 40 parts by mass of silicone rubber powder.
  • Comparative Example 3 Instead of an ⁇ -naphthol aralkyl type cyanate ester compound (cyanate equivalent: 261 g / eq.), a prepolymer of 2,2-bis (4-cyanatephenyl) propane (BT2070, cyanate equivalent: 139 g / ep., Mitsubishi Gas) A prepreg was obtained in the same manner as in Example 4 except that 45 parts by mass was used and 10 parts by mass was used instead of 50 parts by mass of the silicone rubber powder.
  • BT2070 2,2-bis (4-cyanatephenyl) propane
  • Comparative Example 4 A prepreg was obtained in the same manner as in Example 4 except that 45 parts by mass of 2,2-bis (4-cyanatephenyl) propane prepolymer was used instead of the ⁇ -naphthol aralkyl type cyanate ester compound.
  • Example 5 Comparative Example 5 In Example 1, 45 parts by mass of ⁇ -naphthol aralkyl type cyanate ester compound, 20 parts by mass of polyoxynaphthylene type epoxy resin and 35 parts by mass of phenol biphenyl aralkyl type epoxy resin used in Example 1 were dissolved and mixed with methyl ethyl ketone. A varnish was obtained by mixing 1 part by weight of the wet dispersant, 150 parts by weight of spherical fused silica, 40 parts by weight of silicone rubber powder, and 0.02 parts by weight of zinc octylate. This varnish was diluted with methyl ethyl ketone, impregnated with the T glass woven fabric used in Example 1, and dried by heating at 160 ° C. for 4 minutes to obtain a prepreg having a resin content of 50 mass%.
  • Comparative Example 6 A prepreg was obtained in the same manner as in Example 1 except that E glass woven fabric was used instead of T glass woven fabric.
  • Comparative Example 7 A prepreg was obtained in the same manner as in Example 5 except that 350 parts by mass was used instead of the spherical fused silica.
  • Comparative Example 8 A prepreg was obtained in the same manner as in Example 5 except that 200 parts by mass was used instead of 150 parts by mass of spherical fused silica and 200 parts by mass was used instead of 40 parts by mass of silicone rubber powder.
  • metal-clad laminates were evaluated for flame retardancy, glass transition temperature, coefficient of thermal expansion, and formability.
  • the evaluation of flame retardancy, glass transition temperature, and coefficient of thermal expansion was performed by the following method after the metal-clad laminate was etched to remove the copper foil.
  • Flame retardancy Evaluated according to UL94 vertical combustion test method.
  • Glass transition temperature Measured with a dynamic viscoelasticity analyzer (TA Instruments) according to JIS C6481.
  • Coefficient of thermal expansion The temperature was increased from 40 ° C. to 340 ° C. at 10 ° C. per minute with a thermomechanical analyzer (TA Instruments), and the linear expansion coefficient in the plane direction from 60 ° C. to 120 ° C. was measured. The measurement direction was the longitudinal direction (Warp) of the glass cloth of the laminate.
  • Formability The copper foil of the pressed copper-clad laminate was etched, the appearance was observed, and the presence or absence of voids was confirmed.
  • the evaluation criteria were as follows. OK: No void NG: With void
  • the metal-clad laminates obtained in Examples 1 to 6 are Comparative Example 1 with a small amount of fused silica and Comparative Example 2 with a small amount of silicone rubber powder whose surface is coated with a silicone resin. It became clear that the coefficient of thermal expansion was lower.
  • the thermal expansion coefficient in the surface direction is lower than that of the example.
  • Comparative Example 7 in which the amount of fused silica was increased and Comparative Example 8 in which the amount of silicone rubber powder whose surface was coated with a silicone resin was significantly inferior in moldability, making it impossible to obtain a metal-clad laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Laminated Bodies (AREA)

Abstract

 耐熱性、難燃性および成形性に優れるとともに、とりわけ樹脂硬化物の熱膨張率を低減することができる樹脂組成物を提供する。本発明による樹脂組成物は、シアン酸エステル化合物(A)、マレイミド化合物(B)、エポキシ樹脂(C)、シリコーンゴムパウダー(D)、および無機充填材(E)を含んでなる樹脂組成物であって、前記シアン酸エステル化合物(A)が、下記式(I)で表される化合物を含んでなり、前記シリコーンゴムパウダー(D)が、前記シアン酸エステル化合物(A)と前記マレイミド化合物(B)と前記エポキシ樹脂(C)との総量100質量部に対して、40~150質量部含まれており、前記無機充填材(E)が、前記シアン酸エステル化合物(A)と前記マレイミド化合物(B)と前記エポキシ樹脂(C)との総量100質量部に対して、100~340質量部含まれており、かつ前記シリコーンゴムパウダー(D)および前記無機充填材(E)の総含有量が、前記シアン酸エステル化合物(A)と前記マレイミド化合物(B)と前記エポキシ樹脂(C)との総量100質量部に対し、140~380質量部である。 (式中、Rは水素原子またはメチル基を表し、nは1以上の整数を示す。)

Description

樹脂組成物、プリプレグ、および積層板
 本発明は、樹脂組成物に関し、より詳細には、プリント配線板用プリプレグに使用される樹脂組成物、その樹脂組成物を基材に含浸または塗布したプリプレグ、およびそのプリプレグを硬化させて得られる積層板に関する。
発明の背景
 近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体の高集積化・高機能化・高密度実装化がますます加速しており、それに伴い、半導体プラスチックパッケージ用積層板に対する特性や高信頼性への要求が高まっている。また、環境問題への関心の高まりから、無鉛半田を使用するために、高温でのリフロー工程に適合できる高い耐熱性を有する積層板が求められている。
 また、近年では積層板の面方向の熱膨張率低減が強く求められている。半導体素子と半導体プラスチックパッケージ用プリント配線板との熱膨張率の差が大きいと、熱衝撃が加わった際の熱膨張率差により、半導体プラスチックパッケージに反りが発生し、半導体素子と半導体プラスチックパッケージ用プリント配線板との間や、半導体プラスチックパッケージと実装されるプリント配線板との間で、接続不良が生じることがある。プリント配線板の高密度化に伴う発熱量の増大により、その面方向の熱膨張率を非常に低い値にすることが要求されている。
 積層板の面方向の熱膨張率を小さくする一般的な手法として、原料の樹脂組成物に無機フィラーを充填させる方法が知られている。しかしながら、無機フィラーの充填量が多くなると、熱膨張率は低減するものの、積層板の成型性が悪くなるという問題がある。
 面方向の低熱膨張化の他の手法として、ゴム弾性を有する有機フィラーを、樹脂組成物中に配合させることが知られている(例えば、特許文献1~5等)。しかしながら、このような有機フィラーを含有する積層板は、難燃性が低下するという欠点がある。
 この問題を解決するために、有機フィラーの代わりにシリコーンゴムパウダーを使用することが提案されている(特許文献6)。しかしながら、この提案された材料であっても、近年要求される低熱膨張率の水準にまでには未だ到達しておらず、より熱膨張率の低い材料が希求されていた。
特許第3173332号公報 特開平8-48001号公報 特開2000-158589号公報 特開2003-246849号公報 特開2006-143973号公報 特開2009-035728号公報
 本発明者らは、特定のシアン酸エステル化合物と、マレイミド化合物と、エポキシ樹脂と、シリコーンゴムパウダーと、無機充填材とを含んでなる樹脂組成物において、シリコーンゴムパウダーおよび無機充填材の特定の割合で含有させることにより、当該樹脂組成物を使用したプリント配線板の熱膨張率を低減できるとともに、成形性を維持しながら、耐熱性および難燃性にも優れたプリント配線板が得られる、との知見を得た。本発明はかかる知見によるものである。
 したがって、本発明の目的は、耐熱性、難燃性および成形性に優れるとともに、とりわけ樹脂硬化物の熱膨張率を低減することができる樹脂組成物を提供することである。また、本発明の別の目的は、上記樹脂組成物を用いたプリプレグ、およびその積層板を提供することである。
 本発明による樹脂組成物は、シアン酸エステル化合物(A)、マレイミド化合物(B)、エポキシ樹脂(C)、シリコーンゴムパウダー(D)、および無機充填材(E)を含んでなる樹脂組成物であって、
 前記シアン酸エステル化合物(A)が、下記式(I):
Figure JPOXMLDOC01-appb-C000008
(式中、Rは水素原子またはメチル基を表し、nは1以上の整数を示す。)
で表される化合物を含んでなり、
 前記シリコーンゴムパウダー(D)が、前記シアン酸エステル化合物(A)と前記マレイミド化合物(B)と前記エポキシ樹脂(C)との総量100質量部に対して、40~150質量部含まれており、
 前記無機充填材(E)が、前記シアン酸エステル化合物(A)と前記マレイミド化合物(B)と前記エポキシ樹脂(C)との総量100質量部に対して、100~340質量部含まれており、かつ
 前記シリコーンゴムパウダー(D)および前記無機充填材(E)の総含有量が、前記シアン酸エステル化合物(A)と前記マレイミド化合物(B)と前記エポキシ樹脂(C)との総量100質量部に対し、140~380質量部である。
 また、本発明の実施態様によれば、前記無機充填材(E)が、シリカ類、金属水和物、ホウ酸亜鉛、酸化アルミニウム、窒化ホウ素、酸化マグネシウム、窒化アルミニウム、窒化ケイ素、および炭酸マグネシウムからなる群より選択される少なくとも1種である。
 また、本発明の実施態様によれば、前記無機充填材(E)がシリカ類を含む。
 また、本発明の実施態様によれば、前記エポキシ樹脂(C)が、下記式(II):
Figure JPOXMLDOC01-appb-C000009
(式中、
 Arは、それぞれ独立して、ナフチレン基またはフェニレン基を表すが、両基の少なくとも1つの水素原子が、炭素数1~4のアルキル基またはフェニレン基で置換されていてもよく、
 Rは、水素原子またはメチル基を表し、
 Rは、それぞれ独立して、水素原子、炭素原子数1~4のアルキル基、または下記式(III): 
Figure JPOXMLDOC01-appb-C000010
(式中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表し、Arはフェニレン基またはナフチレン基を表すが、そのフェニレン基またはナフチレン基の1~3個の水素原子が炭素数1~4のアルキル基で核置換されていてもよく、oは平均で0.1~4の実数である。)
で表されるアラルキル基を表し、
 Rは、水素原子、前記式(III)で表されるアラルキル基、または下記式(IV):
Figure JPOXMLDOC01-appb-C000011
(式中、Rは水素原子またはメチル基を表し、Arはナフチレン基を表すが、そのナフチレン基の少なくとも1つの水素原子が、炭素原子数1~4のアルキル基、アラルキル基またはフェニレン基で置換されていてもよく、pは1または2の整数である。)で表されるエポキシ基含有芳香族炭化水素基を表し、
 mおよびnは、それぞれ0~4の整数であるが、m=n=0となることはなく、
 ナフタレン構造部位への結合位置は、第1位~第8位の何れであってもよい。)
で表されるポリオキシナフチレン型エポキシ樹脂を含む。
 また、本発明の実施態様によれば、前記式(II)のArが、ナフチレン基(但し、前記ナフチレン基中の少なくとも1つの水素原子が炭素原子1~4のアルキル基またはフェニレン基で置換されていてもよい。)である。
 また、本発明の実施態様によれば、前記式(II)のmおよびnが、0~2の整数であるが、m=n=0となることはない。
 また、本発明の実施態様によれば、前記エポキシ樹脂(C)が、下記式(V)および下記式(VI)で表される化合物からなる群より選択される少なくとも1種以上を含む。
Figure JPOXMLDOC01-appb-C000012
(式中、Rは水素原子またはメチル基を示し、Rは、それぞれ独立して、水素原子、炭素原子数1~4のアルキル基、または前記式(III)で表されるアラルキル基を表す。)
Figure JPOXMLDOC01-appb-C000013
(式中、Rは水素原子またはメチル基を示し、R10は、それぞれ独立して、水素原子、炭素原子数1~4のアルキル基、または前記式(III)で表されるアラルキル基を表す。)
 また、本発明の実施態様によれば、前記エポキシ樹脂(C)が、前記式(II)で表されるポリオキシナフチレン型エポキシ樹脂と、アントラセン型エポキシ樹脂とを含む。
 また、本発明の実施態様によれば、前記アントラセン型エポキシ樹脂が、下記式(VII)で表されるジヒドロアントラセン型エポキシ樹脂を含む。
Figure JPOXMLDOC01-appb-C000014
(式中、R11~R20は、それぞれ独立して、水素原子、または炭素数1~6のアルキル基を示し、nは0以上の整数を示す。)
 また、本発明の実施態様によれば、前記シアン酸エステル化合物(A)が、シアン酸エステル化合物(A)のシアネート基と前記エポキシ樹脂(C)のエポキシ基数との比(CN/Ep)が0.65~2.5の範囲となる量で含まれる。
 また、本発明の実施態様によれば、前記マレイミド化合物(B)が、前記シアン酸エステル化合物(A)と前記マレイミド化合物(B)と前記エポキシ樹脂(C)との総量100質量部に対して、3~50質量部含まれる。
 また、本発明によるプリプレグは、上記樹脂組成物を、基材に含浸または塗布してなるものである。
 また、本発明の実施態様によれば、前記基材が、SガラスまたはTガラスからなるガラスクロスである。
 また、本発明の実施態様によれば、前記ガラスクロスの経糸および緯糸が、直径の平均値が5μm以上のモノフィラメントからなる場合において、経糸の打ち込み本数をX(本/インチ)、緯糸の打ち込み本数をY(本/インチ)としたときの、XとYとの合計が110~200である。
 また、本発明の実施態様によれば、前記ガラスクロスの経糸および緯糸が、直径の平均値が4.5μm以下のモノフィラメントからなる場合において、経糸の打ち込み本数をX(本/インチ)、緯糸の打ち込み本数をY(本/インチ)としたときの、XとYとの合計が130~240である。
 また、本発明の別の実施態様によれば、上記プリプレグを硬化して得られる積層板も提供される。
 また、本発明の別の実施態様によれば、上記プリプレグと金属箔とを積層し硬化してなる金属箔張り積層板も提供される。
 本発明によれば、特定のシアン酸エステル化合物と、マレイミド化合物と、エポキシ樹脂と、シリコーンゴムパウダーと、無機充填材とを含んでなる樹脂組成物において、シリコーンゴムパウダーおよび無機充填材が、特定の割合で含まれることにより、耐熱性、難燃性および成形性に優れるとともに、とりわけ樹脂硬化物の熱膨張率を低減することができる樹脂組成物を実現することができる。
発明の具体的説明
 本発明による樹脂組成物は、シアン酸エステル化合物(A)、マレイミド化合物(B)、エポキシ樹脂(C)、シリコーンゴムパウダー(D)、および無機充填材(E)を必須成分として含む。以下、本発明による樹脂組成物を構成する各成分について説明する。
<シアン酸エステル化合物(A)>
 本発明において用いられるシアン酸エステル化合物(A)は、上記式(I)で表されるポリマーまたはプレポリマーである。このようなシアン酸エステル化合物(A)としては、α-ナフトールあるいはβ-ナフトール等のナフトール類と、p-キシリレングリコール、α,α’-ジメトキシ-p-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼン等との反応により得られるナフトールアラルキル樹脂を、シアン酸とを縮合させて得られるものであり、その製法は特に限定されず、シアン酸エステル合成として現存するいかなる方法で製造してもよい。
 下記式(VIII)で表されるナフトールアラルキル樹脂とハロゲン化シアンとを不活性有機溶媒中、塩基性化合物の存在下で反応させることにより、上記シアン酸エステル化合物(A)を製造することができる。また、水を含有する溶液中で、上記ナフトールアラルキル樹脂と塩基性化合物とから塩を形成させ、次いで、この塩とハロゲン化シアンとの2相系界面反応を行うことにより、シアン酸エステル化合物(A)を製造することもできる。
Figure JPOXMLDOC01-appb-C000015
(式中、Rは、それぞれ独立して、水素原子またはメチル基を表し、nは、1以上の整数を表す。)
 上記式(I)において、nは10以下であることが好ましい。このようなシアン酸エステル化合物(A)を用いることにより、樹脂組成物の粘度が高くならず、基材への含浸性が良好で、積層板としての性能を維持することができる。また、シアン酸エステル化合物(A)を合成する際に分子内重合が起こりにくく、水洗時の分液性が向上するため、収量の低下を抑制することができる。
 上記したシアン酸エステル化合物(A)は、難燃性および硬化性の観点から、樹脂組成物中のシアン酸エステル化合物(A)のシアネート基数とエポキシ樹脂(C)のエポキシ基数との比(CN/Ep)が0.65~2.5の範囲となるように、樹脂組成物中に含有されることが好ましい。
 シアン酸エステル化合物(A)は、後記するマレイミド化合物とプレ重合したビスマレイミド・トリアジン樹脂(BT樹脂ともいう。)として、樹脂組成物中に添加されてもよい。
<マレイミド化合物(B)>
 本発明において用いられるマレイミド化合物(B)は、1分子中に1個以上のマレイミド基を有する化合物であれば、特に制限なく使用することができる。例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、若しくはこれらマレイミド化合物のプレポリマー、またはマレイミド化合物とアミン化合物とのプレポリマーなどが挙げられるが、これらに限定されるものではない。また、上記したマレイミド化合物は、単独でまたは2種以上を適宜組み合わせて使用してもよい。これらのなかでも、耐熱性および耐燃性の観点から、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、およびビス(3-エチル-5-メチル-4-マレイミドフェニル)メタンを好適に使用することができる。
 また、本発明においては、マレイミド化合物(B)として、一般式(IX):
Figure JPOXMLDOC01-appb-C000016
(式中、Rは水素原子またはメチル基を示し、nは平均値として1から10までの整数を示す。)
で表されるプレポリマー、または一般式(IX)で表されるマレイミド化合物とアミン化合物とのプレポリマーを使用することもできる。上記構造の化合物は、ノボラック構造を有するため架橋点が多く、硬化物のガラス転移温度を上昇させる効果がある。上記した一般式(IX)で表されるマレイミド化合物は市販のものを使用してもよく、例えば、大和化成工業株式会社製のBMI-2300が挙げられる。
 マレイミド化合物(B)は、シアン酸エステル化合物(A)とマレイミド化合物(B)とエポキシ樹脂(C)との総量100質量部に対して、3~50質量部含まれていることが好ましく、耐熱性、耐燃性の観点から、5~30質量部含まれていることがより好ましい。
<エポキシ樹脂(C)>
 本発明において用いられるエポキシ樹脂(C)とは、1分子中に2個以上のエポキシ基を有し、分子骨格内にハロゲン原子を有しない化合物であれば特に制限なく、公知のものを使用することができる。例えば、ポリオキシナフチレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの2重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられる。これらのエポキシ樹脂(C)は、単独でまたは2種以上を適宜組み合わせて使用してもよい。また、上記したエポキシ樹脂(C)は、モノマー、オリゴマーおよび樹脂のいずれの形態であってもよい。
 上記したなかでも、ポリオキシナフチレン型エポキシ樹脂が好ましく、とりわけ、下記式(II)で表されるポリオキシナフチレン型エポキシ樹脂を好適に使用することができる。
Figure JPOXMLDOC01-appb-C000017
 上記式中、Arは、それぞれ独立して、ナフチレン基またはフェニレン基を表すが、両基のすくなくとも1つの水素原子が、炭素数1~4のアルキル基またはフェニレン基で置換されていてもよく、
 Rは、水素原子またはメチル基を表し、
 Rは、それぞれ独立して、水素原子、炭素原子数1~4のアルキル基、または下記式(III):
Figure JPOXMLDOC01-appb-C000018
(式中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表し、Arはフェニレン基またはナフチレン基を表すが、そのフェニレン基またはナフチレン基の1~3個の水素原子が炭素数1~4のアルキル基で核置換されていてもよく、oは平均で0.1~4の実数である。)
で表されるアラルキル基を表し、
 Rは、水素原子、前記式(II)で表されるアラルキル基、または下記式(III):
Figure JPOXMLDOC01-appb-C000019
(式中、Rは水素原子またはメチル基を表し、Arはナフチレン基を表すが、そのナフチレン基の少なくとも1つの水素原子が、炭素原子数1~4のアルキル基、アラルキル基またはフェニレン基で置換されていてもよく、pは1または2の整数である。)
で表されるエポキシ基含有芳香族炭化水素基を表し、
 mおよびnは、それぞれ0~4の整数であるが、m=n=0となることはなく、
 ナフタレン構造部位への結合位置は、第1位~第8位の何れであってもよい。
 本発明においては、上記ポリオキシナフチレン型エポキシ樹脂のなかでも、下記式(V)または(VI)で表されるエポキシ樹脂を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000020
(式中、Rは水素原子またはメチル基を示し、Rは、それぞれ独立して、水素原子、炭素原子数1~4のアルキル基、または前記式(III)で表されるアラルキル基を表す。)
Figure JPOXMLDOC01-appb-C000021
(式中、Rは水素原子またはメチル基を示し、R10は、それぞれ独立して、水素原子、炭素原子数1~4のアルキル基、または前記式(III)で表されるアラルキル基を表す。)
 上記したポリオキシナフチレン型エポキシ樹脂は、公知の方法により製造することができ、例えば、特開2006-307162号公報に記載されている方法によって製造することができる。また、市販されているポリオキシナフチレン型エポキシ樹脂を使用してもよい。
 本発明においては、上記したポリオキシナフチレン型エポキシ樹脂とアントラセン型エポキシ樹脂とを併用して用いることが好ましい。このような特定のエポキシ樹脂を併用することにより、樹脂硬化物の熱膨張率をより一層低減することができる。なお、アントラセン型エポキシ樹脂とは、アントラセン骨格を主鎖に含む構造を有するエポキシ樹脂を意味する。
 ポリオキシナフチレン型エポキシ樹脂と併用して用いられるアントラセン型エポキシ樹脂として、下記式(VII)で表されるジヒドロアントラセン型エポキシ樹脂を好適に使用することができる。
Figure JPOXMLDOC01-appb-C000022
(式中、R11~R20は、それぞれ独立して、水素原子、または炭素数1~6のアルキル基を示し、nは0以上の整数を示す。)
 上記したアントラセン型エポキシ樹脂は、公知の方法により製造することができ、例えば、特開2006-249144号公報に記載されている方法によって製造することができる。また、市販されているアントラセン型エポキシ樹脂を使用してもよい。
 エポキシ樹脂(C)は、シアン酸エステル化合物(A)とマレイミド化合物(B)とエポキシ樹脂(C)との総量100質量部に対して、25~65質量部含まれていることが好ましく、耐熱性、耐燃性の観点から、30~55質量部含まれていることがより好ましい。また、上記したポリオキシナフチレン型エポキシ樹脂とアントラセン型エポキシ樹脂とを併用して用いる場合、アントラセン型エポキシ樹脂の含有量は、シアン酸エステル化合物(A)とマレイミド化合物(B)とエポキシ樹脂(C)との総量100質量部に対して、1~30質量部であることが好ましく、このような含有量でポリオキシナフチレン型エポキシ樹脂及びアントラセン型エポキシ樹脂が含まれることにより、より一層、熱膨張率を低減できるとともに、成形性を維持しながら、耐熱性や難燃性を向上させることができる。
<シリコーンゴムパウダー(D)>
 本発明において用いられるシリコーンゴムパウダー(D)とは、ビニル基含有ジメチルポリシロキサンとメチルハイドロジェンポリシロキサンとの付加重合物による微粉末である。樹脂組成物中にシリコーンゴムパウダーを添加することにより、樹脂硬化物の熱膨張率を低減させる効果がある。一方、シリコーンゴムパウダーは凝集性が高く、樹脂組成物中での分散性が不十分となる場合がある。そのため、シリコーンレジンで上記微粉末の表面を被覆して分散性を向上させたシリコーンゴムパウダーを用いることが好ましい。この表面を被覆するシリコーンレジンとして、シロキサン結合が三次元網目状に架橋したポリメチルシルセスキオキサンを好適に使用することができる。シリコーンゴムパウダーの形態は特に制限されるものではないが、分散性の観点から平均粒径(D50)が0.5~15μmの範囲のものを使用することが好ましい。なお、D50とはメジアン径であり、測定した粉体の粒度分布を2つに分けたときの、大きい側の個数または質量と小さい側の個数または質量とが等しくなるときの粒子径である。D50値は、一般的には湿式レーザー回折・散乱法により測定される。
 本発明においては、上記した各成分を含む樹脂組成物であれば、シリコーンゴムパウダー(D)を特定の量で添加しても、成形性と低膨張係数とを両立できることがわかった。すなわち、シリコーンゴムパウダー(D)を、シアン酸エステル化合物(A)とマレイミド化合物(B)とエポキシ樹脂(C)との総量100質量部に対して、40~150質量部の割合で添加することにより、樹脂硬化物の熱膨張率を低減できるとともに、成形性にも優れる樹脂組成物を実現できることがわかった。この範囲は、従来の添加量を遙かに超える添加量であり、このような添加量であっても成形性を維持できることは予想外のことであった。形成性および熱膨張率の観点から、45~130質量部の範囲が好ましく、より好ましくは50~120質量部の範囲である。
<無機充填材(E)>
 本発明において用いられる無機充填材(E)としては、電気配線板用の樹脂組成物に通常用いられる無機充填材であれば特に制限なく用いることができる。例えば、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類、水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物、酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物、ホウ酸亜鉛、錫酸亜鉛、酸化アルミニウム、クレー、カオリン、窒化ホウ素、酸化マグネシウム、窒化アルミニウム、窒化ケイ素、炭酸マグネシウム、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(EガラスやDガラスなどのガラス微粉末類)、中空ガラスなどが挙げられる。これらのなかでも、熱伝導率の観点から、シリカ類、水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物、ホウ酸亜鉛、酸化アルミニウム、窒化ホウ素、酸化マグネシウム、窒化アルミニウム、窒化ケイ素、炭酸マグネシウム等が好ましく、特に、シリカ類を好適に使用することができる。無機充填材(E)としてシリカ類を含有することにより、熱伝導率のみならず、線膨張係数を低減することができる。これら無機充填材は、単独でまたは2種以上を適宜組み合わせて使用してもよい。
 無機充填材(E)は、分散性の観点から、平均粒径(D50)が0.2~5μmであることが好ましい。本発明においては、粒度分布や平均粒子径を異なる無機充填材を2種以上適宜組み合わせて使用してもよい。
 本発明においては、上記した各成分を含む樹脂組成物であれば、無機充填材(E)を特定の量で添加しても、成形性と低膨張係数とを両立できることがわかった。すなわち、無機充填材(E)を、シアン酸エステル化合物(A)とマレイミド化合物(B)とエポキシ樹脂(C)との総量100質量部に対して、100~340質量部の割合で添加することにより、樹脂硬化物の熱膨張率を低減できるとともに、成形性にも優れる樹脂組成物を実現できることがわかった。この範囲は、従来の添加量を超える添加量であるが、このような添加量であっても成形性を維持できることは予想外のことであった。熱膨張率の観点からは、110~330質量部の範囲が好ましく、より好ましくは120~310質量部の範囲である。
 また、本発明においては、熱膨張率と成形性との両立の観点から、シリコーンゴムパウダー(D)と無機充填材(E)の合計配合量が重要である。すなわち、シリコーンゴムパウダー(D)および無機充填材(E)の総含有量が、シアン酸エステル化合物(A)とマレイミド化合物(B)とエポキシ樹脂(C)との総量100質量部に対して、140~380質量部となるように、両者を添加する必要がある。このような範囲の含有量とすることにより、成形性を維持しながら、熱膨張率がより一層低い樹脂硬化物を得ることができる。熱膨張率の観点からは、150~370質量部の範囲が好ましく、より好ましくは160~360質量部の範囲である。本発明による樹脂組成物は、上記したような含有量で、シリコーンゴムパウダー(D)および無機充填材(E)が含まれることにより、得られる樹脂硬化物の線膨張係数を5ppm/℃以下とすることができる。
 無機充填剤(D)は単独で樹脂組成物に添加されてもよいが、無機充填材の分散性、樹脂と無機充填材やガラスクロスとの接着強度を向上させるために、シランカップリング剤や湿潤分散剤と併用して添加されてもよい。シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されるものではない。具体例としては、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランなどのアミノシラン系、γ-グリシドキシプロピルトリメトキシシランなどのエポキシシラン系、γ-メタアクリロキシプロピルトリメトキシシランなどのビニルシラン系、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系、フェニルシラン系などが挙げられるが、これらに限定されるものではない。また、上記したシランカップリング剤は、単独でまたは2種以上を適宜組み合わせて使用してもよい。
 また湿潤分散剤としては、塗料用に一般的に使用されている分散安定剤であれば、特に制限なく使用することができる。これら分散安定剤は市販のものを使用してもよく、例えばビッグケミー・ジャパン(株)製のDisperbyk-110、111、180、161、BYK-W996、W9010、W903等を好適に使用することができる。
<その他の成分>
 本発明による樹脂組成物は、上記した成分以外にも、必要に応じて他の成分を含んでいてもよい。例えば、硬化速度を適宜調節するために硬化促進剤が含まれていてもよい。硬化促進剤としては、エポキシ樹脂、シアン酸エステル化合物、およびフェノール樹脂等の硬化促進剤として一般に使用されるものであれば、特に制限なく使用することができる。例えば、銅、亜鉛、コバルト、ニッケル等の有機金属塩類、イミダゾール類およびその誘導体、第3級アミン等が挙げられるが、これらに限定されるものではない。また、上記した硬化促進剤は、単独でまたは2種以上を適宜組み合わせて使用してもよい。
 本発明による樹脂組成物は、必要に応じて、難燃助剤としてシリコーンレジンパウダーを含んでいてもよい。シリコーンレジンパウダーの添加量は、特に限定されるものではないが、成形性の観点からは、シアン酸エステル化合物(A)とマレイミド化合物(B)とエポキシ樹脂(C)との総量100質量部に対して、30質量部以下の範囲で添加されることが好ましく、より好ましくは25質量部以下である。なお、シリコーンレジンパウダーは、上記したようにシリコーンゴムパウダー(D)の表面被覆にも用いられるが、上記した含有量は、シリコーンゴムパウダー(D)の表面被覆用途としての使用量を除いた量を意味する。
 また、本発明による樹脂組成物は、所期の特性が損なわれない範囲において、他の熱硬化性樹脂、熱可塑性樹脂、およびそのオリゴマーやエラストマー類などの種々の高分子化合物、他の難燃性の化合物、添加剤などが添加されていてもよい。これらは、一般に使用されているものであれば、特に制限なく使用することができる。例えば、難燃性の化合物としては、リン酸エステル、リン酸メラミンなどのリン化合物、メラミンやベンゾグアナミンなどの窒素含有化合物、オキサジン環含有化合物、シリコン系化合物などが挙げられる。添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、重合禁止剤等が挙げられ、必要に応じて、単独でまたは2種以上を適宜組み合わせて使用してもよい。
 本発明による樹脂組成物は、必要に応じて、有機溶剤を含んでいてもよい。有機溶剤を含有することにより、樹脂組成物の粘度が低減するためハンドリング性を向上させことができる。有機溶剤としては、シアン酸エステル化合物(A)およびエポキシ樹脂(B)の混合物が相溶するものであれば、特に制限なく使用することができる。例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、ジメチルホルムアミドやジメチルアセトアミドなどのアミド類等が挙げられるが、これらに限定されるものではない。また、これら有機溶剤は、単独でまたは2種以上を適宜組み合わせて使用してもよい。
<樹脂組成物の製造方法>
 本発明による樹脂組成物は、上記したシアン酸エステル化合物(A)、マレイミド化合物(B)、エポキシ樹脂(C)、シリコーンゴムパウダー(D)、無機充填材(E)、および必要に応じて他の成分を、混合することにより得ることができる。混合方法は、特に限定されるものではなく、シアン酸エステル化合物(A)、マレイミド化合物(B)およびエポキシ樹脂(C)を適当な有機溶剤に溶解させ、その溶液に、シリコーンゴムパウダー(D)および無機充填材(E)を添加し、ディゾルバーやホモミキサーで30~120分間撹拌することにより、樹脂組成物を製造することができる。
<プリプレグ>
 本発明によるプリプレグは、上記した樹脂組成物を、基材に含浸または塗布したものである。基材としては、各種プリント配線板材料に用いられている公知のものを使用することができる。例えば、Eガラス、Dガラス、Sガラス、NEガラス、クォーツ等の無機繊維、ポリイミド、ポリアミド、ポリエステル、ポリパラフェニレンベンゾビスオキサゾールなどの有機繊維が挙げられ、使用用途や性能によって適宜選択できる。また、これら基材は、必要に応じて、単独または2種類以上を適宜組み合わせて使用してもよい。これらの基材のなかでも、SガラスまたはTガラスからなるガラスクロスを好適に使用することができ、これら基材と本発明による樹脂組成物とを組み合わせることにより、より熱膨張率の低い樹脂硬化物を得ることができる。
 また、ガラスクロスとしては、断面における直径の平均値が3.5~7.5μmのガラスモノフィラメントを50~400本束ねたヤーンを織った織布を好ましく使用できる。このようなガラスクロスのなかもで、経糸および緯糸が、直径の平均値が5μm以上のモノフィラメントからなる場合において、経糸の打ち込み本数をX(本/インチ)、緯糸の打ち込み本数をY(本/インチ)としたときの、XとYとの合計が110~200であるガラスクロスを好適に使用することができる。特に、熱膨張性の観点からは、XとYとの合計が120~200であることがより好ましい。
 また、経糸および緯糸が、直径の平均値が4.5μm以下のモノフィラメントからなる場合において、経糸の打ち込み本数をX(本/インチ)、緯糸の打ち込み本数をY(本/インチ)としたときの、XとYとの合計が130~240であるガラスクロスを好適に使用することができる。特に、熱膨張性の観点からは、XとYとの合計が150~240であることが特に好ましい。
 ガラスクロスの厚みには、特に制限はされるものではないが、通常は0.01~0.30mm程度のものが好適に使用される。
 本発明によるプリプレグは、上記した樹脂組成物を、基材に含浸または塗布することにより製造できる。例えば、上記した樹脂組成物と有機溶剤とからなる樹脂ワニスを基材に含浸または塗布させた後、100~200℃の乾燥機中で、1~60分加熱させて樹脂を半硬化させることにより製造する。基材に対する樹脂組成物(無機充填材を含む)の付着量は、プリプレグ全体に対して20~90質量%の範囲であることが好ましい。
<積層板>
 本発明による積層板は、上記したプリプレグを積層し、成形(硬化)したものである。積層板は、上記したプリプレグを1枚または2枚以上を重ね合わせ、所望によりその片面または両面に、銅やアルミニウムなどの金属箔を配置して積層し、成形(硬化)することにより製造する。使用する金属箔としては、プリント配線板材料に用いられるものであれば、特に制限なく使用することができる。また、積層成形には、通常のプリント配線板用積層板および多層板の手法を採用できる。例えば、積層成形の条件としては、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機などを使用し、温度は100~300℃、圧力は2~100kgf/cm、加熱時間は0.05~5時間の範囲が一般的である。また、本発明においては、上記したプリプレグと、別途準備した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることもできる。
 以下、本発明を、実施例により、さらに詳細に説明するが、本発明がこれら実施例により限定されるものではない。
合成例 α-ナフトールアラルキル型シアン酸エステル化合物の合成
 温度計、攪拌器、滴下漏斗及び還流冷却器を取りつけた反応器を予めブラインにより0~5℃に冷却しておき、そこへ塩化シアン7.47g(0.122mol)、35%塩酸9.75g(0.0935mol)、水76ml、及び塩化メチレン44mlを仕込んだ。この反応器内の温度を-5~+5℃、pHを1以下を保ちながら、撹拌下、一般式(2)におけるRがすべて水素原子であるα-ナフトールアラルキル樹脂(SN485、OH基当量:214g/eq.軟化点:86℃、新日鐵化学(株)製)20g(0.0935mol)、及びトリエチルアミン14.16g(0.14mol)を塩化メチレン92mlに溶解した溶液を滴下漏斗により1時間かけて滴下し、滴下終了後、更にトリエチルアミン4.72g(0.047mol)を15分間かけて滴下した。
 滴下終了後、同温度で15分間撹拌後、反応液を分液し、有機層を分取した。得られた有機層を水100mlで2回洗浄した後、エバポレーターにより減圧下で塩化メチレンを留去し、最終的に80℃で1時間濃縮乾固させて、α-ナフトールアラルキル樹脂のシアン酸エステル化物(α-ナフトールアラルキル型シアン酸エステル化合物)が23.5g得られた。
実施例1
 合成例で作成したα-ナフトールアラルキル型シアン酸エステル化合物(シアネート当量:261g/eq.)48質量部とビス(3-エチル-5-メチル-4マレイミドフェニル)メタン(BMI-70、ケイアイ化成製)17質量部、ポリオキシナフチレン型エポキシ樹脂(EXA-7311,エポキシ当量:277g/eq.、DIC(株)製)20質量部、フェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH,エポキシ当量:320g/ep.、日本化薬(株)製)10質量部、ナフタレン骨格型エポキシ樹脂(EXA-4032、エポキシ当量:140g/ep.、大日本インキ化学工業(株)製)5質量部をメチルエチルケトンで溶解混合し、湿潤分散剤(disperbyk-161、ビッグケミージャパン(株)製)2質量部、球状溶融シリカ(SC2050MB、アドマテックス(株)製)250質量部、シリコーンレジンで表面を被覆したシリコーンゴムパウダー(KMP-600、信越化学工業(株)製)40質量部、オクチル酸亜鉛(日本化学産業(株)製)0.02質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mm、質量104g/mであり、モノフィラメントの直径の平均値が7μmであり、縦糸と横糸の打ち込み本数の合計が116本であるTガラス織布に含浸塗工し、160℃で4分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。
実施例2
 実施例1で使用したα-ナフトールアラルキル型シアン酸エステル化合物35質量部、ビス(3-エチル-5-メチル-4マレイミドフェニル)メタン15質量部、実施例1で使用したポリオキシナフチレン型エポキシ樹脂30質量部、実施例1で使用したフェノールビフェニルアラルキル型エポキシ樹脂10質量部、ジヒドロアントラセン型エポキシ樹脂(YX8800,エポキシ当量:180g/ep.、ジャパンエポキシレジン(株)製)10質量部をメチルエチルケトンで溶解混合し、実施例1で使用した湿潤分散剤2質量部、湿潤分散剤(disperbyk-111、ビッグケミージャパン(株)製)5質量部、球状溶融シリカ300質量部、シリコーンレジンパウダー(トスパール120、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)10質量部、実施例1で使用したシリコーンゴムパウダー40質量部、オクチル酸亜鉛0.02質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、実施例1と同様のTガラス織布に含浸塗工し、160℃で4分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。
実施例3
 実施例1で使用したα-ナフトールアラルキル型シアン酸エステル化合物37質量部、ビス(3-エチル-5-メチル-4マレイミドフェニル)メタン25質量部、実施例1で使用したポリオキシナフチレン型エポキシ樹脂35質量部、実施例2で使用したジヒドロアントラセン型エポキシ樹脂3質量部をメチルエチルケトンで溶解混合し、実施例1で使用した湿潤分散剤1質量部、球状溶融シリカ170質量部、実施例1で使用したシリコーンゴムパウダー120質量部、オクチル酸亜鉛0.02質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、実施例1で使用したTガラス織布に含浸塗工し、160℃で4分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。
実施例4
 実施例1で使用したα-ナフトールアラルキル型シアン酸エステル化合物45質量部、ビス(3-エチル-5-メチル-4マレイミドフェニル)メタン10質量部、実施例1で使用したフェノールビフェニルアラルキル型エポキシ樹脂30質量部、実施例2で使用したジヒドロアントラセン型エポキシ樹脂15質量部をメチルエチルケトンで溶解混合し、実施例1で使用した湿潤分散剤1質量部、球状溶融シリカ150質量部、シリコーンゴムパウダー50質量部、オクチル酸亜鉛0.02質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、実施例1で使用したTガラス織布に含浸塗工し、160℃で4分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。
実施例5
 実施例1で使用したα-ナフトールアラルキル型シアン酸エステル化合物45質量部、ビス(3-エチル-5-メチル-4マレイミドフェニル)メタン10質量部、実施例1で使用したポリオキシナフチレン型エポキシ樹脂15質量部、フェノールビフェニルアラルキル型エポキシ樹脂20質量部、実施例2で使用したジヒドロアントラセン型エポキシ樹脂10質量部をメチルエチルケトンで溶解混合し、実施例1で使用した湿潤分散剤1質量部、球状溶融シリカ150質量部、シリコーンゴムパウダー50質量部、オクチル酸亜鉛0.02質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、実施例1で使用したTガラス織布に含浸塗工し、160℃で4分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。
実施例6
 実施例1で使用したα-ナフトールアラルキル型シアン酸エステル化合物35質量部、ビス(3-エチル-5-メチル-4マレイミドフェニル)メタン15質量部、実施例1で使用したポリオキシナフチレン型エポキシ樹脂30質量部、フェノールビフェニルアラルキル型エポキシ樹脂10質量部、実施例2で使用したジヒドロアントラセン型エポキシ樹脂10質量部をメチルエチルケトンで溶解混合し、実施例1で使用した湿潤分散剤2質量部、球状溶融シリカ300質量部、実施例2で使用したシリコーンレジンパウダー10質量部、実施例1で使用したシリコーンゴムパウダー40質量部、オクチル酸亜鉛0.02質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mm、質量114g/mであり、モノフィラメントの直径の平均値が7μmであり、縦糸と横糸の打ち込み本数の合計が130本であるTガラス織布に含浸塗工し、160℃で4分間加熱乾燥して、樹脂含有量46質量%のプリプレグを得た。
比較例1
 球状溶融シリカ250質量部を90質量部にする以外は、実施例1と同様にプリプレグを得た。
比較例2
 球状溶融シリカ250質量部に代えて220質量部用い、シリコーンゴムパウダー40質量部に代えて20質量部用いた以外は、実施例1と同様にプリプレグを得た。
比較例3
 α-ナフトールアラルキル型シアン酸エステル化合物(シアネート当量:261g/eq.)に代えて、2,2-ビス(4-シアネートフェニル)プロパンのプレポリマー(BT2070,シアネート当量:139g/ep.、三菱ガス化学(株)製)45質量部用い、シリコーンゴムパウダー50質量部に代えて10質量部用いた以外は、実施例4と同様にプリプレグを得た。
比較例4
 α-ナフトールアラルキル型シアン酸エステル化合物の代わりに、2,2-ビス(4-シアネートフェニル)プロパンのプレポリマー45質量部を使用する以外は、実施例4と同様にプリプレグを得た。
比較例5
 実施例1で使用したα-ナフトールアラルキル型シアン酸エステル化合物45質量部、ポリオキシナフチレン型エポキシ樹脂20質量部、フェノールビフェニルアラルキル型エポキシ樹脂35質量部をメチルエチルケトンで溶解混合し、実施例1で使用した湿潤分散剤1質量部、球状溶融シリカ150質量部、シリコーンゴムパウダー40質量部、オクチル酸亜鉛0.02質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、実施例1で使用したTガラス織布に含浸塗工し、160℃で4分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。
比較例6
 Tガラス織布の替わりにEガラス織布を使用した以外は、実施例1と同様にプリプレグを得た。
比較例7
 球状溶融シリカに代えて350質量部を用いた以外は、実施例5と同様にプリプレグを得た。
比較例8
 球状溶融シリカ150質量部に代えて200質量部用い、シリコーンゴムパウダー40質量部に代えて200質量部用いた以外は、実施例5と同様にプリプレグを得た。
金属張り積層板の作製
 実施例1~4および比較例1~7で得られたプリプレグを、それぞれ4枚重ねて12μm厚の電解銅箔(3EC-III、三井金属鉱業(株)製)を上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.4mmの金属張り積層板を得た。
金属張り積層板の評価
 得られた金属張り積層板を用いて、難燃性、ガラス転移温度、熱膨張率、成形性の評価を行った。なお、難燃性、ガラス転移温度、および熱膨張率の評価は、金属張り積層板をエッチングして銅箔を除去したのちに、下記方法にて行った。
 難燃性:UL94垂直燃焼試験法に準拠して評価した。
 ガラス転移温度:JIS C6481に従い、動的粘弾性分析装置(TAインスツルメント製)で測定した。
 熱膨張率:熱機械分析装置(TAインスツルメント製)で40℃から340℃まで毎分10℃で昇温し、60℃から120℃での面方向の線膨張係数を測定した。測定方向は積層板のガラスクロスの縦方向(Warp)を測定した。
 成形性:プレスした銅張積層板の銅箔をエッチングして、外観を観察し、ボイドの有無を確認した。評価基準は下記の通りとした。
 OK:ボイド無し
 NG:ボイド有り
 評価結果は、下記の表1および表2に示される通りであった。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 表1、2より、実施例1~6によって得られた金属張り積層板は、溶融シリカの配合量が少ない比較例1及びシリコーンレジンで表面を被覆したシリコーンゴムパウダーの配合量が少ない比較例2より熱膨張率が低いことが明らかとなった。
 また、比較例3及び4では、ナフトールアラルキル型シアン酸エステル化合物の代わりに2,2-ビス(4-シアネートフェニル)プロパンのプレポリマーを用いているが、実施例に比べ、難燃性に劣り、ガラス転移温度も低い。
 また、基材としてSガラス又はTガラスからなるガラスクロスの代わりにEガラスからなるガラスクロスを使用した比較例においては、実施例より面方向の熱膨張率が低い。
 さらに、溶融シリカを増量した比較例7、シリコーンレジンで表面を被覆したシリコーンゴムパウダーを増量した比較例8は成形性が著しく劣り、金属張積層板を得ることが不可能であった。

Claims (17)

  1.  シアン酸エステル化合物(A)、マレイミド化合物(B)、エポキシ樹脂(C)、シリコーンゴムパウダー(D)、および無機充填材(E)を含んでなる樹脂組成物であって、
     前記シアン酸エステル化合物(A)が、下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子またはメチル基を表し、nは1以上の整数を示す。)
    で表される化合物を含んでなり、
     前記シリコーンゴムパウダー(D)が、前記シアン酸エステル化合物(A)と前記マレイミド化合物(B)と前記エポキシ樹脂(C)との総量100質量部に対して、40~150質量部含まれており、
     前記無機充填材(E)が、前記シアン酸エステル化合物(A)と前記マレイミド化合物(B)と前記エポキシ樹脂(C)との総量100質量部に対して、100~340質量部含まれており、かつ
     前記シリコーンゴムパウダー(D)および前記無機充填材(E)の総含有量が、前記シアン酸エステル化合物(A)と前記マレイミド化合物(B)と前記エポキシ樹脂(C)との総量100質量部に対し、140~380質量部である、樹脂組成物。
  2.  前記無機充填材(E)が、シリカ類、金属水和物、ホウ酸亜鉛、酸化アルミニウム、窒化ホウ素、酸化マグネシウム、窒化アルミニウム、窒化ケイ素、および炭酸マグネシウムからなる群より選択される少なくとも1種である、請求項1に記載の樹脂組成物。
  3.  前記無機充填材(E)がシリカ類を含んでなる、請求項2に記載の樹脂組成物。
  4.  前記エポキシ樹脂(C)が、下記式(II):
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     Arは、それぞれ独立して、ナフチレン基またはフェニレン基を表すが、両基の少なくとも1つの水素原子が、炭素数1~4のアルキル基またはフェニレン基で置換されていてもよく、
     Rは、水素原子またはメチル基を表し、
     Rは、それぞれ独立して、水素原子、炭素原子数1~4のアルキル基、または下記式(III): 
    Figure JPOXMLDOC01-appb-C000003
    (式中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表し、Arはフェニレン基またはナフチレン基を表すが、そのフェニレン基またはナフチレン基の1~3個の水素原子が炭素数1~4のアルキル基で核置換されていてもよく、oは平均で0.1~4の実数である。)
    で表されるアラルキル基を表し、
     Rは、水素原子、前記式(III)で表されるアラルキル基、または下記式(IV):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは水素原子またはメチル基を表し、Arはナフチレン基を表すが、そのナフチレン基の少なくとも1つの水素原子が、炭素原子数1~4のアルキル基、アラルキル基またはフェニレン基で置換されていてもよく、pは1または2の整数である。)で表されるエポキシ基含有芳香族炭化水素基を表し、
     mおよびnは、それぞれ0~4の整数であるが、m=n=0となることはなく、
     ナフタレン構造部位への結合位置は、第1位~第8位の何れであってもよい。)
    で表されるポリオキシナフチレン型エポキシ樹脂を含んでなる、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記式(II)のArが、ナフチレン基(但し、前記ナフチレン基中の少なくとも1つの水素原子が炭素原子1~4のアルキル基またはフェニレン基で置換されていてもよい。)である、請求項4に記載の樹脂組成物。
  6.  前記式(II)のmおよびnが、0~2の整数であるが、m=n=0となることはない、請求項4または5に記載の樹脂組成物。
  7.  前記エポキシ樹脂(C)が、下記式(V)および下記式(VI)で表される化合物からなる群より選択される少なくとも1種以上を含んでなる、請求項1~6のいずれか一項に記載の樹脂組成物:
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは水素原子またはメチル基を示し、Rは、それぞれ独立して、水素原子、炭素原子数1~4のアルキル基、または前記式(III)で表されるアラルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは水素原子またはメチル基を示し、R10は、それぞれ独立して、水素原子、炭素原子数1~4のアルキル基、または前記式(III)で表されるアラルキル基を表す。)。
  8.  前記エポキシ樹脂(C)が、前記式(II)で表されるポリオキシナフチレン型エポキシ樹脂と、アントラセン型エポキシ樹脂とを含んでなる、請求項4~7のいずれか一項に記載の樹脂組成物。
  9.  前記アントラセン型エポキシ樹脂が、下記式(VII)で表されるジヒドロアントラセン型エポキシ樹脂を含んでなる、請求項8に記載の樹脂組成物:
    Figure JPOXMLDOC01-appb-C000007
    (式中、R11~R20は、それぞれ独立して、水素原子、または炭素数1~6のアルキル基を示し、nは0以上の整数を示す。)。
  10.  前記シアン酸エステル化合物(A)が、シアン酸エステル化合物(A)のシアネート基と前記エポキシ樹脂(C)のエポキシ基数との比(CN/Ep)が0.65~2.5の範囲となる量で含まれてなる、請求項1~9のいずれか一項に記載の樹脂組成物。
  11.  前記マレイミド化合物(B)が、前記シアン酸エステル化合物(A)と前記マレイミド化合物(B)と前記エポキシ樹脂(C)との総量100質量部に対して、3~50質量部含まれてなる、請求項1~10のいずれか一項に記載の樹脂組成物。
  12.  請求項1~11のいずれか一項に記載の樹脂組成物を、基材に含浸または塗布してなる、プリプレグ。
  13.  前記基材が、SガラスまたはTガラスからなるガラスクロスである、請求項12に記載のプリプレグ。
  14.  前記ガラスクロスの経糸および緯糸が、直径の平均値が5μm以上のモノフィラメントからなる場合において、経糸の打ち込み本数をX(本/インチ)、緯糸の打ち込み本数をY(本/インチ)としたときの、XとYとの合計が110~200である、請求項13に記載のプリプレグ。
  15.  前記ガラスクロスの経糸および緯糸が、直径の平均値が4.5μm以下のモノフィラメントからなる場合において、経糸の打ち込み本数をX(本/インチ)、緯糸の打ち込み本数をY(本/インチ)としたときの、XとYとの合計が130~240である、請求項13に記載のプリプレグ。
  16.  請求項12~15のいずれか一項に記載のプリプレグを硬化して得られる積層板。
  17.  請求項12~15のいずれか一項に記載のプリプレグと金属箔とを積層し硬化してなる金属箔張り積層板。
PCT/JP2012/063130 2011-05-27 2012-05-23 樹脂組成物、プリプレグ、および積層板 WO2012165240A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/119,342 US9512329B2 (en) 2011-05-27 2012-05-23 Resin composition, prepreg, and laminate
EP12793587.2A EP2716676B1 (en) 2011-05-27 2012-05-23 Resin composition, prepreg and laminate
KR1020137031185A KR101877089B1 (ko) 2011-05-27 2012-05-23 수지 조성물, 프리프레그 및 적층판
SG2013086376A SG195098A1 (en) 2011-05-27 2012-05-23 Resin composition, prepreg and laminate
JP2013517988A JP6010871B2 (ja) 2011-05-27 2012-05-23 樹脂組成物、プリプレグ、および積層板
CN201280027133.7A CN103582664B (zh) 2011-05-27 2012-05-23 树脂组合物、预浸料、以及层压板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011119402 2011-05-27
JP2011-119402 2011-05-27

Publications (1)

Publication Number Publication Date
WO2012165240A1 true WO2012165240A1 (ja) 2012-12-06

Family

ID=47259099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063130 WO2012165240A1 (ja) 2011-05-27 2012-05-23 樹脂組成物、プリプレグ、および積層板

Country Status (8)

Country Link
US (1) US9512329B2 (ja)
EP (1) EP2716676B1 (ja)
JP (1) JP6010871B2 (ja)
KR (1) KR101877089B1 (ja)
CN (1) CN103582664B (ja)
SG (1) SG195098A1 (ja)
TW (1) TWI596153B (ja)
WO (1) WO2012165240A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069479A1 (ja) * 2011-11-07 2013-05-16 三菱瓦斯化学株式会社 樹脂組成物、これを用いたプリプレグ及び積層板
JP2014185222A (ja) * 2013-03-22 2014-10-02 Mitsubishi Gas Chemical Co Inc 樹脂組成物、プリプレグ、積層板及びプリント配線板
WO2015105109A1 (ja) * 2014-01-07 2015-07-16 三菱瓦斯化学株式会社 プリント配線板用絶縁層及びプリント配線板
JP2015209454A (ja) * 2014-04-24 2015-11-24 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、樹脂シート及び金属箔張積層板
WO2016088743A1 (ja) * 2014-12-01 2016-06-09 三菱瓦斯化学株式会社 樹脂シート及びプリント配線板
WO2017006895A1 (ja) * 2015-07-06 2017-01-12 三菱瓦斯化学株式会社 樹脂組成物、それを用いたプリプレグ、レジンシート、積層板、及びプリント配線板
KR101748007B1 (ko) 2014-09-02 2017-06-16 삼성에스디아이 주식회사 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자
JP2018165368A (ja) * 2018-05-23 2018-10-25 三菱瓦斯化学株式会社 レジンシート、金属箔張積層板及びプリント配線板

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084345A1 (en) * 2014-11-27 2016-06-02 Panasonic Intellectual Property Management Co., Ltd. Sheet-shaped stretchable structure, and resin composition for stretchable resin sheet and stretchable resin sheet used for the structure
WO2016132889A1 (ja) 2015-02-20 2016-08-25 株式会社日本触媒 硬化性樹脂組成物及びそれを用いてなる封止材
JP6856317B2 (ja) * 2015-02-20 2021-04-07 株式会社日本触媒 硬化性樹脂組成物及びそれを用いてなる封止材
KR102490151B1 (ko) * 2015-03-18 2023-01-18 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트, 및 프린트 배선판
SG11201703384UA (en) * 2015-03-31 2017-06-29 Mitsubishi Gas Chemical Co Resin composition for printed circuit board, prepreg, resin composite sheet and metal foil clad laminate
JP6558055B2 (ja) * 2015-04-30 2019-08-14 味の素株式会社 樹脂組成物
CN104877399A (zh) * 2015-05-22 2015-09-02 苏州市贝克生物科技有限公司 一种文物表面耐火性涂层及其制备方法
US10815349B2 (en) * 2015-07-06 2020-10-27 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed circuit board
CN108431133B (zh) * 2016-08-24 2019-06-14 三菱瓦斯化学株式会社 树脂组合物、预浸料、覆金属箔层叠板、树脂片及印刷电路板
WO2018124169A1 (ja) * 2016-12-28 2018-07-05 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
JP6354884B1 (ja) * 2017-03-13 2018-07-11 横浜ゴム株式会社 シアネートエステル樹脂組成物およびプリプレグ
CN110869410B (zh) * 2017-07-11 2022-04-26 三菱瓦斯化学株式会社 印刷电路板用树脂组合物、预浸料、树脂片、层叠板、覆金属箔层叠板、印刷电路板和多层印刷电路板
TWI745627B (zh) * 2018-10-23 2021-11-11 台燿科技股份有限公司 熱固性樹脂組合物,使用彼所製得之預浸漬片、金屬箔積層板及印刷電路板
US20220025171A1 (en) * 2018-12-12 2022-01-27 Panasonic Intellectual Property Management Co., Ltd. Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board
WO2020132858A1 (zh) * 2018-12-25 2020-07-02 广东生益科技股份有限公司 树脂组合物、印刷电路用预浸片及覆金属层压板
TWI814835B (zh) * 2018-12-29 2023-09-11 大陸商廣東生益科技股份有限公司 樹脂組合物、預浸料、層壓板、覆金屬箔層壓板和印刷電路板
US10759697B1 (en) 2019-06-11 2020-09-01 MSB Global, Inc. Curable formulations for structural and non-structural applications

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848001A (ja) 1994-08-08 1996-02-20 Matsushita Electric Works Ltd 銅張積層板
JP2000158589A (ja) 1998-11-30 2000-06-13 Shin Kobe Electric Mach Co Ltd 金属箔張り積層板の製造法
JP3173332B2 (ja) 1995-03-13 2001-06-04 新神戸電機株式会社 金属箔張り積層板の製造法
JP2002194120A (ja) * 2000-12-22 2002-07-10 Hitachi Chem Co Ltd 金属箔張り積層板及びプリプレグ
JP2003246849A (ja) 2002-02-26 2003-09-05 Shin Kobe Electric Mach Co Ltd エポキシ樹脂組成物、ならびにそれを用いたプリプレグ、積層板及びプリント配線板
JP2005048036A (ja) * 2003-07-28 2005-02-24 Hitachi Chem Co Ltd プリプレグ、およびこれを用いた金属箔張積層板
JP2006143973A (ja) 2004-11-24 2006-06-08 Matsushita Electric Works Ltd エポキシ樹脂組成物、並びにプリプレグ、積層板、プリント配線板
JP2006249144A (ja) 2005-03-08 2006-09-21 Japan Epoxy Resin Kk 水素化エポキシ樹脂、その製造方法及びエポキシ樹脂組成物
JP2006307162A (ja) 2005-03-18 2006-11-09 Dainippon Ink & Chem Inc エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
JP2007002071A (ja) * 2005-06-22 2007-01-11 Sumitomo Bakelite Co Ltd プリプレグ、回路基板および半導体装置
JP2007291368A (ja) * 2006-03-30 2007-11-08 Ajinomoto Co Inc 樹脂組成物
JP2008031344A (ja) * 2006-07-31 2008-02-14 Dainippon Ink & Chem Inc エポキシ樹脂組成物及びその硬化物
JP2009024056A (ja) * 2007-07-18 2009-02-05 Mitsubishi Gas Chem Co Inc プリプレグ及び積層板
JP2009035728A (ja) 2007-07-12 2009-02-19 Mitsubishi Gas Chem Co Inc プリプレグ及び積層板
JP2009067852A (ja) * 2007-09-11 2009-04-02 Sumitomo Bakelite Co Ltd ガラス繊維織布入り絶縁樹脂シート、積層板、多層プリント配線板、及び半導体装置
WO2010109861A1 (ja) * 2009-03-27 2010-09-30 三菱瓦斯化学株式会社 樹脂溶液の保存方法、並びに、プリプレグ及び積層板の製造方法
WO2011010672A1 (ja) * 2009-07-24 2011-01-27 住友ベークライト株式会社 樹脂組成物、樹脂シート、プリプレグ、金属張積層板、プリント配線板及び半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548034A (en) * 1992-07-31 1996-08-20 International Business Machines Corporation Modified dicyanate ester resins having enhanced fracture toughness
US7601429B2 (en) * 2007-02-07 2009-10-13 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminate
US8852734B2 (en) * 2009-10-14 2014-10-07 Sumitomo Bakelite Company, Ltd. Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and semiconductor device
KR20170133431A (ko) * 2010-03-02 2017-12-05 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그 및 적층판
CN105860436B (zh) * 2010-08-31 2019-01-18 三菱瓦斯化学株式会社 树脂组合物、预浸料及层叠板

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848001A (ja) 1994-08-08 1996-02-20 Matsushita Electric Works Ltd 銅張積層板
JP3173332B2 (ja) 1995-03-13 2001-06-04 新神戸電機株式会社 金属箔張り積層板の製造法
JP2000158589A (ja) 1998-11-30 2000-06-13 Shin Kobe Electric Mach Co Ltd 金属箔張り積層板の製造法
JP2002194120A (ja) * 2000-12-22 2002-07-10 Hitachi Chem Co Ltd 金属箔張り積層板及びプリプレグ
JP2003246849A (ja) 2002-02-26 2003-09-05 Shin Kobe Electric Mach Co Ltd エポキシ樹脂組成物、ならびにそれを用いたプリプレグ、積層板及びプリント配線板
JP2005048036A (ja) * 2003-07-28 2005-02-24 Hitachi Chem Co Ltd プリプレグ、およびこれを用いた金属箔張積層板
JP2006143973A (ja) 2004-11-24 2006-06-08 Matsushita Electric Works Ltd エポキシ樹脂組成物、並びにプリプレグ、積層板、プリント配線板
JP2006249144A (ja) 2005-03-08 2006-09-21 Japan Epoxy Resin Kk 水素化エポキシ樹脂、その製造方法及びエポキシ樹脂組成物
JP2006307162A (ja) 2005-03-18 2006-11-09 Dainippon Ink & Chem Inc エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
JP2007002071A (ja) * 2005-06-22 2007-01-11 Sumitomo Bakelite Co Ltd プリプレグ、回路基板および半導体装置
JP2007291368A (ja) * 2006-03-30 2007-11-08 Ajinomoto Co Inc 樹脂組成物
JP2008031344A (ja) * 2006-07-31 2008-02-14 Dainippon Ink & Chem Inc エポキシ樹脂組成物及びその硬化物
JP2009035728A (ja) 2007-07-12 2009-02-19 Mitsubishi Gas Chem Co Inc プリプレグ及び積層板
JP2009024056A (ja) * 2007-07-18 2009-02-05 Mitsubishi Gas Chem Co Inc プリプレグ及び積層板
JP2009067852A (ja) * 2007-09-11 2009-04-02 Sumitomo Bakelite Co Ltd ガラス繊維織布入り絶縁樹脂シート、積層板、多層プリント配線板、及び半導体装置
WO2010109861A1 (ja) * 2009-03-27 2010-09-30 三菱瓦斯化学株式会社 樹脂溶液の保存方法、並びに、プリプレグ及び積層板の製造方法
WO2011010672A1 (ja) * 2009-07-24 2011-01-27 住友ベークライト株式会社 樹脂組成物、樹脂シート、プリプレグ、金属張積層板、プリント配線板及び半導体装置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069479A1 (ja) * 2011-11-07 2013-05-16 三菱瓦斯化学株式会社 樹脂組成物、これを用いたプリプレグ及び積層板
JPWO2013069479A1 (ja) * 2011-11-07 2015-04-02 三菱瓦斯化学株式会社 樹脂組成物、これを用いたプリプレグ及び積層板
US9775238B2 (en) 2011-11-07 2017-09-26 Mitsubishi Gas Chemical Company, Inc. Resin composition, and prepreg and laminate using the same
JP2014185222A (ja) * 2013-03-22 2014-10-02 Mitsubishi Gas Chemical Co Inc 樹脂組成物、プリプレグ、積層板及びプリント配線板
CN105900535A (zh) * 2014-01-07 2016-08-24 三菱瓦斯化学株式会社 印刷线路板用绝缘层以及印刷线路板
US10292260B2 (en) 2014-01-07 2019-05-14 Mitsubishi Gas Chemical Company, Inc. Insulating layer for printed circuit board and printed circuit board
KR20160105782A (ko) * 2014-01-07 2016-09-07 미츠비시 가스 가가쿠 가부시키가이샤 프린트 배선판용 절연층 및 프린트 배선판
KR102278716B1 (ko) 2014-01-07 2021-07-16 미츠비시 가스 가가쿠 가부시키가이샤 프린트 배선판용 절연층 및 프린트 배선판
JPWO2015105109A1 (ja) * 2014-01-07 2017-03-23 三菱瓦斯化学株式会社 プリント配線板用絶縁層及びプリント配線板
KR20200014946A (ko) * 2014-01-07 2020-02-11 미츠비시 가스 가가쿠 가부시키가이샤 프린트 배선판용 절연층 및 프린트 배선판
WO2015105109A1 (ja) * 2014-01-07 2015-07-16 三菱瓦斯化学株式会社 プリント配線板用絶縁層及びプリント配線板
KR102075195B1 (ko) 2014-01-07 2020-02-07 미츠비시 가스 가가쿠 가부시키가이샤 프린트 배선판용 절연층 및 프린트 배선판
CN105900535B (zh) * 2014-01-07 2019-06-07 三菱瓦斯化学株式会社 印刷线路板用绝缘层以及印刷线路板
JP2015209454A (ja) * 2014-04-24 2015-11-24 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、樹脂シート及び金属箔張積層板
KR101748007B1 (ko) 2014-09-02 2017-06-16 삼성에스디아이 주식회사 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자
WO2016088743A1 (ja) * 2014-12-01 2016-06-09 三菱瓦斯化学株式会社 樹脂シート及びプリント配線板
JPWO2016088743A1 (ja) * 2014-12-01 2017-09-07 三菱瓦斯化学株式会社 樹脂シート及びプリント配線板
JPWO2017006895A1 (ja) * 2015-07-06 2018-04-19 三菱瓦斯化学株式会社 樹脂組成物、それを用いたプリプレグ、レジンシート、積層板、及びプリント配線板
CN107849334A (zh) * 2015-07-06 2018-03-27 三菱瓦斯化学株式会社 树脂组合物、使用其的预浸料、树脂片、层叠板和印刷电路板
US10717837B2 (en) 2015-07-06 2020-07-21 Mitsubishi Gas Chemical Company, Inc. Resin composition and prepreg, resin sheet, laminate, and printed circuit board comprising same
WO2017006895A1 (ja) * 2015-07-06 2017-01-12 三菱瓦斯化学株式会社 樹脂組成物、それを用いたプリプレグ、レジンシート、積層板、及びプリント配線板
JP2018165368A (ja) * 2018-05-23 2018-10-25 三菱瓦斯化学株式会社 レジンシート、金属箔張積層板及びプリント配線板

Also Published As

Publication number Publication date
EP2716676A1 (en) 2014-04-09
US20140227924A1 (en) 2014-08-14
CN103582664A (zh) 2014-02-12
EP2716676A4 (en) 2015-05-06
TWI596153B (zh) 2017-08-21
JP6010871B2 (ja) 2016-10-19
SG195098A1 (en) 2013-12-30
US9512329B2 (en) 2016-12-06
CN103582664B (zh) 2016-03-23
TW201302908A (zh) 2013-01-16
KR20140027323A (ko) 2014-03-06
KR101877089B1 (ko) 2018-07-10
JPWO2012165240A1 (ja) 2015-02-23
EP2716676B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP6010871B2 (ja) 樹脂組成物、プリプレグ、および積層板
JP6071117B2 (ja) 樹脂組成物、プリプレグ、および積層板
JP6157121B2 (ja) 樹脂組成物、プリプレグ、および積層板
CN107254144B (zh) 树脂组合物和使用其的预浸料以及层压板
JP5024205B2 (ja) プリプレグ及び積層板
JP5954586B2 (ja) 樹脂組成物、プリプレグ及び積層板
US9629239B2 (en) Resin composition, and prepreg as well as laminate using the same
JP5692062B2 (ja) 樹脂溶液の保存方法、並びに、プリプレグ及び積層板の製造方法
JP5958827B2 (ja) 樹脂組成物、プリプレグ、および積層板
WO2014112464A1 (ja) 樹脂組成物、プリプレグ、積層板、金属箔張積層板及びプリント配線板
WO2013146700A1 (ja) 樹脂組成物、プリプレグ及び積層板
WO2013065694A1 (ja) 樹脂組成物、プリプレグ及び積層板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280027133.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137031185

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012793587

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013517988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14119342

Country of ref document: US