WO2012157696A1 - 感光性シロキサン樹脂組成物 - Google Patents

感光性シロキサン樹脂組成物 Download PDF

Info

Publication number
WO2012157696A1
WO2012157696A1 PCT/JP2012/062611 JP2012062611W WO2012157696A1 WO 2012157696 A1 WO2012157696 A1 WO 2012157696A1 JP 2012062611 W JP2012062611 W JP 2012062611W WO 2012157696 A1 WO2012157696 A1 WO 2012157696A1
Authority
WO
WIPO (PCT)
Prior art keywords
siloxane resin
group
photosensitive
resin composition
ether
Prior art date
Application number
PCT/JP2012/062611
Other languages
English (en)
French (fr)
Inventor
高志 關藤
大志 横山
崇司 福家
裕治 田代
野中 敏章
泰明 田中
Original Assignee
AzエレクトロニックマテリアルズIp株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AzエレクトロニックマテリアルズIp株式会社 filed Critical AzエレクトロニックマテリアルズIp株式会社
Priority to CN201280023290.0A priority Critical patent/CN103562793B/zh
Priority to US14/117,449 priority patent/US9091920B2/en
Priority to KR1020137033732A priority patent/KR101772856B1/ko
Publication of WO2012157696A1 publication Critical patent/WO2012157696A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means

Definitions

  • the present invention relates to a photosensitive composition containing an alkali-soluble siloxane resin having silanol groups or alkoxysilyl groups.
  • Siloxane resin is known as a material having high heat resistance, high hardness, high insulation, and high transparency, and is used in various applications.
  • a cured film obtained by firing a composition containing a siloxane resin is durable, low dielectric, excellent in insulation, and has high hardness. It is used as an insulating film, a planarizing film, a protective film, a semiconductor sealing material, and the like in semiconductor elements, liquid crystal display elements, and the like.
  • silanol groups exist in the resin. Utilizing the property that this silanol group contributes to alkali solubility, a number of photosensitive siloxane resin compositions that can be developed with 2.38% tetramethylammonium aqueous solution, which is generally used in the field of electronic materials, have been reported. (Patent Document 1).
  • Patent Document 2 In order to improve heat reflow resistance while maintaining alkali solubility, a method of combining a low molecular weight alkali-soluble siloxane resin with a high molecular weight alkali-insoluble resin has also been studied. Although the resistance to heat reflow increases as the difference increases (Patent Document 2), it has been found by the inventor's research that there remains a problem to be solved that the occurrence of scum becomes significant. There are other methods such as addition of a curing agent (Patent Document 3) and introduction of a silica (SiO 2 ) unit into a resin (Patent Document 4). However, the method according to Patent Document 3 causes frequent scum, deterioration of stability over time, and sensitivity. In the method according to Patent Document 4, when the silica unit exceeds 30 mol% of the whole polymer, there is a tendency for frequent occurrence of scum and a remarkable decrease in stability over time, and there is room for improvement.
  • Patent Document 5 polyfunctional polysiloxanes having no alkoxy groups or hydroxyl groups may be used, but there are drawbacks that the curability is poor and the transparency is lowered.
  • the object of the present invention is to provide a photosensitive resin comprising an alkali-soluble siloxane resin that does not have the above-mentioned conventional problems, that is, maintains storage stability, reduces scum, improves heat reflow resistance, and improves sensitivity. Providing a sex composition.
  • the photosensitive siloxane resin composition according to the present invention is: A siloxane resin having a silanol group or an alkoxysilyl group; Crown ether, A photosensitizer, It comprises an organic solvent.
  • the pattern forming method according to the present invention includes: The photosensitive siloxane resin composition is applied onto a substrate to form a film, Exposing the coating to an image; Treated with aqueous alkaline solution, It is characterized by comprising firing at 150 to 450 ° C. in an inert gas or air.
  • siliceous film according to the present invention is manufactured by the above-described method.
  • the photosensitive siloxane resin composition according to the present invention has drastically improved alkali solubility and is excellent in stability over time and sensitivity. Further, since the crown ether used itself does not easily remain in the film after firing, a siliceous film having high transparency can be formed. The siliceous film can also achieve high insulation, low dielectric constant, and high heat resistance.
  • silanol group-containing alkali-soluble siloxane resin of the present invention will be described in more detail as follows.
  • siloxane resin having silanol group or alkoxysilyl group The siloxane resin used in the present invention has a silanol group or an alkoxysilyl group as a functional group.
  • the silanol group and the alkoxysilyl group mean a hydroxyl group and an alkoxy group directly bonded to silicon forming a siloxane skeleton.
  • Such a siloxane resin is soluble in alkali by having a silanol group or an alkoxysilyl group, and can be easily processed with an alkaline developer when used as a photosensitive resin composition.
  • These functional groups also contribute as reactive groups when the photosensitive composition undergoes a curing reaction.
  • the siloxane resin used in the present invention may be any siloxane resin containing a silanol group and / or an alkoxysilyl group, and its structure is not particularly limited.
  • the skeleton structure of the siloxane resin includes a silicone skeleton (2 oxygen atoms bonded to silicon atoms) and a silsesquioxane skeleton (the number of oxygen atoms bonded to silicon atoms) depending on the number of oxygen bonded to silicon atoms. 3) and a silica skeleton (the number of oxygen atoms bonded to silicon atoms is 4).
  • the skeleton structure of these siloxane resins may be a plurality of combinations, and the siloxane resin may be a mixture of resins having the respective structures.
  • the ratio of a silicone structure is 10 mol% or less of the whole siloxane resin.
  • the ratio of the silica structure is preferably 20 mol% or less of the whole siloxane resin, and more preferably 10 mol% or less. .
  • the siloxane resin used in the present invention has a silanol group or an alkoxysilane group. As described above, these functional groups are considered to contribute to the solubility of the resin in alkali and the curing reaction, and also affect the storage stability.
  • the siloxane resin contains at least a silanol group and an alkoxysilane group, the effect of the present invention can be obtained, but the number is considered to depend on the molecular weight of the siloxane resin. For this reason, it is preferable that the molecular weight of the siloxane resin is in a specific range described later in order to have an appropriate number of silanol groups or alkoxysilane groups.
  • reactive groups other than silanol groups or alkoxysilane groups such as carboxyl groups, sulfonyl groups, amino groups, etc. may be included in the siloxane resin as long as the effects of the present invention are not impaired. Since generally tends to deteriorate the storage stability of the photosensitive composition, it is preferable that the amount be small. Specifically, it is preferably 10 mol% or less, particularly preferably not contained at all, with respect to the total number of hydrogen or substituents bonded to the silicon atom.
  • the substituent means a substituent that does not contain a Si—O bond constituting the siloxane structure, specifically, an alkyl group, an alkenyl group, an allyl group, a hydroxyalkyl group, or the like.
  • a typical siloxane resin that can be used in the present invention is obtained by, for example, hydrolyzing one or more alkoxysilanes represented by the following general formula (A) in an organic solvent.
  • R 1 is a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a hydrogen atom on the ⁇ -position carbon atom having 15 or less carbon atoms.
  • R 2 represents an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • A is an integer of 0 to 3.
  • substituent R 1 examples include (i) methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, n-decyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 3,3,3-trifluoropropyl group, 3-hydroxypropyl group, 3-glycidoxypropyl group, 2- (3 , 4-epoxycyclohexyl) ethyl group, 3-aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, 4-hydroxy-5- (p-hydroxyphenylcarbonyloxy) pentyl group, etc.
  • alkyl group (ii) a substituted or unsubstituted cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, (i ii) substituted or unsubstituted aralkyl groups such as phenylisopropyl group, (iv) substituted or unsubstituted aryl groups such as phenyl group, tolyl group, p-hydroxyphenyl group, naphthyl group, (v) vinyl group, allyl group , Substituted or unsubstituted alkenyl groups such as 3-acryloxypropyl group and 3-methacryloxypropyl group.
  • a substituted or unsubstituted cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cycl
  • substituent R 2 include the same groups as those exemplified as the alkyl group which may have a substituent of the substituent R 1 , and have 1 to 4 carbon atoms having no substituent. Are preferred.
  • alkoxysilane compound represented by the general formula (A) include the following compounds.
  • monoaryltrialkoxysilane monophenyltrimethoxysilane, monophenyltriethoxysilane, mononaphthyltrimethoxysilane, etc.
  • trialkoxysilane trimethoxysilane, Triethoxysilane, tripropoxysilane, tributoxysilane, etc.
  • Dialkyl dialkoxysilane dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldi Toxisilane, diethyldiethoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, etc.
  • Diphenyl dialkoxysilane diphenyldimethoxysilane, diphenyldiethoxysilane, etc.
  • Alkylphenyldialkoxysilane methylphenyldimethoxysilane, methyl Phenyldiethoxysilane, ethylphenyldimethoxysilane, ethylphenyldiethoxysilane, propylphenyldimethoxysilane, propylphenyldiethoxysilane, etc.
  • Trialkylalkoxysilane trimethylmethoxysilane, tri-n-butylethoxysilane, etc.
  • preferred compounds are tetramethoxysilane, tetraethoxysilane, monomethyltrimethoxysilane, monomethyltriethoxysilane, mononaphthyltrimethoxysilane, and monophenyltrimethoxysilane.
  • the siloxane resin containing a silanol group or an alkoxysilyl group used in the present invention is preferably a siloxane resin having a functional group consisting only of a silanol group or consisting of a silanol group and an alkoxysilyl group. That is, the unreacted alkoxysilyl group derived from the raw material may be contained in the siloxane resin.
  • a silanol group-containing siloxane resin in which such a functional group is composed only of a silanol group or a silanol group and an alkoxysilyl group is produced using one or more of the alkoxysilanes represented by the general formula (A). can do.
  • the silanol group or alkoxysilyl group-containing siloxane resin used in the present invention is one or more of alkoxysilanes that do not contain a reactive group such as a hydroxyl group in R 1 and R 2 as an alkoxysilane if necessary.
  • a siloxane resin obtained by hydrolyzing and condensing a mixture of one or two or more alkoxysilanes having a reactive group such as a hydroxyl group in R 1 and / or R 2 may be used.
  • the raw material alkoxysilane it is preferable to use an alkoxysilane in which a is 0 or 1 in the general formula (A). At this time, if necessary, an alkoxysilane having a 2 or 3 is used. Further, it may be used.
  • silanol group- or alkoxysilyl group-containing siloxane resins include those obtained by hydrolyzing one or more halosilanes represented by the following general formula (B) in an organic solvent.
  • R 1 a SiX 4-a
  • X represents a halogen atom.
  • R ⁇ 1 > and a in general formula (B) the same thing as what was mentioned by the said general formula (A) is preferable.
  • X a chlorine atom, a bromine atom, or an iodine atom is mentioned.
  • a silanol group-containing siloxane resin can be produced in the same manner as in the case of using an alkoxysilane as represented by the general formula (A).
  • a part of chlorosilyl group undergoes hydrolysis / condensation reaction to form a Si—O—Si bond, and the rest is hydrolyzed, whereby the chlorosilyl group becomes a silanol group.
  • the content of silanol groups in the siloxane resin to be formed can be adjusted by controlling the type, amount, reaction conditions, and the like of the halosilane compound used. When only a halosilane compound is used as a raw material, all of the reactive groups of the obtained silanol group-containing siloxane resin are silanol groups.
  • a siloxane resin can be produced by combining the compound of the general formula (A) and the compound of the general formula (B).
  • the hydrolytic condensation reaction of a silane compound to obtain a siloxane resin is usually performed in an organic solvent.
  • the solvent component of the alkoxysilane solution is not particularly limited as long as it is an organic solvent capable of dissolving or dispersing the formed resin.
  • organic solvents can be used as appropriate, for example, monohydric alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol isobutyl alcohol, and imamyl alcohol; ethylene glycol, diethylene glycol, propylene glycol, glycerin, Polyhydric alcohols such as trimethylolpropane and hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol mono Butyl ether, propylene glycol Monoethers of polyhydric alcohols such as monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, 3-methyl-3-methoxy
  • the molecular weight of the siloxane resin is appropriately selected according to the concentration of the composition and the content of the functional group contained in the siloxane resin. However, in order to suppress scum after developing a film containing the photosensitive composition and to increase sensitivity, it is preferable that the molecular weight is low. Specifically, when the photosensitive composition is a positive photosensitive composition, the solubility of the exposed portion is increased. Therefore, the lower the molecular weight of the siloxane resin is, the higher the sensitivity of the photosensitive composition is. Moreover, when the photosensitive composition is a negative photosensitive composition, the higher the solubility of the unexposed part, the higher the sensitivity. Therefore, the lower the molecular weight of the siloxane resin is preferable.
  • the siloxane resin preferably has a weight average molecular weight (Mw) of 400 to 5,000, more preferably 600 to 3,000.
  • Mw weight average molecular weight
  • the weight average molecular weight refers to a styrene equivalent weight average molecular weight by gel permeation chromatography.
  • the photosensitive composition according to the present invention is characterized by containing a crown ether.
  • a crown ether Various crown ethers are generally known. In the present invention, any crown ether can be selected according to the purpose. However, in the present invention, the crown ether is preferably composed only of carbon, hydrogen, and oxygen. Care should be taken because the effects of the present invention may be impaired if the crown ether contains other elements. In particular, it is preferable that the crown ether does not contain an amino group or a quaternary ammonium group.
  • crown ethers containing these groups are used, since they act as a catalyst for advancing the polymerization reaction of the silanol group-containing siloxane resin, and as a result, the photosensitive composition tends to thicken.
  • nitrogen-containing groups other than amino groups or quaternary ammonium groups have little problem of thickening the composition, but coloring may occur in the formed film, so use crown ethers containing nitrogen-containing groups. Care must be taken when doing so. For example, even if an azo group, a diazo group, or an oxime group is contained in the crown ether, there is no problem because coloring is slight.
  • an amide group, an imino group, an imide group, or a urea group is contained in the crown ether, the formed film is colored. Therefore, it is preferable to avoid use in applications where the transparency of the film is important.
  • the crown ether used in the present invention may contain a hydroxyl group, a carboxy group, an aromatic group or the like as a substituent.
  • care must be taken because if the hydrogen is bonded to the ⁇ -position of the aromatic ring, the fired film tends to be colored.
  • crown ethers include 21-crown-7 ether, 18-crown-6-ether, 15-crown-5-ether, 12-crown-4-ether, dibenzo-21-crown-7-ether, Dibenzo-18-crown-6-ether, dibenzo-15-crown-5-ether, dibenzo-12-crown-4-ether, dicyclohexyl-21-crown-7-ether, dicyclohexyl-18-crown-6-ether, Dicyclohexyl-15-crown-5-ether, and dicyclohexyl-12-crown-4-ether. Of these, most preferably selected from 18-crown-6-ether and 15-crown-5-ether.
  • crown ethers may contain impurities. However, if crown ethers containing impurities, particularly alkali metals, are used, the effect of the present invention may not be sufficiently exhibited. It is. It should be noted that the content of metal impurities allowed in the present invention is not uniquely determined because it varies depending on the use of the composition or the required semiconductor device, but is generally below the level allowed in the semiconductor field. It is preferable to make it.
  • the photosensitive composition according to the present invention contains a photosensitizer. Depending on the type of the photosensitive agent, the photosensitive siloxane resin composition according to the present invention functions as either a positive photosensitive composition or a negative photosensitive composition.
  • C1 Photosensitive agent for positive photosensitive composition When the photosensitive composition according to the present invention becomes soluble in an alkaline developer and can be developed by the action of the photosensitive agent, this photosensitive composition is It is a positive photosensitive composition.
  • a diazonaphthoquinone derivative is preferable.
  • the diazonaphthoquinone derivative is a compound in which naphthoquinone diazide sulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group, and the structure is not particularly limited, but is preferably an ester compound with a compound having one or more phenolic hydroxyl groups. preferable.
  • the naphthoquinone diazide sulfonic acid 4-naphthoquinone diazide sulfonic acid or 5-naphthoquinone diazide sulfonic acid can be used.
  • 4-naphthoquinonediazide sulfonic acid ester compound has absorption in the i-line (wavelength 365 nm) region, it is suitable for i-line exposure. Further, the 5-naphthoquinonediazide sulfonic acid ester compound has absorption in a wide wavelength range and is therefore suitable for exposure in a wide wavelength range. It is preferable to select a 4-naphthoquinone diazide sulfonic acid ester compound or a 5-naphthoquinone diazide sulfonic acid ester compound depending on the wavelength to be exposed. A 4-naphthoquinone diazide sulfonic acid ester compound and a 5-naphthoquinone diazide sulfonic acid ester compound may be mixed and used.
  • (C2) Photosensitive agent for negative photosensitive composition When the photosensitive composition according to the present invention becomes developable because the exposed portion becomes insoluble in an alkaline developer by the action of the photosensitive agent, this photosensitive composition is It is a negative photosensitive composition.
  • preferable photosensitizers that act as described above are photoacid generators, photobase generators, or photopolymerization initiators.
  • photoacid generator an arbitrary one can be appropriately selected from known photoacid generators in conventional chemically amplified resists.
  • photoacid generators include naphthoquinone diazide compounds and onium salts.
  • the naphthoquinone diazide compound include esters of 4-naphthoquinone diazide sulfonic acid and the above compound having a phenolic hydroxyl group.
  • a photo-acid generator may be used independently and may be used in combination of 2 or more type.
  • onium salts that are photoacid generators include iodonium salts, sulfonium salts, and phosnium salts.
  • Preferred onium salts include diphenyliodonium triflate, diphenyliodonium pyrenesulfonate, triphenylsulfonium triflate, triphenylsulfonium naphthalenesulfonate, and the like.
  • photobase generators preferably used in the present invention include orthonitrobenzyl carbamates, ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl carbamates and the like.
  • Orthonitrobenzyl carbamates include [[(2-nitrobenzyl) oxy] carbonyl] methylamine, [[(2-nitrobenzyl) oxy] carbonyl] propylamine, [[(2-nitrobenzyl) oxy] carbonyl.
  • Examples of ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzylcarbamate include [[( ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] methylamine, [[( ⁇ , ⁇ -dimethyl-3 , 5-dimethoxybenzyl) oxy] carbonyl] propylamine, [[( ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] butylamine, [[( ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl ) Oxy] carbonyl] hexylamine, [[( ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] cyclohexylamine, [[( ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl ] Aniline, [[( ⁇ , ⁇ -dimethyl-3
  • any conventionally known photopolymerization initiator can be used.
  • photopolymerization initiators include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1 1-phenyl-propan-1-one, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-benzyl-2-dimethylamine, 2-methyl-1- (4-methylthiophenyl) -2- And morpholinopropan-1-one and 2- (benzoyloxyimino) -1- [4- (phenylthio) phenyl] -1-octanone.
  • These photopolymerization agents are commercially available, for example, as IRGACURE products (trade names) from BASF Japan. These photopolymerization agents can be used alone or in combination of two or more.
  • (D) Solvent in the composition according to the present invention, an organic solvent is used in order to dissolve or disperse the siloxane resin, the crown ether, the photosensitizing agent, and additives used as necessary.
  • the solvent used in the hydrolysis-condensation reaction of alkoxysilane may be used as it is as an organic solvent of the photosensitive composition, or another solvent may be further added thereto, or a siloxane resin obtained by the reaction may be used.
  • a siloxane resin that is isolated from a solvent and does not contain a solvent may be dissolved or dispersed in a new solvent and used as a composition.
  • ether ester systems such as propylene glycol monomethyl ether acetate (hereinafter sometimes referred to as PGMEA) are generally used, which is preferable.
  • PGMEA propylene glycol monomethyl ether acetate
  • 3-methyl-3-methoxybutanol, 3-methyl-3-methoxybutyl acetate and the like are also preferable solvents.
  • the photosensitive composition according to the present invention may contain other additives as required.
  • the additive that can be used include a surfactant, a curing agent, a thickener, a smoothing agent, and a quencher.
  • the surfactant is used to improve the coating characteristics of the photosensitive composition, the wetting characteristics to the substrate, and the like.
  • Nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and the like are known as surfactants, which may impair the storage stability of the photosensitive composition.
  • Nonionic surfactants with few polar groups are preferred.
  • nonionic surfactants examples include polyoxyethylene alkyl ethers such as polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, and polyoxyethylene cetyl ether.
  • polyoxyethylene fatty acid diesters polyoxyfatty acid monoesters, polyoxyethylene polyoxypropylene block polymers, acetylene alcohols, acetylene glycols, acetylene alcohol polyethoxylates, acetylene glycol polyethoxylates, etc., fluorine-containing interfaces Activators such as Florard (trade name, manufactured by Sumitomo 3M Limited), MegaFuck (trade name, manufactured by DIC Corporation), Freon (trade name, manufactured by Asahi Glass Co., Ltd.), or organosiloxane surfactants such as KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • Florard trade name, manufactured by Sumitomo 3M Limited
  • MegaFuck trade name, manufactured by DIC Corporation
  • Freon trade name, manufactured by Asahi Glass Co., Ltd.
  • organosiloxane surfactants such as KP341 (trade name, manufactured by Shin-Etsu Chemical Co
  • acetylene glycol examples include 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, 3,6-dimethyl-4-octyne-3,6-diol, 2,4, 7,9-tetramethyl-5-decyne-4,7-diol, 3,5-dimethyl-1-hexyne-3-ol, 2,5-dimethyl-3-hexyne-2,5-diol, 2,5 -Dimethyl-2,5-hexanediol and the like.
  • the photosensitive composition according to the present invention is a negative photosensitive composition
  • it can be added in combination with a quencher to prevent diffusion of acid or base to unexposed areas and form an accurate pattern width.
  • a quencher for example, a nitrogen-containing organic compound is used
  • the photobase generator for example, a sulfonium compound or a carboxyl group-containing compound is used.
  • nitrogen-containing organic compound examples include heteroaromatics, aliphatic amines, amides, amino acids and the like, and heteroaromatics, specifically pyridine, pyrrole, imidazole or derivatives thereof are preferable.
  • sulfonium compound examples include sulfonium compounds represented by the following general formula.
  • R a R b R c S + OH ⁇ wherein R a , R b , and R c each independently represents an alkyl group, a cycloalkyl group that may have a substituent, or an aryl group that may have a substituent). .
  • carboxyl group-containing compound examples include aliphatic carboxylic acids and amino acids, but acetic acid, propionic acid, linoleic acid, 4-aminobenzoic acid or derivatives thereof are particularly preferable.
  • nitrogen-containing compounds and sulfonium compounds or carboxyl group-containing compounds may be used in appropriate combination.
  • the photosensitive siloxane resin composition according to the present invention as described above has both high sensitivity and excellent heat reflow resistance, and also has excellent storage stability.
  • the content of the siloxane resin contained in the photosensitive composition in the present invention is appropriately adjusted depending on the type of siloxane resin to be used and the use of the composition, and is not particularly limited. However, in order to obtain a sufficient coating film thickness, the content of the siloxane resin is preferably high, and from the viewpoint of the temporal stability of the photosensitive composition, it is preferably not more than a certain level. For this reason, the content of the siloxane resin contained in the photosensitive composition is preferably 1 to 60% by weight, based on the total weight of the composition, including the solvent described later, and is preferably 5 to 50% by weight. It is more preferable.
  • the content of crown ether in the photosensitive composition according to the present invention is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight, based on the total weight of the composition. If it is less than 0.1% by weight, it may not exhibit a sufficient effect for improving the solubility in an alkali developer. If it exceeds 20%, the pattern formed from the photosensitive resin during development and / or rinsing tends to be easily peeled off from the substrate.
  • the amount added is the esterification rate of naphthoquinone diazide sulfonic acid, or the physical properties of the polysiloxane used,
  • the optimum amount varies depending on the required sensitivity and the dissolution contrast between the exposed and unexposed areas, but is preferably 3 to 20% by weight, more preferably 5 to 15% by weight, based on the total weight of the siloxane resin. .
  • the addition amount of the diazonaphthoquinone derivative is less than 3% by weight, the dissolution contrast between the exposed part and the unexposed part is too low, and there may be no real photosensitivity. Further, in order to obtain a better dissolution contrast, 8% by weight or more is preferable.
  • the addition amount of the diazonaphthoquinone derivative is more than 20% by weight, whitening of the coating film occurs due to poor compatibility between the polysiloxane and the quinonediazide compound, and coloring due to decomposition of the quinonediazide compound that occurs during thermal curing is remarkable. Therefore, the colorless transparency of the cured film may be lowered.
  • the heat resistance of diazonaphthoquinone derivatives is inferior to that of polysiloxane, so if the amount added is increased, thermal decomposition causes deterioration of the electrical insulation of the cured product and outgassing, resulting in problems in subsequent processes. There is.
  • the resistance to a photoresist stripping solution in which the cured product is mainly composed of monoethanolamine or the like may be lowered.
  • the photodiazonaphthoquinone derivative may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the addition amount of the photoacid generator, photobase generator, or photopolymerization initiator is adjusted as necessary, but all are usually 0.1 to 20% by weight, preferably based on the total weight of the siloxane resin. 0.5 to 10% by weight. When the content is 0.1% by weight or more, pattern formation is sufficiently performed, and when the content is 20% by weight or less, a uniform solution can be obtained, so that the storage stability is improved.
  • these photosensitive agents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the content of the surfactant in the photosensitive composition according to the present invention is preferably 50 ppm to 100,000 ppm, more preferably 100 ppm to 50,000 ppm in the composition. If the amount is too small, the surface activity may be difficult to obtain, and the wettability may not be improved. If the amount is too large, foaming will be severe, foaming may occur in the coating machine, and handling may be difficult.
  • the content of the solvent in the photosensitive composition according to the present invention is uniquely determined according to the content of each component described above, but is adjusted according to the viscosity of the composition, the film thickness of the film to be formed, and the like. If it is too low, it tends to be difficult to obtain a film having a sufficient thickness, and if it is too high, the aging stability of the composition tends to deteriorate.
  • the content of metal impurities is preferably low as described above.
  • the photosensitive composition according to the present invention is used for electronic materials such as semiconductors and liquid crystals, it is natural to use such a generated material.
  • the content of metal impurities is high, sensitivity is increased. Care should be taken because the improvement effect may be reduced.
  • the content of the metal impurity permitted in the present invention is not more than a level generally permitted in applications for electronic materials such as semiconductors and liquid crystals.
  • the photosensitive composition according to the present invention enables excellent pattern formation with reduced generation of scum and the like.
  • a pattern forming method using the above-described photosensitive composition will be described as follows.
  • the above-described photosensitive composition is applied to a substrate to form a film.
  • the substrate to be used is not particularly limited, but includes various substrates such as a silicon substrate, a glass plate, a metal plate, and a ceramic plate.
  • the substrate of the present invention is preferable.
  • the application method is not particularly limited, and various methods such as spin coating, dip coating, knife coating, roll coating, spray coating, and slit coating can be employed.
  • the film thus formed on the substrate can be pre-baked as necessary to remove the organic solvent in the film.
  • the pre-baking temperature is adjusted depending on the type of organic solvent contained in the composition. Generally, if the temperature is too low, the residual amount of the organic solvent increases, which may cause damage to the substrate transporting equipment, If the temperature is too high, drying may occur rapidly, resulting in uneven coating, or problems such as sublimation of the silanol group or alkoxysilyl group-containing siloxane resin may occur. For this reason, the pre-bake temperature is preferably 60 to 200 ° C., more preferably 80 to 150 ° C.
  • the pre-baking can be performed using a heating device such as a hot plate or an oven, and the pre-baking time varies depending on the type of the organic solvent used and the pre-baking temperature, but is preferably 30 seconds to 10 minutes. Minutes are more preferred.
  • the coating is imagewise exposed to form the desired pattern.
  • the exposure method can be performed by any conventionally known method. Specifically, mask exposure, scanning exposure, and the like are used.
  • the light source generally, g-line, h-line, i-line, broadband combining g-line, h-line, and i-line, KrF excimer laser, ArF excimer laser, electron beam, and the like are used.
  • Alkaline aqueous solution treatment After exposure, the coating is subjected to an alkaline aqueous solution treatment and developed.
  • the method of the alkaline aqueous solution treatment is not particularly limited, and can be performed by a general method such as immersion (dip) in an alkaline aqueous solution, paddle, shower, slit, cap coat, or spray.
  • any alkaline compound contained in the alkaline aqueous solution can be used, but an organic alkaline compound is preferably used.
  • the organic alkaline compound include quaternary ammonium compounds, amino alcohols (alkanolamines), aqueous ammonia, alkylamines, and heterocyclic amines.
  • the quaternary ammonium compound include tetramethylammonium hydroxide (tetramethylammonium hydroxide; hereinafter referred to as “TMAH”), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and trimethylethylammonium hydroxide.
  • Trimethyl (2-hydroxyethyl) ammonium hydroxide (choline), triethyl (2-hydroxyethyl) ammonium hydroxide, tripropyl (21-hydroxyethyl) ammonium hydroxide, trimethyl (21-hydroxypropyl) ammonium hydroxide are preferred. It is mentioned as a thing. Of these, TMAH is particularly preferable.
  • An aqueous solution containing an inorganic alkaline compound can be used in applications where there are no problems with electrical properties and semiconductor properties, such as hard coat films, but because the aqueous solution contains metal ions such as sodium and potassium, TFT It is not preferable to use in applications where electrical characteristics and semiconductor characteristics must be taken into consideration, such as interlayer insulating films and planarization films.
  • the concentration of the alkaline aqueous solution used for the alkaline aqueous solution treatment depends on various factors such as the type of alkali used, the concentration, the type of silanol group or alkoxysilyl group-containing siloxane resin to be treated, and the film thickness of the coating. There is no particular limitation. Further, the higher the alkali concentration range, the higher the effect of crown ether tends to be. However, from the concentration of aqueous alkali solution generally used in the field of electronic materials, the alkali concentration range of the aqueous alkaline solution is generally 1% to 5%, preferably 1 .5 to 3%.
  • the treatment time of the alkaline aqueous solution treatment is preferably about 15 seconds to 3 minutes. From the viewpoint of production efficiency, a short development time is preferred, and a long development time is preferred in order to reduce variation in development results.
  • the processing temperature can be performed at room temperature.
  • (E) Rinse treatment The film after development can be subsequently subjected to a rinse treatment.
  • This rinsing process is performed in order to wash away the alkaline aqueous solution and the residue remaining on the developed coating surface with water. Therefore, any method may be used as long as the alkaline aqueous solution on the coating surface is washed away.
  • an appropriate method known as a conventional rinsing method can be employed, such as immersing the film in water, flowing water over the surface of the film, or pouring water into a shower.
  • the rinsing time is not particularly limited as long as the alkaline aqueous solution on the coating is removed.
  • the firing temperature at the time of curing the coating can be arbitrarily selected as long as the coating is cured. However, if the firing temperature is too low, the reaction may not proceed sufficiently and may not be cured sufficiently. For this reason, it is preferable that a calcination temperature is 150 degreeC or more. However, by adding a curing agent as an additive, sufficient curing can be achieved even at around 150 ° C. Further, since the OH group has polarity, the dielectric constant tends to increase when the OH group remains. Therefore, when it is desired to keep the dielectric constant of the siliceous film low, it is more preferable to cure at a high temperature, specifically 200 ° C. or higher.
  • a calcination temperature is 450 degrees C or less, and it is more preferable that it is 350 degrees C or less.
  • the firing time is not particularly limited, but is preferably 15 minutes to 3 hours. If the firing time is too long, cracks are likely to occur in the coating, so care must be taken.
  • atmosphere it can also be performed in inert gas atmosphere, such as nitrogen, helium, and argon, as needed.
  • the heating device is not particularly limited, and for example, a hot plate, an oven, or the like can be used.
  • the film formed in this way has little scum after development and maintains the excellent characteristics such as high transparency, high insulation and low dielectric constant, which are the characteristics of the film formed from siloxane resin. is there.
  • the weight average molecular weight (Mw) was measured using HPLC (GPC system) manufactured by Shimadzu Corporation and two GPC columns (SuperMultipore HZ-N (trade name) manufactured by Tosoh Corporation) with a flow rate of 0. It was measured by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard under the analysis conditions of 7 ml / min, elution solvent tetrahydrofuran, and column temperature of 40 ° C.
  • Example 1 67.63 g of a solution containing the siloxane resin X produced in Production Example 1 and 0.14 g of a surfactant KF-54 (manufactured by Shin-Etsu Chemical Co., Ltd.), a naphthoquinone photosensitizer P represented by the following general formula: 0.14 g and 29.43 g of PGMEA as a solvent were added and dissolved by stirring, thereby preparing a 30% solution.
  • a surfactant KF-54 manufactured by Shin-Etsu Chemical Co., Ltd.
  • a naphthoquinone photosensitizer P represented by the following general formula: 0.14 g and 29.43 g of PGMEA as a solvent were added and dissolved by stirring, thereby preparing a 30% solution.
  • This solution was filtered under pressure of 0.05 Mpa with a filter (47 mm ⁇ , PTFE, filtration accuracy 0.1 ⁇ m) manufactured by Advantech Toyo Co., Ltd., and received in a clean polyethylene container “AC100-H” manufactured by Aicero Chemical Co., Ltd. Was prepared.
  • Examples 2 to 6 and Comparative Examples 1 to 3 The photosensitive composition which changed the composition of the composition as shown in Table 1 with respect to Example 1 was prepared. In Comparative Example 3, nitrobenzylsiloxycarbamate was added as a curing agent.
  • the formed line and space pattern was exposed to 500 mJ / cm 2 on the entire surface by contact aligner PLA-501 (trade name, manufactured by Canon Inc.), and then 1 at 250 ° C. in a nitrogen atmosphere. Time baking hardening was performed. The fired pattern was cut in a direction perpendicular to the surface, and the cross section was observed using a thermal field emission scanning electron microscope JSM-7001F (trade name, manufactured by JEOL Ltd.) and contacted with the substrate surface. The resistance to thermal reflow was evaluated by measuring the corners. In the case of a positive photosensitive composition, it can be said that the greater the contact angle, the better the resistance to thermal reflow. Further, in the same manner as in the evaluation of to thermal reflow resistance by changing the exposure amount for the entire surface exposure, L / S ratio of the pattern is 1: 1 and comprising exposure amount was E 0.
  • the prepared photosensitive composition was evaluated for storage stability. With respect to the storage stability, the photosensitive composition was allowed to stand at room temperature for one month, and the one whose kinematic viscosity increased by 5% or more from the initial value was poor, and the one with less than 5% was considered good.
  • the kinematic viscosity was measured with an automatic viscosity measuring device VMC-252 (trade name) manufactured by Rouai Co., Ltd.
  • the ultraviolet-visible absorption spectrum of the obtained cured film was measured using a spectrophotometer MultiSpec-1500 (trade name, manufactured by Shimadzu Corporation), and the transmittance at a wavelength of 400 nm was determined.
  • each photosensitive composition having a relative dielectric constant was applied to a silicon wafer by a spin coating method to a dry film thickness of 0.5 ⁇ m. Cured for 1 hour at temperature. The obtained cured film was subjected to CV measurement with a mercury probe type capacitance measuring device (manufactured by Solid State Instrument), and the dielectric constant was also determined from the obtained saturated capacitance. The obtained results were as shown in Table 1.
  • Example 7 and Comparative Example 4 Using Irgacure OXE02 (trade name, manufactured by BASF Japan Ltd.) as a photosensitizer, compositions as shown in Table 2 were prepared and evaluated in the same manner as in Example 1. The obtained results were as shown in Table 2.
  • the photosensitive composition of these examples is a negative photosensitive composition, and it can be said that the larger the contact angle, the better the resistance to thermal reflow.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Silicon Polymers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

[課題]アルカリ可溶性および感度に優れた感光性シロキサン樹脂組成物とそれを用いたパターン形成方法の提供。 [解決手段]シラノール基またはアルコキシシリル基を有するシロキサン樹脂と、クラウンエーテルと、感光剤と、有機溶剤とを含んでなる感光性シロキサン樹脂組成物。この感光性組成物を基材上に塗布し、像様露光し、アルカリ水溶液で処理し、焼成することによりパターンを形成させる。

Description

感光性シロキサン樹脂組成物
 本発明は、シラノール基またはアルコキシシリル基によるアルカリ可溶性シロキサン樹脂を含む感光性組成物に関するものである。
 シロキサン樹脂は、高耐熱性、高硬度、高絶縁性、高透明性の材料として知られており、各種用途において使用されている。このような用途の一つとして、シロキサン樹脂を含有する組成物を焼成することにより得られた硬化被膜が、耐久性、低誘電性で絶縁性に優れ、高硬度を有することを利用して、半導体素子や液晶表示素子等における絶縁膜や平坦化膜、保護膜、さらには半導体封止材などとして使用されている。
 シロキサン樹脂はアルコキシシランやハロシランを原料として加水分解により作成されるため、シラノール基が樹脂中に存在する。このシラノール基がアルカリ可溶性に寄与するという特性を利用し、一般的に電子材料分野で使用される現像液、特に2.38%テトラメチルアンモニウム水溶液で現像可能な感光性シロキサン樹脂組成物が数々報告されている(特許文献1)。
 一般的にアルカリ可溶性を有するためにはシロキサン樹脂中のシラノール基を増やす、即ち分子量を低くすることが考えられるが、分子量を低くすると対熱リフロー耐性が低くなる傾向にある。具体的には200℃以上の高温で成膜焼成した際にパターンが崩れる現象が発生することがある。また樹脂の分子量が高すぎる場合には、感度が低下して、露光や現像に要する時間が長くなることがある。さらには現像後において現像液に対して溶解しなければならない個所に残留物(以下、「スカム」ということもある)が残存してしまうこともある。
 アルカリ可溶性を維持しつつ対熱リフロー耐性を向上させるため、分子量が低くアルカリ可溶なシロキサン樹脂と、分子量が高いアルカリ不溶な樹脂を組み合わせる方法も検討されているが、二種類の樹脂の分子量の差が広がれば広がるほど対熱リフロー耐性が高まるものの(特許文献2)、スカムの発生も顕著になるという解決すべき課題が残っていることが、本発明者の研究により判明している。その他硬化剤の添加(特許文献3)、樹脂へのシリカ(SiO)ユニットの導入(特許文献4)といった方法があるが、特許文献3による方法ではスカム多発、経時安定性の低下、感度の低下が、特許文献4による方法ではシリカユニットがポリマー全体の30mol%を超えるとスカム多発、経時安定性の著しい低下が起こる傾向にあり、改善の余地があった。
 このような問題を解決するため、アルコキシ基や水酸基を有さない多官能ポリシロキサンを用いることがあるが、硬化性に欠ける、透明性が低下してしまうという欠点がある(特許文献5)。
特開2006-178436公報 特開2007-193318号公報 特開2008-208200号公報 特開2003-255546号公報 特開平8-334901号公報
 本発明の目的は、上記従来の問題点がない、即ち保存安定性を維持し、スカムを減少させ、対熱リフロー耐性を向上させ、感度を向上させた、アルカリ可溶性シロキサン樹脂を含んでなる感光性組成物を提供することである。
 本発明による感光性シロキサン樹脂組成物は、
 シラノール基またはアルコキシシリル基を有するシロキサン樹脂と、
 クラウンエーテルと、
 感光剤と、
 有機溶剤と
を含んでなることを特徴とするものである。
 また、本発明によるパターン形成方法は、
 前記の感光性シロキサン樹脂組成物を基材上に塗布して被膜を形成させ、
 前記被膜を像用露光し、
 アルカリ水溶液で処理し、
 不活性ガスまたは大気中において150~450℃で焼成する
ことを含んでなることを特徴とするものである。
 さらに本発明によるシリカ質膜は、前記の方法で製造されたことを特徴とするものである。
 本発明による感光性シロキサン樹脂組成物は、アルカリ可溶性が飛躍的に改善されており、また経時安定性や感度に優れたものである。また、用いられるクラウンエーテル自身が焼成後には被膜中に残存しにくいことから、高い透明性を有するシリカ質膜を形成し得るものである。そしてそのシリカ質膜は、高絶縁性、低誘電率性および高い耐熱性をも実現することができる。
 本発明のシラノール基含有アルカリ可溶性シロキサン樹脂を更に詳細に説明すると以下のとおりである。
感光性シロキサン樹脂組成物
 本発明に用いられる感光性シロキサン樹脂組成物は、(a)シラノール基またはアルコキシシリル基を有するシロキサン樹脂、(b)クラウンエーテル(c)感光剤(d)有機溶剤、(e)必要に応じ用いられる添加剤からなる。
(a)シラノール基またはアルコキシシリル基を有するシロキサン樹脂
 本発明において用いられるシロキサン樹脂は、官能性基としてシラノール基またはアルコキシシリル基を有するものである。本発明において、シラノール基およびアルコキシシリル基とはシロキサン骨格を形成するケイ素に直接結合した水酸基およびアルコキシ基を意味する。このようなシロキサン樹脂は、シラノール基またはアルコキシシリル基を有することによってアルカリに可溶なものであり、感光性樹脂組成物として使用した場合には、アルカリ性現像液によって容易に処理することができる。また、これらの官能性基は、感光性組成物を硬化反応させる場合には反応性基としても寄与する。
 本発明において用いられるシロキサン樹脂は、シラノール基および/またはアルコキシシリル基を含むシロキサン樹脂であれば何れのものであってよく、その構造は特に制限されない。シロキサン樹脂の骨格構造は、ケイ素原子に結合している酸素数に応じて、シリコーン骨格(ケイ素原子に結合する酸素原子数が2)、シルセスキオキサン骨格(ケイ素原子に結合する酸素原子数が3)、およびシリカ骨格(ケイ素原子に結合する酸素原子数が4)に分類できる。本発明においては、これらのいずれであってもよいが、これらのシロキサン樹脂の骨格構造は複数の組み合わせでもよく、シロキサン樹脂は、それぞれの構造を有する樹脂の混合物であってもよい。しかし、シリコーン構造が多いと、高温において樹脂が壊れやすい傾向にある。このため、シリコーン構造の割合はシロキサン樹脂全体の10mol%以下であることが好ましい。特に、加熱硬化させる場合には被膜形成の際の硬化反応が進み易く、塗布後のべたつきが少ないなどの取り扱い性がよいことから、シルセスキオキサン構造またはシルセスキオキサン構造とシリカ構造との混合物であることが好ましい。また、シリカ構造が多いと安定性が低く、組成物が増粘する傾向にあるので、シリカ構造の割合はシロキサン樹脂全体の20mol%以下であることが好ましく、10mol%以下であることがより好ましい。
 また、本発明において用いられるシロキサン樹脂は、シラノール基またはアルコキシシラン基を有する。前記したとおり、これらの官能性基は、樹脂のアルカリに対する溶解性や硬化反応に寄与するとともに、保存安定性にも影響すると考えられている。本発明においては、シロキサン樹脂にシラノール基およびアルコキシシラン基がわずかでも含まれていれば本発明の効果を奏するが、その数はシロキサン樹脂の分子量に依存すると考えられている。このため、シロキサン樹脂の分子量が後述する特定の範囲にあることが適切な数のシラノール基またはアルコキシシラン基を有するために好ましい。
 なお、本発明の効果を損なわない範囲で、シラノール基またはアルコキシシラン基以外の反応性基、例えばカルボキシル基、スルホニル基、アミノ基などがシロキサン樹脂に含まれてもよいが、これらの反応性基は一般に感光性組成物の保存安定性を劣化させる傾向にあるため、少ないことが好ましい。具体的にはケイ素原子に結合している水素または置換基の総数に対して、10mol%以下であることが好ましく、全く含まれないことが特に好ましい。ここで、置換基とは、シロキサン構造を構成するSi-O結合を含まない置換基、具体的にはアルキル基、アルケニル基、アリル基、ヒドロキシアルキル基などを意味する。
 本発明で用いることのできる代表的なシロキサン樹脂は、例えば、下記一般式(A)で表されるアルコキシシランの1種以上を有機溶剤中、加水分解して得られるものである。
  (RSi(OR4-a    (A)
 式中、Rは水素原子、置換基を有していてもよい、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数15以下のα位の炭素原子に水素原子が結合していないアラルキル基、炭素数6~15のアリール基または炭素数1~6のアルケニル基を表し、Rは置換基を有していてもよい炭素数1~6のアルキル基を表し、aは0~3の整数である。
 上記一般式(A)中、置換基Rの具体例としては、(i)メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、n-デシル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、3,3,3-トリフルオロプロピル基、3-ヒドロキシプロピル基、3-グリシドキシプロピル基、2-(3、4-エポキシシクロヘキシル)エチル基、3-アミノプロピル基、3-メルカプトプロピル基、3-イソシアネートプロピル基、4-ヒドロキシ-5-(p-ヒドロキシフェニルカルボニルオキシ)ペンチル基などの置換または非置換のアルキル基、(ii)シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などの置換または非置換のシクロアルキル基、(iii)フェニルイソプロピル基などの置換または非置換のアラルキル基、(iv)フェニル基、トリル基、p-ヒドロキシフェニル基、ナフチル基などの置換または非置換のアリール基、(v)ビニル基、アリル基、3-アクリロキシプロピル基、3-メタクリロキシプロピル基などの置換または非置換のアルケニル基が挙げられる。
 一方、置換基Rの具体例としては、置換基Rの置換基を有していてもよいアルキル基として例示したと同様の基が例示でき、置換基を有さない炭素数1~4のアルキル基が好ましい。
 より具体的には、上記一般式(A)で示されるアルコキシシラン化合物としては、下記の化合物が例示される。
(イ)テトラアルコキシシラン:テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等
(ロ)モノアルキルトリアルコキシシラン:モノメチルトリメトキシシラン、モノメチルトリエトキシシラン、モノエチルトリメトキシシラン、モノエチルトリエトキシシラン、モノプロピルトリメトキシシラン、モノプロピルトリエトキシシラン等
(ハ)モノアリールトリアルコキシシラン:モノフェニルトリメトキシシラン、モノフェニルトリエトキシシラン、モノナフチルトリメトキシシラン等
(ニ)トリアルコキシシラン:トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリブトキシシラン等
(ホ)ジアルキルジアルコキシシラン:ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン等
(ヘ)ジフェニルジアルコキシシラン:ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等
(ト)アルキルフェニルジアルコキシシラン:メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、エチルフェニルジメトキシシラン、エチルフェニルジエトキシシラン、プロピルフェニルジメトキシシラン、プロピルフェニルジエトキシシラン等
(チ)トリアルキルアルコキシシシラン:トリメチルメトキシシラン、トリn-ブチルエトキシシラン等
 これらの中で好ましい化合物は、テトラメトキシシラン、テトラエトキシシラン、モノメチルトリメトキシシラン、モノメチルトリエトキシシラン、モノナフチルトリメトキシシラン、モノフェニルトリメトキシシランである。
 本発明において用いられるシラノール基またはアルコキシシリル基を含有するシロキサン樹脂は、官能性基がシラノール基のみからなるまたはシラノール基とアルコキシシリル基からなるシロキサン樹脂が好ましい。すなわち、シロキサン樹脂中には、原料由来の未反応のアルコキシシリル基が含まれていてもよい。このような官能性基がシラノール基のみからなるまたはシラノール基とアルコキシシリル基からなるシラノール基含有シロキサン樹脂は、前記一般式(A)で示されるアルコキシシランの1種または2種以上を用いて製造することができる。また、本発明において用いられるシラノール基またはアルコキシシリル基含有シロキサン樹脂は、必要であればアルコキシシランとして、前記RおよびRに水酸基などの反応基を含まないアルコキシシランの1種または2種以上とRおよび/またはRに水酸基などの反応基を有するアルコキシシランの1種または2種以上との混合物を用い、これらを加水分解縮合することによって得られるシロキサン樹脂が用いられてもよい。また、本発明においては、原料アルコキシシランとして、上記一般式(A)において、aが0または1であるアルコキシシランを用いることが好ましく、このとき必要に応じてaが2または3のアルコキシシランがさらに用いられてもよい。
 また、他の代表的なシラノール基またはアルコキシシリル基含有シロキサン樹脂としては、下記一般式(B)で表されるハロシランの1種以上を有機溶剤中、加水分解して得られるものも挙げられる。
(RSiX4-a   (B)
 式中、R1およびaは前記した通りであり、
Xはハロゲン原子を表す。
 なお、一般式(B)中のRおよびaとしては、上記一般式(A)で挙げたものと同じものが好ましい。またXとしては、塩素原子、臭素原子、またはヨウ素原子が挙げられる。
 このようなハロシラン化合物を用いることにより、一般式(A)で示されるようなアルコキシシランを用いる場合と同様の方法で、シラノール基含有シロキサン樹脂を製造することができる。例えば、トリクロロシラン化合物では、一部のクロロシリル基が加水分解・縮合反応してSi-O―Siの結合を形成し、残りは加水分解し、クロロシリル基がシラノール基となる。形成されるシロキサン樹脂中のシラノール基の含有量は、使用するハロシラン化合物の種類、量、反応条件などを制御することにより調整可能である。原料としてハロシラン化合物のみを用いる場合には、得られたシラノール基含有シロキサン樹脂の反応基は全部がシラノール基となる。
 また、一般式(A)の化合物と一般式(B)の化合物を組み合わせてシロキサン樹脂を製造することもできる。
 シロキサン樹脂を得るためのシラン化合物の加水分解縮合反応は、通常有機溶剤中で行なわれる。アルコキシシラン溶液の溶剤成分としては、形成される樹脂を溶解又は分散することのできる有機溶剤であれば特に限定されない。このような溶剤としては、公知の有機溶剤を適宜使用でき、例えばメチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコールイソブチルアルコール、イミアミルアルコール等の一価アルコール;エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール等の多価アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、3-メチル-3-メトキシブタノール等の多価アルコールのモノエーテル類およびそれらのアセテート類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソアミルケトン等のケトン類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールの水酸基をすべてアルキルエーテル化した多価アルコールエーテル類等が挙げられる。アルコキシシランの反応において用いられる溶剤は、引き続き基材に塗布される感光性組成物の溶剤としても利用されることが一般的である。
 シロキサン樹脂の分子量は、組成物の濃度やシロキサン樹脂に含まれる官能性基の含有量などに応じて適切に選択される。しかし、感光性組成物を含む被膜を現像した後のスカムを抑制するために、また感度を上昇させるために、分子量は低いほうが好ましい。具体的には、感光性組成物がポジ型感光性組成物である場合には露光部の溶解性が上昇するので、シロキサン樹脂の分子量が低いほうが感光性組成物の感度が高くなるので好ましい。また、感光性組成物がネガ型感光性組成物である場合には、未露光部の溶解性が高いほうが感度が高くなるので、シロキサン樹脂の分子量が低いほうが好ましい。一方で焼成後のパターン形状を良好に保つためには分子量が過度に低くならないようにすべきである。このような観点から、シロキサン樹脂の重量平均分子量(Mw)が400~5,000であるものが好ましく、600~3,000であることがより好ましい。ここで、重量平均分子量とは、ゲル浸透クロマトグラフィーによるスチレン換算重量平均分子量をいう。
(b)クラウンエーテル
 本発明による感光性組成物は、クラウンエーテルを含むことを一つの特徴としている。クラウンエーテルは、一般的に種々のものが知られているが、本発明においてはこれらから目的に応じて任意のものを選択することができる。しかしながら、本発明においては、クラウンエーテルは炭素、水素、酸素だけで構成されるものであることが好ましい。クラウンエーテルがこれ以外の元素を含むと本願発明の効果が損なわれることがあるので注意が必要である。特に、クラウンエーテルがアミノ基または4級アンモニウム基を含まないことが好ましい。これらの基を含むクラウンエーテルを用いると、それがシラノール基含有シロキサン樹脂の重合反応を進行させる触媒として作用し、その結果、感光性組成物が増粘する傾向にあるので注意が必要である。また、アミノ基または4級アンモニウム基以外の窒素含有基は、組成物の増粘の問題は小さいが、形成される被膜に着色が発生することがあるので、窒素含有基を含むクラウンエーテルを使用する場合には注意が必要である。例えば、アゾ基、ジアゾ基、またはオキシム基がクラウンエーテルに含まれても着色はわずかであるので問題がない。一方、アミド基、イミノ基、イミド基、または尿素基がクラウンエーテルに含まれる場合、形成される被膜に着色が起こるため、被膜の透明性が重視される用途においては使用を避けることが好ましい。
 また、本発明に用いられるクラウンエーテルは置換基として水酸基、カルボキシ基、芳香族基などを含んでいてもよい。ただし、クラウンエーテルの環に芳香族環が縮合している場合には、芳香環のα位に水素が結合していると、焼成後の被膜が着色する傾向にあるので注意が必要である。
 クラウンエーテルとして、最も単純な構造を有するものは、一般式(-CH-CH-O-)で表されるものである。本発明において好ましいものは、これらのうち、nが4~7のものである。クラウンエーテルは、環を構成する原子総数をx、そのうちに含まれる酸素原子数をyとして、x-クラウン-y-エーテルと呼ばれることがある。本発明においては、x=12、15、18、または21、y=x/3であるクラウンエーテル、ならびにこれらのベンゾ縮合物およびシクロヘキシル縮合物からなる群から選択されるものが好ましい。より好ましいクラウンエーテルの具体例は、21-クラウン-7エーテル、18-クラウン-6-エーテル、15-クラウン-5-エーテル、12-クラウン-4-エーテル、ジベンゾ-21-クラウン-7-エーテル、ジベンゾ-18-クラウン-6-エーテル、ジベンゾ-15-クラウン-5-エーテル、ジベンゾ-12-クラウン-4-エーテル、ジシクロヘキシル-21-クラウン-7-エーテル、ジシクロヘキシル-18-クラウン-6-エーテル、ジシクロヘキシル-15-クラウン-5-エーテル、およびジシクロヘキシル-12-クラウン-4-エーテルである。これらのうち、18-クラウン-6-エーテル、15-クラウン-5-エーテルから選択されることが最も好ましい。また、一般的に市販されているクラウンエーテルは不純物を含有している場合があるが、不純物、特にアルカリ金属を含むクラウンエーテルを用いると本発明の効果を十分発揮しないことがあるので注意が必要である。なお、本発明において許容される金属不純物の含有量は、組成物の用途や求められる半導体装置などに応じて変化するので一義的に決まらないが、一般的に半導体分野で許容されているレベル以下にすることが好ましい。
(c)感光剤
 また、本発明による感光性組成物は、感光剤を含んでいる。この感光剤の種類により、本発明による感光性シロキサン樹脂組成物はポジ型感光性組成物またはネガ型感光性組成物のいずれかとして機能する。
(c1)ポジ型感光性組成物用感光剤
 本発明による感光性組成物が感光剤の作用によって、露光部がアルカリ現像液に可溶となって現像可能となる場合、この感光性組成物はポジ型感光性組成物である。このような作用をする感光剤のうち好ましいものは、ジアゾナフトキノン誘導体である。ジアゾナフトキノン誘導体は、フェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合した化合物であり、特に構造について制限されないが、好ましくはフェノール性水酸基を1つ以上有する化合物とのエステル化合物であることが好ましい。ナフトキノンジアジドスルホン酸としては、4-ナフトキノンジアジドスルホン酸、あるいは5-ナフトキノンジアジドスルホン酸を用いることができる。4-ナフトキノンジアジドスルホン酸エステル化合物はi線(波長365nm)領域に吸収を持つため、i線露光に適している。また、5-ナフトキノンジアジドスルホン酸エステル化合物は広範囲の波長領域に吸収が存在するため、広範囲の波長での露光に適している。露光する波長によって4-ナフトキノンジアジドスルホン酸エステル化合物、5-ナフトキノンジアジドスルホン酸エステル化合物を選択することが好ましい。4-ナフトキノンジアジドスルホン酸エステル化合物と5-ナフトキノンジアジドスルホン酸エステル化合物を混合して用いることもできる。 
 フェノール性水酸基を有する化合物としては特に限定されないが、例えば、以下の化合物が挙げられる(名称はビスフェノールAを除いてそれぞれ商品名、本州化学工業株式会社製)。 
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(c2)ネガ型感光性組成物用感光剤
 本発明による感光性組成物が感光剤の作用によって、露光部がアルカリ現像液に難溶となって現像可能となる場合、この感光性組成物はネガ型感光性組成物である。このような作用をする感光剤のうち好ましいものの例は光酸発生剤、光塩基発生剤、または光重合開始剤である。
 光酸発生剤としては、従来化学増幅型レジストにおける光酸発生剤として公知のものの中から任意のものを適宜選択して用いることができる。光酸発生剤としては、ナフトキノンジアジド化合物やオニウム塩などを例として挙げることができる。ナフトキノンジアジド化合物の例としては、4-ナフトキノンジアジドスルホン酸と、前記のフェノール性水酸基を有する化合物とのエステルが挙げられる。本発明においては、光酸発生剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 光酸発生剤であるオニウム塩の具体的な例としては、ヨードニウム塩、スルホニウム塩、ホスニウム塩などを挙げることができる。好ましいオニウム塩としては、ジフェニルヨードニウムトリフレート、ジフェニルヨードニウムピレンスルホネート、トリフェニルスルホニウムトリフレート、トリフェニルスルホニウムナフタレンスルホネートなどが挙げられる。
 一方、本発明において好ましく用いられる光塩基発生剤としては、オルトニトロベンジルカルボメート類、α、α-ジメチル-3,5-ジメトキシベンジルカルバメート類などが挙げられる。
 オルトニトロベンジルカルボメート類としては、[[(2-ニトロベンジル)オキシ]カルボニル]メチルアミン、[[(2-ニトロベンジル)オキシ]カルボニル]プロピルアミン、[[(2-ニトロベンジル)オキシ]カルボニル]ヘキシルアミン、[[(2-ニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、[[(2-ニトロベンジル)オキシ]カルボニル]アニリン、[[(2-ニトロベンジル)オキシ]カルボニル]ピペリジン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]フェニレンジアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]トルエンジアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ジアミノジフェニルメタン、[[(2、6-ジニトロベンジル)オキシ]カルボニル]メチルアミン、[[(2、6-ジニトロベンジル)オキシ]カルボニル]プロピルアミン、[[(2、6-ジニトロベンジル)オキシ]カルボニル]ブチルアミン、[[(2、6-ジニトロベンジル)オキシ]カルボニル]ヘキシルアミン、[[(2、6-ジニトロベンジル)オキシ]カルボニル]アニリン、ビス[[(2、6-ジニトロベンジル)オキシ]カルボニル]エチレンジアミン、ビス[[(2、6-ジニトロベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(2、6-ジニトロベンジル)オキシ]カルボニル]フェニレンジアミンなどが挙げられる。
 α、α-ジメチル-3,5-ジメトキシベンジルカルバメート類としては、[[(α、α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]メチルアミン、[[(α、α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]プロピルアミン、[[(α、α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ブチルアミン、[[(α、α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ヘキシルアミン、[[(α、α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]シクロヘキシルアミン、[[(α、α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]アニリン、[[(α、α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ピペリジン、ビス[[(α、α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]エチレンジアミン、ビス[[(α、α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(α、α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]フェニレンジアミンなどが挙げられる。
 また、本発明において光重合開始剤は、従来知られている任意のものを用いることができる。このような光重合開始剤としては、具体的には2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1一フェニル-プロパン-1-オン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-ベンジル-2-ジメチルアミン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-(ベンゾイルオキシイミノ)-1-[4-(フェニルチオ)フェニル]-1-オクタノンなどが挙げられる。これらの光重合剤は、例えばBASFジャパン株式会社よりIRGACURE製品(商品名)として市販されている。これらの光重合剤は単独でまたは2種類以上を組合わせて使用することができる。
(d)溶剤
 本発明による組成物には、シロキサン樹脂、クラウンエーテル、感光剤、および必要に応じて用いられる添加剤を溶解あるいは分散させるために有機溶剤が用いられる。また、アルコキシシランの加水分解縮合反応の際の溶剤を、そのまま感光性組成物の有機溶剤として用いてもよいし、これに更に他の溶剤を加えてもよいし、反応で得られるシロキサン樹脂を溶剤から単離し、溶剤を含まないシロキサン樹脂を新たな溶剤に溶解あるいは分散するなどして組成物として用いてもよい。具体的には、前述の公知の有機溶剤を使用できるが半導体や液晶分野においてはプロピレングリコールモノメチルエーテルアセテート(以下、PGMEAということがある)などのエーテルエステル系が一般的に使用されているので好ましい。また、3-メチル-3-メトキシブタノール、3-メチル-3-メトキシブチルアセテートなども好ましい溶剤として挙げられる。
(e)その他の添加剤
 本発明による感光性組成物は、必要に応じてその他の添加剤を含んでもよい。用いることができる添加剤としては、例えば、界面活性剤、硬化剤、増粘剤、平滑剤、クエンチャーなどが挙げられる。界面活性剤は、感光性組成物の塗布特性、基材への濡れ特性などを改善するために用いられる。界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などが知られているが、感光性組成物の保存安定性を損なう可能性のある極性基が少ない、ノニオン系界面活性剤が好ましい。
 本発明において用いることができるノニオン系界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンセチルエーテルなどのポリオキシエチレンアルキルエーテル類やポリオキシエチレン脂肪酸ジエステル、ポリオキシ脂肪酸モノエステル、ポリオキシエチレンポリオキシピロピレンブロックポリマー、アセチレンアルコール、アセチレングリコール、アセチレンアルコールのポリエトキシレート、アセチレングリコールのポリエトキシレートなどのアセチレングリコール誘導体、フッ素含有界面活性剤、例えばフロラード(商品名、住友スリーエム株式会社製)、メガファック(商品名、DIC株式会社製)、スルフロン(商品名、旭硝子株式会社製)、又は有機シロキサン界面活性剤、例えばKP341(商品名、信越化学工業株式会社製)などが挙げられる。前記アセチレングリコールとしては、3-メチル-1-ブチン-3-オール、3-メチル-1-ペンチン-3-オール、3,6-ジメチル-4-オクチン-3,6-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、3,5-ジメチル-1-ヘキシン-3-オール、2,5-ジメチル-3-ヘキシン-2,5-ジオール、2,5-ジメチル-2,5-ヘキサンジオールなどが挙げられる。
 本発明による感光性組成物がネガ型感光性組成物である場合、未露光部位への酸あるいは塩基の拡散を防止し、正確なパターン幅を形成するためにクエンチャーを組み合わせて添加することが好ましい。クエンチャーは光酸発生剤が用いられる場合には、例えば含窒素有機化合物が用いられ、光塩基発生剤が用いられる場合には、例えばスルホニウム化合物またはカルボキシル基含有化合物が用いられる。
 含窒素有機化合物としては、例えば、複素芳香族、脂肪族アミン、アミド、アミノ酸などが挙げられるが、とりわけ複素芳香族、具体的にはピリジン、ピロール、イミダゾールまたはその誘導体が好ましい。
 また、スルホニウム化合物としては、下記一般式で示されるスルホニウム化合物が挙げられる。
   R+ OH
(式中、R、R、及び、Rは、それぞれ独立に、アルキル基、置換基を有してもよいシクロアルキル基、又は、置換基を有していてもよいアリール基を示す。)
 また、カルボキシル基含有化合物としては、脂肪族カルボン酸、アミノ酸などが挙げられるが、とりわけ酢酸、プロピオン酸、リノール酸、4-アミノ安息香酸またはその誘導体が好ましい。
 これらの含窒素化合物と、スルホニウム化合物またはカルボキシル基含有化合物とは適宜組み合わせて用いられてもよい。
 以上の通りの本発明による感光性シロキサン樹脂組成物は、高い感度と優れた対熱リフロー耐性を両立しており、また保存安定性にも優れたものである。
 本発明における感光性組成物に含まれるシロキサン樹脂の含有量は、用いるシロキサン樹脂の種類や、組成物の用途などに応じて適切に調整され、特に限定されない。しかし、十分な塗布膜の厚さを得るためにはシロキサン樹脂の含有量が高いことが好ましく、また感光性組成物の経時安定性の観点からは一定以下であることが好ましい。このため、感光性組成物に含まれるシロキサン樹脂の含有量は、後述する溶媒などを含む、組成物の全重量を基準として1~60重量%であることが好ましく、5~50重量%であることがより好ましい。
 本発明による感光性組成物におけるクラウンエーテルの含有量は、組成物の全重量を基準として0.1~20重量%であることが好ましく、0.5~10重量%であることがより好ましい。0.1重量%未満だとアルカリ現像液に対する溶解性改良に十分な作用を示さないことがある。20%を超えると現像中または/およびリンス中に本感光性樹脂により形成したパターンが基板から剥離し易くなる傾向がある。
 本発明による感光性組成物がポジ型感光性組成物であり、ジアゾナフトキノン誘導体を感光剤として用いる場合、その添加量は、ナフトキノンジアジドスルホン酸のエステル化率、あるいは使用されるポリシロキサンの物性、要求される感度、露光部と未露光部との溶解コントラストにより最適量は異なるが、好ましくはシロキサン樹脂の全重量を基準として3~20重量%であり、さらに好ましくは5~15重量%である。ジアゾナフトキノン誘導体の添加量が3重量%より少ない場合、露光部と未露光部との溶解コントラストが低すぎて、現実的な感光性を有さないことがある。また、さらに良好な溶解コントラストを得るためには8重量%以上が好ましい。一方、ジアゾナフトキノン誘導体の添加量が20重量%より多い場合、ポリシロキサンとキノンジアジド化合物との相溶性が悪くなることによる塗布膜の白化が起こったり、熱硬化時に起こるキノンジアジド化合物の分解による着色が顕著になるため硬化膜の無色透明性が低下することがある。また、ジアゾナフトキノン誘導体の耐熱性は、ポリシロキサンに比較すると劣るため、添加量が多くなると熱分解により硬化物の電気絶縁性の劣化やガス放出の原因となって、後工程の問題になることがある。また、硬化物がモノエタノールアミン等を主剤とするようなフォトレジスト剥離液に対する耐性が低下することがある。なお、光ジアゾナフトキノン誘導体は1種類を単独で使用しても良いし、2種類以上の複数種を混合して用いても良い。
 光酸発生剤、光塩基発生剤、または光重合開始剤の添加量は必要に応じて調整されるが、いずれもシロキサン樹脂の全重量を基準として、通常0.1~20重量%、好ましくは0.5~10重量%である。0.1重量%以上とすることによりパターン形成が十分に行われ、20重量%以下とすることにより、均一な溶液が得られることから、保存安定性が向上する。なお、これらの感光剤は1種類を単独で使用しても良いし、2種類以上の複数種を混合して用いても良い。
 また、本発明による感光性組成物における界面活性剤の含有量は、組成物中50ppm~100,000ppmであることが好ましく、100ppm~50,000ppmであることがより好ましい。少なすぎると界面活性が得られにくく濡れ性が良くならないことがあり、多すぎると泡立ちが激しく、塗布機に泡噛みなどが起こり、取り扱いが困難となることがあるので注意が必要である。
 本発明による感光性組成物における溶剤の含有量は、上記した各成分の含有量に応じて一義的に決まるが、組成物の粘度や形成される被膜の膜厚などに応じて調整される。過度に低いと十分な厚さの被膜を得ることが困難となる傾向があり、また過度に高いと組成物の経時安定性が劣化する傾向にあるので注意が必要である。
 また、本発明による感光性組成物に用いられる材料は、いずれも純度が高いものを用いることが好ましい。クラウンエーテルについては金属不純物の含有量が前記したように低いことが好ましい。そして、その他の材料についても、一般的に半導体や液晶などの電子材料用途を目的として精製されたものを用いることが好ましい。本発明による感光性組成物を半導体や液晶などの電子材料用途に用いる場合には、そのような生成された材料を用いることが好ましいのは当然であるが、金属不純物含有量が高いと、感度改良効果が小さくなることがあるので注意が必要である。なお、本発明において許容される金属不純物の含有量は、一般的に半導体や液晶などの電子材料用途で許容されているレベル以下にすることが好ましい。
パターン形成方法
 本発明による感光性組成物は、スカムの発生などが低減された、優れたパターン形成を可能とするものである。前記した感光性組成物を利用したパターン形成方法を説明すると以下のとおりである。
(a)塗布
 まず、前記した感光性組成物は、基材に塗布され、被膜が形成される。用いられる基材としては、特に限定されるものではないが、シリコン基板、ガラス板、金属板、セラミックス板等の各種基板が挙げられ、特に、絶縁膜を必要とする液晶ディスプレーのTFT表面等は、本発明の基板として好ましいものである。塗布方法は、特に限定されず、例えばスピンコート法、ディップコート法、ナイフコート法、ロールコート法、スプレーコート法、スリットコート法等の各種の方法を採用することができる。
(b)プリベーク
 こうして基板上に形成された被膜を、必要に応じてプリベークに付して、被膜中の有機溶剤を除去することができる。プリベーク温度は、組成物に含まれる有機溶剤の種類によって調整されるが、一般に温度が低すぎると、有機溶剤の残留分が多くなり、基板運搬機器などをおかす原因となる場合があり、一方、温度が高すぎると急激に乾燥され、塗布ムラが生じてしまう、またはシラノール基またはアルコキシシリル基含有シロキサン樹脂が昇華するなどの問題が起こる場合がある。このため、プリベーク温度は60~200℃が好ましく、80~150℃が更に好ましい。プリベークは、例えばホットプレート、オーブンなどの加熱装置を用いて行うことができ、プリベークの時間は、使用した有機溶剤の種類とプリベークの温度により異なるが、30秒~10分が好ましく、1~5分が更に好ましい。
(c)露光
 引き続いて、被膜は所望のパターンが形成されるように像様に露光される。露光の方法は従来知られている任意の方法により行うことができる。具体的にはマスク露光、走査露光など、が用いられる。また、光源には、一般的にはg線、h線、i線、およびg線とh線とi線とを組み合わせたブロードバンド、KrFエキシマーレーザー、ArFエキシマーレーザー、電子線などが用いられる。
(d)アルカリ水溶液処理
 露光後、被膜はアルカリ水溶液処理に付されて現像される。アルカリ水溶液処理の方法は、特に限定されず、アルカリ水溶液への浸漬(ディップ)、パドル、シャワー、スリット、キャップコート、スプレーといった一般的方法で行うことができる。
 アルカリ水溶液に含まれるアルカリ性化合物としては任意のものを用いることができるが、有機アルカリ性化合物を用いることが好ましい。有機アルカリ性化合物としては、例えば、第四級アンモニウム化合物、アミノアルコール類(アルカノールアミン類)、アンモニア水、アルキルアミン、複素環式アミンなどが挙げられる。第四級アンモニウム化合物としては、例えば、水酸化テトラメチルアンモニウム(テトラメチルアンモニウムヒドロキシド;以下、「TMAH」ということがある。)、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化トリメチルエチルアンモニウム、水酸化トリメチル(2-ヒドロキシエチル)アンモニウム(コリン)、水酸化トリエチル(2-ヒドロキシエチル)アンモニウム、水酸化トリプロピル(2一ヒドロキシエチル)アンモニウム、水酸化トリメチル(2一ヒドロキシプロピル)アンモニウムが好ましいものとして挙げられる。これらの中で特に好ましいのは、TMAHである。
 無機アルカリ性化合物を含む水溶液は、ハードコート膜など電気特性や半導体特性への問題がない用途で用いることは構わないが、水溶液中にナトリウム、カリウムなどの金属イオンが含まれていることから、TFTの層間絶縁膜や平坦化膜など、電気特性、半導体特性を考慮しなければならないような用途での使用は好ましくない。
 本発明においては、アルカリ水溶液処理に用いられるアルカリ水溶液の濃度は、使用されるアルカリの種類、濃度、処理されるシラノール基またはアルコキシシリル基含有シロキサン樹脂の種類や被膜の膜厚など種々の要因によって変わり、特に限定されるものではない。また、アルカリ濃度範囲が高い程、クラウンエーテルによる効果が高くなる傾向があるが、電子材料分野で一般に用いられるアルカリ水溶液濃度から、アルカリ水溶液のアルカリ濃度範囲は一般に1%~5%、好ましくは1.5~3%である。
 アルカリ水溶液処理の処理時間は一般的には、15秒~3分程度とされることが好ましい。製造効率の観点からは現像時間が短いことが好ましく、現像結果のばらつきを低減させるためには長いことが好ましい。また、処理温度は常温で行うことができる。
(e)リンス処理
 現像後の被膜を、引き続きリンス処理に付すことができる。このリンス処理は現像処理された被膜面に残留するアルカリ水溶液や残留物を水で洗い流すために行われる。したがって、被膜面のアルカリ水溶液等が洗い流されればいずれの方法によってもよい。例えば、被膜を水中に浸漬する、あるいは被膜面に水を流す、水をシャワー状に掛けるなど、従来リンス方法として知られた適宜の方法を採用することができる。リンス処理時間は、被膜上のアルカリ水溶液が除去される時間であればよく特に限定されるものではないが、例えば浸漬による場合では、30秒~5分程度、流水による場合では15秒~3分程度行えばよい。また、リンス処理で用いられる水としては、電気特性や半導体特性を必要とする用途であれば、イオン交換水または純水が好ましいものである。なお、浸漬によるリンスにおいては、浴を変えて複数回浸漬リンスを行ってもよい。
(f)焼成(硬化)処理
 被膜硬化時の焼成温度は、被膜が硬化する温度であれば任意に選択できる。しかし、焼成温度が低すぎると反応が十分に進行せず十分に硬化しないことがある。このために焼成温度は150℃以上であることが好ましい。しかしながら、添加剤として硬化剤を添加することで150℃前後であっても十分に硬化させることができる。また、OH基は極性を有するため、OH基が残存すると誘電率が高くなる傾向にある。したがって、シリカ質膜の誘電率を低く維持したい場合は高い温度、具体的には200℃以上で硬化させることがより好ましい。また、反対に焼成温度が高すぎると、熱エネルギーコストが増大してしまうため好ましくない。このため、焼成温度は450℃以下であることが好ましく、350℃以下であることがより好ましい。また、焼成時間は特に限定されないが、15分~3時間とされることが好ましい。焼成時間が長すぎると被膜にクラックが発生しやすくなるので注意が必要である。また、焼成処理は大気中で行うことが一般的であるが、必要に応じて窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下で行うこともできる。また、加熱装置も特に限定されず、例えばホットプレート、オーブンなどを用いることができる。
 このようにして形成された被膜は現像後にスカムの発生が少ないうえ、シロキサン樹脂から形成された被膜の特徴である、高い透明性、高絶縁性、低誘電率といった優れた特性を維持したものである。
 以下に実施例、比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例、比較例により何ら限定されるものではない。
製造例1(シロキサン樹脂溶液Xの製造)
 メチルトリメトキシシラン47.6g(0.35モル)、フェニルトリメトキシシラン29.7g(0.15モル)、3,3´,4,4´-ベンゾフェノンテトラカルボン酸2無水物4.83g(0.015モル)を3-メチル-3-メトキシブタノ-ル200gに溶解し、30℃で撹拌しながら、34.2gの蒸留水を加え、1時間加熱撹拌し、加水分解・縮合を行なった。その後、水で5回以上洗浄し、酢酸エチル油層を回収した。次に、その酢酸エチル油層を濃縮し、PGMEAに置換し、メチルフェニルシルセスキオキサン縮重合物40%溶液を得た。
 得られたシロキサン樹脂は、重量平均分子量(Mw)1,250のメチルフェニルシルセスキオキサン(メチル基:フェニル基=7:3mol比)であった。
製造例2(シロキサン樹脂溶液Yの製造)
 メチルトリメトキシシラン47.6g(0.35モル)、フェニルトリメトキシシラン29.7g(0.15モル)、3,3´,4,4´-ベンゾフェノンテトラカルボン酸2無水物4.83g(0.015モル)を3-メチル-3-メトキシブタノ-ル200gに溶解し、40℃で撹拌しながら、34.2gの蒸留水を加え、1時間加熱撹拌し、加水分解・縮合を行なった。その後、水で5回以上洗浄し、酢酸エチル油層を回収した。次に、その酢酸エチル油層を濃縮し、PGMEAに置換し、メチルフェニルシルセスキオキサン縮重合物40%溶液を得た。
 得られたシロキサン樹脂は、重量平均分子量(Mw)1,500のメチルフェニルシルセスキオキサン(メチル基:フェニル基=7:3mol比)であった。
 なお、ここで重量平均分子量(Mw)の測定には、株式会社島津製作所製HPLC(GPCシステム)と、東ソー株式会社製GPCカラム(SuperMultiporeHZ-N(商品名) 2本)を用い、流量0.7ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。
実施例1
 製造例1で製造されたシロキサン樹脂Xを含む溶液を67.63g、界面活性剤KF-54(信越化学工業株式会社製)を0.14g、下記一般式で表されるナフトキノン感光剤P:
Figure JPOXMLDOC01-appb-C000004
を0.14g、溶剤としてPGMEA29.43g加えて攪拌溶解し、これにより30%溶液を作成した。この溶液をアドバンテック東洋株式会社製フィルター(47mmφ、PTFE、ろ過精度0.1μm)で0.05Mpa加圧ろ過し、アイセロ化学株式会社製クリーンポリエチレン容器「AC100-H」に受け、感光性シロキサン組成物を調製した。
実施例2~6および比較例1~3
 実施例1に対して、組成物の組成を表1に示す通りに変更した感光性組成物を調製した。なお、比較例3においては硬化剤としてニトロベンジルシルロヘキシルカルバメートを添加した。
 それぞれの感光性シロキサン組成物を、スピンコートにてシリコンウエハー上に塗布し、塗布後ホットプレート上100℃でプリベークし、2ミクロンの膜厚になるように調整した。プリベーク後、株式会社ニコン製FX-604型ステッパー(NA=0.1)のg、h線露光機を用い150mJ/cmで露光し、2.38%TMAH水溶液で60秒浸漬して現像、ついで純水にてリンスを行った。この処理により、10ミクロンのラインアンドスペース(L/S)パターン及びコンタクトホール(C/H)パターンを得た。
スカム評価
 現像後のパターン表面を光学顕微鏡(オリンパス株式会社製)を用いて100倍で観察した。
対熱リフロー耐性および感度の評価
 形成されたラインアンドスペースパターンに対して、コンタクトアライナーPLA-501(商品名、キャノン株式会社製)により500mJ/cm全面露光し、ついで窒素雰囲気下250℃で1時間焼成硬化を行った。焼成後のパターンを表面に対して垂直方向に切断し、その断面をサーマル電界放射型走査電子顕微鏡JSM-7001F(商品名、日本電子株式会社製)を用いて観察し、基材表面との接触角を測定することにより対熱リフロー耐性を評価した。ポジ型感光性組成物の場合にはこの接触角が大きいほど対熱リフロー耐性が優れているということができる。また、対熱リフロー耐性の評価と同様にして全面露光時の露光量を変化させ、パターンのL/S比が1:1となる露光量をEとした。
保存安定性試験
 調製した感光性組成物について、保存安定性を評価した。保存安定性は、感光性組成物を一か月室温放置し、動粘度が初期値より5%以上増大したものを不良、5%未満のものを良好とした。動粘度は株式会社離合社製自動粘度測定装置VMC-252(商品名)により測定した。
透過率
 得られた硬化膜の紫外可視吸収スペクトルを分光光度計MultiSpec-1500(商品名、島津製作所株式会社製)を用いて測定し、波長400nmでの透過率を求めた。
比誘電率
 それぞれの感光性組成物を、スピンコーターMS-A100(商品名、ミカサ株式会社製)を用い、スピンコート法にてシリコンウエハーに乾燥膜厚0.5μmに塗布し、それぞれ250℃の温度で1時間硬化させた。得られた硬化膜を水銀プローブ方式のキャパシタンス測定装置(Solid State Instrument社製)にて、C-V測定を実施し、得られた飽和キャパシタンスより誘電率も求めた。
 得られた結果は表1に示す通りであった。
Figure JPOXMLDOC01-appb-T000005
実施例7および比較例4
 感光剤としてIrgacure OXE02(商品名、BASFジャパン株式会社製)を用いて、表2に示す通りの組成物を調製し、実施例1と同様に評価した。得られた結果は表2に示す通りであった。これらの例の感光性組成物はネガ型感光性組成物であり、対熱リフロー耐性は接触角が大きいほど優れているということができる。
Figure JPOXMLDOC01-appb-T000006

Claims (10)

  1.  シラノール基またはアルコキシシリル基を有するシロキサン樹脂と、
     クラウンエーテルと、
     感光剤と、
     有機溶剤と
    を含んでなることを特徴とする感光性シロキサン樹脂組成物。
  2.  前記クラウンエーテルが、アミノ基または4級アンモニウム基を含まないものである、請求項1に記載の感光性シロキサン樹脂組成物。
  3.  前記クラウンエーテルが、x-クラウン-y-エーテル(ここでx=12、15、18、または21、y=x/3)、ならびにこれらのベンゾ縮合物およびシクロヘキシル縮合物からなる群から選択される、請求項1または2に記載の感光性シロキサン樹脂組成物。
  4.  前記シロキサン樹脂が、シルセスキオキサン構造を有するものである、請求項1~3のいずれか1項に記載の感光性シロキサン樹脂組成物。
  5.  前記シロキサン樹脂の重量平均分子量が、400~5,000である、請求項1~4のいずれか1項に記載の感光性シロキサン樹脂組成物。
  6.  前記感光性シロキサン樹脂組成物がポジ型感光性組成物である、請求項1~5のいずれか1項に記載の感光性シロキサン樹脂組成物。
  7.  前記ポジ型感光性組成物が、フェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合した化合物を含んでなる、請求項6に記載の感光性シロキサン樹脂組成物。
  8.  前記感光性シロキサン樹脂組成物が光酸発生剤、光塩基発生剤、または光重合開始剤を含むネガ型感光性組成物である、請求項1~5のいずれか1項に記載の感光性シロキサン樹脂組成物。
  9.  請求項1~8のいずれか1項に記載の感光性シロキサン樹脂組成物を基材上に塗布して被膜を形成させ、
     前記被膜を像用露光し、
     アルカリ水溶液で処理し、
     不活性ガスまたは大気中において150~450℃で焼成する
    ことを含んでなることを特徴とするパターン形成方法。
  10.  請求項9に記載の方法で製造されたことを特徴とするシリカ質膜。
PCT/JP2012/062611 2011-05-19 2012-05-17 感光性シロキサン樹脂組成物 WO2012157696A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280023290.0A CN103562793B (zh) 2011-05-19 2012-05-17 感光性硅氧烷树脂组合物
US14/117,449 US9091920B2 (en) 2011-05-19 2012-05-17 Photosensitive siloxane resin composition
KR1020137033732A KR101772856B1 (ko) 2011-05-19 2012-05-17 감광성 실록산 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-112455 2011-05-19
JP2011112455A JP5726632B2 (ja) 2011-05-19 2011-05-19 感光性シロキサン樹脂組成物

Publications (1)

Publication Number Publication Date
WO2012157696A1 true WO2012157696A1 (ja) 2012-11-22

Family

ID=47177013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062611 WO2012157696A1 (ja) 2011-05-19 2012-05-17 感光性シロキサン樹脂組成物

Country Status (6)

Country Link
US (1) US9091920B2 (ja)
JP (1) JP5726632B2 (ja)
KR (1) KR101772856B1 (ja)
CN (1) CN103562793B (ja)
TW (1) TWI514081B (ja)
WO (1) WO2012157696A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017012688A1 (en) 2015-07-17 2017-01-26 Merck Patent Gmbh Luminescent particle, ink formulation, polymer composition, optical device, fabrication of thereof, and use of the luminescent particle
WO2017054898A1 (en) 2015-09-29 2017-04-06 Merck Patent Gmbh A photosensitive composition and color converting film
WO2018024592A1 (en) 2016-08-01 2018-02-08 Merck Patent Gmbh A photosensitive composition, color converting medium, optical devices and method for preparing the thereof
TWI648346B (zh) * 2013-12-12 2019-01-21 捷恩智股份有限公司 正型感光性組合物
WO2019105798A1 (en) 2017-11-30 2019-06-06 Merck Patent Gmbh Composition comprising a semiconducting light emitting nanoparticle

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101589165B1 (ko) 2011-10-12 2016-01-27 샌트랄 글래스 컴퍼니 리미티드 실란계 조성물 및 그 경화막, 및 그것을 이용한 네거티브형 레지스트 패턴의 형성 방법
CN103809378A (zh) * 2014-01-26 2014-05-21 京东方科技集团股份有限公司 一种负性光刻胶及其制备方法、使用方法
KR20150121390A (ko) * 2014-04-18 2015-10-29 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR102289082B1 (ko) * 2014-08-13 2021-08-13 에스케이이노베이션 주식회사 하드코팅층 형성용 조성물
KR101520793B1 (ko) * 2014-08-28 2015-05-18 엘티씨 (주) 고내열성 폴리실세스퀴녹산계 감광성 수지 조성물
SG11201706317QA (en) * 2015-02-04 2017-09-28 Sakai Display Products Corp Positive photosensitive siloxane composition, active matrix substrate, display device, and method for producing active matrix substrate
TWI566037B (zh) * 2015-04-17 2017-01-11 奇美實業股份有限公司 感光性樹脂組成物及其應用
TWI646391B (zh) * 2015-12-24 2019-01-01 奇美實業股份有限公司 黑色矩陣用之感光性樹脂組成物及其應用
JP2017151209A (ja) * 2016-02-23 2017-08-31 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ ポジ型感光性シロキサン組成物
KR101921143B1 (ko) * 2016-05-27 2018-11-22 삼성에스디아이 주식회사 감광성 수지 조성물, 그로부터 형성된 경화막, 및 경화막을 갖는 소자
KR101930367B1 (ko) * 2016-08-02 2018-12-18 삼성에스디아이 주식회사 감광성 수지 조성물, 그로부터 형성된 경화막, 및 경화막을 갖는 소자
KR102042190B1 (ko) * 2016-12-27 2019-11-07 삼성에스디아이 주식회사 감광성 수지 조성물, 그로부터 형성된 경화막, 및 경화막을 갖는 전자 소자
JP2018189732A (ja) * 2017-04-28 2018-11-29 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH ポジ型感光性シロキサン組成物、およびそれを用いて形成した硬化膜
WO2019013939A1 (en) * 2017-07-10 2019-01-17 Ares Materials Inc. PHOTOMODELED PLANARIZING LAYERS FOR FLEXIBLE ELECTRONICS
KR101996262B1 (ko) * 2017-09-01 2019-10-01 (주)휴넷플러스 차단성 수지 조성물, 광경화 차단막의 제조방법 및 전자소자
JP2019061166A (ja) * 2017-09-27 2019-04-18 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH ポジ型感光性シロキサン組成物およびこれを用いた硬化膜
WO2019177689A1 (en) 2018-03-16 2019-09-19 Dow Silicones Corporation Curable polysiloxane composition
JP7293584B2 (ja) * 2018-07-18 2023-06-20 東亞合成株式会社 2-シアノアクリレート系接着剤組成物
US20210395461A1 (en) 2018-10-30 2021-12-23 Central Glass Company, Limited Resin composition, photosensitive resin composition, cured film, method for manufacturing cured film, patterned cured film, method for producing patterned cured film
JP6639724B1 (ja) * 2019-03-15 2020-02-05 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH ポジ型感光性ポリシロキサン組成物
CN115244465A (zh) 2020-03-16 2022-10-25 中央硝子株式会社 负型感光性树脂组合物、图案结构和图案固化膜的制造方法
CN116034127B (zh) 2020-09-16 2024-03-01 中央硝子株式会社 含硅单体混合物、聚硅氧烷、树脂组合物、感光性树脂组合物、固化膜、固化膜的制造方法、图案固化膜和图案固化膜的制造方法
CN116457363A (zh) 2020-11-24 2023-07-18 中央硝子株式会社 含硅单体、混合物、聚硅氧烷和它们的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166229A (ja) * 1989-11-22 1991-07-18 Shin Etsu Chem Co Ltd 光硬化性オルガノポリシロキサンの製造方法
JPH08190193A (ja) * 1995-01-12 1996-07-23 Fujitsu Ltd 化学増幅型レジスト
JP2000191656A (ja) * 1998-12-31 2000-07-11 Hyundai Electronics Ind Co Ltd 多酸素含有化合物、フォトレジスト組成物、フォトレジストパタ―ン形成方法、及び半導体素子

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2353589A1 (fr) * 1976-05-31 1977-12-30 Rhone Poulenc Ind Procede de preparation d'organopolysiloxanes
JP2991786B2 (ja) * 1990-11-22 1999-12-20 三菱電機株式会社 シリコーン樹脂組成物
JP3636242B2 (ja) 1995-04-04 2005-04-06 信越化学工業株式会社 化学増幅ポジ型レジスト材料
US20020015917A1 (en) 1998-12-31 2002-02-07 Lee Geun Su Multi-oxygen containing compound for preventing acid diffusion, and photoresist composition containing the same
JP2000202363A (ja) * 1999-01-19 2000-07-25 Jsr Corp 塗膜の形成方法およびそれより得られる硬化体
JP3679972B2 (ja) * 2000-04-04 2005-08-03 三菱電機株式会社 高純度シリコーンラダーポリマーの製造方法
JP4373082B2 (ja) 2001-12-28 2009-11-25 富士通株式会社 アルカリ可溶性シロキサン重合体、ポジ型レジスト組成物、レジストパターン及びその製造方法、並びに、電子回路装置及びその製造方法
JP4581472B2 (ja) * 2003-06-30 2010-11-17 チッソ株式会社 有機ケイ素化合物とその製造方法、およびポリシロキサンとその製造方法
JP2005222040A (ja) * 2003-12-30 2005-08-18 Rohm & Haas Electronic Materials Llc Si−成分を含むフォトレジスト組成物
JP4784283B2 (ja) 2004-11-26 2011-10-05 東レ株式会社 ポジ型感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2007193318A (ja) 2005-12-21 2007-08-02 Toray Ind Inc 感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子
JP4687898B2 (ja) * 2006-03-14 2011-05-25 信越化学工業株式会社 含フッ素ケイ素化合物、シリコーン樹脂、それを用いたレジスト組成物、及びパターン形成方法
JP2008208200A (ja) 2007-02-26 2008-09-11 Jsr Corp ポリシロキサン組成物、およびポリシロキサン硬化体の製造方法
US8652750B2 (en) * 2007-07-04 2014-02-18 Shin-Etsu Chemical Co., Ltd. Silicon-containing film-forming composition, silicon-containing film, silicon-containing film-bearing substrate, and patterning method
US8829142B2 (en) * 2008-04-22 2014-09-09 Toagosei Co., Ltd. Curable composition and process for production of organosilicon compound
JP5344869B2 (ja) * 2008-08-13 2013-11-20 AzエレクトロニックマテリアルズIp株式会社 アルカリ可溶性シルセスキオキサンの製造方法
JP5093004B2 (ja) * 2008-09-02 2012-12-05 Jsr株式会社 パターン形成方法
JP5015891B2 (ja) * 2008-10-02 2012-08-29 信越化学工業株式会社 金属酸化物含有膜形成用組成物、金属酸化物含有膜形成基板及びパターン形成方法
KR20110065519A (ko) * 2008-10-21 2011-06-15 히다치 가세고교 가부시끼가이샤 감광성 수지 조성물, 실리카계 피막의 형성 방법, 및 실리카계 피막을 구비하는 장치 및 부재
JP5533232B2 (ja) * 2009-06-29 2014-06-25 Jsr株式会社 ポジ型感放射線性組成物、硬化膜、層間絶縁膜、層間絶縁膜の形成方法、表示素子、及び層間絶縁膜形成用のシロキサンポリマー
JP5338532B2 (ja) * 2009-07-13 2013-11-13 Jnc株式会社 ポジ型感光性組成物
JP5381508B2 (ja) * 2009-08-27 2014-01-08 Jsr株式会社 ネガ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
DE112011102793B4 (de) * 2010-08-24 2023-01-12 Merck Patent Gmbh Positiv arbeitende lichtempfindliche Siloxanzusammensetzung, daraus gebildeter gehärteter Film und Element mit diesem
JP5863266B2 (ja) * 2011-04-12 2016-02-16 メルクパフォーマンスマテリアルズIp合同会社 シロキサン樹脂含有塗布組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166229A (ja) * 1989-11-22 1991-07-18 Shin Etsu Chem Co Ltd 光硬化性オルガノポリシロキサンの製造方法
JPH08190193A (ja) * 1995-01-12 1996-07-23 Fujitsu Ltd 化学増幅型レジスト
JP2000191656A (ja) * 1998-12-31 2000-07-11 Hyundai Electronics Ind Co Ltd 多酸素含有化合物、フォトレジスト組成物、フォトレジストパタ―ン形成方法、及び半導体素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI648346B (zh) * 2013-12-12 2019-01-21 捷恩智股份有限公司 正型感光性組合物
WO2017012688A1 (en) 2015-07-17 2017-01-26 Merck Patent Gmbh Luminescent particle, ink formulation, polymer composition, optical device, fabrication of thereof, and use of the luminescent particle
WO2017054898A1 (en) 2015-09-29 2017-04-06 Merck Patent Gmbh A photosensitive composition and color converting film
WO2018024592A1 (en) 2016-08-01 2018-02-08 Merck Patent Gmbh A photosensitive composition, color converting medium, optical devices and method for preparing the thereof
WO2019105798A1 (en) 2017-11-30 2019-06-06 Merck Patent Gmbh Composition comprising a semiconducting light emitting nanoparticle

Also Published As

Publication number Publication date
TWI514081B (zh) 2015-12-21
KR20140047052A (ko) 2014-04-21
US20140335448A1 (en) 2014-11-13
KR101772856B1 (ko) 2017-08-30
JP2012242600A (ja) 2012-12-10
TW201250391A (en) 2012-12-16
CN103562793A (zh) 2014-02-05
CN103562793B (zh) 2017-11-28
US9091920B2 (en) 2015-07-28
JP5726632B2 (ja) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5726632B2 (ja) 感光性シロキサン樹脂組成物
JP5863266B2 (ja) シロキサン樹脂含有塗布組成物
JP6480691B2 (ja) ケイ素含有熱または光硬化性組成物
KR101677289B1 (ko) 실리콘 함유 막 형성용 조성물 및 실리콘 함유 막 및 패턴 형성 방법
JP6513399B2 (ja) ネガ型感光性シロキサン組成物
JP6079263B2 (ja) レジスト下層膜形成用組成物及びパターン形成方法
JP6167588B2 (ja) レジスト下層膜形成用組成物及びパターン形成方法
CN104238271B (zh) 能低温固化的负型感光性组合物
KR102002761B1 (ko) 네거티브형 감광성 실록산 조성물
WO2013080884A1 (ja) ネガ型感光性シロキサン組成物
JP2015018226A (ja) 低温硬化可能なネガ型感光性組成物
JP2009237363A (ja) レジスト下層膜用組成物及びその製造方法
WO2017140409A1 (en) Negative type photosensitive composition curable at low temperature
CN111512230B (zh) 感光性硅氧烷组合物以及使用了其的图案形成方法
KR20200085900A (ko) 폴리실록산, 이를 포함하는 조성물 및 이를 사용하는 경화 필름
KR102086405B1 (ko) 레지스트 하층막 형성용 조성물 및 패턴 형성 방법
JP2009229708A (ja) レジスト下層膜用組成物及びその製造方法
KR102037503B1 (ko) 레지스트 하층막 형성용 조성물 및 패턴 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786006

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14117449

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137033732

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12786006

Country of ref document: EP

Kind code of ref document: A1