WO2012157600A1 - 磁気記録媒体及びその製造方法、並びに磁気記録再生装置 - Google Patents
磁気記録媒体及びその製造方法、並びに磁気記録再生装置 Download PDFInfo
- Publication number
- WO2012157600A1 WO2012157600A1 PCT/JP2012/062277 JP2012062277W WO2012157600A1 WO 2012157600 A1 WO2012157600 A1 WO 2012157600A1 JP 2012062277 W JP2012062277 W JP 2012062277W WO 2012157600 A1 WO2012157600 A1 WO 2012157600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- magnetic
- recording medium
- seed layer
- magnetic recording
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 309
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000013078 crystal Substances 0.000 claims abstract description 83
- 229910052751 metal Inorganic materials 0.000 claims abstract description 53
- 239000002184 metal Substances 0.000 claims abstract description 53
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 150000004767 nitrides Chemical class 0.000 claims abstract description 22
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 12
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 12
- 239000000956 alloy Substances 0.000 claims description 34
- 229910045601 alloy Inorganic materials 0.000 claims description 33
- 229910052737 gold Inorganic materials 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910000684 Cobalt-chrome Inorganic materials 0.000 claims description 5
- 239000010952 cobalt-chrome Substances 0.000 claims description 5
- 229910000929 Ru alloy Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 239000002245 particle Substances 0.000 abstract description 18
- 230000005389 magnetism Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 363
- 239000006249 magnetic particle Substances 0.000 description 44
- 229910004298 SiO 2 Inorganic materials 0.000 description 23
- 229910010413 TiO 2 Inorganic materials 0.000 description 20
- 239000000463 material Substances 0.000 description 18
- 229910052697 platinum Inorganic materials 0.000 description 16
- 229910052804 chromium Inorganic materials 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 229910052715 tantalum Inorganic materials 0.000 description 11
- 230000005294 ferromagnetic effect Effects 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 8
- 230000005415 magnetization Effects 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000011241 protective layer Substances 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 6
- 229910019222 CoCrPt Inorganic materials 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000002923 metal particle Substances 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910052702 rhenium Inorganic materials 0.000 description 4
- 229910000531 Co alloy Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052755 nonmetal Inorganic materials 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 229910000599 Cr alloy Inorganic materials 0.000 description 2
- 229910015372 FeAl Inorganic materials 0.000 description 2
- 229910002546 FeCo Inorganic materials 0.000 description 2
- 229910002555 FeNi Inorganic materials 0.000 description 2
- 229910000604 Ferrochrome Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010702 perfluoropolyether Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 229910019586 CoZrTa Inorganic materials 0.000 description 1
- 229910005347 FeSi Inorganic materials 0.000 description 1
- 229910005435 FeTaN Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910019832 Ru—Si Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/64—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
- G11B5/66—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
- G11B5/667—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers including a soft magnetic layer
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/7368—Non-polymeric layer under the lowermost magnetic recording layer
- G11B5/7379—Seed layer, e.g. at least one non-magnetic layer is specifically adapted as a seed or seeding layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
Definitions
- the present invention relates to a magnetic recording medium, a method for manufacturing the same, and a magnetic recording / reproducing apparatus.
- This application claims priority based on Japanese Patent Application No. 2011-110354 for which it applied to Japan on May 17, 2011, and uses the content here.
- HDD hard disk drive
- the magnetic recording medium mounted on a commercially available magnetic recording / reproducing apparatus is a so-called perpendicular magnetic recording medium in which the easy axis of magnetization in the magnetic film is oriented mainly vertically.
- the recording density of the perpendicular magnetic recording medium is increased, the influence of the demagnetizing field in the boundary region between the recording bits is small and a clear bit boundary is formed, so that an increase in noise can be suppressed.
- the recording bit volume decreases with the increase in recording density, the thermal fluctuation effect is strong. For this reason, in recent years, much attention has been paid and a medium structure suitable for perpendicular magnetic recording has been proposed.
- the magnetic recording / reproducing apparatus using the magnetic recording medium simply provided with the above-mentioned backing layer is not satisfactory in recording / reproducing characteristics, thermal fluctuation resistance, and recording resolution at the time of recording / reproducing, and is excellent in these characteristics. There is a need for magnetic recording media.
- this Patent Document 1 discloses a substrate, a first lower ferromagnetic layer provided on the substrate, having a remanent magnetization Mr, a thickness t, and a remanent magnetization / thickness product Mrt, and the first A ferromagnetic coupling layer provided on the lower ferromagnetic layer; a second lower ferromagnetic layer having an Mrt value provided on the ferromagnetic coupling layer; and an anti-reflection provided on the second lower ferromagnetic layer.
- a magnetic recording medium is described.
- an orientation control layer is used to form a multi-layered magnetic layer, and the crystal grains of each magnetic layer are formed into continuous columnar crystals.
- Has been proposed to improve the vertical orientation of the magnetic layer see, for example, Patent Document 2.
- Ru is disclosed as the orientation control layer. Since Ru has a dome-shaped convex part on the top of the columnar crystal, crystal grains such as a magnetic layer are grown on the convex part, promote the separation structure of the grown crystal grains, and isolate the crystal grains. And has the effect of growing magnetic particles in a columnar shape (see, for example, Patent Document 3).
- the first intermediate layer is formed of Pd, Pt, Au, Ag, Rh, Ru
- the second intermediate layer is an oxygen-containing layer
- the third intermediate layer is Pd, Pt, Au, Ag, Rh , Ru, Ti are metal layers mainly composed of at least one element selected from the group consisting of Ru, Ti
- the fourth intermediate layer is mainly composed of at least one element selected from Co, Cr, Ru, Ti.
- the vertical alignment is controlled by the first intermediate layer, and the second intermediate layer containing oxygen and the third intermediate layer are isolated in an island shape.
- the recording layer contains oxygen by using a four-layer structure intermediate layer in which a fourth intermediate layer having a hexagonal close-packed structure is formed using the convex structure as a nucleus. It is described that the coercive force and the squareness ratio are improved, the medium noise is reduced, and the heat resistance and demagnetization characteristics are improved.
- the demand for higher recording density for magnetic recording media is not limited, and magnetic recording media are required to have higher characteristics than ever before.
- the soft magnetic layer and the first intermediate layer are accompanied by heat treatment at a high temperature (see paragraph [0022]). It turned out that enlargement progresses and the refinement
- the present invention has been proposed in view of such conventional circumstances, and maintains a high perpendicular orientation of the perpendicular magnetic layer, and a magnetic recording medium capable of further increasing the recording density, and a method for manufacturing the same, Another object of the present invention is to provide a magnetic recording / reproducing apparatus including such a magnetic recording medium.
- a first seed made of a metal oxide or metal nitride having a low surface energy is formed on a soft magnetic underlayer having an amorphous or microcrystalline structure.
- a second seed layer made of a metal having an fcc structure or an hcp structure having a relatively low melting point and a large surface energy on the surface an initial growth stage of the second seed layer is formed. It has been found that the crystal grains constituting the second seed layer become fine and homogeneous without being affected by the crystal grains constituting the soft magnetic underlayer and the first seed layer when the nuclei are generated.
- the columnar crystals of each layer grown continuously in the thickness direction from the orientation control layer to the uppermost layer of the perpendicular magnetic layer starting from the second seed layer have a fine and uniform grain size.
- the present inventors have found that it can be constituted by crystal grains and have completed the present invention.
- a magnetic recording medium having at least a configuration in which a soft magnetic underlayer, a seed layer, an orientation control layer, and a perpendicular magnetic layer are laminated in this order on a nonmagnetic substrate,
- the soft magnetic underlayer has an amorphous or microcrystalline structure
- the seed layer includes a first seed layer made of metal oxide or metal nitride, and a second seed layer made of metal formed in an island shape or a net shape on the first seed layer,
- the magnetic recording medium, wherein the orientation control layer and the perpendicular magnetic layer form columnar crystals in which respective crystal grains are continuous in the thickness direction starting from the second seed layer.
- orientation control layer includes any one selected from the group consisting of Ru, Ru alloys, and CoCr alloys. recoding media.
- orientation control layer contains Ru.
- the soft magnetic underlayer has an amorphous or microcrystalline structure
- the seed layer has a structure including a first seed layer made of metal oxide or metal nitride and a second seed layer made of metal formed in an island shape or a net shape on the first seed layer, Starting from the second seed layer, each layer is crystal-grown so that crystal grains constituting the orientation control layer and the perpendicular magnetic layer form columnar crystals continuous in the thickness direction, respectively.
- a method of manufacturing a magnetic recording medium (10) The magnetic recording medium according to any one of (1) to (8) above, or the magnetic recording medium manufactured by the manufacturing method according to 9) above,
- a magnetic recording / reproducing apparatus comprising: a magnetic head for recording / reproducing information with respect to the magnetic recording medium.
- the columnar crystals of each layer grown continuously in the thickness direction from the orientation control layer to the uppermost layer of the perpendicular magnetic layer with the second seed layer as a starting point are fine and It can be constituted by crystal particles having a uniform particle size.
- a magnetic recording medium capable of maintaining a high perpendicular orientation of the perpendicular magnetic layer and further increasing the recording density, a manufacturing method thereof, and a magnetic recording / reproducing apparatus including such a magnetic recording medium are provided. It is possible.
- the present inventor has improved the vertical orientation of the multilayered magnetic layer, and further refined the magnetic particles and homogenized the crystal grain size. Clarified that it is necessary to refine the crystal grains constituting the orientation control layer and to homogenize the crystal grain size.
- the orientation control layer 11 is provided with an uneven surface 11a having a dome-shaped convex portion at the top of each columnar crystal S constituting the orientation control layer 11, and the thickness from the uneven surface 11a is increased.
- the crystal grains of the magnetic layer (or nonmagnetic layer) 12 grow in the direction as columnar crystals S1.
- the crystal grains of the nonmagnetic layer (or magnetic layer) 13 and the uppermost magnetic layer 14 formed on the columnar crystal S1 also grow epitaxially as columnar crystals S2 and S3 continuous with the columnar crystal S1.
- the crystal grains constituting each of the layers 12 to 14 are continuous columnar crystals S 1 to S 3 from the orientation control layer 11 to the uppermost magnetic layer 14. Repeat the epitaxial growth.
- the layer 13 illustrated in FIG. 1 is a layer having a granular structure, and an oxide 15 is formed around the columnar crystal S ⁇ b> 2 forming the layer 13.
- each columnar crystal S constituting the orientation control layer 11 is densified, and further, from the top of each columnar crystal S. It is possible to increase the density of the columnar crystals S1 to S3 of the layers 12 to 14 growing in a columnar shape in the thickness direction.
- the present inventor has, as a result, a soft magnetic underlayer, a seed layer, an orientation control layer, and a perpendicular magnetic layer on at least a nonmagnetic substrate.
- the soft magnetic underlayer has an amorphous or microcrystalline structure
- the seed layer is a first seed layer made of a metal oxide or a metal nitride, and an island shape or a net shape on the seed layer.
- a second seed layer made of a metal formed on the substrate, the second seed layer is used as a starting point, and continuously from the orientation control layer to the uppermost layer of the perpendicular magnetic layer in the thickness direction. It has been found that the columnar crystals of each layer on which crystals have been grown can be constituted by crystal particles having a fine and uniform particle size.
- the second seed layer in the present invention is composed of crystal particles having a fine and uniform grain size by the metal formed in an island shape or a net shape, and the orientation is started from the second seed layer.
- the columnar crystals of each layer can be constituted by crystal grains having a fine and uniform grain size.
- the soft magnetic underlayer 30 formed on a nonmagnetic substrate has an amorphous or microcrystalline structure.
- the smoothness of the surface 30a of the soft magnetic underlayer 30 is enhanced, and the smoothness of the surface 31a of the first seed layer 31 formed thereon is also enhanced.
- the first seed layer 31 is made of a metal oxide or a metal nitride, so that the smoothness of the surface 31a can be improved.
- the second seed layer 32 made of metal formed in an island shape or a net shape is formed on the first seed layer 31.
- the generation probability of the initial growth nucleus of the metal (second seed layer 32) formed thereon is made uniform. Can do. Thereby, the crystal grains constituting the second seed layer 32 become fine and homogeneous.
- a metal oxide or metal nitride having a low surface energy is selected for the first seed layer 31, and the second seed layer 32 formed thereon has a relatively low melting point, and
- the metal (second seed layer 32) crystal is formed in an island shape or a net shape by forming a metal having an fcc structure or hcp structure having a large surface energy to a thickness that does not become a continuous film. Can do. Further, the crystal grain size of this metal is uniform.
- the first seed layer 31 it is preferable to use a metal oxide or metal nitride containing any one selected from the group consisting of CrN, TiN, AlN, ZnO, TiO, and MgO. Alternatively, AlN is preferably used. Further, when the first seed layer 31 is formed, a sputtering method or the like can be used.
- the surface energy of the first seed layer 31 can be reduced and the smoothness of the surface 31a can be improved.
- the second seed layer 32 formed thereon has a uniform nucleus generation density, and the nucleus is the first seed layer. It refines by the surface energy difference with 31. That is, as shown in FIG. 2, the crystal grains constituting the first seed layer 31 and the crystal grains constituting the second seed layer 32 are not necessarily epitaxially grown corresponding to 1: 1.
- the nucleation density of crystal grains constituting the seed layer 32 can be equal to or higher than that of the crystal grains constituting the first seed layer 31.
- the thickness of the first seed layer is preferably within the range of 0.4 nm to 10 nm, more preferably 0.6 nm to 6 nm, and most preferably 0.8 nm to 4 nm.
- the surface smoothness after the film formation can be improved.
- the reason why the surface smoothness is increased by controlling the film thickness of the first seed layer is that the metal oxide or metal nitride is an amorphous material or a crystal-growing material. This is because it is important for the planarization, and in the case of a crystal material, it is important for the planarization to keep the film thickness equal to or greater than the continuous film thickness.
- the second seed layer 32 it is preferable to use a metal including any one selected from the group consisting of Cu, Au, and Ag, and it is particularly preferable to use Au or Ag.
- a metal easily aligns the c-plane and has a large surface energy, so that it is easy to form fine and uniform island-like or net-like crystals.
- a sputtering method or the like can be used. However, in order to make the second seed layer 32 into an island shape or a net shape, the film formation time is shortened. It is necessary to prevent the second seed layer 32 from becoming a continuous film.
- the orientation control layer 33 is formed on the second seed layer 32.
- the orientation control layer 33 it is preferable to use any one selected from the group consisting of Ru, Ru alloys, and CoCr alloys, and it is particularly preferable to use Ru among them.
- the crystal grains constituting the orientation control layer 33 are epitaxially grown as columnar crystals continuous in the thickness direction while corresponding 1: 1 with the crystal grains constituting the second seed layer 32.
- a dome-shaped convex portion 33a is formed on the top of each columnar crystal constituting the orientation control layer 33, a crystal of a perpendicular magnetic layer (not shown) formed on the convex portion 33a.
- the grains can be epitaxially grown so as to form columnar crystals continuous in the thickness direction while making the particles correspond 1: 1.
- the average particle diameter of the crystal grains constituting the orientation control layer 33 is preferably 6 nm or less, more preferably 4 nm or less. Crystal grains constituting the conventional orientation control layer have an average particle size of about 7 to 9 nm. On the other hand, in this invention, the average particle diameter of the crystal grain which comprises the orientation control layer 33 can be 6 nm or less. Thereby, in the present invention, the magnetic particle density of the magnetic recording medium can be increased by 2 times or more, and as a result, the recording density of the magnetic recording medium can be increased by 2 times or more.
- FIG. 3 shows an example of a magnetic recording medium to which the present invention is applied.
- the magnetic recording medium includes a soft magnetic underlayer 2, a seed layer 9, an orientation control layer 3, a perpendicular magnetic layer 4, a protective layer 5, and a nonmagnetic substrate 1.
- the lubricating layer 6 is sequentially laminated.
- the perpendicular magnetic layer 4 includes, from the nonmagnetic substrate 1 side, three layers of a lower magnetic layer 4a, an intermediate magnetic layer 4b, and an upper magnetic layer 4c, and between the magnetic layer 4a and the magnetic layer 4b.
- the magnetic layers 4a to 4c and the nonmagnetic layers 7a and 7b are alternately stacked. It has a structure.
- the crystal grains constituting each of the magnetic layers 4 a to 4 c and the nonmagnetic layers 7 a and 7 b form columnar crystals that are continuous in the thickness direction together with the crystal grains that constitute the orientation control layer 3. Yes.
- a metal substrate made of a metal material such as aluminum or an aluminum alloy may be used.
- a nonmetal substrate made of a nonmetal material such as glass, ceramic, silicon, silicon carbide, or carbon. May be used.
- amorphous glass or crystallized glass can be used, and as the amorphous glass, for example, general-purpose soda lime glass or aluminosilicate glass can be used.
- the crystallized glass for example, lithium-based crystallized glass can be used.
- the ceramic substrate for example, general-purpose aluminum oxide, a sintered body mainly composed of aluminum nitride, silicon nitride, or the like, or a fiber reinforced material thereof can be used.
- the non-magnetic substrate 1 preferably has an average surface roughness (Ra) of 2 nm (20 mm) or less, preferably 1 nm or less from the viewpoint of suitable for high recording density recording with a magnetic head flying low. Further, it is preferable that the surface fine waviness (Wa) is 0.3 nm or less (more preferably 0.25 nm or less) from the viewpoint of being suitable for high recording density recording with the magnetic head flying low. In addition, it is possible to use a magnetic head having a chamfered portion at the end face and a surface average roughness (Ra) of at least one of the side surface portion of 10 nm or less (more preferably 9.5 nm or less). Preferred for stability.
- the fine waviness (Wa) can be measured, for example, as a surface average roughness in a measuring range of 80 ⁇ m using a surface roughness measuring device P-12 (manufactured by KLM-Tencor).
- the nonmagnetic substrate 1 when the nonmagnetic substrate 1 is in contact with the soft magnetic underlayer 2 mainly composed of Co or Fe, there is a possibility that the corrosion progresses due to the adsorption gas on the surface, the influence of moisture, the diffusion of the substrate components, and the like. is there. In this case, it is preferable to provide an adhesion layer between the nonmagnetic substrate 1 and the soft magnetic underlayer 2, thereby suppressing these.
- a material of the adhesion layer for example, Cr, Cr alloy, Ti, Ti alloy, or the like can be selected as appropriate.
- the thickness of the adhesion layer is preferably 2 nm (30 mm) or more.
- the soft magnetic underlayer 2 is used to increase the direction component of the magnetic flux generated from the magnetic head in the direction perpendicular to the substrate surface, and to make the direction of magnetization of the perpendicular magnetic layer 4 on which information is recorded stronger than the nonmagnetic substrate 1. It is provided for fixing in the vertical direction. This effect becomes more conspicuous particularly when a single pole head for perpendicular recording is used as a magnetic head for recording and reproduction.
- an amorphous or microcrystalline soft magnetic material containing Fe, Ni, Co, or the like can be used as the soft magnetic underlayer 2.
- soft magnetic materials include CoFe alloys (CoFeTaZr, CoFeZrNb, etc.), FeCo alloys (FeCo, FeCoV, etc.), FeNi alloys (FeNi, FeNiMo, FeNiCr, FeNiSi, etc.), and FeAl alloys.
- Alloys FeAl, FeAlSi, FeAlSiCr, FeAlSiTiRu, FeAlO, etc.
- FeCr alloys FeCr, FeCrTi, FeCrCu, etc.
- FeTa alloys FeTa, FeTaC, FeTaN, etc.
- FeMg alloys FeMgO, etc.
- Examples thereof include FeZr alloys (FeZrN, etc.), FeC alloys, FeN alloys, FeSi alloys, FeP alloys, FeNb alloys, FeHf alloys, FeB alloys, and the like.
- a Co alloy containing 80 at% or more of Co, containing at least one of Zr, Nb, Ta, Cr, Mo and the like and having an amorphous or microcrystalline structure is used. be able to.
- Specific examples of the specific material include CoZr, CoZrNb, CoZrTa, CoZrCr, and CoZrMo-based alloys.
- the soft magnetic underlayer 2 is composed of two soft magnetic films, and a Ru film is preferably provided between the two soft magnetic films.
- a Ru film is preferably provided between the two soft magnetic films.
- the seed layer 9 and the orientation control layer 3 can be formed by sequentially stacking the first seed layer 31, the second seed layer 32, and the orientation control layer 33 shown in FIG. 2, the description thereof is omitted. Shall.
- nonmagnetic underlayer 8 between the orientation control layer 3 and the perpendicular magnetic layer 4.
- disorder of crystal growth is likely to occur, which causes noise.
- the occurrence of noise can be suppressed by replacing the disturbed portion of the initial portion with the nonmagnetic underlayer 8.
- the nonmagnetic underlayer 8 is preferably made of a material mainly containing Co and further containing an oxide.
- oxides such as Cr, Si, Ta, Al, Ti, Mg, and Co are preferably used, and among them, TiO 2 , Cr 2 O 3 , SiO 2, and the like are preferably used. it can.
- the content of the oxide is preferably 3 mol% or more and 18 mol% or less with respect to the total amount of mol calculated as one compound, for example, an alloy such as Co, Cr, and Pt constituting the magnetic particles.
- the nonmagnetic underlayer 8 is preferably made of a complex oxide to which two or more kinds of oxides are added.
- Cr 2 O 3 —SiO 2 , Cr 2 O 3 —TiO 2 , Cr 2 O 3 —SiO 2 —TiO 2 and the like can be preferably used.
- CoCr—SiO 2 , CoCr—TiO 2 , CoCr—Cr 2 O 3 —SiO 2 , CoCr—TiO 2 —Cr 2 O 3 , CoCr—Cr 2 O 3 —TiO 2 —SiO 2 or the like is preferably used.
- Pt may be added from the viewpoint of crystal growth.
- the thickness of the nonmagnetic underlayer 8 is preferably 0.2 nm or more and 3 nm or less. If the thickness exceeds 3 nm, Hc and Hn decrease, which is not preferable.
- the magnetic layer 4a is made of a material mainly containing Co and further containing an oxide.
- this oxide for example, an oxide such as Cr, Si, Ta, Al, Ti, Mg, Co is preferably used. . Among them, TiO 2, Cr 2 O 3 , SiO 2 or the like can be suitably used.
- the magnetic layer 4a is preferably made of a complex oxide to which two or more kinds of oxides are added. Among these, Cr 2 O 3 —SiO 2 , Cr 2 O 3 —TiO 2 , Cr 2 O 3 —SiO 2 —TiO 2 and the like can be preferably used.
- magnetic particles (crystal grains having magnetism) 42 are dispersed in a layer containing an oxide 41.
- the magnetic particles 42 preferably have a columnar structure that vertically penetrates the magnetic layers 4a and 4b and further the magnetic layer 4c.
- the amount of the oxide 41 to be contained and the film formation conditions of the magnetic layer 4a are important. That is, the content of the oxide 41 is 3 mol% or more and 18 mol% or less with respect to the total mol amount of the magnetic particles 42, for example, an alloy such as Co, Cr, and Pt calculated as one compound. preferable. More preferably, it is 6 mol% or more and 13 mol% or less.
- the above range is preferable as the content of the oxide 41 in the magnetic layer 4a.
- the oxide 41 is precipitated around the magnetic particles 42, and the magnetic particles 42 are isolated and refined. This is because it becomes possible.
- the content of the oxide 41 exceeds the above range, the oxide 41 remains in the magnetic particle 42, impairs the orientation and crystallinity of the magnetic particle 42, and further above and below the magnetic particle 42.
- the oxide 41 is deposited, and as a result, a columnar structure in which the magnetic particles 42 penetrate the magnetic layers 4a to 4c vertically is not formed.
- the content of Cr in the magnetic layer 4a is preferably 20 at% or less (more preferably 6 at% or more and 16 at% or less).
- the reason why the Cr content is in the above range is that the magnetic anisotropy constant Ku of the magnetic particles 42 is not lowered too much, and high magnetization is maintained. As a result, recording / reproduction characteristics suitable for high-density recording and sufficient heat This is because fluctuation characteristics can be obtained.
- the Cr content exceeds the above range, the magnetic anisotropy constant Ku of the magnetic particles 42 becomes small, so that the thermal fluctuation characteristics deteriorate, and the crystallinity and orientation of the magnetic particles 42 deteriorate. As a result, the recording / reproduction characteristics deteriorate, which is not preferable.
- the Cr content is less than the above range, the magnetic anisotropy constant Ku of the magnetic particles 42 is high, so that the perpendicular coercive force becomes too high and data is sufficiently written by a magnetic head when data is recorded. This is not preferable because the recording characteristics (OW) are unsuitable for high density recording.
- the content of Pt in the magnetic layer 4a is preferably 8 at% or more and 25 at% or less.
- the reason why the Pt content is within the above range is that the magnetic anisotropy constant Ku required for the perpendicular magnetic layer 4 is low when it is less than 8 at%.
- the Pt content is preferably set in the above range.
- the magnetic layer 4a contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, and Re. Can be included.
- the miniaturization of the magnetic particles 42 can be promoted or the crystallinity and orientation can be improved, and recording / reproduction characteristics and thermal fluctuation characteristics suitable for higher density recording can be obtained.
- the total content of the above elements is preferably 8 at% or less. If it exceeds 8 at%, a phase other than the hcp phase is formed in the magnetic particles 42, so that the crystallinity and orientation of the magnetic particles 42 are disturbed, resulting in recording / reproducing characteristics and thermal fluctuation characteristics suitable for high-density recording. Is not preferred because it cannot be obtained.
- the magnetic layer 4a As a material suitable for the magnetic layer 4a, for example, 90 (Co14Cr18Pt) -10 (SiO 2 ) ⁇ Cr content of 14 at%, Pt content of 18 at%, and the molar concentration calculated as one compound with magnetic particles consisting of the remaining Co.
- the oxide composition of SiO 2 is 10 mol% ⁇ , 92 (Co10Cr16Pt) -8 (SiO 2 ), 94 (Co8Cr14Pt4Nb) -6 (Cr 2 O 3 ), and (CoCrPt) — (Ta 2 O 5 ), (CoCrPt)-(Cr 2 O 3 )-(TiO 2 ), (CoCrPt)-(Cr 2 O 3 )-(SiO 2 ), (CoCrPt)-(Cr 2 O 3 )-(SiO 2 ) -(TiO 2 ), (CoCrPtMo)-(TiO), (CoCrPtW)-(TiO 2 ), (CoCrPtB)-(Al 2 Examples thereof include compositions such as O 3 ), (CoCrPtTaNd) — (MgO), (CoCrPtBCu) — (Y 2 O 3 ),
- the magnetic layer 4b can be made of the same material as that of the magnetic layer 4a, so that the description thereof is omitted.
- magnetic particles (crystal grains having magnetism) 42 are dispersed in the layer.
- the magnetic particles 42 preferably have a columnar structure that vertically penetrates the magnetic layers 4a and 4b and further the magnetic layer 4c.
- the magnetic layer 4c is preferably made of a material that contains Co as a main component and does not contain an oxide.
- the magnetic particles 42 in the layer are columnar from the magnetic particles 42 in the magnetic layer 4a.
- the structure is preferably epitaxially grown.
- the magnetic particles 42 of the magnetic layers 4a to 4c are preferably epitaxially grown in a columnar shape in a one-to-one correspondence in each layer.
- the magnetic particles 42 of the magnetic layer 4b are epitaxially grown from the magnetic particles 42 in the magnetic layer 4a, so that the magnetic particles 42 of the magnetic layer 4b are miniaturized and the crystallinity and orientation are further improved. Become.
- the content of Cr in the magnetic layer 4c is preferably 10 at% or more and 24 at% or less.
- the content of Cr in the magnetic layer 4c is preferably 10 at% or more and 24 at% or less.
- the magnetic layer 4c may be made of a material containing Pt in addition to Co and Cr.
- the Pt content in the magnetic layer 4c is preferably 6 at% or more and 20 at% or less. When the Pt content is in the above range, a sufficient coercive force suitable for high recording density can be obtained, and a high reproduction output during recording and reproduction can be maintained, resulting in recording suitable for high density recording. Reproduction characteristics and thermal fluctuation characteristics can be obtained.
- the magnetic layer 4c contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, Re, and Mn in addition to Co, Cr, and Pt. Can do. By including the above elements, it is possible to promote miniaturization of the magnetic particles 42 or improve crystallinity and orientation, and to obtain recording / reproducing characteristics and thermal fluctuation characteristics suitable for higher density recording.
- the total content of the above elements is preferably 16 at% or less. On the other hand, if it exceeds 16 at%, a phase other than the hcp phase is formed in the magnetic particles 42, so that the crystallinity and orientation of the magnetic particles 42 are disturbed, resulting in recording / reproduction characteristics suitable for high-density recording. This is not preferable because thermal fluctuation characteristics cannot be obtained.
- suitable materials for the magnetic layer 4c include CoCrPt and CoCrPtB.
- the total content of Cr and B is preferably 18 at% or more and 28 at% or less.
- Suitable materials for the magnetic layer 4c include, for example, Co14-24Cr8-22Pt ⁇ Cr content 14-24at%, Pt content 8-22at%, balance Co ⁇ in the CoCrPt series, Co10-24Cr8 ⁇ in the CoCrPtB series. 22Pt0 to 16B ⁇ Cr content: 10 to 24 at%, Pt content: 8 to 22 at%, B content: 0 to 16 at%, balance Co ⁇ is preferable.
- CoCrPtTa system is Co10-24Cr8-22Pt1-5Ta ⁇ Cr content 10-24 at%, Pt content 8-22 at%, Ta content 1-5 at%, balance Co ⁇
- CoCrPtTaB system is Co10 Besides 24Cr8-22Pt1-5Ta1-10B ⁇ Cr content 10-24at%, Pt content 8-22at%, Ta content 1-5at%, B content 1-10at%, balance Co ⁇ , CoCrPtBNd
- materials such as a CoCrPtTaNd system, a CoCrPtNb system, a CoCrPtBW system, a CoCrPtMo system, a CoCrPtCuRu system, and a CoCrPtRe system.
- the perpendicular coercive force (Hc) of the perpendicular magnetic layer 4 is preferably 3000 [Oe] or more.
- the coercive force is less than 3000 [Oe]
- the recording / reproducing characteristics, particularly the frequency characteristics are deteriorated, and the thermal fluctuation characteristics are also deteriorated, which is not preferable as a high-density recording medium.
- the reverse magnetic domain nucleation magnetic field (-Hn) of the perpendicular magnetic layer 4 is preferably 1500 [Oe] or more.
- the reverse domain nucleation magnetic field (-Hn) is less than 1500 [Oe], it is not preferable because the thermal fluctuation resistance is poor.
- the perpendicular magnetic layer 4 preferably has an average particle diameter of 3 to 12 nm. This average particle diameter can be obtained, for example, by observing the perpendicular magnetic layer 4 with a TEM (transmission electron microscope) and image-processing the observed image.
- TEM transmission electron microscope
- the thickness of the perpendicular magnetic layer 4 is preferably 5 to 20 nm. If the thickness of the perpendicular magnetic layer 4 is less than the above, sufficient reproduction output cannot be obtained, and the thermal fluctuation characteristics also deteriorate. When the thickness of the perpendicular magnetic layer 4 exceeds the above range, the magnetic particles in the perpendicular magnetic layer 4 are enlarged, increasing noise during recording and reproduction, and a signal / noise ratio (S / N). Ratio) and recording / reproducing characteristics represented by recording characteristics (OW) are not preferable.
- the protective layer 5 is for preventing corrosion of the perpendicular magnetic layer 4 and preventing damage to the surface of the medium when the magnetic head comes into contact with the medium, and a conventionally known material can be used, for example, C, SiO 2 and those containing ZrO 2 can be used.
- the thickness of the protective layer 5 is preferably 1 to 10 nm from the viewpoint of high recording density because the distance between the head and the medium can be reduced.
- a lubricant such as perfluoropolyether, fluorinated alcohol, fluorinated carboxylic acid or the like is preferably used.
- the magnetic layer on the nonmagnetic substrate 1 side is preferably a granular magnetic layer
- the magnetic layer on the protective layer 5 side is preferably a non-granular magnetic layer containing no oxide.
- the perpendicular magnetic layer 4 can be composed of four or more magnetic layers.
- a magnetic layer having a granular structure is composed of three layers, and a magnetic layer 4c not containing an oxide is provided thereon, and a magnetic layer not containing an oxide is also provided.
- the layer 4c may have a two-layer structure and be provided on the magnetic layers 4a and 4b.
- nonmagnetic layer 7 (indicated by reference numerals 7a and 7b in FIG. 4) between three or more magnetic layers constituting the perpendicular magnetic layer 4.
- the nonmagnetic layer 7 provided between the magnetic layers constituting the perpendicular magnetic layer 4 it is preferable to use a material having an hcp structure.
- a material having an hcp structure for example, Ru, Ru alloy, CoCr alloy, CoCrX1 alloy (X1 is Pt, Ta, Zr, Re, Ru, Cu, Nb, Ni, Mn, Ge, Si, O, N, W, Mo, Mo. , Ti, V, Zr, or B represents at least one element or two or more elements).
- the Co content is preferably in the range of 30 to 80 at%. This is because within this range, the coupling between the magnetic layers can be adjusted to be small.
- nonmagnetic layer 7 provided between the magnetic layers constituting the perpendicular magnetic layer 4 as an alloy having an hcp structure, an alloy such as Ru, Re, Ti, Y, Hf, Zn, or the like can be used other than Ru. .
- nonmagnetic layer 7 provided between the magnetic layers constituting the perpendicular magnetic layer 4 metals or alloys having other structures may be used as long as the crystallinity and orientation of the upper and lower magnetic layers are not impaired. it can. Specifically, for example, Pd, Pt, Cu, Ag, Au, Ir, Mo, W, Ta, Nb, V, Bi, Sn, Si, Al, C, B, Cr, or an alloy thereof is used. it can.
- CrX2 represents at least one element selected from Ti, W, Mo, Nb, Ta, Si, Al, B, C, and Zr
- the Cr content is preferably 60 at% or more.
- the nonmagnetic layer 7 provided between the magnetic layers constituting the perpendicular magnetic layer 4 it is preferable to use a layer having a structure in which metal particles of the above alloy are dispersed in an oxide, a metal nitride, or a metal carbide. Further, it is more preferable that the metal particles have a columnar structure penetrating the nonmagnetic layer 7 vertically. In order to obtain such a structure, it is preferable to use an alloy material containing an oxide, a metal nitride, or a metal carbide. Specifically, as the oxide, for example, SiO 2 , Al 2 O 3 , Ta 2 O 5 , Cr 2 O 3 , MgO, Y 2 O 3 , TiO 2, etc.
- the oxide for example, SiO 2 , Al 2 O 3 , Ta 2 O 5 , Cr 2 O 3 , MgO, Y 2 O 3 , TiO 2, etc.
- metal nitride for example, AlN, Si
- TaC, BC, SiC, or the like can be used as the metal carbide such as 3 N 4 , TaN, or CrN.
- CoCr—SiO 2 , CoCr—TiO 2 , CoCr—Cr 2 O 3 , CoCrPt—Ta 2 O 5 , Ru—SiO 2 , Ru—Si 3 N 4 , Pd—TaC, and the like can be used.
- the content of the oxide, metal nitride, or metal carbide in the nonmagnetic layer 7 provided between the magnetic layers constituting the perpendicular magnetic layer 4 is a content that does not impair the crystal growth and crystal orientation of the perpendicular magnetic film. Is preferred.
- the content of oxide, metal nitride, or metal carbide is preferably 4 mol% or more and 30 mol% or less with respect to the alloy.
- oxides, metal nitrides, or metal carbides are also deposited on the top and bottom of the metal particles, making it difficult for the metal particles to have a columnar structure that penetrates the nonmagnetic layer 7 up and down. This is not preferable because the crystallinity and orientation of the magnetic layer formed on the magnetic layer 7 may be impaired.
- the content of the oxide, metal nitride, or metal carbide in the nonmagnetic layer 7 is less than the above range, the effect of adding the oxide, metal nitride, or metal carbide cannot be obtained. Therefore, it is not preferable.
- FIG. 5 shows an example of a magnetic recording / reproducing apparatus to which the present invention is applied.
- This magnetic recording / reproducing apparatus includes a magnetic recording medium 50 having the configuration shown in FIG. 3, a medium driving unit 51 that rotationally drives the magnetic recording medium 50, a magnetic head 52 that records and reproduces information on the magnetic recording medium 50, A head driving unit 53 that moves the magnetic head 52 relative to the magnetic recording medium 50 and a recording / reproducing signal processing system 54 are provided. Further, the recording / reproducing signal processing system 54 can process data input from the outside and send a recording signal to the magnetic head 52, process a reproducing signal from the magnetic head 52, and send the data to the outside. ing.
- a magnetic head suitable for a higher recording density having a GMR element utilizing a giant magnetoresistance effect (GMR) as a reproducing element is used. be able to.
- GMR giant magnetoresistance effect
- Example 1 In Example 1, first, a cleaned glass substrate (manufactured by Konica Minolta Co., Ltd., 2.5 inches in outer diameter) is accommodated in a film forming chamber of a DC magnetron sputtering apparatus (C-3040 made by Anelva Co., Ltd.), and an ultimate vacuum is obtained. After the inside of the film formation chamber was evacuated to 1 ⁇ 10 ⁇ 5 Pa, an adhesion layer having a thickness of 10 nm was formed on the glass substrate using a Cr target. Further, on this adhesion layer, a substrate temperature of 100 ° C.
- a target of Co-20Fe-5Zr-5Ta ⁇ Fe content 20 at%, Zr content 5 at%, Ta content 5 at%, balance Co ⁇ is used.
- a Co-20Fe-5Zr-5Ta target is again used to form a soft magnetic layer having a layer thickness of 25 nm.
- a magnetic layer was formed and used as a soft magnetic underlayer.
- a second seed layer is formed on the surface using an Au target.
- samples were prepared in which the thickness of the second seed layer was 0.5 nm (Example 1-1), 1 nm (Example 1-2), and 1.5 nm (Comparative Example 1-1).
- a sample in which no Au film was formed on the surface of ZnO was also produced.
- Example 1-1 Au crystals were grown in the form of islands on the surface of ZnO.
- Example 1-2 Au crystals were grown in a network on the surface of ZnO.
- Comparative Example 1-1 Au was grown as a continuous film on the surface of ZnO. SEM photographs of the surfaces of Example 1-2, Example 1-1, and Comparative Example 1-2 are shown in FIGS. 6, 7, and 8, respectively.
- Example 2 In Example 2, a magnetic recording medium was actually manufactured using the samples of Examples 1-1 and 1-2 and Comparative Examples 1-1 and 1-2 manufactured in Example 1 above.
- the magnetic recording media were designated as Examples 2-1 and 2-2 and Comparative Examples 2-1 and 2-2, respectively.
- an orientation control layer having a layer thickness of 20 nm was formed on each sample using a Ru target.
- Ru having a layer thickness of 10 nm was formed with a sputtering pressure of 0.8 Pa, and then Ru having a layer thickness of 10 nm was formed with a sputtering pressure of 1.5 Pa.
- a magnetic layer having a thickness of 9 nm was formed using a target of 6 mol% of an oxide and 3 mol% of an oxide of TiO 2 .
- the sputtering pressure at this time was 2 Pa.
- a nonmagnetic layer having a layer thickness of 0.3 nm was formed on the magnetic layer using a Ru target.
- a magnetic layer having a thickness of 7 nm was formed on the nonmagnetic layer using a target of Co20Cr14Pt3B ⁇ Cr content 20 at%, Pt content 14 at%, B content 3 at%, balance Co ⁇ .
- the sputtering pressure at this time was 0.6 Pa.
- a protective layer having a thickness of 3.0 nm is formed on the magnetic layer by the CVD method, and then a lubricating film made of perfluoropolyether is formed by the dipping method.
- a lubricating film made of perfluoropolyether is formed by the dipping method.
- a sample that does not form the magnetic layer of Co20Cr14Pt3B is prepared to facilitate the evaluation of the average particle diameter of the magnetic particles, and planar TEM observation of the magnetic layer having the granular structure of this sample is performed.
- the average particle size ⁇ D> of the magnetic particles and the particle size dispersion ⁇ / ⁇ D> normalized by the average particle size were measured. The results are shown in Table 1.
- Example 3 In Example 3, as shown in Table 2, the same magnetic recording medium as in Example 2-2 was prepared, and the first seed layer, the second seed layer, and the orientation control layer were changed. Magnetic recording media were produced under the same conditions as in Example 2-2, and these were designated as Examples 3-1 to 3-9.
- the magnetic recording media of Examples 3-1 to 3-9 are the same as the magnetic recording media of Examples 2-1 and 2-2. It can be seen that the electromagnetic conversion characteristics are superior to those of the recording medium.
- Example 4 In Example 4, as shown in Table 3, the thickness of the first seed layer was changed in the magnetic recording medium of Example 2-2, and the other conditions were the same as in Example 2-2. A medium was made. The produced magnetic recording medium was measured for coercive force dispersion “ ⁇ Hc / Hc”, “SNR (dB)”, overwrite characteristic “OW (dB)”, and bit error rate “BER”. The measurement results are shown in Table 3.
- the electromagnetic conversion characteristics are changed by changing the film thickness of the first seed layer.
- the magnetic recording media of Examples 4-2 to 4-6 exhibit particularly excellent electromagnetic conversion characteristics.
- columnar crystals of each layer grown continuously in the thickness direction from the orientation control layer to the uppermost layer of the perpendicular magnetic layer starting from the second seed layer are formed into fine and homogeneous grains. It can be constituted by crystal particles having a diameter.
- a magnetic recording medium capable of maintaining a high perpendicular orientation of the perpendicular magnetic layer and further increasing the recording density, a manufacturing method thereof, and a magnetic recording / reproducing apparatus including such a magnetic recording medium are provided. It is possible. Therefore, the present invention can be suitably used for a magnetic recording medium, a manufacturing method thereof, and a magnetic recording / reproducing apparatus provided with such a magnetic recording medium.
- Non-magnetic substrate 2 Soft magnetic underlayer 3 . Orientation control layer 4 ... perpendicular magnetic layer 4a: lower magnetic layer 4b ... middle magnetic layer 4c ... upper magnetic layer 5 ... Protective layer 6 ... Lubrication layer 7 ... Nonmagnetic layer 7a: lower nonmagnetic layer 7b: upper nonmagnetic layer 8 ... Nonmagnetic underlayer 9 ... Seed layer 11 ... Orientation control layer 11a ... uneven surface 12-14: Magnetic layer or nonmagnetic layer S, S1 to S3 ... columnar crystals 30: Soft magnetic underlayer 31 ... first seed layer 32. Second seed layer 33 ... Orientation control layer 50. Magnetic recording medium 51. Medium drive unit 52. Magnetic head 53. Head drive unit 54. Recording / reproducing signal processing system
Landscapes
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
本願は、2011年5月17日に日本に出願された特願2011-110354号に基づき優先権を主張し、その内容をここに援用する。
(1) 非磁性基板の上に、軟磁性下地層と、シード層と、配向制御層と、垂直磁性層とを、この順で積層した構成を少なくとも有する磁気記録媒体であって、
前記軟磁性下地層は、アモルファス若しくは微結晶構造を有し、
前記シード層は、金属酸化物又は金属窒化物からなる第1のシード層と、この上に島状又は網状に形成された金属からなる第2のシード層とを含み、
前記配向制御層及び前記垂直磁性層は、前記第2のシード層を起点にして、それぞれの結晶粒子が厚み方向に連続した柱状晶を構成していることを特徴とする磁気記録媒体。
(2) 前記第1のシード層は、CrN、TiN、AlN、ZnO、TiO、MgOからなる群から選ばれる何れか1種を含むことを特徴とする前項(1)に記載の磁気記録媒体。
(3) 前記第1のシード層は、ZnO又はAlNを含むことを特徴とする前項(2)に記載の磁気記録媒体。
(4) 前記第1のシード層の膜厚は、0.4nm~10nmの範囲内であることを特徴とする前項(1)~(3)の何れか一項に記載の磁気記録媒体。
(5) 前記第2のシード層は、Cu、Au、Agからなる群から選ばれる何れか1種を含むことを特徴とする前項(1)~(4)の何れか一項に記載の磁気記録媒体。
(6) 前記第2のシード層は、Au又はAgを含むことを特徴とする前項(5)に記載の磁気記録媒体。
(7) 前記配向制御層は、Ru、Ru合金、CoCr合金からなる群から選ばれる何れか1種を含むことを特徴とする前項(1)~(6)の何れか一項に記載の磁気記録媒体。
(8) 前記配向制御層は、Ruを含むことを特徴とする前項(7)に記載の磁気記録媒体。
(9) 非磁性基板の上に、軟磁性下地層と、シード層と、配向制御層と、垂直磁性層とを、この順で積層した構成を少なくとも有する磁気記録媒体の製造方法であって、
前記軟磁性下地層をアモルファス若しくは微結晶構造とし、
前記シード層を、金属酸化物又は金属窒化物からなる第1のシード層と、この上に島状又は網状に形成された金属からなる第2のシード層とを含む構造とし、
前記第2のシード層を起点にして、前記配向制御層及び前記垂直磁性層を構成する結晶粒子が、それぞれ厚み方向に連続した柱状晶を形成するように各層を結晶成長させることを特徴とする磁気記録媒体の製造方法。
(10) 前項(1)~(8)の何れか一項に記載の磁気記録媒体、又は、前項9)に記載の製造方法により製造された磁気記録媒体と、
前記磁気記録媒体に対する情報の記録再生を行う磁気ヘッドとを備えることを特徴とする磁気記録再生装置。
本発明を適用した磁気記録媒体では、図2において模式的に示すように、非磁性基板(図示せず。)の上に形成される軟磁性下地層30がアモルファス若しくは微結晶構造を有することで、この軟磁性下地層30の表面30aにおける平滑性を高め、この上に形成される第1のシード層31の表面31aにおける平滑性も高めている。さらに、第1のシード層31は、金属酸化物又は金属窒化物からなることで、その表面31aの平滑性を高めることが可能である。
この磁気記録媒体は、図3に示すように、非磁性基板1の上に、軟磁性下地層2と、シード層9と、配向制御層3と、垂直磁性層4と、保護層5と、潤滑層6とを順次積層した構造を有している。
この磁気記録再生装置は、図3に示す構成を有する磁気記録媒体50と、磁気記録媒体50を回転駆動させる媒体駆動部51と、磁気記録媒体50に情報を記録再生する磁気ヘッド52と、この磁気ヘッド52を磁気記録媒体50に対して相対運動させるヘッド駆動部53と、記録再生信号処理系54とを備えている。また、記録再生信号処理系54は、外部から入力されたデータを処理して記録信号を磁気ヘッド52に送り、磁気ヘッド52からの再生信号を処理してデータを外部に送ることが可能となっている。また、本発明を適用した磁気記録再生装置に用いる磁気ヘッド52には、再生素子として巨大磁気抵抗効果(GMR)を利用したGMR素子などを有した、より高記録密度に適した磁気ヘッドを用いることができる。
実施例1では、先ず、洗浄済みのガラス基板(コニカミノルタ社製、外形2.5インチ)を、DCマグネトロンスパッタ装置(アネルバ社製C-3040)の成膜チャンバ内に収容して、到達真空度1×10-5Paとなるまで成膜チャンバ内を減圧排気した後、このガラス基板の上に、Crターゲットを用いて、層厚10nmの密着層を成膜した。また、この密着層の上に、基板温度を100℃以下とし、Co-20Fe-5Zr-5Ta{Fe含有量20at%、Zr含有量5at%、Ta含有量5at%、残部Co}のターゲットを用いて、層厚25nmの軟磁性層を成膜し、この上に層厚0.7nmのRu層を成膜した後、再びCo-20Fe-5Zr-5Taのターゲットを用いて、層厚25nmの軟磁性層を成膜して、これを軟磁性下地層とした。
実施例2では、上記実施例1で作製した実施例1-1,1-2及び比較例1-1,1-2の各サンプルを用いて、実際に磁気記録媒体を作製し、作製された各磁気記録媒体を、それぞれ実施例2-1,2-2及び比較例2-1,2-2とした。
実施例3では、表2に示すように、上記実施例2-2と同様の磁気記録媒体を作製すると共に、第1のシード層、第2のシード層、配向制御層を変更した以外は上記実施例2-2と同様の条件で磁気記録媒体を作製し、これらを実施例3-1~3-9とした。
実施例4では、表3に示すように、上記実施例2-2の磁気記録媒体において第1のシード層の膜厚を変化させ、他の条件は実施例2-2と同じにして磁気記録媒体を作製した。作製した磁気記録媒体について、保磁力分散「ΔHc/Hc」、「SNR(dB)」、オーバーライト特性「OW(dB)」、ビットエラーレート「BER」を測定した。その測定結果を表3に示す。
2…軟磁性下地層
3…配向制御層
4…垂直磁性層
4a…下層の磁性層
4b…中層の磁性層
4c…上層の磁性層
5…保護層
6…潤滑層
7…非磁性層
7a…下層の非磁性層
7b…上層の非磁性層
8…非磁性下地層
9…シード層
11…配向制御層
11a…凹凸面
12~14…磁性層又は非磁性層
S,S1~S3…柱状晶
30…軟磁性下地層
31…第1のシード層
32…第2のシード層
33…配向制御層
50…磁気記録媒体
51…媒体駆動部
52…磁気ヘッド
53…ヘッド駆動部
54…記録再生信号処理系
Claims (10)
- 非磁性基板の上に、軟磁性下地層と、シード層と、配向制御層と、垂直磁性層とを、この順で積層した構成を少なくとも有する磁気記録媒体であって、
前記軟磁性下地層は、アモルファス若しくは微結晶構造を有し、
前記シード層は、金属酸化物又は金属窒化物からなる第1のシード層と、この上に島状又は網状に形成された金属からなる第2のシード層とを含み、
前記配向制御層及び前記垂直磁性層は、前記第2のシード層を起点にして、それぞれの結晶粒子が厚み方向に連続した柱状晶を構成していることを特徴とする磁気記録媒体。 - 前記第1のシード層は、CrN、TiN、AlN、ZnO、TiO、MgOからなる群から選ばれる何れか1種を含むことを特徴とする請求項1に記載の磁気記録媒体。
- 前記第1のシード層は、ZnO又はAlNを含むことを特徴とする請求項2に記載の磁気記録媒体。
- 前記第1のシード層の膜厚は、0.4nm~10nmの範囲内であることを特徴とする請求項1~3の何れか一項に記載の磁気記録媒体。
- 前記第2のシード層は、Cu、Au、Agからなる群から選ばれる何れか1種を含むことを特徴とする請求項1~3の何れか一項に記載の磁気記録媒体。
- 前記第2のシード層は、Au又はAgを含むことを特徴とする請求項5に記載の磁気記録媒体。
- 前記配向制御層は、Ru、Ru合金、CoCr合金からなる群から選ばれる何れか1種を含むことを特徴とする請求項1~3の何れか一項に記載の磁気記録媒体。
- 前記配向制御層は、Ruを含むことを特徴とする請求項7に記載の磁気記録媒体。
- 非磁性基板の上に、軟磁性下地層と、シード層と、配向制御層と、垂直磁性層とを、この順で積層した構成を少なくとも有する磁気記録媒体の製造方法であって、
前記軟磁性下地層をアモルファス若しくは微結晶構造とし、
前記シード層を、金属酸化物又は金属窒化物からなる第1のシード層と、この上に島状又は網状に形成された金属からなる第2のシード層とを含む構造とし、
前記第2のシード層を起点にして、前記配向制御層及び前記垂直磁性層を構成する結晶粒子が、それぞれ厚み方向に連続した柱状晶を形成するように各層を結晶成長させることを特徴とする磁気記録媒体の製造方法。 - 請求項1に記載の磁気記録媒体、又は、請求項9に記載の製造方法により製造された磁気記録媒体と、
前記磁気記録媒体に対する情報の記録再生を行う磁気ヘッドとを備えることを特徴とする磁気記録再生装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/114,641 US9245563B2 (en) | 2011-05-17 | 2012-05-14 | Magnetic medium with an orientation control layer |
JP2013515145A JPWO2012157600A1 (ja) | 2011-05-17 | 2012-05-14 | 磁気記録媒体及びその製造方法、並びに磁気記録再生装置 |
CN201280023252.5A CN103534757B (zh) | 2011-05-17 | 2012-05-14 | 磁记录介质及其制造方法以及磁记录再生装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-110354 | 2011-05-17 | ||
JP2011110354 | 2011-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012157600A1 true WO2012157600A1 (ja) | 2012-11-22 |
Family
ID=47176917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/062277 WO2012157600A1 (ja) | 2011-05-17 | 2012-05-14 | 磁気記録媒体及びその製造方法、並びに磁気記録再生装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9245563B2 (ja) |
JP (1) | JPWO2012157600A1 (ja) |
CN (1) | CN103534757B (ja) |
WO (1) | WO2012157600A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014057600A1 (ja) * | 2012-10-10 | 2014-04-17 | 富士電機株式会社 | 磁気記録媒体 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2992466A1 (fr) | 2012-06-22 | 2013-12-27 | Soitec Silicon On Insulator | Procede de realisation de contact pour led et structure resultante |
US9461242B2 (en) | 2013-09-13 | 2016-10-04 | Micron Technology, Inc. | Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems |
US9608197B2 (en) | 2013-09-18 | 2017-03-28 | Micron Technology, Inc. | Memory cells, methods of fabrication, and semiconductor devices |
US10454024B2 (en) | 2014-02-28 | 2019-10-22 | Micron Technology, Inc. | Memory cells, methods of fabrication, and memory devices |
US9281466B2 (en) | 2014-04-09 | 2016-03-08 | Micron Technology, Inc. | Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication |
US9349945B2 (en) | 2014-10-16 | 2016-05-24 | Micron Technology, Inc. | Memory cells, semiconductor devices, and methods of fabrication |
US9768377B2 (en) * | 2014-12-02 | 2017-09-19 | Micron Technology, Inc. | Magnetic cell structures, and methods of fabrication |
US9990940B1 (en) | 2014-12-30 | 2018-06-05 | WD Media, LLC | Seed structure for perpendicular magnetic recording media |
US10439131B2 (en) | 2015-01-15 | 2019-10-08 | Micron Technology, Inc. | Methods of forming semiconductor devices including tunnel barrier materials |
JP2017079090A (ja) * | 2015-10-22 | 2017-04-27 | 株式会社東芝 | 磁気記録媒体、及び磁気記録再生装置 |
CN107735835B (zh) * | 2016-01-12 | 2019-09-27 | 富士电机株式会社 | 磁记录介质 |
JP6803045B2 (ja) * | 2017-06-08 | 2020-12-23 | 昭和電工株式会社 | 磁気記録媒体および磁気記憶装置 |
JP2020043133A (ja) * | 2018-09-06 | 2020-03-19 | キオクシア株式会社 | 磁気記憶装置 |
JP7283273B2 (ja) * | 2019-07-01 | 2023-05-30 | 株式会社レゾナック | 磁気記録媒体およびその製造方法ならびに磁気記録再生装置 |
US11763845B2 (en) * | 2021-12-08 | 2023-09-19 | Seagate Technology Llc | Magnetic stack including non-magnetic seed layer for hard disk drive media |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002237026A (ja) * | 2001-02-08 | 2002-08-23 | Fujitsu Ltd | 磁気記録媒体、磁気記録媒体の製造方法、及び、磁気記録装置 |
JP2004145946A (ja) * | 2002-10-23 | 2004-05-20 | Canon Inc | 配向膜、配向膜を利用した磁気記録媒体、及び磁気記録再生装置 |
JP2004272997A (ja) * | 2003-03-07 | 2004-09-30 | Fujitsu Ltd | 磁気記録媒体およびその製造方法 |
JP2005071525A (ja) * | 2003-08-27 | 2005-03-17 | Fujitsu Ltd | 垂直磁気記録媒体および磁気記憶装置 |
JP2005108347A (ja) * | 2003-09-30 | 2005-04-21 | Fujitsu Ltd | 記録媒体およびその製造方法 |
JP2006331582A (ja) * | 2005-05-27 | 2006-12-07 | Toshiba Corp | 垂直磁気記録媒体及び垂直磁気記録再生装置 |
JP2008204539A (ja) * | 2007-02-20 | 2008-09-04 | Fujitsu Ltd | 垂直磁気記録媒体およびその製造方法、磁気記録装置 |
JP2009116952A (ja) * | 2007-11-06 | 2009-05-28 | Hitachi Global Storage Technologies Netherlands Bv | 垂直磁気記録媒体およびこれを用いた磁気記憶装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6174582B1 (en) * | 1998-02-06 | 2001-01-16 | International Business Machines Corporation | Thin film magnetic disk having reactive element doped refractory metal seed layer |
US6541131B1 (en) * | 2000-05-25 | 2003-04-01 | Seagate Technology Llc | Perpendicular recording media with enhanced coercivity |
US6602621B2 (en) * | 2000-12-28 | 2003-08-05 | Hitachi Maxell, Ltd. | Magnetic recording medium, method for producing the same, and magnetic storage apparatus |
JP2004134041A (ja) | 2002-10-15 | 2004-04-30 | Hitachi Ltd | 垂直磁気記録媒体およびその製造方法ならびに磁気記憶装置 |
JP4185391B2 (ja) | 2003-04-07 | 2008-11-26 | 昭和電工株式会社 | 磁気記録媒体、その製造方法および磁気記録再生装置 |
US7081309B2 (en) | 2004-03-23 | 2006-07-25 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetic recording disk with antiferromagnetically-coupled magnetic layer having multiple ferromagnetically-coupled lower layers |
JP4470881B2 (ja) | 2005-12-27 | 2010-06-02 | 昭和電工株式会社 | 磁気記録媒体、および磁気記録再生装置 |
JP2007272990A (ja) | 2006-03-31 | 2007-10-18 | Fujitsu Ltd | 磁気記録媒体及びその製造方法 |
JP2009289360A (ja) * | 2008-05-30 | 2009-12-10 | Fujitsu Ltd | 垂直磁気記録媒体及び磁気記憶装置 |
-
2012
- 2012-05-14 US US14/114,641 patent/US9245563B2/en active Active
- 2012-05-14 WO PCT/JP2012/062277 patent/WO2012157600A1/ja active Application Filing
- 2012-05-14 JP JP2013515145A patent/JPWO2012157600A1/ja active Pending
- 2012-05-14 CN CN201280023252.5A patent/CN103534757B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002237026A (ja) * | 2001-02-08 | 2002-08-23 | Fujitsu Ltd | 磁気記録媒体、磁気記録媒体の製造方法、及び、磁気記録装置 |
JP2004145946A (ja) * | 2002-10-23 | 2004-05-20 | Canon Inc | 配向膜、配向膜を利用した磁気記録媒体、及び磁気記録再生装置 |
JP2004272997A (ja) * | 2003-03-07 | 2004-09-30 | Fujitsu Ltd | 磁気記録媒体およびその製造方法 |
JP2005071525A (ja) * | 2003-08-27 | 2005-03-17 | Fujitsu Ltd | 垂直磁気記録媒体および磁気記憶装置 |
JP2005108347A (ja) * | 2003-09-30 | 2005-04-21 | Fujitsu Ltd | 記録媒体およびその製造方法 |
JP2006331582A (ja) * | 2005-05-27 | 2006-12-07 | Toshiba Corp | 垂直磁気記録媒体及び垂直磁気記録再生装置 |
JP2008204539A (ja) * | 2007-02-20 | 2008-09-04 | Fujitsu Ltd | 垂直磁気記録媒体およびその製造方法、磁気記録装置 |
JP2009116952A (ja) * | 2007-11-06 | 2009-05-28 | Hitachi Global Storage Technologies Netherlands Bv | 垂直磁気記録媒体およびこれを用いた磁気記憶装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014057600A1 (ja) * | 2012-10-10 | 2014-04-17 | 富士電機株式会社 | 磁気記録媒体 |
JPWO2014057600A1 (ja) * | 2012-10-10 | 2016-08-25 | 富士電機株式会社 | 磁気記録媒体 |
US9911445B2 (en) | 2012-10-10 | 2018-03-06 | Fuji Electric Co., Ltd. | Magnetic recording medium |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012157600A1 (ja) | 2014-07-31 |
CN103534757A (zh) | 2014-01-22 |
US20140063656A1 (en) | 2014-03-06 |
CN103534757B (zh) | 2016-08-17 |
US9245563B2 (en) | 2016-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012157600A1 (ja) | 磁気記録媒体及びその製造方法、並びに磁気記録再生装置 | |
JP4580817B2 (ja) | 垂直磁気記録媒体及び垂直磁気記録再生装置 | |
US7976965B2 (en) | Magnetic recording medium and magnetic recording and reproducing device | |
JP4219941B2 (ja) | 磁気記録媒体、その製造方法および磁気記録再生装置 | |
US8968526B2 (en) | Method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus | |
JP5894780B2 (ja) | 磁気記録媒体の製造方法 | |
WO2010064409A1 (ja) | 磁気記録媒体及びその製造方法、並びに磁気記録再生装置 | |
JP5775720B2 (ja) | 磁気記録媒体の製造方法及び磁気記録再生装置 | |
JP5536540B2 (ja) | 磁気記録媒体および磁気記録再生装置 | |
JP6265529B2 (ja) | 磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置 | |
JP6144570B2 (ja) | 磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置 | |
JP2010176782A (ja) | 磁気記録媒体の製造方法及び磁気記録再生装置 | |
JP2011123976A (ja) | 磁気記録媒体の製造方法及び磁気記録再生装置 | |
JP5244679B2 (ja) | 磁気記録媒体の製造方法 | |
JP5232730B2 (ja) | 磁気記録媒体、磁気記録媒体の製造方法及び磁気記録再生装置 | |
JP2011192326A (ja) | 磁気記録媒体及び磁気記録再生装置 | |
JP2011123977A (ja) | 磁気記録媒体及び磁気記録再生装置 | |
JP5677789B2 (ja) | 磁気記録媒体及び磁気記録再生装置 | |
JP2014049171A (ja) | 磁気記録媒体及び磁気記録再生装置 | |
JP2011086350A (ja) | 磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置 | |
JP5312296B2 (ja) | 磁気記録媒体の製造方法及び磁気記録再生装置 | |
JP5244678B2 (ja) | 磁気記録媒体の製造方法 | |
JP2011003260A (ja) | 磁気記録媒体及び磁気記録再生装置 | |
JP6566907B2 (ja) | 磁気記録媒体及び磁気記録再生装置 | |
JP2011138563A (ja) | 磁気記録媒体及び磁気記録再生装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12785951 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013515145 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14114641 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12785951 Country of ref document: EP Kind code of ref document: A1 |