WO2014057600A1 - 磁気記録媒体 - Google Patents

磁気記録媒体 Download PDF

Info

Publication number
WO2014057600A1
WO2014057600A1 PCT/JP2013/004953 JP2013004953W WO2014057600A1 WO 2014057600 A1 WO2014057600 A1 WO 2014057600A1 JP 2013004953 W JP2013004953 W JP 2013004953W WO 2014057600 A1 WO2014057600 A1 WO 2014057600A1
Authority
WO
WIPO (PCT)
Prior art keywords
underlayer
magnetic recording
layer
magnetic
crystal grains
Prior art date
Application number
PCT/JP2013/004953
Other languages
English (en)
French (fr)
Inventor
内田 真治
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201380051735.0A priority Critical patent/CN104685566B/zh
Priority to SG11201502573SA priority patent/SG11201502573SA/en
Priority to JP2014540722A priority patent/JP6112117B2/ja
Publication of WO2014057600A1 publication Critical patent/WO2014057600A1/ja
Priority to US14/678,925 priority patent/US9911445B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
    • G11B5/737Physical structure of underlayer, e.g. texture
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/657Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing inorganic, non-oxide compound of Si, N, P, B, H or C, e.g. in metal alloy or compound
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Definitions

  • the present invention relates to a magnetic recording medium mounted on various magnetic recording devices.
  • the perpendicular magnetic recording medium includes at least a nonmagnetic substrate and a magnetic recording layer formed of a hard magnetic material.
  • the perpendicular magnetic recording medium comprises a soft magnetic backing layer that plays a role in concentrating the magnetic flux generated by the magnetic head on the magnetic recording layer, and an underlayer for orienting the hard magnetic material of the magnetic recording layer in a desired direction.
  • a protective layer for protecting the surface of the magnetic recording layer may be included.
  • a granular magnetic material in which a nonmagnetic material such as SiO 2 or TiO 2 is added to a magnetic alloy material such as CoCrPt or CoCrTa has been proposed.
  • a CoCrPt—SiO 2 granular magnetic material film has a structure in which SiO 2 which is a non-magnetic material is segregated so as to surround the magnetic crystal grains of CoCrPt.
  • each CoCrPt magnetic crystal grain is magnetically separated by nonmagnetic SiO 2 .
  • a perpendicular magnetic recording medium capable of recording with a linear recording density of 1500 kFCI (inversion of magnetization per inch) or more is desired.
  • linear recording density 1500 kFCI (inversion of magnetization per inch) or more.
  • the reduction in the grain size of the magnetic crystal grains reduces the thermal stability of the recorded magnetization (recording signal).
  • it is required to improve the crystal magnetic anisotropy of the magnetic alloy material in the granular magnetic material.
  • the nonmagnetic substrate of the magnetic recording medium is formed using aluminum or glass in order to satisfy required properties such as strength and impact resistance. If membrane deposited such surface in L1 0 type ordered alloy nonmagnetic substrate, undercoat layer is important. This is because, in order to achieve high crystal magnetic anisotropy, (to vertically [001] axis of the crystal relative to the principal plane of the non-magnetic base) of a crystal of L1 0 type ordered alloy (001) orientation is to require Because there is.
  • JP 2001-101645 discloses includes a layer made of a soft magnetic material, a layer made of a nonmagnetic material, the L1 0 consisting form ordered alloy recording layer are sequentially formed layer structure, as a non-magnetic material the use of MgO, crystalline information recording layer formed of L1 0 form ordered alloy, crystal orientation, and magnetic properties are reported to be improved (see Patent Document 1).
  • WO 2004/075178 pamphlet the soft magnetic backing layer, a first orientation control layer made of a magnetic material, a second orientation control layer of non-magnetic, and magnetic recording layer comprising crystal grains having an L1 0 structure
  • Patent Document 2 A magnetic recording medium having a multilayer structure is reported (see Patent Document 2).
  • the thin film (the information recording layer, the recording magnetic layer) of the L1 0 form ordered alloy in these reports are not having a granular structure. Therefore, the recording density (resolution) of the magnetic recording signal is only about 220 kFRPI (magnetic flux reversal per inch, see Patent Document 1) and 400 kFCI (see Patent Document 2).
  • L1 0 In order to further improve the recording density (resolution), L1 0 while ensuring the crystallinity and crystal orientation in the form ordered alloy film, improvement in the magnetic separation between the reduction and the magnetic crystal grains of the particle size of the magnetic crystal grains it has been studied L1 0 form ordered alloy thin film having a granular structure that allows.
  • JP 2004-152471 discloses was formed by sputtering on the oxide magnesium (MgO) substrate, L1 0 form ordered alloy having a granular structure comprising a FePt magnetic crystal grains and C nonmagnetic grain boundary A thin film (FePt-C) has been reported (see Patent Document 3).
  • JP 2008-091009 is reported that by sputtering using a substrate which is heated above 650 ° C., a thin film having a granular structure comprising magnetic crystal grains of L1 0 form ordered alloy (such as FePt) is obtained (See Patent Document 4).
  • JP-T-2010-503139 discloses a magnetic recording medium having a structure of a substrate, a lower layer, a buffer layer, and a magnetic recording layer, and the lower layer has a lattice misfit of 3 to 10% with respect to the magnetic recording layer.
  • JP 2001-101645 A International Publication No. 2004/075178 Pamphlet JP 2004-152471 A Japanese Patent Laid-Open No. 2008-091009 Special table 2010-503139
  • the present inventors used a Cr-based lower layer having a thickness in the range of 5 to 60 nm and a buffer layer made of MgO or Pt having a thickness in the range of 2 to 8 nm
  • the widths of the FePt magnetic crystal grains and the C nonmagnetic grain boundaries vary depending on the amount of C added to the FePt material, the substrate temperature, and the thickness of the alloy thin film to be formed.
  • it is effective to increase the substrate temperature and increase the amount of C added.
  • increasing the substrate temperature promotes the bonding of adjacent FePt magnetic crystal grains and increases the particle size.
  • the problem to be solved by the present invention is to provide a magnetic recording medium having a granular magnetic recording layer that can achieve good signal characteristics in high-density magnetic recording. is there.
  • the perpendicular magnetic recording medium includes at least a nonmagnetic substrate, an underlayer, and a magnetic recording layer on the underlayer, and the underlayer includes: Cr, V, Ti, Sc, A first underlayer containing a nitride of at least one element selected from the group consisting of Mo, Nb, Zr, Y, Al and B and having a NaCl structure oriented in the (001) plane; and Mg, Ca, Co And at least one element selected from the group consisting of Ni, and a second underlayer consisting of a plurality of island regions formed on the first underlayer, wherein the magnetic recording layer comprises magnetic crystal grains And a layer having a granular structure composed of a grain boundary part.
  • the magnetic crystal grains may comprise an L1 0 type ordered alloys such as FePt alloy or CoPt alloy.
  • the grain boundary part may contain carbon or carbide. Further, it is desirable that the magnetic crystal grains have an easy axis of magnetization perpendicular to the main plane of the nonmagnetic substrate.
  • the perpendicular magnetic recording medium of the second embodiment of the present invention comprises at least a nonmagnetic substrate, an underlayer, and a magnetic recording layer on the underlayer, and the underlayer is made of: Mg, Ca, Co and Ni
  • a layer having a granular structure composed of a grain boundary part is
  • the magnetic crystal grains may comprise an L1 0 type ordered alloys such as FePt alloy or CoPt alloy.
  • the grain boundary part may contain carbon or carbide. Further, it is desirable that the magnetic crystal grains have an easy axis of magnetization perpendicular to the main plane of the nonmagnetic substrate.
  • the present invention achieves good signal characteristics at high recording density by reducing the grain size of the magnetic crystal grains in the magnetic recording layer having a granular structure and magnetic separation between the magnetic crystal grains.
  • a magnetic recording medium is provided.
  • FIG. 1 is a schematic cross-sectional view of a magnetic recording medium according to a first embodiment of the present invention. It is a schematic cross section of the magnetic recording medium of the 2nd Embodiment of this invention.
  • FIG. 3 is a diagram showing Mg element mapping on the surface of the underlayer formed in Example 1. It is a figure which shows Ti element mapping of the base layer surface formed in Example 2.
  • FIG. 4 is a TEM photograph of a magnetic recording layer formed at a heating temperature of 400 ° C. in Example 1.
  • 4 is a TEM photograph of a magnetic recording layer formed at a heating temperature of 400 ° C. in Comparative Example 1.
  • 4 is a TEM photograph of a magnetic recording layer formed at a heating temperature of 300 ° C. in Comparative Example 1.
  • 4 is a TEM photograph of a magnetic recording layer formed at a heating temperature of 400 ° C. in Comparative Example 2.
  • the magnetic recording medium according to the first embodiment of the present invention includes at least a nonmagnetic substrate, an underlayer, and a magnetic recording layer provided on the underlayer, and the underlayer is (001) oriented.
  • a first underlayer having a NaCl structure and including a nitride of at least one element selected from the group consisting of Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Al, and B;
  • the magnetic recording layer is formed in an island shape on the underlayer and includes a second underlayer containing at least one element selected from the group consisting of Mg, Ca, Co, and Ni.
  • the magnetic recording layer includes magnetic crystal grains and grains It has the granular structure which consists of a boundary part. In the example shown in FIG.
  • the magnetic recording medium according to the first embodiment of the present invention includes a nonmagnetic substrate 10, a soft magnetic backing layer 20, an underlayer 30 comprising a first underlayer 32a and a second underlayer 34a.
  • the magnetic recording layer 40 including the magnetic crystal grains 42 and the grain boundary portions 44, the protective layer 50, and the liquid lubricant layer 60 are included.
  • the soft magnetic backing layer 20, the protective layer 50, and the liquid lubricant layer 60 are layers that may be optionally provided.
  • the nonmagnetic substrate 10 has a smooth surface (main plane).
  • the material of the nonmagnetic substrate 10 includes any material known in the art, such as an Al alloy plated with NiP, tempered glass, or crystallized glass.
  • the soft magnetic backing layer 20 which may be optionally provided controls the magnetic flux from the magnetic head and improves the recording / reproducing characteristics of the perpendicular magnetic recording medium.
  • the material for forming the soft magnetic backing layer 20 is a crystalline material such as a NiFe alloy, Sendust (FeSiAl) alloy, CoFe alloy, a microcrystalline material such as FeTaC, CoFeNi, CoNiP, or a Co alloy such as CoZrNb or CoTaZr. Including amorphous material.
  • the optimum value of the thickness of the soft magnetic underlayer 20 depends on the structure and characteristics of the magnetic head used for magnetic recording. When the soft magnetic backing layer 20 is formed by continuous film formation with other layers, it is desirable that the soft magnetic backing layer has a thickness in the range of 10 nm to 500 nm (including both ends) in consideration of productivity.
  • an adhesion layer (not shown) may be optionally provided between these layers.
  • the material for forming the adhesion layer includes metals such as Ni, W, Ta, Cr, and Ru, and alloys containing the aforementioned metals.
  • the adhesion layer may be a single layer or may have a laminated structure of a plurality of layers.
  • the underlayer 30 of this embodiment has a stacked structure of a first underlayer 32a and a second underlayer 34a.
  • the thickness of the underlayer 30 is such that the durability desired for the underlayer 30, the crystallinity desired for the magnetic recording layer 40 (magnetic crystal grains 42), and the recording / reproduction characteristics and productivity required for the perpendicular magnetic recording medium. Is determined in consideration of Preferably, the underlayer 30 has a thickness in the range of 2 to 50 nm.
  • the first underlayer 32a has a (001) -oriented NaCl structure.
  • the material for forming the first underlayer 32a includes a nitride of at least one element selected from the group consisting of Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Al, and B. .
  • the group consisting of Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Al, and B has a NaCl-type crystal structure, and has a surface energy against vacuum of 0.2 to 0.6 J / m. 2 and the interface energy with FePt is smaller than 0 J / m 2 .
  • the film thickness of the first underlayer 32a takes into consideration the durability desired for the first underlayer 32a, the crystallinity desired for the magnetic crystal grains 42, and the recording / reproduction characteristics and productivity required for the perpendicular magnetic recording medium. To be determined.
  • the first base layer 32a has a thickness in the range of 2 to 50 nm.
  • the second foundation layer 34a is formed on the first foundation layer 32a and is composed of a plurality of independent island regions.
  • the material for forming the second underlayer 34a includes at least one element selected from the group consisting of Mg, Ca, Co, and Ni.
  • the material for forming the second underlayer 34a includes an oxide or a nitride of the above element. More preferably, the material for forming the second underlayer 34a includes an oxide of the above-described element.
  • the oxides of the aforementioned elements have a NaCl-type crystal structure, the surface energy against vacuum is a large value of approximately 1.0 J / m 2 , and the interface energy with FePt is greater than 0 J / m 2 It is.
  • the plurality of island-like regions constituting the second base layer 34a have an average diameter of 3 to 10 nm. Each of the plurality of island regions is separated from adjacent island regions by a depletion region having an average width of 0.1 to 3 nm. The depletion region is a region where the first base layer 32a is substantially exposed.
  • the average film thickness of the second underlayer 34a is determined in consideration of the surface roughness.
  • the average film thickness of the second underlayer 34a means the film thickness in the case where the deposited material is uniformly distributed over the entire film formation area, not a plurality of island regions.
  • the second underlayer 34a has an average film thickness in the range of 0.1 to 2 nm.
  • the second underlayer 34a preferably has a NaCl structure oriented in the (001) plane. .
  • a plurality of island regions are formed at the initial stage of growth.
  • the initial stage of growth means a stage before the thin film material covers all of the surface of the underlying layer.
  • the low wettability between the thin film material and the layer below it means that the surface energy of the lower layer material against vacuum is less than the interface energy between the thin film material and the lower layer material.
  • the material of the first underlayer 32a (including a nitride of at least one element selected from the group consisting of Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Al, and B) and the second lower layer Since the material of the formation 34a (including at least one element selected from the group consisting of Mg, Ca, Co and Ni) satisfies this relationship, it is considered that the formation of island regions is promoted.
  • the magnetic recording layer 40 includes a columnar magnetic crystal grain 42 and a grain boundary part 44, and has a granular structure in which the magnetic crystal grain 42 is separated (enclosed) by the grain boundary part 44.
  • Each of the magnetic crystal grains 42 mainly contains a magnetic material and is magnetically separated from the adjacent magnetic crystal grains by a grain boundary portion 44 made of a nonmagnetic material.
  • the magnetic crystal grains 42 be arranged at a short pitch.
  • the magnetic crystal grains 42 themselves have a large size.
  • the grain boundary portion 44 has a width as small as possible as long as magnetic separation between the magnetic crystal grains 42 can be achieved.
  • the magnetic crystal grains 42 have a diameter of 3 to 10 nm and the grain boundary portion has a width of 0.1 to 3 nm.
  • the magnetic crystal grains 42 have an easy axis of magnetization in a direction perpendicular to the main plane of the nonmagnetic substrate 10 (that is, the main plane of the perpendicular magnetic recording medium).
  • Magnetic crystal grains 42 is preferably formed from L1 0 form ordered alloy.
  • L1 0 type ordered alloys that can be used include CoPt alloys, FePt alloys, or alloys obtained by adding Ni or Cu to these alloys.
  • the grain boundary portion 44 is desirably formed of a material with less solid solution in the magnetic crystal grains 42.
  • Materials that can be used include oxide materials, carbon-based materials, and mixtures of oxide and carbon-based materials.
  • Oxide materials that can be used include SiO 2 , TiO 2 , MgO, and the like.
  • Carbon-based materials that can be used include carbon and carbides such as B 4 C, BC, SiC.
  • the magnetic crystal grains 42 of the magnetic recording layer 40 are located on the second underlayer 34a. That is, the magnetic crystal grains 42 are formed on a plurality of independent island regions constituting the second underlayer 34a.
  • the grain boundary 44 of the magnetic recording layer 40 is located in the depletion region of the second underlayer 34a and is formed on the first underlayer 32a. This is because the material of the grain boundary 44 and the first foundation layer 32a (located in the vacant zone of the second foundation layer 34a) are more than the interface energy between the material of the grain boundary 44 and the material of the second foundation layer 34a. This is because the interfacial energy with this material is smaller.
  • the structure of the magnetic recording layer 40 can be controlled to obtain the magnetic recording layer 40 having excellent characteristics.
  • the control of the structure of the underlayer 30 is achieved by forming the second underlayer 34a including a plurality of independent island regions.
  • the structure of the magnetic recording layer 40 to be controlled includes the arrangement of the magnetic crystal grains and the grain boundary part, the grain size of the magnetic crystal grains, and the width of the grain boundary part.
  • the magnetic recording layer 40 may have a laminated structure including a plurality of magnetic material layers.
  • an exchange coupling control layer may be disposed between each of the magnetic material layers to form an exchange coupling composite (Exchange ECC) structure and function as one magnetic recording layer.
  • Exchange ECC exchange coupling composite
  • among the plurality of magnetic material layers at least the magnetic material layer in contact with the underlayer 30 has a granular structure.
  • the ECC structure may be formed using a magnetic material layer having two or more granular structures.
  • the film thickness of the magnetic recording layer 40 is determined in consideration of recording / reproducing characteristics required for the perpendicular magnetic recording medium.
  • the magnetic recording layer 40 has a thickness in the range of 5 to 50 nm (including both ends).
  • the protective layer 50 can be formed using any material known in the art such as a material mainly composed of carbon.
  • the protective layer may be a single layer or may have a laminated structure.
  • the protective layer 50 having a laminated structure can be formed using, for example, a combination of two types of carbon materials having different properties, a combination of a metal and a carbon material, or a combination of an oxide and a carbon material.
  • the liquid lubricant layer 60 can be formed using any lubricant known in the art such as a perfluoropolyether lubricant.
  • Each layer laminated on the nonmagnetic substrate 10 can be formed using any technique known in the technical field of magnetic recording media.
  • the soft magnetic underlayer 20, the adhesion layer, the underlayer 30, the magnetic recording layer 40, and the protective layer 50 are formed by a technique such as sputtering (for example, DC magnetron sputtering, RF sputtering), vacuum deposition, or CVD. Can be formed.
  • the liquid lubricant layer 60 can be formed using a coating method such as a dipping method or a spin coating method.
  • the formation of the magnetic recording layer 40 including the L1 0 form ordered alloy typically a sputtering method with heating of the substrate (eg, DC magnetron sputtering, RF sputtering) is employed.
  • the method of forming each constituent layer is not limited to the above-described exemplary technique.
  • the magnetic recording medium according to the second embodiment of the present invention includes at least a nonmagnetic substrate, an underlayer, and a magnetic recording layer provided on the underlayer, and the underlayer is (001) oriented.
  • a first underlayer having an NaCl structure and including an oxide of at least one element selected from the group consisting of Mg, Ca, Co, and Ni; and formed in a net shape on the first underlayer; Cr , V, Ti, Sc, Mo, Nb, Zr, Y, Al and B, and a second underlayer containing at least one element selected from the group consisting of magnetic crystal grains and grains It has the granular structure which consists of a boundary part. In the example shown in FIG.
  • the magnetic recording medium according to the second embodiment of the present invention is a base layer 30 comprising a nonmagnetic substrate 10, a soft magnetic backing layer 20, a first base layer 32b, and a second base layer 34b.
  • the magnetic recording layer 40 including the magnetic crystal grains 42 and the grain boundary portions 44, the protective layer 50, and the liquid lubricant layer 60 are included.
  • the soft magnetic backing layer 20, the protective layer 50, and the liquid lubricant layer 60 are layers that may be optionally provided.
  • the nonmagnetic substrate 10, the soft magnetic backing layer 20, the adhesion layer, the protective layer 50, and the liquid lubricant layer 60 of the present embodiment are the same as the respective constituent elements described in the first embodiment.
  • the underlayer 30 of this embodiment has a stacked structure of a first underlayer 32b and a second underlayer 34b.
  • the thickness of the underlayer 30 is determined in consideration of the durability desired for the underlayer 30, the crystallinity desired for the magnetic crystal grains 42, and the recording / reproduction characteristics and productivity required for the perpendicular magnetic recording medium.
  • the Preferably, the underlayer 30 has a thickness in the range of 2 to 50 nm.
  • the first underlayer 32b has a (001) -oriented NaCl structure.
  • the material for forming the first foundation layer 32b includes an oxide of at least one element selected from the group consisting of Mg, Ca, Co, and Ni.
  • the film thickness of the first underlayer 32b takes into consideration the durability desired for the first underlayer 32b, the desired crystallinity of the magnetic recording layer 40, and the recording / reproducing characteristics and productivity required for the perpendicular magnetic recording medium. To be determined.
  • the first base layer 32b has a thickness in the range of 2 to 50 nm.
  • the second underlayer 34b is formed on the first underlayer 32b and is configured by a net-like region.
  • the material for forming the second underlayer 34b includes at least one element selected from the group consisting of Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Al, and B.
  • the material for forming the second underlayer 34b includes an oxide or a nitride of the above element. More preferably, the material for forming the second underlayer 34b includes a nitride of the aforementioned element.
  • the net-like region constituting the second base layer 34b has an average width of 0.1 to 3 nm.
  • the net-like region surrounds a plurality of depletion regions having an average diameter of 3 to 10 nm.
  • the average film thickness of the second underlayer 34b is determined in consideration of the surface roughness.
  • the average film thickness of the second underlayer 34b means the film thickness in the case where the deposited material is uniformly distributed over the entire deposition area, not in the net-like region.
  • the second underlayer 34b has an average film thickness in the range of 0.1 to 2 nm.
  • the wettability between the thin film material and the underlying layer is small and the surface energy of the thin film material against vacuum is small.
  • the low wettability between the thin film material and the underlying layer means that the surface energy of the material of the underlying layer relative to the vacuum is smaller than the interface energy between the thin film material and the underlying layer material. Means that. This is because the thin film material tries to increase the contact area with respect to the vacuum while reducing the contact area with the underlying layer.
  • the material of the first underlayer 32b (the oxide of at least one element selected from the group consisting of Mg, Ca, Co and Ni) and the material of the second underlayer 34b (Cr, V, Ti, Sc, Mo) , Nb, Zr, Y, Al, and B include at least one element selected from the group consisting of Nb, Zr, Y, Al, and B).
  • the magnetic crystal grains 42 are formed in the depletion region of the second underlayer 34b, that is, the exposed region of the first underlayer 32b, and the second underlayer 34b which is a net-like region.
  • the magnetic recording layer 40 is the same as the magnetic recording layer 40 of the first embodiment except that the grain boundary portion 44 is formed on the magnetic recording layer.
  • the positional relationship among the first underlayer 32b, the second underlayer 34b, the magnetic crystal grain 42, and the grain boundary 44 is determined by the material of the grain boundary 44 and the first underlayer 32b (depletion region of the second underlayer 34b).
  • the interfacial energy between the material of the grain boundary portion 44 and the material of the second underlayer 34b is smaller than the interfacial energy with the material of the second base layer 34b.
  • a lower layer comprising a nonmagnetic substrate 10 made of chemically strengthened glass, a CoZrNb soft magnetic backing layer 20, a NiCrMo adhesion layer, a TiN first underlayer 32a, and a MgO second underlayer 34a composed of a plurality of island regions.
  • the present invention comprises an FePt—C magnetic recording layer 40 having a granular structure composed of a base layer 30, a magnetic crystal grain 42 of an FePt ordered alloy and a C nonmagnetic portion 44, a C protective layer 50, and a liquid lubricant layer 60 in this order.
  • the perpendicular magnetic recording medium of the first embodiment was manufactured.
  • the formation from the CoZrNb soft magnetic backing layer 20 to the C protective layer 50 was carried out in an in-line film forming apparatus without being released to the atmosphere.
  • a chemically tempered glass substrate (N-10 glass substrate manufactured by HOYA, inner diameter ⁇ 20 mm, outer diameter ⁇ 65 mm) having a smooth surface was washed to prepare a nonmagnetic substrate 10.
  • the nonmagnetic substrate 10 was placed in a sputtering apparatus, and an amorphous CoZrNb soft magnetic backing layer 20 having a film thickness of 40 nm was formed by DC magnetron sputtering using a CoZrNb target in an Ar gas atmosphere.
  • a 5 nm thick NiCrMo adhesion layer was formed by DC magnetron sputtering using a NiCrMo target.
  • the laminated body on which the adhesion layer was formed was heated to 200 ° C., and a TiN first underlayer 32a having a thickness of 10 nm was formed by DC magnetron sputtering using a TiN target. This step was performed by applying 200 W of DC power in an Ar gas atmosphere at a pressure of 0.3 Pa.
  • the MgO second underlayer 34a was formed by RF sputtering using an MgO target while the laminated body on which the first underlayer 32a was formed was heated to 200 ° C. This step was performed by applying 200 W RF power and 500 V substrate bias in an Ar gas atmosphere at a pressure of 0.8 Pa for 3 seconds. The deposition rate measured by separately forming the MgO film under the same conditions was 10 nm / min. Therefore, the MgO second underlayer 34a formed in this step had an average film thickness of 0.5 nm.
  • the laminate forming a second base layer 34a was heated to 200 °C ⁇ 400 °C, DC magnetron sputtering using a Fe 50 Pt 50 -C target containing 25 vol% C, based on the Fe 50 Pt 50
  • the Fe 50 Pt 50 —C magnetic recording layer 40 was formed. This step was performed by applying 600 W DC power and 0 V substrate bias in an Ar gas atmosphere at a pressure of 1.5 Pa for 2.0 seconds.
  • the deposition rate measured by separately forming an Fe 50 Pt 50 -C film under the same conditions was 7 nm / second. Therefore, the Fe 50 Pt 50 —C magnetic recording layer 40 formed in this step had an average film thickness of 14 nm.
  • the average film thickness means the film thickness when the material deposited on the entire film formation surface is uniformly distributed.
  • a C protective layer 50 having a thickness of 3 nm was formed on the laminated body on which the magnetic recording layer 40 was formed by a sputtering method using a carbon target. After the formation of the protective layer 50 was completed, the obtained laminate was taken out from the film forming apparatus.
  • a liquid lubricant layer 60 made of perfluoropolyether and having a thickness of 2 nm was formed on the obtained laminate using a dipping method, to obtain a perpendicular magnetic recording medium.
  • the nonmagnetic substrate 10 made of chemically tempered glass, the CoZrNb soft magnetic backing layer 20, the NiCrMo adhesion layer, the MgO first underlayer 32b, and the underlayer 30 comprising the TiN second underlayer 34b made of a net-like region.
  • the FePt-C magnetic recording layer 40 having the granular structure composed of the magnetic crystal grains 42 of the FePt ordered alloy and the C nonmagnetic portion 44, the C protective layer 50, and the liquid lubricant layer 60 are provided in this order.
  • the perpendicular magnetic recording medium of the second embodiment was produced.
  • Example 2 In the same manner as in Example 1, the formation from the CoZrNb soft magnetic backing layer 20 to the C protective layer 50 was carried out using the in-line film forming apparatus without releasing to the atmosphere. First, the CoZrNb soft magnetic backing layer 20 and the NiCrMo adhesion layer were formed by the same procedure as in Example 1.
  • the stacked body on which the adhesion layer was formed was heated to 200 ° C., and an MgO first underlayer 32b having a thickness of 8 nm was formed by RF sputtering using an MgO target.
  • This step was performed by applying 330 W RF power and 500 V substrate bias in an Ar gas atmosphere at a pressure of 0.2 Pa.
  • the TiN second underlayer 34b was formed by DC magnetron sputtering using a TiN target while the laminated body on which the first underlayer 32b was formed was heated to 200 ° C. This step was performed by applying a DC power of 250 W in an Ar gas atmosphere at a pressure of 0.4 Pa for 0.5 seconds. The deposition rate measured by separately forming a TiN film under the same conditions was 40 nm / min. Therefore, the TiN second underlayer 34b formed in this step had an average film thickness of 0.3 nm.
  • the Fe 50 Pt 50 —C magnetic recording layer 40, the C protective layer 50, and the liquid lubricant layer 60 were formed by the same procedure as in Example 1 to obtain a perpendicular magnetic recording medium.
  • Example 2 In the same manner as in Example 1, the formation from the CoZrNb soft magnetic backing layer to the C protective layer was carried out using the in-line film forming apparatus without releasing to the atmosphere. First, a CoZrNb soft magnetic backing layer and a NiCrMo adhesion layer were formed by the same procedure as in Example 1.
  • the laminate on which the adhesion layer was formed was heated to 200 ° C., and a TiN underlayer having a film thickness of 10 nm was formed by DC magnetron sputtering using a TiN target. This step was performed by applying 200 W of DC power in an Ar gas atmosphere at a pressure of 0.3 Pa.
  • the Fe 50 Pt 50 —C magnetic recording layer, the C protective layer, and the liquid lubricant layer were formed by the same procedure as in Example 1 to obtain a perpendicular magnetic recording medium.
  • Example 2 In the same manner as in Example 1, the formation from the CoZrNb soft magnetic backing layer to the C protective layer was carried out using the in-line film forming apparatus without releasing to the atmosphere. First, a CoZrNb soft magnetic backing layer and a NiCrMo adhesion layer were formed by the same procedure as in Example 1.
  • the laminated body on which the adhesion layer was formed was heated to 200 ° C., and an MgO underlayer having a thickness of 8 nm was formed by RF sputtering using an MgO target.
  • This step was performed by applying 330 W RF power and 500 V substrate bias in an Ar gas atmosphere at a pressure of 0.2 Pa.
  • the Fe 50 Pt 50 —C magnetic recording layer, the C protective layer, and the liquid lubricant layer were formed by the same procedure as in Example 1 to obtain a perpendicular magnetic recording medium.
  • composition analysis of the underlayer In Examples 1 and 2, the underlayer was formed, the sample after the formation of the C protective layer was extracted without forming the magnetic recording layer, and the composition analysis of the underlayer was performed. .
  • composition analysis a thin plate obtained by scraping a sample from a glass substrate until it includes a portion having a thickness of 10 nm or less is cut out by an ion milling method. This was performed by obtaining elemental mapping of Mg, O, Ti and N at a magnification of 1 million with a distributed X-ray analyzer (EDX). The elemental mapping of Mg of the sample of Example 1 is shown in FIG. Further, elemental mapping of Ti of the sample of Example 2 is shown in FIG.
  • EDX distributed X-ray analyzer
  • the elemental mapping of Mg in the sample of Example 1 shown in FIG. 3 includes a plurality of island-like regions containing Mg element (gray portions in FIG. 3) and an inter-island depletion region not containing Mg element (white in FIG. 3). Part).
  • each of the island regions was independent of the adjacent island regions by the inter-island depletion region.
  • the second underlayer 34a composed of a plurality of MgO island regions was dispersed on the surface of the first underlayer 32a.
  • the average pitch of the plurality of island-like regions was 6 nm.
  • the pitch of the island regions means the distance between the gravity center positions of two adjacent island regions.
  • the elemental mapping of Ti in the sample of Example 2 shown in FIG. 4 includes a net-like region containing Ti element (gray portion in FIG. 4) and a plurality of depletion regions not containing Ti element (white in FIG. 4). Part). Moreover, each depletion region was independent from the adjacent depletion region by the net-like region. Furthermore, it was found from the elemental mapping of N that the distribution of N is also consistent with the elemental mapping of Ti. From this, it was confirmed that the second underlayer 34b made of a TiN net-like region was formed on the surface of the first underlayer 32b. Moreover, the average pitch of the plurality of depletion regions was 6.5 nm. Here, the pitch of the depletion zone means the distance between the gravity center positions of two adjacent depletion zones.
  • FIG. 5 shows a bright field image of a TEM photograph of the magnetic recording layer of the sample of Example 1 in which the temperature of the laminate was heated to 400 ° C. to form the magnetic recording layer.
  • the granular structure consisting of the magnetic crystal grains 42 (gray portion in FIG. 5) and the grain boundary portion 44 (white portion in FIG. 5) was clearly observed.
  • a clear granular structure similar to that in FIG. 5 was observed in all of the samples of Examples 1 and 2 where the magnetic recording layer was formed under other conditions of the heating temperature.
  • FIG. 6 shows a bright field image of a TEM photograph of the magnetic recording layer of the sample of Comparative Example 1 in which the magnetic recording layer was formed by heating the temperature of the laminate to 400 ° C.
  • the boundaries of the magnetic crystal grains are mottled. However, neither boundary is clear.
  • FIG. 7 shows a bright field image of a TEM photograph of the magnetic recording layer of the sample of Comparative Example 2 in which the magnetic recording layer was formed by heating the temperature of the laminate to 300 ° C.
  • the boundaries of the magnetic crystal grains are mottled.
  • FIG. 8 shows a bright field image of a TEM photograph of the magnetic recording layer of the sample of Comparative Example 2 in which the magnetic recording layer was formed by heating the temperature of the laminated body to 400 ° C.
  • the boundaries of the magnetic crystal grains are clearly present.
  • adjacent magnetic crystal grains were in contact with each other to form huge magnetic particles. From the above, in Comparative Example 2, when the magnetic recording layer is formed at 300 ° C. or lower, the magnetic crystal grains cannot be magnetically separated, and when the magnetic recording layer is formed at 400 ° C. It was suggested that huge magnetic particles were formed and the recording density could not be improved.
  • Example 1 even when the heating temperature at the time of forming the magnetic recording layer was changed from 200 ° C. to 400 ° C., the FePt magnetic crystal grains were stable in the range of 5.2 to 5.5 nm, and It had a stable grain boundary width within the range of 7 to 0.8 nm.
  • the MgO second underlayer 34a of Example 1 described in detail in (A) above is composed of a plurality of island-like regions, and the pitch coincides with an average of 6 nm.
  • the MgO second underlayer 34a is selectively formed on the surface of the plurality of island-like regions, and the depletion region (ie, TiN) of the MgO second underlayer 34a. It is considered that the grain boundary portion 44 was selectively formed on the exposed surface of the first underlayer 32a.
  • Example 2 even when the heating temperature at the time of forming the magnetic recording layer was changed from 200 ° C. to 400 ° C., the FePt magnetic crystal grains were stable in the range of 5.7 to 5.9 nm, and It had a stable grain boundary width within the range of 8 to 1.0 nm.
  • the TiN second underlayer 34b of Example 2 described in detail in the above (A) is formed of a net-like region, and the pitch of the depletion region is consistent with an average of 6.5 nm.
  • the FePt magnetic crystal grains 42 of the magnetic recording layer are selectively formed in the depletion region of the TiN second underlayer 34b (that is, on the exposed surface of the MgO first underlayer 32b) and from the net-like region. It is considered that the grain boundary portion 44 was selectively formed on the surface of the TiN second underlayer 34b.
  • Comparative Example 1 the magnetic crystal grains were not separated, and the particle size and grain boundary width could not be measured. From this, it is considered that on the surface of the underlayer formed only of TiN, the separation between the magnetic crystal grains and the grain boundary portion does not proceed smoothly, and the granular structure cannot be obtained.
  • the magnetic crystal grains were small in the heating temperature at the time of forming the magnetic recording layer of 300 ° C. or less, but the grain boundary width was also small, and the magnetic crystal grains were partially magnetized. It was found that they were not separated. Further, when the heating temperature at the time of forming the magnetic recording layer was increased to 400 ° C., the separation of the magnetic crystal grains proceeded. However, at the same time, the coupling between adjacent magnetic crystal grains proceeded, and huge magnetic particles having a large particle size were obtained. For these reasons, on the surface of the underlayer formed only of MgO, a desirable granular structure is obtained in which magnetic crystal grains having an appropriate grain size and grain boundary portions having an appropriate grain boundary width are clearly separated. I found it impossible.
  • the perpendicular magnetic recording media of Examples 1 and 2 had a regularity S of 70% or more even when the temperature at the time of forming the magnetic recording layer was changed within the range of 200 to 400 ° C.
  • the magnetic crystal grains of the perpendicular magnetic recording medium of Example 1 and 2 were confirmed to be highly regular degree L1 0 form ordered alloy.
  • the perpendicular magnetic recording media of Examples 1 and 2 had a good recording / reproduction characteristic because an SNR of 10 dB or more was obtained even when the temperature at the time of forming the magnetic recording layer was changed within the range of 200 to 400 ° C. It was.
  • the magnetic recording layer 40 having a granular structure in which the magnetic crystal grains 42 and the grain boundary portions 44 are well separated was obtained. Conceivable.
  • the perpendicular magnetic recording medium of Comparative Example 1 exhibited an SNR of less than 1 dB at any magnetic recording layer forming temperature. This result is thought to be because the separation between the magnetic crystal grains and the grain boundary portion did not proceed and a magnetic recording layer having a granular structure could not be obtained.
  • the perpendicular magnetic recording medium of Comparative Example 2 exhibited an SNR of less than 1 dB when the temperature at the time of forming the magnetic recording layer was 200 ° C. This result is thought to be because the separation between the magnetic crystal grains and the grain boundary portion did not proceed and a magnetic recording layer having a granular structure could not be obtained. Further, when the temperature at the time of forming the magnetic recording layer was 250 ° C. to 300 ° C., the perpendicular magnetic recording medium of Comparative Example 2 exhibited an SNR of less than 10 dB. This result is considered to be because magnetic crystal grains are not partially separated.
  • the perpendicular magnetic recording medium of Comparative Example 2 exhibited an SNR of less than 10 dB. This result is thought to be because the magnetic crystal grains have become enormous, although the magnetic crystal grains have been separated by the grain boundary portion.
  • the present invention provides a base layer including the second base layer 34a having a plurality of island-like regions according to the first embodiment, or a second lower layer having a net-like region according to the second embodiment.
  • a base layer including the second base layer 34a having a plurality of island-like regions according to the first embodiment, or a second lower layer having a net-like region according to the second embodiment.
  • an underlayer including the base layer 34b it is possible to form a granular structure even at a relatively low temperature of 200 ° C. during the formation of the magnetic recording layer, and at the same time the temperature during the formation of the magnetic recording layer is increased to 400 ° C. Even if it was made, it became possible to prevent the enlargement of the magnetic crystal grains in the granular structure.
  • the present invention can provide a perpendicular magnetic recording medium having good signal characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

 高密度の磁気記録において良好な信号特性を達成することができる、グラニュラー構造の磁気記録層を有する磁気記録媒体を提供する。本発明の垂直磁気記録媒体は、非磁性基体と、下地層と、下地層上の磁気記録層とを少なくとも備え、下地層は:Cr、V、Ti、Sc、Mo、Nb、Zr、Y、AlおよびBからなる群から選択された少なくとも1つの元素の窒化物を含み、(001)配向したNaCl構造を有する第1下地層と、Mg、Ca、CoおよびNiからなる群から選択された少なくとも1つの元素を含み、第1下地層の上に形成された複数の島状領域からなる第2下地層とからなり、磁気記録層は、磁性結晶粒および粒界部からなるグラニュラー構造の層を含む。

Description

磁気記録媒体
 本発明は各種磁気記録装置に搭載される磁気記録媒体に関する。
 高密度の磁気記録を実現する技術として、垂直磁気記録媒体が採用されてきている。垂直磁気記録媒体は、非磁性基体と、硬質磁性材料から形成される磁気記録層とを少なくとも含む。任意選択的に、垂直磁気記録媒体は、磁気ヘッドが発生する磁束を磁気記録層に集中させる役割を担う軟磁性裏打ち層、磁気記録層の硬質磁性材料を目的の方向に配向させるための下地層、磁気記録層の表面を保護する保護層などを含んでもよい。
 上記の硬質磁性材料として、CoCrPt、CoCrTaなどの磁性合金材料にSiO、TiOなどの非磁性体を添加したグラニュラー磁性材料が提案されている。たとえば、CoCrPt-SiOグラニュラー磁性材料の膜は、CoCrPtの磁性結晶粒の周囲を取り囲むように非磁性体であるSiOが偏析した構造を有する。ここで、個々のCoCrPt磁性結晶粒は、非磁性体のSiOによって磁気的に分離されている。
 近年、垂直磁気記録媒体の記録密度をさらに向上させることが必要になってきている。具体的には、1500kFCI(磁化反転毎インチ)以上の線記録密度による記録が可能な垂直磁気記録媒体が求められている。上記の線記録密度を可能にするための手段として、グラニュラー磁性材料中の磁性結晶粒の粒径の縮小が検討されている。しかしながら、磁性結晶粒の粒径の縮小は、記録された磁化(記録信号)の熱安定性を低下させる。この熱安定性の低下を補償するために、グラニュラー磁性材料中の磁性合金材料の結晶磁気異方性を向上させることが求められている。
 求められる高い結晶磁気異方性を有する材料の1つに、L1系規則合金がある。一方、磁気記録媒体の非磁性基体は、要求される強度、耐衝撃性などの特性を満たすために、アルミニウムまたはガラスを用いて形成されている。このような非磁性基体の表面にL1系規則合金の膜を成膜する場合、下地層が重要である。なぜなら、高い結晶磁気異方性を実現するために、L1系規則合金の結晶を(001)配向させる(結晶の[001]軸を非磁性基体の主平面に対して垂直にする)必要があるためである。
 L1系規則合金の結晶の所望される配向を実現するために、一般に、L1系規則合金に対して適当な格子ミスフィットを有するMgOまたはSrTiOを下地層として用いてきている。たとえば、特開2001-101645号公報は、軟磁性材料からなる層と、非磁性材料からなる層と、L1形規則合金からなる情報記録層が順次形成された層構造において、非磁性材料としてMgOを用いることにより、L1形規則合金からなる情報記録層の結晶性、結晶配向性、および磁気特性が向上することを報告している(特許文献1参照)。あるいはまた、国際公開第2004/075178号パンフレットは、軟磁性裏打ち層、磁性材料からなる第1配向制御層、非磁性の第2配向制御層、およびL1構造を有する結晶粒を含む記録磁性層の積層構造を有する磁気記録媒体を報告している(特許文献2参照)。しかしながら、これらの報告におけるL1形規則合金の薄膜(情報記録層、記録磁性層)は、グラニュラー構造を有するものではない。そのため、磁気記録信号の記録密度(分解能)は、220kFRPI(磁束反転毎インチ、特許文献1参照)および400kFCI(特許文献2参照)程度に過ぎない。
 記録密度(分解能)のさらなる向上を図るために、L1形規則合金薄膜の結晶性および結晶配向性を確保しつつ、磁性結晶粒の粒径の縮小および磁性結晶粒間の磁気的分離の向上を可能にするグラニュラー構造を有するL1形規則合金薄膜が検討されてきている。たとえば、特開2004-152471号公報は、酸化マグネシム(MgO)基板上にスパッタ法を用いて形成された、FePt磁性結晶粒とC非磁性粒界とからなるグラニュラー構造を有するL1形規則合金薄膜(FePt-C)を報告している(特許文献3参照)。また、特開2008-091009号公報は、650℃以上に加熱された基板を用いるスパッタ法によって、L1形規則合金(FePtなど)の磁性結晶粒を含むグラニュラー構造の薄膜が得られることを報告している(特許文献4参照)。さらに、特表2010-503139号公報は、基板、下層、緩衝層、および磁気記録層の構造を有する磁気記録媒体において、下層が磁気記録層に対して3~10%の格子ミスフィットを有し、緩衝層が(002)配向を有することによって、L1形規則合金からなる磁性結晶粒と添加剤からなる非磁性粒界とを有するグラニュラー構造の磁気記録層を400℃未満の温度で形成できることを報告している(特許文献5参照)。
特開2001-101645号公報 国際公開第2004/075178号パンフレット 特開2004-152471号公報 特開2008-091009号公報 特表2010-503139号公報
 下層の格子ミスフィットおよび緩衝層の配向性による補助を伴うL1形規則合金薄膜の形成の報告において、15体積%のCを含むFePt材料を350℃に加熱された基板上に堆積させた場合に、7nmの平均サイズを有するFePt粒子と1nmの幅(隣接するFePt粒子の間隔)を有するC非磁性粒界とを有するグラニュラー構造が得られている(特許文献5参照)。しかしながら、本発明者は、5~60nmの範囲内の厚さを有するCrベースの下層、および2~8nmの範囲内の厚さを有するMgOまたはPtからなる緩衝層を用いた場合、グラニュラー構造中のFePt磁性結晶粒およびC非磁性粒界の幅が、FePt材料に添加されるCの量、基板温度、および形成する合金薄膜の膜厚に依存して変化することを見いだした。グラニュラー構造中のFePt磁性結晶粒の磁気的分離を向上させるためには、基板温度の上昇およびCの添加量の増加が有効である。しかしながら、基板温度の上昇は、隣接するFePt磁性結晶粒の結合を促進して粒子サイズを増大させることがわかった。また、Cの添加量の増加は、合金薄膜(磁気記録層)の磁化強度(Ms)の低下、すなわち再生時の磁気信号の強度の低下をもたらすことがわかった。一方、合金薄膜(磁気記録層)の磁化強度(Ms)を向上させるためには、合金薄膜(磁気記録層)の膜厚の増大が有効である。しかしながら、合金薄膜(磁気記録層)の膜厚の増大は、グラニュラー構造中のFePt磁性結晶粒の粒子サイズの増大をもたらすことがわかった。以上のように、この報告の構成においては、磁性結晶粒のより小さい粒子サイズ、磁性結晶粒間のより良好な磁気的分離、および高い磁化強度(Ms)の特性を同時に達成して、高密度の磁気記録のために必要な良好な信号特性を得ることが困難であった。
 上記の問題点に鑑みて本発明が解決しようとする課題は、高密度の磁気記録において良好な信号特性を達成することができる、グラニュラー構造の磁気記録層を有する磁気記録媒体を提供することである。
 本発明の第1の実施形態の垂直磁気記録媒体は、非磁性基体と、下地層と、前記下地層上の磁気記録層とを少なくとも備え、前記下地層は:Cr、V、Ti、Sc、Mo、Nb、Zr、Y、AlおよびBからなる群から選択された少なくとも1つの元素の窒化物を含み、(001)面に配向したNaCl構造を有する第1下地層と、Mg、Ca、CoおよびNiからなる群から選択された少なくとも1つの元素を含み、第1下地層の上に形成された複数の島状領域からなる第2下地層とからなり、前記磁気記録層は、磁性結晶粒および粒界部からなるグラニュラー構造の層を含むことを特徴とする。ここで、磁性結晶粒は、FePt合金またはCoPt合金などのL1系規則合金を含んでもよい。また、粒界部は、カーボンまたは炭化物を含んでもよい。さらに、磁性結晶粒は、非磁性基体の主平面に垂直な磁化容易軸を有することが望ましい。
 本発明の第2の実施形態の垂直磁気記録媒体は、非磁性基体と、下地層と、前記下地層上の磁気記録層とを少なくとも備え、前記下地層は:Mg、Ca、CoおよびNiからなる群から選択された少なくとも1つの元素の酸化物を含み、(001)面に配向したNaCl構造を有する第1下地層と、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Al、BおよびCからなる群から選択された少なくとも1つの元素を含み、第1下地層の上に形成されたネット状領域からなる第2下地層とからなり、前記磁気記録層は、磁性結晶粒および粒界部からなるグラニュラー構造の層を含むことを特徴とする。ここで、磁性結晶粒は、FePt合金またはCoPt合金などのL1系規則合金を含んでもよい。また、粒界部は、カーボンまたは炭化物を含んでもよい。さらに、磁性結晶粒は、非磁性基体の主平面に垂直な磁化容易軸を有することが望ましい。
 上記の構成を採用することによって、本発明は、グラニュラー構造の磁気記録層中の磁性結晶粒の粒子サイズの縮小、および磁性結晶粒間の磁気的分離により、高記録密度での良好な信号特性を有する磁気記録媒体を提供する。
本発明の第1の実施形態の磁気記録媒体の模式断面図である。 本発明の第2の実施形態の磁気記録媒体の模式断面図である。 実施例1において形成した下地層表面のMg元素マッピングを示す図である。 実施例2において形成した下地層表面のTi元素マッピングを示す図である。 実施例1において、加熱温度400℃で成膜した磁気記録層のTEM写真である。 比較例1において、加熱温度400℃で成膜した磁気記録層のTEM写真である。 比較例1において、加熱温度300℃で成膜した磁気記録層のTEM写真である。 比較例2において、加熱温度400℃で成膜した磁気記録層のTEM写真である。
 本発明の第1の実施形態の磁気記録媒体は、少なくとも、非磁性基体、下地層、および前記下地層の上に設けられた磁気記録層とを備え、前記下地層は、(001)配向したNaCl構造を有し、かつCr、V、Ti、Sc、Mo、Nb、Zr、Y、AlおよびBからなる群から選択される少なくとも1つの元素の窒化物を含む第1下地層と、第1下地層の上に島状に形成され、Mg、Ca、CoおよびNiからなる群から選択される少なくとも1つの元素を含む第2下地層とからなり、前記磁気記録層は、磁性結晶粒と粒界部とからなるグラニュラー構造を有することを特徴とする。図1に示す例においては、本発明の第1の実施形態の磁気記録媒体は、非磁性基体10、軟磁性裏打ち層20、第1下地層32aと第2下地層34aとからなる下地層30、磁性結晶粒42と粒界部44とからなる磁気記録層40、保護層50、および液体潤滑剤層60を含む。ここで、軟磁性裏打ち層20、保護層50、および液体潤滑剤層60は、任意選択的に設けてもよい層である。
 非磁性基体10は、平滑な表面(主平面)を有する。たとえば、非磁性基体10の材料は、NiPメッキを施したAl合金、強化ガラス、結晶化ガラスなどの当該技術にて知られている任意の材料を含む。
 任意選択的に設けてもよい軟磁性裏打ち層20は、磁気ヘッドからの磁束を制御して、垂直磁気記録媒体の記録・再生特性を向上させる。軟磁性裏打ち層20を形成するための材料は、NiFe合金、センダスト(FeSiAl)合金、CoFe合金などの結晶質材料、FeTaC,CoFeNi,CoNiPなどの微結晶質材料、CoZrNb、CoTaZrなどのCo合金を含む非晶質材料を含む。軟磁性裏打ち層20の膜厚の最適値は、磁気記録に用いる磁気ヘッドの構造および特性に依存する。他の層と連続成膜で軟磁性裏打ち層20を形成する場合、生産性との兼ね合いから、軟磁性裏打ち層が10nm~500nmの範囲内(両端を含む)の膜厚を有することが望ましい。
 軟磁性裏打ち層20と下地層30との間の密着性を確保するために、それらの層の間に密着層(不図示)を任意選択的に設けてもよい。密着層を形成するための材料はNi、W、Ta、Cr、Ruなどの金属、前述の金属を含む合金を含む。密着層は、単一の層であってもよいし、複数の層の積層構造を有してもよい。
 本実施形態の下地層30は、第1下地層32aと第2下地層34aとの積層構造を有する。下地層30の膜厚は、下地層30に所望される耐久性、磁気記録層40(磁性結晶粒42)に所望される結晶性、ならびに垂直磁気記録媒体に求められる記録・再生特性および生産性を考慮して決定される。好ましくは、下地層30は2~50nmの範囲内の膜厚を有する。
 第1下地層32aは、(001)配向したNaCl構造を有する。また、第1下地層32aを形成するための材料は、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、AlおよびBからなる群から選択される少なくとも1つの元素の窒化物を含む。Cr、V、Ti、Sc、Mo、Nb、Zr、Y、AlおよびBからなる群の窒化物は、NaCl型の結晶構造を取り易く、真空に対する表面エネルギーが0.2~0.6J/mと小さく、かつ、FePtとの界面エネルギーが0J/mより小さいものである。第1下地層32aの膜厚は、第1下地層32aに所望される耐久性、磁性結晶粒42に所望される結晶性、ならびに垂直磁気記録媒体に求められる記録・再生特性および生産性を考慮して決定される。好ましくは、第1下地層32aは2~50nmの範囲内の膜厚を有する。
 第2下地層34aは、第1下地層32aの上に形成され、複数の独立した島状領域で構成される。第2下地層34aを形成するための材料は、Mg、Ca、CoおよびNiからなる群から選択される少なくとも1つの元素を含む。好ましくは、第2下地層34aを形成するための材料は、前述の元素の酸化物または窒化物を含む。より好ましくは、第2下地層34aを形成するための材料は、前述の元素の酸化物を含む。前述の元素の酸化物は、NaCl型の結晶構造を取り易く、真空に対する表面エネルギーが概ね1.0J/mの大きな値であり、かつ、FePtとの界面エネルギーが0J/mより大きいものである。第2下地層34aを構成する複数の島状領域は3~10nmの平均直径を有する。複数の島状領域のそれぞれは、0.1~3nmの平均幅を有する空乏域によって隣接する島状領域から分離されている。空乏域は、第1下地層32aが実質的に露出している領域である。第2下地層34aの平均膜厚は、表面粗さを考慮して決定される。ここで、第2下地層34aの平均膜厚とは、堆積した材料を、複数の島状領域ではなく、被成膜面積全体に均一に分布させた場合の膜厚を意味する。好ましくは、第2下地層34aは0.1~2nmの範囲内の平均膜厚を有する。
 後述するように、第2下地層34aの上には磁気記録層40の磁性結晶粒42が形成されるため、第2下地層34aは、(001)面に配向したNaCl構造を有することが望ましい。
 一般的な薄膜形成工程において、成長初期において、複数の島状領域が形成される。特に、薄膜材料がその下の層との濡れ性が小さく、かつ真空に対する薄膜材料の表面エネルギーが大きい場合、比較的に大きな膜厚の島状領域が形成される。なぜなら、薄膜材料が、下の層に対する接触面積を小さくし、真空に対する接触面積も小さくしようとするためである。ここで、成長初期とは、薄膜材料がその下の層の表面の全てを覆う前の段階を意味する。また、薄膜材料とその下の層との濡れ性が小さいことは、薄膜材料と下の層の材料との間の界面エネルギーよりも、真空に対する下の層の材料の表面エネルギーが小さいことを意味する。前述の第1下地層32aの材料(Cr、V、Ti、Sc、Mo、Nb、Zr、Y、AlおよびBからなる群から選択される少なくとも1つの元素の窒化物を含む)および第2下地層34aの材料(Mg、Ca、CoおよびNiからなる群から選択される少なくとも1つの元素を含む)はこの関係を満たすため、島状領域の形成が促進されると考えられる。
 磁気記録層40は、柱状の磁性結晶粒42と粒界部44とからなり、粒界部44によって磁性結晶粒42が離間された(取り囲まれた)グラニュラー構造を有する。磁性結晶粒42のそれぞれは磁性材料を主として含み、非磁性材料からなる粒界部44によって、隣接する磁性結晶粒から磁気的に分離される。垂直磁気記録媒体の記録密度の向上のためには、磁性結晶粒42が短いピッチで配列していることが望ましい。一方、記録された信号(磁化)の熱揺らぎの防止ならびに再生特性の向上の観点からは、磁性結晶粒42自身は大きいサイズを有することが望ましい。そのため、粒界部44は、磁性結晶粒42間の磁気的分離を達成できる限りにおいて、できるだけ小さい幅を有することが望ましい。本発明においては、磁性結晶粒42が3~10nmの直径を有すること、粒界部が0.1~3nmの幅を有することが望ましい。
 本発明において、磁性結晶粒42は、非磁性基体10の主平面(すなわち、垂直磁気記録媒体の主平面)に垂直な方向に磁化容易軸を有する。磁性結晶粒42は、好ましくは、L1形規則合金から形成される。用いることができるL1形規則合金は、CoPt合金、FePt合金、またはこれらの合金に対してNiまたはCuを添加した合金を含む。
 一方、粒界部44は、磁性結晶粒42への固溶が少ない材料で形成することが望ましい。用いることができる材料は、酸化物材料、炭素系材料、ならびに、酸化物材料と炭素系材料との混合物を含む。用いることができる酸化物材料は、SiO、TiO、MgOなどを含む。用いることができる炭素系材料は、カーボン、ならびに、BC、BC、SiCなどの炭化物を含む。
 本実施形態において、磁気記録層40の磁性結晶粒42は第2下地層34aの上に位置する。すなわち、第2下地層34aを構成する複数の独立した島状領域の上に磁性結晶粒42が形成される。一方、磁気記録層40の粒界部44は、第2下地層34aの空乏域に位置し、第1下地層32aの上に形成される。これは、粒界部44の材料と第2下地層34aの材料との界面エネルギーよりも、粒界部44の材料と第1下地層32a(第2下地層34aの空亡域に位置する)の材料との界面エネルギーの方が小さいためである。このようにして、下地層30の構造を制御することによって、磁気記録層40の構造を制御して、優れた特性を有する磁気記録層40を得ることができる。ここで、下地層30の構造の制御は、複数の独立した島状領域からなる第2下地層34aの形成によって達成される。また、制御される磁気記録層40の構造は、磁性結晶粒および粒界部の配置、磁性結晶粒の粒径、および粒界部の幅を含む。
 あるいはまた、磁気記録層40は、複数の磁性材料層を含む積層構造を有してもよい。この場合、磁性材料層のそれぞれの間に交換結合制御層を配置して、交換結合複合(Exchange Coupled Composite, ECC)構造を形成して、1つの磁気記録層として機能させることができる。本発明においては、複数の磁性材料層のうち、少なくとも、下地層30に接触する磁性材料層は、グラニュラー構造を有する。2つ以上のグラニュラー構造を有する磁性材料層を用いてECC構造を形成してもよい。2つ以上のグラニュラー構造を有する磁性材料層を用いる場合、磁性結晶粒42および粒界部44のそれぞれを非磁性基体10の主平面に垂直な方向で重なるように配置することが好ましい。上記の配置をとることによって、それぞれの磁性材料層の磁性結晶粒42が交換結合制御層を介して結合し、非磁性の粒界部44によって隔てられ、複数の磁性材料層を貫通する独立した磁化反転単位が形成される。
 磁気記録層40の膜厚は、垂直磁気記録媒体に求められる記録・再生特性を考慮して決定される。一般的に、磁気記録層40は、5~50nmの範囲内(両端を含む)の膜厚を有する。
 保護層50は、カーボンを主体とする材料などの当該技術において知られている任意の材料を用いて形成することができる。保護層は、単一層であってもよいし、積層構造を有してもよい。積層構造を有する保護層50は、たとえば、異なる性質を有する2種のカーボン材料の組み合わせ、金属とカーボン材料との組み合わせ、または酸化物とカーボン材料との組み合わせを用いて形成することができる。
 液体潤滑剤層60は、パーフルオロポリエーテル系潤滑剤などの当該技術において知られている任意の潤滑剤を用いて形成することができる。
 非磁性基体10の上に積層される各層は、磁気記録媒体の技術分野において知られている任意の技術を用いて形成することができる。軟磁性裏打ち層20、密着層、下地層30、磁気記録層40、および保護層50は、スパッタ法(たとえば、DCマグネトロンスパッタ法、RFスパッタ法)、真空蒸着法、CVD法のような技術を用いて形成することができる。また、液体潤滑剤層60は、ディップ法、スピンコート法のような塗布法を用いて形成することができる。また、L1形規則合金を含む磁気記録層40の形成には、一般的に基板の加熱を伴うスパッタ法(たとえば、DCマグネトロンスパッタ法、RFスパッタ法)が用いられる。ただし、各構成層の形成方法は、前述の例示の技術に限定されるものではない。
 本発明の第2の実施形態の磁気記録媒体は、少なくとも、非磁性基体、下地層、および前記下地層の上に設けられた磁気記録層とを備え、前記下地層は、(001)配向したNaCl構造を有し、かつMg、Ca、CoおよびNiからなる群から選択される少なくとも1つの元素の酸化物を含む第1下地層と、第1下地層の上にネット状に形成され、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、AlおよびBからなる群から選択される少なくとも1つの元素を含む第2下地層とからなり、前記磁気記録層は、磁性結晶粒と粒界部とからなるグラニュラー構造を有することを特徴とする。図2に示す例においては、本発明の第2の実施形態の磁気記録媒体は、非磁性基体10、軟磁性裏打ち層20、第1下地層32bと第2下地層34bとからなる下地層30、磁性結晶粒42と粒界部44とからなる磁気記録層40、保護層50、および液体潤滑剤層60を含む。ここで、軟磁性裏打ち層20、保護層50、および液体潤滑剤層60は、任意選択的に設けてもよい層である。
 本実施形態の非磁性基体10、軟磁性裏打ち層20、密着層、保護層50および液体潤滑剤層60は、第1の実施形態に記載のそれぞれの構成要素と同一である。
 本実施形態の下地層30は、第1下地層32bと第2下地層34bとの積層構造を有する。下地層30の膜厚は、下地層30に所望される耐久性、磁性結晶粒42に所望される結晶性、ならびに垂直磁気記録媒体に求められる記録・再生特性および生産性を考慮して決定される。好ましくは、下地層30は2~50nmの範囲内の膜厚を有する。
 第1下地層32bは、(001)配向したNaCl構造を有する。また、第1下地層32bを形成するための材料は、Mg、Ca、CoおよびNiからなる群から選択される少なくとも1つの元素の酸化物を含む。第1下地層32bの膜厚は、第1下地層32bに所望される耐久性、磁気記録層40の所望される結晶性、ならびに垂直磁気記録媒体に求められる記録・再生特性および生産性を考慮して決定される。好ましくは、第1下地層32bは2~50nmの範囲内の膜厚を有する。
 第2下地層34bは、第1下地層32bの上に形成され、ネット状領域で構成される。第2下地層34bを形成するための材料は、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、AlおよびBからなる群から選択される少なくとも1つの元素を含む。好ましくは、第2下地層34bを形成するための材料は、前述の元素の酸化物または窒化物を含む。より好ましくは、第2下地層34bを形成するための材料は、前述の元素の窒化物を含む。第2下地層34bを構成するネット状領域は0.1~3nmの平均幅を有する。ネット状領域は、3~10nmの平均直径を有する複数の空乏域を包囲する。第2下地層34bの平均膜厚は、表面粗さを考慮して決定される。ここで、第2下地層34bの平均膜厚とは、堆積した材料を、ネット状領域ではなく、被成膜面積全体に均一に分布させた場合の膜厚を意味する。好ましくは、第2下地層34bは0.1~2nmの範囲内の平均膜厚を有する。
 ネット状領域の形成においては、薄膜材料とその下の層との濡れ性が小さく、かつ真空に対する薄膜材料の表面エネルギーが小さいことが重要である。ここで、薄膜材料とその下の層との濡れ性が小さいことは、薄膜材料とその下の層の材料との間の界面エネルギーよりも、真空に対するその下の層の材料の表面エネルギーが小さいことを意味する。なぜなら、薄膜材料が、その下の層に対する接触面積を小さくすると同時に、真空に対する接触面積を大きくしようとするためである。前述の第1下地層32bの材料(Mg、Ca、CoおよびNiからなる群から選択される少なくとも1つの元素の酸化物)および第2下地層34bの材料(Cr、V、Ti、Sc、Mo、Nb、Zr、Y、AlおよびBからなる群から選択される少なくとも1つの元素を含む)はこの関係を満たすため、ネット状領域の形成が促進されると考えられる。
 本実施形態の磁気記録層40は、第2下地層34bの空乏域、すなわち第1下地層32bの露出した領域に磁性結晶粒42が形成され、および、ネット状領域である第2下地層34bの上に粒界部44が形成される点を除いて、第1の実施形態の磁気記録層40と同様である。上記の第1下地層32b、第2下地層34b、磁性結晶粒42、および粒界部44の位置関係は、粒界部44の材料と第1下地層32b(第2下地層34bの空乏域に位置する)の材料との界面エネルギーよりも、粒界部44の材料と第2下地層34bの材料との界面エネルギーの方が小さいためである。このようにして、下地層30の構造を制御することによって、磁気記録層40の構造を制御して、優れた特性を有する磁気記録層40を得ることができる。ここで、下地層30の構造の制御は、ネット状領域からなる第2下地層34bの形成により達成される。また、制御される磁気記録層40の構造は、磁性結晶粒および粒界部の配置、磁性結晶粒の粒径、および粒界部の幅を含む。
  [実施例1]
 本実施例においては、化学強化ガラス製非磁性基体10、CoZrNb軟磁性裏打ち層20、NiCrMo密着層、TiN第1下地層32aと複数の島状領域からなるMgO第2下地層34aとからなる下地層30、FePt規則合金の磁性結晶粒42とC非磁性部44とからなるグラニュラー構造を有するFePt-C磁気記録層40、C保護層50、および液体潤滑剤層60をこの順に有する、本発明の第1の実施形態の垂直磁気記録媒体を作製した。
 本実施例において、CoZrNb軟磁性裏打ち層20からC保護層50までの形成は、インライン式の成膜装置内で大気解放することなしに実施した。
 最初に表面が平滑な化学強化ガラス基体(HOYA社製N-10ガラス基体、内径Φ20mm、外径Φ65mm)を洗浄して、非磁性基体10を準備した。非磁性基体10をスパッタ装置内に配置し、Arガス雰囲気中、CoZrNbターゲットを用いるDCマグネトロンスパッタ法にて、膜厚40nmの非晶質CoZrNb軟磁性裏打ち層20を形成した。引き続いて、NiCrMoターゲットを用いるDCマグネトロンスパッタ法にて、膜厚5nmのNiCrMo密着層を形成した。
 次に、密着層を形成した積層体を200℃に加熱し、TiNターゲットを用いるDCマグネトロンスパッタ法にて、膜厚10nmのTiN第1下地層32aを形成した。この工程は、0.3Paの圧力のArガス雰囲気中、200WのDC電力を印加することにより実施した。
 次に、第1下地層32aを形成した積層体を200℃に加熱したまま、MgOターゲットを用いるRFスパッタ法にて、MgO第2下地層34aを形成した。この工程は、0.8Paの圧力のArガス雰囲気中、3秒間にわたって、200WのRF電力および500Vの基板バイアスを印加することにより実施した。同条件のMgO膜形成を別途行って測定した成膜速度は10nm/minであった。よって、本工程で形成されたMgO第2下地層34aは、0.5nmの平均膜厚を有した。
 次に、第2下地層34aを形成した積層体を200℃~400℃に加熱し、Fe50Pt50を基準として25体積%のCを含むFe50Pt50-Cターゲットを用いるDCマグネトロンスパッタ法にて、Fe50Pt50-C磁気記録層40を形成した。この工程は、1.5Paの圧力のArガス雰囲気中、2.0秒間にわたって、600WのDC電力および0Vの基板バイアスを印加することにより実施した。同条件のFe50Pt50-C膜形成を別途行って測定した成膜速度は7nm/秒であった。よって、本工程で形成されたFe50Pt50-C磁気記録層40は、14nmの平均膜厚を有した。ここで、平均膜厚とは、被成膜面全体に堆積した材料を均一に分布させた場合の膜厚を意味する。
 次に、磁気記録層40を形成した積層体に対して、カーボンターゲットを用いるスパッタ法により、3nmの膜厚を有するC保護層50を形成した。保護層50の形成終了後、得られた積層体を成膜装置から取り出した。
 最後に、得られた積層体に対して、ディップ法を用いて、パーフルオロポリエーテルからなり、2nmの膜厚を有する液体潤滑剤層60を形成して、垂直磁気記録媒体を得た。
  [実施例2]
 本実施例においては、化学強化ガラス製非磁性基体10、CoZrNb軟磁性裏打ち層20、NiCrMo密着層、MgO第1下地層32bとネット状領域からなるTiN第2下地層34bとからなる下地層30、FePt規則合金の磁性結晶粒42とC非磁性部44とからなるグラニュラー構造を有するFePt-C磁気記録層40、C保護層50、および液体潤滑剤層60をこの順に有する、本発明の第2の実施形態の垂直磁気記録媒体を作製した。
 実施例1と同様にインライン式の成膜装置を用いて、大気解放することなしに、CoZrNb軟磁性裏打ち層20からC保護層50までの形成を実施した。最初に、実施例1と同様の手順により、CoZrNb軟磁性裏打ち層20およびNiCrMo密着層を形成した。
 次に、密着層を形成した積層体を200℃に加熱し、MgOターゲットを用いるRFスパッタ法にて、膜厚8nmのMgO第1下地層32bを形成した。この工程は、0.2Paの圧力のArガス雰囲気中、330WのRF電力および500Vの基板バイアスを印加することにより実施した。
 次に、第1下地層32bを形成した積層体を200℃に加熱したまま、TiNターゲットを用いるDCマグネトロンスパッタ法にて、TiN第2下地層34bを形成した。この工程は、0.4Paの圧力のArガス雰囲気中、0.5秒間にわたって、250WのDC電力を印加することにより実施した。同条件のTiN膜形成を別途行って測定した成膜速度は40nm/minであった。よって、本工程で形成されたTiN第2下地層34bは、0.3nmの平均膜厚を有した。
 以後、実施例1と同様の手順により、Fe50Pt50-C磁気記録層40、C保護層50、および液体潤滑剤層60を形成して、垂直磁気記録媒体を得た。
  [比較例1]
 本比較例においては、下地層が単一のTiN層で構成される、本発明の範囲外の垂直磁気記録媒体を作製した。本比較例の垂直磁気記録媒体の下地層以外の構成層は、実施例1の垂直磁気記録媒体と同様である。
 実施例1と同様にインライン式の成膜装置を用いて、大気解放することなしに、CoZrNb軟磁性裏打ち層からC保護層までの形成を実施した。最初に、実施例1と同様の手順により、CoZrNb軟磁性裏打ち層およびNiCrMo密着層を形成した。
 次に、密着層を形成した積層体を200℃に加熱し、TiNターゲットを用いるDCマグネトロンスパッタ法にて、膜厚10nmのTiN下地層を形成した。この工程は、0.3Paの圧力のArガス雰囲気中、200WのDC電力を印加することにより実施した。
 以後、実施例1と同様の手順により、Fe50Pt50-C磁気記録層、C保護層、および液体潤滑剤層を形成して、垂直磁気記録媒体を得た。
  [比較例2]
 本比較例においては、下地層が単一のMgO層で構成される、本発明の範囲外の垂直磁気記録媒体を作製した。本比較例の垂直磁気記録媒体の下地層以外の構成層は、実施例1の垂直磁気記録媒体と同様である。
 実施例1と同様にインライン式の成膜装置を用いて、大気解放することなしに、CoZrNb軟磁性裏打ち層からC保護層までの形成を実施した。最初に、実施例1と同様の手順により、CoZrNb軟磁性裏打ち層およびNiCrMo密着層を形成した。
 次に、密着層を形成した積層体を200℃に加熱し、MgOターゲットを用いるRFスパッタ法にて、膜厚8nmのMgO下地層を形成した。この工程は、0.2Paの圧力のArガス雰囲気中、330WのRF電力および500Vの基板バイアスを印加することにより実施した。
 以後、実施例1と同様の手順により、Fe50Pt50-C磁気記録層、C保護層、および液体潤滑剤層を形成して、垂直磁気記録媒体を得た。
  [評価]
(A) 下地層の組成分析
 実施例1および2において、下地層を形成し、磁気記録層を形成せずに、C保護層の形成を終了したサンプルを抜き取り、下地層の組成分析を行った。組成分析は、イオンミリング法によって、10nm以下の厚さの部分を含むまでガラス基板からサンプルを削り取った薄板を切り出し、切り出した薄板を、電界放出型透過電子顕微鏡(FE-TEM)に付属するエネルギー分散型X線分析装置(EDX)により、100万倍の倍率において、Mg、O、TiおよびNの元素マッピングを得ることによって行った。実施例1のサンプルのMgの元素マッピングを図3に示した。また、実施例2のサンプルのTiの元素マッピングを図4に示した。
 図3に示す実施例1のサンプルのMgの元素マッピングは、Mg元素を含む複数の島状領域(図3中のグレーの部分)と、Mg元素を含まない島間空乏域(図3中の白色の部分)とで構成されていた。また、島状領域のそれぞれは、島間空乏域によって隣接する島状領域から独立していた。さらに、Oの元素マッピングから、Oの分布もMgの元素マッピングと一致することが分かった。このことから、複数のMgOの島状領域からなる第2下地層34aが、第1下地層32aの表面に分散していることが確認された。また、複数の島状領域のピッチは、平均6nmであった。ここで、島状領域のピッチとは、隣接する2つの島状領域の重心位置の間の距離を意味する。
 図4に示す実施例2のサンプルのTiの元素マッピングは、Ti元素を含むネット状領域(図4中のグレーの部分)と、Ti元素を含まない複数の空乏域(図4中の白色の部分)とで構成されていた。また、空乏域のそれぞれは、ネット状領域によって隣接する空乏域から独立していた。さらに、Nの元素マッピングから、Nの分布もTiの元素マッピングと一致することが分かった。このことから、TiNのネット状領域からなる第2下地層34bが、第1下地層32bの表面に形成されていることが確認された。また、複数の空乏域のピッチは、平均6.5nmであった。ここで、空乏域のピッチとは、隣接する2つの空乏域の重心位置の間の距離を意味する。
(B) 磁気記録層の微細構造分析
 実施例1および2、ならびに比較例1および2において、C保護層の形成を終了したサンプルを抜き取り、磁気記録層の微細構造分析を行った。微細構造分析は、イオンミリング法によって、10nm以下の厚さの部分を含むまでガラス基板からサンプルを削り取った薄板を切り出し、切り出した薄板を電界放出型透過電子顕微鏡(FE-TEM)によって分析することにより行った。
 図5は、積層体の温度を400℃に加熱して磁気記録層を形成した実施例1のサンプルの磁気記録層のTEM写真の明視野像を示す。図5においては、磁性結晶粒42(図5中のグレーの部分)および粒界部44(図5中の白色の部分)からなるグラニュラー構造が明瞭に観察された。加熱温度を他の条件として磁気記録層の形成を行った実施例1および2のサンプルの全てにおいて、図5と同様の明瞭なグラニュラー構造が観察された。
 図6は、積層体の温度を400℃に加熱して磁気記録層を形成した比較例1のサンプルの磁気記録層のTEM写真の明視野像を示す。図6においては、磁性結晶粒の境界がまだらに存在した。しかしながら、いずれの境界も明瞭ではない。加熱温度を他の条件として磁気記録層の形成を行った比較例1のサンプルの全てにおいて、図6と同様に、まだらに存在する磁性結晶粒の境界が明瞭ではないことが観察された。このことから、比較例1において、磁性結晶粒の磁気的な分離が実現されていないことが分かった。
 図7は、積層体の温度を300℃に加熱して磁気記録層を形成した比較例2のサンプルの磁気記録層のTEM写真の明視野像を示す。図7においては、磁性結晶粒の境界がまだらに存在した。しかしながら、多数の境界が明瞭でない部分が観察された。図8は、積層体の温度を400℃に加熱して磁気記録層を形成した比較例2のサンプルの磁気記録層のTEM写真の明視野像を示す。図8においては、磁性結晶粒の境界が明瞭に存在した。しかしながら、隣接する磁性結晶粒同士が接触して、巨大な磁性粒子となっていることが観察された。以上のことから、比較例2においては、300℃以下で磁気記録層の形成を行った場合に、磁性結晶粒の磁気的分離ができないこと、ならびに400℃で磁気記録層の形成を行った場合に、巨大な磁性粒子が形成され、記録密度の向上ができないことが示唆された。
(C) 磁気記録層の磁性結晶粒の粒径および粒界幅の測定
 上記(B)に記載と同様の手順により、70万倍の倍率のFE-TEM暗視野像を測定した。得られた暗視野像を画像解析装置(ニレコ製、Luzex-FS)によって解析して、FePt磁性結晶粒の粒径および粒界幅を測定した。結果を第1表に示す。
 実施例1では、磁気記録層形成時の加熱温度を200℃から400℃まで変化させても、FePt磁性結晶粒は、5.2~5.5nmの範囲内で安定した粒径、および0.7~0.8nmの範囲内で安定した粒界幅を有した。この結果、上記(A)で詳述した、実施例1のMgO第2下地層34aが複数の島状領域で構成され、そのピッチが平均6nmであることと一致している。このことから、磁気記録層のFePt磁性結晶粒42は、MgO第2下地層34aが複数の島状領域の表面上に選択的に形成され、MgO第2下地層34aの空乏域(すなわち、TiN第1下地層32aの露出表面の上)に粒界部44が選択的に形成されたと考えられる。
 実施例2では、磁気記録層形成時の加熱温度を200℃から400℃まで変化させても、FePt磁性結晶粒は、5.7~5.9nmの範囲内で安定した粒径、および0.8~1.0nmの範囲内で安定した粒界幅を有した。この結果、上記(A)で詳述した、実施例2のTiN第2下地層34bがネット状領域で構成され、その空乏域のピッチが平均6.5nmであることと一致している。このことから、磁気記録層のFePt磁性結晶粒42は、TiN第2下地層34bの空乏域(すなわち、MgO第1下地層32bの露出表面の上)に選択的に形成され、ネット状領域からなるTiN第2下地層34bの表面上に粒界部44が選択的に形成されたと考えられる。
 一方、比較例1においては、磁性結晶粒が分離されておらず、粒径および粒界幅の測定ができなかった。このことから、TiNのみで形成された下地層表面においては、磁性結晶粒と粒界部との分離が円滑に進行せず、グラニュラー構造が得られなかったと考えられる。
 さらに、比較例2においては、磁気記録層形成時の加熱温度が300℃以下の範囲において、磁性結晶粒の粒径は小さかったが、粒界幅もまた小さく、部分的に磁性結晶粒が磁気的に分離されていないことが分かった。また、磁気記録層形成時の加熱温度を400℃に上昇させた場合、磁性結晶粒の分離が進行した。しかしながら、同時に、隣接する磁性結晶粒の間の結合も進行し、大きな粒径を有する巨大な磁性粒子が得られた。これらのことから、MgOのみで形成された下地層表面においては、適切な粒径を有する磁性結晶粒と適切な粒界幅を有する粒界部とが明瞭に分離された、望ましいグラニュラー構造が得られないことが分かった。
(D) 磁気記録層の結晶構造解析
 実施例1および2、ならびに比較例1および2において、C保護層の形成まで終了したサンプルを抜き取り、磁気記録層の結晶構造解析を行った。結晶構造解析は、X線解析装置を用いて行い、この結果に基づいてL1規則度Sを分析した。L1規則度Sは、FePt結晶の(001)面および(002)面の理論回折強度を[I(001)/I(002)]Tとし、上記サンプルのX線解析装置により実測した回折強度を[I(001)/I(002)]Mとした時に、次式の比から求めた。
  S=[I(001)/I(002)]M/[I(001)/I(002)]T
 その結果、実施例1および2の垂直磁気記録媒体は、磁気記録層形成時の温度を200~400℃の範囲内で変化させても、70%以上の規則度Sを持っていた。これから、実施例1および2の垂直磁気記録媒体の磁性結晶粒は、規則度の高いL1形規則合金であることを確認した。
(E) 垂直磁気記録媒体のSNR特性
 市販のスピンスタンドを用いて、記録再生信号の信号雑音比(SNR、Signal Noise Ratio)を測定した。得られた垂直磁気記録媒体を5400rpmの回転数で回転させ、半径R=19mmの部分にTMRヘッドを用いて周波数360MHzの信号を記録し、その信号を再生することによって、SNRを測定した。得られた信号出力およびノイズ出力から、以下の式を用いてSNR(dB)を求めた。
   SNR(dB)=10×log(信号出力/ノイズ出力)
結果を第1表に示す。
 実施例1および2の垂直磁気記録媒体は、磁気記録層形成時の温度を200~400℃の範囲内で変化させても10dB以上のSNRが得られ、良好な記録再生特性を有することが分かった。この結果は、本発明の第1および第2の実施形態の垂直磁気記録媒体において、磁性結晶粒42および粒界部44が良好に分離されたグラニュラー構造を有する磁気記録層40が得られたためと考えられる。
 一方、比較例1の垂直磁気記録媒体は、いずれの磁気記録層形成時の温度においても、1dB未満のSNRを示した。この結果は、磁性結晶粒と粒界部との分離が進行せず、グラニュラー構造の磁気記録層が得られなかったためと考えられる。
 さらに、比較例2の垂直磁気記録媒体は、磁気記録層形成時の温度が200℃の場合に、1dB未満のSNRを示した。この結果は、磁性結晶粒と粒界部との分離が進行せず、グラニュラー構造の磁気記録層が得られなかったためと考えられる。また、磁気記録層形成時の温度が250℃~300℃の場合に、比較例2の垂直磁気記録媒体は10dB未満のSNRを示した。この結果は、部分的に磁性結晶粒の分離がなされていないためと考えられる。さらに、磁気記録層形成時の温度が400℃の場合にも、比較例2の垂直磁気記録媒体は10dB未満のSNRを示した。この結果は、粒界部による磁性結晶粒の分離はなされているものの、磁性結晶粒が巨大化してしまったためと考えられる。
Figure JPOXMLDOC01-appb-T000001
 以上のように、本発明は、第1の実施形態に係る複数の島状領域を有する第2下地層34aを含む下地層、または、第2の実施形態に係るネット状領域を有する第2下地層34bを含む下地層を用いることによって、磁気記録層形成時の温度が200℃という比較的低温であってもグラニュラー構造の形成を可能とし、同時に磁気記録層形成時の温度を400℃に上昇させてもグラニュラー構造中の磁性結晶粒の巨大化を防止することを可能とした。その結果、本発明は、良好な信号特性を有する垂直磁気記録媒体を提供することができる。
  10  非磁性基体
  20  軟磁性裏打ち層
  30  下地層
    32a、32b 第1下地層
    34a、34b 第2下地層
  40  磁気記録層
    42 磁性結晶粒
    44 粒界部
  50  保護膜
  60  液体潤滑剤層

Claims (10)

  1.  非磁性基体と、下地層と、前記下地層上の磁気記録層とを少なくとも備え、
     前記下地層は:
     Cr、V、Ti、Sc、Mo、Nb、Zr、Y、AlおよびBからなる群から選択された少なくとも1つの元素の窒化物を含み、(001)配向したNaCl構造を有する第1下地層と、
     Mg、Ca、CoおよびNiからなる群から選択された少なくとも1つの元素を含み、第1下地層の上に形成された複数の島状領域からなる第2下地層と
    からなり、
     前記磁気記録層は、磁性結晶粒および粒界部からなるグラニュラー構造の層を含む
    ことを特徴とする垂直磁気記録媒体。
  2.  前記磁性結晶粒が、L1系規則合金を含むことを特徴とする請求項1に記載の垂直磁気記録媒体。
  3.  前記磁性結晶粒がFePt合金またはCoPt合金を含むことを特徴とする請求項1に記載の垂直磁気記録媒体。
  4.  前記粒界部が、カーボンおよび炭化物からなる群から選択される材料を含むことを特徴とする請求項1に記載の垂直磁気記録媒体。
  5.  前記磁性結晶粒が、前記非磁性基体の主平面に垂直な磁化容易軸を有することを特徴とする請求項1に記載の垂直磁気記録媒体。
  6.  非磁性基体と、下地層と、前記下地層上の磁気記録層とを少なくとも備え、
     前記下地層は:
     Mg、Ca、CoおよびNiからなる群から選択された少なくとも1つの元素の酸化物を含み、(001)配向したNaCl構造を有する第1下地層と、
     Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Al、BおよびCからなる群から選択された少なくとも1つの元素を含み、第1下地層の上に形成されたネット状領域からなる第2下地層と
    からなり、
     前記磁気記録層は、磁性結晶粒および粒界部からなるグラニュラー構造の層を含む
    ことを特徴とする垂直磁気記録媒体。
  7.  前記磁性結晶粒が、L1系規則合金を含むことを特徴とする請求項6に記載の垂直磁気記録媒体。
  8.  前記磁性結晶粒がFePt合金またはCoPt合金を含むことを特徴とする請求項6に記載の垂直磁気記録媒体。
  9.  前記粒界部が、カーボンおよび炭化物からなる群から選択される材料を含むことを特徴とする請求項6に記載の垂直磁気記録媒体。
  10.  前記磁性結晶粒が、前記非磁性基体の主平面に垂直な磁化容易軸を有することを特徴とする請求項6に記載の垂直磁気記録媒体。
PCT/JP2013/004953 2012-10-10 2013-08-21 磁気記録媒体 WO2014057600A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380051735.0A CN104685566B (zh) 2012-10-10 2013-08-21 磁记录介质
SG11201502573SA SG11201502573SA (en) 2012-10-10 2013-08-21 Magnetic recording medium
JP2014540722A JP6112117B2 (ja) 2012-10-10 2013-08-21 磁気記録媒体
US14/678,925 US9911445B2 (en) 2012-10-10 2015-04-03 Magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012225308 2012-10-10
JP2012-225308 2012-10-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/678,925 Continuation US9911445B2 (en) 2012-10-10 2015-04-03 Magnetic recording medium

Publications (1)

Publication Number Publication Date
WO2014057600A1 true WO2014057600A1 (ja) 2014-04-17

Family

ID=50477084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004953 WO2014057600A1 (ja) 2012-10-10 2013-08-21 磁気記録媒体

Country Status (6)

Country Link
US (1) US9911445B2 (ja)
JP (1) JP6112117B2 (ja)
CN (1) CN104685566B (ja)
MY (1) MY176000A (ja)
SG (1) SG11201502573SA (ja)
WO (1) WO2014057600A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150213823A1 (en) * 2012-10-10 2015-07-30 Fuji Electric Co., Ltd. Magnetic recording medium

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6317896B2 (ja) * 2013-07-26 2018-04-25 昭和電工株式会社 磁気記録媒体および磁気記憶装置
US9799362B1 (en) * 2015-05-29 2017-10-24 Seagate Technology Llc Three dimensional data storage medium with a tuned recording layer
MY178372A (en) * 2015-09-17 2020-10-09 Fuji Electric Co Ltd Perpendicular magnetic recording medium
JP2017224371A (ja) * 2016-06-15 2017-12-21 昭和電工株式会社 磁気記録媒体及び磁気記憶装置
JP6767256B2 (ja) * 2016-12-21 2020-10-14 昭和電工株式会社 磁気記録媒体の製造方法
SG11201901734YA (en) * 2017-03-10 2019-04-29 Fuji Electric Co Ltd Magnetic recording medium
CN107134341B (zh) * 2017-04-21 2018-11-27 东北大学 一种垂直取向强磁性介质薄膜及其制备方法
JP7116782B2 (ja) * 2018-03-28 2022-08-10 Jx金属株式会社 垂直磁気記録媒体
JP7244721B2 (ja) * 2019-04-09 2023-03-23 株式会社レゾナック 磁気記録媒体および磁気記憶装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000322726A (ja) * 1999-05-12 2000-11-24 Fuji Electric Co Ltd 磁気記録媒体,その製造方法及び磁気記録装置
JP2004213869A (ja) * 2002-12-20 2004-07-29 Fuji Electric Device Technology Co Ltd 垂直磁気記録媒体およびその製造方法
JP2012181902A (ja) * 2011-03-02 2012-09-20 Hitachi Ltd 磁気記録媒体
WO2012157600A1 (ja) * 2011-05-17 2012-11-22 昭和電工株式会社 磁気記録媒体及びその製造方法、並びに磁気記録再生装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08147665A (ja) 1994-11-11 1996-06-07 Hitachi Ltd 磁気記録媒体及びこれを用いた磁気記憶装置
JP3434476B2 (ja) 1999-09-29 2003-08-11 秋田県 高密度情報記録媒体及びその媒体の製造方法
KR100470151B1 (ko) 2002-10-29 2005-02-05 한국과학기술원 FePtC 박막을 이용한 고밀도 자기기록매체 및 그제조방법
SG121841A1 (en) 2002-12-20 2006-05-26 Fuji Elec Device Tech Co Ltd Perpendicular magnetic recording medium and a method for manufacturing the same
AU2003211604A1 (en) 2003-02-20 2004-09-09 Fujitsu Limited Vertical magnetic recording medium
JP5137087B2 (ja) 2006-09-08 2013-02-06 エイジェンシー フォア サイエンス テクノロジー アンド リサーチ L1o規則垂直記録媒体の製造方法
US8021769B2 (en) * 2007-05-22 2011-09-20 Hitachi Global Storage Technologies Netherlands B.V. Patterned perpendicular magnetic recording medium with exchange coupled recording layer structure and magnetic recording system using the medium
JP4621899B2 (ja) 2007-09-26 2011-01-26 独立行政法人物質・材料研究機構 磁気媒体
US7829208B2 (en) * 2007-11-29 2010-11-09 Seagate Technology Llc Chromium nitride layer for magnetic recording medium
CN105027202B (zh) * 2012-09-27 2018-04-13 希捷科技有限公司 包含TiN‑X中间层的磁堆
WO2014057600A1 (ja) * 2012-10-10 2014-04-17 富士電機株式会社 磁気記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000322726A (ja) * 1999-05-12 2000-11-24 Fuji Electric Co Ltd 磁気記録媒体,その製造方法及び磁気記録装置
JP2004213869A (ja) * 2002-12-20 2004-07-29 Fuji Electric Device Technology Co Ltd 垂直磁気記録媒体およびその製造方法
JP2012181902A (ja) * 2011-03-02 2012-09-20 Hitachi Ltd 磁気記録媒体
WO2012157600A1 (ja) * 2011-05-17 2012-11-22 昭和電工株式会社 磁気記録媒体及びその製造方法、並びに磁気記録再生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150213823A1 (en) * 2012-10-10 2015-07-30 Fuji Electric Co., Ltd. Magnetic recording medium
US9911445B2 (en) * 2012-10-10 2018-03-06 Fuji Electric Co., Ltd. Magnetic recording medium

Also Published As

Publication number Publication date
JP6112117B2 (ja) 2017-04-12
MY176000A (en) 2020-07-21
SG11201502573SA (en) 2015-05-28
CN104685566A (zh) 2015-06-03
JPWO2014057600A1 (ja) 2016-08-25
CN104685566B (zh) 2017-11-28
US9911445B2 (en) 2018-03-06
US20150213823A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6112117B2 (ja) 磁気記録媒体
JP5061307B2 (ja) 磁気記録媒体および磁気記録再生装置
US20110097604A1 (en) Perpendicular magnetic recording medium
JP2005190517A (ja) 垂直磁気記録媒体及び磁気記憶装置
WO2010064724A1 (ja) 磁気ディスク及びその製造方法
US20100159285A1 (en) Hybrid grain boundary additives in granular media
EP1727134A1 (en) Perpendicular magnetic recording disk with improved recording layer having high oxygen content
JP2007035139A (ja) 垂直磁気記録媒体及び磁気記録再生装置
JP5575172B2 (ja) 磁気記録媒体,磁気記録再生装置,および磁気記録媒体の製造方法
JP4745421B2 (ja) 垂直磁気記録媒体、及び磁気記録再生装置
KR20070067600A (ko) 내식성을 개선하기 위한 초박형 핵형성 막을 가진 수직자기 기록 디스크 및 이 디스크의 제조 방법
JP2006313584A (ja) 磁気記録媒体の製造方法
WO2010038448A1 (ja) 垂直磁気記録媒体
TW201301276A (zh) 包含磁零層的堆疊
US8709619B2 (en) Low-coupling oxide media (LCOM)
JP5195868B2 (ja) 垂直磁気記録媒体の製造方法
JP5782819B2 (ja) 垂直磁気記録媒体
JP5325945B2 (ja) 垂直磁気記録媒体及び磁気記録再生装置
JP6787433B2 (ja) 磁気記録媒体
JP5126674B2 (ja) 垂直磁気記録媒体
JP6406462B2 (ja) 磁気記録媒体
JP4993296B2 (ja) 垂直磁気記録媒体
JP6451011B2 (ja) 垂直磁気記録媒体及び磁気記録再生装置
JP4852180B2 (ja) 垂直磁気記録媒体の製造方法
JP2010086611A (ja) 垂直磁気記録媒体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844766

Country of ref document: EP

Kind code of ref document: A1