JP6787433B2 - 磁気記録媒体 - Google Patents

磁気記録媒体 Download PDF

Info

Publication number
JP6787433B2
JP6787433B2 JP2019073329A JP2019073329A JP6787433B2 JP 6787433 B2 JP6787433 B2 JP 6787433B2 JP 2019073329 A JP2019073329 A JP 2019073329A JP 2019073329 A JP2019073329 A JP 2019073329A JP 6787433 B2 JP6787433 B2 JP 6787433B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic recording
recording medium
fept
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019073329A
Other languages
English (en)
Other versions
JP2019106231A (ja
Inventor
友博 森谷
友博 森谷
中田 仁志
仁志 中田
島津 武仁
武仁 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JP2019106231A publication Critical patent/JP2019106231A/ja
Application granted granted Critical
Publication of JP6787433B2 publication Critical patent/JP6787433B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7377Physical structure of underlayer, e.g. texture
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/653Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Fe or Ni
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/674Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having differing macroscopic or microscopic structures, e.g. differing crystalline lattices, varying atomic structures or differing roughnesses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7379Seed layer, e.g. at least one non-magnetic layer is specifically adapted as a seed or seeding layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、磁気記録媒体に関する。具体的には、ハードディスク磁気記録装置(HDD)に用いられる磁気記録媒体に関する。
磁気記録の高密度化を実現する技術として、垂直磁気記録方式が採用されている。垂直磁気記録媒体は、非磁性基板と、硬質磁性材料から形成される磁気記録層を少なくとも含む。垂直磁気記録媒体は、任意選択的に、軟磁性材料から形成されて、磁気ヘッドが発生する磁束を磁気記録層に集中させる役割を担う軟磁性裏打ち層、磁気記録層の硬質磁性材料を目的の方向に配向させるための下地層、磁気記録層の表面を保護する保護層などをさらに含んでもよい。
良好な磁気特性を得ることを目的として、グラニュラー磁性材料を用いて垂直磁気記録媒体の磁気記録層を形成することが提案されている。グラニュラー磁性材料は、磁性結晶粒と、磁性結晶粒の周囲を取り囲むように偏析した非磁性結晶粒界とを含む。グラニュラー磁性材料中の個々の磁性結晶粒は、非磁性結晶粒界によって磁気的に分離されている。
近年、垂直磁気記録媒体の記録密度のさらなる向上を目的として、グラニュラー磁性材料中の磁性結晶粒の粒径を縮小させる必要に迫られている。一方で、磁性結晶粒の粒径の縮小は、記録された磁化(信号)の熱安定性を低下させる。そのため、磁性結晶粒の粒径の縮小による熱安定性の低下を補償するために、グラニュラー磁性材料中の磁性結晶粒を、より高い結晶磁気異方性を有する材料を用いて形成することが求められている。求められる高い結晶磁気異方性を有する材料として、種々のL10型規則合金を提案されている。代表的なL10型規則合金は、FePt、CoPt、FePd、CoPdなどを含む。
L10型規則合金を含むグラニュラー構造を有する磁気記録層の磁性結晶粒の分離を、磁気記録層の下に形成される層によって向上させる試みがなされてきている。たとえば、米国特許出願公開第2013/0170075号明細書(特許文献1)は、MgO、SiNまたはTiCを含む下地層の上に、FePtを含む不連続な島状構造を有するシード層を形成し、その上にL10型FePtX磁性結晶粒と非磁性結晶粒界とを含むグラニュラー構造を有する磁気記録層を形成することを提案している。この提案では、シード層を構成するFePt粒子を起点として磁気記録層のL10型FePtX磁性結晶粒が形成され、下地層が露出している区域に磁気記録層の非磁性結晶粒界が形成されている。
また、特開2013−232269号公報(特許文献2)は、マイクロ波アシスト記録用磁気記録媒体における記録ビットの寸法の縮小を目的として、FePtおよびSiO2からなる記録層と、FePtおよびCからなる共鳴層とからなる磁気記録層を有する磁気記録媒体を提案している。この提案においては、FePtおよびSiO2からなる記録層は、SiO2がFePtの結晶粒界に偏析することなく、結晶粒が連続的につながった構造を有している。
さらに、特開2014−081981号公報(特許文献3)は、磁性人工格子膜を最上層とする積層構造を有する磁気記録層を含むマイクロ波アシスト記録用磁気記録媒体を提案している。この提案では、磁性人工格子膜を最上層とし、その下にグラニュラー構造を有する磁性層を配置することによって、所望される異方性磁界(Hk)の分布を有する磁気記録層が得られると報告されている。1つの構成例として、3層構造の磁気記録層の最下層が、L11型CoPt基規則合金の磁性結晶粒と、(Ti0.8Si0.2)O2の非磁性結晶粒界とを含むグラニュラー構造を有する例(サンプルC5)が開示されている。
一方、L10型規則合金に垂直磁気記録に適した配向を付与するために、MgOなどのシード層が一般的に用いられる。しかしながら、MgOシード層の上に、L10型規則合金からなる磁性結晶粒と酸化物からなる非磁性結晶粒界とを含むグラニュラー構造を有する磁気記録層を形成するのが難しいことが知られている。この問題点に対して、特開2015−005326号公報(特許文献4)は、磁気記録層中の非磁性結晶粒界の含有量を、磁気記録層の膜厚の増大につれて減少させることを提案している。
米国特許出願公開第2013/0170075号明細書 特開2013−232269号公報 特開2014−081981号公報 特開2015−005326号公報
R. F. Penoyer、「Automatic Torque Balance for Magnetic Anisotropy Measurements」、The Review of Scientific Instruments、1959年8月、第30巻第8号、pp.711−714 近角聰信、「強磁性体の物理(下)−磁気特性と応用−」、第1版、裳華房、1984年3月、10−21頁
依然として、磁性結晶粒が良好に分離されているグラニュラー構造を有する磁性層または磁気記録層を含む磁気記録媒体に対する要求が存在する。
本発明の1つの構成例は、基板と、シード層と、磁気記録層とを含み、前記磁気記録層は、規則合金からなる連続膜である第1磁性層と、規則合金からなる磁性結晶粒と非磁性結晶粒界とからなるグラニュラー構造を有する第2磁性層とを有し、前記シード層は、NaCl型化合物、スピネル型化合物、およびペロブスカイト型化合物からなる群から選択される材料から磁気記録媒体である。ここで、NaCl型化合物は、MgO、ZnO、CaO、SrO、TiN、CrNおよびZrNからなる群から選択されてもよい。スピネル型化合物は、MgAl24、FeAl24、ZnAl24、MgAl24、FeCr24およびMgCr24からなる群から選択されてもよい。ペロブスカイト型化合物は、一般式ABO3(式中、AはBa、Pb、Sr、Mg、およびCaからなる群から選択され、BはTi、Zr、Hf、およびSnからなる群から選択される)を有してもよい。また、第2磁性層の非磁性結晶粒界は、酸化物を含んでもよい。酸化物は、TiO2、SiO2、およびAl23からなる群から選択することができる。
さらに、第1磁性層の規則合金および第2磁性層の規則合金は、それぞれ独立的に、FeおよびCoからなる群から選択される少なくとも一種の元素と、PtおよびPdからなる群から選択される少なくとも一種の元素との合金であってもよい。第1磁性層の規則合金および第2磁性層の規則合金のそれぞれは、Ru、Rh、Ir、Ni、Mn、Cu、Au、およびAgからなる群から選択される少なくとも1種の元素をさらに含んでもよい。
前述の構成を採用することにより、磁性結晶粒が良好に分離されているグラニュラー構造を有する磁性層を含む磁気記録層を有する磁気記録媒体を提供することができる。前述の構成の磁気記録層は、規則合金−Cグラニュラー構造層の上に規則合金−酸化物グラニュラー構造層を形成した従来型の磁気記録層よりも大きな面直方向の保磁力を有する。
本発明の1つの構成例の磁気記録媒体の概略断面図である。 磁気記録層中の磁性結晶粒の分離状態を示す図であり、(a)は実施例1の磁気記録層のSEM写真であり、(b)は実施例2の磁気記録層のSEM写真であり、(c)は実施例3の磁気記録層のSEM写真であり、(d)は比較例1の磁気記録層のTEM写真であり、(e)は比較例3の磁気記録層のTEM写真である。
本発明の1つの構成例の磁気記録媒体は、基板と、シード層と、磁気記録層とを含む。磁気記録層は、規則合金からなる連続膜である第1磁性層と、規則合金からなる磁性結晶粒と非磁性結晶粒界とからなるグラニュラー構造を有する第2磁性層とを有する。シード層は、NaCl型化合物、スピネル型化合物、およびペロブスカイト型化合物からなる群から選択される材料からなる。また、本構成例の磁気記録媒体は、基板とシード層との間、または基板と下地層との間に、密着層、軟磁性裏打ち層、および/またはヒートシンク層のような当該技術において知られている層をさらに含んでもよい。加えて、本構成例の磁気記録媒体は、磁気記録層の上に、保護層および/または液体潤滑剤層のような当該技術において知られている層をさらに含んでもよい。図1に、基板10、下地層20、シード層30、ならびに、第1磁性層42と第2磁性層44とからなる磁気記録層40を含む磁気記録媒体の1つの構成例を示す。
基板10は、表面が平滑である様々な基板であってもよい。たとえば、磁気記録媒体に一般的に用いられる材料を用いて、基板10を形成することができる。用いることができる材料は、NiPメッキを施したAl合金、MgO単結晶、MgAl24、SrTiO3、強化ガラス、結晶化ガラス等を含む。
任意選択的に設けてもよい密着層(不図示)は、密着層の上に形成される層と密着層の下に形成される層との密着性を高めるために用いられる。密着層の下に形成される層としては基板10を含む。密着層を形成するための材料はNi、W、Ta、Cr、Ruなどの金属、前述の金属を含む合金を含む。密着層は、単一の層であってもよいし、複数の層の積層構造を有してもよい。本構成例において好ましい密着層は、CrTiから構成される。本明細書において、「スパッタ法」という記載は、DCマグネトロンスパッタ法、RFマグネトロンスパッタ法など当該技術において知られている任意の技術を含む。
任意選択的に設けてもよい軟磁性裏打ち層(不図示)は、磁気ヘッドからの磁束を制御して、磁気記録媒体の記録・再生特性を向上させる。軟磁性裏打ち層を形成するための材料は、NiFe合金、センダスト(FeSiAl)合金、CoFe合金などの結晶質材料、FeTaC,CoFeNi,CoNiPなどの微結晶質材料、CoZrNb、CoTaZrなどのCo合金を含む非晶質材料を含む。軟磁性裏打ち層の膜厚の最適値は、磁気記録に用いる磁気ヘッドの構造および特性に依存する。他の層と連続成膜で軟磁性裏打ち層を形成する場合、生産性との兼ね合いから、軟磁性裏打ち層が10nm〜500nmの範囲内(両端を含む)の膜厚を有することが好ましい。軟磁性裏打ち層は、スパッタ法、真空蒸着法などの当該技術において知られている任意の方法を用いて形成することができる。
本構成例の磁気記録媒体を熱アシスト磁気記録用磁気記録媒体として使用する場合、任意選択的に、ヒートシンク層(不図示)を設けてもよい。ヒートシンク層は、熱アシスト磁気記録時に発生する磁気記録層40の余分な熱を効果的に吸収するための層である。ヒートシンク層は、熱伝導率および比熱容量が高い材料を用いて形成することができる。そのような材料は、Cu単体、Ag単体、Au単体、またはそれらを主体とする合金材料を含む。ここで、「主体とする」とは、当該材料の含有量が50質量%以上であることを示す。また、強度などの観点から、Al−Si合金、Cu−B合金などを用いて、ヒートシンク層を形成することができる。さらに、センダスト(FeSiAl)合金、軟磁性のCoFe合金などを用いてヒートシンク層を形成し、ヒートシンク層に軟磁性裏打ち層の機能であるヘッドの発生する垂直方向磁界を磁気記録層40に集中させる機能を付与することもできる。ヒートシンク層の膜厚の最適値は、熱アシスト磁気記録時の熱量および熱分布、ならびに磁気記録媒体の層構成および各構成層の厚さによって変化する。他の構成層との連続成膜で形成する場合などは、生産性との兼ね合いから、ヒートシンク層の膜厚は10nm以上100nm以下であることが好ましい。ヒートシンク層は、スパッタ法、真空蒸着法などの当該技術において知られている任意の方法を用いて形成することができる。通常の場合、ヒートシンク層は、スパッタ法を用いて形成される。ヒートシンク層は、磁気記録媒体に求められる特性を考慮して、密着層の直下、軟磁性裏打ち層の直下、シード層30の直下などに設けることができる。
任意選択的に設けてもよい下地層20は、その下に形成される層の結晶構造が、磁気記録層40の結晶配向性および磁性結晶粒のサイズなどに及ぼす影響を遮断するために設けられる層である。また、軟磁性裏打ち層を設ける場合、軟磁性裏打ち層に対する磁気的影響を抑制するために、下地層20は非磁性であることが要求される。下地層20を形成するための材料は、Pt、CrおよびTaなどの金属、NiW合金、およびCrTi、CrZr、CrTa、およびCrWなどのCrをベースとする合金を含む。下地層20は、スパッタ法などの当該技術において知られている任意の方法を用いて形成することができる。
シード層30は、上層である磁気記録層40中の磁性結晶粒の粒径および結晶配向を制御する機能を有する。また、シード層30は、シード層30の下にある層と磁気記録層40との間の密着性を確保する機能を合わせて有してもよい。シード層30を形成するための材料は、NaCl型化合物、スピネル型化合物、およびペロブスカイト型化合物を含む。使用することができるNaCl型化合物は、MgO、ZnO、CaOおよびSrOのような酸化物、ならびに、TiN、CrNおよびZrNのような窒化物を含む。使用することができるスピネル型化合物は、MgAl24、FeAl24、ZnAl24、MgAl24、FeCr24およびMgCr24を含む。使用することができるペロブスカイト型化合物は、一般式ABO3を有し、AはBa、Pb、Sr、Mg、およびCaからなる群から選択され、BはTi、Zr、Hf、およびSnからなる群から選択される。NaCl型化合物、スピネル型化合物、およびペロブスカイト型化合物は、化学量論組成であっても、非化学量論組成であってもよい。シード層30は、スパッタ法(RFマグネトロンスパッタ法、DCマグネトロンスパッタ法などを含む)などの当該技術において知られている任意の方法を用いて形成することができる。
シード層30は、単一層であってもよいし、複数の層の積層構造を有してもよい。たとえば、ZnOからなる第1層と、MgOからなる第2層との積層構造を有するシード層30を用いてもよい。
シード層30は、1nm以上50nm以下、好ましくは2nm以上10nm以下の膜厚を有する。また、ZnOからなる第1層と、MgOからなる第2層との積層構造を有するシード層30においては、ZnO第1層が1nmから20nmの範囲内の膜厚を有することが好ましく、MgO第2層が1nmから20nmの範囲内の膜厚を有することが好ましい。前述の範囲内の膜厚を有することによって、優れた結晶性の表面を有するシード層30を得ることができる。
本構成例の磁気記録層40は、規則合金からなる連続膜である第1磁性層42と、規則合金からなる磁性結晶粒と非磁性結晶粒界とからなるグラニュラー構造を有する第2磁性層44とを有する。
第1磁性層42は、グラニュラー構造を有する第2磁性層中の磁性結晶粒の分離を促進する機能を有する。前述の機能を実現するために、第1磁性層42は、好ましくは1nm以上、より好ましくは2nm以上、最も好ましくは2nmから10nmまでの範囲内の膜厚を有する。第1磁性層42は、非磁性化合物を含まない非グラニュラー構造の連続膜である。また、前述の範囲内の膜厚を有する第1磁性層42は、連続膜となる。加えて、前述の範囲内の膜厚を有する第1磁性層42は、第2磁性層44の表面粗さを増大させることなしに、第2磁性層44中の磁性結晶粒の分離を促進する。
本明細書における「連続」とは、膜が、複数の独立した部分ではなく、下の層の表面を覆うように、一体の部分から構成されていることを意味する。すなわち、米国特許出願公開第2013/0170075号明細書(特許文献1)に開示される、FePtを含む不連続な島状構造を有するシード層は、「連続」であるとはみなされない。一方、連続膜は、欠損部を含んでもよい。言い換えると、「連続膜」は、複数の独立したピンホールを含む「ネットワーク」または「網目状」構造を有してもよい。あるいはまた、「連続膜」は、「通路」となる部分に規則合金が配置され、「壁」の部分が欠損部である、「迷路状」または「メイズ状」構造を有してもよい。
第1磁性層42が連続膜である場合、グラニュラー構造を有する第2磁性層44は、第1磁性層42の上に形成される。この場合には、第2磁性層の非磁性結晶粒界の材料が磁性結晶粒から分離し、良好な非磁性結晶粒界が形成される。よって、第2磁性層44のグラニュラー構造の品質が向上し、磁気記録媒体の良好な磁気特性をもたらす。
第1磁性層42は、FeおよびCoからなる群から選択される少なくとも1種の第1元素と、Pt、Pd、Au、IrおよびRhからなる群から選択される少なくとも1種の第2元素とを含む規則合金からなる。特性変調のために、第1磁性層42の規則合金は、Ru、Rh、Ir、Ni、Mn、Cu、Au、およびAgからなる群から選択される少なくとも1種の元素をさらに含んでもよい。望ましい特性変調は、規則合金の規則化に必要な温度の低下、およびキュリー温度の低下による熱アシスト磁気記録による記録時の加熱温度の低下を含む。また、第1磁性層42の規則合金は、L10型規則構造を有することが好ましい。
第1磁性層42は、スパッタ法により所定の材料を堆積させることによって形成することができる。第1磁性層42の形成において、前述の規則合金を構成する元素を所定の比率で含むターゲットを用いることができる。あるいはまた、単一の元素を含む複数のターゲットを用い、それぞれのターゲットに印加する電力を調整して元素の比率を制御することによって、第1磁性層42を形成してもよい。第1磁性層42を形成する際に基板を加熱することが好ましい。この際の基板温度は、300℃〜600℃の範囲内である。この範囲内の基板温度を採用することによって、第1磁性層42中の規則合金の規則度を向上させることができる。
第2磁性層44は、好ましくは2nmから20nmまで、より好ましくは4nmから20nmまでの範囲内の膜厚を有する。前述の範囲内の膜厚を有することにより、高い面直方向の保磁力を実現することができる。
第2磁性層44の磁性結晶粒は、FeおよびCoからなる群から選択される少なくとも1種の第1元素と、Pt、Pd、Au、IrおよびRhからなる群から選択される少なくとも1種の第2元素とを含む規則合金からなる。特性変調のために、第2磁性層44の規則合金は、Ru、Rh、Ir、Ni、Mn、Cu、Au、およびAgからなる群から選択される少なくとも1種の元素をさらに含んでもよい。望ましい特性変調は、規則合金の規則化に必要な温度の低下、およびキュリー温度の低下による熱アシスト磁気記録による記録時の加熱温度の低下を含む。また、第2磁性層44の規則合金は、L10型規則構造を有することが好ましい。
第2磁性層44の非磁性結晶粒界は、酸化物または炭化物を用いて形成される。使用できる酸化物は、TiO2、SiO2、およびAl23を含む。使用できる炭化物は、BC、TiC、およびSiCを含む。
第2磁性層44は、スパッタ法により所定の材料を堆積させることによって形成することができる。第2磁性層44の形成において、磁性結晶粒を形成する材料と非磁性結晶粒界を形成する材料とを所定の比率で含むターゲットを用いることができる。あるいはまた、磁性結晶粒を形成する材料を含むターゲットと非磁性結晶粒界を形成する材料を含むターゲットとを用い、それぞれのターゲットに印加する電力を調整して磁性結晶粒および非磁性結晶粒界の構成比率を制御することによって、第2磁性層44を形成してもよい。ここで、磁性結晶粒を形成する材料を含むターゲットに代えて、磁性結晶粒の規則合金を構成する元素を別個に含む複数のターゲットを用いてもよい。第2磁性層44を形成する際に基板を加熱することが好ましい。この際の基板温度は、300℃〜600℃の範囲内である。この範囲内の基板温度を採用することによって、第2磁性層44中の規則合金の規則度を向上させることができる。
任意選択的に設けてもよい保護層(不図示)は、磁気記録媒体の分野で慣用的に使用されている材料を用いて形成することができる。具体的には、Ptなどの非磁性金属、ダイアモンドライクカーボンなどの炭素系材料、あるいは窒化シリコンなどのシリコン系材料を用いて、保護層を形成することができる。また、保護層は、単層であってもよく、積層構造を有してもよい。積層構造の保護層は、たとえば、特性の異なる2種の炭素系材料の積層構造、金属と炭素系材料との積層構造、または金属酸化物膜と炭素系材料との積層構造であってもよい。保護層は、スパッタ法、CVD法、真空蒸着法などの当該技術において知られている任意の方法を用いて形成することができる。
任意選択的に設けてもよい液体潤滑剤層(不図示)は、磁気記録媒体の分野で慣用的に使用されている材料を用いて形成することができる。たとえば、パーフルオロポリエーテル系の潤滑剤などを用いることができる。液体潤滑剤層は、たとえば、ディップコート法、スピンコート法などの塗布法を用いて形成することができる。
(実施例1)
表面が平滑な化学強化ガラス基体(HOYA社製N−10ガラス基体)を洗浄し、基板10を準備した。洗浄後の基板10をスパッタ装置内に導入した。以下、それぞれの段階において、前段階までに形成した層を含む積層体を「被積層基板」と称する。圧力0.20PaのArガス中で、基板10から180mmの位置に配置したTaターゲットを用いるRFマグネトロンスパッタ法により、膜厚5nmのTa密着層を形成した。ターゲットに印加した電力は200Wであった。
次に、圧力0.44PaのArガス中で、被積層基板から320mmの位置に配置したPtターゲットを用いたRFマグネトロンスパッタ法により、膜厚10nmの下地層20を形成した。ターゲットに印加した電力は300Wであった。
次に、圧力0.20PaのArガス中で、被積層基板から180mmの位置に配置したZnOターゲットを用いたRFマグネトロンスパッタ法により、膜厚10nmのZnO膜を形成した。ZnOターゲットに印加した電力は500Wであった。続いて、圧力0.18PaのArガス中で、被積層基板から240mmの位置に配置したMgOターゲットを用いたRFマグネトロンスパッタ法により、膜厚10nmのMgO膜を形成し、ZnO膜およびMgO膜の積層構造を有するシード層30を得た。MgOターゲットに印加した電力は500Wであった。
次に、被積層基板を450℃に加熱した。圧力0.90PaのArガス中で、被積層基板から240mmの位置に配置したFePtターゲットを用いたRFマグネトロンスパッタ法により、膜厚2nmのFePt第1磁性層42を形成した。ターゲットに印加した電力は300Wであった。
続いて、被積層基板を450℃に加熱した状態で、圧力0.90PaのArガス中で、被積層基板から240mmの位置に配置したFePtターゲットおよびTiO2ターゲットを用いたRFマグネトロンスパッタ法により、膜厚4nmのFePt−TiO2第2磁性層44を形成した。以上のように、連続膜であるFePt第1磁性層42と、グラニュラー構造を有するFePt−TiO2第2磁性層44との積層構造である磁気記録層40を有する磁気記録媒体を得た。TiO2ターゲットに印加した電力は500Wであり、FePtターゲットに印加した電力は198Wであった。得られた第2磁性層44は、25体積%のTiO2を含有した。
(実施例2)
第2磁性層44を以下のようにして形成したことを除いて、実施例1の手順を繰り返して、磁気記録媒体を得た。得られた磁気記録媒体は、連続膜であるFePt第1磁性層42と、グラニュラー構造を有するFePt−SiO2第2磁性層44との積層構造である磁気記録層40を有した。
被積層基板を450℃に加熱した状態で、圧力0.90PaのArガス中で、被積層基板から240mmの位置に配置したFePtターゲットおよびSiO2ターゲットを用いたRFマグネトロンスパッタ法により、膜厚4nmのFePt−SiO2第2磁性層44を形成した。SiO2ターゲットに印加した電力は500Wであり、FePtターゲットに印加した電力は212Wであった。得られた第2磁性層44は、25体積%のSiO2を含有した。
(実施例3)
第2磁性層44を以下のようにして形成したことを除いて、実施例1の手順を繰り返して、磁気記録媒体を得た。得られた磁気記録媒体は、連続膜であるFePt第1磁性層42と、グラニュラー構造を有するFePt−Al23第2磁性層44との積層構造である磁気記録層40を有した。
被積層基板を450℃に加熱した状態で、圧力0.90PaのArガス中で、被積層基板から240mmの位置に配置したFePtターゲットおよびAl23ターゲットを用いたRFマグネトロンスパッタ法により、膜厚4nmのFePt−Al23第2磁性層44を形成した。Al23ターゲットに印加した電力は500Wであり、FePtターゲットに印加した電力は187Wであった。得られた第2磁性層44は、25体積%のAl23を含有した。
(比較例1)
第1磁性層42を形成しなかったことを除いて、実施例1の手順を繰り返して、磁気記録媒体を得た。得られた磁気記録媒体は、グラニュラー構造を有するFePt−TiO2第2磁性層44のみからなる磁気記録層40を有した。
(比較例2)
第1磁性層42の膜厚を0.5nmに変更したことを除いて、実施例2の手順を繰り返して、磁気記録媒体を得た。得られた磁気記録媒体は、島状構造の第1磁性層42と、グラニュラー構造を有するFePt−SiO2第2磁性層44とからなる磁気記録層40を有した。
(比較例3)
第1磁性層42を形成しなかったことを除いて、実施例2の手順を繰り返して、磁気記録媒体を得た。得られた磁気記録媒体は、グラニュラー構造を有するFePt−SiO2第2磁性層44のみからなる磁気記録層40を有した。
(比較例4)
第1磁性層42を形成しなかったことを除いて、実施例3の手順を繰り返して、磁気記録媒体を得た。得られた磁気記録媒体は、グラニュラー構造を有するFePt−Al23第2磁性層44のみからなる磁気記録層40を有した。
(評価1)
実施例1〜3、ならびに比較例1および3の磁気記録媒体に関して、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて、磁気記録層40(より具体的には第2磁性層44)の構造を解析した。図2(a)に実施例1の磁気記録媒体のSEM写真を示し、図2(b)に実施例2の磁気記録媒体のSEM写真を示し、図2(c)に実施例3の磁気記録媒体のSEM写真を示した。また、図2(d)に比較例1の磁気記録媒体のTEM写真を示し、図2(e)に比較例3の磁気記録媒体のTEM写真を示した。
実施例1〜3および比較例1〜4の磁気記録媒体に関して、X線回折法(XRD)を用いて、磁気記録層40の結晶性を評価した。具体的には、2θ=24.0〜24.2付近のFePt(001)ピークの積分強度(単位はカウント毎秒(cps)×角度(deg.)である)を測定した。結果を第1表に示す。
さらに、実施例1〜3および比較例1〜4の磁気記録媒体に関して、振動試料磁力計(VSM)を用いて面直方向の磁化曲線を測定し、面直方向の保磁力Hc_outを求めた。結果を第1表に示す。本明細書における「面直方向」とは、磁気記録媒体の主面の法線の方向を意味する。本明細書における「面内方向」とは、磁気記録媒体の主面に平行な方向を意味する。
第2磁性層44の非磁性結晶粒界がTiO2である実施例1と比較例1との比較、第2磁性層44の非磁性結晶粒界がSiO2である実施例2、比較例2、および比較例3の比較、および第2磁性層44の非磁性結晶粒界がAl23である実施例3と比較例4との比較において、以下のことが分かる。
(1) 図2(a)〜(c)から明らかなように、FePtの連続膜である第1磁性層42の上に形成したFePt−X(X=TiO2、SiO2、またはAl23)グラニュラー構造を有する第2磁性層44の磁性結晶粒は、十分に分離されており、かつ充分に小さい寸法を有した。これに対して、図2(d)および(e)から明らかなように、第1磁性層42を持たず、MgOシード層30の上に直接形成された第2磁性層44では、明確な結晶粒界が観察されなかった。以上の結果から、FePt−X(X=TiO2、SiO2、またはAl23)グラニュラー構造中の磁性結晶粒の分離に対して、FePtの連続膜である第1磁性層42が有効であることが分かった。詳細は不明であるが、この結果は、第2磁性層44の非磁性結晶粒界材料である酸化物の濡れ性に起因するものと考えている。より具体的には、酸化物がFePt連続膜上に付着した場合、酸化物は容易に移動して、FePtの結晶粒の形成を阻害しないと考えている。一方、酸化物がMgO層上に付着した場合、酸化物は付着した位置から移動することができず、FePtの結晶粒の形成を阻害したと考えている。
(2) 第1表から、FePtの連続膜である第1磁性層42の上にFePt−Xグラニュラー構造を有する第2磁性層44を形成することにより、磁気記録層40中のFePt合金のL10型規則化が促進されることが分かる。一方、島状構造の第1磁性層42の上にFePt−SiO2グラニュラー構造を有する第2磁性層44を形成した比較例2において、FePt(001)ピークの積分強度が小さいことが分かる。このことは、第2磁性層中のFePt合金のL10型規則化が不充分であることを示す。さらに、MgOシード層30の上に直接形成された第2磁性層44では、磁気記録層40中のFePt合金のL10型規則化が進行していないことが分かる。詳細は不明であるが、この結果もまた、第2磁性層44の非磁性結晶粒界材料である酸化物の濡れ性に起因するものと考えている。より具体的には、FePt連続膜上に付着した酸化物が容易に移動することによって、FePtのL10型規則化を阻害しないと考えている。一方、MgO層上に付着した酸化物は付着した位置から移動することができず、FePtのL10型規則化を阻害したと考えている。
(3) 第1表から、FePtの連続膜である第1磁性層42の上にFePt−Xグラニュラー構造を有する第2磁性層44を形成することにより、磁気記録層40中のFePt規則合金の磁化容易軸が面直方向に配向して、大きな面直方向の保磁力Hc_outが得られることが分かる。一方、比較例1および3の磁気記録媒体においては、MgOシード層30の上に第2磁性層44が直接形成されたことにより、磁気記録層40中のFePt合金の規則化そのものが進行しておらず、面直方向の保磁力Hc_outが観測されなかった。また、比較例4の磁気記録媒体においては、磁気記録層40中のFePt合金のL10型規則化が若干進行したものの、得られた面直方向の保磁力Hc_outは極めて小さかった。この結果から、FePtの連続膜である第1磁性層42の存在により、垂直磁気記録方式に好適な大きな面直方向の保磁力Hc_outが得られることが分かる。また、島状構造の第1磁性層42の上にFePt−SiO2グラニュラー構造を有する第2磁性層44を形成した比較例2の磁気記録媒体は、著しく小さい面直方向の保磁力Hc_outを示す。したがって、FePt第1磁性層42が、MgOシード層30の表面を覆う連続膜であることが重要であることが分かる。
(比較例5)
第1磁性層42を以下のようにして形成したこと、および第2磁性層44の膜厚を3nmに変更したことを除いて、実施例1の手順を繰り返して、磁気記録媒体を得た。得られた磁気記録媒体は、グラニュラー構造を有するFePt−C第1磁性層42と、グラニュラー構造を有するFePt−TiO2第2磁性層44との積層構造である磁気記録層40を有した。
被積層基板を450℃に加熱した。圧力0.90PaのArガス中で、被積層基板から240mmの位置に配置したFePtターゲットおよびCターゲットを用いたRFマグネトロンスパッタ法により、膜厚2nmのFePt−C第1磁性層42を形成した。FePtターゲットに印加した電力は100Wであった。Cターゲットに印加した電力は500Wであった。得られた第1磁性層42は、40体積%のCを含んだ。
(比較例6)
第1磁性層42を比較例5と同様の手順で形成したこと、および第2磁性層44の膜厚を3nmに変更したことを除いて、実施例3の手順を繰り返して、磁気記録媒体を得た。得られた磁気記録媒体は、グラニュラー構造を有するFePt−C第1磁性層42と、グラニュラー構造を有するFePt−Al23第2磁性層44との積層構造である磁気記録層40を有した。
(評価2)
比較例5および6の磁気記録媒体に関して、X線回折法(XRD)を用いて、磁気記録層40の結晶性を評価した。具体的には、2θ=24.0〜24.2付近のFePt(001)ピークの積分強度を測定した。加えて、膜厚の効果を排除した比較のために、実施例1および3ならびに比較例5および6の磁気記録媒体について、FePt(001)ピークの積分強度を磁気記録層40の総膜厚で除算して得られる積分強度の規格化値(単位はカウント毎秒(cps)×角度(deg.)/ナノメートル(nm)である)を測定した。結果を第2表に示す。
さらに、比較例5および6の磁気記録媒体に関して、振動試料磁力計(VSM)を用いて面直方向の磁化曲線を測定し、面直方向の保磁力Hc_outを求めた。さらに、実施例1および3ならびに比較例5および6の磁気記録媒体について、VSMを用いて面内方向の磁化曲線を測定し、面内方向の保磁力Hc_inを求めた。結果を第2表に示す。
また、実施例1および3ならびに比較例5および6の磁気記録媒体について、PPMS装置(Quantum Design社製;Physical Property Measurement System)を用いて自発磁化の磁場印加角度依存性を評価し、磁気異方性定数Kuを決定した。磁気異方性定数Kuの決定には、R. F. Penoyer、「Automatic Torque Balance for Magnetic Anisotropy Measurements」、The Review of Scientific Instruments、1959年8月、第30巻第8号、711−714(非特許文献1)、ならびに近角聰信、強磁性体の物理(下)裳華房、10−21(非特許文献2)に記載の手法を用いた。結果を第2表に示す。
第2磁性層44の非磁性結晶粒界がTiO2である実施例1と比較例5との比較、および第2磁性層44の非磁性結晶粒界がAl23である実施例3と比較例6との比較において、FePtの連続膜からなる第1磁性層42を有する実施例1および3の磁気記録媒体は、FePt−Cグラニュラー構造の第1磁性層42を有する比較例5および6の磁気記録媒体よりも大きなFePt(001)ピーク積分強度の規格化値を有することが分かる。このことから、FePtの連続膜からなる第1磁性層42の上に、FePt−X(X=TiO2、SiO2、またはAl23)グラニュラー構造を有する第2磁性層44を形成することによって、第1磁性層42のFePt合金および第2磁性層44の磁性結晶粒中のFePt合金のL10型規則化が促進されることが分かる。
加えて、実施例1および3の磁気記録媒体は、比較例5および6の磁気記録媒体に比較して、より大きな面直方向の保磁力Hc_outおよびより小さい面内方向の保磁力Hc_inを有した。また、実施例1および3の磁気記録媒体は、比較例5および6の磁気記録媒体に比較して、より大きな磁気異方性定数Kuを有した。これらの結果から、FePtの連続膜からなる第1磁性層42の上に、FePt−Xグラニュラー構造を有する第2磁性層44を形成することによって、磁気記録層中のFePt規則合金の磁化容易軸の面直方向への配向が促進されることが分かる。
10 基板
20 下地層
30 シード層
40 磁気記録層
42 第1磁性層
44 第2磁性層

Claims (6)

  1. 基板と、シード層と、磁気記録層とを含む磁気記録媒体であって、前記磁気記録層は、FePt規則合金からなる連続膜である第1磁性層と、FePt規則合金からなる磁性結晶粒と非磁性結晶粒界とからなるグラニュラー構造を有する第2磁性層とを有し、前記シード層は、NaCl型化合物、スピネル型化合物、およびペロブスカイト型化合物からなる群から選択される材料からなることを特徴とする磁気記録媒体。
  2. 前記NaCl型化合物は、MgO、ZnO、CaO、SrO、TiN、CrNおよびZrNからなる群から選択され、前記スピネル型化合物は、MgAl24、FeAl24、ZnAl24、MgAl24、FeCr24およびMgCr24からなる群から選択され、前記ペロブスカイト型化合物は、一般式ABO3(式中、AはBa、Pb、Sr、Mg、およびCaからなる群から選択され、BはTi、Zr、Hf、およびSnからなる群から選択される)を有することを特徴とする請求項1に記載の磁気記録媒体。
  3. 前記第2磁性層の非磁性結晶粒界は、酸化物を含むことを特徴とする請求項1または2に記載の磁気記録媒体。
  4. 前記酸化物は、TiO2、SiO2、およびAl23からなる群から選択されることを特徴とする請求項3に記載の磁気記録媒体。
  5. 前記第1磁性層は、2から10nmの膜厚を有することを特徴とする請求項1に記載の磁気記録媒体。
  6. 前記シード層はZnOを含むことを特徴とする請求項1に記載の磁気記録媒体。
JP2019073329A 2016-06-23 2019-04-08 磁気記録媒体 Active JP6787433B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016124731 2016-06-23
JP2016124731 2016-06-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018523577A Division JPWO2017221573A1 (ja) 2016-06-23 2017-05-10 磁気記録媒体

Publications (2)

Publication Number Publication Date
JP2019106231A JP2019106231A (ja) 2019-06-27
JP6787433B2 true JP6787433B2 (ja) 2020-11-18

Family

ID=60784037

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018523577A Pending JPWO2017221573A1 (ja) 2016-06-23 2017-05-10 磁気記録媒体
JP2019073329A Active JP6787433B2 (ja) 2016-06-23 2019-04-08 磁気記録媒体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018523577A Pending JPWO2017221573A1 (ja) 2016-06-23 2017-05-10 磁気記録媒体

Country Status (4)

Country Link
US (1) US11087794B2 (ja)
JP (2) JPWO2017221573A1 (ja)
MY (1) MY185710A (ja)
WO (1) WO2017221573A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203693A1 (ja) * 2015-06-18 2016-12-22 富士電機株式会社 磁気記録媒体
JP7090249B2 (ja) 2019-06-06 2022-06-24 国立大学法人 東京大学 静電型デバイスを製造する製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271424A (ja) * 1988-09-07 1990-03-12 Ricoh Co Ltd 磁気記録媒体
US6468670B1 (en) * 2000-01-19 2002-10-22 International Business Machines Corporation Magnetic recording disk with composite perpendicular recording layer
US7470474B2 (en) * 2003-04-07 2008-12-30 Kabushiki Kaisha Toshiba Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus including both oxide and non-oxide perpendicular magnetic layers
JP2007299492A (ja) * 2006-05-02 2007-11-15 Canon Inc 構造体の製造方法
US8153189B2 (en) * 2005-03-31 2012-04-10 Canon Kabushiki Kaisha Structure and process for production thereof
US8241766B2 (en) * 2006-01-20 2012-08-14 Seagate Technology Llc Laminated exchange coupling adhesion (LECA) media for heat assisted magnetic recording
US9978413B2 (en) * 2006-06-17 2018-05-22 Dieter Suess Multilayer exchange spring recording media
US8021769B2 (en) * 2007-05-22 2011-09-20 Hitachi Global Storage Technologies Netherlands B.V. Patterned perpendicular magnetic recording medium with exchange coupled recording layer structure and magnetic recording system using the medium
US7862912B2 (en) * 2008-03-04 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium and system with low-curie-temperature multilayer for heat-assisted writing and/or reading
WO2010064724A1 (ja) * 2008-12-05 2010-06-10 Hoya株式会社 磁気ディスク及びその製造方法
JP5617112B2 (ja) * 2010-01-14 2014-11-05 独立行政法人物質・材料研究機構 垂直磁気記録媒体及びその製造方法
JP5670638B2 (ja) * 2010-01-26 2015-02-18 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記録再生装置
US8565735B2 (en) * 2010-10-29 2013-10-22 Jeffrey L. Wohlwend System and method for supporting mobile unit connectivity to venue specific servers
JP5145437B2 (ja) * 2011-03-02 2013-02-20 株式会社日立製作所 磁気記録媒体
US20130170075A1 (en) 2011-12-28 2013-07-04 Hitachi Global Storage Technologies Netherlands B.V. System, method and apparatus for magnetic media with a non-continuous metallic seed layer
JP5897399B2 (ja) 2012-05-02 2016-03-30 株式会社日立製作所 マイクロ波アシスト記録用磁気記録媒体及びこれを用いた情報記録装置
JP6081134B2 (ja) 2012-10-17 2017-02-15 株式会社日立製作所 垂直磁気記録媒体及び磁気記憶装置
JP6199618B2 (ja) * 2013-04-12 2017-09-20 昭和電工株式会社 磁気記録媒体、磁気記憶装置
JP6076214B2 (ja) * 2013-07-09 2017-02-08 昭和電工株式会社 磁気記録媒体、磁気記録再生装置、磁気記録方法及び磁気再生方法
JP6317896B2 (ja) * 2013-07-26 2018-04-25 昭和電工株式会社 磁気記録媒体および磁気記憶装置
JP2015041392A (ja) * 2013-08-20 2015-03-02 国立大学法人 筑波大学 磁性材料、垂直磁気記録媒体、磁気記憶装置、磁性材料の製造方法及び垂直磁気記録媒体の製造方法
US9324353B2 (en) * 2013-11-19 2016-04-26 HGST Netherlands B.V. Dual segregant heat assisted magnetic recording (HAMR) media
MY160495A (en) * 2013-12-10 2017-03-15 Fuji Electric Co Ltd Perpendicular magnetic recording medium
US10504547B2 (en) * 2014-01-23 2019-12-10 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium
CN105637585B (zh) * 2014-04-03 2019-04-23 富士电机株式会社 磁记录介质
MY163246A (en) 2014-08-12 2017-08-30 Fuji Electric Co Ltd Magnetic recording medium
JP5954376B2 (ja) * 2014-08-12 2016-07-20 富士電機株式会社 磁気記録媒体の製造方法
JP5923152B2 (ja) 2014-10-06 2016-05-24 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記録再生装置
JP6327357B2 (ja) * 2014-10-28 2018-05-23 富士電機株式会社 磁気記録媒体
US9558777B2 (en) * 2014-11-26 2017-01-31 HGST Netherlands B.V. Heat assisted magnetic recording (HAMR) media having a highly ordered crystalline structure
WO2016203693A1 (ja) * 2015-06-18 2016-12-22 富士電機株式会社 磁気記録媒体
SG10201604026QA (en) * 2015-07-16 2017-02-27 Agency Science Tech & Res Recording medium for heat assisted magnetic recording and method of forming the same
US9990951B2 (en) * 2016-02-23 2018-06-05 Seagate Technology Llc Perpendicular magnetic recording with multiple antiferromagnetically coupled layers

Also Published As

Publication number Publication date
US11087794B2 (en) 2021-08-10
JPWO2017221573A1 (ja) 2018-09-20
US20180286445A1 (en) 2018-10-04
JP2019106231A (ja) 2019-06-27
WO2017221573A1 (ja) 2017-12-28
MY185710A (en) 2021-05-31

Similar Documents

Publication Publication Date Title
JP6439869B2 (ja) 磁気記録媒体の製造方法
JP6274305B2 (ja) 磁気記録媒体
JP5999290B2 (ja) 磁気記録媒体
US10020016B2 (en) Perpendicular magnetic recording medium
US10714138B2 (en) Perpendicular magnetic recording medium
JP5783330B2 (ja) 垂直磁気記録媒体
JP6665963B2 (ja) 磁気記録媒体
JP6787433B2 (ja) 磁気記録媒体
JP6406462B2 (ja) 磁気記録媒体
JP6358640B2 (ja) 磁気記録媒体
JP6327357B2 (ja) 磁気記録媒体
JP6617923B2 (ja) 垂直磁気記録媒体の製造方法
JP6304371B2 (ja) 磁気記録媒体の製造方法
JP6354508B2 (ja) 垂直磁気記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6787433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250