JP6665963B2 - 磁気記録媒体 - Google Patents

磁気記録媒体 Download PDF

Info

Publication number
JP6665963B2
JP6665963B2 JP2019504385A JP2019504385A JP6665963B2 JP 6665963 B2 JP6665963 B2 JP 6665963B2 JP 2019504385 A JP2019504385 A JP 2019504385A JP 2019504385 A JP2019504385 A JP 2019504385A JP 6665963 B2 JP6665963 B2 JP 6665963B2
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
seed layer
tin
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019504385A
Other languages
English (en)
Other versions
JPWO2018163658A1 (ja
Inventor
弘康 片岡
弘康 片岡
由沢 剛
剛 由沢
友博 森谷
友博 森谷
内田 真治
真治 内田
浩永 大山
浩永 大山
島津 武仁
武仁 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPWO2018163658A1 publication Critical patent/JPWO2018163658A1/ja
Application granted granted Critical
Publication of JP6665963B2 publication Critical patent/JP6665963B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7379Seed layer, e.g. at least one non-magnetic layer is specifically adapted as a seed or seeding layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
    • G11B5/737Physical structure of underlayer, e.g. texture

Description

本発明は、磁気記録媒体に関し、典型的にはハードディスク磁気記録装置(HDD)に用いられる磁気記録媒体に関する。
磁気記録の高密度化を実現する技術として、垂直磁気記録方式が採用されている。垂直磁気記録媒体は、非磁性基板と、硬質磁性材料から形成される磁気記録層を少なくとも含む。
良好な磁気特性を得ることを目的として、グラニュラー構造を用いて垂直磁気記録媒体の磁気記録層を形成することが提案されている。グラニュラー構造の磁気記録層は、磁性結晶粒子と、磁性結晶粒子の周囲を取り囲むように偏析した非磁性の粒界材料とを含む。グラニュラー構造の磁気記録層中の個々の磁性結晶粒子は、非磁性の粒界材料によって磁気的に分離されている。
近年、垂直磁気記録媒体の記録密度のさらなる向上を目的として、グラニュラー構造の磁気記録層中の磁性結晶粒子の粒径を縮小させる必要に迫られている。特にHAMR(熱アシスト磁気記録)媒体においては、現行の垂直磁気記録媒体と同様に、Ru等の下地層で記録層の粒子構造を制御することにより、平均粒径および粒径分散を低減したいとの要望がある。
特許文献1においては、基板と、Ru−TiO層と、ZnO層と、MgO層と、FePt磁気記録層とをこの順に含む構成を有する磁気記録媒体が記載されている。ここでは、グラニュラー構造からなるFePt磁気記録層の粒径微細化と磁気特性の両立を図っている。
特許文献2においては、基板と、磁気記録層と、基板と磁気記録層との間に配置されるTiN−X層とを含む磁気記録媒体が示されている。ここでは、磁気記録層のエピタキシャル成長の配向性向上および、磁気記録層の粒度の制御を図っている。
特願2016−003596号 特表2015−530691号公報
R. F. Penoyer、「Automatic Torque Balance for Magnetic Anisotropy Measurements」、The Review of Scientific Instruments、1959年8月、第30巻第8号、711−714 近角聰信、強磁性体の物理(下)、裳華房、10−21
特許文献1では、FePt粒子を小さくできるものの、MgO層の粒径に対して、FePt粒径が大きくなるという課題があった。
また、特許文献2では、FePt磁性結晶粒子の周囲を取り囲むはずの非磁性体の偏析が不規則であった。そのため、FePt磁性粒子が繋がった部分が多数あり、個々の磁性粒子間の磁気的な分離が不十分であるという課題があった。
本発明が解決しようとする課題は、平均粒径および粒径分散を低減した磁気記録媒体を提供することである。本発明が解決しようとする別の課題は、磁気記録媒体として適用可能な磁気特性(磁気異方性エネルギー)を有する磁気記録媒体を提供することである。
本発明の課題を解決するための手段の一例は、基板と、粒径制御層と、第1シード層と、第2シード層と、規則合金を含む磁気記録層とをこの順に含み、前記第2シード層が、TiNを主成分とする結晶粒子と、金属酸化物および炭素からなる群から選択される少なくとも1種以上を主成分とする粒界材料とからなる、磁気記録媒体である。
ここで、前記粒界材料が金属酸化物であり、ΔG500を500℃での標準生成ギブスエネルギーとしたとき、前記金属酸化物中の金属元素と、窒素とが反応した場合に形成される窒化物のΔG500が、TiNのΔG500よりも高い材料から前記粒界材料が選択されていることが好ましい。あるいは、前記粒界材料が金属酸化物であり、ΔG500を500℃での標準生成ギブスエネルギーとしたとき、前記金属酸化物中の金属元素と、酸素とが反応した場合に形成される酸化物のΔG500が、TiOのΔG500よりも低い材料から前記粒界材料が選択されていることが好ましい。
また、前記粒界材料が、Al、MgO、CaO、Sc、SrO、およびYからなる群から選択される少なくとも1種以上であることが好ましい。あるいは、前記粒界材料が炭素から形成されていることが好ましい。
また、前記粒界材料が、TiNを主成分とする結晶粒子と前記粒界材料の総量に基づき、5体積%以上50体積%未満であることが好ましい。
ここで、前記第2シード層が、TiNを主成分とする結晶粒子と、TiNを主成分とする結晶粒子の周囲を取り囲む前記粒界材料からなるグラニュラー構造を有することが好ましい。
また、前記磁気記録層が、FeおよびCoからなる群から選択される少なくとも1種の第1元素と、Pt、Pd、Au、Ir、Ru、およびRhからなる群から選択される少なくとも1種の第2元素と、を含むことが好ましい。
さらに、前記第1シード層が、下部第1シード層と、上部第1シード層とをこの順に含むことが好ましい。
さらに、前記粒径制御層が、Ru結晶粒子と、Ru結晶粒子を取り囲む酸化物、炭化物、および窒化物からなる群から選択された少なくとも1種と、を含むグラニュラー構造であることが好ましい。
さらに、前記粒径制御層と前記第1シード層との間に非磁性中間層をさらに含み、前記非磁性中間層が、Pt結晶粒子または、Pt結晶粒子と、Pt結晶粒子を取り囲む酸化物、炭素、炭化物、および窒化物からなる群から選択された少なくとも1種と、を含むグラニュラー構造であることが好ましい。
さらに、前記基板と前記粒径制御層との間に、RuまたはRu合金から形成された配向制御層をさらに含むことが好ましい。
本発明によれば、平均粒径および粒径分散を低減した磁気記録媒体を形成することが可能となる。また、磁気異方性エネルギーの大きい磁気記録媒体を形成することが可能となる。
本発明の磁気記録媒体の1つの構成例を示す概略断面図である。 実施例1の磁気記録媒体の構成例を示す概略断面図である。 実施例1のサンプル番号=1−3のSEM写真である。 実施例2のサンプル番号=2−3のSEM写真である。 実施例3のサンプル番号=3のSEM写真である。 比較例1のサンプル番号=4のSEM写真である。 実施例1と比較例2、3、5の平均粒径の比較を示す。 実施例1と比較例2、3、5の粒径分散の比較を示す。 実施例1と比較例2、3、5の磁気異方性定数の比較を示す。 比較例2のサンプル番号=5のSEM写真である。 比較例3のサンプル番号=6−3のSEM写真である。 実施例2と比較例2、4、5の平均粒径の比較を示す。 実施例2と比較例2、4、5の粒径分散の比較を示す。 実施例2と比較例2、4、5の磁気異方性定数の比較を示す。 比較例4のサンプル番号=7−3のSEM写真である。 実施例1と比較例2、6の平均粒径の比較を示す。 実施例1と比較例2、6の粒径分散の比較を示す。 実施例1と比較例2、6の磁気異方性定数の比較を示す。 実施例1のサンプル番号=1−3の磁化曲線を示す。 比較例6のサンプル番号=10−3の磁化曲線を示す。
図1、2に、本発明を実施するための形態の1例を示す。
図1は、基板1と、粒径制御層2と、第1シード層3と、第2シード層4と、規則合金を含む磁気記録層5とをこの順に含み、第2シード層4がTiN(窒化チタン)を主成分とする結晶粒子と、粒界材料から形成されている、磁気記録媒体10の1つの構成例である。なお、本願の以下の説明において、共通する構成には同じ符号を付し、その説明を省略する。
本形態の構成では、磁気記録層5のグラニュラー構造を導くためのグラニュラー構造を有する粒径制御層2がある。粒径制御層2のグラニュラー構造は、微細な平均粒径で粒径分散の少ない結晶粒子からなることが好ましい。その上に形成された第1シード層3は、粒径制御層2の粒構造を引き継いだ微細で粒径分散の少ない結晶粒子から形成される。
ここで、グラニュラー構造とは、コラム状の個々の結晶粒子に対して周囲を取り囲むように粒界材料が存在する構造を意味する。基板に平行な膜面において、粒状の結晶粒子があり、その周囲に粒界材料が存在する状態である。完全に取り囲まれた方が粒子の孤立性が高まるので好ましい。一方、基板に垂直な膜面においては、粒界材料により分離された柱状の結晶粒子が各層の表裏面に渡って貫かれている状態が好ましい。結晶粒子の粒界に粒界材料が偏析することで、グラニュラー構造が形成される。
また、粒径とは、基板に平行な膜面における、粒状の結晶粒子の円相当径を意味する。平均粒径とは、粒径の平均値を意味する。粒径分散とは、粒径の分散値を意味する。
次に、第1シード層3上に、第2シード層4が形成される。こうして、微細で粒径分散の少ない結晶粒子からなる第1シード層3の粒界に対応して、第2シード層4の粒界材料が積極的に偏析される。そのため、第2シード層4は、第1シード層3、ひいては粒径制御層2の粒構造を引き継ぐ。より好ましくは、TiNからなる微細で小さな粒径分散の結晶粒子と、TiN結晶粒子の周囲を取り囲む粒界材料からなるグラニュラー構造となる。
さらに、磁気記録層5の直下に第2シード層4が形成される。こうして、微細な平均粒径で小さな粒径分散の結晶粒子からなる良好なグラニュラー構造を有する磁気記録層5を形成することができる。第2シード層4のTiN結晶粒子に対して、FePtなどの規則合金からなる磁性結晶粒子はぬれ性が高い。更に、第2シード層4の粒界材料が酸化物または炭素を含み、磁気記録層5の非磁性体(粒界材料)が酸化物または炭素を含む場合、第2シード層4の粒界材料に対して、磁気記録層5の非磁性体はぬれ性が高くなる。そのため第2シード層4のTiN結晶粒子上には積極的に磁性結晶粒子が形成され、第2シード層4の粒界材料上には積極的に非磁性体(粒界材料)が偏析するからである。ひいては、粒径制御層2の粒構造をより反映したグラニュラー構造を有する磁気記録層5を形成できるようになる。こうして、磁性結晶粒子の粒径微細化、粒径分散低減が可能となる。また、第2シード層4のTiN結晶粒子上に積極的に磁性結晶粒子が形成され、第2シード層4の粒界材料上に積極的に非磁性体(粒界材料)が偏析する。そのため、個々に磁気的に分離された磁性結晶粒子からなるグラニュラー構造を有する磁気記録層5が形成できる。更に、第2シード層の粒界を跨いで形成される磁性結晶粒子が減少する。第2シード層の粒界を跨いで形成される磁性結晶粒子は結晶欠陥を持つため磁気異方性エネルギーが低下する。本形態では、そのような結晶欠陥を持つ磁性結晶粒子が少ないために、磁気異方性エネルギー向上に効果が発揮される。
基板1は、表面が平滑である様々な基板であってもよい。たとえば、磁気記録媒体に一般的に用いられる材料を用いて、基板1を形成することができる。用いることができる材料は、NiPメッキを施したAl合金、MgO単結晶、MgAl、SrTiO、強化ガラス、結晶化ガラス等を含む。
基板1と後に詳述する粒径制御層2との間に、密着層6、軟磁性裏打ち層、ヒートシンク層、または配向制御層7、非磁性中間層8を任意選択的に設けてもよい。
任意で、密着層6を設けてもよい。密着層6は、密着層6の上に形成される層と密着層6の下に形成される層との密着性を高めるために用いられる。密着層6の下に形成される層としては、基板1を含む。密着層6を形成するための材料はNi、W、Ta、Crなどの金属、CoNi系合金、Ni合金、Pt合金、Pd合金、Ta合金、Cr合金、CrTi合金、Si合金、およびCu合金を含む。密着層6は、単一の層であってもよいし、複数の層の積層構造を有してもよい。本構成例において好ましい密着層6は、CrTi合金から構成される。また、密着層6は、スパッタリング法などの当該技術において知られている任意の方法を用いて形成することができる。
任意で、軟磁性裏打ち層(不図示)を設けてもよい。軟磁性裏打ち層は、磁気ヘッドからの磁束を制御して、磁気記録媒体の記録・再生特性を向上させる。軟磁性裏打ち層を形成するための材料は、NiFe合金、センダスト(FeSiAl)合金、CoFe合金などの結晶質材料、FeTaC,CoFeNi,CoNiPなどの微結晶質材料、CoZrNb、CoTaZrなどのCo合金を含む非晶質材料を含む。軟磁性裏打ち層の厚さの最適値は、磁気記録に用いる磁気ヘッドの構造および特性に依存する。他の層と連続して軟磁性裏打ち層を形成する場合、生産性との兼ね合いから、軟磁性裏打ち層が10nm〜500nmの範囲内(両端を含む)の厚さを有することが好ましい。また、軟磁性裏打ち層は、スパッタリング法などの当該技術において知られている任意の方法を用いて形成することができる。
任意で、ヒートシンク層(不図示)を設けてもよい。ヒートシンク層は、本発明の磁気記録媒体を熱アシスト磁気記録方式において使用する場合に好適に用いられる。ヒートシンク層は、熱アシスト磁気記録時に発生する磁気記録層5の余分な熱を効果的に吸収するための層である。ヒートシンク層は、熱伝導率および比熱容量が高い材料を用いて形成することができる。そのような材料は、Cu単体、Ag単体、Au単体、またはそれらを主成分とする合金材料を含む。ここで、「主成分とする」とは、当該材料の含有量が50wt%以上であることを示す。また、強度などの観点から、Al−Si合金、Cu−B合金などを用いて、ヒートシンク層を形成することができる。さらに、センダスト(FeSiAl)合金、軟磁性のCoFe合金などを用いてヒートシンク層を形成することができる。軟磁性材料を用いることによって、ヘッドの発生する垂直方向磁界を磁気記録層5に集中させる機能をヒートシンク層に付与し、軟磁性裏打ち層の機能を補完することもできる。ヒートシンク層の厚さの最適値は、熱アシスト磁気記録時の熱量および熱分布、ならびに磁気記録媒体の層構成および各構成層の厚さによって変化する。他の構成層と連続して形成する場合などは、生産性との兼ね合いから、ヒートシンク層の厚さは10nm以上100nm以下であることが好ましい。ヒートシンク層は、スパッタリング法、真空蒸着法などの当該技術において知られている任意の方法を用いて形成することができる。通常の場合、ヒートシンク層は、スパッタリング法を用いて形成される。ヒートシンク層は、磁気記録媒体に求められる特性を考慮して、基板1と密着層6との間、密着層6と配向制御層7との間などに設けることができる。
任意で、配向制御層7を設けてもよい。配向制御層7は、配向制御層7の上に形成される層の配向を制御するための層である。配向制御層は、密着層6と後述する粒径制御層2との間や、後述する非磁性中間層8と後述する第1シード層3との間などに形成される。配向制御層7は、単層であっても多層であってもよい。配向制御層7に用いることができる材料は、好適には、hcp構造または面心立方(fcc)構造を有する材料であるが、それらに限定されるものではない。前記配向制御層7は、例えばRuまたはRu合金を含む。Ru合金は、例えばRuとCr、Co等との合金である。RuまたはRu合金には、Cr、W、Mo、Ta、Nb、B、Mn、AlおよびTiからなる群から選択される1種または複数の元素をさらに含んでもよい。本構成例において好ましい配向制御層7は、Ru/RuCrの積層構造や、Ruから形成された層である。配向制御層7は、スパッタリング法などの当該技術において知られている任意の方法を用いて形成することができる。なお、A/Bなどの表記は、Aが上層であり、Bが下層であることを意味する。
粒径制御層2は、典型的には磁気記録層5までの良好なグラニュラー構造を導くためのグラニュラー構造を有する層である。粒径制御層2は、スパッタリング法などの当該技術において知られている任意の方法により形成することができる。具体的には、粒径制御層2は、RuまたはRu合金と、酸化物、炭化物、および窒化物からなる群から選択された少なくとも1種の材料と、を含む。より好ましくは、RuまたはRu合金と、酸化物、炭化物、および窒化物からなる群から選択された少なくとも1種の材料と、を主成分とする。ここで、「主成分」とは、「RuまたはRu合金と、酸化物、炭化物、および窒化物からなる群から選択された少なくとも1種の材料」の含有量が50体積%以上であることを示す。なお、RuまたはRu合金とともに含まれる酸化物、炭化物、および窒化物からなる群から選択された少なくとも1種の材料は、粒界材料と呼ぶこともできる。粒界材料は、例えばSiO、TiO、ZnOなどの酸化物、SiC、TiC、WCなどの炭化物、SiN、TiNなどの窒化物とすることができる。グラニュラー構造を形成するために、RuまたはRu合金とともに含まれる粒界材料の量は、RuまたはRu合金と、粒界材料を合わせた全体量を基準として、5体積%以上50体積%未満であることが好ましく、10体積%以上45体積%以下であることがより好ましく、20体積%以上40体積%以下であることが更に好ましい。なお、本願において、材料の体積%はvol%とも記載され、原則としてその材料が含まれる層の総量を基準として前記層に前記材料が含まれる割合を意味する。
例えば、粒径制御層2は、Ruと、TiO(m=1.5〜2.5)またはSiO(n=1.5〜2.5)と、を主成分とする。粒径制御層2は、典型的にはRu−TiO、あるいはRu−SiOを主成分とする。粒径制御層2がRu−TiOを主成分とする場合、グラニュラー構造は、Ru結晶粒子と、Ru結晶粒子の周囲を取り囲むように偏析したTiOを主成分とする。なお、Ru−TiOとは、RuとTiOが並存した状態を意味する。Ru−SiOとは、RuとSiOが並存した状態を意味する。なお、前記粒径制御層2は単層であっても多層であってもよい。粒界材料の異なる層を積層してもよいし、濃度の異なる粒界材料の層を積層してもよい。
任意で、粒径制御層2と後に詳述する第1シード層3との間に、非磁性中間層8を設けてもよい。非磁性中間層8は、第1シード層3の結晶配向性を向上させるための層である。この場合、非磁性中間層8は、Ptと、酸化物、炭素、炭化物、および窒化物からなる群から選択された少なくとも1種の材料と、を含む。より好ましくは、Ptと、酸化物、炭素、炭化物、および窒化物からなる群から選択された少なくとも1種の材料と、を主成分とすることが好ましい。ここで、「主成分」とは、「Ptと、酸化物、炭素、炭化物、および窒化物からなる群から選択された少なくとも1種の材料」の含有量が50体積%以上であることを示す。非磁性中間層8は、グラニュラー構造を有する。Ptとともに含まれる酸化物、炭素、炭化物、および窒化物からなる群から選択された少なくとも1種の材料は、粒界材料と呼ぶこともできる。粒界材料は、例えばSiO、TiO、ZnOなどの酸化物、炭素(C)、SiC、TiC、WCなどの炭化物、SiN、TiNなどの窒化物とすることができる。好ましくは、非磁性中間層8の粒界材料は、粒径制御層2の粒界材料と同種の化合物を含む。例えば、非磁性中間層8の粒界材料が酸化物であれば、粒径制御層2の粒界材料は酸化物を含むものが好ましい。同様に、炭素同士、炭化物同士、窒化物同士が好ましい。更に好ましくは、同じ化合物を含む。例えば、非磁性中間層8の粒界材料がTiOであれば、粒径制御層2の粒界材料はTiO(m=1.5〜2.5)を含むことが好ましい。そうすることで、粒径制御層2の粒界材料上に非磁性中間層8の粒界材料が積極的に形成され、粒径制御層2のRu結晶粒子上にPt結晶粒子が形成される。そのため、良好なグラニュラー構造が引き継がれる。
グラニュラー構造を形成するために、Ptとともに含まれる粒界材料の量は、Ptと粒界材料を合わせた全体量を基準として、5体積%以上50体積%未満であることが好ましく、10体積%以上45体積%以下であることがより好ましく、20体積%以上40体積%以下であることが更に好ましい。
あるいは、非磁性中間層8は、Ptを含む。より好ましくは、Ptを主成分とすることが好ましい。ここで、「主成分」とは、「Ptと、酸化物、炭素、炭化物、および窒化物からなる群から選択された少なくとも1種の材料」の含有量が50体積%以上であることを示す。非磁性中間層8がPtを主成分とする場合は、結晶粒子の分離構造を維持するために、その厚みを0.1〜3.0nmにすることが好ましい。
第1シード層3は、後に詳述する第2シード層4中のTiN結晶粒子の結晶配向を適切な配向とし、ひいては、後に詳述する磁気記録層5中の規則合金の結晶配向を磁気記録媒体に適切な配向とするための層である。例えばL1型規則合金の結晶配向を垂直磁気記録媒体に適切な(001)配向とすることが可能となる。また、粒径制御層の結晶粒子の分離構造を第2シード層4へ導くためには、第1シード層3の厚さを厚くし過ぎてはならない。前述の効果を達成するために、第1シード層3は、1nmから30nmの範囲内の厚さを有することが好ましい。より好ましくは、2nmから20nmの範囲内の厚さを有することである。
典型的には、第1シード層3は、下部第1シード層と、上部第1シード層とをこの順に含む。
下部第1シード層は、六方ウルツ鉱型結晶構造を有する。好ましくはZnO、AlN、GaN、あるいは、InNを含む。より好ましくは、ZnO、AlN、GaN、あるいは、InNを主成分とする。更に好ましくはZnO(酸化亜鉛)を含む。あるいは、ZnOを主成分とする。ここで、「主成分」とは、当該材料の含有量が50体積%以上であることを示す。本構成例において、ZnOは、典型的には(002)配向した六方ウルツ鉱型結晶構造を有する。本構成例におけるZnOは、例えばX線回折を用いた面直方向のθ−2θ測定で得られるXRDプロファイルが、ZnO結晶の代表的なピークである2θ=33.4°〜35.4°の範囲にピークを有する化合物群を含む。ZnOは、2θ=33.4°〜35.4°の範囲にピークを有する化合物群であればよく、化学量論組成であっても、非化学量論組成であってもよい。また、ZnOにAl、Ga、Inなどを添加してもよい。更に、下部第1シード層があることで上部第1シード層が薄い場合でも、磁気記録層5の結晶配向性を良好にする効果を有すると考えられる。また、粒径制御層の結晶粒子の分離構造を上部第1シード層へ導くためには、厚さを厚くし過ぎてはならない。前述の効果を達成するために、下部第1シード層は、0.5nmから20nmの範囲内の厚さを有することが好ましい。より好ましくは、1nmから10nmの範囲内の厚さを有することである。
上部第1シード層は、MgO(酸化マグネシウム)を含む。より好ましくは、MgOを主成分とする。ここで、「主成分」とは、MgOの含有量が50体積%以上であることを示す。本構成例において、MgOは、典型的には(002)配向した塩化ナトリウム型結晶構造を有する。本構成例におけるMgOは、例えばX線回折を用いた面直方向のθ−2θ測定で得られるXRDプロファイルが、MgO結晶の代表的なピークである2θ=42.0°〜44.0°の範囲にピークを有する化合物群を含む。MgOは、2θ=42.0°〜44.0°の範囲にピークを有する化合物群であればよく、化学量論組成であっても、非化学量論組成であってもよい。また、MgOにCa、Sr、Baなどを添加してもよい。上部第1シード層は、その上に形成される規則合金からなる磁気記録層5の規則度を向上させる。また、上部第1シード層は、下部第1シード層の結晶粒子の分離構造を第2シード層4へ導き、第2シード層4中の結晶粒子の分離を促進すると考えられる。前述の効果を達成するために、上部第1シード層は、1nmから20nmの範囲内の厚さを有することが好ましい。より好ましくは、1nmから10nmの範囲内の厚さを有することである。
第1シード層3、下部第1シード層、および上部第1シード層は、スパッタリング法などの当該技術において知られている任意の方法を用いて形成することができる。ここで、上部第1シード層を形成する際に、基板1の温度を300℃から500℃の範囲内に設定することが好ましい。この温度で成膜することによって、上部第1シード層の表面粗さを低減することができる。一方、下部第1シード層においては、形成時に基板1を室温で形成してもよい。室温で形成された下部第1シード層は、基板温度300℃から500℃の範囲内で形成された上部第1シード層と同等またはそれより低い表面粗さを実現することができる。
第2シード層4は、磁気記録層5を良好なグラニュラー構造に導くための層である。第2シード層4は、TiNを主成分とする結晶粒子と、金属酸化物および炭素からなる群から選択される少なくとも1種以上の材料を主成分とする粒界材料とから形成される。TiNを主成分とする結晶粒子は、磁気記録層5の磁性結晶粒子とのぬれ性が良い。そのため、TiNを主成分とする結晶粒子上に優先的に磁気記録層5の磁性結晶粒子が形成される。ひいては、磁気記録層5の磁性結晶粒子の良好なグラニュラー構造に導く効果を有する。また、TiNを主成分とする結晶粒子は、磁気記録層5の磁性結晶粒子の結晶配向性を良好にする効果も有する。前記の効果を得るためには、高品質なTiNを主成分とする結晶粒子からなることが好ましい。
なお、第2シード層4において、結晶粒子と粒界材料は、並存した状態である。「結晶粒子と粒界材料が並存した状態」とは、TiNを主成分とする結晶粒子中に、粒界材料が混入していない状態である。そのためには、TiNと粒界材料とが化学反応を起こしにくいことが必要である。また、具体的には、前記状態は、TiNを主成分とする結晶粒子と、それを取り囲む粒界材料が存在する状態、または、TiNを主成分とする結晶粒子と、その三重点などに局所的に粒界材料が存在する状態である。
ここで「TiNを主成分とする結晶粒子」とは、TiNの含有量が第2シード層4の結晶粒子総量の50体積%以上であることを示す。TiNの含有量が多い方が、磁気記録層5を良好なグラニュラー構造に導くことができる。前記含有量は、好ましくは60体積%以上、より好ましくは、80体積%以上である。更に好ましくは、第2シード層4の結晶粒子は、TiNからなる。
「金属酸化物および炭素からなる群から選択される少なくとも1種以上の材料を主成分とする」とは、含有量が、第2シード層4の粒界材料総量の50体積%以上であることを示す。第2シード層4の粒界に含まれる意図しない不純物は、「金属酸化物および炭素からなる群から選択される少なくとも1種以上の材料」とは明確に区別される。意図しない不純物の含有量が少ない方が、磁気記録層5を良好なグラニュラー構造に導くことができる。前記含有量は、好ましくは80体積%以上、より好ましくは90体積%以上である。更に好ましくは、第2シード層4の粒界材料は、意図しない不純物を含まず、金属酸化物および炭素からなる群から選択される少なくとも1種以上の材料のみで構成される。
本構成例において、第2シード層4中のTiNは、典型的には(002)配向した塩化ナトリウム型結晶構造を有する。本構成例におけるTiNは、例えばX線回折を用いた面直方向のθ−2θ測定で得られるXRDプロファイルが、TiN結晶の代表的なピークである2θ=41.6°〜43.6°の範囲にピークを有する化合物群を含む。TiNは、2θ=41.6°〜43.6°の範囲にピークを有する化合物群であればよく、化学量論組成であっても、非化学量論組成であってもよい。また、TiNに、Al、Ga、Inなど窒化物を形成する材料を添加してもよい。第2シード層4は、スパッタリング法などの当該技術において知られている任意の方法により形成することができる。
ここで、500℃において化合物を単体から生成するときの自由エネルギー(標準生成ギブスエネルギー)の変化をΔG500と記すものとする。第1の態様において、第2シード層4中の粒界材料が金属酸化物であるとき、前記金属酸化物中の、金属元素と窒素とが反応した場合に形成される窒化物のΔG500がTiNのΔG500よりも高い材料から、前記粒界材料が選択される。そうすることで、粒界材料中の金属元素とTiNとの化学反応が起きにくい。そのため、粒界材料中の金属元素とTiNとが化合物を作って、結晶粒子中に混入するということがない。また、粒界材料中の金属元素により、TiNから窒素を奪われることがなく、TiNの窒素欠損による結晶欠陥を生じさせるということがない。更に、粒界材料は、TiNを主成分とする結晶粒子の粒界に、金属酸化物のまま析出する。ひいては、高品質なTiNを主成分とした結晶粒子と、粒界材料とが併存した第2シード層4が得られる。具体的には、前記粒界材料は、SiO、CaO、MgO、B、Ta、Al、Co、Sc、SrO、Yからなる群から選択される少なくとも1種以上である。なお、本発明では、金属元素として、Si、Bも含む。
第2の態様において、第2シード層4中の粒界材料が金属酸化物であり、前記金属酸化物中の金属元素と、酸素とが反応した場合に形成される酸化物のΔG500が、TiOのΔG500よりも低い材料から前記粒界材料が選択される。そうすることで、粒界材料中の酸素とTiNとの化学反応が起きにくい。そのため、酸素とTiNとが化合物を作って、結晶粒子中に混入するということがなく、TiNの結晶欠陥を生じさせない。また、粒界材料が還元されることがなく、粒界材料から還元された金属元素とTiNとが化合物を作るということもない。更に、粒界材料は、TiNを主成分とする結晶粒子の粒界に、金属酸化物のまま析出する。ひいては、高品質なTiNを主成分とした結晶粒子と、粒界材料とが併存した第2シード層4が得られる。具体的には、前記粒界材料は、CaO、MgO、Al、Sc、SrO、Y、ZrO、HfOからなる群から選択される少なくとも1種以上である。
より好ましくは、第2シード層4中の粒界材料が第1、第2の態様を共に満たす。具体的には、前記粒界材料は、Al、MgO、CaO、Sc、SrO、およびYからなる群から選択される少なくとも1種以上である。上記の材料にすることで、より高品質なTiNを主成分とした結晶粒子と、粒界材料とが併存した第2シード層4が得られる。
また、第3の態様において、第2シード層4中の粒界材料は、炭素から選択される。炭素がTiと反応した場合に形成されるTiCのΔG500は、TiNのΔG500よりも高い。そのために、TiNの一部が炭化することがなく、TiNは結晶欠陥を生じない。また、粒界材料として投入した炭素は、TiNを主成分とする結晶粒子の粒界に、炭素のまま析出する。ひいては、高品質なTiNを主成分とした結晶粒子と、粒界材料とが併存した第2シード層が得られる。
第2シード層4において、粒界材料が、第2シード層の総量に基づき、5体積%以上50体積%未満であることが好ましく、10体積%以上45体積%以下であることがより好ましく、20体積%以上40体積%以下であることが更に好ましい。粒界材料の量が多すぎると、例えば粒界材料が第2シード層の表面(磁気記録層との界面)に回り込み、磁気記録層の結晶性を乱す。また、例えば、粒界材料が偏析しきれず、TiN結晶粒子中に残存してしまうために、TiNの結晶性が低下し、磁気記録層の結晶性を乱す。ひいては、磁気特性が悪化する。一方、粒界材料の量が少なすぎると粒界材料の偏析量が少なすぎ、TiN結晶粒子を取り囲むことができない部分が多数発生する。そのために、磁気記録層5の良好なグラニュラー構造を導くことができなくなる。第2シード層4の総量に基づき、粒界材料の量を適宜選択することが必要である。
より好ましくは、第2シード層4は、TiNを主成分とする結晶粒子と、TiNを主成分とする結晶粒子の周囲を取り囲む粒界材料からなるグラニュラー構造を有する。ここで「主成分」とは、TiNの含有量が結晶粒子の総量の50体積%以上であることを示す。TiNの含有量が多い方が、磁気記録層5を良好なグラニュラー構造に導くことができる。前記含有量は、好ましくは60体積%以上、より好ましくは80体積%以上である。更に好ましくは、第2シード層4の結晶粒子は、TiNからなる。
第2シード層4の良好な粒分離を行うために、高温で成膜してもよい。成膜時の好ましい基板温度は、20〜600℃の範囲内である。20℃以上であることによって第2シード層4の良好な粒分離が促進され、600℃以下であるため表面粗さを抑制するという効果がある。
磁気記録層5の良好なグラニュラー構造を導くために、第2シード層4は、0.5nmから20nmの範囲内の厚さを有することが好ましい。より好ましくは、1nmから10nmの範囲内の厚さを有することである。更に好ましくは、2nmから5nmの範囲内の厚さを有することである。厚すぎるとTiNの柱状成長が継続できない部分がではじめ、徐々に磁気記録層5のグラニュラー構造を乱す。逆に、薄すぎるとTiNがムラ状に形成され、磁気記録層5のグラニュラー構造を乱すためである。そのため、厚さを適宜選択することが必要である。
磁気記録層5は、規則合金からなる磁性結晶粒子を含む。規則合金からなる磁性結晶粒子は、例えばFeおよびCoからなる群から選択される少なくとも1種の第1元素と、Pt、Pd、Au、Ir、Ru、およびRhからなる群から選択される少なくとも1種の第2元素とを含む。好ましい規則合金は、FePt、CoPt、FePd、およびCoPdからなる群から選択されるL1型規則合金である。特性変調のために、規則合金は、Ni、Mn、Cu、Ru、Ag、Au、およびCrからなる群から選択される少なくとも1種の元素をさらに含んでもよい。望ましい特性変調は、規則合金の規則化に必要な温度の低下を含む。
本発明に用いられる規則合金において、第2元素に対する第1元素の組成比は、原子数を基準として0.7〜1.3の範囲内、好ましくは0.8〜1.1の範囲内としてもよい。この範囲内の組成比を用いることによって、大きな磁気異方性定数Kuを有するL1型規則構造を得ることができる。
あるいはまた、磁気記録層5は、磁性結晶粒子と、磁性結晶粒子を取り囲む非磁性結晶粒界とからなるグラニュラー構造を含む。磁性結晶粒子は、前述の規則合金を含んでもよい。第2シード層4のTiN結晶粒子に対して、規則合金からなる磁性結晶粒子はぬれ性が高い。そのため、第2シード層4のTiN結晶粒子上には積極的に磁性結晶粒子が形成される。非磁性結晶粒界は、SiO、TiO、ZnOなどの酸化物、SiN、TiNなどの窒化物、炭素(C)、ホウ素(B)などの材料を含んでもよい。磁気記録層5の非磁性結晶粒界は、第2シード層4の粒界材料と同種の化合物を含むものが好ましい。例えば、第2シード層4の粒界材料が酸化物であれば、磁気記録層5の非磁性粒界材料は酸化物を含むものが好ましい。同様に、炭素同士、炭化物同士、窒化物同士が好ましい。更に好ましくは、第2シード層4の粒界材料と同じ化合物を含む。例えば、第2シード層の粒界材料がAlであれば、磁気記録層5の非磁性粒界材料はAlを含むものが好ましい。
または、磁気記録層5の非磁性結晶粒界は、第2シード層4の粒界材料との間で化合物を作るものが好ましい。例えば、第2シード層4の粒界材料がMgOやCaOであれば、磁気記録層5の非磁性粒界材料はCを含むものが好ましい。そうすることで、第2シード層の粒界材料上に、磁気記録層5の非磁性粒界材料が積極的に形成される。そのため、良好なグラニュラー構造が得られる。
第2シード層4の粒界材料と、磁気記録層5の非磁性結晶粒界との好ましい組合せは、例えば、粒界材料と非磁性結晶粒界の順に、AlとAl、MgOとMgO、MgOとC、CaOとCaO、CaOとC、ScとSc、SrOとSrO、YとYなどである。
また、磁気記録層5は、単層であってもよいし、複数の磁気記録層5からなってもよい。磁気記録層5のうち第2シード層4と接する層が、規則合金からなる磁性結晶粒子を含むグラニュラー構造を有する磁気記録層5であればよい。第2シード層4と接していない層は、非グラニュラー構造であってもよいし、グラニュラー構造を有してもよい。非グラニュラー構造を含むものとして、磁性キャップ層と呼ばれる連続層からなる磁気記録層を、グラニュラー構造を有する磁気記録層の上部に設けてもよい。さらに、Ruなどの結合層を磁気記録層で挟んで積層したECC(Exchange−coupled Composite)構造を有してもよい。
磁気記録層5は、スパッタリング法により所定の材料を堆積させることによって形成することができる。規則合金を含む磁気記録層5を形成する場合、規則合金を形成する材料を含むターゲットを用いることができる。より詳細には、前述の規則合金を構成する元素を所定の比率で含むターゲットを用いることができる。あるいはまた、単一の元素を含む複数のターゲットを用い、それぞれのターゲットに印加する電力を調整して元素の比率を制御することによって、磁気記録層5を形成してもよい。グラニュラー構造を有する磁気記録層5を形成する場合、磁性結晶粒子を形成する材料と非磁性結晶粒界を形成する材料とを所定の比率で含むターゲットを用いることができる。あるいはまた、磁性結晶粒子を形成する材料を含むターゲットと非磁性結晶粒界を形成する材料を含むターゲットとを用い、それぞれのターゲットに印加する電力を調整する。こうして磁性結晶粒子および非磁性結晶粒界の構成比率を制御することによって、磁気記録層5を形成してもよい。ここで、磁性結晶粒子を規則合金で形成する場合、規則合金を構成する元素を別個に含む複数のターゲットを用いてもよい。
磁気記録層5が規則合金を含む場合、磁気記録層5を形成する際に基板1の加熱を伴う。この際の基板1の温度は、例えば300℃〜600℃の範囲内である。この範囲内の基板温度を採用することによって、磁気記録層5中の規則合金の規則度を向上させることができる。300℃以上であるため、L1規則合金の規則度を向上することができる。600℃以下であるため表面粗さを抑制するという効果がある。
任意で、保護層(不図示)を設けてもよい。保護層は、磁気記録媒体の分野で慣用的に使用されている材料を用いて形成することができる。具体的には、Ptなどの非磁性金属、ダイアモンドライクカーボンなどの炭素系材料、あるいは窒化シリコンなどのシリコン系材料を用いて、保護層を形成することができる。また、保護層は、単層であってもよく、積層構造を有してもよい。積層構造の保護層は、たとえば、特性の異なる2種の炭素系材料の積層構造、金属と炭素系材料との積層構造、または金属酸化物層と炭素系材料との積層構造であってもよい。保護層は、スパッタリング法、CVD法、真空蒸着法などの当該技術において知られている任意の方法を用いて形成することができる。
任意で、液体潤滑剤層(不図示)を設けてもよい。液体潤滑剤層は、磁気記録媒体の分野で慣用的に使用されている材料を用いて形成することができる。たとえば、パーフルオロポリエーテル系の潤滑剤などを用いることができる。液体潤滑剤層は、たとえば、ディップコート法、スピンコート法などの塗布法を用いて形成することができる。
[1]実施例および比較例の概要
第1表に、実施例および比較例の概要を示す。第1表に示すように、実施例および比較例では、Ru−TiO粒径制御層がある場合とない場合、TiN−X第2シード層がある場合とない場合を示す。更に、Xが、Al、MgO、C(炭素)、ZrOの場合とない場合を示す。また、第2シード層におけるXに関しては、その添加量を20〜70体積%の範囲(一部60体積%までの範囲)で変化させた場合を示す。なお、本願の実施例および比較例では、原則として「A−B」などの表記は、AとBが並存するように形成したことを意味する。更に、「A−C体積%B」などの表記は、AとBの総量に対して、BがC体積%存在するように形成したことを意味する。
Figure 0006665963
実施例1、2、3は、粒径制御層としてRu−TiO層を形成し、第1シード層としてMgO/ZnO層を形成し、第2シード層としてTiN−X層を形成したものである。実施例1においてX=Alとし、実施例2においてX=MgOとし、実施例3においてX=C(炭素)とした。なお、A/Bなどの表記は、Aが上層であり、Bが下層であることを意味する。
一方、比較例1は、粒径制御層としてRu−TiO層を形成し、第1シード層としてMgO/ZnO層を形成しているものの、第2シード層を形成していない。第2シード層の有効性を確認するための例である。
比較例2は、第2シード層がTiNからなり、Xが添加されていない。Xの添加の必要性を確認するための例である。実施例1、2、3におけるX添加量0のデータに対応する。
比較例3、4は、実施例1、2において粒径制御層がない場合に対応する。粒径制御層の必要性を確認するための例である。
比較例5は、比較例3、4に対して、第2シード層がTiNからなり、Xが添加されていない。
比較例6は、実施例1、2、3に対して、第2シード層のX=ZrOとしたものである。
[2]実施例、比較例の層構成および作製条件
第2表に、実施例および比較例の層構成および作製条件を示す。
実施例1を例に、具体的な層構成およびその成膜方法を示す。実施例1の磁気記録媒体の構成の概略断面図を図2に示す。実施例1の層構成は、図2に示すように、基板1側から、密着層6、配向制御層7、粒径制御層2、非磁性中間層8、第1シード層3、第2シード層4、磁気記録層5がこの順に形成されている。
より具体的な層構成を示す。まず、ガラス製の基板1上に、Ni合金(4nm)/CrTi合金(15nm)からなる密着層6が形成されている。その上に、Ru(6nm)/Ru合金(4nm)からなる配向制御層7が形成されている。その上に、Ru−25体積%TiO(1nm)からなる粒径制御層2が形成されている。その上に、Pt−40体積%TiO(8nm)からなる非磁性中間層8が形成されている。その上に、MgO(2nm)/ZnO(2nm)からなる第1シード層3が形成されている。その上に、TiN−Al(5nm)からなる第2シード層4が形成されている。その上に、FePt−30体積%C(4nm)からなる磁気記録層5が形成されている。なお、A/Bなどの表記は、Aが上層であり、Bが下層であることを意味し、カッコ内は膜厚を意味する。
実施例1の成膜方法は、第2表に記載された通りである。具体的には、ガラス製の基板1を準備し、下層から順にスパッタリングで成膜を行った。まず、密着層6としてCrTi合金とNi合金を、配向制御層7としてRu合金とRuを、この順に成膜した。粒径制御層2としてRu−25体積%TiOを、非磁性中間層8としてPt−40体積%TiOを、この順に、成膜した。ここまでに成膜は、DCマグネトロンスパッタリングで、所定の材料組成が成膜されるように調整されたターゲットを用いて、第2表に記載した所定の膜厚になるように、電力、ガス圧を調整して成膜した。次に、第1シード層3を、RFマグネトロンスパッタリングで成膜した。第1シード層3は、第2表に記載した電力、ガス圧で室温にてZnO層を成膜、基板を350℃に加熱した後、第2表に記載した電力、ガス圧でMgO層を成膜した。更に、第2シード層4を、基板を350℃に保持した状態で、TiNとAlの2つのターゲットを用いてRFによるコスパッタリングで成膜した。Alターゲット側の電力量を500Wで固定し、TiNターゲット側の電力量を調整することで、Al量が異なる複数のサンプルを作製した。TiNとAlの総量に対して、Al量が、20、30、40、50、60、70体積%の6種類のサンプルを作製した。最後に、基板を450℃に加熱した後、磁気記録層5として、FePt−CをDCマグネトロンスパッタリングで成膜した。FePt−Cの総量に対してCが30体積%が成膜されるように調整されたターゲットを用いて、膜厚4nmになるように第2表に記載した電力、ガス圧で成膜を行った。
実施例2は、実施例1に対して、第2シード層をTiN−MgOとした。実施例3は、実施例1に対して、第2シード層をTiN−Cとし、膜厚を1nmとした。また、実施例3では、TiNとCの総量に対して、C量を40体積%のみとした。比較例1は、実施例1に対して、第2シード層を除いて成膜した。比較例2は、実施例1に対して、第2シード層をTiNとした。比較例3は、実施例1に対して、粒径制御層を除き、非磁性中間層をPtとした。比較例4は、実施例2に対して、粒径制御層を除き、非磁性中間層をPtとした。比較例5は、比較例3に対して、第2シード層をTiNとした。比較例6は、実施例1に対して、第2シード層をTiN−ZrOとした。
実施例1〜3、比較例1〜6におけるサンプル番号と粒径制御層の関係を第3表〜第11表に示す。










Figure 0006665963
Figure 0006665963
Figure 0006665963
Figure 0006665963
Figure 0006665963
Figure 0006665963
Figure 0006665963
Figure 0006665963
Figure 0006665963
Figure 0006665963
[3]実施例および比較例の評価手法
走査電子顕微鏡(SEM)にて、基板に垂直な方向から基板に平行な膜表面の粒子構造を観察した。SEM観察は、倍率40万倍、加速電圧15kVで行った。また、SEM観察により取得した画像において幅300nm×高さ200nmの領域から、画像解析ソフトウェア(三谷商事株式会社製、商品名:WinRoof)を用いて、画像処理により粒子と粒界の領域を分離し、粒径解析を行った。粒径解析では、分離された各粒子毎に円相当径による粒径を割りだした。全ての粒径の平均値としての平均粒径<D>、全ての粒径の分散値としての粒径分散σを算出した。
PPMS装置(Quantum Design社製、商品名:Physical Property Measurement System)を用いて自発磁化の磁場印加角度依存性を評価し、所望の温度における磁気異方性定数Kuを決定した。磁気異方性定数Kuの決定には、R. F. Penoyer、「Automatic Torque Balance for Magnetic Anisotropy Measurements」、The Review of Scientific Instruments、1959年8月、第30巻第8号、711−714、ならびに近角聰信、強磁性体の物理(下)、裳華房、10−21に記載の手法を用いた(非特許文献3及び4参照)。
また、振動試料型磁力計(VSM)を用いて、磁化曲線を測定し、保磁力を評価した。磁化曲線は、基板に垂直な面で測定した。
[4]実施例1、2、3と比較例1の比較
第2シード層の効果を検証するため、TiN−40体積%Alからなる第2シード層(実施例1、サンプル番号:1−3)、TiN−40体積%MgOからなる第2シード層(実施例2、サンプル番号:2−3)、TiN−40体積%Cからなる第2シード層(実施例3、サンプル番号:3)と、第2シード層のないもの(比較例1、サンプル番号:4)を比較した。SEM観察の結果を図3〜6に、粒径解析の結果と磁気異方性定数の結果を第12表に示す。
図3は、実施例1のサンプル番号=1−3のSEM写真である。図4は、実施例2のサンプル番号=2−3のSEM写真である。図5は、実施例3のサンプル番号=3のSEM写真である。図6は、比較例1のサンプル番号=4のSEM写真である。
Figure 0006665963
・平均粒径、粒径分散の比較
図3〜6のSEM写真に示すように、実施例1〜3および比較例1では、明瞭なグラニュラー構造が形成できている。粒径を比較すると、比較例1に対し、実施例1〜3では全体的に粒径が小さくなっていることが分かる。第12表に示すように、第2シード層を形成しない比較例1の磁気記録層の平均粒径は8.3nm、粒径分散2.6nmであった。これに対し、TiN−Al、TiN−MgO、または、TiN−Cからなる第2シード層を形成した実施例1、2、3では、磁気記録層の平均粒径が6.9nm、7.9nm、7.3nmに減少し、粒径分散も1.9nm、2.3nm、2.0nmと小さくすることができた。
・磁気特性(磁気異方性エネルギー)の比較
第12表に示すように、磁気異方性定数Kuに関しては、同等かやや向上した。また、実施例1、2、3ともに、Ku=1.0×10erg/cm以上あり、磁気記録媒体として適用可能であることが確認された。
これらの結果から、TiN−Al、TiN−MgO、または、TiN−Cからなる第2シード層を、MgO/ZnO第1シード層とFePt磁気記録層の間に形成することで、磁気特性(磁気異方性エネルギー)の低下を伴わないことがわかった。こうして、磁気記録層の磁性結晶粒子の平均粒径、および粒径分散を小さくすることができ、好ましいことが分かる。
[5]実施例1と比較例2の比較
[5−1]第2シード層のX=Alの効果を示すためのサンプル
実施例1は、TiN−Alからなる第2シード層を含む例である。Alの最適な添加量を示すため、実施例1において、異なるAlの添加量を有する複数のサンプル(サンプル番号:1−1〜1−6)を作製した。比較例2は、Al添加なしのTiNからなる第2シード層を含む例(サンプル番号:5)である。
第13表、図3、7〜10にAlの各添加量における結果を示す。図3は、実施例1のサンプル番号=1−3のSEM写真である。図7の丸印は、実施例1と比較例2の平均粒径の比較を示す。図8の丸印は、実施例1と比較例2の粒径分散の比較を示す。図9の丸印は、実施例1と比較例2の磁気異方性定数の比較を示す。図10は、比較例2のサンプル番号=5のSEM写真である。
Figure 0006665963
[5−2]第2シード層のX=Alの効果
第2シード層にAlを添加しないTiNを用いたサンプル(比較例2)の磁気記録層は、図10のSEM写真に示すように、微細な粒子が複数凝集し、粗大で角ばった凝集粒子を含む。第13表に示すように、平均粒径、粒径分散は、約9.7nm、4.6nmであった。それに対し、第2シード層がTiN−Alからなるサンプル(実施例1、サンプル番号:1−3)の磁気記録層は、図3のSEM写真に示すように、微細な粒子によるグラニュラー構造を有する。また、第13表に示すように、平均粒径、粒径分散は約6.9nm、1.9nmであった。TiN−Alにより、平均粒径、粒径分散ともに減少していることが分かる。
実施例1と同様の手順で粒径制御層まで形成したサンプルにおいて、粒径制御層表面で観察した平均粒径は、約7nmであった。つまり、本実施例1のサンプル番号:1−3において、磁気記録層の平均粒径と粒径制御層の平均粒径は、ほぼ同じになった。第2シード層をTiN−Alにすることにより、Alを添加しないTiNに比べて、磁気記録層の平均粒径が粒径制御層の平均粒径に近づいたことになる。このことは、第2シード層に、TiN−Alを用いることで、粒径制御層のグラニュラー構造を反映した磁気記録層のグラニュラー構造が得られた結果である。
[5−3]第2シード層のX=AlにおけるAl量の最適な範囲
図7の丸印、図8の丸印、および第13表に示すように、Al添加量40体積%まではAl添加量が増加するに従って、平均粒径、粒径分散は、減少する。
平均粒径は、図7の丸印に示すように、Al添加量40体積%までAl添加量にしたがって、粒径制御層の粒径である7nmに向かって減少していく。40体積%で粒径制御層の平均粒径である7nmと同等になる。40体積%〜70体積%では、粒径制御層の平均粒径と同等の7nmで一定になる。
粒径分散は、図8の丸印に示すように、Al添加することで、添加なしに比べて大幅に減少する。更に、添加量40体積%までAl添加量にしたがって減少を続け、40体積%〜70体積%では、粒径分散1.8nm程度で一定となる。
図9の丸印、および第13表に示すように、磁気特性(磁気異方性定数)は、Al添加量が40体積%まで上昇する。50体積%で大幅に低下し、50体積%〜70体積%では1.0×10erg/cmを下回ってしまう。40体積%までの磁気異方性定数の向上は、下層の粒界を跨ぐことによる結晶欠陥が減少し、磁気記録層の結晶性が良好になったことによる結果である。一方、50体積%以上で磁気異方性定数が低下したのは、Al添加量が多すぎることで粒界に偏析し切れなくなり、第2シード層と磁気記録層との界面に偏析してしまったため、磁気記録層のFePtのヘテロエピタキシャルの成長が阻害されたことが原因と考えられる。また、50体積%以上では、磁気記録媒体への適用として目安となる1.0×10erg/cmを下回ってしまう。
以上のように、TiNにAlを添加していくことで、磁気記録層の粒子構造は、粒径制御層の粒子構造を反映するようになり、平均粒径、粒径分散が小さくなり、磁気特性が向上する。ただし、Alの添加量を50体積%以上にすると、平均粒径、粒径分散の減少はなくなり、磁気特性が悪化する。このため、Alの添加量は50体積%より少なくすることが好ましい。
[6]実施例1と比較例2、3、5の比較
[6−1]粒径制御層の必要性を示すためのサンプル
実施例1の層構成は、Ru−TiOからなる粒径制御層、およびTiN−Alからなる第2シード層を含む例である。比較例3の層構成は、粒径制御層の必要性を示すため、粒径制御層がなく、TiN−Alからなる第2シード層を含む例である。実施例1と同様、異なるAlの添加量を有する複数のサンプル(サンプル番号:6−1〜6−6)を作製した。
比較例2、比較例5の層構成は、実施例1、比較例3に対して、第2シード層がAl添加のないTiNからなるものである。
第14表、図7〜9、11にAlの各添加量における結果を示す。図11は、比較例3のサンプル番号=6−3のSEM写真である。図7の四角印は、比較例3、5の平均粒径を示す。図8の四角印は、比較例3、5の粒径分散を示す。図9の四角印は、比較例3、5の磁気異方性定数を示す。
Figure 0006665963
[6−2]粒径制御層の効果
粒径制御層を含まない層の上に、TiN−Al第2シード層を作製した場合(比較例3、サンプル番号=6−3)、図11のSEM写真に示すように、磁気記録層は、粒径数nmの微細な粒子と、粒径数十nmの巨大な粒子が混在した状態になる。図3の粒径制御層を含んだ層の上に形成した場合(実施例1、サンプル番号=1−3)のように、均一な粒子によるグラニュラー構造の磁気記録層とはならない。
図7の丸印と四角印に示すように、第2シード層にAlを含まない場合(比較例2、5)の磁気記録層の結晶粒子の平均粒径は、粒径制御層を含むもの(丸印)が9.7nm、粒径制御層を含まないもの(四角印)が9.5nmとなり、同じように大きい。
粒径制御層を含まないもの(比較例3)の磁気記録層の結晶粒子の平均粒径は、図7の四角印に示すように、Alを添加することで8nm程度に減少する。しかしながら、Al添加量を変えても小さくならない。図7の丸印で示す粒径制御層を含むもの(実施例1)に対して、平均粒径は大きい。
粒径制御層を含まないもの(比較例3)の磁気記録層の結晶粒子の粒径分散は、図8の四角印に示すように、Alを添加することでも3.4nmまでしか減少しない。しかしながら、Al添加量を変えても2.5〜3.5nm程度にしかならない。図8の丸印で示す粒径制御層を含むもの(実施例1)に対して、粒径分散も大きい。40体積%までの添加では、磁気記録媒体への適用として目安となる粒径分散3nm未満にならず、磁気記録媒体として適用することはできない。
粒径制御層を含まないもの(比較例3)の磁気異方性定数は、図9の四角印に示すように、Al添加量が40体積%までほぼ変わらず、50体積%以上で大幅に低下する。図9の丸印で示す粒径制御層を含むもの(実施例1)において見られた、40体積%までにおける磁気異方性定数の向上が見られない。また、50体積%以上では、磁気記録媒体への適用として目安となる磁気異方性定数1.0×10erg/cmを下回ってしまった。
以上のように、TiN−Al第2シード層を含む場合において、粒径制御層を形成しない場合は、磁気記録媒体へ適用可能な粒径分散および磁気異方性定数を同時に満足するものは得られない。TiN−Al第2シード層を含む場合において、粒径制御層を形成することで、磁気記録層の磁性結晶粒子の平均粒径、粒径分散共に大幅に小さくすることができるとともに、磁気異方性定数も向上できる。
[7]実施例2と比較例2の比較
[7−1]第2シード層のX=MgOの効果を示すためのサンプル
実施例2は、TiN−MgOからなる第2シード層を含む例である。MgOの最適な添加量を示すため、実施例2において、異なるMgOの添加量を有する複数のサンプル(サンプル番号:2−1〜2−6)を作製した。比較例2は、MgO添加なしのTiNからなる第2シード層を含む例(サンプル番号:5)である。
第15表、図4、12〜14にMgOの各添加量における結果を示す。図4は、実施例2のサンプル番号=2−3のSEM写真である。図12は、実施例2と比較例2の平均粒径の比較を示す。図13は、実施例2と比較例2の粒径分散の比較を示す。図14は、実施例2と比較例2の磁気異方性定数の比較を示す。図10は、比較例2のサンプル番号=5のSEM写真である。
Figure 0006665963
[7−2]第2シード層のMgO添加の効果
第2シード層にMgOを添加しないTiNを用いたサンプル(比較例2)での磁気記録層は、図10のSEM写真に示すように、微細な粒子が複数凝集し、粗大で角ばった凝集粒子を含む。第15表に示すように、平均粒径と、粒径分散は、約9.7nm、4.6nmであった。それに対し、第2シード層がTiN−MgOからなるサンプル(実施例2、サンプル番号:2−3)の磁気記録層は、図4のSEM写真に示すように、微細な粒子によるグラニュラー構造を有する。また、第15表に示すように、平均粒径、粒径分散は約7.9nm、2.3nmであった。TiN−MgOにより、平均粒径、粒径分散ともに減少していることが分かる。
実施例1と同様の手順で、粒径制御層まで形成したサンプルにおいて、粒径制御層表面で観察した平均粒径は、約7nmであった。第2シード層において、TiNにMgOを添加することにより、MgOを添加しない場合に比べて、磁気記録層の磁性結晶粒子の平均粒径が粒径制御層の平均粒径に近づいたことになる。このことは、第2シード層に、TiN−MgOを用いることで、粒径制御層のグラニュラー構造を反映して、良好な磁気記録層のグラニュラー構造が得られた結果である。
[7−3]第2シード層のX=MgOにおけるMgO量の最適な範囲
図12の丸印、図13の丸印、および第15表に示すように、MgO添加量50体積%まではMgO添加量が増加するに従って、平均粒径、粒径分散は、減少する。
平均粒径は、図12の丸印に示すように、MgO添加量50体積%までMgO添加量にしたがって、粒径制御層の粒径である7nmに向かって減少し、50体積%で平均粒径7.7nmとなる。50体積%〜70体積%では、7.7nm程度で一定になる。
粒径分散は、図13の丸印に示すように、MgO添加することで、添加なしに比べて大幅に減少する。更に、添加量50体積%までMgO添加量にしたがって減少を続け、50体積%〜70体積%では、粒径分散2nm程度で一定となる。
図14の丸印、および第15表に示すように、磁気特性(磁気異方性定数)は、MgO添加量が40体積%まで上昇する。50体積%で低下し、50体積%〜70体積%では徐々に低下する。40体積%までの磁気異方性定数の向上は、下層の粒界を跨ぐことによる結晶欠陥が減少し、磁気記録層の結晶性が良好になったことによる結果である。一方、50体積%以上で磁気異方性定数が低下したのは、MgO添加量が多すぎることで粒界に偏析し切れなくなり、第2シード層と磁気記録層との界面に偏析してしまったため、磁気記録層のFePtのヘテロエピタキシャルの成長が阻害されたことが原因と考えられる。
以上のように、TiNにMgOを添加していくことで、磁気記録層の粒子構造は、粒径制御層の粒子構造を反映するようになり、平均粒径、粒径分散が小さくなり、磁気特性が向上する。ただし、MgO添加量を50体積%以上にすると、磁気特性が悪化する。このため、MgOの添加量は50体積%より少なくすることが好ましい。
[8]実施例2と比較例2、4、5の比較
[8−1]粒径制御層の必要性を示すためのサンプル
実施例2の層構成は、Ru−TiOからなる粒径制御層、およびTiN−MgOからなる第2シード層を含む例である。比較例4の層構成は、粒径制御層の必要性を示すため、粒径制御層がなく、TiN−MgOからなる第2シード層を含む例である。実施例2と同様、異なるMgOの添加量を有する複数のサンプル(サンプル番号:7−1〜7−6)を作製した。
比較例2、比較例5の層構成は、実施例2、比較例4に対して、第2シード層がMgO添加のないTiNからなるものである。
第16表、図12〜15にMgOの各添加量における結果を示す。図15は、比較例4のサンプル番号=7−3のSEM写真である。図12の四角印は、比較例4、5の平均粒径を示す。図13の四角印は、比較例4、5の粒径分散を示す。図14の四角印は、比較例4、5の磁気異方性定数を示す。
Figure 0006665963
[8−2]粒径制御層の効果
粒径制御層を含まない層の上に、TiN−MgO第2シード層を作製した場合(比較例4、サンプル番号=7−3)、図15のSEM写真に示すように、磁気記録層は、粒径数nmの微細な粒子と、粒径数十nmの巨大な粒子が混在した状態になる。図4の粒径制御層を含んだ層の上に形成した場合(実施例2、サンプル番号=2−3)のように、均一な粒子によるグラニュラー構造の磁気記録層とはならない。
図12の丸印と四角印に示すように、第2シード層にMgOを含まない場合(比較例2、5)の磁気記録層の結晶粒子の平均粒径は、粒径制御層を含むもの(丸印)が9.7nm、粒径制御層を含まないもの(四角印)が9.5nmとなり、同じように大きい。
粒径制御層を含まないもの(比較例4)の磁気記録層の結晶粒子の平均粒径は、図12の四角印に示すように、MgOを添加しても減少傾向は示さず、8.6〜9.9nmとなる。図7の丸印で示す粒径制御層を含むもの(実施例1)に対して、平均粒径は大きい。
粒径制御層を含まないもの(比較例4)の磁気記録層の結晶粒子の粒径分散は、図13の四角印に示すように、MgOを添加しても、3.2〜4.0nm程度にしか減少しない。図13の丸印で示す粒径制御層を含むもの(実施例1)に対して、粒径分散も大きい。磁気記録媒体への適用として目安となる粒径分散3nm未満にならず、磁気記録媒体として適用することはできない。
粒径制御層を含まないもの(比較例4)の磁気異方性定数は、図14の四角印に示すように、MgO添加量が30体積%まで上昇し、50体積%以上で大幅に低下する。図9の丸印で示す粒径制御層を含むもの(実施例1)において見られた、40体積%までにおける磁気異方性定数の向上が見られない。また、50体積%以上では、磁気記録媒体への適用として目安となる磁気異方性定数1.0×10erg/cmを下回ってしまった。
以上のように、TiN−MgO第2シード層を含む場合において、粒径制御層を形成しない場合は、磁気記録媒体へ適用可能な粒径分散および磁気異方性定数を同時に満足するものは得られない。TiN−MgO第2シード層を含む場合において、粒径制御層を形成することで、磁気記録層の磁性結晶粒子の平均粒径、粒径分散共に大幅に小さくすることができるとともに、磁気異方性定数も向上できる。
[9]実施例1と比較例2、6の比較
[9−1]第2シード層のXをZrOとした場合のサンプル
比較例6の層構成は、実施例1の第2シード層TiN−Alに対して、第2シード層をTiN−ZrOとした。比較例6の層構成について、異なるZrOの添加量を有する複数のサンプルを作製した。第17表、図16〜19に添加量および結果を示す。
図16は、実施例1と比較例2、6の平均粒径の比較を示す。図17は、実施例1と比較例2、6の粒径分散の比較を示す。図18は、実施例1と比較例2、6の磁気異方性定数の比較を示す。図19Aは、実施例1のサンプル番号=1−3の磁化曲線を示す。図19Bは、比較例6のサンプル番号=10−3の磁化曲線を示す。
Figure 0006665963
[9−2]第2シード層のXをZrOとした場合の平均粒径と粒径分散について
第2シード層をTiN−ZrOとした場合の磁気記録層の結晶粒子の平均粒径は、図16の四角印で示すように、ZrO添加なし(比較例2)のものに比べて減少する。ZrO添加量50体積%まではZrO添加量が増加するに従って減少し、50体積%以上で7.6〜7.8nm程度で一定になる。減少する傾向は、第2シード層をTiN−Alとした場合(実施例1)と同様だが、減少する量は小さい。
粒径分散は、図17の四角印、および第17表に示すように、ZrO添加することで、添加なしに比べて減少するが、図17の丸印で示す第2シード層をTiN−Alとした場合(実施例1)に比べて、減少する量は小さい。また、ZrO添加量が増加するに従って減少するものの、60体積%添加しても粒径分散は3.1nmである。磁気記録媒体への適用として目安となる粒径分散3nm未満にならず、磁気記録媒体として適用することはできない。
[9−3]第2シード層のXをZrOとした場合磁気特性について
第2シード層をTiN−ZrOとした場合の磁気記録層の磁気異方性定数は、図18の四角印、および第17表に示すように、ZrO添加で低下し、1.0×10erg/cmを下回ってしまい磁気記録媒体として適用できない。
また、図19Aに示すように、第2シード層をTiN−Alとした場合(実施例1)の磁化曲線は、保磁力が20kOeとなり、磁気記録媒体への適用として目安となる保磁力15kOe以上となる。一方、図19Bに示すように、第2シード層をTiN−ZrOとした場合(比較例6)の磁化曲線は、保磁力が1kOe程度しかなく、磁気記録媒体として適用することはできない。
[10]第2シード層TiN−Xの考察
磁気記録層を良好なグラニュラー構造に導くためには、第2シード層においてTiN結晶粒子と粒界材料Xは並存している必要がある。そのため、TiNとXは反応性が低い方が好ましい。TiNとXの反応性を考えるうえで、第2シード層の成膜時の基板温度(20℃〜600℃)、および磁気記録層成膜中の基板温度(300℃〜600℃)を考慮し、500℃における標準生成ギブスエネルギー(ΔG500と記す)を検討した。
第18表に、各種金属元素の500℃における窒化反応および酸化反応の標準生成ギブスエネルギーΔG500を示す。また、ここではSi、Bも金属元素として検討した。






















Figure 0006665963
TiN−XのXが金属酸化物の場合、500℃におけるギブスの自由エネルギーΔG500から、金属酸化物中に含まれる金属元素の窒化反応のΔG500がTiの窒化反応のΔG500よりも高くなるものが好ましい。そうすることで、TiN結晶の窒素欠損が生じない。
また、金属酸化物中に含まれる金属元素の酸化反応のΔG500がTiの酸化反応のΔG500よりも低くなるものが好ましい。そうすることで、TiN結晶の一部が酸化することによる欠陥が生じない。
TiN−XのXは、第18表において窒化反応のΔG500がTiより高く、酸化反応のΔG500がTiより低い金属元素からなる金属酸化物である、Al(実施例1)、MgO(実施例2)、CaO、Sc、SrOおよび、Yからなる少なくとも1種以上を主成分とすることが好ましい。
一方、ZrO(比較例1)やHfOは、酸化物中に含まれる金属元素の窒化反応のΔG500がTiの窒化反応のエネルギーよりも低い。そのため、TiN結晶から窒素を奪って、TiN結晶に欠陥が生じると考えられ、好ましくない。
また、SiO、B、Ta、Coは、酸化物中に含まれる金属元素の酸化反応のΔG500がTiの酸化反応のΔG500よりも高い。そのため、TiN結晶へ酸素を供給して、TiN結晶の一部が酸化することによる欠陥が生じる可能性があると考えられ、好ましくない。
第2シード層TiN−Xにおいて、X=Al、MgOの場合、FePt層の磁気特性を低下させることはなかったが、X=ZrOでは、磁気特性が低下した。これは、ZrOによりTiN結晶に欠陥が生じ、そのためにヘテロエピタキシャル成長するFePt結晶の結晶性が悪化したためと考えられる。
第19表に、Tiの500℃における窒化反応および炭化反応の標準生成ギブスエネルギーΔG500を示す。
第19表に示すように、TiCよりTiNの方がΔG500が低く、より安定である。第2シード層TiN−Xにおいて、X=Cにおいても、TiN結晶に欠陥を生じさせることはない。そのため、X=C(実施例3)においても、X=Al(実施例1)、X=MgO(実施例2)と同様の効果があったものと考えられる。
Figure 0006665963
[11]まとめ
本実施例では、Ru−TiO粒径制御層2、MgO/ZnO第1シード層3上に、TiN−X第2シード層4を形成し、FePt−C磁気記録層5を形成した。
第1シード層3上に、直接に磁気記録層5を成膜すると、平均粒径および粒径分散が大きくなる。上部第1シード層のMgO結晶粒子と、磁気記録層5のFePt結晶粒子とは、濡れ性が悪い。そのために、MgO結晶粒子上にFePt結晶粒子がうまく形成されない。その結果として、MgO結晶粒子を跨いでFePt結晶粒子が形成される部分が生じ、磁気記録層5の平均粒径および粒径分散が大きくなる。
そこで、第1シード層3上にFePt結晶粒子との濡れ性の良いTiN結晶粒子を用いた第2シード層4を形成した後、磁気記録層5を成膜した。しかしながら、TiNのみで第2シード層4を形成したところ、TiN結晶粒子の粒界をまたいで粒子が形成されてしまった。これはTiN結晶粒子とFePt結晶粒子との濡れ性が良く、FePt結晶粒子が広がってしまったためである。一方、TiN−X(X=AlやMgO)で第2シード層4を形成したところ、FePt結晶粒子の広がりが抑制され、粒径制御層の粒構造を引き継ぐようになった。そのため、微細な平均粒径で粒径分散を抑えたFePtグラニュラー磁気記録層が形成できるようになった。
グラニュラー構造を有する粒径制御層2上に、第1シード層、TiN−Xからなる第2シード層4を形成することにより、磁気記録層5は、粒径制御層2のグラニュラー構造を引き継いだグラニュラー構造となった。その結果、磁気記録層5のグラニュラー構造の粒径微細化、粒径分散低減に効果が発揮されることが確認された。粒径制御層2、および非磁性中間層8がグラニュラー構造を有することで、第1シード層3においても微細で粒径分散の少ない結晶粒子が得られる。そのため、第2シード層4のXがTiN結晶粒子の粒界に積極的に偏析されたためである。
より好ましくは、粒径制御層2、および非磁性中間層8がグラニュラー構造を有することで、第1シード層3においても微細で粒径分散の少ない結晶粒子が得られる。そのため、第2シード層4が、TiNからなる結晶粒子とTiN結晶粒子の周囲を取り囲む粒界材料Xからなるグラニュラー構造を有するようになることである。第2シード層4がTiNからなる結晶粒子とTiN結晶粒子の周囲を取り囲む粒界材料Xからなるグラニュラー構造を有することで、その上に形成されるFePtなどの規則合金からなる結晶粒子を有する磁気記録層5は、第2シード層4のグラニュラー構造を引き継いだグラニュラー構造を有するようになる。ひいては粒径制御層2のグラニュラー構造を引き継ぐようになる。そのため、微細な平均粒径で粒径分散を抑えた磁気記録層が形成できる。TiN−Xが、粒径制御層2のグラニュラー構造を磁気記録層のグラニュラー構造へ橋渡しする。それにより、磁気記録層5の磁性結晶粒子の平均粒径、粒径分散を抑えることができる。
1 基板
2 粒径制御層
3 第1シード層
4 第2シード層
5 磁気記録層
6 密着層
7 配向制御層
8 非磁性中間層
10 磁気記録媒体

Claims (10)

  1. 基板と、粒径制御層と、第1シード層と、第2シード層と、規則合金を含む磁気記録層とをこの順に含み、前記第2シード層が、TiNを主成分とする結晶粒子と、炭素から形成された粒界材料とからなる、磁気記録媒体。
  2. 基板と、粒径制御層と、第1シード層と、第2シード層と、規則合金を含む磁気記録層とをこの順に含み、前記第2シード層が、TiNを主成分とする結晶粒子と、金属酸化物から形成された粒界材料とからなり、
    ΔG500を500℃での標準生成ギブスエネルギーとしたとき、
    前記金属酸化物中の金属元素と、窒素とが反応した場合に形成される窒化物のΔG500が、TiNのΔG500よりも高い材料から前記粒界材料が選択されており、
    前記金属酸化物中の金属元素と、酸素とが反応した場合に形成される酸化物のΔG500が、TiO2のΔG500よりも低い材料から前記粒界材料が選択されており、
    前記粒界材料が、CaO、Sc23、SrO、およびY23からなる群から選択される少なくとも1種以上である、磁気記録媒体。
  3. 基板と、粒径制御層と、第1シード層と、第2シード層と、規則合金を含む磁気記録層とをこの順に含み、前記第2シード層が、TiNを主成分とする結晶粒子と、CaO、Sc23、SrO、およびY23からなる群から選択される少なくとも1種以上から形成された粒界材料とからなる、磁気記録媒体。
  4. 前記粒界材料が、TiNを主成分とする結晶粒子と前記粒界材料の総量に基づき、5体積%以上50体積%未満である、請求項1〜3のいずれか1項に記載の磁気記録媒体。
  5. 前記第2シード層が、TiNを主成分とする結晶粒子と、TiNを主成分とする結晶粒子の周囲を取り囲む前記粒界材料からなるグラニュラー構造を有する、請求項1〜4のいずれか1項に記載の磁気記録媒体。
  6. 前記磁気記録層が、FeおよびCoからなる群から選択される少なくとも1種の第1元素と、Pt、Pd、Au、Ir、Ru、およびRhからなる群から選択される少なくとも1種の第2元素と、を含む請求項1〜5のいずれか1項に記載の磁気記録媒体。
  7. 前記第1シード層が、下部第1シード層と、上部第1シード層とをこの順に含む、請求項1〜6のいずれか1項に記載の磁気記録媒体。
  8. 前記粒径制御層が、Ru結晶粒子と、Ru結晶粒子を取り囲む酸化物、炭化物、および窒化物からなる群から選択された少なくとも1種と、を含むグラニュラー構造である、請求項1〜7のいずれか1項に記載の磁気記録媒体。
  9. 前記粒径制御層と前記第1シード層との間に非磁性中間層をさらに含み、前記非磁性中間層が、Pt結晶粒子または、Pt結晶粒子と、Pt結晶粒子を取り囲む酸化物、炭素、炭化物、および窒化物からなる群から選択された少なくとも1種と、を含むグラニュラー構造である、請求項1〜8のいずれか1項に記載の磁気記録媒体。
  10. 前記基板と前記粒径制御層との間に、RuまたはRu合金から形成された配向制御層をさらに含む、請求項1〜9のいずれか1項に記載の磁気記録媒体。
JP2019504385A 2017-03-10 2018-01-29 磁気記録媒体 Active JP6665963B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017046648 2017-03-10
JP2017046648 2017-03-10
PCT/JP2018/002734 WO2018163658A1 (ja) 2017-03-10 2018-01-29 磁気記録媒体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019214353A Division JP6835190B2 (ja) 2017-03-10 2019-11-27 磁気記録媒体

Publications (2)

Publication Number Publication Date
JPWO2018163658A1 JPWO2018163658A1 (ja) 2019-06-27
JP6665963B2 true JP6665963B2 (ja) 2020-03-13

Family

ID=63448697

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019504385A Active JP6665963B2 (ja) 2017-03-10 2018-01-29 磁気記録媒体
JP2019214353A Active JP6835190B2 (ja) 2017-03-10 2019-11-27 磁気記録媒体

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019214353A Active JP6835190B2 (ja) 2017-03-10 2019-11-27 磁気記録媒体

Country Status (5)

Country Link
US (1) US11120829B2 (ja)
JP (2) JP6665963B2 (ja)
CN (2) CN109643556B (ja)
SG (2) SG11201901734YA (ja)
WO (1) WO2018163658A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7258275B2 (ja) * 2019-05-09 2023-04-17 株式会社レゾナック 磁気記録媒体および磁気記録再生装置
JP7336786B2 (ja) 2019-10-31 2023-09-01 株式会社レゾナック アシスト磁気記録媒体及び磁気記憶装置
JP7375676B2 (ja) * 2020-05-21 2023-11-08 株式会社レゾナック 磁気記録媒体および磁気記憶装置
WO2021241319A1 (ja) * 2020-05-29 2021-12-02 ソニーグループ株式会社 磁気記録媒体
US11763845B2 (en) * 2021-12-08 2023-09-19 Seagate Technology Llc Magnetic stack including non-magnetic seed layer for hard disk drive media

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757400B2 (ja) * 2001-05-09 2011-08-24 昭和電工株式会社 垂直磁気記録媒体、および磁気記録再生装置
JP2005276364A (ja) * 2004-03-25 2005-10-06 Toshiba Corp 磁気記録媒体及びその製造法、並びにそれを用いた磁気記録再生装置
JP2009059431A (ja) * 2007-08-31 2009-03-19 Showa Denko Kk 磁気記録媒体および磁気記録再生装置
US7892664B2 (en) * 2007-11-28 2011-02-22 Seagate Technology Llc Magnetic recording media having a chemically ordered magnetic layer
JP2009158053A (ja) * 2007-12-27 2009-07-16 Hitachi Global Storage Technologies Netherlands Bv 傾斜記録用磁気記録媒体及びその製造方法
JP5015901B2 (ja) 2008-12-01 2012-09-05 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記録再生装置
JP6182833B2 (ja) * 2012-07-26 2017-08-23 富士電機株式会社 垂直磁気記録媒体
JP6083163B2 (ja) * 2012-09-11 2017-02-22 富士電機株式会社 垂直磁気記録媒体およびその製造方法
MY178275A (en) * 2012-09-27 2020-10-07 Seagate Technology Llc Magnetic stack including tin-x intermediate layer
SG11201502573SA (en) * 2012-10-10 2015-05-28 Fuji Electric Co Ltd Magnetic recording medium
JP6265529B2 (ja) 2013-01-23 2018-01-24 昭和電工株式会社 磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置
US9672854B2 (en) * 2013-09-30 2017-06-06 Seagate Technology Llc Magnetic stack including MgO-Ti(ON) interlayer
JP5999277B2 (ja) * 2013-12-10 2016-09-28 富士電機株式会社 垂直磁気記録媒体
US9689065B2 (en) * 2014-01-03 2017-06-27 Seagate Technology Llc Magnetic stack including crystallized segregant induced columnar magnetic recording layer
US20170301366A1 (en) * 2014-01-03 2017-10-19 National University Of Singapore Magnetic stack including crystallized segregant induced columnar magnetic recording layer
JP2016003596A (ja) 2014-06-16 2016-01-12 株式会社ミツバ オイルポンプおよび車両用油圧回路
CN105874536B (zh) * 2014-08-12 2018-08-31 富士电机株式会社 磁记录介质
US9431046B2 (en) * 2014-10-31 2016-08-30 HGST Netherlands B.V. Perpendicular magnetic recording disk with patterned template layer
WO2016194383A1 (ja) * 2015-06-02 2016-12-08 富士電機株式会社 磁気記録媒体の製造方法
WO2017122593A1 (ja) * 2016-01-12 2017-07-20 富士電機株式会社 磁気記録媒体およびこれを製造する方法
CN105810216A (zh) * 2016-03-03 2016-07-27 广东顺德中山大学卡内基梅隆大学国际联合研究院 应用于热辅助磁记录技术的磁存储介质薄膜的制备方法
JP2018106774A (ja) * 2016-12-27 2018-07-05 昭和電工株式会社 磁気記録媒体および磁気記憶装置

Also Published As

Publication number Publication date
US11120829B2 (en) 2021-09-14
JP6835190B2 (ja) 2021-02-24
CN112382315A (zh) 2021-02-19
SG11201901734YA (en) 2019-04-29
WO2018163658A1 (ja) 2018-09-13
JP2020030880A (ja) 2020-02-27
US20190198051A1 (en) 2019-06-27
CN109643556B (zh) 2021-03-12
CN109643556A (zh) 2019-04-16
JPWO2018163658A1 (ja) 2019-06-27
SG10202101868SA (en) 2021-03-30

Similar Documents

Publication Publication Date Title
JP6665963B2 (ja) 磁気記録媒体
JP6439869B2 (ja) 磁気記録媒体の製造方法
JP5783330B2 (ja) 垂直磁気記録媒体
US10020016B2 (en) Perpendicular magnetic recording medium
WO2015151425A1 (ja) 磁気記録媒体
US10714138B2 (en) Perpendicular magnetic recording medium
JP5999290B2 (ja) 磁気記録媒体
JP6304468B2 (ja) 磁気記録媒体およびこれを製造する方法
JP6787433B2 (ja) 磁気記録媒体
JP6617923B2 (ja) 垂直磁気記録媒体の製造方法
JP6327357B2 (ja) 磁気記録媒体
JP5874872B1 (ja) 垂直磁気記録媒体の製造方法
WO2017122575A1 (ja) 磁気記録媒体
JPWO2017033393A1 (ja) 磁気記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250