JP2004272997A - 磁気記録媒体およびその製造方法 - Google Patents

磁気記録媒体およびその製造方法 Download PDF

Info

Publication number
JP2004272997A
JP2004272997A JP2003060942A JP2003060942A JP2004272997A JP 2004272997 A JP2004272997 A JP 2004272997A JP 2003060942 A JP2003060942 A JP 2003060942A JP 2003060942 A JP2003060942 A JP 2003060942A JP 2004272997 A JP2004272997 A JP 2004272997A
Authority
JP
Japan
Prior art keywords
magnetic
recording
recording medium
columns
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003060942A
Other languages
English (en)
Other versions
JP4102221B2 (ja
Inventor
Takeshi Morikawa
剛 森河
Koji Matsumoto
幸治 松本
Hiroyasu Kawano
浩康 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003060942A priority Critical patent/JP4102221B2/ja
Publication of JP2004272997A publication Critical patent/JP2004272997A/ja
Application granted granted Critical
Publication of JP4102221B2 publication Critical patent/JP4102221B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

【課題】垂直磁気記録方式の磁気記録媒体において記録分解能を向上し且つ媒体ノイズを低減すること。
【解決手段】磁気記録媒体X1において、磁性材料よりなり且つ垂直磁気異方性を有して並列する複数の磁性コラム11aと、非磁性材料よりなり且つ複数の磁性コラム11aの間に介在する非磁性領域11bと、を含む記録磁性層11を具備することとする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、垂直磁気記録方式の磁気記録媒体およびその製造方法に関する。
【0002】
【従来の技術】
コンピュータシステムにおける情報処理量の増大に伴い、ハードディスクなどの記憶装置に対しては、記憶容量の増大化が要求される。そのような要求を満たすべく、近年、垂直磁気記録方式の磁気記録媒体が注目を集めている。垂直磁気記録方式の磁気記録媒体については、例えば、下記の特許文献1〜4に開示されている。
【0003】
【特許文献1】
特開昭52−134706号公報
【特許文献2】
特開平7−129953号公報
【特許文献3】
特開2001−283419号公報
【特許文献4】
特開2002−358615号公報
【0004】
図9は、垂直磁気記録方式の従来の磁気記録媒体の一例である磁気ディスクX2を表す。図9では、磁気ディスクX2の部分斜視図が、記録用の磁気ヘッドHとともに表されている。磁気ディスクX2は、基板Sと、記録磁性層31と、軟磁性層32と、中間層33と、保護膜34とからなる。各層および膜は、軟磁性層32、中間層33、記録磁性層31、保護膜34の順で、基板Sの側から積層形成されたものである。
【0005】
記録磁性層31は、この層を構成する磁性膜の膜面に対して垂直な方向に磁化容易軸を有して磁化された垂直磁化膜である。軟磁性層32は、高透磁率の磁性膜により構成され、当該磁性膜の膜面に平行な方向(面内方向)に磁化容易軸を有して磁化された面内磁化膜である。中間層33は、非磁性材料よりなり、記録磁性層31および軟磁性層32を磁性的に分離するためのものである。保護膜34は、記録磁性層31を外界から物理的および化学的に保護するためのものである。
【0006】
磁気ディスクX2への記録に際しては、図9に示すように、磁気ディスクX2の記録磁性層31の側に電磁石である磁気ヘッドHを近接して対向させ、当該磁気ヘッドHにより、記録磁性層31に対して記録磁界を印加する。記録磁界の一部は、記録磁性層31を垂直に磁化して通過し、軟磁性層32にて向きを変えてから再び記録磁性層31を垂直に通過して磁気ヘッドHへと帰還する。磁気ディスクX2に対して磁気ヘッドHを矢印Aで示す方向に相対移動させつつ磁気ヘッドHからの磁界の向きを変化させることにより、記録磁性層31において、垂直方向に磁化されて交互に反転する複数の磁区31aが磁気ディスクX2のトラック方向に連なって形成される。このようにして、記録磁性層31において、所定の信号に対応した磁区31aが記録されることとなる。一方、磁気ディスクX2の再生に際しては、記録磁性層31の内部に形成された磁区31aからの磁界の方向の変化が、当該記録磁性層31の磁化方向の変化として、読取り用の磁気ヘッドを介して検出される。
【0007】
【発明が解決しようとする課題】
従来の磁気ディスクX2の製造においては、記録磁性層31は、スパッタリング法や真空蒸着法により、所定の磁性材料を一様に堆積成長させることにより形成される。このようにして形成される記録磁性層31は、一般に多結晶膜であり、層の厚さ方向に延びる柱状の磁性粒子により構成されていることが知られている。図10は、多結晶構造をとる記録磁性層31における面広がり方向に沿った部分拡大断面図であり、記録磁性層31を構成する複数の磁性粒子31bの横断面を模式的に表す。
【0008】
上述のような記録処理により記録磁性層31に形成される各磁区31aには、同一方向に磁化された複数の磁性粒子31bが含まれる。磁気記録媒体の技術分野においては、磁区31aが安定に存在できる限りにおいて、磁性粒子31bの粒径が小さいほど、より小さな磁区が形成可能であり、記録分解能が向上することが知られている。一方、記録磁性層31を薄く形成するほど、磁性粒子31bの粒径は小さくなることが知られている。しかしながら、記録磁性層31を薄く形成するほど、各磁性粒子31bの体積が小さくなるため、記録磁性層31の垂直磁気異方性は低下する傾向にある。垂直磁気異方性の低下は、磁区31aの安定性の低下を招来し、記録分解能の向上を阻害してしまう。磁気異方性エネルギーが大きく且つ熱的安定性が高いことから、高記録密度化を図るための記録磁性層材料として注目されているFePtやCoPtなどの規則合金において、このような垂直磁気異方性低下の傾向は顕著である。
【0009】
このように、磁気記録媒体に係る従来の技術は、記録磁性層を構成する磁性粒子の粒径を小さくするのに困難性を有する。そのため、従来の技術によると、垂直磁気記録方式の磁気記録媒体において所望の記録分解能を達成することができない場合がある。
【0010】
一方、記録磁性層31における磁区界面(図10にて太線で表す)の凹凸の程度は、磁性粒子31bの粒径に依存する。具体的には、磁性粒子31bの粒径が小さいほど、磁区界面の凹凸は微細となる。当該凹凸が微細となるほど、記録磁性層31における磁化遷移が急峻になり、媒体ノイズは低減される。しかしながら、磁気記録媒体に係る従来の技術は、上述のように、記録磁性層31を構成する磁性粒子31bの小径化に困難性を有する。そのため、従来の技術によると、垂直磁気記録方式の磁気記録媒体において媒体ノイズを充分に低減することができない場合がある。
【0011】
本発明は、このような事情の下で考え出されたものであって、垂直磁気記録方式の磁気記録媒体における記録分解能を向上し且つ媒体ノイズを低減することを目的とする。
【0012】
【課題を解決するための手段】
本発明の第1の側面によると磁気記録媒体が提供される。この磁気記録媒体は、磁性材料よりなり且つ垂直磁気異方性を有して並列する複数の磁性コラムと、非磁性材料よりなり且つ複数の磁性コラムの間に介在する非磁性領域と、を含む記録磁性層を備えることを特徴とする。
【0013】
このような構成によると、磁気記録媒体の記録分解能を向上することができる。本発明の第1の側面における記録磁性層は、磁性材料よりなり且つ各々が独立の磁気記録単位として機能する複数の磁性コラム、即ちコラム状の磁性領域と、非磁性材料よりなる非磁性領域とを含んでなる。このような記録磁性層は、例えば、まず、所定の基材の上に磁性材料を成膜した後に当該磁性材料膜を所定のマスクを介してエッチングすることにより、基材上に起立する複数の磁性コラムを形成し、その後、磁性コラム間に非磁性材料を充填することによって、形成することができる。磁性材料膜は、当該磁性材料膜ひいてはこれから形成される磁性コラムが良好な磁性を獲得するための厚さ以上に形成することができる。例えば、規則化して磁性を獲得することのできるFePtやCoPtにより磁性材料膜を形成する場合、規則化するのに適した配向を有する結晶粒を形成するための厚さ以上に、磁性材料膜を形成することができる。また、磁性材料膜のエッチングの際に用いるマスクのマスキングエリアを充分に微小にすることにより、当該エッチングにより形成される磁性コラムの横断面の直径すなわち粒径を所望の程度に小さくすることができる。このように、本発明の第1の側面に係る磁気記録媒体では、記録磁性層にて各々が単一の磁性粒子として機能する磁性コラムについて、良好な磁性を付与しつつ小さな粒径を達成でき、従って、記録磁性層において高い記録分解能を達成することが可能なのである。
【0014】
加えて、本発明の第1の側面に係る磁気記録媒体においては、記録磁性層にて各々が独立の磁気記録単位ないし単一の磁性粒子として機能する磁性コラムを小さく形成することができるので、記録磁性層に形成される磁区の界面の凹凸を微細化することができる。記録磁性層における磁区界面の凹凸が微細となると、当該記録磁性層における磁化遷移が急峻になり、媒体ノイズは低減される。
【0015】
以上のように、本発明の第1の側面に係る磁気記録媒体においては、記録分解能を向上し且つ媒体ノイズを低減することが可能である。このような磁気記録媒体は、高記録密度な垂直磁気記録方式媒体として実用に適している。
【0016】
本発明の第1の側面において、好ましくは、記録磁性層、軟磁性層、および、これらの間の非磁性層よりなる積層構造を有する。第1の側面に係る磁気記録媒体は、このようないわゆる裏打ち軟磁性層を具備する磁気記録媒体として実施するのが好ましい。
【0017】
好ましくは、複数の磁性コラムの横断面平均径、および、複数の磁性コラムの平均離隔距離は、記録磁性層の厚さよりも小さい。複数の磁性コラムの横断面平均径とは、複数の磁性コラムにおける記録磁性層の面内方向の断面についての平均直径である。また、好ましくは、複数の磁性コラムの横断面平均径に対する、複数の磁性コラムの平均離隔距離の比率は、1以下である。複数の磁性コラムの平均離隔距離とは、隣接磁性コラム間の最短距離の平均である。これらの構成は、磁性コラム断面の微小化を達成しつつ記録磁性層において良好な記録特性を得るうえで好適である。
【0018】
好ましくは、磁性コラムは、規則合金または希土類−遷移金属アモルファス合金よりなる。規則合金としては、FePtまたはCoPtを採用するのが好ましい。また、希土類−遷移金属アモルファス合金としては、TbFeCoを採用するのが好ましい。これらの磁性材料は、垂直磁気記録媒体の記録磁性層を形成するための磁性コラム用材料として好適である。
【0019】
好ましくは、非磁性層は、規則合金の結晶配向を制御するための非磁性酸化物よりなる。このような構成は、規則合金において磁性を発現するうえで好適である。
【0020】
本発明の第2の側面によると、垂直磁気異方性を有して並列する複数の磁性コラムと、当該複数の磁性コラムの間に介在する非磁性領域と、を含む記録磁性層を備える磁気記録媒体を製造するための方法が提供される。この製造方法は、基材の上に磁性材料を堆積することにより磁性材料膜を形成するための工程と、磁性材料膜上に、磁性コラム形成領域をマスクするためのエッチングマスクを形成するためのマスク形成工程と、エッチングマスクを介して磁性材料膜をエッチングすることにより、並列し且つ離隔する複数の磁性コラムを形成するための工程と、複数の磁性コラムの間に非磁性材料を充填することにより、複数の磁性コラムの間に介在する非磁性領域を形成するための非磁性領域形成工程と、を含むことを特徴とする。本発明において、基材とは、磁性材料膜が積層形成される露出面を有するベース材であって、基板単体、および、軟磁性層や非磁性層などが既に積層形成された基板を含む。
【0021】
このような方法によると、本発明の第1の側面に係る磁気記録媒体を製造することができる。したがって、本発明の第2の側面によると、製造される磁気記録媒体において、第1の側面に関して上述したのと同様の効果が奏される。
【0022】
本発明の第2の側面において、マスク形成工程では、好ましくは、記録磁性層よりも表面エネルギーの小さな第1材料を当該磁性材料膜上に成膜することにより第1材料膜を形成し、当該第1材料膜上に第2材料を粒状に堆積させることにより複数の第2材料粒を形成し、且つ、当該第2材料粒の各々の上に第3材料を堆積することによって、エッチングマスクとしてのマスク粒子を形成する。この場合、第1材料膜を形成した後であって第2材料粒を形成する前に、第2材料が堆積成長する基点を第1材料膜上に形成するのが好ましい。或は、マスク形成工程では、マスク粒子溶解溶液を磁性材料膜上に塗布し、その後、例えば溶液の液体成分を蒸発させることによって、塗布された溶液から、エッチングマスクとしてのマスク粒子を析出させてもよい。これらの手法は、微細なエッチングマスクを形成するうえで好適である。
【0023】
非磁性領域形成工程においては、好ましくは、磁性コラムを加熱しつつ、複数の磁性コラムの上方から非磁性材料を供給することにより、複数の磁性コラムの間に非磁性材料を充填する。或は、非磁性領域形成工程では、複数の磁性コラムの上方から、記録磁性層よりも表面エネルギーの小さな非磁性材料を供給することにより、複数の磁性コラムの間に非磁性材料を充填してもよい。これらの非磁性領域形成手法は、磁性コラム間の磁性的分離および物理的分離を適切に達成するうえで、好適である。
【0024】
【発明の実施の形態】
図1は、本発明の第1の実施形態に係る磁気記録媒体X1の部分断面を模式的に表す。磁気記録媒体X1は、基板Sと、記録磁性層11と、軟磁性層12と、非磁性層13と、保護膜14とを備える垂直磁気記録方式磁気ディスクとして構成されたものである。
【0025】
基板Sは、例えばアルミニウム合金、ガラス、またはセラミックスからなる非磁性基板である。基板Sの表面は、化学的方法、物理的方法、または機械的方法により、平滑化されている。
【0026】
記録磁性層11は、充分に大きな保磁力を有し、磁性を発現するための複数の磁性コラム11aと非磁性領域11bとからなる。複数の磁性コラム11aは、相互に並列し且つ離隔しており、各々、垂直磁気異方性を呈して図中上方向または下方向に磁化されている。図2は、記録磁性層11の部分拡大断面図であり、磁性コラム11aの横断面が表されている。
【0027】
磁性コラム11aは、例えば、規則合金または希土類−遷移金属アモルファス合金よりなる。規則合金としては、例えばFePtやCoPtを採用することができる。また、希土類−遷移金属アモルファス合金としては、例えばTbFe,TbCo,またはTbFeCoなどを採用することができる。規則化することにより磁性を獲得することのできる例えばFePtやCoPt、並びに、磁性を有する希土類−遷移金属アモルファス合金は、垂直磁気異方性エネルギーが大きく且つ熱的安定性が高いので、記録磁性層11を構成するための磁性材料として好適である。一方、非磁性領域11bは、例えば、SiO,Al,MgO,またはSiNよりなる。或は、非磁性領域11bは、Cr,Ti,Al,Ag,またはこれらの合金により構成してもよい。
【0028】
複数の磁性コラム11aの横断面の平均径は、例えば3〜7nmである。また、複数の磁性コラム11aにおける隣接磁性コラム間の平均離隔距離は、例えば1〜3nmである。これらの範囲において、横断面平均径に対する平均離隔距離の比率は、1以下であるのが好ましい。記録磁性層11の厚さは、例えば10〜30nmである。このような構成によると、記録磁性層11において、各磁性コラムが孤立している微細なコラム構造を適切に形成することができる。
【0029】
軟磁性層12は、この層を構成する磁性膜の膜面に対して平行な方向に磁化容易軸を有する面内磁気異方性を呈している。軟磁性層12の磁化容易軸は、ディスクの半径方向に向いているのが好ましい。軟磁性層12は、充分に小さな保磁力を有する。このような軟磁性層12は、例えば、パーマロイ、センダスト、Co系アモルファス材料、またはFe系アモルファス材料より構成することができる。軟磁性層12の厚さは、例えば100〜300nmである。
【0030】
非磁性層13は、非磁性材料よりなり、記録磁性層11および軟磁性層12を磁性的に適切に分離するためのものである。非磁性層13の厚さは、例えば1〜15nmである。
【0031】
磁性コラム11aが規則合金よりなる場合には、非磁性層13は、採用する規則合金の結晶配向を制御するための非磁性酸化物よりなる。そのような非磁性酸化物としては、例えば、MgO,ZnO,またはRuOを採用することができる。
【0032】
また、磁性コラム11aが希土類−遷移金属アモルファス合金よりなる場合、非磁性層13における記録磁性層側の表面凹凸は、微細とする必要はない。従来の技術においては、記録磁性層を希土類−遷移金属アモルファス合金より構成する場合に、記録磁性層が積層形成される下地層(非磁性層)の表面凹凸を微細とする必要がある。微細な表面凹凸のピンニング作用により、記録磁性層内部の磁区構造に存在する磁壁の揺らぎ又は移動を抑制し、当該磁区構造の微細化を図るためである。これに対し、本発明では、記録磁性層11において磁性を発現するための材料として希土類−遷移金属アモルファス合金を採用する場合であっても、当該磁性発現材料は、非磁性領域11bにより相互に隔絶された磁性コラム11aの形態を有し、このような磁性コラム構造により記録磁性層11の磁区構造を微細化することができるので、記録磁性層11の下地層である非磁性層13における記録磁性層側の表面凹凸を微細とする必要はないのである。
【0033】
保護膜14は、記録磁性層11を外界から物理的および化学的に保護するためのものであり、例えば、アモルファスカーボン,ダイアモンドライクカーボン,SiN,またはSiCよりなる。保護膜14の膜さは、例えば1〜5nmである。
【0034】
磁気記録媒体X1は、基板Sと軟磁性層12との間に更に密着層を有してもよい。当該密着層は、基板Sに対して、その上に積層形成される軟磁性層12を適切に固定するためのものであり、例えば、Cr,Ti,NiP,またはNiAlよりなる。密着層の厚さは、例えば1〜5nmである。
【0035】
図3〜図5は、磁気記録媒体X1の製造方法を表す。磁気記録媒体X1の製造においては、まず、基板Sに平滑化表面処理を施した後、当該基板Sに対し、軟磁性層12および非磁性層13を順次積層形成することによって、図3(a)に示すような積層構造体を形成する。軟磁性層12および非磁性層13は、各々に対応する所定の材料からなる単一の又は複数のターゲットを用いたスパッタリング法により、形成することができる。
【0036】
次に、スパッタリング法により、図3(b)に示すように、非磁性層13の上に磁性材料を成膜することによって磁性材料膜11a’を形成する。次に、図3(c)に示すように、磁性材料膜11a’の上にマスク微粒子15を形成する。マスク微粒子15は、後のエッチング工程にて、磁性材料膜11a’において磁性コラム11aとして形成される箇所、即ち磁性コラム形成領域を、マスクするためのものである。
【0037】
図4は、マスク微粒子15を形成するための方法を表す。図4における各工程は、図3よりも拡大されて表されている。マスク微粒子15の形成においては、まず、図4(a)に示すように、磁性材料膜11a’の表面に誘電体材料を成膜することによって、下地層16を形成する。誘電体材料としては、磁性材料膜11a’よりも小さな表面エネルギーを有するものを使用する。そのような誘電体材料としては、例えば、SiN,SiO,AlN,AlOを採用することができる。
【0038】
次に、図4(b)に示すように、下地層16の上に材料粒15aを形成する。
具体的には、所定のターゲットを用いたスパッタリング法により、磁性材料膜11a’の上に所定の材料を島状に堆積成長させることによって材料粒15aを形成する。材料粒形成用の材料としては、例えば、Ag,Cr,W,Mo,Ta,またはこれらの合金を採用することができる。また、材料粒形成用材料としては、下地層16よりも表面エネルギーの大きい材料を選択するのが好ましい。材料粒15aを構成するための材料の表面エネルギーが下地層16のそれよりも大きく、且つ、両表面エネルギーの差が大きいほど、本工程で形成される材料粒15aは、より小径化する、即ち微粒子化する。本発明においては、材料粒15aの形成の前に、材料粒15aが粒状に成長するのを促進するための基点を、例えばスパッタリング法により下地層上に予め形成しておいてもよい。基点形成用の材料としては、例えば、酸化ルテニウムや酸化パラジウムなどの貴金属酸化物を採用することができる。
【0039】
マスク微粒子15の形成においては、次に、図4(c)に示すように、材料粒15aの上にエンハンス材料15bを堆積する。エンハンス材料15bとしては、例えば炭素やホウ素を採用することができる。エンハンス材料15bとしては、原子半径の比較的小さなものが好ましい。このようにして、磁性材料膜11a’の表面に、多数の微小なマスク微粒子15を高精度に形成することができる。
マスク微粒子15は、形成目的の磁性コラム11aの断面サイズおよび形成密度に応じて分散形成される。
【0040】
マスク微粒子15の形成においては、図4を参照して上述した手法に代えて、いわゆるナノパーティクルとして析出可能な成分を溶解している溶液をスピンコーティング法により磁性材料膜11a’の表面に塗布した後、当該溶液の液体成分を蒸発させてナノパーティクルを析出させてもよい。ナノパーティクルとしては、例えば、粒状のPt,Au,Pd,FePt,またはCoPtを採用することができる。このような手法を採用する場合、形成目的の磁性コラム11aの断面サイズおよび形成密度に応じて、当該溶液におけるナノパーティクルの含有率は決定される。このような手法によっても、磁性材料膜11a’上に、多数の微小なマスク微粒子15を高精度に形成することができる。
【0041】
磁気記録媒体X1の製造においては、次に、図5(a)に示すように、マスク微粒子15をエッチングマスクとして利用して、非磁性層13に至るまで磁性材料膜11a’に対してエッチング処理を施す。これにより、磁性コラム11aが形成される。このエッチング処理においては、高真空中で行うドライエッチング法を採用してもよいし、所定のエッチング液を使用して行うウエットエッチング法を採用してもよい。本工程では、磁性材料膜11a’の一部とともにマスク微粒子15の一部もエッチング除去される。したがって、図3(c)を参照して上述した工程では、この除去量を考慮して、マスク微粒子15の構成材料および高さを決定するのが好ましい。
【0042】
次に、図5(b)に示すように、磁性コラム間に非磁性領域11bを形成する。具体的には、基板Sの側から加熱することによって磁性コラム11aを所定の高温に維持しつつ、比較的融点の低い非磁性材料を、スパッタリング法により磁性コラム11aの上方から供給する。このような手法によると、磁性コラム11aと非磁性材料の表面拡散温度の差に起因して、当該非磁性材料は、メニスカス効果により磁性コラム間を充たす。その結果、磁性コラム間に適切に充填された非磁性領域11bが形成されることとなる。このような手法を採用する場合、非磁性材料としては、例えば、Ag,Al,またはこれらの合金を採用することができる。
【0043】
非磁性領域11bの形成においては、上述の手法に代えて、磁性コラム11aよりも所定の程度に表面エネルギーの小さな非磁性材料を、スパッタリング法により磁性コラム11aの上方から供給してもよい。このような手法によると、磁性コラム11aと非磁性材料の表面エネルギーの差に起因して、当該非磁性材料は、磁性コラム間を充たす。その結果、磁性コラム間に適切に充填された非磁性領域11bが形成されることとなる。このような手法を採用する場合、非磁性材料としては、例えば、SiN,SiO,AlN,またはAlOを採用することができる。
【0044】
磁気記録媒体X1の製造においては、次に、スパッタリング法またはCVD法により、図5(c)に示すように、記録磁性層11の上に保護膜14を形成する。以上のようにして、磁気記録媒体X1を製造することができる。
【0045】
磁気記録媒体X1への記録に際しては、磁気記録媒体X1の記録磁性層11に対して保護膜14を介して記録用の磁気ヘッドを近接して対向させ、当該磁気ヘッドにより、記録磁性層11に対して記録磁界を印加する。記録磁界の一部は、記録磁性層11を垂直に磁化して通過し、非磁性層13を経て軟磁性層12にて向きを変えてから再び軟磁性層12および記録磁性層11を垂直に通過して磁気ヘッドへと帰還する。磁気記録媒体X1に対して磁気ヘッドを相対移動させつつ磁気ヘッドからの磁界の向きを変化させることにより、記録磁性層11において、垂直方向に磁化されて交互に反転する複数の磁区が磁気記録媒体X1のトラック方向に連なって形成される。このようにして、記録磁性層11において、所定の信号に対応する磁区が記録されることとなる。一方、磁気記録媒体X1の再生に際しては、記録磁性層11の内部に形成された磁区からの磁界の方向の変化が、当該記録磁性層11の磁化方向の変化として読取り用の磁気ヘッドを介して検出される。
【0046】
磁気記録媒体X1においては、裏打ち軟磁性層として、高い透磁率を有する軟磁性層12が記録磁性層11に近接して設けられている。そのため、磁気記録媒体X1では、上述の記録処理において大きな記録磁界を得ることができ、その結果、優れた記録感度を達成することができる。
【0047】
また、磁気記録媒体X1は、記録磁性層11の記録分解能に優れている。磁気記録媒体の技術分野においては、記録磁性層における磁性機能を発現する磁性粒子の粒径が小さいほど、媒体ノイズが小さくなり、当該記録磁性層における記録分解能は高くなることが知られている。上述の方法により製造される磁気記録媒体X1においては、記録磁性層11の磁性機能を発現する磁性コラム11aについて小さな粒径(面内方向の断面直径)を達成することができ、従って、高い記録分解能を得ることが可能となるのである。
【0048】
加えて、磁気記録媒体X1においては、記録磁性層11にて各々が単一の磁性粒子として機能する磁性コラム11aを小さな断面サイズで形成することができるので、記録磁性層11に形成される磁区の界面の凹凸を微細化することができる。記録磁性層11における磁区界面の凹凸が微細となると、媒体ノイズは低減される。
【0049】
【実施例】
次に、本発明の実施例について、比較例とともに記載する。
【0050】
【実施例1】
<磁気記録媒体の作製>
図6に示す積層構成を有する磁気ディスクとして、本実施例の磁気記録媒体を作製した。具体的には、まず、表面粗さRaが0.2nm以下となるまでポリッシングによる表面平滑化処理を施したガラスディスク基板(φ2.5インチ)に対し、DCスパッタリング法によりCoZrNb合金を成膜することによって、厚さ150nmの面内磁化軟磁性層を形成した。当該スパッタリングには、複数のターゲットを具備することのできるインライン式の回転カソード型DC・RFマグネトロンスパッタリング装置を使用した。以降のスパッタリングにおいてもこの装置を使用した。本スパッタリングでは、Co85Zr10Nb合金ターゲットを使用し、ガス圧力を0.3Paとし、成膜速度を29nm/minとした。
形成された面内磁化軟磁性層は、Co85Zr10Nbの組成を有し、飽和磁束密度は1.1T(テスラ)であった。
【0051】
次に、RFスパッタリング法により軟磁性層上にMgOを成膜することによって、厚さ15nmの非磁性層を形成した。本スパッタリングでは、MgOターゲットを使用し、ガス圧力を0.5Paとし、成膜速度を8nm/minとした。
【0052】
次に、DCスパッタリング法により非磁性層上にFePtを成膜することによって、厚さ10nmの磁性材料膜を形成した。具体的には、Fe(純度99.9%)ターゲットおよびPt(純度99.99%)ターゲットを同時にスパッタリングするコスパッタリングにより、磁性材料膜を形成した。本スパッタリングでは、ガス圧力を2.0Paとし、成膜速度を13.5nm/minとした。形成された磁性材料膜は、Fe50Pt50の組成を有していた。スパッタリングの後、磁性材料膜を構成するFePtを規則化配列させて磁性化させるべく、400℃で40分間、加熱処理を行なった。加熱処理を経た磁性材料膜について、振動試料型磁力計(VSM)を使用して磁気特性を調べたところ、保磁力Hcは7.3kOeであり、飽和磁化Msは745emu/ccであり、膜面に対して垂直方向に磁化されていた。
【0053】
次に、DCスパッタリング法により磁性材料膜上にSiNを成膜することによって、マスク微粒子形成用の下地層(厚さ1nm)を形成した。SiNは、記録磁性層を構成するFePtよりも表面エネルギーが小さい。具体的には、Si(純度99.99%)ターゲットを用い、スパッタガスとしてArガスおよびNガスを使用して行う反応性スパッタリングにより、SiNを成膜した。本スパッタリングでは、ArガスおよびNガスの流量比を2:1とし、ガス圧力を0.32Paとし、成膜速度は13.6nm/minとした。
【0054】
次に、DCスパッタリング法により下地層上に酸化ルテニウム(RuOx)を成膜することによって、マスク微粒子形成用の基点層(厚さ0.6nm)を形成した。具体的には、Ru(純度99.99%)ターゲットを用い、スパッタガスとしてArガスおよびOガスを使用して行う反応性スパッタリングにより、RuOxを成膜した。本スパッタリングでは、ArガスおよびOガスの流量比を5:1とし、ガス圧力を1.2Paとし、成膜速度は2nm/minとした。
【0055】
次に、凝集効果を利用して、基点層上にマスク微粒子を形成した。マスク微粒子の形成においては、まず、DCスパッタリング法により、基点層上に、低融点材料であるAg合金(Ag含有率:98at%)を島状に堆積(厚さ0.8nm)させた。本スパッタリングでは、Ag合金(Ag含有率:98at%)ターゲットを使用し、ガス圧力を2Paとし、成膜速度を2.5nm/minとした。
続いて、マスク微粒子の高さを増大するため、DCスパッタリング法により、当該Ag合金堆積粒上に、エンハンス材料であるCを更に堆積(厚さ1nm)させた。本スパッタリングでは、Cターゲットを使用し、ガス圧力を2Paとし、成膜速度を5.2nm/minとした。炭素(C)は、原子半径が小さいため、このようなエンハンス材料としては好適である。このように形成したマスク微粒子の粒径について、透過型電子顕微鏡(TEM)を使用して調べたところ、粒径は3〜6nm程度であり、平均粒径は4nmであった。また、マスク微粒子を形成した後に、原子間力顕微鏡(AFM)を使用して磁性材料膜の表面を調べたところ、平均表面粗さRaは、0.21nmであた。このように、磁性材料膜上に微小な粒子(マスク微粒子)が形成されていることが確認された。
【0056】
本実施例の磁気記録媒体の製造においては、次に、マスク微粒子をエッチングマスクとして利用して、RFスパッタエッチング法により、非磁性層に至るまで磁性材料膜に対してエッチング処理を施した。このとき、マスク微粒子のエッチング速度は磁性材料膜のそれよりも遅いが、マスク微粒子の一部もエッチング除去された。本スパッタリングでは、RF投入電力を450Wとした。このようなエッチング処理の後、磁性材料膜が当初は一様に存在していた箇所の断面構造を、TEMを使用して調べたところ、約1〜5nmの間隔で複数の磁性コラムが形成されていることが確認された。
【0057】
次に、DCスパッタリング法により、上述のように形成された磁性コラムの上方から非磁性材料であるAg合金(Ag含有率:98at%)を成膜することによって、磁性コラム間に非磁性領域を形成した。本スパッタリングでは、ガス圧力を2.5Paとし、成膜速度を2.1nm/minとし、基板温度を230℃とした。このような条件で行った本工程では、加熱により表面が活性化した磁性コラムに対して付着した低融点のAg合金材料が、メニスカス効果により分離して磁性コラム間を充たすものと考えられる。このようにして、磁性コラムおよび非磁性領域からなる記録磁性層を形成した後、当該記録磁性層の断面構造を、TEMを使用して調べたところ、複数の磁性コラムの横断面平均径は5nmであり、磁性コラム間の平均離隔距離は2nmであった。
【0058】
次に、DCスパッタリング法により記録磁性層上にアモルファスカーボンを成膜することによって、厚さ3nmの保護膜を形成した。本スパッタリングでは、C(炭素)ターゲットを使用し、ガス圧力を0.4Paとし、成膜速度を27nm/minとした。
【0059】
以上のようにして、本実施例の磁気記録媒体を作製した。本実施例の磁気記録媒体における記録磁性層について、VSMを使用して磁気特性を調べたところ、保磁力Hcは7.0kOeであり、飽和磁化Msは730emu/ccであり、膜面に対して垂直方向に磁化されていた。
【0060】
<記録再生特性>
上述のようにして作製した磁気記録媒体の記録再生特性を調べた。具体的には、まず、単磁極ヘッド(単磁性部の磁束密度Bs:2T、ライトコアの幅:0.2μm)を使用して、本実施例の磁気記録媒体に対して線記録密度20kFCIの信号を記録した。次に、GMRヘッド(再生コアの幅:0.16μm、シールドギャップ長:0.08μm)を使用して当該記録信号を再生し、スペクトルアナライザを使用して、当該再生信号の出力を検出した。
【0061】
その結果、線記録密度20kFCIの再生信号振幅は0.71mVであり、このときの媒体ノイズは3μVrms程度であった。同一の単磁極ヘッドおよびGMRヘッドを使用して、線記録密度300kFCIの記録信号について、本実施例の磁気記録媒体の記録再生特性を調べたところ、再生信号振幅は0.42mVであり、媒体ノイズは5.3μVrmsであった。同一の単磁極ヘッドおよびGMRヘッドを使用して、線記録密度800kFCIの記録信号について、本実施例の磁気記録媒体の記録再生特性を調べたところ、再生信号振幅は0.1mVであり、媒体ノイズは7.2μVrmsであった。
【0062】
【実施例2】
<磁気記録媒体の作製>
図6に示す積層構成を有する他の磁気ディスクとして、本実施例の磁気記録媒体を作製した。具体的には、まず、表面粗さRaが0.2nm以下となるまでポリッシングによる表面平滑化処理を施したガラスディスク基板(φ2.5インチ)に対し、実施例1と同様にして、面内磁化軟磁性層(Co85Zr10Nb,厚さ150nm)、非磁性層(MgO,厚さ15nm)、および、磁性材料膜(Fe50Pt50,厚さ10nm)を順次形成した。
【0063】
次に、磁性材料膜上にマスク微粒子を形成した。具体的には、まず、鉄カルボニル(Fe(CO))10gと白金アセチルアセトネート(Pt(acac))10gとをエチレングリコール100mlに溶解または分散させた溶液を、スピンコーティング法により、磁性材料膜上に塗布した。このとき、塗布対象の回転数を2500rpmとした。その後、150℃で60分間乾燥することにより、液体成分を蒸散させ、磁性材料膜上にマスク微粒子を形成した。このマスク微粒子は、FePtよりなる。このように形成したマスク微粒子の粒径について、TEMを使用して調べたところ、粒径は4〜6nm程度であり、平均粒径は5nmであった。また、マスク微粒子を形成した後に、AFMを使用して磁性材料膜の表面を調べたところ、平均表面粗さRaは、0.23nmであた。このように、磁性材料膜上に微小な粒子が形成されていることが確認された。
【0064】
本実施例の磁気記録媒体の製造においては、次に、マスク微粒子をエッチングマスクとして利用して、実施例1と同様にして磁性コラムを形成した。続いて、実施例1と同様にして、磁性コラム間の非磁性領域を形成した。これにより、記録磁性層が形成された。次に、当該記録磁性層上に、実施例1と同様にして保護膜を形成した。以上のようにして、本実施例の磁気記録媒体を作製した。本実施例の磁気記録媒体における記録磁性層について、VSMを使用して磁気特性を調べたところ、実施例1の磁気記録媒体と同様の磁気特性を示した。
【0065】
<記録再生特性>
本実施例の磁気記録媒体について、実施例1と同様にして、線記録密度20kFCI、300kFCI、および800kFCIの各々の記録信号の再生出力を検出し、再生信号振幅および媒体ノイズを調べた。その結果、実施例1と略同程度の値が得られた。
【0066】
【実施例3】
<磁気記録媒体の作製>
図7に示す積層構成を有する磁気ディスクとして、本実施例の磁気記録媒体を作製した。具体的には、まず、表面粗さRaが0.2nm以下となるまでポリッシングによる表面平滑化処理を施したガラスディスク基板(φ2.5インチ)に対し、実施例1と同様にして、面内磁化軟磁性層(Co85Zr10Nb,厚さ150nm)、非磁性層(MgO,厚さ15nm)、磁性材料膜(Fe50Pt50,厚さ10nm)、および、マスク微粒子(多層構造)を順次形成した。続いて、実施例1と同様にして、マスク微粒子をエッチングマスクとして利用して磁性コラムを形成した。
【0067】
次に、DCスパッタリング法により、上述のように形成された磁性コラムの上方から非磁性材料であるSiNを成膜することによって、磁性コラム間に非磁性領域を形成した。本スパッタリングでは、ガス圧力を0.32Paとし、成膜速度を13.6nm/minとし、基板温度を室温とした。このような条件で行った本工程では、相対的に表面エネルギーの大きな磁性コラムに対し、相対的に表面エネルギーの小さなSiNが、濡れ性よく磁性コラム間を充たすものと考えられる。このようにして、磁性コラムおよび非磁性領域からなる記録磁性層を形成した後、当該記録磁性層の断面構造を、TEMを使用して調べたところ、複数の磁性コラムの横断面平均径は5nmであり、磁性コラム間の平均離隔距離は2nmであった。
【0068】
次に、記録磁性層上に、実施例1と同様にして保護膜(アモルファスカーボン、厚さ3nm)を形成した。以上のようにして、本実施例の磁気記録媒体を作製した。本実施例の磁気記録媒体における記録磁性層について、VSMを使用して磁気特性を調べたところ、実施例1の磁気記録媒体と同様の磁気特性を示した。
【0069】
<記録再生特性>
本実施例の磁気記録媒体について、実施例1と同様にして、線記録密度20kFCI、300kFCI、および800kFCIの各々の記録信号の再生出力を検出し、再生信号振幅および媒体ノイズを調べた。その結果、実施例1と略同程度の値が得られた。
【0070】
【実施例4】
<磁気記録媒体の作製>
図7に示す積層構成を有する他の磁気ディスクとして、本実施例の磁気記録媒体を作製した。具体的には、まず、表面粗さRaが0.2nm以下となるまでポリッシングによる表面平滑化処理を施したガラスディスク基板(φ2.5インチ)に対し、実施例1と同様にして、面内磁化軟磁性層(Co85Zr10Nb,厚さ150nm)、非磁性層(MgO,厚さ15nm)、および、磁性材料膜(Fe50Pt50,厚さ10nm)を順次形成した。
【0071】
次に、実施例2と同様にして、磁性材料膜上にマスク微粒子を形成した。次に、実施例1と同様にして、マスク微粒子をエッチングマスクとして利用して磁性コラムを形成した。次に、実施例3と同様にして、磁性コラム間に非磁性領域を形成した。このようにして、本実施例の記録磁性層を形成した。当該記録磁性層の断面構造を、TEMを使用して調べたところ、複数の磁性コラムの横断面平均径は6nmであり、磁性コラム間の平均離隔距離は2nmであった。
【0072】
次に、記録磁性層上に、実施例1と同様にして保護膜(アモルファスカーボン、厚さ3nm)を形成した。以上のようにして、本実施例の磁気記録媒体を作製した。本実施例の磁気記録媒体における記録磁性層について、VSMを使用して磁気特性を調べたところ、実施例1の磁気記録媒体と同様の磁気特性を示した。
【0073】
<記録再生特性>
本実施例の磁気記録媒体について、実施例1と同様にして、線記録密度20kFCI、300kFCI、および800kFCIの各々の記録信号の再生出力を検出し、再生信号振幅および媒体ノイズを調べた。その結果、実施例1と略同程度の値が得られた。
【0074】
【比較例】
<磁気記録媒体の作製>
図8に示す積層構成を有する磁気ディスクとして、本比較例の磁気記録媒体を作製した。具体的には、まず、表面粗さRaが0.2nm以下となるまでポリッシングによる表面平滑化処理を施したガラスディスク基板(φ2.5インチ)に対し、実施例1と同様にして、面内磁化軟磁性層(Co85Zr10Nb,厚さ150nm)、非磁性層(MgO,厚さ15nm)、および、本比較例の記録磁性層を構成する磁性材料膜(Fe50Pt50,厚さ10nm)を順次形成した。次に、記録磁性層上に、実施例1と同様にして保護膜(アモルファスカーボン、厚さ3nm)を形成した。以上のようにして、本比較例の磁気記録媒体を作製した。
【0075】
<記録再生特性>
本比較例の磁気記録媒体について、実施例1と同様にして、線記録密度20kFCIおよび300kFCIの各々の記録信号の再生出力を検出し、再生信号振幅および媒体ノイズを調べた。その結果、線記録密度20kFCIの再生信号振幅は0.70mVであり、このときの媒体ノイズは3μVrms程度であった。
線記録密度300kFCIでは、再生信号振幅は0.18mVであり、媒体ノイズは49.7μVrmsであった。また、本比較例の磁気記録媒体に対しては、800kFCIの線記録密度では信号を記録することができなかった。
【0076】
【評価】
線記録密度300kFCIの記録信号を再生した際の媒体ノイズについては、実施例1の磁気記録媒体は、比較例の磁気記録媒体の約10分の1であり、良好に低減されていた。また、実施例1の磁気記録媒体には800kFCIの記録密度で信号を適切に記録できたのに対し、比較例の磁気記録媒体には、そのような高密度では信号を記録することができなかった。
【0077】
比較例の磁気記録媒体では、記録磁性層を構成する磁性粒子どうしが孤立化されていないために磁性粒子間の磁気的相互作用が強く、従って、記録処理により形成される単一の磁区(磁気ユニット)が比較的大きくなってしまい、線記録密度が高くなるにつれて媒体ノイズが大きくなると考えられる。これに対し、実施例1の磁気記録媒体では、記録磁性層の磁性を発現する各磁性粒子(各磁性コラム)が孤立化されているので、記録処理により形成される単一の磁区(磁気ユニット)が微細であり、従って、高線記録密度でも良好な記録再生特性を示すものと考えられる。
【0078】
このように、実施例1の磁気記録媒体は、比較例の磁気記録媒体よりも、記録分解能が高く且つ媒体ノイズが小さい。したがって、本発明に係る実施例1の磁気記録媒体、および、これと同様の記録再生特性を示す実施例2〜4の磁気記録媒体においては、比較例の磁気記録媒体よりも、高記録密度化を達成できることが判る。
【0079】
以上のまとめとして、本発明の構成およびそのバリエーションを以下に付記として列挙する。
【0080】
(付記1)磁性材料よりなり且つ垂直磁気異方性を有して並列する複数の磁性コラムと、非磁性材料よりなり且つ前記複数の磁性コラムの間に介在する非磁性領域と、を含む記録磁性層を備えることを特徴とする、磁気記録媒体。
(付記2)前記記録磁性層、軟磁性層、および、これらの間の非磁性層よりなる積層構造を有する、付記1に記載の磁気記録媒体。
(付記3)前記複数の磁性コラムの横断面平均径、および、前記複数の磁性コラムにおける隣接磁性コラム間の平均離隔距離は、前記記録磁性層の厚さよりも小さい、付記1または2に記載の磁気記録媒体。
(付記4)前記複数の磁性コラムの横断面平均径に対する、前記複数の磁性コラムの平均離隔距離の比率は、1以下である、付記1から3のいずれか1つに記載の磁気記録媒体。
(付記5)前記磁性コラムは、規則合金または希土類−遷移金属アモルファス合金よりなる、付記1から4のいずれか1つに記載の磁気記録媒体。
(付記6)前記規則合金は、FePtまたはCoPtである、付記5に記載の磁気記録媒体。
(付記7)前記非磁性層は、前記規則合金の結晶配向を制御するための非磁性酸化物よりなる、付記5または6に記載の磁気記録媒体。
(付記8)垂直磁気異方性を有して並列する複数の磁性コラムと、当該複数の磁性コラムの間に介在する非磁性領域と、を含む記録磁性層を備える磁気記録媒体を製造するための方法であって、
基材の上に磁性材料を堆積することにより磁性材料膜を形成するための工程と、
前記磁性材料膜上に、磁性コラム形成領域をマスクするためのエッチングマスクを形成するためのマスク形成工程と、
前記エッチングマスクを介して前記磁性材料膜をエッチングすることにより、並列し且つ離隔する複数の磁性コラムを形成するための工程と、
前記複数の磁性コラムの間に非磁性材料を充填することにより、前記複数の磁性コラムの間に介在する非磁性領域を形成するための非磁性領域形成工程と、を含むことを特徴とする、磁気記録媒体の製造方法。
(付記9)前記マスク形成工程においては、前記磁性材料よりも表面エネルギーの小さな第1材料を当該磁性材料膜上に成膜することにより第1材料膜を形成し、当該第1材料膜上に第2材料を粒状に堆積させることにより複数の第2材料粒を形成し、且つ、当該第2材料粒の各々の上に第3材料を堆積することによって、前記エッチングマスクとしてのマスク粒子を形成する、付記8に記載の磁気記録媒体の製造方法。
(付記10)前記第1材料膜を形成した後であって前記第2材料粒を形成する前に、前記第2材料が堆積成長する基点を前記第1材料膜上に形成する、付記9に記載の磁気記録媒体の製造方法。
(付記11)前記マスク形成工程では、マスク粒子溶解溶液を前記磁性材料膜上に塗布し、且つ、塗布された溶液から、前記エッチングマスクとしてのマスク粒子を析出させる、付記8に記載の磁気記録媒体の製造方法。
(付記12)前記非磁性領域形成工程においては、前記磁性コラムを加熱しつつ、前記複数の磁性コラムの上方から非磁性材料を供給することにより、前記複数の磁性コラムの間に非磁性材料を充填する、付記8から11のいずれか1つに記載の磁気記録媒体の製造方法。
(付記13)前記非磁性領域形成工程においては、前記複数の磁性コラムの上方から、前記磁性材料よりも表面エネルギーの小さな非磁性材料を供給することにより、前記複数の磁性コラムの間に前記非磁性材料を充填する、付記8から11のいずれか1つに記載の磁気記録媒体の製造方法。
【0081】
【発明の効果】
本発明によると、垂直磁気記録方式の磁気記録媒体の記録磁性層において、記録分解能を向上し且つ媒体ノイズを低減することができる。したがって、本発明に係る磁気記録媒体およびその製造方法は、垂直磁気記録方式の磁気記録媒体において高記録密度化を図るのに適している。
【図面の簡単な説明】
【図1】本発明に係る磁気記録媒体の部分断面模式図である。
【図2】図1に示す磁気記録媒体における記録磁性層の部分拡大断面図である。
【図3】図1に示す磁気記録媒体の製造方法における一部の工程を表す。
【図4】図3(c)に示すマスク微粒子の形成過程を表す。
【図5】図3に続く工程を表す。
【図6】実施例1,2の磁気記録媒体の積層構成を表す。
【図7】実施例3,4の磁気記録媒体の積層構成を表す。
【図8】比較例の磁気記録媒体の積層構成を表す。
【図9】垂直磁気記録方式の従来の磁気記録媒体の部分斜視図である。
【図10】図9に示す磁気記録媒体における記録磁性層の部分拡大断面図である。
【符号の説明】
X1 磁気記録媒体
S 基板
11 記録磁性層
11a 磁性コラム
11a’ 磁性材料膜
11b 非磁性領域
12 軟磁性層
13 非磁性層
14 保護膜
15 マスク微粒子
15a 材料粒
15b エンハンス材料
16 下地層

Claims (5)

  1. 磁性材料よりなり且つ垂直磁気異方性を有して並列する複数の磁性コラムと、非磁性材料よりなり且つ前記複数の磁性コラムの間に介在する非磁性領域と、を含む記録磁性層を備えることを特徴とする、磁気記録媒体。
  2. 前記複数の磁性コラムの横断面平均径、および、前記複数の磁性コラムにおける隣接磁性コラム間の平均離隔距離は、前記記録磁性層の厚さよりも小さい、請求項1に記載の磁気記録媒体。
  3. 垂直磁気異方性を有して並列する複数の磁性コラムと、当該複数の磁性コラムの間に介在する非磁性領域と、を含む記録磁性層を備える磁気記録媒体を製造するための方法であって、
    基材の上に磁性材料を堆積することにより磁性材料膜を形成するための工程と、
    前記磁性材料膜上に、磁性コラム形成領域をマスクするためのエッチングマスクを形成するためのマスク形成工程と、
    前記エッチングマスクを介して前記磁性材料膜をエッチングすることにより、並列し且つ離隔する複数の磁性コラムを形成するための工程と、
    前記複数の磁性コラムの間に非磁性材料を充填することにより、前記複数の磁性コラムの間に介在する非磁性領域を形成するための非磁性領域形成工程と、を含むことを特徴とする、磁気記録媒体の製造方法。
  4. 前記マスク形成工程においては、前記磁性材料よりも表面エネルギーの小さな第1材料を前記磁性材料膜上に成膜することにより第1材料膜を形成し、当該第1材料膜上に第2材料を粒状に堆積させることにより複数の第2材料粒を形成し、且つ、当該第2材料粒の各々の上に第3材料を堆積することによって、前記エッチングマスクとしてのマスク粒子を形成する、請求項3に記載の磁気記録媒体の製造方法。
  5. 前記マスク形成工程では、マスク粒子溶解溶液を前記磁性材料膜上に塗布し、且つ、塗布された溶液から、前記エッチングマスクとしてのマスク粒子を析出させる、請求項3に記載の磁気記録媒体の製造方法。
JP2003060942A 2003-03-07 2003-03-07 磁気記録媒体の製造方法 Expired - Fee Related JP4102221B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060942A JP4102221B2 (ja) 2003-03-07 2003-03-07 磁気記録媒体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060942A JP4102221B2 (ja) 2003-03-07 2003-03-07 磁気記録媒体の製造方法

Publications (2)

Publication Number Publication Date
JP2004272997A true JP2004272997A (ja) 2004-09-30
JP4102221B2 JP4102221B2 (ja) 2008-06-18

Family

ID=33123291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060942A Expired - Fee Related JP4102221B2 (ja) 2003-03-07 2003-03-07 磁気記録媒体の製造方法

Country Status (1)

Country Link
JP (1) JP4102221B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616645B1 (ko) 2004-12-24 2006-08-28 삼성전기주식회사 단일 자구 페라이트 필라 어레이를 갖는 자기 저장 소자의제조 방법
JP2007149155A (ja) * 2005-11-24 2007-06-14 Hitachi Ltd 磁気記録媒体、その作製方法、及び磁気ディスク装置
JP2009151891A (ja) * 2007-12-21 2009-07-09 Ulvac Japan Ltd 磁気デバイスの製造方法
JP2010003408A (ja) * 2004-11-04 2010-01-07 Tdk Corp パターンド磁気記録媒体
EP2343701A1 (en) * 2010-01-08 2011-07-13 Ger-Pin Lin Discontinuous islanded ferromagnetic recording film with perpendicular magnetic anisotropy
WO2012042811A1 (ja) * 2010-09-28 2012-04-05 富士フイルム株式会社 基板製造方法及び磁気記憶媒体の製造方法
US8152972B2 (en) 2007-11-21 2012-04-10 Sharp Kabushiki Kaisha Method for forming fine particles, method for forming concavities and convexities, and device for forming fine particles
US8233359B2 (en) 2006-11-09 2012-07-31 Sharp Kabushiki Kaisha Magnetic recording medium, magnetic recording/reproducing apparatus, and magnetic recording/reproducing method
WO2012157600A1 (ja) * 2011-05-17 2012-11-22 昭和電工株式会社 磁気記録媒体及びその製造方法、並びに磁気記録再生装置
CN114728537A (zh) * 2019-11-27 2022-07-08 捷德货币技术有限责任公司 效果颜料、制造方法、有价文件和印刷油墨

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003408A (ja) * 2004-11-04 2010-01-07 Tdk Corp パターンド磁気記録媒体
KR100616645B1 (ko) 2004-12-24 2006-08-28 삼성전기주식회사 단일 자구 페라이트 필라 어레이를 갖는 자기 저장 소자의제조 방법
JP2007149155A (ja) * 2005-11-24 2007-06-14 Hitachi Ltd 磁気記録媒体、その作製方法、及び磁気ディスク装置
US8233359B2 (en) 2006-11-09 2012-07-31 Sharp Kabushiki Kaisha Magnetic recording medium, magnetic recording/reproducing apparatus, and magnetic recording/reproducing method
US8152972B2 (en) 2007-11-21 2012-04-10 Sharp Kabushiki Kaisha Method for forming fine particles, method for forming concavities and convexities, and device for forming fine particles
JP2009151891A (ja) * 2007-12-21 2009-07-09 Ulvac Japan Ltd 磁気デバイスの製造方法
EP2343701A1 (en) * 2010-01-08 2011-07-13 Ger-Pin Lin Discontinuous islanded ferromagnetic recording film with perpendicular magnetic anisotropy
WO2012042811A1 (ja) * 2010-09-28 2012-04-05 富士フイルム株式会社 基板製造方法及び磁気記憶媒体の製造方法
WO2012157600A1 (ja) * 2011-05-17 2012-11-22 昭和電工株式会社 磁気記録媒体及びその製造方法、並びに磁気記録再生装置
JPWO2012157600A1 (ja) * 2011-05-17 2014-07-31 昭和電工株式会社 磁気記録媒体及びその製造方法、並びに磁気記録再生装置
US9245563B2 (en) 2011-05-17 2016-01-26 Showa Denko K.K. Magnetic medium with an orientation control layer
CN114728537A (zh) * 2019-11-27 2022-07-08 捷德货币技术有限责任公司 效果颜料、制造方法、有价文件和印刷油墨
CN114728537B (zh) * 2019-11-27 2023-10-31 捷德货币技术有限责任公司 效果颜料、制造方法、有价文件和印刷油墨

Also Published As

Publication number Publication date
JP4102221B2 (ja) 2008-06-18

Similar Documents

Publication Publication Date Title
US20220013141A1 (en) Multilayer exchange spring recording media
JP2006309922A (ja) 磁気記録媒体及び磁気記録装置
JP2003016620A (ja) 磁気記録媒体、磁気記録装置および磁気記録方法
JP2005536818A (ja) 反強磁性結合された垂直磁気記録媒体
JP2008084413A (ja) 磁気記録媒体、磁気記録媒体の製造方法及び磁気記録装置
US6660357B1 (en) Perpendicular magnetic recording media with laminated soft magnetic underlayer
JP2008135137A (ja) 磁気記録媒体、磁気記録媒体の製造方法及び磁気記録装置
JP2005025890A (ja) 磁気ヘッド用磁性膜
JP2002230733A (ja) 垂直磁気記録ディスク
JP4102221B2 (ja) 磁気記録媒体の製造方法
KR20080029813A (ko) 자기 기록 매체 및 자기 기록 장치
JP2007164941A (ja) 垂直磁気記録媒体
JP2003288713A (ja) 垂直磁気記録媒体とそれを備えた磁気記録装置及び垂直磁気記録媒体の製造方法並びに製造装置
JP4348971B2 (ja) 垂直磁気記録媒体の製造方法及び垂直磁気記録媒体
JP3359706B2 (ja) 磁気記録媒体
JP2002163819A (ja) 情報記録媒体及びそれを用いた情報記録装置
JP3588039B2 (ja) 磁気記録媒体および磁気記録再生装置
JP2001101644A (ja) 垂直磁気記録媒体及び磁気記録装置
JP3308239B2 (ja) 垂直磁気記録媒体及び磁気記録再生装置
JP2007102833A (ja) 垂直磁気記録媒体
WO2004084193A1 (ja) 磁気記録媒体及びその製造方法、並びに、磁気記録装置及び磁気記録方法
JP2002324313A (ja) 磁気記録媒体の製造方法
JP4667720B2 (ja) 磁気記録媒体およびその製造方法
US20020001736A1 (en) Magnetic recording medium
JP2002197634A (ja) 情報記録媒体及びそれを用いた情報記録装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees