WO2012153454A1 - 流量モニタ付圧力式流量制御装置と、これを用いた流体供給系の異常検出方法並びにモニタ流量異常時の処置方法 - Google Patents

流量モニタ付圧力式流量制御装置と、これを用いた流体供給系の異常検出方法並びにモニタ流量異常時の処置方法 Download PDF

Info

Publication number
WO2012153454A1
WO2012153454A1 PCT/JP2012/002394 JP2012002394W WO2012153454A1 WO 2012153454 A1 WO2012153454 A1 WO 2012153454A1 JP 2012002394 W JP2012002394 W JP 2012002394W WO 2012153454 A1 WO2012153454 A1 WO 2012153454A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
pressure
sensor
flow
control device
Prior art date
Application number
PCT/JP2012/002394
Other languages
English (en)
French (fr)
Inventor
薫 平田
土肥 亮介
西野 功二
池田 信一
勝幸 杉田
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to KR1020137028103A priority Critical patent/KR101550255B1/ko
Priority to JP2013513904A priority patent/JP5605969B2/ja
Priority to CN201280022337.1A priority patent/CN103502902B/zh
Publication of WO2012153454A1 publication Critical patent/WO2012153454A1/ja
Priority to US14/075,890 priority patent/US9632511B2/en
Priority to US15/450,417 priority patent/US10386861B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0623Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the set value given to the control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0075For recording or indicating the functioning of a valve in combination with test equipment
    • F16K37/0083For recording or indicating the functioning of a valve in combination with test equipment by measuring valve parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/50Correcting or compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/6965Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0368By speed of fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Definitions

  • the present invention relates to an improvement of a pressure type flow rate control device, and a pressure type flow rate control device which is operating in real time by organically combining a thermal mass flow rate sensor with a pressure type flow rate control device using an orifice.
  • the present invention relates to a pressure-type flow rate control device with a flow rate monitor capable of monitoring the control flow rate, a fluid supply system abnormality detection method using the same, and a treatment method when a monitor flow rate abnormality occurs.
  • the pressure type flow rate control device FCS is composed of a control valve CV, a temperature detector T, a pressure detector P, an orifice OL, a calculation control unit CD, and the like. It is composed of a temperature correction / flow rate calculation circuit CDa, a comparison circuit CDb, an input / output circuit CDc, an output circuit CDd, and the like.
  • the detection values from the pressure detector P and the temperature detector T are converted into digital signals and input to the temperature correction / flow rate calculation circuit CDa. After the temperature correction and flow rate calculation of the detected pressure are performed, the flow rate calculation is performed.
  • the value Qt is input to the comparison circuit CDb.
  • a set flow rate input signal Q S is input from the terminal In, converted to a digital value by the input / output circuit CDc, and then input to the comparison circuit CDb, where the flow rate calculation value from the temperature correction / flow rate calculation circuit CDa is input. Compared to Qt.
  • the control signal Pd is output to the drive portion of the control valve CV, and the control valve CV is driven in the opening direction to calculate the set flow rate input signal Qs.
  • the valve is driven in the valve opening direction until the difference (Qs ⁇ Qt) from the flow rate value Qt becomes zero.
  • the pressure type flow control device FCS itself is known as described above, but the downstream pressure P 2 of the orifice OL (that is, the pressure P 2 on the process chamber side) and the upstream pressure P 1 of the orifice OL (that is, the control valve CV).
  • the downstream pressure P 2 of the orifice OL that is, the pressure P 2 on the process chamber side
  • the upstream pressure P 1 of the orifice OL that is, the control valve CV
  • FIG. 17 and FIG. 18 show an example, and this mass flow control device (mass flow controller) 20 includes a flow path 23, a first pressure sensor 27a for upstream pressure, an open / close control valve 24, A thermal mass flow sensor 25 provided on the downstream side, a second pressure sensor 27b provided on the downstream side, a throttle (sonic nozzle) 26 provided on the downstream side of the second pressure sensor 27b, and an arithmetic control unit 28a And an input / output circuit 28b and the like.
  • this mass flow control device (mass flow controller) 20 includes a flow path 23, a first pressure sensor 27a for upstream pressure, an open / close control valve 24, A thermal mass flow sensor 25 provided on the downstream side, a second pressure sensor 27b provided on the downstream side, a throttle (sonic nozzle) 26 provided on the downstream side of the second pressure sensor 27b, and an arithmetic control unit 28a And an input / output circuit 28b and the like.
  • the arithmetic control unit 28a feeds back the pressure signals Spa and Spb from the pressure sensors 27a and 27b and the flow rate control signal Sf from the flow rate sensor 25 and outputs a valve opening degree control signal Cp to feedback control the on-off valve 24.
  • the flow rate setting signal Fs is input to the arithmetic control unit 28a via the input / output circuit 28b, and the flow rate F of the fluid flowing through the mass flow rate control device 20 is adjusted to match the flow rate setting signal Fs.
  • the flow rate F of the fluid flowing through the sonic nozzle 26 is controlled by the arithmetic control unit 28a using the output (pressure signal Spb) of the second pressure sensor 27b to feed back and control the open / close control valve 24.
  • the flow rate F actually flowing is measured using the output (flow rate signal Sf) of the thermal flow sensor 25 at this time, and the operation of the mass flow rate control device 20 is confirmed.
  • the pressure flow measurement using the second pressure sensor 27b for flow control and the heat for monitoring the flow are performed. Since two types of measurement methods called flow rate measurement using the flow rate sensor 25 are incorporated in the arithmetic control unit 28a, whether or not the fluid of the control flow rate (set flow rate Fs) is actually flowing, that is, the control flow rate and the actual flow rate. Whether or not there is a difference between the flow rate can be easily and reliably monitored, and has high practical utility.
  • the first problem is that the calculation control unit 28a controls the opening / closing control valve 24 using both the output SPb of the second pressure sensor 27b and the flow output Sf of the thermal flow sensor 25, and the first pressure sensor.
  • the flow rate output Sf of the thermal type flow sensor 25 is corrected using the output SPa of 27a, and the two pressure signals of the first pressure sensor 27a and the second pressure sensor 27b and the flow rate signal from the thermal type flow sensor 25 are The opening / closing control of the opening / closing control valve 24 is performed using these three signals. Therefore, there is a problem that not only the configuration of the arithmetic control unit 28a is complicated, but also stable flow rate control characteristics and excellent high responsiveness as the pressure type flow rate control device FCS are reduced.
  • the second problem is that the mounting position of the thermal flow sensor 25 with respect to the open / close control valve 24 changes, that is, in the mass flow control device 20 of FIGS. There is a problem that the response of the flow sensor 25, the gas replacement property in the apparatus main body, and the evacuation characteristics are greatly changed, and the mass flow controller 20 is difficult to downsize.
  • a so-called flow rate control device is widely used in, for example, a gas supply device of a semiconductor manufacturing facility as shown in FIG. 31, and a purge gas supply system B and a process gas supply are provided upstream of the flow rate control device D.
  • a system A is connected in parallel, and a process gas use system C is connected to the downstream side of the flow rate control device D.
  • valves V 1 , V 2, and V 3 are interposed in the gas supply systems A and B and the gas use system C, respectively.
  • check in the inspection (hereinafter referred to as “check”) of the valves V 1 to V 3 , the operation state of each valve (including the operation of the valve actuator) is normally checked and the seat leak of each valve is checked.
  • valves V 1 , V 2 and V 3 are removed from the pipe line. There is a problem that it is necessary to check using a test apparatus provided separately, and it takes a lot of work and time to check the seat leak of each valve.
  • the present invention relates to the above-described problem in the mass flow control device using the sonic nozzle of Japanese Patent No. 4137666 shown in FIGS. 17 and 18, that is, the pressure signals of the first and second pressure sensors 27a and 27b. Since the opening / closing control of the opening / closing control valve 24 is performed using two types of signals different from the flow rate signal of the thermal type flow sensor 25, the configuration of the arithmetic control unit 28a is not only complicated, but also the pressure type flow rate. There is a possibility that the excellent response characteristics and stable flow control characteristics of the control device may be diminished, the enlargement of the mass flow control device 20 is unavoidable, and the gas replacement property is lowered and the evacuation time becomes long.
  • the flow control unit of the pressure type flow control device FCS using an orifice and the thermal type flow monitor unit using a thermal type flow sensor are combined together, and the flow control and the flow monitor are solved.
  • the full flow characteristics of the pressure type flow control device can be fully utilized, and the flow rate monitoring by the thermal type flow sensor can be performed in real time.
  • a pressure-type flow rate control device with a flow rate monitor that can improve the gas replacement performance by greatly reducing the size of the part is provided.
  • the present invention requires that each valve be removed from the pipe line when performing a seat leak check of the valves provided on the upstream side and the downstream side of the pressure type flow rate control device with a flow rate monitor. Even if a problem that requires a lot of time or an abnormality in the monitor flow rate is detected by the flow rate self-diagnosis mechanism provided in the pressure type flow rate control device with a flow rate monitor, the cause of the abnormality can be quickly grasped and necessary countermeasures such as This solves the problem that it is not possible to replace the pressure-type flow control device with a flow rate monitor itself, and makes it possible to easily and quickly check seat leaks of valves, etc.
  • An abnormality detection method for a fluid supply system using a pressure-type flow control device with a flow rate monitor that can quickly take an appropriate response when the flow rate is abnormal. It is intended to provide a ⁇ method.
  • a pressure-type flow control device with a flow monitor was conceived. 6 and 7, 1 is a pressure type flow rate control device with a flow rate monitor, 2 is a thermal flow rate sensor, 3 is a control valve, 4 is a temperature sensor, 5 is a pressure sensor, 6 is an orifice, and 7 is a control unit. 8 is an inlet-side flow path, 9 is an outlet-side flow path, 10 is a fluid passage in the apparatus body, and the mounting positions of the thermal flow sensor 2 and the control valve 3 in FIG. This is a pressure type flow rate control device with a flow rate monitor.
  • the reason why the pressure type flow rate control device using the orifice is adopted as the flow rate control method is that the flow rate control characteristics are good and the past use results are many.
  • the reason why the thermal type flow sensor 2 is used as a flow rate monitoring sensor is mainly due to the flow rate, actual use as a sensor, and excellent characteristics as a flow rate sensor, and ease of real-time measurement and change in gas type. This is a result of taking into account the points that the compatibility, flow measurement accuracy, actual use, etc. are higher than those of other flow measurement sensors.
  • the thermal flow sensor 2 is integrally assembled in the fluid passage 10 in the apparatus main body of the pressure type flow control device using the orifice so that the flow rate monitor is easy to perform and the pressure type flow control device with the flow monitor is small. This is because it is easy to achieve.
  • the fluctuation of the output of the thermal flow sensor due to the change of the supply pressure can be considered. That is, since the output of the thermal flow sensor fluctuates due to a change in supply pressure, an error from the control flow rate may occur when the supply pressure changes. For this reason, it is necessary to take measures such as delaying the responsiveness of the thermal flow sensor to alleviate the output fluctuation due to the supply pressure change.
  • the second problem is the condition of the zero point adjustment.
  • the zero point adjustment is performed under a vacuum in a pressure sensor, and is performed in a sealed state in a flow sensor. Therefore, it is necessary to protect the zero adjustment from being performed under wrong conditions.
  • the third problem is the phenomenon of the thermal siphon of the thermal flow sensor. In other words, it is necessary to determine the installation direction in advance by installing a thermal flow sensor, and as a result, in parallel with the design of the gas box, it is necessary to consider the installation direction of the pressure flow control device with a flow monitor. is there.
  • the fifth problem is the response when the control flow rate is abnormal.
  • alarms and errors in the control flow rate are displayed on the display, but the output difference between the pressure type flow control device and the monitor flow rate by the thermal flow rate sensor exceeds a predetermined threshold value. And a system to determine that it is abnormal.
  • the inventors of the present application first conducted an evaluation test of various characteristics of the newly incorporated thermal flow sensor 2 for each pressure type flow control device 1 with a flow monitor shown in FIGS.
  • the fluid supply source 11 composed of an N 2 container, the pressure regulator 12, the purge valve 13, and the input side pressure sensor 14 are connected to the inlet side flow path 8, and the data logger (NR500). 15 is connected to the control unit 7, and further, a characteristic evaluation system is configured such that the outlet side flow path 9 is evacuated by the vacuum pump 16, and the step response of the thermal flow sensor 2 is configured using the characteristic evaluation system. Characteristics, monitor flow accuracy, supply pressure fluctuation characteristics, and repeatability were evaluated.
  • the step response characteristic is for evaluating the response of the thermal flow sensor output to a step input with a predetermined flow rate setting.
  • the set flow rate is 100% (full scale)
  • F.D. S. The output response when step-changing from 1000 (sccm) to 20%, 50%, and 100% was evaluated.
  • 8, 9 and 10 show the flow rate setting input A 1 of the pressure type flow control device 1 and the flow rate output A 2 at that time in the data logger 15 when the set flow rate is 20%, 50% and 100%, and the thermal flow sensor. (in the case of FIG. 6) output B 1, shows the measurement results of the thermal flow sensor output B 2 (the case of FIG. 7).
  • the monitor flow rate accuracy is set to S.D. from each flow rate setting. P.
  • the amount of change in the output of the thermal flow sensor when shifted in units is measured and evaluated.
  • the error setting conditions are -0.5% SP, -1.0% S.P. P., -2.0% S.P. P. and -3.0% S.P.
  • the supply pressure fluctuation characteristic indicates the fluctuation state of the thermal flow sensor output when the supply pressure is changed during constant flow control, and the flow rate setting is 50% and the supply pressure fluctuation condition is 50 kPaG. .
  • FIG. 13 shows the measurement results.
  • the thermal flow sensor 2 is set on the upstream side (primary side) of the control valve 3 (in the case of FIG. 6)
  • the thermal flow sensor 2 due to supply pressure fluctuation is shown.
  • the change in flow rate output is ⁇ 0.5% F.V. S. It has been found that it is within the range of / div, i.e., hardly affected by fluctuations in the gas supply pressure.
  • the repeatability is obtained by repeatedly inputting from 0% to a set flow rate with 20% and 100% flow rate settings, and measuring the reproducibility of the thermal flow sensor outputs B 1 and B 2 .
  • the repeatability of the thermal flow sensor output is ⁇ 1% F.S. S. And 0.2% F.V. S. It has been found that it exhibits regular and accurate reproducibility.
  • the thermal flow sensor 2 used in FIGS. 6 and 7 is a sensor mounted on the FCS-T1000 series manufactured by Fujikin Co., Ltd., which is a thermal type of a so-called thermal mass flow controller (mass flow controller). It is widely used as a flow sensor.
  • the mounting position of the flow sensor 2 may be on the upstream side (primary side) or the downstream side (secondary side) of the control valve 3 in terms of step response characteristics, monitor flow accuracy characteristics, and repeatability characteristics. Although there is no superiority or inferiority in the meantime, it is desirable to provide the thermal flow rate sensor 2 on the downstream side (secondary side) of the control valve 3 of the pressure type flow rate control device from the viewpoint of supply pressure fluctuation characteristics. I found it better to do.
  • the inventors of the present application increase the internal volume between the control valve 3 and the orifice 6, It has been found that the substitutability is lowered, and in the case of a small flow type pressure type flow rate control device, the pressure drop characteristic becomes slow (that is, the outgassing characteristic deteriorates), and these points become problems. It was.
  • the invention of the present application was created based on the results of the above-described evaluation tests by the inventors of the present application.
  • the invention of claim 1 is connected to the fluid inlet side passage 8 and the downstream side of the inlet side passage 8.
  • the control valve 3 constituting the pressure type flow rate control unit 1a, the thermal type flow sensor 2 connected to the downstream side of the control valve 3, and the orifice provided in the fluid passage 10 communicating with the downstream side of the thermal type flow rate sensor 2 6, a temperature sensor 4 provided in the vicinity of the fluid passage 10 between the control valve 3 and the orifice 6, a pressure sensor 5 provided in the fluid passage 10 between the control valve 3 and the orifice 6, and the orifice 6
  • the pressure signal from the pressure sensor 5 and the temperature signal from the temperature sensor 4 are input, and the flow rate value Q of the fluid flowing through the orifice 6 is calculated and the calculated flow rate value
  • the flow rate signal 2c from the pressure type flow rate calculation control unit 7a for outputting the control signal Pd for opening and closing the control valve 3 to the valve
  • the invention of claim 2 is the invention of claim 1, wherein the pressure sensor 5 is provided between the outlet side of the control valve 3 and the inlet side of the thermal flow sensor 2.
  • the difference between the fluid flow rate calculated by the flow rate sensor control unit 7b and the fluid flow rate calculated by the pressure type flow rate calculation control unit 7a is a set value. When it exceeds, it is set as the control part 7 which performs a warning display.
  • control valve 3, the thermal flow sensor 2, the orifice 6, the pressure sensor 5, the temperature sensor 4, the inlet side passage 8 and the outlet side passage 9 are combined into one body.
  • the forming fluid passage 10 is formed integrally with the body body.
  • the pressure signal from the pressure sensor 5 and the pressure sensor 17 and the temperature signal from the temperature sensor 4 are input, and the critical expansion condition of the fluid flowing through the orifice 6 is monitored and the orifice 6 is circulated.
  • Pressure type flow rate calculation for calculating the flow rate value Q of the fluid to be output and outputting the control signal Pd for opening and closing the control valve 3 in the direction in which the difference between the calculated flow rate value and the set flow rate value decreases.
  • the invention of claim 6 is the control unit 7 according to the invention of claim 5, which displays a warning when the fluid flowing through the orifice 6 deviates from the critical expansion condition.
  • control valve 3 the thermal flow sensor 2, the orifice 6, the pressure sensor 5, the temperature sensor 4, the inlet side passage 8, the outlet side passage 9, and the pressure sensor 17 are provided. Is assembled in one body.
  • the invention of claim 8 is a fluid supply system comprising a pressure type flow rate control device with a flow rate monitor having a pressure sensor comprising a flow rate setting mechanism and a flow rate and pressure display mechanism and / or a flow rate self-diagnosis mechanism.
  • Abnormality of the valve provided upstream or downstream of the pressure type flow control device with flow rate monitor is detected using the pressure display value of the pressure type flow control device with flow rate monitor or the diagnostic value of the flow rate self-diagnosis mechanism.
  • the valve is provided in the process gas use system on the downstream side, and the type of abnormality to be detected is the valve opening / closing operation and the seat leak. It is.
  • a fluid supply system including a pressure type flow rate control device with a flow rate monitor having a pressure sensor including a flow rate setting mechanism and a flow rate and pressure display mechanism and / or a flow rate self-diagnosis mechanism.
  • the pressure type flow control device with a flow rate monitor as well as the abnormality of the valve provided on the upstream side or downstream side thereof is detected using the pressure display value of the pressure type flow rate control device with flow rate monitor and / or the flow rate self-diagnosis mechanism.
  • the invention of claim 11 performs self-diagnosis of the flow rate using the invention of the abnormality detection method of the fluid supply system of claim 10 to determine the cause of the abnormality of the monitor flow rate detected from the form of the pressure drop characteristic during the flow rate self-diagnosis. After the determination, check the zero point deviation of the pressure sensor.If the zero point is off, adjust the zero point and perform the flow rate self-diagnosis again.If the zero point is not off, It is determined whether or not the cause of the determined abnormality is an abnormality of the fluid supply system. If the fluid supply system is abnormal, the abnormality of the fluid supply system is recovered, and if there is no abnormality in the fluid supply system, the flow rate The pressure type flow control device with a monitor itself is judged to be abnormal and replaced.
  • the flow rate self-diagnosis is performed using the fluid supply system abnormality detection method of the tenth aspect, and the monitor flow rate is abnormal due to a change in the diameter of the orifice of the pressure type flow rate control device with the flow rate monitor
  • the pressure flow rate control device with a flow rate monitor is calibrated with the monitor flow rate being positive.
  • a pressure type flow rate control device with a flow rate monitor is formed by a pressure type flow rate control unit 1a and a thermal type flow rate monitor unit 1b, and the thermal type flow rate sensor 2 of the thermal type flow rate monitor unit 1b is used as a pressure type flow rate control unit.
  • Pressure type flow rate calculation control for controlling the opening and closing drive of the control type valve 3 of the pressure type flow rate control unit 1a while the control unit 7 is organically integrated by being positioned downstream of the control valve 3 of the control unit 1a.
  • the unit 7a and the flow rate sensor control unit 7b for calculating and displaying the actual fluid flow rate flowing through the orifice 6 by the flow rate signal from the thermal flow rate sensor 2 are integrated in an independent state.
  • control unit 7 having a simple configuration can easily and accurately perform stable pressure type flow rate control, and continuously and accurately monitor the flow rate by the thermal type flow rate sensor 2 in real time. I can do it.
  • the thermal flow sensor 2 is positioned downstream of the control valve 3 and the apparatus main bodies such as the control valve 3 and the thermal flow sensor 2 are integrally assembled in one body, the apparatus main body The internal space volume is greatly reduced, and the gas substituting property and evacuation characteristics are not deteriorated. Furthermore, even if the fluid pressure on the fluid supply source side fluctuates, the output characteristics of the thermal flow sensor 2 do not fluctuate greatly. As a result, the flow monitor and flow control are stable against the pressure fluctuation on the fluid supply side. Can be done.
  • the cause of the abnormality is accurately determined from the form of the pressure drop characteristic curve. It is possible to repair and adjust necessary equipment more efficiently.
  • the monitor flow rate when an abnormality occurs in the monitor flow rate due to a change in the orifice diameter of the pressure type flow rate control device with a flow rate monitor, the monitor flow rate is positively calibrated quickly. It can be performed.
  • FIG. 1 is a schematic configuration diagram of a pressure type flow rate control device with a flow rate monitor using an orifice according to an embodiment of the present invention. It is a structure schematic diagram which shows the other example of the pressure type flow control apparatus with a flow monitor. It is a structure schematic diagram which shows the further another example of the pressure type flow control apparatus with a flow monitor. It is explanatory drawing of a structure of a thermal type flow sensor. It is explanatory drawing of the operation principle of a thermal type flow sensor. It is the 1st conceptual diagram of the pressure type flow control device with a flow rate monitor which the present inventor conceived. It is the 2nd conceptual diagram of the pressure type flow control device with a flow rate monitor which the inventor of this application conceived.
  • FIG. 27 shows four types of pressure drop characteristics derived from the forms (patterns) of the pressure drop characteristics shown in FIGS.
  • FIG. 1 is a schematic diagram of the configuration of an embodiment of a pressure-type flow control device 1 with a flow rate monitor according to the present invention.
  • the pressure-type flow rate control device 1 with a flow rate monitor includes a pressure-type flow rate control unit 1a and a thermal flow rate monitor unit. It consists of two parts 1b.
  • the pressure type flow rate control unit 1 a is composed of a control valve 3, a temperature sensor 4, a pressure sensor 5, an orifice 6, and a pressure type flow rate calculation control unit 7 a forming a control unit 7.
  • the pressure type flow rate control unit 1a passes control valve 3 mentioned above, the temperature sensor 4, the pressure sensor 5 is constituted by a orifice 6 and the pressure type flow rate calculation control unit 7a and the like, the flow rate setting signal from the input terminal 7a 1 is and flow rate output signal of the fluid flowing through the orifice computed by the pressure type flow rate control unit 1a from the output terminal 7a 2 is output.
  • the pressure type flow rate control unit 1a itself using the orifice 6 is a well-known technique such as Japanese Patent No. 3291161, and the pressure detected by the pressure detection sensor 5 is the flow rate of the fluid flowing through the orifice 6 under the critical expansion condition.
  • the pressure type flow rate calculation control unit 7 a Based on the calculation, the pressure type flow rate calculation control unit 7 a outputs a control signal Pd proportional to the difference between the set flow rate signal input from the input terminal 7 a 1 and the calculated flow rate signal to the valve drive unit 3 a of the control valve 3. .
  • the pressure type flow rate control unit 1a Since the configuration of the pressure type flow rate control unit 1a and the flow rate calculation control unit 7a is substantially the same as that shown in FIG. 16, detailed description thereof is omitted here.
  • the pressure type flow rate control unit 1a is provided with various auxiliary mechanisms such as a known zero adjustment mechanism, a flow rate abnormality detection mechanism, and a gas type conversion mechanism (FF value conversion mechanism). is there.
  • 8 is an inlet side passage
  • 9 is an outlet side passage
  • 10 is a fluid passage in the apparatus main body.
  • the thermal type flow rate monitoring unit 1b constituting the pressure type flow rate control device 1 with the flow rate monitor is composed of a thermal type flow rate sensor 2 and a flow rate sensor control unit 7b, and the flow rate sensor control unit 7b has an input terminal 7b 1. and the output terminal 7b 2 are provided respectively. Then, from the input terminal 7b 1 is input setting signal of the flow rate range to be monitored, from the output terminal 7b 2 is output monitor flow rate signal detected by the thermal flow sensor 2 (actual flow rate signal).
  • the monitor flow rate signal and the calculated flow rate signal are appropriately input / output between the flow rate sensor control unit 7b and the pressure type flow rate calculation control unit 7a.
  • the magnitude of the difference or the difference may be monitored, or a warning may be issued if the difference between the two exceeds a certain value.
  • FIG. 2 shows another example of the pressure type flow rate control device 1 with a flow rate monitor, in which the fluid pressure between the control valve 3 and the thermal type flow rate sensor 2 is detected by the pressure sensor 5. is there.
  • movement of the pressure type flow control apparatus 1 with a flow rate monitor are completely the same as the case of FIG.
  • FIG. 3 shows still another example of the pressure type flow rate control device 1 with a flow rate monitor.
  • a pressure sensor 17 is separately provided on the downstream side of the orifice 6, and the fluid flowing through the orifice 6 is under critical expansion conditions. Whether the flow rate can be controlled by using the differential pressure between the pressure sensor 5 and the pressure sensor 17.
  • the flow rate signal 2c is introduced into a flow rate sensor control unit 7b made of, for example, a microcomputer, and the actual flow rate of the currently flowing fluid is obtained based on the flow rate signal 2c.
  • FIG. 5 shows the basic structure of the sensor circuit 2b of the thermal flow sensor 2, and a series connection circuit of two reference resistors R2 and R3 is connected in parallel to the series connection of the resistance wires R1 and R4. Forming a bridge circuit. A constant current source is connected to the bridge circuit, and a differential circuit is provided by connecting the connection point between the resistance lines R1 and R4 and the connection point between the reference resistors R2 and R3 to the input side. Thus, the potential difference between the two connection points is obtained, and this potential difference is output as the flow rate signal 2c.
  • thermal flow sensor 2 and the flow sensor control unit 7b themselves are well-known techniques, and thus detailed description thereof is omitted here.
  • a sensor mounted on the FCS-T1000 series manufactured by Fujikin Co., Ltd. is used as the thermal flow rate monitoring unit 1b.
  • a pressure type flow rate control unit 1a of a pressure type flow rate control device with a flow rate monitor has substantially the same configuration as the conventional pressure type flow rate control device FCS shown in FIG.
  • the pressure-type flow rate control unit 1a includes a flow rate setting circuit (not shown) corresponding to a flow rate setting mechanism, a pressure display mechanism (not shown) corresponding to a pressure display mechanism, and a flow rate output circuit (not shown). (Omitted) etc. are provided.
  • the pressure type flow rate control unit 1a is provided with a so-called flow rate self-diagnosis mechanism (not shown), and compares the initially set pressure drop characteristic with the pressure drop characteristic at the time of diagnosis as described later. It is configured to determine an abnormal state and output the determination result.
  • the pressure type flow rate control unit 1a may not be able to supply the gas flow rate at the set flow rate or maintain the critical expansion condition due to insufficient supply pressure from the gas supply source to the control valve 3. In some cases, a mechanism for transmitting a supply pressure shortage signal is provided.
  • FIG. 19 shows an example of a fluid supply system using the pressure type flow rate control apparatus 1 with a flow rate monitor, which is an object of the present invention.
  • the fluid supply system includes a purge gas supply system B and a process gas supply system.
  • A a pressure type flow rate control device 1 with a flow rate monitor, a process gas use system C, and the like.
  • the purge gas supply system B first uses an inert gas such as N 2 or Ar as the purge gas Go, the pipe 8, the pressure-type flow control device 1 with a flow monitor, the pipe 9, etc. And purge the fluid supply system. Thereafter, the process gas Gp is supplied instead of the purge gas Go, and the process gas Gp is supplied to the process gas use system C while adjusting to a desired flow rate in the pressure type flow rate control unit 1 with a flow rate monitor.
  • V 1 , V 2 , and V 3 are valves, and an automatic opening / closing valve having a fluid pressure drive unit or an electric drive unit is generally used.
  • Valves to be inspected using the present invention are the valves V 1 , V 2, V 3 and the like in FIG. 19, and so-called seat leak and abnormal operation of the valves V 1 to V 3 are caused by pressure-type flow rate with a flow rate monitor. This is performed using a control device (hereinafter referred to as a pressure-type flow rate control unit 1a) during preparation for starting the supply of process gas to the process chamber E or preparation for stopping the supply of process gas.
  • a control device hereinafter referred to as a pressure-type flow rate control unit 1a
  • abnormal operation of each of the valves V 1 , V 2 , V 3 is inspected by the following procedure using the pressure type flow control unit 1a (that is, the pressure type flow control device FCS).
  • the pressure type flow control unit 1a that is, the pressure type flow control device FCS.
  • a valve V 1 A predetermined actual gas (process gas Gp) is circulated, and a gas having a predetermined set flow rate is circulated by FCS.
  • FCS flow indicator value and the pressure indication value FCS (pipe passage 8 and or distribution line 9) is changed to 0, so that the operation of the valve V 1 is abnormal (non-operating).
  • the actual gas flow rate self-diagnosis whether or not the actual gas control flow rate of the FCS is the predetermined flow rate by circulating the predetermined actual gas (process gas Gp) to the FCS, If the error signal of the supply shortage originated would the operation of the valve V 1 is abnormal (non-operating).
  • N 2 is circulated as the purge gas G, and a gas having a predetermined set flow rate is circulated by FCS. If the flow indicator value and the pressure instruction value at this time FCS is changed to 0, abnormal operation (non-operating) of the valve V 2 will be there.
  • FCS An error signal indicating insufficient supply pressure from the FCS while diagnosing whether or not the N 2 control flow rate of the FCS is the set flow rate by flowing N 2 gas to the FCS (hereinafter referred to as N 2 flow rate self-diagnosis) there when originated would the operation of the valve V 2 is abnormal (non-operating).
  • the flow factor F. of real gas (process gas Gp).
  • F. If> 1, the diagnosis result is on the negative side and the actual gas (process gas Gp) F.V. F. In the case of ⁇ 1, the diagnosis result is shifted to the + side.
  • F. A value defined by the actual gas flow rate / N 2 flow rate (see JP 2000-66732 A).
  • FCS valves V 3 After completion of the flow control by the sheet leaks FCS valves V 3, holds the valve V 3 in the closed state, the flow rate setting of FCS to 0 (set so that the flow rate is zero). Thereafter, if the downward pressure indication value of FCS, so that sheet leaks are occurring in the valve V 3.
  • FIG. 20 shows a flow sheet when checking the abnormality of each valve V 1 , V 2 , V 3 of the fluid supply apparatus shown in FIG. This flow sheet is shown in FIG.
  • Each valve V 1 , V 2 , V 3 , FCS and piping systems 8, 9, 9 b have no external leaks other than seat leaks (for example, leaks from joints, bonnets, etc.), b.
  • C The drive part of each valve operates normally.
  • FCS should operate normally, d. It is premised that V 1 and V 2 are not opened simultaneously.
  • step So an abnormality check is started at step So. Subsequently, V 1 closed at step S 1, V 2 open ⁇ closed (switching), V 3 performs closed, FCS control valve opening operation, is filled with N 2 to the downstream side pipe 9 of the FCS.
  • step S 2 check the pressure display P 1 of the pressure sensor 1a in the pressure display P 1, i.e., FIG. 1 of FCS, decrease [Delta] P 1 P 1 determines whether zero or not.
  • step S 4 V 1 closed, V 2 closed, V 3 opened, after evacuating the pipe in FCS control valve opening, V 1 open, the process gas in the V 2 closed (real gas) Gp flow to FCS, checks the pressure display P 1 of the FCS at step S 5. Operation of V 1 if there is increase in P 1 is normal (step S7), and it is determined that the operation anomaly of V 1 Without elevated P 1 (step S 6), to check the operation status of V 1.
  • V 1 closed at step S 8 V 2 closed, V 3 opened, after evacuating the pipe in FCS control valve opening, V 1 and closed, and V 2 opens, check the pressure display P 1 of the FCS (step S 9). If P 1 does not increase, it is determined that V 2 is operating abnormally (step 10), and the operating status of V 2 is confirmed. Also, if rising is P 1, the operation of the V 2 are determined to be normal (step S 11).
  • step S 12 the abnormality of the valves in the step S 2 determines whether relevant to abnormal operation of the valve V 3. That is, a decision step S 2 is No (or the operation abnormality of the valve V 1, V 2, V 3), and if the operation of the valves V 1 and V 2 is normal, valve V 3 Is determined to be abnormal (step S 13 ), and if the determination in step S 2 is yes, it is determined that the operation of each valve V 1 , V 2 , V 3 is normal (step S 13 ). S 14).
  • step S 15 the seat leak of each valve V 1 , V 2 , V 3 is checked. That is, in step S 15, V 1 closed, V 2 closed, V 3 opened, after evacuating the inside of the pipe with the control valve 3 open FCS, V 1 closed as in step S 1, V 2 open ⁇ closed ( switching), V 3 in the closed, maintain the pressure between the FCS and holding a pipe 9b between the valve V 3 a pressure display of pressurized FCS to P 1 (control valve 3 and the valve V 3) to.
  • step S 16 checking the decompression of the P 1, vacuum is determined that there is a sheet leak valve V 3 If (step S 17). Further, if there reduced pressure, it is determined that no sheet leaks in the valve V 3 (step S 18).
  • step S 19 V 1 closed, V 2 closed, V 3 opened, after evacuating the inside of the pipe with the control valve 3 opens the FCS, the valve V 1 closed, V 2 closed, V 3 pipe path is opened reduced pressure 8,9,9B (vacuum) after, the valve V 3 to a closed (step S 20). Then check the pressure display P 1 of the FCS at step S 21, if boosts the pressure display P 1, it is determined that there is no sheet leaks in valves V 1, V 2 at step S 22, to complete the abnormality check (step S 31).
  • step S 21 determines whether the valve is a one with a sheet leaks Enter the process.
  • step S 24 if there is no abnormality in the diagnostic value, it is determined that there is sheet leaks only valve V 1 (step S 26). Even if sheet leaks to the valve V 1, if there is no sheet leaks to the valve V 2, fluid flowing into the flow monitor with a pressure type flow rate control apparatus 1 (FCS) is only a process gas Gp, thus the actual gas flow rate This is because there is no abnormality in the diagnostic value of the self-diagnosis.
  • FCS pressure type flow rate control apparatus 1
  • step S 24 when there is abnormality in the diagnostic value in step S 24, the valve V 1 closed in step S 27, the valve V 2 opens, N 2 flow rate self-diagnostic of the flow monitor with a pressure type flow rate control apparatus 1 (FCS) Is done. That is, the pressure drop characteristic when N 2 gas is flowed is compared with the initial pressure drop characteristic, and if the difference between the two is less than the allowable value, it is diagnosed that there is no abnormality in the diagnostic value. If the difference between the two is equal to or greater than the allowable value, the diagnosis value is diagnosed as abnormal.
  • FCS pressure type flow rate control apparatus 1
  • step S 28 if there is no abnormality in the diagnostic value of the N 2 flow rate self-diagnostic, only the valve V 2 in step S 29 is judged to be a sheet leaks. This is because if the valve V 1 has caused a seat leak, the actual gas will be mixed into N 2 and an abnormality will occur in the flow rate self-diagnosis value of the FCS.
  • step S 28 if there is an abnormality in the N 2 flow rate self-diagnostic value in step S 28 , the valve V 1 causes a seat leak, and the mixed gas of N 2 and the actual gas flows into the FCS. This will cause an abnormality in the diagnostic value. Thus, in step S 30, it is determined that both valves V 1 and V 2 is a sheet leaks.
  • step S 3 After detecting the abnormality of the valve V 1, V 2, V 3 in step S 3, the operation abnormality of the valve V 1, V 2, V 3, sheet leaks abnormal The flow is to check each in turn. However, if abnormality is detected in step S 3, the type of abnormality from the fluctuation degrees of abnormality is first determined whether there are any abnormal operation or sheet leaks of valves, the operation when the abnormality Step S 4 ⁇ up to step S 13, also the steps S 15 ⁇ step S 30 if sheet leaks abnormal, may be respectively performed for.
  • the determination of the abnormal operation can be made from the rate of increase of P 1 or the rate of decrease of P 1 in step S 3 .
  • the greater the increase rate of P 1 valve closing abnormality it can be determined that sheet leaks of valves the smaller the increasing rate of P 1 abnormality.
  • the flow rate self-diagnosis is to compare the initially set pressure drop characteristic with the pressure drop characteristic at the time of diagnosis as described above, and determine that an abnormality occurs when the difference is outside a predetermined range. .
  • the inventors constructed the basic fluid supply system shown in FIG. 19 to simulate a failure (abnormality) and to investigate the pressure drop characteristics at each abnormality.
  • the relationship between the obtained pressure drop characteristic and the cause of the occurrence was analyzed, and from the analysis result, it was found that there is a close and constant relationship between the form of the pressure drop characteristic and the cause of the occurrence of the abnormality. That is, it has been found that the cause of the abnormality can be known if the form of the pressure drop characteristic at the time of occurrence of the abnormality is known.
  • FIG. 21 shows a specific type of failure A (fault identification) generated in simulation in the flow rate self-diagnosis, a phenomenon B generated thereby, and a general factor C of the failure directly related to the generated phenomenon B.
  • failure A fault identification
  • the numerical values (1 to 4) in the column of the pressure drop characteristic form indicate the types of the pressure drop characteristic forms respectively generated for the specific failure type A as will be described later.
  • the 22 to 28 show the pressure drop characteristics in the flow rate self-diagnosis when each of the specific faults shown in FIG. 21 occurs.
  • the horizontal axis represents time, and the vertical axis represents the pressure flow rate.
  • the control part 1a that is, the detected pressure of FCS is shown respectively. That is, in FIG. 22, since the supply pressure from the gas supply source side is insufficient, the control pressure is insufficient when the 100% flow rate is held, and the form of the pressure drop characteristic is the form of type 4 described later.
  • a gas having a large flow factor (FF) flows into the pressure control unit 1a, that is, the primary side of the FCS, so that the gas can easily escape from the throttle mechanism (orifice).
  • the pressure drop in the pressure drop characteristic is accelerated (form of type 3).
  • FIG. 24B since a gas having a small flow factor (FF) flows in, it is difficult for the gas to escape from the throttle mechanism (orifice), and the pressure drop in the pressure drop characteristic is delayed (type). 1 form).
  • the throttle mechanism is expressed by an orifice.
  • FIG. 28 shows a case where the zero point adjustment of the pressure type flow rate control unit 1a is out of order.
  • the pressure drop is delayed and the type 1 form is obtained.
  • the pressure drop is accelerated, and the pressure drop characteristic is in the form of type 3.
  • FIG. 29 collectively shows the types of pressure drop characteristics at the time of the flow rate self-diagnosis shown in FIGS.
  • the pressure drop characteristics are roughly classified into the following four types (patterns) 1 to 4.
  • Type 1 pressure drop characteristics pressure drop is delayed immediately after diagnosis
  • Type 2 pressure drop characteristics pressure drop delays during diagnosis
  • the flow rate self-diagnosis of the pressure type flow rate control apparatus 1 with a flow rate monitor is performed (step 40).
  • the flow rate self-diagnosis method is the same as the method described with reference to FIG.
  • the monitor flow rate abnormality generally includes a zero point deviation of the thermal type flow rate monitoring unit 1b, a zero point deviation of the pressure type flow rate control unit 1a, a fluid supply system abnormality and a pressure type with a flow rate monitor shown in FIG. It has been found that it occurs due to a failure of the flow control device 1 itself.
  • step 40 After the flow rate self-diagnosis is performed in step 40 and the result is diagnosed in step 41 and the flow rate self-diagnosis result is within a predetermined normal range, the zero point adjustment of the thermal flow sensor 2 is performed in step 42. In step 43, the monitor flow rate output is confirmed again, and if the flow rate output is within the predetermined normal range in step 44, it is determined that it can be used, and is subsequently used.
  • the cause analysis of the flow rate self-diagnosis abnormality is performed according to the description with reference to FIG. 21 to FIG. 29, and it is determined which of the four types the cause of the abnormality corresponds to.
  • the flow rate output value of the pressure type flow rate control device with a monitor may be calibrated assuming that the monitored flow rate value is correct.
  • a method for calibrating the flow rate output value of the pressure type flow control device with a monitor for example, 5 to 10 flow rate detection points are appropriately selected, and the difference between the monitor flow rate value and the flow rate output value at each point. A method of calibrating using can be used.
  • step 46 it is checked whether or not there is a deviation in the zero point of the pressure sensor. If there is no deviation in the zero point of the pressure sensor, it is determined in step 47 whether or not there is an abnormality in the fluid supply system. To check. Conversely, if it is found in step 46 that there is a deviation in the zero point of the pressure sensor, the zero point of the pressure sensor is adjusted in step 48, and then the process returns to step 40 to execute the flow rate self-diagnosis.
  • step 47 it is checked whether the cause of the abnormality corresponds to an abnormality in the fluid supply system. If the abnormality does not correspond to the abnormality in the fluid supply system, the cause of the monitor flow rate abnormality is added to the pressure type flow control device with a flow monitor itself. It is judged that there is, and the replacement of the pressure type flow rate control device with a flow rate monitor is performed. If it is determined in step 47 that the cause of the abnormality corresponds to an abnormality in the fluid supply system, the fluid supply system is repaired or restored in step 49, and then the process returns to step 40 to return to flow rate self-diagnosis. To do.
  • the present invention can be widely applied not only to gas supply equipment for semiconductor manufacturing equipment but also to all fluid supply equipment using a pressure type flow rate control device with a flow rate monitor having a pressure sensor in the chemical industry or the food industry.
  • A is a process gas supply system A 1 is a pipe B is a purge gas supply system B 1 is a pipe C is a process gas using system E is a process chamber
  • FCS is a pressure type flow control device V 1 to V 3 is a valve
  • Go is a purge gas Gp is a process gas

Abstract

 流体の入口側通路(8)と、入口側通路(8)の下流側に接続した圧力式流量制御部(1a)を構成するコントロール弁(3)と、コントロール弁(3)の下流側に接続した熱式流量センサ(2)と、熱式流量センサ(2)の下流側に連通する流体通路(10)に介設したオリフィス(6)と、コントロール弁(3)とオリフィス(6)の間の流体通路(10)の近傍に設けた温度センサ(4)と、コントロール弁(3)とオリフィス(6)の間の流体通路(10)に設けた圧力センサ(5)と、オリフィス(6)に連通する出口側通路(9)と、圧力センサ(5)からの圧力信号及び温度センサ(4)からの温度信号が入力され、オリフィス(6)を流通する流体の流量値Qを演算すると共に演算した流量値と設定流量値との差が減少する方向にコントロール弁(3)を開閉作動させる制御信号Pdを弁駆動部(3a)へ出力する圧力式流量演算制御部(7a)及び熱式流量センサ(2)からの流量信号(2c)が入力され当該流量信号(2c)からオリフィス(6)を流通する流体流量を演算表示する流量センサ制御部(7b)とからなる制御部(7)と、から構成した流量モニタ付圧力式流量制御装置。

Description

流量モニタ付圧力式流量制御装置と、これを用いた流体供給系の異常検出方法並びにモニタ流量異常時の処置方法
 本発明は、圧力式流量制御装置の改良に関するものであり、オリフィスを用いた圧力式流量制御装置に熱式質量流量センサを有機的に組合せすることにより、リアルタイムで作動中の圧力式流量制御装置の制御流量をモニタできるようにした流量モニタ付圧力式流量制御装置と、これを用いた流体供給系の異常検出方法並びにモニタ流量異常時の処置方法に関するものである。
 従前から半導体制御装置用ガス供給装置では、オリフィスを用いた圧力式流量制御装置FCSが広く利用されている。
 この圧力式流量制御装置FCSは、図16に示すようにコントロール弁CV、温度検出器T、圧力検出器P、オリフィスOL及び演算制御部CD等から構成されており、その演算制御部CDは、温度補正・流量演算回路CDa、比較回路CDb、入出力回路CDc及び出力回路CDd等から構成されている。
 前記圧力検出器P及び温度検出器Tからの検出値はディジタル信号に変換されて温度補正・流量演算回路CDaへ入力され、ここで検出圧力の温度補正及び流量演算が行われたあと、流量演算値Qtが比較回路CDbへ入力される。また、設定流量の入力信号QSが端子Inから入力され、入出力回路CDcでディジタル値に変換されたあと比較回路CDbへ入力され、ここで前記温度補正・流量演算回路CDaからの流量演算値Qtと比較される。そして、設定流量入力信号Qsが流量演算値Qtより大きい場合には、コントロール弁CVの駆動部へ制御信号Pdが出力され、コントロール弁CVが開放方向へ駆動されて、設定流量入力信号Qsと演算流量値Qtとの差(Qs-Qt)が零となるまで開弁方向へ駆動される。
 圧力式流量制御装置FCSそのものは上述の通り公知であるが、オリフィスOLの下流側圧力P(即ち、プロセスチャンバ側の圧力P)とオリフィスOLの上流側圧力P(即ち、コントロール弁CVの出口側の圧力P)との間にP/P≧約2の関係(所謂臨界膨張条件)が保持されている場合には、オリフィスOLを流通するガスGoの流量QがQ=KP(但しKは定数)となり、圧力Pを制御することにより流量Qを高精度で制御できると共に、コントロール弁CVの上流側のガスGoの圧力が大きく変化しても、制御流量値が殆ど変化しないと云う、優れた特徴を有している。
 しかし、従前の圧力式流量制御装置FCSは、微小な穴径のオリフィスOLを使用しているため、オリフィスOLの穴径が経年変化を起す可能性がある。その結果、圧力式流量制御装置FCSによる制御流量値と現実に流通するガスGoの実流量との間に差異を生ずることになり、これを検出するために所謂流量モニタを頻繁に行う必要があって、半導体製造装置の稼動性や製造した半導体の品質等に大きな影響を与えるという問題がある。
 そのため、従来から、熱式質量流量制御装置や圧力式流量制御装置の分野に於いては、流量制御が適正に行われているか否かをリアルタイムで簡単にモニタできるようにした流量制御装置の開発が進められている。例えば、図17及び図18はその一例を示すものであり、この質量流量制御装置(マスフローコントローラ)20は流路23と、上流側圧力の第1圧力センサ27aと、開閉制御弁24と、その下流側に設けた熱式質量流量センサ25と、その下流側に設けた第2圧力センサ27bと、第2圧力センサ27bの下流側に設けた絞り部(音速ノズル)26と、演算制御部28aと、入出力回路28b等から構成されている。
 前記熱式質量流量センサ25は流路23内に挿入された整流体25a、この流路23からF/Aの流量だけ分岐する分岐流路25bと、分岐流路25bに設けたセンサ本体25cとを有し、総流量Fを示す流量信号Sfを出力する。
 また、絞り部26は、その一次側と二次側における圧力差が所定値以上であるときに一次側の圧力に応じた流量の流体を流す音速ノズルである。尚、図17及び図18に於いて、SPa、SPbは圧力信号、Pa、Pbは圧力、Fは流量、Sfは流量信号、Cpは弁開度制御信号である。
 前記演算制御部28aは、圧力センサ27a、27bからの圧力信号Spa、Spbおよび流量センサ25からの流量制御信号Sfをフィードバックして弁開度制御信号Cpを出力することで開閉弁24をフィードバック制御する。即ち、演算制御部28aへは入出力回路28bを介して流量設定信号Fsが入力され、質量流量制御装置20に流れる流体の流量Fが流量設定信号Fsに合うように調整される。具体的には、演算制御部28aが第2圧力センサ27bの出力(圧力信号Spb)を用いて開閉制御弁24をフィードバックしてその開閉を制御することにより、音速ノズル26を流れる流体の流量Fを制御すると共に、このときの熱式流量センサ25の出力(流量信号Sf)を用いて、実際に流れている流量Fの測定を行い、質量流量制御装置20の動作を確認するものである。
 ところで前記図17及び図18に示した型式の質量流量制御装置20に於いては、流量制御を行うための第2圧力センサ27bを用いた圧力式流量測定と、流量の監視を行うための熱式流量センサ25を用いた流量測定という二種の測定方式を演算制御部28aに組み込みしているため、制御流量(設定流量Fs)の流体が実際に流れているか否か、即ち制御流量と実流量と間に差があるか否かを簡単且つ確実にモニタすることができ、高い実用的効用を奏するものである。
 しかし、当該図17及び図18に示した質量流量制御装置20にも解決すべき問題が多く残されている。
 第1の問題は、演算制御部28aが、第2圧力センサ27bの出力SPbと熱式流量センサ25の流量出力Sfの両信号を用いて開閉制御弁24を開閉制御すると共に、第1圧力センサ27aの出力SPaを用いて熱式流量センサ25の流量出力Sfを補正する構成としており、第1圧力センサ27a及び第2圧力センサ27bの二つの圧力信号と熱式流量センサ25からの流量信号との三つの信号を用いて、開閉制御弁24の開閉制御を行うようにしている。
 そのため、演算制御部28aの構成が複雑になるだけでなく、圧力式流量制御装置FCSとしての安定した流量制御特性や優れた高応答性が逆に低減されてしまうと云う問題がある。
 第2の問題点は、開閉制御弁24に対する熱式流量センサ25の取付位置が変ることにより、即ち、図17と図18の質量流量制御装置20では、開閉制御弁24の開閉時の熱式流量センサ25の応答性、機器本体内のガス置換性及び真空引き特性が大きく変ると共に、質量流量制御装置20の小型化が図り難いという問題がある。
 また、所謂流量制御装置は、例えば図31に示すように半導体製造設備のガス供給装置等に於いて広く利用されており、流量制御装置Dの上流側には、パージガス供給系Bとプロセスガス供給系Aが並列状に接続され、且つ流量制御装置Dの下流側にはプロセスガス使用系Cが接続されている。
 更に、前記各ガス供給系A、B及びガス使用系Cには夫々バルブV、V及びVが夫々介設されている。
 尚、当該図31の如き流体供給系においては、定期的にバルブV~Vの動作状況等を点検するのが一般的であり、この点検作業は、プロセスガス使用系Cを通して所要のプロセスガスを所定箇所へ安定して供給するうえで必要不可欠なものである。そのため、上記バルブV~Vの点検(以下チェックと呼ぶ)では、通常各バルブの動作状態(バルブアクチュエータの作動を含む)のチェックと、各バルブのシートリークのチェックとが行われる。
 しかし、プロセスガス使用系CのバルブVや流量制御装置Dの上流側のバルブV、Vのシートリークチェックに際しては、各バルブV、V、Vを管路から取り外し、これを別途に設けた試験装置を用いてチェックする必要があり、各バルブのシートリークチェックに多くの手数と時間を要すると云う問題がある。
 上記の各バルブに係る点検上の問題は流量モニタ付圧力式流量制御装置に付いても同様であり、流量自己診断機構によってモニタ流量の異常が検出されると、常に流量モニタ付圧力式流量制御装置を配管路から一旦取り外してその点検を行わねばならず、多くの手数と時間を要すると云う問題がある。
特許第4137666号公報 特開2007-95042号公報
 本願発明は、図17及び図18に示した特許第4137666号の音速ノズルを用いた質量流量制御装置に於ける上述の如き問題、即ち、第1及び第2圧力センサ27a、27bの圧力信号と熱式流量センサ25の流量信号との2種類の異なる信号を用いて開閉制御弁24の開閉制御を行うようにしているため、演算制御部28aの構成が複雑化するだけでなく、圧力式流量制御装置が有する優れた応答特性や安定した流量制御特性が減殺される虞れがあること、質量流量制御装置20の大型化が避けられず、ガス置換性の低下や真空引き時間が長くなること等の問題を解決し、オリフィスを用いた圧力式流量制御装置FCSの流量制御部と、熱式流量センサを用いた熱式流量モニタ部とを一体に組み合せしたうえ、流量制御と流量モニタを夫々独立して行うようにすることにより、圧力式流量制御装置の優れた流量特性をフルに活用すると共に、熱式流量センサによる流量モニタをリアルタイムで行え、しかも演算制御部の簡素化、機器本体部の大幅な小型化によるガス置換性の向上等を可能にした流量モニタ付圧力式流量制御装置を提供するものである。
 また、本願発明は、流量モニタ付圧力式流量制御装置の上流側および下流側に設けたバルブのシートリークチェック等に際して各バルブを管路から取り外さねばならず、シートリークチェック等に多くの時間と手数を要すると云う問題や、流量モニタ付圧力式流量制御装置に設けた流量自己診断機構によりモニタ流量の異常が検出された場合でも、異常発生の原因を迅速に把握して必要な対策、例えば流量モニタ付圧力式流量制御装置自体の取換えを要するか否かの処置を執ることが出来ないと云う問題を解決し、バルブ類のシートリークチェック等を簡単、迅速に行なえると共に、モニタ流量の異常時に的確な対応を迅速に取れるようにした流量モニタ付圧力式流量制御装置を用いた流体供給系の異常検出方法並びにモニタ流量異常時の処置方法を提供するものである。
 本願発明者等は、先ずオリフィスを用いた圧力式流量制御装置をベースにし、これの流量モニタをリアルタイムで行うために図6及び図7の点線枠内のような二種の構成のオリフィスを用いた流量モニタ付圧力式流量制御装置を構想した。
 図6及び図7に於いて、1は流量モニタ付圧力式流量制御装置、2は熱式流量センサ、3はコントロール弁、4は温度センサ、5は圧力センサ、6はオリフィス、7は制御部、8は入口側流路、9は出口側流路、10は機器本体内の流体通路であり、図6に於ける熱式流量センサ2とコントロール弁3の取付位置を入れ替えしたものが図7の流量モニタ付圧力式流量制御装置である。
 尚、流量制御方式としてオリフィスを用いた圧力式流量制御装置を採用したのは、流量制御特性が良好なこと及びこれ迄の使用実績が多いこと等がその理由である。
 また、熱式流量センサ2を流量モニタ用センサとしたのは、主として流量やセンサとしての使用実績と流量センサとしての優れた特性のためであり、また、リアルタイム測定の容易性、ガス種の変化に対する対応性、流量測定精度、使用実績等が他の流量測定センサよりも高い点を勘案した結果である。更に、オリフィスを用いた圧力式流量制御装置の機器本体内の流体通路10に熱式流量センサ2を一体的に組み付けしたのは、流量モニタが行い易く且つ流量モニタ付き圧力式流量制御装置の小型化が図り易いからである。
 即ち、上記図6及び図7に示した構成のオリフィスを用いた流量モニタ付圧力式流量制御装置1は、圧力制御式の流量制御器であり、供給圧力変動の影響を受けないこと、オリフィス上流側の圧力降下特性を利用してオリフィスの異常検知が可能なこと、機器本体に内蔵の圧力センサで供給圧力のモニタが可能なこと及びサーマルセンサで流量の連続監視が可能なこと、等の特徴を具備するものだからである。
 一方、問題点としては、先ず第1に、供給圧力の変化による熱式流量センサの出力の変動が考えられる。即ち、供給圧力の変化によって熱式流量センサの出力が変動するため、供給圧力変化時は制御流量との誤差が発生する可能性ある。そのため、熱式流量センサの応答性を遅延させて供給圧変化による出力変動を緩和する、等の対応が必要になる。
 第2の問題はゼロ点調整時の条件の点である。一般にゼロ点調整は、圧力センサでは真空引き下で実施され、また、流量センサでは封止状態下で実施される。従って、間違った条件下でゼロ調整が実施されないようにプロテクトする必要がある。
 第3の問題は、熱式流量センサのサーマルサイフォンの現象である。即ち、熱式流量センサの搭載により、設置方向を予め決めておくことが必要となり、その結果、ガスボックスの設計と並行して、流量モニタ付圧力式流量制御装置の設置方向を検討する必要がある。
 第4の問題は、実ガス流量の校正の点である。一般に流量の測定に於いては、同一流量であってもガス種により熱式流量センサの出力値が異なって来る。その結果、当該流量モニタ付圧力式流量制御装置の使用現場において熱式流量センサのコンバージョン・ファクタ(CF値)を自動演算するシステムを付加する必要がある。
 第5の問題は、制御流量が異常時の対応である。現在の圧力式流量制御装置では、アラーム及び制御流量の誤差等がディスプレイ上に表示されるが、圧力式流量制御装置と熱式流量センサによるモニタ流量との出力差が所定のしきい値を越えると、異常と判断するシステムが必要になる。
 そこで、本願発明者等は、先ず図6及び図7の各流量モニタ付圧力式流量制御装置1について、新たに組み込みした熱式流量センサ2についてのその各種特性の評価試験を実施した。
 即ち、図6及び図7の如く、N容器から成る流体供給源11、圧力調整器12、パージ用バルブ13、入力側圧力センサ14を入口側流路8へ接続すると共に、データロガ(NR500)15を制御部7に接続し、更に、出口側流路9を真空ポンプ16により真空引きするようにした特性評価系を構成し、当該特性評価系を用いて、熱式流量センサ2のステップ応答特性、モニタ流量精度、供給圧変動特性、繰り返し再現性を評価した。
 上記ステップ応答特性は、所定の流量設定のステップ入力に対する熱式流量センサ出力の応答性を評価するものであり、設定流量を100%(フルスケール)F.S.=1000(sccm)から20%、50%、100%にステップ変化させた場合の出力応答を評価した。図8、図9及び図10は設定流量20%、50%、100%の場合のデータロガ15における圧力式流量制御装置1の流量設定入力A及びその時の流量出力Aと、熱式流量センサ出力B(図6の場合)、熱式流量センサ出力B(図7の場合)の測定結果を示すものである。
 図8~図10からも明らかなように、熱式流量センサ2の出力は設定開始から約4sec以内で、設定出力の±2%以内に収束することが確認された。
 前記モニタ流量精度は、各流量設定から設定値をS.P.単位でずらしたときの、熱式流量センサ出力の変化量を測定評価したものであり、誤差設定条件は-0.5%S.P.、-1.0%S.P.、-2.0%S.P.及び-3.0%S.P.としている。
 図11及び図12からも明らかなように、熱式流量センサ2のモニタ流量精度は流量設定に応じて、セットポイント(S.P.)単位で変化して行くことが判明した。
 前記供給圧変動特性は、一定流量制御時に供給圧を変動させた場合の熱式流量センサ出力の変動状態を示すものであり、流量設定を50%とし且つ供給圧の変動条件を50kPaGとして測定した。
 図13はその測定結果を示すものであり、熱式流量センサ2をコントロール弁3の上流側(一次側)に設定した場合(図6の場合)には、供給圧変動による熱式流量センサ2の流量出力の変化は±0.5%F.S./divの範囲をはるかに越えるが、コントロール弁3の下流側(二次側)に設置した場合(図7の場合)には、流量出力の変化が±0.5%F.S./divの範囲内に納まること、即ちガス供給圧の変動の影響を受け難いことが判明した。
 前記繰返し再現性は、流量設定を20%及び100%として0%から設定流量までを繰返し入力し、熱式流量センサ出力B、Bの再現性を測定したものである。
 図14及び図15からも明らかなように、熱式流量センサ出力の繰り返し再現性は±1%F.S.及び0.2%F.S.の範囲内にあり、規則正しい正確な再現性を示すことが判明した。
 尚、前記図6及び図7に於いて使用した熱式流量センサ2は株式会社フジキン製のFCS-T1000シリーズに搭載されるセンサであり、所謂熱式質量流量制御装置(マスフローコントローラ)の熱式流量センサとして汎用されているものである。
 前記熱式流量センサ2に対する図6及び図7に基づく各評価試験(即ちステップ応答特性、モニタ流量精度特性、供給圧変動特性及び繰り返し再現性特性)の結果から、本願発明者等は、熱式流量センサ2の取付位置は、ステップ応答特性、モニタ流量精度特性及び繰返し再現性特性の点では、コントロール弁3の上流側(一次側)であっても下流側(二次側)であってもその間に優劣は無いが、供給圧変動特性の点から、熱式流量センサ2は圧力式流量制御装置のコントロール弁3の下流側(2次側)に設けるのが望ましい、即ち図7の構成とする方が望ましいことを見出した。
 また、本願発明者等は、熱式流量センサ2をコントロール弁3の下流側(2次側)に設けた場合には、コントロール弁3とオリフィス6間の内容積が大きくなることにより、ガスの置換性が低下することになり、小流量型の圧力式流量制御装置の場合には圧力降下特性が遅くなり(即ち、ガス抜け特性が悪化する)、これ等の点が問題となることを見出した。
 本願発明は、本願発明者等の上記各評価試験の結果を基にして創作されたものであり、請求項1の発明は、流体の入口側通路8と,入口側通路8の下流側に接続した圧力式流量制御部1aを構成するコントロール弁3と,コントロール弁3の下流側に接続した熱式流量センサ2と,熱式流量センサ2の下流側に連通する流体通路10に介設したオリフィス6と,前記コントロール弁3とオリフィス6の間の流体通路10の近傍に設けた温度センサ4と,前記コントロール弁3とオリフィス6の間の流体通路10に設けた圧力センサ5と,前記オリフィス6に連通する出口側通路9と,前記圧力センサ5からの圧力信号及び温度センサ4からの温度信号が入力され、オリフィス6を流通する流体の流量値Qを演算すると共に演算した流量値と設定流量値との差が減少する方向に前記コントロール弁3を開閉作動させる制御信号Pdを弁駆動部3aへ出力する圧力式流量演算制御部7a及び前記熱式流量センサ2からの流量信号2cが入力され当該流量信号2cからオリフィス6を流通する流体流量を演算表示する流量センサ制御部7bとを発明の必須構成要件とするものである。
 請求項2の発明は、請求項1の発明に於いて、圧力センサ5を、コントロール弁3の出口側と熱式流量センサ2の入口側の間に設けるようにしたものである。
 請求項3の発明は、請求項1又は請求項2の発明に於いて、流量センサ制御部7bで演算した流体流量と圧力式流量演算制御部7aで演算した流体流量間の差が設定値を越えると警報表示を行う制御部7としたものである。
 請求項4の発明は、請求項1の発明に於いて、コントロール弁3,熱式流量センサ2,オリフィス6,圧力センサ5,温度センサ4,入口側通路8,出口側通路9を一つのボディ体に一体的に組み付けすると共に、形成流体通路10をボディ体に一体的に形成するようにしたものである。
請求項5の発明は、流体の入口側通路8と,入口側通路8の下流側に接続した圧力式流量制御部1aを構成するコントロール弁3と,コントロール弁3の下流側に接続した熱式流量センサ2と,熱式流量センサ2の下流側に連通する流体通路10に介設したオリフィス6と,前記コントロール弁3とオリフィス6の間の流体通路10の近傍に設けた温度センサ4と,前記コントロール弁3とオリフィス6の間の流体通路10に設けた圧力センサ5と,前記オリフィス6に連通する出口側通路9と,前記オリフィス6の下流側の出口側通路9に設けた圧力センサ17と,前記圧力センサ5及び圧力センサ17からの圧力信号及び温度センサ4からの温度信号が入力され、オリフィス6を流通する流体の臨界膨張条件の監視やオリフィス6を流通する流体の流量値Qを演算すると共に、演算した流量値と設定流量値との差が減少する方向に前記コントロール弁3を開閉作動させる制御信号Pdを弁駆動部3aへ出力する圧力式流量演算制御部7a及び前記熱式流量センサ2からの流量信号2cが入力され当該流量信号2cからオリフィス6を流通する流体流量を演算表示する流量センサ制御部7bとからなる制御部7とを発明の必須構成要件とするものである。
 請求項6の発明は、請求項5の発明に於いて、オリフィス6を流通する流体が臨界膨張条件を外れると警報表示を行う制御部7としたものである。
 請求項7の発明は、請求項5の発明に於いて、コントロール弁3,熱式流量センサ2,オリフィス6,圧力センサ5,温度センサ4,入口側通路8,出口側通路9,圧力センサ17を一つのボディ体に一体的に組み付けするようにしたものである。
 請求項8の発明は、流量の設定機構と流量及び圧力の表示機構及び又は流量自己診断機構とで構成される圧力センサを保有する流量モニタ付圧力式流量制御装置を備えた流体供給系における前記流量モニタ付圧力式流量制御装置の上流側及び又は下流側に設けたバルブの異常を、前記流量モニタ付圧力式流量制御装置の圧力の表示値及び又は流量自己診断機構の診断値を用いて検出する方法であって、異常検出の対象とするバルブを、流量モニタ付圧力式流量制御装置の上流側に設けたパージガス供給系のバルブとプロセスガス供給系のバルブ及び流量モニタ付圧力式流量制御装置の下流側のプロセスガス使用系に設けたバルブとすると共に、検出する異常の種類をバルブの開閉動作及びシートリークとしたことを発明の基本構成とするものである。
 請求項9の発明は、請求項8の発明において、流量モニタ付圧力式流量制御装置の流量自己診断機構を、初期設定をした圧力降下特性と診断時の圧力降下特性とを対比して異常を診断する構成の機構とすると共に、プロセスガスとパージガスとの混合ガスが流入した際の前記診断値の変化から、プロセスガス供給系又はパージガス供給系のバルブのシートリークを検出するようにしたものである。
 請求項10の発明は、流量の設定機構と流量及び圧力の表示機構及び又は流量自己診断機構とで構成される圧力センサを保有する流量モニタ付圧力式流量制御装置を備えた流体供給系における前記流量モニタ付圧力式流量制御装置並にその上流側及び又は下流側に設けたバルブの異常を、前記流量モニタ付圧力式流量制御装置の圧力の表示値及び又は流量自己診断機構を用いて検出する方法において、前記流量モニタ付圧力式流量制御装置の流量自己診断機構を、初期設定をした圧力降下特性と診断時の圧力降下特性とを対比して異常を診断する構成の機構とすると共に、当該流量自己診断機構による流量自己診断時の圧力降下特性が、前記初期設定時の圧力降下特性に対比して、診断直後から圧力降下が遅れ出すか、診断途中から圧力降下が遅れ出すか、診断直後から圧力降下が早まるか、診断開始時の圧力が初期設定時の圧力に達していないか、の何れの形態に該当するかを判別し、前記判別された流量自己診断時の圧力降下特性の形態から、検出された異常の原因を判定することを発明の基本構成とするものである。
 請求項11の発明は、請求項10の流体供給系の異常検出方法の発明を用いて流量自己診断をし、流量自己診断時の圧力降下特性の形態から検出されたモニタ流量の異常の原因を判定したあと圧力センサのゼロ点のずれを確認し、ゼロ点がずれている場合にはそのゼロ点を調整してから再度流量自己診断を行い、また、前記ゼロ点にずれが無い場合には前記判定した異常の原因が流体供給系の異常か否かを判別し、流体供給系が異常の場合には流体供給系の異常を復旧させると共に、流体供給系に異常が無い場合には前記流量モニタ付圧力式流量制御装置自体の異常と判断してその取換えをするようにしたものである。
 請求項12の発明は、請求項10の流体供給系の異常検出方法を用いて流量自己診断をし、前記流量モニタ付圧力式流量制御装置のオリフィスの径変化が原因でモニタ流量が異常の場合には、モニタ流量を正として前記流量モニタ付圧力式流量制御装置の校正を行うようにしたものである。
 本願発明に於いては、流量モニタ付圧力式流量制御装置を圧力式流量制御部1aと熱式流量モニタ部1bとから形成し、熱式流量モニタ部1bの熱式流量センサ2を圧力式流量制御部1aのコントロール弁3の下流側に位置せしめて有機的に一体化させると共に、制御部7の方は、圧力式流量制御部1aのコントロール弁3の開閉駆動を制御する圧力式流量演算制御部7aと、前記熱式流量センサ2からの流量信号によりオリフィス6を流通する実流体流量を演算表示する流量センサ制御部7bを相互に独立した状態で一体化することにより構成している。
 その結果、単純な構成の制御部7でもって、簡単且つ正確に、しかも安定した圧力式流量制御を行うことができると共に、熱式流量センサ2による流量モニタも連続的に正確に、リアルタイムで行うことが出来る。
 また、熱式流量センサ2をコントロール弁3の下流側に位置させると共に、コントロール弁3や熱式流量センサ2等の各機器本体を一つのボディに一体的に組み付けする構成としているため、機器本体の内部空間容積が大幅に減少し、ガスの置換性や真空引きの特性が悪化することもない。
 更に、流体供給源側の流体圧力に変動があっても、熱式流量センサ2の出力特性に大きな変動が発生せず、結果として流体供給側の圧力変動に対して安定した流量モニタと流量制御が行える。
 本発明においては、ガス供給系に組み込みされている流量モニタ付圧力式流量制御装置そのものを用いて、ガス供給系内のバルブの開閉動作やシートリーク、流量モニタ付圧力式流量制御装置の零点等の異常を、各バルブ類を配管路から取り外しすることなしに極めて容易に且つ正確にチェックすることができる。
 また、本発明ではバルブのシートリークやバルブの作動異常、流量モニタ付圧力式流量制御装置の零点異常が生じた場合に、その異常発生の原因を圧力降下特性曲線の形態から正確に特定判断することができ、必要な機器等の補修、調整をより能率的に行えることになる。
 更に、本発明では、流量モニタ付圧力式流量制御装置のオリフィスの径変化が原因でモニタ流量に異常を生じた場合には、モニタ流量を正として迅速に流量モニタ付圧力式流量制御装置の校正を行うことができる。
 その上、本発明では、シートリーク異常の検出と共に、短時間内にそのリーク量を自動的に演算表示することができるため、機器装置等の運転継続の可否やシートリークの発生による影響を正確且つ迅速に判断することができると共に、流量モニタ付圧力式流量制御装置そのものの取換えの要否を正確且つ容易に判定することが出来る。
本発明の実施形態に係るオリフィスを利用した流量モニタ付圧力式流量制御装置の構成概要図である。 流量モニタ付圧力式流量制御装置の他の例を示す構成概要図である。 流量モニタ付圧力式流量制御装置の更に他の例を示す構成概要図である。 熱式流量センサの構成の説明図である。 熱式流量センサの動作原理の説明図である。 本願発明者が着想した流量モニタ付圧力式流量制御装置の第1構想図である。 本願発明者が着想した流量モニタ付圧力式流量制御装置の第2構想図である。 熱式流量センサのステップ応答特性を示す曲線である(設定流量20%の場合)。 熱式流量センサのステップ応答特性を示す曲線である(設定流量50%の場合)。 熱式流量センサのステップ応答特性を示す曲線である(設定流量100%の場合)。 熱式流量センサのモニタ流量精度特性を示す曲線である(設定流量100~97%設定の場合)。 熱式流量センサのモニタ流量精度特性を示す曲線である(設定流量20.0~19.4%設定の場合)。 熱式流量センサの供給圧変動特性を示す曲線である(設定流量50%の場合)。 熱式流量センサの繰返し再現性特性を示す曲線である(設定流量100%の場合)。 熱式流量センサの繰返し再現性特性を示す曲線である(設定流量20%の場合)。 オリフィスを用いた圧力式流量制御装置の構成図である。 特許第4137666号の第1実施例に係る質量流量制御装置の構成説明図である。 特許第4137666号の第2実施例に係る質量流量制御装置の構成説明図である。 異常検出方法に係る本発明の実施に用いる流体供給系の一例を示すブロック構成図である。 本発明による流体供給系のバルブの異常検出方法の一例を示すフローシートである。 流量自己診断時の故障の種類と発生する現象および発生原因との関係を示すものである。 流量モニタ付圧力式流量制御装置の流量自己診断において、供給圧が不足する場合の圧力降下特性の代表例を示すものである。 (a)は、2次側のエアー駆動型バルブの駆動機構が故障時の、また(b)は2次側へ外部からリークがある場合の圧力降下特性の代表例を示すものである。 (a)はフローファクタの大きなガスが混入した場合の、また(b)はフローファクタの小さなガスが混入した場合の圧力降下特性の代表例を示すものである。 (a)のオリフィスに詰まりがある場合の、また(b)はオリフィスが拡大した場合の圧力降下特性の代表例を示すものである。 流量モニタ付圧力式流量制御装置のコントロールバルブにシートリークがある場合の圧力降下特性の代表例を示すものである。 流量モニタ付圧力式流量制御装置のコントロールバルブの駆動部に故障がある場合の圧力降下特性の代表例を示すものである。 流量モニタ付圧力式流量制御装置の零点変動時の圧力降下特性の代表例を示すものである。 図21から図26までの各圧力降下特性の形態(パターン)から導出した四つの圧力降下特性の類形を示すものである。 流量モニタ付圧力式流量制御装置のモニタ流量異常時の処置方法の一例を示すフローシートである。 半導体製造設備に於ける流量モニタ付圧力式流量制御装置を備えた流体供給系の一例を示すブロック構成図である。
 以下、図面に基づいて本発明に係る流量モニタ付圧力式流量制御装置の実施形態を説明する。
 図1は本発明に係る流量モニタ付圧力式流量制御装置1の実施形態に係る構成概要図であり、流量モニタ付圧力式流量制御装置1は、圧力式流量制御部1aと熱式流量モニタ部1bとの二つの部分から構成されている。
 また、前記圧力式流量制御部1aは、コントロール弁3と温度センサ4と圧力センサ5とオリフィス6と制御部7を形成する圧力式流量演算制御部7aとから構成されている。
 更に、前記熱式流量モニタ部1bは、熱式流量センサ2と制御部7を形成する流量センサ制御部7bとから構成されている。
 前記圧力式流量制御部1aは、上述の通りコントロール弁3、温度センサ4、圧力センサ5、オリフィス6及び圧力式流量演算制御部7a等から構成されており、入力端子7aから流量設定信号が、また出力端子7aから圧力式流量制御部1aにより演算したオリフィスを流通する流体の流量出力信号が出力される。
 前記オリフィス6を用いた圧力式流量制御部1aそのものは、特許第3291161号等として周知の技術であり、オリフィス6を臨界膨張条件下で流通する流体の流量を圧力検出センサ5で検出した圧力を基にして圧力式流量演算制御部7aにて演算し、入力端子7aより入力した設定流量信号と演算した流量信号の差に比例する制御信号Pdをコントロール弁3の弁駆動部3aへ出力する。
 前記、圧力式流量制御部1aやその流量演算制御部7aの構成は、図16に記載のものと実質的に同じであるため、ここではその詳細な説明は省略する。
 また、この圧力式流量制御部1aには、公知の零点調整機構や流量異常検出機構、ガス種変換機構(F.F.値変換機構)等の各種付属機構が設けられていることは勿論である。
 更に、図1に於いて8は入口側通路、9は出口側通路、10は機器本体内の流体通路である。
 前記流量モニタ付圧力式流量制御装置1を構成する熱式流量モニタ部1bは、熱式流量センサ2と流量センサ制御部7bとから構成されており、流量センサ制御部7bには入力端子7b及び出力端子7bが夫々設けられている。そして、入力端子7bからはモニタする流量範囲の設定信号が入力され、出力端子7bからは熱式流量センサ2により検出したモニタ流量信号(実流量信号)が出力される。
 また、図1には表示されていないが、流量センサ制御部7bと圧力式流量演算制御部7aとの間では、前記モニタ流量信号や演算流量信号の入出力が適宜に行われ、両者の異同やその差の大きさを監視したり、或いは両者の差が一定値を越えた場合に警告を発したりしても良いことは勿論である。
 図2は、流量モニタ付圧力式流量制御装置1の他の例を示すものであり、コントロール弁3と熱式流量センサ2との間の流体圧力を圧力センサ5で検出するようにしたものである。尚、流量モニタ付圧力式流量制御装置1のその他の構成および動作は、図1の場合と全く同一である。
 図3は、流量モニタ付圧力式流量制御装置1の更に他の例を示すものであり、オリフィス6の下流側に圧力センサ17を別に設け、オリフィス6を流通する流体が臨界膨張条件下にあるか否かを監視して警報を発信したり、或いは、圧力センサ5と圧力センサ17の差圧を用いて流量制御を可能とするものである。
 前記熱式流量モニタ部1bは熱式流量センサ2と流量センサ制御部7bとから構成されており、図4及び図5はその構成の概要を示すものである。
 即ち、図4に示すように、熱式流量センサ2は、バイパス群2dとこれを迂回するセンサ管2eとを有しており、これにバイパス群2dと比較して少量のガス流体を一定の比率で流通させている。
 また、このセンサ管2eには直列に接続された制御用の一対の抵抗線R1、R4が巻回されており、これに接続されたセンサ回路2bによりモニタされた質量流量値を示す流量信号2cを出力する。
 前記この流量信号2cは、例えばマイクロコンピュータ等よりなる流量センサ制御部7bへ導入されて、上記流量信号2cに基づいて現在流れている流体の実質流量が求められる。
 図5は熱式流量センサ2のセンサ回路2bの基本構造を示すものであり、上記抵抗線R1、R4の直列接続に対して、2つの基準抵抗R2、R3の直列接続回路が並列に接続され、ブリッジ回路を形成している。このブリッジ回路に定電流源が接続されており、また、上記抵抗線R1、R4同士の接続点と上記基準抵抗R2、R3同士の接続点とを入力側に接続して差動回路が設けられており、上記両接続点の電位差を求め、この電位差を流量信号2cとして出力する構成となっている。
 尚、熱式流量センサ2及び流量センサ制御部7bそのものは公知の技術であるため、ここではその詳細な説明は省略する。
 また、本実施形態においては、熱式流量モニタ部1bとして、株式会社フジキン製のFCS-T1000シリーズに搭載されるセンサを使用している。
 次に、流量モニタ付圧力式流量制御装置を用いた流体供給系の異常検出方法の実施形態を説明する。
 図1を参照して、流量モニタ付圧力式流量制御装置の圧力式流量制御部1aは、実質的に図16に示した従前の圧力式流量制御装置FCSと同等の構成を有しており、当該圧力式流量制御部1aには、流量の設定機構に該当する流量設定回路(図示省略)と、圧力の表示機構に該当する圧力表示機構(図示省略)と流量を表示する流量出力回路(図示省略)等が設けられている。
 また、当該圧力式流量制御部1aには、所謂流量自己診断機構(図示省略)が設けられており、後述するように初期設定した圧力降下特性と診断時の圧力降下特性とを対比して、異常状態を判定すると共にその判定結果を出力するよう構成されている。
 更に、圧力式流量制御部1aには、コントロール弁3へのガス供給源からの供給圧力が不足することにより、設定流量のガス流量が供給できなくなったり、或いは臨界膨張条件が保持できなくなるような場合には、供給圧不足信号の発信機構が設けられている。
 図19は、本発明の実施対象である前記流量モニタ付圧力式流量制御装置1を用いた流体供給系の一例を示すものであり、当該流体供給系は、パージガス供給系Bとプロセスガス供給系Aと流量モニタ付圧力式流量制御装置1とプロセスガス使用系C等とから構成されている。
 また、当該流体供給系の使用に際しては、通常は先ずパージガス供給系BからNやAr等の不活性ガスをパージガスGoとして管路8、流量モニタ付圧力式流量制御装置1、管路9等へ流し、流体供給系内をパージする。その後、パージガスGoに代えてプロセスガスGpを供給し、流量モニタ付圧力式流量制御部1において所望の流量に調整しつつ、プロセスガスGpをプロセスガス使用系Cへ供給する。
 尚、図19において、V、V、Vはバルブであり、流体圧駆動部や電動駆動部を備えた自動開閉弁が一般に使用されている。
 本発明を用いて点検されるバルブは、前記図19におけるバルブV、V及びV等であり、当該バルブV~Vの所謂シートリークと動作異常が、流量モニタ付圧力式流量制御装置(以下、圧力式流量制御部1aと呼ぶ)を用いて、プロセスチャンバEへのプロセスガスの供給開始の準備中又はプロセスガスの供給停止の準備中等に行われる。
 より具体的には、各バルブV、V、Vの動作異常は、圧力式流量制御部1a(即ち、圧力式流量制御装置FCS)を用いた次の如き手順により点検される。
 イ バルブVの動作異常
  a.所定の実ガス(プロセスガスGp)を流通せしめて、FCSにより所定の設定流量のガスを流通させる。この時、FCSの流量指示値や圧力指示値(配管路8及び又は配管路9)が0へと変化する場合には、バルブVの動作に異常(不動作)があることになる。
  b.FCSへ所定の実ガス(プロセスガスGp)を流通せしめて、FCSの実ガス制御流量が所定流量となっているか否かを診断中(以下、実ガス流量自己診断時と呼ぶ)に、FCSから供給圧不足のエラー信号が発信された場合には、バルブVの動作に異常(不動作)があることになる。
 ロ バルブVの動作異常
  a.パージガスGとしてNを流通せしめて、FCSにより所定の設定流量のガスを流通させる。この時FCSの流量指示値や圧力指示値が0へと変化する場合には、バルブVの動作異常(不動作)があることになる。
  b.FCSへNガスを流通せしめて、FCSのN制御流量が設定流量となっているか否かを診断中(以下、N流量自己診断時と呼ぶ)に、FCSから供給圧不足のエラー信号が発信された場合には、バルブVの動作に異常(不動作)があることになる。
 ハ.バルブVの動作異常
  a.N又は実ガスを流した状態下におけるN流量自己診断時又は実ガス流量自己診断時に、FCSから流量自己診断エラー信号が発信された場合には、バルブVの動作に異常(不動作)があることになる。
  b.配管9b等の真空引きの際に、FCSの圧力出力表示が零に下降しない場合には、バルブVの動作に異常(不動作)があることになる。
  c.FCSの流量設定時に、前記流量設定値を適宜に変化させてもFCSの圧力表示値に変化がない場合には、バルブVの動作異常(不動作)があることになる。
 また、各バルブV、V、Vのシートリークは、FCSを用いた次の手順により点検される。
 イ バルブVのシートリーク
  a.NによるFCSの流量自己診断時に、バルブVにシートリークがあると、Nが実ガスGp側へ逆流し、バルブVの上流側の実ガスGpがNと実ガスGpとの混合ガスになる。
 その後、FCSの実ガス流量自己診断を実施すると、当該実ガス流量自己診断が混合ガスで行われることになり、診断値が異常値となる。
 この診断値が異常値となることにより、バルブVにシートリークがあることが判明する。
 具体的には、実ガス(プロセスガスGp)のフローファクタF.F.>1の場合には、診断結果が-側に、また実ガス(プロセスガスGp)のF.F.<1の場合には、診断結果が+側に偏位することになる。
 尚、フローファクタF.F.は、FCSのオリフィス及びオリフィス上流側圧力Pが同一の場合に、実ガス流量が基準ガス(N)流量の何倍になるかを示す値であり、F.F.=実ガス流量/N流量でもって定義される値である(特開2000-66732号等参照)。
 ロ.バルブVのシートリーク
 実ガス流量自己診断時の診断値が異常値となった場合には、バルブVにシートリークが発生していることになる。
 何故なら、FCSの上流側配管8の実ガスGp内へNガスが混入することになり、FCSでは混合ガスによる実ガス流量自己診断が行われるために、診断値が異常値となる。
 ハ.バルブVのシートリーク
 FCSによる流量制御の完了後、バルブVを閉の状態に保持すると共に、FCSの流量設定を0(流量が零となるように設定)にする。
 その後、FCSの圧力指示値が下降すれば、バルブVにシートリークが発生していることになる。
 上記の如きFCSを用いた各操作を行うことにより、図19の構成の流体供給系にあっては、バルブV、V、Vの動作異常及びシートリークをFCSを用いて検出することができる。
 尚、図19の実施形態においては、3ヶのバルブを備えた流体供給系を本発明の適用対象としているが、プロセスガス供給系Aの数が複数であっても、或いはプロセスガス使用系Cの数が複数であっても、本発明の適用が可能なことは勿論である。
 図20は、図19に示した流体供給装置の各バルブV、V、Vの異常をチェックする場合のフローシートを示すものである。
 尚、本フローシートは、図19において、イ.各バルブV、V、V、FCS及び配管系8、9、9b等には、シートリーク以外の外部リーク(例えば継手やボンネット等からの漏れ)は無いこと、ロ.各バルブの駆動部は正常に動作すること、ハ.FCSは正常に動作すること、ニ.V、Vは同時に開放することが無いこと等が前提となっている。
 先ず、ステップSoで異常チェックを開始する。引き続き、ステップSでV閉、V開→閉(切換)、V閉、FCSコントロールバルブ開の操作を行い、FCSの下流側配管9にNを充填する。
 ステップSにて、FCSの圧力表示P、即ち図1における圧力センサ1aの圧力表示Pをチェックし、Pの増減ΔPが0か否かを判断する。
 ΔPが0でない場合であって、P上昇の場合には、V又はVの何れか一方又は両方が異常(シートリーク又は動作不良)であり、また、Pが減少の場合には、Vが異常(シートリーク又は動作不良)であると判断する(ステップS)。
 次に、ステップSで、V閉、V閉、V開、FCSコントロールバルブ開で配管内を真空引きした後、V開、V閉にしてプロセスガス(実ガス)GpをFCSへ流し、ステップSでFCSの圧力表示Pをチェックする。Pの上昇があればVの動作は正常(ステップS7)、Pの上昇が無ければVの動作異常と判断して(ステップS)、Vの動作状況を確認する。
 その後、ステップSでV閉、V閉、V開、FCSコントロールバルブ開で配管内を真空引きした後、V閉、V開とし、FCSの圧力表示Pをチェックする(ステップS)。Pが上昇しなければ、Vの動作異常と判断して(ステップ10)としてVの動作状況を確認する。
 また、Pが上昇すれば、Vの動作は正常と判断される(ステップS11)。
 続いて、ステップS12で、前記ステップSにおけるバルブ類の異常がバルブVの動作異常に該当するか否かを判断する。即ち、ステップSの判断がNo(バルブV、V、Vの内の何れかが動作異常)であって、且つバルブV及びVの動作が正常であれば、バルブVが動作異常と判断され(ステップS13)、また、ステップSに於ける判断がyesの場合には、各バルブV、V、Vの動作が正常であると判断される(ステップS14)。
 次に、各バルブV、V、Vのシートリークのチェックが行われる。即ち、ステップS15において、V閉、V閉、V開、FCSのコントロールバルブ3開で配管内を真空引きした後、ステップSと同様にV閉、V開→閉(切替)、V閉にして、FCSとバルブV間の配管9bを加圧してFCSの圧力表示をPに保持(コントロールバルブ3とバルブVとの間で圧力を保持)する。
 ステップS16で、前記Pの減圧をチェックし、減圧があればバルブVにシートリークがあると判断する(ステップS17)。また、減圧が無ければ、バルブVにシートリークなしと判断する(ステップS18)。
 次に、ステップS19で、V閉、V閉、V開、FCSのコントロールバルブ3開で配管内を真空引きした後、バルブV閉、V閉、V開として配管路8、9、9bを減圧(真空引き)したあと、バルブVを閉にする(ステップS20)。
 その後ステップS21でFCSの圧力表示Pをチェックし、圧力表示Pが増圧しなければ、ステップS22でバルブV、Vにシートリークが無いと判断して、異常チェックを完了する(ステップS31)。
 また、ステップS21でPに増圧があれば、バルブV又Vの何れかにシートリークがあると判断し(ステップS23)、シートリークのあるバルブが何れであるかを判断する工程へ入る。
 ステップS24で、V閉、V閉、V開、FCSのコントロールバルブ3開で配管内を真空引きした後、バルブV開、V閉にし、流量モニタ付圧力式流量制御装置1の実ガス流量自己診断を行う。即ち、実ガス(プロセスガスG)を流したときの圧力降下特性と初期設定圧力降下特性とを対比し、両者の間の差が許容値以下であれば診断値に異常が無いと判断する。また、逆に、前記両者の間の差が許容値以上となった場合には、診断値に異常があると判断する。
 ステップS24で、診断値に異常が無ければ、バルブVのみにシートリークがあると判断する(ステップS26)。バルブVにシートリークがあっても、バルブVにシートリークが無ければ、流量モニタ付圧力式流量制御装置1(FCS)へ流入する流体はプロセスガスGpのみであり、従って前記実ガス流量自己診断の診断値には異常が出ないからである。
 一方、ステップS24において診断値に異常がある場合には、ステップS27においてバルブV閉、バルブV開とされ、流量モニタ付圧力式流量制御装置1(FCS)のN流量自己診断が行われる。即ち、Nガスを流したときの圧力降下特性と初期圧力降下特性とを対比し、両者の差が許容値以下であれば診断値に異常が無いと診断する。また、両者の差が許容値以上であれば、診断値が異常であると診断する。
 ステップS28において、N流量自己診断の診断値に異常が無ければ、ステップS29でバルブVのみがシートリークをしていると判断する。何故なら、バルブVがシートリークを起しておれば、実ガスがN内へ混入し、FCSの流量自己診断値に異常が出るからである。
 逆に、ステップS28において、N流量自己診断値に異常がある場合には、バルブVがシートリークを起し、Nと実ガスとの混合ガスがFCSへ流入することにより、前記診断値に異常を生じることになる。これにより、ステップS30において、バルブV及びVの両方がシートリークをしていると判断する。
 尚、図20の異常チェックフローシートにおいては、ステップSにおいてバルブV、V、Vの異常を検出したあと、各バルブV、V、Vの動作異常と、シートリーク異常とを夫々順にチェックして行くフローとしている。しかし、ステップSにおいて異常が検出されれば、異常の変動度合から異常の種類がバルブの動作異常か又はシートリークの何れかであるかを先ず判定し、動作異常であればステップS~ステップS13までを、また、シートリーク異常であればステップS15~ステップS30を、夫々実施するようにしてもよい。
 また、前記動作異常の判定は、ステップSにおけるPの上昇率又はPの減少率から判断可能である。例えばPの上昇率が大きければバルブの開閉異常、Pの上昇率が小さければバルブのシートリーク異常と判断することができる。
 次に、流量自己診断時の圧力降下特性と、流量自己診断の結果が異常と判定された場合の異常原因等の関係について検証をした。
 尚、流量自己診断とは、前記したように初期設定した圧力降下特性と診断時の圧力降下特性とを対比し、その差が予め定めた範囲外となった場合に異常と判断するものである。
 先ず、発明者等は、図19に示した基本的な流体供給系を構成し、故障(異常)を模擬的に発生させると共に、各異常時の圧力降下特性を調査した。また、得られた圧力降下特性とその発生要因の関係を解析し、その解析結果から、圧力降下特性の形態と異常発生の原因との間に密接な一定の関係が存在することを見出した。即ち、異常発生時の圧力降下特性の形態が判れば、異常発生の原因を知得できることを見出した。
 図21は、流量自己診断において模擬的に発生させた具体的な故障の種類A(故障の特定)と、それによって発生する現象Bと、発生した現象Bに直接結び付く故障の総括的な要因Cとの関係を調査し、これをまとめたものである。
 また、圧力降下特性の形態の欄の数値(1~4)は、後述するように具体的な故障の種類Aに対して夫々発生する圧力降下特性の形態の類形を示すものである。
 図22乃至図28は、図21に示した夫々の具体的な故障を生ぜしめた場合の流量自己診断における圧力降下特性を示すものであり、横軸は時間を、また縦軸は圧力式流量制御部1a、即ちFCSの検出圧力を夫々示すものである。
 即ち、図22では、ガス供給源側からの供給圧不足のために、100%流量保持時に制御圧が不足することになり、圧力降下特性の形態が後述する類形4の形態となる。
 図23・(a)では、2次側(FCSの出力側)のエア作動バルブVのエア作動が故障であるためオリフィス2次側圧力が上昇し、その結果、診断途中から圧力降下が遅れることになる(類形2の形態となる)。
 また、図23・(b)では、オリフィス2次側の外部からリークガスが2次側へ流入するためオリフィス2次側圧力が上昇し、圧力降下特性の形態は上記図23・(a)の場合と同じ類形2の形態となる。
 図24・(a)では、フローファクタ(F.F.)の大きなガスが圧力式制御部1a,即ち FCSの一次側へ流入するため、絞り機構(オリフィス)からガスが抜け易くなり、その結果圧力降下特性における圧力降下が早くなる(類形3の形態)。
 逆に、図24・(b)では、フローファクタ(F.F.)の小さなガスが流入するため、絞り機構(オリフィス)からガスが抜け難くなり、圧力降下特性における圧力降下が遅れる(類形1の形態)。尚、以下の記述では、絞り機構をオリフィスでもって表現する。
 図25・(a)では、オリフィスが詰まることにより、オリフィスからガスが抜け難くなり、圧力降下特性における圧力降下が遅れることになる(類形1の形態)。
 逆に、図25・(b)ではオリフィスが拡経するため、オリフィスからガスが抜け易くなり、圧力降下が早まることになる(類形3の形態)。
 図26では、コントロールバルブ3がシートリークを生じているため、流量自己診断時にコントロールバルブ3からガスが流入し、圧力降下特性における圧力降下が遅れることになる(類形1の形態)。
 図27では、コントロールバルブ3の駆動部の伝達系に異常があるため、コントロールバルブが円滑に開弁しない。その結果、ガスの供給が行われず、ガスが流れないため圧力降下特性が変化しないことになる(類形4の形態)。
 図28は、圧力式流量制御部1aの零点調整が狂っている場合を示すものであり、零点がプラス側に変動しているときには圧力降下が遅れて、類形1の形態となる。
 また、零点がマイナス側に変動しているときには、圧力降下が早まることになり、その圧力降下特性は類形3の形態となる。
 図29は、上記図22乃至図28で示した流量自己診断時における圧力降下特性の類形の形態をまとめて表示したものである。
 即ち、圧力降下特性は次の1~4の4類形の形態(パターン)に大別される。
 [類形1の圧力降下特性(診断直後から圧力降下が遅れる)]
  フローファクタの小さなガスの混入、オリフィスへの生成物の付着・ゴミ詰まり、コントロールバルブのゴミの噛み、生成物付着(シートリーク)、ゼロ点のプラス変動等の故障の場合に発生する。
 [類形2の圧力降下特性(診断途中から圧力降下が遅れる)]
  2次側バルブのエアオペレーション機構の故障、2次側への外部からのリーク等の故障の場合に発生する。
 [類形3の圧力降下特性(診断直後から圧力降下が早くなる)]
  フローファクタの大きなガスの混入、不適切なゼロ点入力、腐食による穴(オリフィス)の詰まり、オリフィスプレートの破損、ゼロ点のマイナス変動等の故障の場合に発生する。
 [類形4の圧力降下特性(診断時の初期が100%流量に達しない)]
  供給圧力の不足、1次側バルブのエアオペレーション機構の故障、(プレフィルタの)ゴミ詰まり、コントロールバルブ駆動部の伝達系の異常(コントロールバルブの故障)等の場合に発生する。
 上記図21及び図22乃至図29の記載からも明らかなように、本発明では、流量自己診断時の圧力降下特性の形態が1~4のどの類形に該当するかを検討することにより、故障の原因やその発生箇所を容易に知ることができ、ガス供給系の補修(又は点検)を能率よく迅速に行えることになる。
 次に、流体供給系のバルブにシートリーク等が生じたり、或いは、流量モニタ付圧力式流量制御装置1自体に何等かの故障が生じることにより、流量自己診断時のモニタ流量に異常が有ることが判明すると、当該モニタ流量の異常が流体供給系の異常によるものか、或いは、流量モニタ付圧力式流量制御装置1自体の異常によるものかを判別し、流量モニタ付圧力式流量制御装置1の故障等が原因となっているときには、流量モニタ付圧力式流量制御装置1を迅速に交換する必要がある。
 そのため、本発明においては、モニタ流量異常が表われると、先ず図30に示す如く、流量モニタ付圧力式流量制御装置1の流量自己診断を行う(ステップ40)。
 尚、流量自己診断方法は、前記図20等により説明した方法と同様である。また、当該モニタ流量の異常は、一般に図1に示した熱式流量モニタ部1bのゼロ点のずれ、圧力式流量制御部1aのゼロ点のずれ、流体供給系の異常及び流量モニタ付圧力式流量制御装置1自体の故障等が原因となって発生することが判明している。
 前記ステップ40で流量自己診断を行い、その結果をステップ41で診断して、流量自己診断結果が予め定めた正常範囲内にあればステップ42で熱式流量センサ2のゼロ点調整を行なった後、ステップ43でモニタ流量出力を再度確認し、ステップ44で流量出力が予め定めた正常範囲内にあれば、使用可能と判断し、引き続き使用に供するものとする。
 前記ステップ41で流量自己診断結果が設定範囲外であれば、ステップ45で流量自己診断におけるモニタ流量異常の原因の解析を行い、モニタ流量の異常の原因を把握する。
 当該流量自己診断異常の要因解析は、前記図21乃至図29を用いて説明したところに従って行い、異常の原因が四つの類型の内の何れの類型に該当するかを判別する。
 また、流量モニタ付圧力式流量制御装置の流量自己診断において、その圧力降下特性曲線の形態から流量異常の原因がオリフィスの口径変化に起因すると判断される場合(例えば、図25(a)の類形1及び図25(b)の類形2の場合)には、モニタ流量値が正しいものとしてモニタ付圧力式流量制御装置の流量出力値を校正するようにしても良い。
 尚、当該モニタ付圧力式流量制御装置の流量出力値の校正方法としては、例えば流量検出点を5~10点ほど適宜に選定し、各点に於けるモニタ流量値と流量出力値との差異を用いて校正する方法等が可能である。
 次に、先ずステップ46で圧力センサのゼロ点にずれが在るか否かをチェックし、圧力センサのゼロ点にずれが無ければ、ステップ47で流体供給系の異常に該当するか否かをチェックする。
 逆に、前記ステップ46で圧力センサのゼロ点にずれが在ることが判れば、ステップ48で圧力センサのゼロ点を調整したあと、再度処理をステップ40へ戻して流量自己診断を実行する。
 前記ステップ47で異常の要因が流体供給系の異常に該当するか否かをチェックし、流体供給系の異常に該当しない場合には、流量モニタ付圧力式流量制御装置そのものにモニタ流量の異常原因があると判断して、流量モニタ付圧力式流量制御装置の取換、交換の処置をする。
 また、ステップ47で、異常の要因が流体供給系の異常に該当すると判明した場合には、ステップ49で流体供給系の補修若しくは復旧を行い、その後、処理を再度ステップ40へ戻して流量自己診断を行なう。
 本発明は半導体製造装置用ガス供給設備のみならず、化学産業や食品産業等の圧力センサを保有する流量モニタ付圧力式流量制御装置を用いた流体供給設備全般にも広く適用できるものである。
1は 流量モニタ付圧力式流量制御装置
1aは 圧力式流量制御部
1bは 熱式流量モニタ部
2は 熱式流量センサ
2bは センサ回路
2dは バイパス管群
2eは センサ管
3は コントロール弁
3aは 弁駆動部
4は 温度センサ
5は 圧力センサ
6は オリフィス
7は 制御部
7aは 圧力式流量演算制御部
7bは 流量センサ制御部
7aは 入力端子
7aは 出力端子
7bは 入力端子
7bは 出力端子
8は 入口側通路
9は 出口側通路
10は 機器本体内の流体通路
11は ガス供給源
12は 圧力調整器
13は パージ用バルブ
14は 入力側圧力センサ
15は データロガ
16は 真空ポンプ
17は 圧力センサ
Pdは コントロール弁の制御信号
Pcは 流量信号
は  流量設定入力
は  圧力式流量制御装置の流量出力
は  熱式流量センサ出力(図6・熱式流量センサが1次側の場合)
は  熱式流量センサ出力(図7・熱式流量センサが2次側の場合)
Aは   プロセスガス供給系
は  配管
Bは   パージガス供給系
は  配管
Cは   プロセスガス使用系
Eは    プロセスチャンバ
FCSは圧力式流量制御装置
~Vはバルブ
Goは パージガス
Gpは プロセスガス

Claims (12)

  1.  流体の入口側通路と,入口側通路の下流側に接続した圧力式流量制御部を構成するコントロール弁と,コントロール弁の下流側に接続した熱式流量センサと,熱式流量センサの下流側に連通する流体通路に介設したオリフィスと,前記コントロール弁とオリフィスの間の流体通路の近傍に設けた温度センサと,前記コントロール弁とオリフィスの間の流体通路に設けた圧力センサと,前記オリフィスに連通する出口側通路と,前記圧力センサからの圧力信号及び温度センサからの温度信号が入力され、オリフィスを流通する流体の流量値Qを演算すると共に演算した流量値と設定流量値との差が減少する方向に前記コントロール弁を開閉作動させる制御信号Pdを弁駆動部へ出力する圧力式流量演算制御部及び前記熱式流量センサからの流量信号が入力され当該流量信号からオリフィスを流通する流体流量を演算表示する流量センサ制御部とからなる制御部と,から構成したことを特徴とする流量モニタ付圧力式流量制御装置。
  2.  圧力センサを、コントロール弁の出口側と熱式流量センサの入口側の間に設けるようにした請求項1に記載の流量モニタ付圧力式流量制御装置。
  3.  流量センサ制御部で演算した流体流量と圧力式流量演算制御部で演算した流体流量間の差が設定値を越えると警報表示を行う制御部とした請求項1又は請求項2に記載の流量モニタ付圧力式流量制御装置。
  4.  コントロール弁,熱式流量センサ,オリフィス,圧力センサ,温度センサ,入口側通路,出口側通路を一つのボディ体に一体的に組み付けすると共に、流体通路をボディ体に一体的に形成するようにした請求項1に記載の流量モニタ付圧力式流量制御装置。
  5.  流体の入口側通路と,入口側通路の下流側に接続した圧力式流量制御部を構成するコントロール弁と,コントロール弁の下流側に接続した熱式流量センサと,熱式流量センサの下流側に連通する流体通路に介設したオリフィスと,前記コントロール弁とオリフィスの間の流体通路の近傍に設けた温度センサと,前記コントロール弁とオリフィスの間の流体通路に設けた圧力センサと,前記オリフィスに連通する出口側通路と,前記オリフィスの下流側の出口側通路に設けた圧力センサと,前記圧力センサ及び圧力センサからの圧力信号及び温度センサからの温度信号が入力され、オリフィスを流通する流体の臨界膨張条件の監視やオリフィスを流通する流体の流量値Qを演算すると共に、演算した流量値と設定流量値との差が減少する方向に前記コントロール弁を開閉作動させる制御信号Pdを弁駆動部へ出力する圧力式流量演算制御部及び前記熱式流量センサからの流量信号が入力され当該流量信号からオリフィスを流通する流体流量を演算表示する流量センサ制御部とからなる制御部と,から構成したことを特徴とする流量モニタ付圧力式流量制御装置。
  6.  オリフィスを流通する流体が臨界膨張条件を外れると、警報表示を行う制御部とした請求項5に記載の流量モニタ付圧力式流量制御装置。
  7.  コントロール弁,熱式流量センサ,オリフィス,圧力センサ,温度センサ,入口側通路,出口側通路,圧力センサを一つのボディ体に一体的に組み付けすると共に、流体通路をボディ体に一体的に形成するようにした請求項5に記載の流量モニタ付圧力式流量制御装置。
  8.  流量の設定機構と流量及び圧力の表示機構及び又は流量自己診断機構とで構成される圧力センサを保有する流量モニタ付圧力式流量制御装置を備えた流体供給系における前記流量モニタ付圧力式流量制御装置の上流側及び又は下流側に設けたバルブの異常を、前記流量モニタ付圧力式流量制御装置の圧力の表示値及び又は流量自己診断機構の診断値を用いて検出する方法であって、異常検出の対象とするバルブを、流量モニタ付圧力式流量制御装置の上流側に設けたパージガス供給系のバルブとプロセスガス供給系のバルブ及び流量モニタ付圧力式流量制御装置の下流側のプロセスガス使用系に設けたバルブとすると共に、検出する異常の種類をバルブの開閉動作及びシートリークとした流量モニタ付圧力式流量制御装置を用いた流体供給系の異常検出方法。
  9.  流量モニタ付圧力式流量制御装置の流量自己診断機構を、初期設定をした圧力降下特性と診断時の圧力降下特性とを対比して異常を診断する構成の機構とすると共に、プロセスガスとパージガスとの混合ガスが流入した際の前記診断値の変化から、プロセスガス供給系又はパージガス供給系のバルブのシートリークを検出するようにした請求項8に記載の流量モニタ付圧力式流量制御装置を用いた流体供給系の異常検出方法。
  10.  流量の設定機構と流量及び圧力の表示機構及び又は流量自己診断機構とで構成される圧力センサを保有する流量モニタ付圧力式流量制御装置を備えた流体供給系における前記流量モニタ付圧力式流量制御装置並にその上流側及び又は下流側に設けたバルブの異常を、前記流量モニタ付圧力式流量制御装置の圧力の表示値及び又は流量自己診断機構を用いて検出する方法において、前記流量モニタ付圧力式流量制御装置の流量自己診断機構を、初期設定をした圧力降下特性と診断時の圧力降下特性とを対比して異常を診断する構成の機構とすると共に、当該流量自己診断機構による流量自己診断時の圧力降下特性が、前記初期設定時の圧力降下特性に対比して、診断直後から圧力降下が遅れ出すか、診断途中から圧力降下が遅れ出すか、診断直後から圧力降下が早まるか、診断開始時の圧力が初期設定時の圧力に達していないか、の何れの形態に該当するかを判別し、前記判別された流量自己診断時の圧力降下特性の形態から、検出された異常の原因を判定するようにした流量モニタ付圧力式流量制御装置を用いた流体供給系の異常検出方法。
  11.  請求項10に記載の流体供給系の異常検出方法を用いて流量自己診断をし、流量自己診断時の圧力降下特性の形態から検出された異常の原因を判定したあと圧力センサのゼロ点のずれを確認し、ゼロ点がずれている場合にはそのゼロ点を調整してから再度流量自己診断を行い、また、前記ゼロ点にずれが無い場合には前記判定した異常の原因が流体供給系の異常か否かを判別し、流体供給系が異常の場合には流体供給系の異常を復旧させ、また、流体供給系に異常が無い場合には前記流量モニタ付圧力式流量制御装置自体の異常と判断してその取換えをするようにした流量モニタ付圧力式流量制御装置を用いた流体供給系のモニタ流量異常時の処置方法。
  12.  請求項10に記載の流体供給系の異常検出方法を用いて流量自己診断をし、前記流量モニタ付圧力式流量制御装置のオリフィスの径変化が原因でモニタ流量が異常の場合には、モニタ流量を正として前記流量モニタ付圧力式流量制御装置の校正を行うようにした流量モニタ付圧力式流量制御装置を用いた流体供給系のモニタ流量異常時の処置方法。
PCT/JP2012/002394 2011-05-10 2012-04-05 流量モニタ付圧力式流量制御装置と、これを用いた流体供給系の異常検出方法並びにモニタ流量異常時の処置方法 WO2012153454A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137028103A KR101550255B1 (ko) 2011-05-10 2012-04-05 유량 모니터 부착 압력식 유량 제어 장치와, 이것을 사용한 유체 공급계의 이상 검출 방법 및 모니터 유량 이상 시의 처치 방법
JP2013513904A JP5605969B2 (ja) 2011-05-10 2012-04-05 流量モニタ付圧力式流量制御装置と、これを用いた流体供給系の異常検出方法並びにモニタ流量異常時の処置方法
CN201280022337.1A CN103502902B (zh) 2011-05-10 2012-04-05 带有流量监测器的压力式流量控制装置、使用该装置的流体供给系统的异常检测方法及监测流量异常时的处置方法
US14/075,890 US9632511B2 (en) 2011-05-10 2013-11-08 Pressure type flow control system with flow monitoring, and method for detecting anomaly in fluid supply system and handling method at abnormal monitoring flow rate using the same
US15/450,417 US10386861B2 (en) 2011-05-10 2017-03-06 Pressure type flow control system with flow monitoring, and method for detecting anomaly in fluid supply system and handling method at abnormal monitoring flow rate using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011105265 2011-05-10
JP2011-105265 2011-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/075,890 Continuation-In-Part US9632511B2 (en) 2011-05-10 2013-11-08 Pressure type flow control system with flow monitoring, and method for detecting anomaly in fluid supply system and handling method at abnormal monitoring flow rate using the same

Publications (1)

Publication Number Publication Date
WO2012153454A1 true WO2012153454A1 (ja) 2012-11-15

Family

ID=47138948

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/002394 WO2012153454A1 (ja) 2011-05-10 2012-04-05 流量モニタ付圧力式流量制御装置と、これを用いた流体供給系の異常検出方法並びにモニタ流量異常時の処置方法
PCT/JP2012/002395 WO2012153455A1 (ja) 2011-05-10 2012-04-05 流量モニタ付圧力式流量制御装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002395 WO2012153455A1 (ja) 2011-05-10 2012-04-05 流量モニタ付圧力式流量制御装置

Country Status (6)

Country Link
US (4) US9494947B2 (ja)
JP (2) JP5605969B2 (ja)
KR (2) KR101550255B1 (ja)
CN (2) CN103502902B (ja)
TW (2) TWI488017B (ja)
WO (2) WO2012153454A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088946A (ja) * 2011-10-14 2013-05-13 Horiba Stec Co Ltd 流量制御装置、流量制御装置に用いられる診断装置及び診断用プログラム
CN105589391A (zh) * 2016-03-14 2016-05-18 刘满元 一种预防循环管道泄露的集成控制装置
CN106068447A (zh) * 2013-09-12 2016-11-02 恩德莱斯和豪瑟尔两合公司 具有有效压力线的差压测量组件及用于检测被堵塞有效压力管线的方法
CN109374064A (zh) * 2018-12-05 2019-02-22 航天晨光股份有限公司 一种金属软管流量特性测试设备与方法
CN109738030A (zh) * 2019-01-25 2019-05-10 中国计量大学 压力位差式层流流量测量方法及装置
WO2020031629A1 (ja) * 2018-08-10 2020-02-13 株式会社フジキン 流体制御装置、流体制御機器、及び動作解析システム
JP2020084842A (ja) * 2018-11-20 2020-06-04 株式会社川本製作所 ポンプ装置
CN111665877A (zh) * 2020-06-18 2020-09-15 北京七星华创流量计有限公司 压力控制方法和装置、光伏设备
WO2022240775A1 (en) * 2021-05-10 2022-11-17 Applied Materials, Inc. Packaging for a sensor and methods of manufacturing thereof

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605969B2 (ja) 2011-05-10 2014-10-15 株式会社フジキン 流量モニタ付圧力式流量制御装置と、これを用いた流体供給系の異常検出方法並びにモニタ流量異常時の処置方法
US9958302B2 (en) * 2011-08-20 2018-05-01 Reno Technologies, Inc. Flow control system, method, and apparatus
US9243325B2 (en) * 2012-07-18 2016-01-26 Rohm And Haas Electronic Materials Llc Vapor delivery device, methods of manufacture and methods of use thereof
JP5847106B2 (ja) * 2013-03-25 2016-01-20 株式会社フジキン 流量モニタ付圧力式流量制御装置。
JP6216389B2 (ja) * 2013-10-31 2017-10-18 株式会社フジキン 圧力式流量制御装置
CN106133484B (zh) * 2014-03-31 2019-10-15 日立金属株式会社 热式质量流量测定方法、流量计以及流量控制装置
JP6264152B2 (ja) * 2014-03-31 2018-01-24 日立金属株式会社 質量流量計、及び当該質量流量計を使用する質量流量制御装置
JP6416529B2 (ja) * 2014-07-23 2018-10-31 株式会社フジキン 圧力式流量制御装置
US20160085241A1 (en) * 2014-09-18 2016-03-24 Chin-Tsung Lee Flow detection device and numerical modeling method
US9951423B2 (en) * 2014-10-07 2018-04-24 Lam Research Corporation Systems and methods for measuring entrained vapor
CN104281163A (zh) * 2014-10-29 2015-01-14 北京堀场汇博隆精密仪器有限公司 一种流量控制器
CN104329495B (zh) * 2014-10-29 2017-01-18 北京堀场汇博隆精密仪器有限公司 一种压力流量控制器
EP3043228B1 (de) * 2015-01-09 2018-09-19 Levitronix GmbH Strömungsregler sowie verfahren zum einstellen vorgebbaren volumenstroms
KR102028372B1 (ko) * 2015-09-24 2019-10-04 가부시키가이샤 후지킨 압력식 유량 제어 장치 및 그 이상 검지 방법
JP2017067585A (ja) * 2015-09-30 2017-04-06 アズビル株式会社 流量演算装置、流量演算方法および流量制御装置
US10884436B2 (en) * 2015-10-28 2021-01-05 Fujikin Incorporated Flow rate signal correction method and flow rate control device employing same
US9558453B1 (en) 2015-12-21 2017-01-31 International Business Machines Corporation Forecasting leaks in pipeline network
CN108369425B (zh) * 2015-12-25 2021-03-02 株式会社富士金 流量控制装置以及使用流量控制装置的异常检测方法
JP6923939B2 (ja) * 2016-02-29 2021-08-25 株式会社フジキン 流量制御装置
JP6871636B2 (ja) * 2016-03-29 2021-05-12 株式会社フジキン 圧力式流量制御装置及び流量自己診断方法
JP6706121B2 (ja) * 2016-03-30 2020-06-03 株式会社フジキン 圧力制御装置および圧力制御システム
US10526771B1 (en) * 2016-06-17 2020-01-07 Hs Labs, Inc. Water flow monitoring and leak detection/mitigation system and method
US10684159B2 (en) * 2016-06-27 2020-06-16 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on choked flow
US10838437B2 (en) 2018-02-22 2020-11-17 Ichor Systems, Inc. Apparatus for splitting flow of process gas and method of operating same
US11144075B2 (en) 2016-06-30 2021-10-12 Ichor Systems, Inc. Flow control system, method, and apparatus
DE102016112093B4 (de) * 2016-07-01 2020-08-27 Dspace Digital Signal Processing And Control Engineering Gmbh Verfahren zur Regelung eines Volumenstroms und Prüfstand zur Simulation eines Flüssigkeitskreislaufs
KR102382808B1 (ko) * 2016-07-20 2022-04-04 류베 가부시키가이샤 유체의 유동 감지 장치
KR102131633B1 (ko) * 2016-09-28 2020-07-08 가부시키가이샤 후지킨 농도 검출 방법 및 압력식 유량 제어 장치
US10054357B2 (en) * 2016-10-12 2018-08-21 Raytheon Company Purity monitor
CN106441698B (zh) * 2016-11-24 2018-04-27 中国石油大学(北京) 高压非稳定微压差计及其使用和校核方法
JP6996289B2 (ja) * 2016-12-26 2022-01-17 株式会社島津製作所 バルブ装置
US20190352888A1 (en) * 2017-01-14 2019-11-21 Mario LARACH Smart monitoring unit apparatus for real-time monitoring and active management of upstream and downstream pressure and flow, incorporating self-cleaning and plug-and-play maintenance
KR102162046B1 (ko) * 2017-02-10 2020-10-06 가부시키가이샤 후지킨 유량 측정 방법 및 유량 측정 장치
JP7384551B2 (ja) * 2017-03-14 2023-11-21 株式会社堀場エステック 診断システム、診断方法、診断プログラム及び流量制御装置。
JP6486986B2 (ja) 2017-04-03 2019-03-20 株式会社荏原製作所 液体供給装置及び液体供給方法
JP6811147B2 (ja) * 2017-06-23 2021-01-13 東京エレクトロン株式会社 ガス供給系を検査する方法
KR20200057051A (ko) 2017-09-27 2020-05-25 시질론 테라퓨틱스, 인크. 활성 세포를 포함하는 방법, 조성물 및 이식 가능한 요소
KR20200054994A (ko) * 2017-09-29 2020-05-20 히타치 긴조쿠 가부시키가이샤 질량 유량 제어 시스템 및 당해 시스템을 포함하는 반도체 제조 장치 및 기화기
US11340636B2 (en) * 2017-11-29 2022-05-24 Fujikin Incorporated Abnormality diagnosis method of fluid supply line
JP7008499B2 (ja) * 2017-12-27 2022-01-25 株式会社堀場エステック 校正データ作成装置及び校正データ作成方法、並びに、流量制御装置
CN108277320A (zh) * 2018-02-12 2018-07-13 唐山钢铁集团微尔自动化有限公司 一种lf炉底吹氩双支路流量控制装置
JP7027942B2 (ja) * 2018-02-22 2022-03-02 トヨタ自動車株式会社 蒸発燃料処理装置
US11733721B2 (en) * 2018-02-26 2023-08-22 Fujikin Incorporated Flow rate control device and flow rate control method
JP7157476B2 (ja) * 2018-04-27 2022-10-20 株式会社フジキン 流量制御方法および流量制御装置
JP7044629B2 (ja) * 2018-05-18 2022-03-30 株式会社堀場エステック 流体制御装置、及び、流量比率制御装置
JP7068062B2 (ja) * 2018-06-18 2022-05-16 株式会社堀場製作所 流体制御装置、及び、流量比率制御装置
JP7148302B2 (ja) * 2018-07-17 2022-10-05 株式会社堀場エステック 流量制御装置
US10725484B2 (en) 2018-09-07 2020-07-28 Mks Instruments, Inc. Method and apparatus for pulse gas delivery using an external pressure trigger
CN112673239A (zh) 2018-09-18 2021-04-16 斯瓦戈洛克公司 流体监测模块布置
US10883865B2 (en) 2018-09-19 2021-01-05 Swagelok Company Flow restricting fluid component
JP7194421B2 (ja) * 2018-09-26 2022-12-22 株式会社フジキン 流量制御装置および流量制御方法
CN109839961A (zh) * 2019-02-02 2019-06-04 上海市计量测试技术研究院 一种低雷诺数区域气体质量流量控制方法及控制校准装置
JP7437980B2 (ja) * 2019-03-12 2024-02-26 株式会社堀場エステック 流体制御装置、流体制御システム、診断方法、及び、流体制御装置用プログラム
KR20210139347A (ko) * 2019-04-25 2021-11-22 가부시키가이샤 후지킨 유량 제어 장치
TWI755704B (zh) * 2019-05-14 2022-02-21 日商富士金股份有限公司 流量控制裝置、流量控制方法、流量控制裝置的控制程式
TWI712774B (zh) * 2019-06-27 2020-12-11 鄭慶煥 用於量測氣體的裝置及用於量測氣體的方法
US20220390269A1 (en) * 2019-12-06 2022-12-08 Fujikin Incorporated Abnormality detection method for flow rate control device, and flow rate monitoring method
DE102019134804A1 (de) * 2019-12-17 2021-06-17 Reseatech Gmbh Messanordnung mit einem mikromechanischen Sensor zum Erfassen von Eigenschaften eines strömenden Fluids
EP3848579B1 (de) * 2020-01-13 2023-08-02 Promix Solutions AG System und verfahren zur dosierung eines flüssigen oder gasförmigen mediums
JP2022029854A (ja) * 2020-08-05 2022-02-18 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御プログラム
KR102502013B1 (ko) * 2020-09-18 2023-02-21 엠케이피 주식회사 질량 유량 제어 장치 및 이의 제어방법
JP2023550129A (ja) * 2020-11-20 2023-11-30 エム ケー エス インストルメンツ インコーポレーテッド 圧力制御を有するパルスガス供給のための方法及び装置
TWI749899B (zh) * 2020-11-24 2021-12-11 中興保全科技股份有限公司 微電腦灌注機
KR20230150309A (ko) 2021-03-03 2023-10-30 아이커 시스템즈, 인크. 매니폴드 조립체를 포함하는 유체 유동 제어 시스템
US11977399B2 (en) 2021-03-25 2024-05-07 Romet Limited Fluid pressure monitoring system using flow data
CN113983224A (zh) * 2021-10-12 2022-01-28 康赛特自动化集团有限公司 一种用于物联网的电动执行器装置及其使用方法
CN113959505A (zh) * 2021-10-21 2022-01-21 张家港扬子纺纱有限公司 一种前纺针梳和毛油流量在线监测仪
CN114704947B (zh) * 2022-03-31 2023-06-16 同舟蓝海(北京)控股有限公司 一种可精确测量风量的风量调节阀
WO2024006528A1 (en) 2022-07-01 2024-01-04 Sigilon Therapeutics, Inc. Covalently photocrosslinked polysaccharides and methods of use thereof
WO2024081309A1 (en) 2022-10-11 2024-04-18 Sigilon Therapeutics, Inc. Engineered cells and implantable elements for treatment of disease
WO2024081310A1 (en) 2022-10-11 2024-04-18 Sigilon Therapeutics, Inc. Engineered cells and implantable elements for treatment of disease
KR102512204B1 (ko) * 2022-11-04 2023-03-23 삼안테크 주식회사 가스 공급장치 실린더 공급상태 눈관리 인디게이터 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246826A (ja) * 2003-02-17 2004-09-02 Stec Inc マスフローコントローラ
JP2005149075A (ja) * 2003-11-14 2005-06-09 Fujikin Inc 流体制御装置
JP2007095042A (ja) * 2005-09-01 2007-04-12 Fujikin Inc 圧力センサを保有する流量制御装置を用いた流体供給系の異常検出方法

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393013A (en) 1970-05-20 1983-07-12 J. C. Schumacher Company Vapor mass flow control system
JPS60244333A (ja) 1984-05-21 1985-12-04 Sumitomo Electric Ind Ltd 原料液補給装置
US4787254A (en) * 1987-02-20 1988-11-29 Briggs Technology, Inc. Mass flow meter
JP2538042B2 (ja) 1989-03-29 1996-09-25 株式会社エステック 有機金属化合物の気化供給方法とその装置
JPH03211601A (ja) * 1990-01-17 1991-09-17 Fujitsu Ltd ガス流量制御装置
JP3150331B2 (ja) 1990-09-28 2001-03-26 株式会社東芝 有機薄膜素子
US5288325A (en) 1991-03-29 1994-02-22 Nec Corporation Chemical vapor deposition apparatus
JP2893148B2 (ja) 1991-10-08 1999-05-17 東京エレクトロン株式会社 処理装置
JPH06104155A (ja) 1992-09-22 1994-04-15 M C Electron Kk 半導体製造プロセスにおける中間制御装置
JPH07118862A (ja) 1993-10-19 1995-05-09 Hitachi Electron Eng Co Ltd Cvd装置の反応ガス濃度制御方法
US5451258A (en) 1994-05-11 1995-09-19 Materials Research Corporation Apparatus and method for improved delivery of vaporized reactant gases to a reaction chamber
JP3291161B2 (ja) * 1995-06-12 2002-06-10 株式会社フジキン 圧力式流量制御装置
JP3580645B2 (ja) 1996-08-12 2004-10-27 忠弘 大見 圧力式流量制御装置
US5865205A (en) * 1997-04-17 1999-02-02 Applied Materials, Inc. Dynamic gas flow controller
US6205409B1 (en) * 1998-06-26 2001-03-20 Advanced Micro Devices, Inc. Predictive failure monitoring system for a mass flow controller
JP3522544B2 (ja) 1998-08-24 2004-04-26 忠弘 大見 流体可変型流量制御装置
DE69912239T2 (de) * 1998-08-24 2004-07-29 Fujikin Inc. Verfahren zur erkennung einer verstopfung in einem druckmessenden durchflussre- gler und ein für diesen zweck verwendeter sensor
JP4439030B2 (ja) 1999-04-01 2010-03-24 東京エレクトロン株式会社 気化器、処理装置、処理方法、及び半導体チップの製造方法
US6210482B1 (en) 1999-04-22 2001-04-03 Fujikin Incorporated Apparatus for feeding gases for use in semiconductor manufacturing
JP2002543589A (ja) 1999-04-27 2002-12-17 東京エレクトロン株式会社 ハロゲン化チタン前駆体からのCVDTiNプラグの形成
US6119710A (en) * 1999-05-26 2000-09-19 Cyber Instrument Technologies Llc Method for wide range gas flow system with real time flow measurement and correction
JP3554509B2 (ja) * 1999-08-10 2004-08-18 忠弘 大見 圧力式流量制御装置における流量異常検知方法
JP2001147722A (ja) * 1999-11-22 2001-05-29 Ace:Kk ガス流量制御装置
GB9929279D0 (en) 1999-12-11 2000-02-02 Epichem Ltd An improved method of and apparatus for the delivery of precursors in the vapour phase to a plurality of epitaxial reactor sites
JP2001258184A (ja) 2000-03-09 2001-09-21 Fuji Xerox Co Ltd 自己電力供給型カード型情報記録媒体、カード型情報記録媒体入出力装置、電力供給方法、及び通信方法
JP2001313288A (ja) 2000-04-28 2001-11-09 Ebara Corp 原料ガス供給装置
US6539968B1 (en) * 2000-09-20 2003-04-01 Fugasity Corporation Fluid flow controller and method of operation
US6564824B2 (en) * 2001-04-13 2003-05-20 Flowmatrix, Inc. Mass flow meter systems and methods
JP2003013233A (ja) 2001-07-04 2003-01-15 Horiba Ltd 液体原料気化供給装置
US6656282B2 (en) 2001-10-11 2003-12-02 Moohan Co., Ltd. Atomic layer deposition apparatus and process using remote plasma
US6701066B2 (en) 2001-10-11 2004-03-02 Micron Technology, Inc. Delivery of solid chemical precursors
JP4082901B2 (ja) * 2001-12-28 2008-04-30 忠弘 大見 圧力センサ、圧力制御装置及び圧力式流量制御装置の温度ドリフト補正装置
JP4667704B2 (ja) 2002-03-27 2011-04-13 株式会社堀場製作所 薄膜堆積方法とその装置および薄膜堆積方法に用いる混合ガス供給装置
JP2003323217A (ja) 2002-05-01 2003-11-14 Stec Inc 流量制御システム
DE10392770B3 (de) * 2002-06-24 2013-08-01 Mks Instruments Inc. Massenstrom-Sensor und Verfahren zur Druckschwankungs-unabhaengigen Massenstroemungs-Steuerung
JP3973605B2 (ja) 2002-07-10 2007-09-12 東京エレクトロン株式会社 成膜装置及びこれに使用する原料供給装置、成膜方法
EP1540705A4 (en) * 2002-07-19 2009-12-16 Entegris Inc LIQUID FLOW CONTROL AND PRECISION DELIVERY DEVICE AND SYSTEM
JP4502590B2 (ja) * 2002-11-15 2010-07-14 株式会社ルネサステクノロジ 半導体製造装置
JP2004256864A (ja) 2003-02-26 2004-09-16 Benesol Inc Mocvd装置における原料供給フィードバック制御システム
US20050221004A1 (en) 2004-01-20 2005-10-06 Kilpela Olli V Vapor reactant source system with choked-flow elements
JP4086057B2 (ja) 2004-06-21 2008-05-14 日立金属株式会社 質量流量制御装置及びこの検定方法
WO2006014508A2 (en) * 2004-07-07 2006-02-09 Parker Hannifin Corporation Flow control apparatus and method with internally isothermal control volume for flow verification
JP4953151B2 (ja) * 2005-01-11 2012-06-13 トヨタ自動車株式会社 燃料電池システム
JP4856905B2 (ja) * 2005-06-27 2012-01-18 国立大学法人東北大学 流量レンジ可変型流量制御装置
JP2007250803A (ja) 2006-03-15 2007-09-27 Hitachi Kokusai Electric Inc 基板処理装置
US20070254093A1 (en) 2006-04-26 2007-11-01 Applied Materials, Inc. MOCVD reactor with concentration-monitor feedback
JP4605790B2 (ja) 2006-06-27 2011-01-05 株式会社フジキン 原料の気化供給装置及びこれに用いる圧力自動調整装置。
US7640078B2 (en) * 2006-07-05 2009-12-29 Advanced Energy Industries, Inc. Multi-mode control algorithm
US7833353B2 (en) 2007-01-24 2010-11-16 Asm Japan K.K. Liquid material vaporization apparatus for semiconductor processing apparatus
DE102007011589A1 (de) 2007-03-08 2008-09-11 Schott Ag Fördereinrichtung für Precursor
JP5050739B2 (ja) 2007-08-31 2012-10-17 住友化学株式会社 有機金属化合物供給容器
JP5372353B2 (ja) 2007-09-25 2013-12-18 株式会社フジキン 半導体製造装置用ガス供給装置
US7874208B2 (en) * 2007-10-10 2011-01-25 Brooks Instrument, Llc System for and method of providing a wide-range flow controller
US20090214777A1 (en) 2008-02-22 2009-08-27 Demetrius Sarigiannis Multiple ampoule delivery systems
JP5461786B2 (ja) 2008-04-01 2014-04-02 株式会社フジキン 気化器を備えたガス供給装置
CN201240887Y (zh) * 2008-05-29 2009-05-20 国网武汉高压研究院 电力电缆试验终端水处理装置
KR101578220B1 (ko) 2008-10-31 2015-12-16 가부시키가이샤 호리바 세이샤쿠쇼 재료가스 농도 제어 시스템
JP2010153741A (ja) 2008-12-26 2010-07-08 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
US8151814B2 (en) 2009-01-13 2012-04-10 Asm Japan K.K. Method for controlling flow and concentration of liquid precursor
JP5395451B2 (ja) * 2009-02-10 2014-01-22 サーパス工業株式会社 流量コントローラ
JP5787488B2 (ja) 2009-05-28 2015-09-30 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
JP4941514B2 (ja) 2009-06-30 2012-05-30 東京エレクトロン株式会社 処理ガス供給装置及び成膜装置
US9157537B2 (en) * 2009-06-30 2015-10-13 Eaton Corporation Aircraft fluid check valve assembly with indexing
CN201434457Y (zh) * 2009-07-16 2010-03-31 上海理工大学 一种双冷凝器恒温恒湿机组
CN101653978B (zh) * 2009-09-01 2013-03-13 北京中拓机械有限责任公司 一种超临界流体发泡剂计量系统
TWI435196B (zh) * 2009-10-15 2014-04-21 Pivotal Systems Corp 氣體流量控制方法及裝置
JP5562712B2 (ja) * 2010-04-30 2014-07-30 東京エレクトロン株式会社 半導体製造装置用のガス供給装置
US20120197446A1 (en) * 2010-12-01 2012-08-02 Glaudel Stephen P Advanced feed-forward valve-control for a mass flow controller
JP5611884B2 (ja) * 2011-04-14 2014-10-22 東京エレクトロン株式会社 エッチング方法、エッチング装置および記憶媒体
JP5605969B2 (ja) * 2011-05-10 2014-10-15 株式会社フジキン 流量モニタ付圧力式流量制御装置と、これを用いた流体供給系の異常検出方法並びにモニタ流量異常時の処置方法
JP2013088944A (ja) * 2011-10-14 2013-05-13 Horiba Stec Co Ltd 流量制御装置、流量測定機構、又は、当該流量測定機構を備えた流量制御装置に用いられる診断装置及び診断用プログラム
JP1605790S (ja) 2017-12-27 2018-06-04

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246826A (ja) * 2003-02-17 2004-09-02 Stec Inc マスフローコントローラ
JP2005149075A (ja) * 2003-11-14 2005-06-09 Fujikin Inc 流体制御装置
JP2007095042A (ja) * 2005-09-01 2007-04-12 Fujikin Inc 圧力センサを保有する流量制御装置を用いた流体供給系の異常検出方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088946A (ja) * 2011-10-14 2013-05-13 Horiba Stec Co Ltd 流量制御装置、流量制御装置に用いられる診断装置及び診断用プログラム
CN106068447A (zh) * 2013-09-12 2016-11-02 恩德莱斯和豪瑟尔两合公司 具有有效压力线的差压测量组件及用于检测被堵塞有效压力管线的方法
CN105589391A (zh) * 2016-03-14 2016-05-18 刘满元 一种预防循环管道泄露的集成控制装置
KR102502198B1 (ko) * 2018-08-10 2023-02-21 가부시키가이샤 후지킨 동작 해석 시스템
CN112189171A (zh) * 2018-08-10 2021-01-05 株式会社富士金 流体控制装置、流体控制设备以及动作解析系统
WO2020031629A1 (ja) * 2018-08-10 2020-02-13 株式会社フジキン 流体制御装置、流体制御機器、及び動作解析システム
US11960308B2 (en) 2018-08-10 2024-04-16 Fujikin, Incorporated Fluid control apparatus, fluid control device, and operation analysis system
JPWO2020031629A1 (ja) * 2018-08-10 2021-08-10 株式会社フジキン 流体制御装置、流体制御機器、及び動作解析システム
KR20200139787A (ko) * 2018-08-10 2020-12-14 가부시키가이샤 후지킨 유체 제어 장치, 유체 제어 기기, 및 동작 해석 시스템
JP7254331B2 (ja) 2018-11-20 2023-04-10 株式会社川本製作所 ポンプ装置
JP2020084842A (ja) * 2018-11-20 2020-06-04 株式会社川本製作所 ポンプ装置
CN109374064A (zh) * 2018-12-05 2019-02-22 航天晨光股份有限公司 一种金属软管流量特性测试设备与方法
CN109374064B (zh) * 2018-12-05 2023-09-08 航天晨光股份有限公司 一种金属软管流量特性测试设备与方法
CN109738030A (zh) * 2019-01-25 2019-05-10 中国计量大学 压力位差式层流流量测量方法及装置
CN109738030B (zh) * 2019-01-25 2023-10-03 中国计量大学 压力位差式层流流量测量方法及装置
CN111665877A (zh) * 2020-06-18 2020-09-15 北京七星华创流量计有限公司 压力控制方法和装置、光伏设备
CN111665877B (zh) * 2020-06-18 2023-04-14 北京七星华创流量计有限公司 压力控制方法和装置、光伏设备
WO2022240775A1 (en) * 2021-05-10 2022-11-17 Applied Materials, Inc. Packaging for a sensor and methods of manufacturing thereof

Also Published As

Publication number Publication date
US9870006B2 (en) 2018-01-16
US9632511B2 (en) 2017-04-25
JP5605969B2 (ja) 2014-10-15
TWI488017B (zh) 2015-06-11
US20140182692A1 (en) 2014-07-03
KR101550255B1 (ko) 2015-09-04
WO2012153455A1 (ja) 2012-11-15
CN103502902A (zh) 2014-01-08
TWI492014B (zh) 2015-07-11
JPWO2012153454A1 (ja) 2014-07-31
US20160370808A1 (en) 2016-12-22
CN103518165B (zh) 2016-06-08
KR101599343B1 (ko) 2016-03-03
US20140230911A1 (en) 2014-08-21
JPWO2012153455A1 (ja) 2014-07-31
CN103518165A (zh) 2014-01-15
JP5727596B2 (ja) 2015-06-03
US9494947B2 (en) 2016-11-15
TW201312311A (zh) 2013-03-16
US20170234455A1 (en) 2017-08-17
US10386861B2 (en) 2019-08-20
TW201305765A (zh) 2013-02-01
KR20140003611A (ko) 2014-01-09
KR20140039181A (ko) 2014-04-01
CN103502902B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5605969B2 (ja) 流量モニタ付圧力式流量制御装置と、これを用いた流体供給系の異常検出方法並びにモニタ流量異常時の処置方法
JP4866682B2 (ja) 圧力センサを保有する流量制御装置を用いた流体供給系の異常検出方法
KR100969210B1 (ko) 압력식 유량 제어장치의 스로틀 기구 하류측 밸브의 작동 이상 검출방법
US9175997B2 (en) Self-monitoring flow measuring arrangement and method for its operation
US20170364099A1 (en) Flow control system with build-down system flow monitoring
KR20170137880A (ko) 압력식 유량 제어 장치 및 그 이상 검지 방법
JP5665794B2 (ja) 半導体製造装置のガス分流供給装置
KR20120033999A (ko) 진단기구
JP5752521B2 (ja) 診断装置及びその診断装置を備えた流量制御装置
JPH07306084A (ja) マスフローコントローラ流量検定システム
JP2012113581A (ja) 流量制御システムの異常監視方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513904

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137028103

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782926

Country of ref document: EP

Kind code of ref document: A1