CN114704947B - 一种可精确测量风量的风量调节阀 - Google Patents

一种可精确测量风量的风量调节阀 Download PDF

Info

Publication number
CN114704947B
CN114704947B CN202210346151.7A CN202210346151A CN114704947B CN 114704947 B CN114704947 B CN 114704947B CN 202210346151 A CN202210346151 A CN 202210346151A CN 114704947 B CN114704947 B CN 114704947B
Authority
CN
China
Prior art keywords
air quantity
plate
upstream
pipe
pressure taking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210346151.7A
Other languages
English (en)
Other versions
CN114704947A (zh
Inventor
董林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongzhou Lanhai Beijing Holding Co ltd
Original Assignee
Tongzhou Lanhai Beijing Holding Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongzhou Lanhai Beijing Holding Co ltd filed Critical Tongzhou Lanhai Beijing Holding Co ltd
Priority to CN202210346151.7A priority Critical patent/CN114704947B/zh
Publication of CN114704947A publication Critical patent/CN114704947A/zh
Priority to PCT/CN2023/084095 priority patent/WO2023185738A1/zh
Application granted granted Critical
Publication of CN114704947B publication Critical patent/CN114704947B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/75Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity for maintaining constant air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Fluid Pressure (AREA)
  • Safety Valves (AREA)

Abstract

本发明公开了一种可精确测量风量的风量调节阀,包括圆管状阀体及安装在其内的阀片和孔板;所述孔板位于阀片上游,在孔板上游和下游分别设置有上游取压口和下游取压口,所述上游取压口与下游取压口距离孔板均为0.5倍管径,所述阀片位于下游取压口的下游;在所述圆管状阀体的进风口侧还安装有渐缩管件,所述渐缩管件位于孔板上游1倍管径处,沿气流方向呈渐缩状。本发明的风量调节阀,在其上游不具备直管段的情况下,也可以实现风量测量在设计风量范围内误差不超过3%,能够满足一般空调通风工程对风量测量精度的要求,并为风量调节和控制创造条件,同时,对风量调节阀前后压差要求较低。

Description

一种可精确测量风量的风量调节阀
技术领域
本发明涉及空调通风技术领域,特别是涉及一种可精确测量风量的风量调节阀。
背景技术
一些生产和实验设施,比如制药和生物制品的生产车间、实验动物饲养室、医院手术室、以及医学、生物、化工和化学实验室,需要维持房间的空调通风系统的送风或排(回)风量、房间(区域)的压力梯度,以实现空气净化和对污染风险的控制,从而保证产品(样品)质量、人员和环境安全,满足相关法规的要求。
即使房间和设施在静态能够满足风量和压差设计要求,但是在运行时,房间气密性的改变、房门的开关、排风设备工况的变化等等都会导致各房间的风量及压差的偏离和波动。这就需要空调通风系统的风量调节阀能实现风量的精确测量或对设定风量的维持。
目前,工程常用的风量调节阀有两种形式:a)圆形或矩形阀体,内装单叶或多叶调节阀片,并配置风量传感器、电动执行器和控制器(以下简称A型调节阀),通过改变叶片的角度实现风量调节;b)圆形文丘里管形式的阀体,通过内装锥形阀芯、以及相连的机械机构(以下简称B型调节阀)可维持设定风量,亦可通过外配电动执行器实现风量调节。
在工程应用中,上述两种调节阀存在如下问题:
(1)A型调节阀的风量测量和控制精度受阀门上游局部阻力部件(如弯头、三通)的影响,通常调节阀都需要上游具备一定长度的直管段(如3-5倍阀体管径长度),才能保证工程测量和控制精度。当工程现场空间受限而难以满足直管段长度要求时,风量测量和控制会出现较大偏差。表1和表2分别是某品牌直径200mm的这种类型调节阀在无直管段情况下在弯头和三通下游的风量控制状况,实际风量为其稳定平均值。可以发现,最大偏差超过标准值10%,最小偏差也超过4%。表3是同一风阀在满足其上游5倍阀体管径的直管段长度要求时的表现。可见,足够长的直管段极大改善了风阀的控制性能。
表1某A型结构直径200mm的风量调节阀安装在弯头1下游(无直管段)风量控制性能实测
Figure BDA0003576580590000021
注1:弯头为直径200mm圆形,弯曲90°,轴线的弯曲半径为200mm。
表2某A型结构直径200mm的风量调节阀安装在三通支路下游(无直管段)风量控制性能实测
Figure BDA0003576580590000022
注1:三通为圆形Y形分流三通,直通路管径250mm,支路管径为200mm。
表3某A型结构直径200mm的风量调节阀安装在三通下游(5倍直径直管段)风量控制性能实测
Figure BDA0003576580590000023
Figure BDA0003576580590000031
(2)B型调节阀没有对上游直管段长度提出要求,但是风量调节阀只有在前后具备一定的压差才能使其机械机构正常工作,才能实现维持设定风量的功能。即使是很小的风量,通常这个启动压差也需要100Pa左右。某知名品牌产品在常用的中压系统中要求最低工作压差为150Pa。为了适应系统的压力波动,风量调节阀正常工作压差还需要更大。压差越大,风机的能耗也越大。
由此可见,上述现有的风量调节阀,在结构与安装上,显然仍存在有不便与缺陷,而亟待加以进一步改进。如何能创设一种对上游无直管段长度要求并且对工作压差要求小的风量调节阀,成为当前业界极需改进的目标。
发明内容
本发明要解决的技术问题是提供一种风量调节阀,使其对上游无直管段长度要求并且对工作压差要求小即可实现风量的精确测量和控制,从而克服现有技术的不足。
为解决上述技术问题,本发明采用如下技术方案:
一种可精确测量风量的风量调节阀,包括圆管状阀体及安装在其内的阀片和孔板;所述孔板位于阀片上游,在孔板上游和下游分别设置有上游取压口和下游取压口,所述上游取压口与下游取压口距离孔板均为0.5倍管径,所述阀片位于下游取压口的下游;在所述圆管状阀体的进风口侧还安装有渐缩管件,所述渐缩管件位于孔板上游1倍管径处,沿气流方向呈渐缩状。
作为本发明的进一步改进,还包括压差检测板、单片机控制板及执行器;所述压差检测板分别通过上游取压管、下游取压管连接至上游取压口和下游取压口;所述压差检测板与单片机控制板连接,单片机控制板与执行器连接,执行器用于控制阀片动作。
进一步地,所述孔板的内孔为圆形孔,内孔直径为0.2-0.8倍管径。
进一步地,所述渐缩管件的管壁夹角为5-30度。
进一步地,所述圆管状阀体的出风口侧安装有渐扩管件,沿气流方向呈渐扩状。
进一步地,所述圆管状阀体分为风量测量段及风量调节段;所述风量测量段以孔板为中心,长度为2倍管径;所述风量调节段以阀片的安装轴为中心。
进一步地,在所述孔板、上游取压口与下游取压口处的圆管状阀体外侧还套设有保护壳体,所述压差检测板、单片机控制板、上游取压管和下游取压管位于保护壳体内。
进一步地,所述圆管状阀体的管径为150mm、200mm、250mm、300mm或400mm。
进一步地,所述阀片为单叶或多叶调节阀片。
通过采用上述技术方案,本发明至少具有以下优点:
本发明的风量调节阀,通过在阀片上游设置孔板以及在圆管状阀体的进风口侧安装渐缩管件,并在孔板上、下游0.5倍管径处设置上、下游取压口,在其上游不具备直管段的情况下,也可以实现风量测量在设计风量范围内误差不超过3%,能够满足一般空调通风工程对风量测量精度的要求,并为风量调节和控制创造条件,同时,对风量调节阀前后压差要求较低。
附图说明
上述仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,以下结合附图与具体实施方式对本发明作进一步的详细说明。
图1是本发明的一实施例中风量调节阀的剖视结构示意图(箭头为气流方向);
图2是本发明的一实施例中风量调节阀的透视结构示意图;
图3是本发明的一实施例中风量调节阀的正视图;
图4是图1中的A部放大图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域技术人员。
本发明整体设计构思是在风量调节阀内设置孔板并配合孔板上游的渐缩管件,同时设定其上、下游取压口的位置,使其安装时对上游无直管段长度要求并且对工作压差要求小即可实现风量的精确测量和控制。
在流体力学的理论上,气体管道内任一刚性阻力部件,如孔板或喷嘴,都可以建立其压降与气体流量的对应关系,从而实现风量的测量。但是,实际应用必须严格满足一定的条件才能实现测量精度和一致性。国家标准GB/T2624.2-2006《用安装在圆形截面管道中的差压装置测量满管流体流量第2部分:孔板》(等同采用国际标准ISO5167-2:2003Measurement of fluid flow by means of pressure differential devicesinserted in circular cross-section conduits running full–Part 2:Orificeplates)中,其中的表3是无流动调整器情况下孔板与管件之间所需直管段的要求,比如孔板上游弯头距离孔板的直管段长度最小距离是3倍管径(当孔板内径与风道直径的直径比小于等于0.20时),而对于直径比为0.75时,直管段至少要达到20倍管径。该标准中对孔板前后取压口位置也提出要求,即孔板上游取压口距离孔板为1倍管径,下游取压口为0.5倍管径。由于要求非常严格,在空调通风系统应用中,孔板流量计仅作为空气动力试验装置使用,无法在建筑工程系统中作为风量测量的手段。
而本发明将上述孔板通过调整应用于风量调节阀中,具体如图1-4所示:
本实施例提供一种可精确测量风量的风量调节阀,包括圆管状阀体1,圆管状阀体1可根据需要采用不同管径,如管径D可为150mm、200mm、250mm、300mm或400mm。在圆管状阀体1内安装有阀片2,阀片2为单叶或多叶调节阀片,其可沿安装轴21旋转调节风量。
在圆管状阀体1内还安装有孔板3,孔板3位于阀片2上游,孔板3的内孔为圆形孔,内孔直径d为0.2-0.8倍管径(d=0.2D-0.8D),配合图3所示,孔板3开孔处可为圆角,斜角或无倒角也均可。在孔板3上游和下游分别设置有上游取压口4和下游取压口5,上游取压口4与下游取压口5距离孔板3均为0.5倍管径,阀片2位于下游取压口5的下游。
在圆管状阀体1的进风口侧还安装有渐缩管件6,渐缩管件6位于孔板3上游1倍管径处,沿气流方向呈渐缩状,上述渐缩管件6的管壁夹角α优选为10-30度,渐缩管件6可以是矩形变为圆形,也可以是圆形变为圆形。
在圆管状阀体1的出风口侧还安装有渐扩管件7,其沿气流方向呈渐扩状。由于风道的管径相同,因此,风量调节阀的两端外径也应相同,渐扩管件7主要是为了配合渐缩管件6实现与下游风道连接。
上述风量调节阀的圆管状阀体1可分为两段,分为风量测量段及风量调节段,风量测量段以孔板3为中心,长度为2倍管径(2D);风量调节段以阀片2的安装轴21为中心,长度为L。
上述风量调节阀,还包括压差检测板8、单片机控制板9及执行器10;压差检测板8分别通过上游取压管11、下游取压管12连接至上游取压口4和下游取压口5;压差检测板8与单片机控制板9连接,单片机控制板9与执行器10连接,执行器10用于控制阀片2动作。
在孔板3、上游取压口4与下游取压口5处的圆管状阀体外侧还套设有保护壳体13,压差检测板8、单片机控制板9、上游取压管11和下游取压管12位于保护壳体13内。
本发明的风量调节阀,在其上游不具备直管段的情况下,也可以实现风量测量在设计风量范围内误差不超过3%,能够满足一般空调通风工程对风量测量精度的要求,并为风量调节和控制创造条件。
表4和表5分别为本发明规格为200mm直径(圆管状阀体的管径)的风量调节阀在弯头和三通下游风量测量值与采样标准喷嘴流量计测量值的对照。可见,与标准风量的偏差均小于3%。而通过实验测定,其他4个规格装置,直径分别为150mm、250mm、300mm和400mm,在设计风量范围内实测数据显示其风量测量偏差也均小于3%。
表4本发明直径为200mm的风量调节阀在弯头下游(无直管段)风量测量值与标准风量对照
Figure BDA0003576580590000071
Figure BDA0003576580590000081
表5本发明直径为200mm的风量调节阀在三通支路下游(无直管段)风量测量值与标准风量对照
Figure BDA0003576580590000082
Figure BDA0003576580590000091
本发明直径200mm规格的风量调节阀,对其进行了在弯头和三通支路下游的性能进行了测试,稳定平均值及偏差见表6和表7,偏差均小于3%。
表6本发明直径200mm的风量调节阀安装在弯头下游(无直管段)风量控制性能实测
Figure BDA0003576580590000092
表7本发明直径200mm的风阀安装在三通下游(无直管段)风量控制性能实测
Figure BDA0003576580590000093
另外,通过测试,本发明各主要规格风量调节阀的推荐工作风量范围及对应的压降,如表8所示。
表8本发明主要规格风量调节阀的推荐风量范围及对应压降
Figure BDA0003576580590000101
上述表4-表8均是以表9数据的风量调节阀进行测试的结果。
表9本发明主要规格风量调节阀的孔板3的内孔直径和渐缩管件6的管壁夹角
Figure BDA0003576580590000102
经过测试验证,在孔板3的内孔直径d为0.2-0.8倍管径(d=0.2D-0.8D),渐缩管件6的管壁夹角为5-30度之间均能获得类似的效果。
综上所述,本发明的风量调节阀,通过在阀片上游设置孔板以及在圆管状阀体的进风口侧安装渐缩管件,并在孔板上、下游0.5倍管径处设置上、下游取压口,在其上游不具备直管段的情况下,也可以实现风量测量在设计风量范围内误差不超过3%,能够满足一般空调通风工程对风量测量精度的要求,并为风量调节和控制创造条件,同时,对风量调节阀前后压差要求较低,适于推广应用。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,本领域技术人员利用上述揭示的技术内容做出些许简单修改、等同变化或修饰,均落在本发明的保护范围内。

Claims (7)

1.一种可精确测量风量的风量调节阀,其特征在于,包括圆管状阀体及安装在其内的阀片和孔板;
所述孔板位于阀片上游,在孔板上游和下游分别设置有上游取压口和下游取压口,所述上游取压口与下游取压口距离孔板均为0.5倍管径,所述阀片位于下游取压口的下游;
在所述圆管状阀体的进风口侧还安装有渐缩管件,所述渐缩管件位于孔板上游1倍管径处,沿气流方向呈渐缩状;
所述孔板的内孔为圆形孔,内孔直径为0.2-0.8倍管径;
所述圆管状阀体分为风量测量段及风量调节段;所述风量测量段以孔板为中心,长度为2倍管径;所述风量调节段以阀片的安装轴为中心。
2.根据权利要求1所述的可精确测量风量的风量调节阀,其特征在于,还包括压差检测板、单片机控制板及执行器;
所述压差检测板分别通过上游取压管、下游取压管连接至上游取压口和下游取压口;所述压差检测板与单片机控制板连接,单片机控制板与执行器连接,执行器用于控制阀片动作。
3.根据权利要求1-2任一项所述的可精确测量风量的风量调节阀,其特征在于,所述渐缩管件的管壁夹角为5-30度。
4.根据权利要求3所述的可精确测量风量的风量调节阀,其特征在于,所述圆管状阀体的出风口侧安装有渐扩管件,沿气流方向呈渐扩状。
5.根据权利要求2所述的可精确测量风量的风量调节阀,其特征在于,在所述孔板、上游取压口与下游取压口处的圆管状阀体外侧还套设有保护壳体,所述压差检测板、单片机控制板、上游取压管和下游取压管位于保护壳体内。
6.根据权利要求1-2任一项所述的可精确测量风量的风量调节阀,其特征在于,所述圆管状阀体的管径为150mm、200mm、250mm、300mm或400mm。
7.根据权利要求1-2任一项所述的可精确测量风量的风量调节阀,其特征在于,所述阀片为单叶或多叶调节阀片。
CN202210346151.7A 2022-03-31 2022-03-31 一种可精确测量风量的风量调节阀 Active CN114704947B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210346151.7A CN114704947B (zh) 2022-03-31 2022-03-31 一种可精确测量风量的风量调节阀
PCT/CN2023/084095 WO2023185738A1 (zh) 2022-03-31 2023-03-27 一种可精确测量风量的风量调节阀

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210346151.7A CN114704947B (zh) 2022-03-31 2022-03-31 一种可精确测量风量的风量调节阀

Publications (2)

Publication Number Publication Date
CN114704947A CN114704947A (zh) 2022-07-05
CN114704947B true CN114704947B (zh) 2023-06-16

Family

ID=82173047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210346151.7A Active CN114704947B (zh) 2022-03-31 2022-03-31 一种可精确测量风量的风量调节阀

Country Status (2)

Country Link
CN (1) CN114704947B (zh)
WO (1) WO2023185738A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114704947B (zh) * 2022-03-31 2023-06-16 同舟蓝海(北京)控股有限公司 一种可精确测量风量的风量调节阀
CN115111691B (zh) * 2022-07-08 2023-10-27 清华大学 地铁混风室压差测量装置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018419A1 (en) * 1995-11-16 1997-05-22 Phoenix Controls Corporation Fluid control device with reduced sound generation
CN2689185Y (zh) * 2003-08-25 2005-03-30 刘建华 环靶式孔板
CN2876486Y (zh) * 2005-12-02 2007-03-07 沈新荣 智能型高精度动态流量平衡阀
CN100401215C (zh) * 2006-03-14 2008-07-09 浙江大学 具有能量计量功能的动态平衡电动调节阀控制方法及阀门
CN200940173Y (zh) * 2006-08-07 2007-08-29 杨洪平 一种环吹风速自动控制装置
CN103518165B (zh) * 2011-05-10 2016-06-08 株式会社富士金 带有流量监测器的压力式流量控制装置
CN202349313U (zh) * 2011-11-18 2012-07-25 杭州哲达科技股份有限公司 集成能量感知功能的智能动态流量平衡阀
CN204630622U (zh) * 2015-03-30 2015-09-09 德阳市迪信佳阀门制造有限公司 一种临界速度流量计量系统
ITUB20152823A1 (it) * 2015-08-04 2017-02-04 Watts Ind Italia Srl Strumento di misura della portata di un fluido
CN206017002U (zh) * 2016-09-07 2017-03-15 袁正阳 一种测量废气流量的装置及系统
CN208750947U (zh) * 2018-07-19 2019-04-16 南京久诺科技有限公司 一种高精度风量调节装置
CN212986228U (zh) * 2020-08-20 2021-04-16 江苏盛世华为工程技术有限公司 风量测量及自动调节装置
CN214502553U (zh) * 2021-05-21 2021-10-26 唐山同海净化设备有限公司 一种孔板流量计
CN113091838A (zh) * 2021-05-21 2021-07-09 唐山同海净化设备有限公司 一种孔板流量计
CN114704947B (zh) * 2022-03-31 2023-06-16 同舟蓝海(北京)控股有限公司 一种可精确测量风量的风量调节阀
CN217482955U (zh) * 2022-03-31 2022-09-23 唐山同海净化设备有限公司 一种含有风量调节阀的空调通风系统

Also Published As

Publication number Publication date
WO2023185738A1 (zh) 2023-10-05
CN114704947A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
CN114704947B (zh) 一种可精确测量风量的风量调节阀
CN205190915U (zh) 流体调节装置及用于感测其出口压力的传感管
CN217482955U (zh) 一种含有风量调节阀的空调通风系统
CN110793115A (zh) 一种制药厂房洁净空调系统风量自动测控系统
CN110319509A (zh) 一种空调冷热水系统定流量质调节式节能控制装置
Prabu et al. Effects of upstream pipe fittings on the performance of orifice and conical flowmeters
CN102288263A (zh) 在线校准管道中气体流量计的装置
CN112149248A (zh) 一种均匀流场发生器的设计方法
Ifft et al. Pipe elbow effects on the V-cone flowmeter
CN110715700A (zh) 一种新型流动调整器及计量仪表一体化装置
CN109224854B (zh) 烟气脱硝网格法轮换取样氨与氮氧化物联合监测装置
US6675828B2 (en) Nextrol
CN207089622U (zh) 变风量末端装置和空调系统
JP4965197B2 (ja) 空調ダクト
CN220622773U (zh) 一种基于压力控制的智能型风量调节阀
CN210662857U (zh) 一种用于工业窑炉的燃烧结构
CN219495328U (zh) 一种自整流式皮托尔流量计
CN219178877U (zh) 一种车载正压式排烟风机性能检测装置
CN210513285U (zh) 一种新型流动调整器及计量仪表一体化装置
Szymański et al. Large buildings airtightness measurements using ventilation systems
US6543932B1 (en) Enthalpy tunnel
Klaczek et al. VAV Airflow Sensor Response in Relation to" Poor" Upstream Duct Geometry.
CN110672167A (zh) 一种用于拓宽节流装置流量测量范围的方法
CN211926970U (zh) 一种插入式多喉径文丘里管流量计
Rønneseth et al. Techniques for airflow measurements to determine the real efficiency of heat recovery in ventilation systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20221121

Address after: 100000 No. 18, Floor 3, No. 101, Floor 4 to 15, Building 20, Ganluyuan Nanli, Chaoyang District, Beijing

Applicant after: Tongzhou Lanhai (Beijing) Holding Co.,Ltd.

Address before: 064200 west of BeiYao village, Shimen Town, Zunhua City, Tangshan City, Hebei Province

Applicant before: TANGSHAN TONGHAI PURIFICATION EQUIPMENT Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant