WO2012141293A2 - 積層体とその製造方法および、この積層体を用いたデバイス構造体の作成方法 - Google Patents

積層体とその製造方法および、この積層体を用いたデバイス構造体の作成方法 Download PDF

Info

Publication number
WO2012141293A2
WO2012141293A2 PCT/JP2012/060141 JP2012060141W WO2012141293A2 WO 2012141293 A2 WO2012141293 A2 WO 2012141293A2 JP 2012060141 W JP2012060141 W JP 2012060141W WO 2012141293 A2 WO2012141293 A2 WO 2012141293A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
treatment
laminate
inorganic layer
polyimide
Prior art date
Application number
PCT/JP2012/060141
Other languages
English (en)
French (fr)
Other versions
WO2012141293A3 (ja
Inventor
政宏 玉田
俊之 土屋
奥山 哲雄
量之 應矢
郷司 前田
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to CN201280018588.2A priority Critical patent/CN103619591B/zh
Priority to KR1020137030111A priority patent/KR101911574B1/ko
Priority to JP2012520613A priority patent/JP5429375B2/ja
Priority to US14/111,374 priority patent/US9604391B2/en
Publication of WO2012141293A2 publication Critical patent/WO2012141293A2/ja
Publication of WO2012141293A3 publication Critical patent/WO2012141293A3/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/0038Processes for creating layers of materials not provided for in groups B81C1/00357 - B81C1/00373
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a laminate composed of a resin layer and an inorganic layer, and more specifically, the laminate having a strongly bonded portion and a easily peelable portion according to a predetermined pattern. It is a manufacturing method. More specifically, the present invention relates to a method of laminating a laminate in which a polyimide layer is temporarily or semi-permanently laminated on an inorganic substrate.
  • the laminate is made of a thin film such as a semiconductor element or a MEMS element, and requires fine processing. It is useful when forming the device to be formed on the surface of the resin layer.
  • the laminate according to the present invention is a thin resin layer excellent in heat resistance and insulation, and a kind of inorganic layer selected from a glass plate, a ceramic plate, a silicon wafer, and a metal having a linear expansion coefficient almost equal to that of the resin layer.
  • a laminated body that can mount a precise circuit and has excellent dimensional stability, heat resistance, and insulation.
  • the present invention relates to such a laminate, a manufacturing method thereof, and a device structure using the laminate.
  • Patent Document 1 Conventionally, bonding of a resin film to a support made of an inorganic material has been widely performed using a pressure-sensitive adhesive or an adhesive (Patent Document 1).
  • a desired functional element is formed on a laminated body of a resin film and a support substrate made of an inorganic material, a level of surface smoothness, dimensional stability, cleanliness that does not hinder the formation of such a functional element, Resistance to process temperature and resistance to chemicals used for fine processing are required for the laminate.
  • a process in a temperature range of about 200 to 500 ° C. is required.
  • the temperature is about 200 ° C. to 300 ° C. Temperature can be applied to the film.
  • the resin film needs to have heat resistance, and the bonding surface of the resin film and the support (that is, the adhesive or adhesive for bonding) is Must withstand the processing temperature.
  • conventional adhesives and pressure-sensitive adhesives for bonding did not have sufficient heat resistance, they cannot be applied when the functional element is formed at a high temperature.
  • the linear expansion coefficient is as small as about 3 ppm / ° C.
  • the difference in the linear expansion coefficient between the film and the thin film is large. Stress builds up in the thin film, causing performance degradation, thin film warping and peeling.
  • stress due to a difference in linear expansion coefficient between the substrate and the thin film increases during the temperature change.
  • a film having a low melting point is not suitable from the viewpoint of heat resistance.
  • a resin film made of polyethylene naphthalate, polyethylene terephthalate, polyimide, polytetrafluoroethylene, or a glass fiber reinforced epoxy. Is used.
  • a film made of polyimide is excellent in heat resistance and has an advantage that a resin film can be made thin because it is tough.
  • the polyimide film layer generally has a problem that it has a large coefficient of linear expansion and a significant dimensional change due to a temperature change and is not suitable for the production of a circuit having fine wiring.
  • a device using a polyimide layer having sufficient physical properties for a substrate having heat resistance, high mechanical properties, and flexibility has not yet been obtained.
  • a polyimide benzoxazole film made of polyimide having a benzoxazole ring in the main chain has been proposed (see Patent Document 2).
  • a printed wiring board using the polyimide benzoxazole film as a dielectric layer has also been proposed (see Patent Document 3 and Patent Document 4).
  • These polyimide benzoxazole films made of polyimide having a benzoxazole ring in the main chain are improved in tensile strength at break and tensile elastic modulus, and have a satisfactory range of linear expansion coefficient.
  • thermoplastic resin on these polyimide films, but even if satisfactory in structural improvements, these thermoplastic resins, etc.
  • the low heat resistance had a tendency to ruin the heat resistance of the folded polyimide film.
  • thermoplastic resin generally has a large linear expansion coefficient, and since there is a limit to making this layer thin, it has a tendency to adversely affect dimensional stability when heated.
  • a display device having the same is manufactured (Patent Document 5).
  • laser irradiation and etching means are used for the adhesive layer at the time of peeling, resulting in a complicated process and high cost.
  • Patent Document 6 It is known that resin films are bonded to each other by UV irradiation treatment, and it has been shown that using a coupling agent at this time is also effective (Patent Document 6). However, this technique is only related to the adhesion between resin films, and does not perform adhesion peeling force control by UV light irradiation of the coupling agent itself.
  • JP 2008-159935 A Japanese Patent Laid-Open No. 06-056792 Special table Hei 11-504369 Special Table Hei 11-505184 JP 2009-260387 A JP 2008-19348 A
  • the present invention has been made paying attention to the above circumstances, and its purpose is a laminate of a resin layer and an inorganic layer for use as a base material for laminating various devices,
  • An object of the present invention is to provide a laminate in which a resin layer can be easily peeled off from an inorganic layer without creating a device on a polyimide layer without being peeled off even at a high temperature process at the time of creation.
  • the present inventors performed a coupling agent treatment on at least one surface of the inorganic substrate, and then formed a well-bonded portion and an easily-peelable portion having different adhesive peel strengths and substantially the same surface roughness. If a patterning process is performed, a resin layer is formed on the patterned surface, and the inorganic layer and the resin layer are bonded, it can be peeled off even in a high-temperature process at the time of device fabrication at a well-bonded portion.
  • the resin film with the device can be easily peeled off from the support by incising the easily peelable part, and using a specific composition polyimide as the resin layer Therefore, the heat resistance can be further improved, and the dimensional stability of the polyimide layer is close to that of the support so that the warpage and deformation of the laminate are small. It found that advantages obtained that that, the present invention has been completed.
  • a method for producing a laminate comprising at least an inorganic layer and a resin layer comprising the following steps (1) to (3): (1) Step of treating the surface of at least one side of the inorganic layer with a coupling agent (2) Adhesion peeling between the inorganic layer and the resin layer on at least one side of the inorganic layer treated with the coupling agent by the step (1) A patterning process for forming a well-bonded part and an easily peelable part having different strengths and substantially the same surface roughness (3) On the coupling agent-treated surface of the inorganic layer patterned by the process (2) A step of drying a coating solution layer obtained by coating a resin solution or a resin precursor solution and then heat-treating to form the resin layer 2.
  • the patterning treatment is performed by performing a deactivation treatment on a part of the coupling agent treatment layer to form a predetermined pattern.
  • the manufacturing method of the laminated body as described in any one of. 3. From the group consisting of blasting, vacuum plasma treatment, atmospheric pressure plasma treatment, corona treatment, actinic radiation irradiation treatment, active gas treatment, and chemical treatment, wherein the inactivation treatment is performed after covering or shielding a predetermined portion. 1. Perform at least one selected process. The manufacturing method of the laminated body as described in any one of. 4). 2.
  • the actinic radiation treatment is a UV irradiation treatment.
  • the manufacturing method of the laminated body as described in any one of. 5.
  • the resin layer is made of polyimide obtained by a reaction between aromatic diamines and aromatic tetracarboxylic acids. ⁇ 4. The manufacturing method of the laminated body in any one of. 6).
  • the resin layer is made of a polyimide obtained by a reaction between an aromatic diamine and an aromatic tetracarboxylic acid, and 70 mol% or more of the aromatic diamine has at least an aromatic diamine having a benzoxazole structure and a diaminodiphenyl ether structure.
  • the manufacturing method of the laminated body in any one of. 7. It is a laminate in which an inorganic layer and a resin layer are laminated via a coupling agent treatment layer, and has a good adhesion part and an easy peel part with different peel strengths between the inorganic layer and the resin layer. The good adhesion portion and the easily peelable portion form a predetermined pattern.
  • the 180-degree peel strength between the inorganic layer and the resin layer in the easily peelable portion is 1 N / cm or more at the well-bonded portion, and the 180-degree peel strength between the inorganic layer and the resin layer in the easily peelable portion is 5. 50% or less of the 180 degree peel strength between the inorganic layer and the resin layer in the good adhesion portion.
  • the resin layer has a thickness of 0.5 ⁇ m to 50 ⁇ m, and the linear expansion coefficient in the surface direction of the resin layer is ⁇ 5 ppm / ° C. to +35 ppm / ° C. ⁇ 8.
  • the laminated body in any one of. 10. 6.
  • the laminate obtained by the production method of the present invention is a laminate in which one surface of an inorganic layer (glass plate, ceramic plate, silicon wafer, metal, etc.) and a resin layer are bonded via a coupling agent layer.
  • the adhesive peel strength of the inorganic layer and the resin layer is different, and the polyimide surface of the good adhesion part and easy peel part is separated according to the pattern.
  • a resin layer with a device can be easily obtained by cutting a part of the resin film and peeling it off.
  • a circuit or the like can be formed in a thin resin layer that is insulating, flexible, and heat resistant.
  • UV irradiation process example 1 (1) Inorganic layer (2) Silane coupling agent coating and drying on inorganic layer to form silane coupling agent layer (3) UV irradiation treatment after mask installation to block UV light (4) UV irradiation After treatment, removal of mask for blocking UV light (5) Production of resin layer (6) Cutting of resin film around silane coupling agent layer UV irradiation treatment area and peeling from glass UV irradiation process example 2 (1) Inorganic layer (2) Silane coupling agent coating and drying on inorganic layer to form silane coupling agent layer (3) UV irradiation treatment after mask installation to block UV light (4) UV irradiation After treatment, removal of mask that blocks UV light (5) Production of resin layer and circuit wiring creation (6) Cutting of resin film around silane coupling agent layer UV irradiation treatment area and peeling from glass Pattern example FIG.
  • FIG. 4 is a cross-sectional view (1) and a top view (2) showing a display device (display panel) which is an example of a device structure.
  • FIG. 5 is a cross-sectional view showing a display device (display panel) which is another example of the device structure.
  • the manufacturing method of the laminated body of this invention is a method of manufacturing the laminated body comprised from an inorganic layer and a resin layer at least.
  • the inorganic layer in the present invention may be a plate made of an inorganic material and can be used as a substrate.
  • the ceramic plate, silicon wafer, and metal composite include those obtained by laminating them, those in which they are dispersed, and those containing these fibers.
  • the glass plate examples include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pyrex (registered trademark)), borosilicate glass (non-alkali), Borosilicate glass (microsheet), aluminosilicate glass and the like are included.
  • quartz glass high silicate glass (96% silica)
  • soda lime glass lead glass
  • aluminoborosilicate glass borosilicate glass (Pyrex (registered trademark)
  • borosilicate glass non-alkali
  • Borosilicate glass microsheet
  • aluminosilicate glass and the like examples of the glass plate.
  • those having a linear expansion coefficient of 5 ppm / ° C. or less are desirable, and commercially available products are “Corning 7059”, “Corning 1737”, “EAGLE”, and Asahi Glass Co.
  • AN100 “OA10” manufactured by Nippon
  • the ceramic plate examples include Al 2 O 3 , Mullite, AlN, SiC, Si 3 N 4 , BN, crystallized glass, Cordierite, Spodumene, Pb—BSG + CaZrO 3 + Al 2 O 3 , Crystallized glass + Al 2 O 3 , Crystallized Ca-BSG, BSG + Quartz, BSG + Quartz, BSG + Al 2 O 3 , Pb + BSG + Al 2 O 3 , Glass-ceramic, Zerodur materials, etc.
  • TiO 2 strontium titanate, calcium titanate, magnesium titanate, MgO, MgO steatite, BaTi 4 O 9, BaTiO 3 , BaTi 4 + CaZrO 3, BaSrCaZrTiO 3, Ba (TiZr) O 3, PMN Capacitor materials such as PT and PFN-PFW, PbNb 2 O 6 , Pb 0.5 Be 0.5 Nb 2 O 6, PbTiO 3, BaTiO 3, PZT, 0.855PZT-95PT-0.5BT, 0.873PZT-0.97PT- Piezoelectric materials such as 0.3BT and PLZT are included.
  • PMN Capacitor materials such as PT and PFN-PFW, PbNb 2 O 6 , Pb 0.5 Be 0.5 Nb 2 O 6, PbTiO 3, BaTiO 3, PZT, 0.855PZT-95PT-0.5BT, 0.873PZT-0.97PT- Piezoelectric materials
  • the silicon wafer includes all of n-type or p-type doped silicon wafers, intrinsic silicon wafers, etc., and silicon wafers in which a silicon oxide layer or various thin films are deposited on the surface of the silicon wafer.
  • silicon wafers germanium, silicon-germanium, gallium-arsenic, aluminum-gallium-indium, and nitrogen-phosphorus-arsenic-antimony are often used.
  • general-purpose semiconductor wafers such as InP (indium phosphorus), InGaAs, GaInNAs, LT, LN, ZnO (zinc oxide), CdTe (cadmium tellurium), and ZnSe (zinc selenide) are also included.
  • the metal examples include single element metals such as W, Mo, Pt, Fe, Ni, and Au, alloys such as Inconel, Monel, Nimonic, carbon copper, Fe—Ni-based Invar alloy, and Super Invar alloy.
  • a multilayer metal plate formed by adding other metal layers and ceramic layers to these metals is also included. In this case, if the total CTE with the additional layer is low, Cu, Al or the like is also used for the main metal layer.
  • the metal used as the additional metal layer is limited as long as it has strong adhesion to the polyimide film, no diffusion, and good chemical resistance and heat resistance. Although it is not, chromium, nickel, TiN, and Mo containing Cu are mentioned as a suitable example.
  • the planar portion of the inorganic layer is desirably sufficiently flat.
  • the PV value of the surface roughness is 50 nm or less, more preferably 20 nm or less, and still more preferably 5 nm or less. If it is rougher than this, the peel strength between the polyimide layer and the inorganic layer may be insufficient.
  • resin layer As the resin layer in the present invention, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, wholly aromatic polyester, epoxy resin having a mesogenic skeleton, polyacetal, polycarbonate, polyphenylene ether, polysulfone, polyether sulfone, fluororesin, poly Consists of heat-resistant resins exemplified by benzoxazole, polybenzimidazole, polybenzothiazole, polyimide, aromatic polyamideimide, aromatic polyetheretherketone, aromatic polyetherketoneketone, polyphenylene sulfide, and aromatic polyarylate A resin layer is preferred.
  • a resin material having excellent heat resistance and toughness as described above can be applied, and among these, a resin layer composed of polyimide is more preferable. Since it has heat resistance and dimensional stability is required, it has an aromatic ring and has a group exemplified by -CONH-, -COO-, -CO-, -SO- as a highly polar linking group. Further preferred. Furthermore, it is also preferable from the viewpoint of heat resistance and dimensional stability to introduce a double chain structure into the polymer main chain to have a rigid rod-like structure. As another way of thinking, having a three-dimensional network structure is also a means for improving heat resistance.
  • the polyamic acid which is a polyimide precursor in the present invention is a polyamic acid obtained by a reaction between an aromatic diamine and an aromatic tetracarboxylic acid, and serves as a polyimide precursor.
  • the polyamic acid can be obtained by reacting aromatic diamines and aromatic tetracarboxylic acids in a solvent.
  • the aromatic diamine constituting the polyamic acid has an aromatic diamine having a benzoxazole structure and a 4,4′-diaminodiphenyl ether structure, of which 70 mol% or more (that is, 70 mol% or more of all aromatic diamines). It is important that the aromatic diamines are selected from at least one of aromatic diamines and aromatic diamines having a paraphenylenediamine structure. By using a predetermined amount of the diamine, it is possible to obtain a polyimide layer having high elastic modulus, low thermal shrinkage, low linear expansion coefficient and high heat resistance in which rigid molecules are highly oriented. Of the diamines, aromatic diamines having a benzoxazole structure are preferably used.
  • At least one of an aromatic diamine having a benzoxazole structure, an aromatic diamine having a 4,4′-diaminodiphenyl ether structure, and an aromatic diamine having a paraphenylenediamine structure is 80 mol% or more of the aromatic diamines. It is preferable that there is, more preferably 90 mol% or more.
  • the molecular structure of aromatic diamines having a benzoxazole structure is not particularly limited, and specific examples include the following.
  • the aromatic diamine having a benzoxazole structure may be used alone or in combination of two or more.
  • amino (aminophenyl) benzoxazole isomers are preferable from the viewpoint of ease of synthesis, and 5-amino-2- (p-aminophenyl) benzoxazole is more preferable.
  • each isomer refers to each isomer in which two amino groups of amino (aminophenyl) benzoxazole are determined according to the coordination position.
  • aromatic diamine having a diaminodiphenyl ether structure examples include 4,4′-diaminodiphenyl ether (4,4′-oxydianiline), 3,3′-diaminodiphenyl ether, and 3,4′-diaminodiphenyl ether. 4,4'-diaminodiphenyl ether is preferred.
  • aromatic diamine having a phenylenediamine structure examples include p-phenylenediamine (1,4-diaminobenzene), m-phenylenediamine, and o-phenylenediamine, and p-phenylenediamine is particularly preferable.
  • one or two or more diamines exemplified below may be used in combination as long as they are 30 mol% or less of the total diamine.
  • diamines include 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, and bis [4- (3-aminophenoxy) phenyl].
  • Aromatic tetracarboxylic acids there is no restriction
  • the aromatic tetracarboxylic acid is an acid anhydride
  • the number of anhydride structures in the molecule may be one or two, but preferably two anhydride structures (two Anhydride).
  • Aromatic tetracarboxylic acids may be used alone or in combination of two or more. Specific examples of the aromatic tetracarboxylic acids used in the present invention include the following.
  • tetracarboxylic dianhydrides may be used alone or in combination of two or more. Among these, it is preferable to contain 70 mol% or more of pyromellitic dianhydride or biphenyltetracarboxylic dianhydride in total aromatic tetracarboxylic acid.
  • aromatic tetracarboxylic dianhydride in which a part or all of the hydrogen atoms on the aromatic ring of the aromatic tetracarboxylic dianhydride are substituted with a phenyl group, a biphenyl group, a naphthyl group, etc. Also good.
  • an aromatic tetracarboxylic acid having a skeleton of pyromellitic dianhydride and biphenyltetracarboxylic dianhydride, an aromatic diamine having a benzoxazole structure, and an aromatic having a 4,4′-diaminodiphenyl ether skeleton It is particularly preferable to use a polyimide obtained by a combination of group diamines. This is because a polyimide film with small warpage can be obtained from the polyimide laminate when the combination of polyimides is used. When a device is produced in the easy peeling part of the polyimide layer of such a polyimide laminated body, destruction of the device produced on the polyimide film surface when peeled is not seen.
  • biphenyltetracarboxylic acid is preferably 1 to 50 mol%, more preferably 5 to 30 mol%, and most preferably 10 to 20 mol% in the total aromatic tetracarboxylic acid.
  • 4,4′-diaminodiphenyl ether is preferably in the range of 1 to 60 mol%, more preferably 5 to 30 mol%, and most preferably 10 to 30 mol% in the total aromatic diamines.
  • the solvent used when the polyamic acid is obtained by reacting (polymerizing) the aromatic tetracarboxylic acid and the aromatic diamine is not particularly limited as long as it dissolves both the raw material monomer and the produced polyamic acid.
  • polar organic solvents such as N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, Examples include hexamethylphosphoric amide, ethyl cellosolve acetate, diethylene glycol dimethyl ether, sulfolane, and halogenated phenols.
  • the amount of the solvent used may be an amount sufficient to dissolve the monomer as a raw material.
  • the weight of the monomer in the solution in which the monomer is dissolved is usually 5 to 40% by weight, The amount is preferably 10 to 30% by weight.
  • the conditions for the polymerization reaction (hereinafter also simply referred to as “polymerization reaction”) for obtaining the polyamic acid may be conventionally known conditions.
  • the polymerization reaction is carried out in an organic solvent at a temperature range of 0 to 80 ° C. Stirring and / or mixing continuously for min-120 hours. If necessary, the polymerization reaction may be divided or the temperature may be increased or decreased. In this case, the order of adding both monomers is not particularly limited, but it is preferable to add aromatic tetracarboxylic acid anhydrides to the solution of aromatic diamines.
  • the weight of the polyamic acid in the polyamic acid solution obtained by the polymerization reaction is preferably 5 to 40% by weight, more preferably 10 to 30% by weight.
  • the viscosity of the solution is measured with a Brookfield viscometer (20 ° C.). From the viewpoint of ease of handling, it is preferably 1 to 1000 Pa ⁇ s, more preferably 3 to 600 Pa ⁇ s.
  • Vacuum degassing during the polymerization reaction is effective for producing a good quality polyamic acid solution.
  • terminal blockers such as a dicarboxylic acid anhydride, a tricarboxylic acid anhydride, and an aniline derivative, can be used for the molecular terminal blockage of the present invention.
  • Preferred for use in the present invention are phthalic anhydride, maleic anhydride, 4-ethynyl phthalic anhydride, 4-phenylethynyl phthalic anhydride, ethynylaniline, and the use of maleic anhydride is more preferred.
  • the amount of the end-capping agent used is 0.001 to 1.0 mole ratio per mole of monomer component.
  • additives such as an antifoaming agent, a leveling agent, a flame retardant, a cross-linking agent, a tampering agent, and a dispersing agent may be added to the polyamic acid solution.
  • additives vary depending on the purpose and are not particularly limited. Further, the addition method and the addition time are not particularly limited.
  • a filler may be added to the polyamic acid solution for the purpose of improving the performance of the polyimide layer.
  • the filler in the present invention is a fine particle made of an inorganic substance having a volume average particle diameter of 0.001 to 10 ⁇ m, and is a metal, metal oxide, metal nitride, metal carbonide, metal acid salt, phosphate, carbonate, Particles composed of talc, mica, clay, other clay minerals, etc. can be used, preferably silicon oxide, calcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, calcium pyrophosphate, hydroxyapatite, calcium carbonate, glass filler, etc. These metal oxides, phosphates, and carbonates can be used.
  • the coupling agent in the present invention means a compound that is physically or chemically interposed between the inorganic layer and the resin layer and has an action of enhancing the adhesive force between the two, and is generally a silane coupling agent. And compounds known as phosphorus coupling agents, titanate coupling agents and the like.
  • the coupling agent layer means a layer mainly composed of a coupling agent formed by a coupling agent treatment.
  • the coupling agent layer is extremely thin as compared with the inorganic layer, the polyimide layer, and general adhesives and pressure-sensitive adhesives in the present invention, and the thickness is negligible from the viewpoint of mechanical design. In principle, a minimum thickness of the order of a monolayer is sufficient.
  • the thickness is preferably 0.1 nm to 500 nm, more preferably 0.3 nm to 250 nm, still more preferably 1 nm to 100 nm, particularly preferably 1 nm to 50 nm, and most preferably 1 nm to 20 nm.
  • the thickness of the coupling agent layer is an ellipsometry method or a value that can be calculated from the concentration of the coupling agent solution at the time of coating and the coating amount.
  • the coupling agent is not particularly limited, but a silane coupling agent having an amino group or an epoxy group is preferable.
  • the silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- ( Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, 2 -(3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycid
  • the coupling agent treatment in the present invention is a treatment for allowing a coupling agent to be present on the surface of the inorganic layer, and depending on the method of forming a coupling treatment layer by performing the coupling agent treatment, the coupling agent is directly or A method of diluting with a solvent, applying to the inorganic layer, drying and heat-treating, a method of immersing the inorganic layer in the coupling agent itself or a solution diluted with a solvent, then drying and heat-treating, adding to a resin solution or molten resin.
  • a method of treating the coupling agent simultaneously with the production of the resin film can be employed.
  • a conventionally known method may be adopted as a method for applying the coupling agent or a diluted solution thereof.
  • a transfer medium such as a printing plate material such as an intaglio material, or a method of adhering a coupling agent or its diluted solution to ⁇ Hanko '', transferring it, and then diffusing the entire surface with a spin coater
  • the conditions for the heat treatment are preferably 50 to 250 ° C., more preferably 75 to 165 ° C., more preferably about 95 to 155 ° C., preferably 30 seconds or more, more preferably 2 minutes or more, and still more preferably What is necessary is just to heat for 5 minutes or more. If the heating temperature is too high, decomposition or inactivation of the coupling agent may occur, and if it is too low, fixing will be insufficient. Moreover, even if the heating time is too long, the same problem may occur. The upper limit of the heating time is preferably 5 hours, more preferably about 2 hours. In addition, when performing a coupling agent process, since it is known that pH during process will influence a performance large, it is desirable to adjust pH suitably.
  • the patterning process in the present invention refers to a process for forming a well-bonded part and an easily peelable part on the surface of the coupling agent-treated layer, in which the adhesive strength between the inorganic layer and the polyimide layer is different and the surface roughness is substantially the same.
  • the patterning treatment in a very thin coupling treatment layer having a thickness of several nanometers to several tens of nanometers formed by the coupling agent treatment, a good adhesion portion having a high adhesive peel strength and an easy peel portion having a low adhesive peel strength. Are formed in an intended pattern.
  • the surface roughness of the well-bonded portion and the easily peelable portion is substantially the same.
  • a coupling agent treatment is performed to form a coupling treatment layer, and then a part of the coupling treatment layer is subjected to an inactivation treatment or an activation treatment to form a predetermined pattern. Is preferably performed.
  • the part with strong peeling strength adheresive peeling strength
  • the deactivation treatment of the coupling treatment layer is to physically remove the coupling treatment layer (so-called etching), to physically mask the coupling treatment layer microscopically, It includes chemically modifying the coupling layer.
  • the surface roughness being substantially the same means that the measured value of the average surface roughness (Ra1) of the well-bonded portion and the average surface roughness (Ra2) of the easily peelable portion satisfies the following formula (1). Point to something.
  • the entire surface corresponding to the predetermined pattern is temporarily covered or shielded with a mask and then etched on the entire surface. Etc., and then the mask may be removed. If possible, etching or the like may be performed according to a predetermined pattern by a direct drawing method.
  • a mask a material generally used as a resist, a photomask, a metal mask or the like may be appropriately selected and used according to an etching method.
  • an etching method either wet etching using a chemical solution or dry etching using an active gas or plasma may be used.
  • the pattern shape may be appropriately set according to the type of device to be stacked, and is not particularly limited.
  • An example is as shown in FIG. 3.
  • the good adhesion portion 10 is arranged only on the outer peripheral portion of the laminate, and the easily peelable portion 20 is arranged inside the laminate.
  • FIG. 3 (2) a pattern in which the good adhesion portion 10 is linearly arranged inside the outer peripheral portion of the laminated body can be given.
  • the inert treatment it is possible to use at least one treatment selected from the group consisting of blast treatment, vacuum plasma treatment, atmospheric pressure plasma treatment, corona treatment, actinic radiation irradiation treatment, active gas treatment, and chemical treatment. I can do it.
  • the blast treatment refers to a treatment in which particles having an average particle diameter of 0.1 to 1000 ⁇ m are sprayed onto an object together with gas or liquid. In the present invention, it is preferable to use blasting using particles having a small average particle diameter as much as possible.
  • the vacuum plasma treatment refers to treatment in which an object is exposed to plasma generated by discharge in a decompressed gas, or ions generated by the discharge collide with the object. As the gas, neon, argon, nitrogen, oxygen, carbon fluoride, carbon dioxide, hydrogen or the like alone or a mixed gas can be used.
  • the atmospheric pressure plasma treatment is a treatment in which an object is exposed to plasma generated by a discharge generated in a gas that is generally in an atmospheric pressure atmosphere, or ions generated by the discharge collide with the object. say.
  • the corona treatment refers to a treatment in which an object is exposed to a corona discharge atmosphere generated in a gas generally in an atmospheric pressure atmosphere, or ions generated by the discharge collide with the object.
  • the actinic radiation irradiation treatment refers to treatment for irradiating radiation such as electron beam, alpha ray, X-ray, beta ray, infrared ray, visible ray, and ultraviolet ray.
  • radiation such as electron beam, alpha ray, X-ray, beta ray, infrared ray, visible ray, and ultraviolet ray.
  • the active gas treatment is a gas having an activity that causes a chemical or physical change in the coupling agent treatment layer, such as halogen gas, hydrogen halide gas, ozone, high-concentration oxygen gas, ammonia, organic alkali, A treatment that exposes an object to a gas such as an organic acid.
  • the chemical treatment is intended for liquids or solutions having an activity that causes chemical or physical changes in the coupling agent treatment layer, such as alkali solutions, acid solutions, reducing agent solutions, oxidizing agent solutions, and the like. A treatment that exposes objects.
  • a method combining actinic radiation and a mask or a method combining an atmospheric pressure plasma treatment and a mask is preferably used.
  • the actinic radiation treatment is preferably an ultraviolet irradiation treatment, that is, a UV irradiation treatment from the viewpoints of economy and safety.
  • UV treatment when an inorganic layer having UV transparency is selected, the surface of the inorganic layer opposite to the surface subjected to the coupling agent treatment is drawn directly or through a mask. UV irradiation can also be performed. From the above, in the present invention, it is preferable to perform inactivation treatment by UV irradiation, which will be described in detail below.
  • the UV irradiation treatment in the present invention is a treatment in which an inorganic layer subjected to a coupling agent treatment is placed in an apparatus that generates ultraviolet rays (UV light) having a wavelength of 400 nm or less, and UV light is irradiated. Is preferably 260 nm or less, more preferably 200 nm or less. Irradiation of such short-wavelength UV light in the presence of oxygen adds UV light energy to the sample (coupling layer) and generates active oxygen and ozone in an excited state near the sample.
  • the inactivation treatment of the present invention can be performed more effectively.
  • UV light reaching the inorganic coupling agent-treated layer since the absorption of UV light by oxygen is remarkable at a wavelength of 170 nm or less, it is necessary to consider the UV light reaching the inorganic coupling agent-treated layer. Irradiation in a completely oxygen-free atmosphere does not show the effect of surface modification (inactivation) due to active oxygen or ozone, so devise so that active oxygen and ozone can reach while UV light passes. Cost. For example, by placing a UV light source in a nitrogen atmosphere and transmitting UV light through quartz glass, the distance from the quartz glass to the coupling treatment layer is shortened to suppress UV light absorption.
  • the method of controlling the absorption of UV light by controlling the amount of oxygen instead of the normal atmosphere the control of the UV light source, the gas flow between the coupling layers, etc. It is effective as a method for controlling the amount of ozone generated.
  • the irradiation intensity of the UV light is preferably 5 mW / cm 2 or more when measured using an ultraviolet light meter having a sensitivity peak in a wavelength range of at least 150 nm to 400 nm, and 200 mW / cm 2 or less is desirable for preventing deterioration of the glass.
  • the irradiation time of the UV light is preferably 0.1 minutes or more and 30 minutes or less, more preferably 0.5 minutes or more, still more preferably 1 minute or more, particularly preferably 2 minutes or more, more preferably 10 minutes or less, More preferably, it is 5 minutes or less, Most preferably, it is 4 minutes or less. If the irradiation time of the UV light becomes long, the productivity may be reduced.
  • the irradiation time is too short, a higher-intensity light source is required, or accuracy is required for controlling the irradiation time. It is not preferable.
  • 30 mJ / cm 2 to 360000 mJ / cm 2 is preferable, more preferably 300 mJ / cm 2 to 120,000 mJ / cm 2, and still more preferably 600 mJ / cm 2 to 60000 mJ / cm 2.
  • Pattern formation during the UV irradiation process is performed by intentionally creating a portion that irradiates light and a portion that does not irradiate light.
  • a method of forming a pattern there may be a method of making a portion that shields UV light and a portion that does not shield UV light, or a method of scanning UV light.
  • it is effective to block the UV light and cover the coupling agent treatment layer with a shielding material. It is also effective to scan with a parallel beam of a UV laser.
  • Examples of light sources that can be used for UV irradiation treatment include excimer lamps, low-pressure mercury lamps, high-pressure mercury lamps, Xe lamps, Xe excimer lasers, ArF excimer lasers, KrF excimer lasers, XeCl excimer lasers, XeF excimer lasers, Ar lasers, D2 lamps Etc.
  • excimer lamps, low-pressure mercury lamps, Xe excimer lasers, ArF excimer lasers, KrF excimer lasers, and the like are preferable.
  • the coupling treatment layer that has been subjected to inactivation treatment has a good adhesion portion that is a portion where the peel strength between the inorganic layer and the film is strong, and the inorganic layer, depending on whether or not it has been inactivated (etched).
  • a pattern composed of an easily peelable portion that is a portion where the peel strength between the resin film and the resin film is weak is formed. For example, as illustrated in the examples described later, when ⁇ -aminopropyltrimethoxysilane is applied to glass, the UV non-irradiated part becomes a good adhesive part with strong peel strength, and the amino group is broken by UV irradiation.
  • the peel strength is weakened, and the UV irradiation part becomes an easy peel part.
  • the amino group and propyl are broken because the atomic percentage of the nitrogen (N) element is lowered by the UV irradiation and subsequently the carbon (C) is also reduced as shown in the measurement example described later. I can guess from that.
  • the coupling treatment layer is formed on the support with a coupling agent having no functional group such as n-propyltrimethoxysilane
  • the part that has not been irradiated with UV becomes an easily peelable part.
  • a good adhesion part is formed by irradiating light and breaking the propyl part.
  • the substrate As the support. In this case, it is more practical to reduce the peel strength by UV irradiation, but depending on the application, the substrate used, and the required peel strength It is also conceivable that the UV light irradiated portion is a good adhesion portion.
  • a non-resin portion may be provided by providing a resin layer in a resin laminate or a hole portion penetrating in the film thickness direction of the laminate.
  • the part is not particularly limited, but is preferably filled with a metal whose main component is Cu, Al, Ag, Au, or the like, or formed by a mechanical drill or laser drilling.
  • Examples of the formed holes and the wall surfaces of the holes include a metal film formed by sputtering, electroless plating seed layer formation, or the like.
  • the polyimide layer is obtained by applying a polyamic acid solution on the coupling agent-treated surface that has been subjected to the patterning treatment, and imidizing it by heating or chemical treatment after drying to form a polyimide layer.
  • a solvent-soluble polyimide resin it can also be obtained by applying a polyimide resin solution on a coupling agent-treated surface that has been subjected to a patterning treatment, and drying to form a polyimide layer.
  • the polyimide layer is formed by using intermediate raw materials such as drying and partial imidization from a mixed state of a polyamide acid solution and a solvent-soluble polyimide resin that are partially imidized, Good.
  • polyamic acid solution or polyimide resin solution is, for example, spin coating, doctor blade, applicator, comma coater, screen printing method, casting from a nozzle with a slit, extrusion with an extruder, slit coating, reverse coating, dip coating, etc.
  • the present invention is not limited thereto, and conventionally known solution coating means can be appropriately used.
  • the heating temperature for drying the polyamic acid solution applied by the above application means is preferably 50 ° C. to 120 ° C., more preferably 80 ° C. to 100 ° C.
  • the treatment time is preferably 5 minutes to 3 hours, more preferably 15 minutes to 2 hours.
  • the amount of residual solvent after drying is preferably 25% to 50%, more preferably 35% to 45%.
  • the heating temperature for preparing the polyimide layer by heating the polyamic acid after drying is preferably 150 to 500 ° C, more preferably 300 to 450 ° C.
  • the heating time is preferably 0.05 to 10 hours.
  • the heat treatment is usually performed while raising the temperature stepwise or continuously.
  • the rate of temperature rise is preferably 20 ° C./min or less, more preferably 10 ° C./min or less, and particularly preferably 5 ° C./min or less.
  • the temperature rising rate is most preferably 0.5 ° C./min or more.
  • the temperature is continuously increased from 100 ° C to a maximum temperature of 150 ° C to 500 ° C at a temperature increase rate of 0.5 ° C to 20 ° C / min.
  • the condition of holding at 0.1 to 120 minutes is preferable. More preferably, the rate of temperature increase is 1 ° C. to 10 ° C./min, the maximum temperature reached is 300 ° C. to 480 ° C., the holding time at the maximum temperature reached is 1 to 60 minutes, and most preferably the temperature increase rate is 2 ° C to 5 ° C / min, the maximum temperature reached is 400 ° C to 450 ° C, and the holding time at the maximum temperature reached is 5 to 30 minutes.
  • drying process and the imidization process have been described separately, but actually, the drying and imidization proceed simultaneously in parallel.
  • the relatively low temperature drying process drying is dominant, and in the relatively high temperature imidization process, the imidization reaction is dominant.
  • Performing as a continuous heat treatment without separating the drying step and the imidization step is a preferable aspect in industrial production.
  • the temperature rise conditions in drying by heating and imidization after drying at 80 ° C. for 30 minutes and then at 100 ° C. for 90 minutes, the temperature is increased to 400 ° C. at a rate of 5 ° C./min. It is particularly preferred to hold for a minute.
  • the drying temperature after applying the resin solution is preferably 150 to 380 ° C., more preferably 185 to 330 ° C.
  • the heating time is preferably 0.05 to 10 hours.
  • the heat treatment is usually performed while raising the temperature stepwise or continuously.
  • the heating rate is preferably 20 ° C./min or less, more preferably 10 ° C./min or less, and most particularly preferably 5 ° C./min or less.
  • the temperature rising rate is most preferably 0.5 ° C./min or more.
  • the temperature of the solvent used does not exceed the boiling point + 150 ° C., preferably the boiling point does not exceed + 120 ° C. It is preferable to dry and heat-treat.
  • the drying time is preferably selected as appropriate so that the residual solvent amount in the resin layer is 0.5% by mass or less.
  • the resin material is melted at a temperature higher than the melting point or softening temperature by 35 ° C. or more, coated on the inorganic substrate in a molten state, and 20 ° C./min to room temperature. It is preferred to cool at a slower rate.
  • the upper limit of the melting temperature is not particularly set, but it is preferable not to exceed 300 ° C. or lower, or 200 ° C. higher than the melting point or softening temperature. When this temperature is exceeded, deterioration of the resin material becomes remarkable, and the mechanical strength of the finished product may be insufficient.
  • the average coefficient of linear expansion between 30 and 300 ° C. of the polyimide layer in the present invention is preferably ⁇ 5 ppm / ° C. to +35 ppm / ° C., more preferably ⁇ 5 ppm / ° C. to +20 ppm / ° C., further preferably Is ⁇ 2 ppm / ° C. to +12 ppm / ° C., particularly preferably +0 ppm / ° C. to +10 ppm / ° C., and most preferably +1 ppm / ° C. to +8 ppm / ° C.
  • the measurement lower limit may be replaced with 0 ° C, 30 ° C, 50 ° C
  • the measurement upper limit may be replaced with 200 ° C, 300 ° C, 400 ° C.
  • an average value between 30 ° C. and 300 ° C.
  • the temperature range to be noticed varies depending on the application, and 30 ° C. in consideration of the process at high temperature.
  • the range may be from 100 ° C to 400 ° C.
  • the operating temperature range is -50 ° C to 150 ° C. There may be cases where emphasis is placed on.
  • the thickness of the polyimide layer in the present invention is not particularly limited, but is preferably 0.5 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 40 ⁇ m, still more preferably 5 ⁇ m to 30 ⁇ m, and most preferably 7 ⁇ m. ⁇ 15 ⁇ m.
  • the thickness unevenness of these polyimide layers is also preferably 20% or less.
  • the thickness is 0.5 ⁇ m or less, it is difficult to control the thickness, and it is difficult to peel off the inorganic layer. If it is 50 ⁇ m or more, it is difficult to form a polyimide layer, and the polyimide layer is likely to be bent when peeled off.
  • a polyimide layer having a thickness in the above range it can greatly contribute to the enhancement of the performance of elements such as sensors and the miniaturization of electronic parts.
  • a ring-closing catalyst may be used.
  • the ring-closing catalyst used in the present invention include aromatic carboxylic acids such as benzoic acid, aliphatic tertiary amines such as trimethylamine and triethylamine, and heterocyclic tertiary amines such as isoquinoline, pyridine and betapicoline.
  • aromatic carboxylic acids such as benzoic acid
  • aliphatic tertiary amines such as trimethylamine and triethylamine
  • heterocyclic tertiary amines such as isoquinoline, pyridine and betapicoline.
  • the content of the ring-closing catalyst is preferably in the range where the content (mol) of the ring-closing catalyst / the content (mol) in the precursor polyamic acid is 0.01 to 10.00.
  • a dehydrating agent may be used when producing the polyimide layer.
  • Examples thereof include aliphatic carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, and butyric anhydride, and aromatic carboxylic acid anhydrides such as benzoic anhydride. It is not limited.
  • the content of the dehydrating agent is preferably in the range where the content of dehydrating agent (mole) / polyamic acid content (mole) is 0.01 to 10.00.
  • the laminate of the present invention is a laminate in which an inorganic layer and a polyimide layer are laminated via a coupling agent-treated layer, and a good adhesion portion where the peel strength between the inorganic layer and the polyimide layer is different.
  • An easily peelable portion, and the good adhesion portion and the easily peelable portion form a predetermined pattern.
  • the laminate of the present invention can be obtained by the production method of the laminate of the present invention, and details of the inorganic layer, the coupling treatment layer, the polyimide layer, and the like are as described above.
  • the good adhesion portion in the present invention refers to a portion where the peel strength between the inorganic layer and the polyimide layer is strong, for example, by changing the surface properties depending on the presence or absence of UV light irradiation.
  • the easily peelable part in the present invention refers to a part where the peel strength between the inorganic layer and the polyimide layer is weak, for example, by changing the surface properties depending on the presence or absence of UV light irradiation.
  • the 180-degree peel strength between the inorganic layer and the polyimide layer may be appropriately set according to the type and process of the device laminated thereon, and is not particularly limited.
  • the 180 degree peel strength is preferably 50% or less, more preferably 30% or less, and particularly preferably 20% or less of the 180 degree peel strength of the good adhesion portion.
  • the 180 degree peel strength of the good adhesion portion is preferably 0.60 N / cm or more, more preferably 1.0 N / cm or more, still more preferably 2.0 N / cm or more, particularly preferably. Although it is 3.0 N / cm or more and the upper limit is not particularly limited, it is about 8 N / cm or less.
  • the 180 degree peel strength of the easily peelable portion may satisfy the above-mentioned ratio to the good adhesion portion, but is preferably 1.5 N / cm or less, more preferably 1.0 N / cm or less, and still more preferably It is 0.50 N / cm or less, particularly preferably 0.40 N / cm or less, and most preferably 0.2 N / cm or less. Moreover, it is preferable that a lower limit is 0.01 N / cm or more.
  • the lower limit of the 180-degree peel strength of the easily peelable portion is a value that takes into account the bending energy of the polyimide layer. 180 degree peel strength in this invention can be measured by the method mentioned later in an Example.
  • an adhesive layer or the like is not interposed between the inorganic layer and the polyimide layer as in the prior art, and for example, 10 mass% or more of Si derived from the coupling agent is present. It contains only a lot. And since the coupling treatment layer, which is an intermediate layer between the inorganic layer and the polyimide layer, can be made very thin, there are few degassing components during heating, it is difficult to elute even in the wet process, and even if elution occurs, it will remain in a very small amount An effect is obtained. In addition, the coupling treatment layer usually has many heat-resistant silicon oxide components, and heat resistance at a temperature of about 400 ° C. can be obtained.
  • the method for producing a device structure of the present invention is a method for producing a structure in which a device is formed on a polyimide film as a substrate, using the laminate of the present invention having a support and a polyimide film. .
  • the polyimide film in the easily peelable portion of the laminate is cut and the polyimide film is used as the support. Peel from.
  • a method for cutting the polyimide film at the easily peelable portion of the laminate a method of cutting the polyimide film with a cutting tool such as a blade or a method of cutting the polyimide film by relatively scanning the laminate with a laser.
  • a method a method of cutting the polyimide film by relatively scanning the water jet and the laminate, a method of cutting the polyimide film while cutting slightly to the glass layer by a semiconductor chip dicing device, etc. It is not limited.
  • the position where the cut is made only needs to include at least a part of the easily peelable portion, and is basically cut according to the pattern.
  • an attempt is made to accurately cut according to the pattern at the boundary between the good adhesion portion and the easy peeling portion, an error also occurs.
  • there may be a production method in which a slightly better bonded portion than the pattern is cut.
  • the width of the good adhesion part is set narrow, the polyimide layer remaining in the good adhesion part at the time of peeling can be reduced, the utilization efficiency is improved, and the device area with respect to the laminate area is increased. Productivity is improved.
  • an easy peeling part is provided in a part of the outer peripheral part of the laminated body, and the method of peeling without using the outer peripheral part as a cutting position is actually an extreme form of the present invention.
  • the present invention since only the polyimide film of the laminate is cut and peeled off, the inorganic layer portion of the laminate can be reused.
  • the method of peeling the polyimide layer from the support is not particularly limited, but is a method of rolling from the end with tweezers, etc., and sticking an adhesive tape to one side of the cut portion of the polyimide layer with the device, and then rolling from the tape portion.
  • a method a method in which one side of a cut portion of a polyimide layer with a device is vacuum-adsorbed and then wound from that portion can be employed.
  • stress may be applied to the device in that portion and the device may be destroyed. It is desirable to remove. For example, it is desirable to roll while winding on a roll having a large curvature, or to roll using a machine having a configuration in which the roll having a large curvature is located at the peeling portion.
  • the reinforcing member can be fixed before the device structure (polyimide film with a device) of the present invention is a final product.
  • the reinforcing member may be fixed after being peeled off from the inorganic layer, but after fixing the reinforcing member, the polyimide film is cut off and peeled off from the support, or the polyimide film is cut and then cut. It is preferable to fix the reinforcing member to the part and then peel it off.
  • the reinforcing member include a method of separately bonding or sticking a polymer film with an adhesive.
  • the polymer film with an adhesive examples include a PET film, but since it has already passed through a process that requires a high temperature, there are fewer heat resistance restrictions than the polyimide film, and various polymer films can be selected. sell.
  • a PET film with an adhesive is attached as a reinforcing member only to the easily peelable portion of the laminate of the present invention, and the device is provided with a notch in the easily peelable portion with the adhesive PET film attached.
  • the polyimide layer may be peeled off, or a PET film with an adhesive is pasted on the entire laminate of the present invention as a reinforcing member, and an easy-peeled portion of the laminate is cut to provide a PET film with an adhesive. You may make it peel the polyimide layer with a device in the state which adhered.
  • examples of the reinforcing member include ultrathin glass, SUS, etc., in addition to the above-described polymer film.
  • ultra-thin glass has the advantage of providing gas barrier properties, chemical stability, and transparency.
  • SUS is advantageous in that it can be shielded electrically and is difficult to break.
  • a method for forming a device on a polyimide layer as a substrate may be appropriately performed according to a conventionally known method.
  • the device in the present invention is not particularly limited, and examples thereof include only electronic circuit wiring, electrical resistance, passive devices such as coils and capacitors, active devices including semiconductor elements, and electronic circuit systems that combine these devices. is there.
  • the semiconductor element include a solar cell, a thin film transistor, a MEMS element, a sensor, and a logic circuit.
  • the logic circuit includes a logic circuit based on NAND and OR and a circuit synchronized by a clock.
  • a laminate X including a photoelectric conversion layer made of a semiconductor is formed on the substrate using the polyimide layer of the laminate of the present invention as a substrate.
  • This laminated body X has a photoelectric conversion layer that converts sunlight energy into electric energy as an essential component, and usually further includes an electrode layer for taking out the obtained electric energy.
  • a laminated structure in which a photoelectric conversion layer is sandwiched between a pair of electrode layers will be described as a typical example of the laminate X formed to constitute a film-like solar cell.
  • a structure in which several photoelectric conversion layers are stacked can be said to be a solar cell of the present invention if it is produced by PVD or CVD.
  • the laminated structure of the laminated body X is not limited to the embodiment described below, and the structure of the laminated body of the solar cell of the prior art may be appropriately referred to, and a protective layer or a known auxiliary means may be added. It ’s good.
  • One electrode layer (hereinafter also referred to as a back electrode layer) of the pair of electrode layers is preferably formed on one main surface of the polyimide layer.
  • the back electrode layer can be obtained by laminating a conductive inorganic material by a conventionally known method, for example, a CVD (chemical vapor deposition) method or a sputtering method.
  • the conductive inorganic material include metal thin films such as Al, Au, Ag, Cu, Ni, and stainless steel, In 2 O 3 , SnO 2 , ZnO, Cd 2 SnO 4 , ITO (In 2 O 3 Oxide semiconductor based conductive materials such as those obtained by adding Sn to the above.
  • the back electrode layer is a metal thin film.
  • the thickness of the back electrode layer is not particularly limited, and is usually about 30 to 1000 nm.
  • a film forming method that does not use a vacuum such as Ag paste may be adopted for a part of electrode extraction.
  • the photoelectric conversion layer for converting the energy of sunlight into electrical energy is a layer made of a semiconductor, CuInSe 2 which is a compound semiconductor thin film (chalcopyrite structure semiconductor thin film) made of a group I element, a group III element, and a group VI element.
  • a (CIS) film, or a Cu (In, Ga) Se 2 (CIGS) film in which Ga is dissolved in the same are collectively referred to as a CIS film) and a silicon semiconductor layer.
  • the silicon-based semiconductor include a thin film silicon layer, an amorphous silicon layer, and a polycrystalline silicon layer.
  • the photoelectric conversion layer may be a laminate having a plurality of layers made of different semiconductors. Moreover, the photoelectric converting layer using a pigment
  • the thin film silicon layer is a silicon layer obtained by a plasma CVD method, a thermal CVD method, a sputtering method, a cluster ion beam method, a vapor deposition method, or the like.
  • the amorphous silicon layer is a layer made of silicon having substantially no crystallinity. The lack of crystallinity can be confirmed by not giving a diffraction peak even when irradiated with X-rays.
  • Means for obtaining an amorphous silicon layer are known, and examples of such means include a plasma CVD method and a thermal CVD method.
  • the polycrystalline silicon layer is a layer made of an aggregate of microcrystals made of silicon.
  • the above amorphous silicon layer is distinguished by giving a diffraction peak by irradiation with X-rays.
  • Means for obtaining a polycrystalline silicon layer are known, and such means include means for heat-treating amorphous silicon.
  • the photoelectric conversion layer is not limited to a silicon-based semiconductor layer, and may be, for example, a thick film semiconductor layer.
  • the thick film semiconductor layer is a semiconductor layer formed from a paste of titanium oxide, zinc oxide, copper iodide or the like.
  • an a-Si (n layer) of about 20 nm is formed by performing high-frequency plasma discharge in a gas obtained by adding phosphine (PH 3 ) to SiH 4 at a temperature of 200 to 500 ° C., followed by SiH 4
  • a-Si (i layer) of about 500 nm can be formed using only gas, and then diborane (B 2 H 6 ) can be added to SiH 4 to form a p-Si (p layer) of about 10 nm.
  • an electrode layer (hereinafter also referred to as a current collecting electrode layer) provided on the side opposite to the polyimide film substrate is formed by consolidating a conductive paste containing a conductive filler and a binder resin.
  • the electrode layer may be a transparent electrode layer.
  • an oxide semiconductor material such as In 2 O 3 , SnO 2 , ZnO, Cd 2 SnO 4 , ITO (In 2 O 3 added with Sn) can be preferably used.
  • a preferred embodiment of the present invention is a film-like solar cell in which transparent electrode / p-type a-Si / i-type a-Si / n-type a-Si / metal electrode / polyimide film are laminated in this order.
  • the p layer may be a-Si
  • the n layer may be polycrystalline silicon
  • a thin undoped a-Si layer may be inserted between them.
  • an antireflection layer, a surface protective layer, or the like may be added in addition to the above structure.
  • the thin film transistor is a semiconductor layer in which a transistor and an insulating film, an electrode, a protective insulating film, and the like constituting a transistor are formed by depositing a thin film. It is usually distinguished from silicon wafers that use silicon as the semiconductor layer. Usually, a thin film is produced by a technique using a vacuum such as PVD (physical vapor deposition) such as vacuum vapor deposition or CVD (chemical vapor deposition) such as plasma CVD. For this reason, what is not a single crystal like a silicon wafer is included. Even if Si is used, microcrystalline silicon TFT, high-temperature polysilicon TFT, low-temperature polysilicon TFT, oxide semiconductor TFT, organic semiconductor TFT, and the like are included.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the MEMS element means an element manufactured using MEMS technology, and includes an inkjet printer head, a probe for a scanning probe microscope, a contactor for an LSI prober, an optical spatial modulator for maskless exposure, an optical integrated element, an infrared ray Includes video projectors using sensors, flow sensors, acceleration sensors, MEMS gyro sensors, RF MEMS switches, internal and external blood pressure sensors, grating light valves, and digital micromirror devices.
  • the sensors include strain gauges, load cells, semiconductor pressure sensors, optical sensors, photoelectric elements, photodiodes, and magnetic sensors.
  • Contact temperature sensor thermistor temperature sensor, resistance temperature sensor temperature sensor, thermocouple temperature sensor, non-contact temperature sensor, radiation thermometer, microphone , Ion concentration sensor, gas concentration sensor, displacement sensor, potentiometer, differential transformer displacement sensor, rotation angle sensor, linear encoder, Tachometer generator, rotary encoder, optical position sensor (PSD), ultrasonic distance meter, capacitance displacement meter, laser doppler vibration velocity meter, laser doppler velocimeter , Gyro sensor, acceleration sensor, earthquake sensor, 1D image, linear image sensor, 2D image, CCD image sensor, CMOS image sensor, liquid, Leak sensor (Leak sensor), Liquid sensor (Level sensor), Hardness sensor, Electric field sensor, Current sensor, Voltage sensor, Power sensor, Infrared sensor, Radiation sensor, humidity sensor, odor sensor, flow sensor, tilt sensor, vibration sensor, time sensor, combined sensor that combines these
  • the 180 degree peel strength of the good adhesion portion between the polyimide layer and the inorganic layer of the laminate is preferably 1 N / cm or more, and more preferably 2 N / cm or more. Further, the 180 degree peel strength of the easily peelable part is preferably 50% or less, more preferably 30% or less of the good adhesion part. Further, the 180 degree peel strength value of the easily peelable portion is 1 N / cm or less, preferably 0.5 N / cm, more preferably 0.05 N / cm or less, but may be 0.01 N / cm or more. preferable. If the adhesive strength is too weak, it tends to cause film floating.
  • the resin layer is not limited to polyimide, and the various resins described above are used. It can be applied.
  • FIG. 1 is a schematic view showing an embodiment of a method for producing a laminate according to the present invention, in which (1) shows a glass substrate 1 and (2) shows that a coupling agent is applied on the glass substrate 1 and dried. (3) shows the stage of irradiating the UV light after the UV light blocking mask 3 is installed, and (4) shows the stage of irradiating the UV light blocking mask 3 after irradiating the UV light. The removed stage is shown.
  • FIG. 2 is a schematic view showing an embodiment of the method for producing a device structure of the present invention, where (1) shows a glass substrate 1 and (2) shows a coating agent coated on the glass substrate 1 and dried. (3) shows a stage in which the UV light blocking mask 3 is installed and then irradiated with UV light, and (4) shows a stage in which the UV light blocking mask 3 is irradiated with UV light.
  • the stage which removed is shown.
  • the UV exposure part is the UV irradiation part 5
  • the remaining part is the UV non-irradiation part 4.
  • (5) shows a stage in which the polyimide film 6 is pasted, and then the device 8 is produced on the surface of the polyimide film 7 on the UV irradiation part. The stage which peeled from the board
  • 180 degree peel strength (1) Peel strength of the part not subjected to the inactivation treatment A predetermined coupling agent treatment is applied to the inorganic layer, a polyimide layer is formed without performing the inactivation treatment, and the 180 degree peel strength is measured according to the following method. did. (2) Peel strength of inactivated part A predetermined coupling agent treatment was performed on the inorganic layer, and after a further deactivation treatment, a polyimide layer was formed, and a 180 degree peel strength was measured according to the following method. If necessary, adjust the gap so that the film thickness of the polyimide layer becomes 25 ⁇ m using an applicator on the inorganic layer (100 mm square) that has been subjected to the predetermined treatment, and from the end of the inorganic layer.
  • the laminate is composed of a polyimide layer / inorganic layer by further increasing the temperature from 100 ° C. to 400 ° C. at a rate of 5 ° C./min, and imidizing the polyamic acid solution while maintaining the temperature at 400 ° C. for 5 minutes.
  • Linear expansion coefficient (CTE) of resin layer Measure the expansion / contraction rate of the resin layer that was peeled off from the inorganic substrate under the following conditions, and measure the expansion / contraction rate at intervals of 30 ° C to 45 ° C, 45 ° C to 60 ° C, ... and 15 ° C. Then, this measurement was performed up to 300 ° C., and an average value of all measured values was calculated as a linear expansion coefficient (CTE).
  • Coupling agent treatment layer thickness is a spectroscopic ellipsometer (manufactured by Photo Inc.) using an ellipsometry method for the film thickness of the coupling agent treatment layer prepared on the cleaned silicon wafer. “FE-5000”) was measured under the following conditions. In addition, when glass was used as the support, a sample obtained by applying and drying a coupling agent on a separately cleaned Si wafer by the same method as in each example and comparative example was used.
  • Reflection angle range 45 ° to 80 ° Wavelength range: 250 nm to 800 nm Wavelength resolution: 1.25 nm Spot diameter: 1mm tan ⁇ ; Measurement accuracy ⁇ 0.01 cos ⁇ ; Measurement accuracy ⁇ 0.01 Measurement: Method Rotating analyzer method Deflector angle: 45 ° Incident angle: Fixed at 70 ° Analyzer: 0-360 ° in 11.25 ° increments Wavelength: 250 nm to 800 nm The film thickness was obtained by fitting by a non-linear least square method.
  • the wavelength dependence C1 to C6 was obtained by the following formula.
  • the surface composition ratio was measured by X-ray photoelectron spectroscopy (ESCA), and the measuring apparatus was ESCA5801MC manufactured by ULVAC-PHI, Inc., and was measured under the following conditions. In the measurement, first, all elements were scanned to confirm the presence or absence of other elements, and then the abundance ratio was measured by performing a narrow scan of the existing elements. Note that the sample used for the measurement was sufficiently exhausted and then put into the measurement chamber for measurement. Prior to the measurement, the sample surface was not irradiated with ions and scraped off.
  • ESCA X-ray photoelectron spectroscopy
  • Excitation X-ray Mg K ⁇ ray Photoelectron escape angle: 45 ° Analysis diameter: ⁇ 800 ⁇ m Pass energy: 29.35 eV (narrow scan), 187.75 eV (all element scan) Step: 0.125 eV (narrow scan), 1.6 eV (all element scan)
  • Analytical elements C, O, N, Si, all elements Vacuum degree: 1 ⁇ 10 ⁇ 8 Torr or less 9.
  • Surface roughness Ra of the inorganic layer surface The surface roughness Ra (surface morphology) of the surface of the inorganic layer (coupling treatment layer surface) is measured using a scanning probe microscope with a surface physical property evaluation function (“SPA300 / nanonavi” manufactured by SII Nanotechnology Inc.). went.
  • Measurement is performed in DFM mode, the cantilever is “DF3” or “DF20” manufactured by SII Nanotechnology, the scanner is “FS-20A” manufactured by SII Nanotechnology, and the scanning range is The measurement resolution was 512 ⁇ 512 pixels. After correcting the quadratic tilt for the measurement image with the software attached to the apparatus, if noise associated with the measurement is included, other flattening processing (for example, flat processing) is used as appropriate. The value was calculated. Measurement was performed at arbitrary three locations to obtain Ra values, and the average value thereof was adopted.
  • the mixture was diluted with 4 ml of the above mixed solvent and further stirred for 1 hour to obtain a clear, yellow and viscous polyamide acid solution G.
  • the resin concentration was 10 wt%
  • the solution viscosity was 57 Pa ⁇ s
  • the reduced viscosity was 1.8 dL / g.
  • Table 3 shows the properties of the polyamic acid solution.
  • Synthesis Example 14 In accordance with the same procedure as in Production Example 1, 418 parts by mass of DAMBO, 66 parts by mass of ODA, 9000 parts by mass of NMP, 401 parts by mass of PMDA, 95 parts by mass of BPDA, and 21 parts by mass of MA were introduced. A tonic polyamic acid solution e was obtained. Table 4 shows the properties of the polyamic acid solution.
  • [Synthesis Example 15] According to the same procedure as in Production Example 1, 155 parts by mass of DAMBO, 322 parts by mass of ODA, 8550 parts by mass of NMP, 451 parts by mass of PMDA, and 22.5 parts by mass of MA were introduced as diamines. A polyamic acid solution f was obtained. Table 4 shows the properties of the polyamic acid solution.
  • Example 1 A SUS plate in which a square with a side of 70 mm was cut out was placed as a mask so as to be in contact with the silicon wafer of the treated inorganic layer 1, and UV irradiation treatment was performed for 2 minutes so that only the central portion of the silicon wafer was exposed to UV light. .
  • the UV irradiation treatment uses UV / O3 cleaning and reforming equipment (SKB1102N-01) manufactured by Lan Technical Service Co., Ltd., and is irradiated at room temperature in an air atmosphere at a distance of about 3 cm from the UV lamp (SE-1103G05). went.
  • the illuminance of UV light when measured using an ultraviolet light meter having a sensitivity peak at 254 nm was 22 mW / cm 2.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • the polyamic acid solution A was applied with an applicator. The gap was adjusted so that the film thickness of the polyimide layer was 25 ⁇ m. Put in a muffle furnace with N 2 flowing, heat at 80 ° C. for 30 minutes, then heat up to 100 ° C. at 2 ° C./minute, hold at 100 ° C. for 90 minutes to dry and heat up to 5 ° C./minute The temperature was raised from 100 ° C. to 400 ° C.
  • Example 2 A laminate 2 and a polyimide film 2 were obtained in exactly the same manner as in Example 1 except that the inorganic layer was treated inorganic layer 2 and the gap of the applicator was adjusted so that the film thickness of the polyimide layer was 10 ⁇ m.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • Table 6 shows the evaluation results of the obtained laminate.
  • Example 3 The inorganic layer is the treated inorganic layer 3, the gap of the applicator is adjusted so that the film thickness of the polyimide layer is 30 ⁇ m, the central part ⁇ 70 mm of the silicon wafer is masked, and the other part is UV irradiated for 1 minute Except for the above, the laminate 3 and the polyimide film 3 were obtained in the same manner as in Example 1.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.3 nm. Table 6 shows the evaluation results of the obtained laminate.
  • Example 4 Lamination was carried out in exactly the same way as in Example 1 except that the inorganic layer was treated inorganic layer 2, the gap of the applicator was adjusted so that the film thickness of the polyimide layer was 25 ⁇ m, and the polyamic acid solution was polyamic acid solution B. The body 4 and the polyimide film 4 were obtained.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • Table 6 shows the evaluation results of the obtained laminate.
  • Example 5 Lamination was performed in exactly the same manner as in Example 1 except that the inorganic layer was treated inorganic layer 2, the gap of the applicator was adjusted so that the film thickness of the polyimide layer was 25 ⁇ m, and the polyamic acid solution was polyamic acid solution C. The body 5 and the polyimide film 5 were obtained.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • Table 6 shows the evaluation results of the obtained laminate.
  • Example 6 Lamination was performed in exactly the same way as in Example 1 except that the inorganic layer was treated inorganic layer 2, the gap of the applicator was adjusted so that the film thickness of the polyimide layer was 25 ⁇ m, and the polyamic acid solution was polyamic acid solution D. The body 6 and the polyimide film 6 were obtained.
  • the surface roughness (Ra) in the UV unirradiated part of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) in the UV unirradiated part was 0.5 nm.
  • Table 7 shows the evaluation results of the obtained laminate.
  • Example 7 A laminate 7 and a polyimide film 7 were obtained in the same manner as in Example 1 except that the inorganic layer was treated inorganic layer 2 and the polyamic acid solution was polyamic acid solution E.
  • the surface roughness (Ra) in the UV unirradiated part of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) in the UV unirradiated part was 0.5 nm.
  • Table 7 shows the evaluation results of the obtained laminate.
  • Example 8 The inorganic layer is treated inorganic layer 2, the polyamic acid solution is polyimide solution F, and the inorganic layer coated with the solution is placed in a muffle furnace in which N 2 is flowing, and then at 80 ° C. for 30 minutes, and then at 2 ° C./minute at 120 ° C.
  • the temperature of the laminate is kept at 120 ° C. for 15 minutes, the temperature is raised from 120 ° C. to 350 ° C. at a rate of 5 ° C./min, and the laminate is dried by maintaining the temperature at 350 ° C. for 1 hour. Except having obtained, the laminated body 7 and the polyimide film 7 were obtained like Example 1 completely.
  • Example 9 The inorganic layer is treated inorganic layer 2, the polyamic acid solution is polyimide solution G, the gap of the applicator is adjusted so that the polyimide layer has a film thickness of 25 ⁇ m, and the inorganic layer coated with the solution is flowed with N 2 It is put in a furnace, heated at 80 ° C. for 50 minutes, then heated from 80 ° C. to 300 ° C.
  • Example 10 The inorganic layer is treated inorganic layer 2, the polyamic acid solution is polyimide solution H, the gap of the applicator is adjusted so that the film thickness of the polyimide layer is 15 ⁇ m, and the inorganic layer to which the solution is applied is flowed through N 2 Laminate by putting in a furnace, heating at 60 ° C. for 120 minutes, then increasing the temperature from 60 ° C. to 330 ° C. at a temperature increase rate of 3 ° C./min, and maintaining the temperature at 300 ° C. for 2.5 hours for drying.
  • a laminate 9 and a polyimide film 9 were obtained in the same manner as in Example 1 except that The surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • Table 7 shows the evaluation results of the obtained laminate.
  • Example 11 The inorganic layer is treated inorganic layer 2, the polyamic acid solution is polyimide solution I, and the inorganic layer coated with the solution is placed in a muffle furnace in which N 2 is flowing, heated at 100 ° C. for 60 minutes, and then at 5 ° C./min.
  • the laminate 11 and the polyimide film 11 were exactly the same as in Example 1 except that the laminate was obtained by raising the temperature from 100 ° C. to 200 ° C. and maintaining the temperature at 200 ° C. for 300 minutes and drying. Got.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • Table 8 shows the evaluation results of the obtained laminate.
  • Example 12 [Inorganic layer treatment example 4] After replacing the inside of the glove box with nitrogen, the coupling agent (3-aminopropyltrimethoxysilane; 3-APS) was diluted to 0.8 wt% with isopropyl alcohol in the glove box flowing N2. A liquid was created. Set a white plate glass of 370 mm x 470 mm and thickness 3 mm as an inorganic layer on a spin coater, sprinkle and dry the liquid at 1000 rpm with isopropyl alcohol, and then continue with the coupling agent dilution obtained above. It was dripped at the center of rotation and rotated to 1800 rpm over 15 seconds, and then kept rotating at 1800 rotation for 30 seconds and stopped for 15 seconds.
  • the coupling agent 3-aminopropyltrimethoxysilane; 3-APS
  • the thickness of the coupling agent layer obtained by the ellipsometer was 25 nm.
  • the surface roughness (Ra) in the UV unirradiated part of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.6 nm, and the surface roughness (Ra) in the UV unirradiated part was 0.6 nm.
  • the obtained processed inorganic layer is overlaid with a metal mask having two 200 mm ⁇ 300 mm openings, and the integrated irradiation energy is 3000 mJ / cm 2 with a UV lamp having the same light emission characteristics as that used in Example 1. It exposed so that it might become.
  • 25 parts by mass of a polycarbonate resin (viscosity average molecular weight 44,000) containing bisphenol A as a bisphenol component is added to a mixed solvent consisting of 50 parts by mass of 1,3-dioxolane and 50 parts by mass of tetrahydrofuran, and the mixture is heated and stirred at 45 ° C. for 8 hours. And a transparent solution composition was obtained.
  • the obtained solution plastic material is applied onto the treated inorganic layer after UV irradiation so that the dry thickness becomes 75 ⁇ m using an applicator, and the temperature is raised to 50 ° C. for 10 minutes at 50 ° C.
  • the laminate was dried for 15 minutes and at a temperature of 105 ° C. for 45 minutes to obtain a laminate of the present invention.
  • the 180-degree peel strength of the UV-irradiated portion of this laminate was 3.4 N / cm, and the 180-degree peel strength of the UV-irradiated portion was 0.8 N / cm.
  • Example 13 A treated inorganic substrate was obtained by performing UV irradiation in the same manner as in Example 12. Subsequently, the treated inorganic substrate thus obtained was heated to 240 ° C., and a polyethylene naphthalate resin heated and melted at 340 ° C. in a nitrogen atmosphere was extruded so as to have a thickness of 120 ⁇ m, and the average was cooled at 3 ° C./min. It cooled to room temperature at the speed
  • the 180-degree peel strength of the UV-irradiated portion of this laminate was 2.2 N / cm, and the 180-degree peel strength of the UV-irradiated portion was 0.4 N / cm.
  • Example 14 In Example 12, instead of the polycarbonate resin solution, the following melamine curable copolyester resin solution was used, except that the drying conditions were 75 ° C for 15 minutes, 105 ° C for 15 minutes, and 150 ° C for 30 minutes. Were operated in the same manner as the treated substrate to obtain a laminate of the present invention.
  • Preparation of melamine curable copolyester resin solution 100 parts by mass of copolyester resin (trade name “Byron V-200”, manufactured by Toyobo Co., Ltd.) and 10 parts by mass of melamine resin (trade name “Super Becamine J-820”, manufactured by Dainippon Ink) are blended with 300 parts by mass of toluene. The mixture was mixed and stirred at 25 ° C.
  • the 180 ° peel strength of the UV-irradiated portion of the obtained laminate was 2.7 N / cm, and the 180 ° peel strength of the UV irradiated portion was 0.7 N / cm.
  • Comparative Example 1 A laminate 11 and a polyimide film 11 were obtained in the same manner as in Example 1 except that the inorganic layer was untreated glass (Corning EAGLE XG 100 mm ⁇ 100 mm, 0.7 mm thickness). Table 9 shows the evaluation results of the obtained laminate. Comparative Example 2 A laminate 12 and a polyimide film 12 were obtained in the same manner as in Example 1 except that the inorganic layer was an untreated silicon wafer (diameter 20 cm, 0.725 mm thickness). Table 9 shows the evaluation results of the obtained laminate. Comparative Example 3 A laminate 13 was obtained in the same manner as in Example 1 except that the inorganic layer was not subjected to UV irradiation treatment. Table 9 shows the evaluation results of the obtained laminate. Comparative Example 4 A laminated body 14 was obtained in the same manner as in Example 1 except that the inorganic layer was treated inorganic layer 2 and UV irradiation treatment was not performed on the inorganic layer. Table 9 shows the evaluation results of the obtained laminate.
  • Comparative Example 5 A laminate 15 was obtained in the same manner as in Example 5 except that the inorganic layer was not subjected to UV irradiation treatment. Table 10 shows the evaluation results of the obtained laminate. Comparative Example 6 A laminate 16 was obtained in exactly the same manner as in Example 6 except that the inorganic layer was not subjected to UV irradiation treatment. Table 10 shows the evaluation results of the obtained laminate.
  • Example 15 Laminated body in exactly the same manner as in Example 1 except that the inorganic layer is treated inorganic layer 1, the gap of the applicator is adjusted so that the film thickness of the polyimide layer is 25 ⁇ m, and the polyamic acid solution is polyamic acid solution a. 17 and polyimide film 12 were obtained.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • Table 11 shows the evaluation results of the obtained laminate.
  • Example 16 Laminated body in exactly the same way as in Example 1 except that the inorganic layer is treated inorganic layer 2, the gap of the applicator is adjusted so that the film thickness of the polyimide layer is 10 ⁇ m, and the polyamic acid solution is polyamic acid solution a. 18 and polyimide film 13 were obtained.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • Table 11 shows the evaluation results of the obtained laminate.
  • Example 17 Laminated body in exactly the same manner as in Example 1 except that the inorganic layer is treated inorganic layer 3, the gap of the applicator is adjusted so that the film thickness of the polyimide layer is 30 ⁇ m, and the polyamic acid solution is polyamic acid solution a. 19 and polyimide film 14 were obtained.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.3 nm. Table 11 shows the evaluation results of the obtained laminate.
  • Example 18 Laminated body in exactly the same way as in Example 1 except that the inorganic layer is treated inorganic layer 2, the gap of the applicator is adjusted so that the film thickness of the polyimide layer is 20 ⁇ m, and the polyamide acid solution is changed to the polyamide acid solution b. 20 and polyimide film 15 were obtained.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • Table 11 shows the evaluation results of the obtained laminate.
  • Example 19 Laminated body in exactly the same way as in Example 1 except that the inorganic layer is treated inorganic layer 2, the gap of the applicator is adjusted so that the film thickness of the polyimide layer is 15 ⁇ m, and the polyamic acid solution is replaced with the polyamic acid solution d. 21 and polyimide film 16 were obtained.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • Table 11 shows the evaluation results of the obtained laminate.
  • Example 20 Laminated body in exactly the same way as in Example 1 except that the inorganic layer is treated inorganic layer 1, the gap of the applicator is adjusted so that the film thickness of the polyimide layer is 20 ⁇ m, and the polyamic acid solution is changed to the polyamic acid solution e. 22 and polyimide film 17 were obtained.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • Table 12 shows the evaluation results of the obtained laminate.
  • Example 21 Laminated body in exactly the same way as in Example 1 except that the inorganic layer was treated inorganic layer 2, the gap of the applicator was adjusted so that the film thickness of the polyimide layer was 25 ⁇ m, and the polyamic acid solution was changed to the polyamic acid solution e. 23 and polyimide film 18 were obtained.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • Table 12 shows the evaluation results of the obtained laminate.
  • Example 22 Laminated body in exactly the same way as in Example 1 except that the inorganic layer is treated inorganic layer 1, the gap of the applicator is adjusted so that the film thickness of the polyimide layer is 25 ⁇ m, and the polyamic acid solution is changed to the polyamic acid solution c. 24 and polyimide film 19 were obtained.
  • the surface roughness (Ra) at the UV unirradiated portion of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) at the UV unirradiated portion was 0.4 nm.
  • Table 12 shows the evaluation results of the obtained laminate.
  • Example 23 Laminated body in exactly the same manner as in Example 1 except that the inorganic layer is treated inorganic layer 1, the gap of the applicator is adjusted so that the film thickness of the polyimide layer is 25 ⁇ m, and the polyamic acid solution is changed to the polyamic acid solution f. 25 and polyimide film 20 were obtained.
  • the surface roughness (Ra) in the UV unirradiated part of the inorganic layer surface (SC layer surface) after the UV irradiation treatment was 0.4 nm, and the surface roughness (Ra) in the UV unirradiated part was 0.5 nm.
  • Table 12 shows the evaluation results of the obtained laminate.
  • Comparative Example 7 Untreated glass with an inorganic layer (Corning EAGLE XG 100mm x 100mm A laminate 26 and a polyimide film 21 were obtained in the same manner as in Example 15 except that the thickness was 0.7 mm. Table 13 shows the evaluation results of the obtained laminate. Comparative Example 8 A laminate 27 and a polyimide film 22 were obtained in the same manner as in Example 15 except that the inorganic layer was an untreated silicon wafer (diameter 20 cm, 0.725 mm thickness). Table 13 shows the evaluation results of the obtained laminate. Comparative Example 9 A laminate 28 was obtained in the same manner as in Example 15 except that the inorganic layer was not subjected to UV irradiation treatment. Table 13 shows the evaluation results of the obtained laminate. Comparative Example 10 A laminated body 29 was obtained in the same manner as in Example 15 except that the inorganic layer was treated inorganic layer 2 and UV irradiation treatment was not performed on the inorganic layer. Table 13 shows the evaluation results of the obtained laminate.
  • the adhesive strength of the polyimide layer to alkyl groups such as propyl group is low and easily peeled off, but UV irradiation treatment generated functional groups such as aldehyde groups, carboxyl groups, or carboxylic acid groups from alkyl groups. It is thought that the part became a good adhesion part.
  • Example 1 The laminate obtained in Example 5 and Comparative Example 2 was covered with a stainless frame having an opening and fixed to a substrate holder in the sputtering apparatus.
  • the substrate holder and the inorganic layer were fixed so as to be in close contact with each other so that the temperature of the film could be set by flowing a coolant through the substrate holder, and the temperature of the polyimide layer of the laminate was set to 2 ° C.
  • plasma treatment was performed on the surface of the polyimide layer.
  • the plasma treatment conditions were argon gas, frequency 13.56 MHz, output 200 W, gas pressure 1 ⁇ 10 ⁇ 3 Torr, treatment temperature 2 ° C., treatment time 2 minutes.
  • a condition of frequency 13.56 MHz, output 450 W, gas pressure 3 ⁇ 10 ⁇ 3 Torr, a nickel-chromium (chromium 10 mass%) alloy target was used, and a DC magnetron sputtering method was performed at 1 nm / second in an argon atmosphere.
  • a nickel-chromium alloy film (underlayer) having a thickness of 7 nm is formed at a rate, and then the back surface of the sputter surface of the laminate is in contact with the SUS plate of the substrate holder in which a coolant whose temperature is controlled at 2 ° C. is flown
  • the temperature of the polyimide layer of the laminate was set to 2 ° C., and sputtering was performed.
  • Copper was deposited at a rate of 10 nm / second to form a copper thin film having a thickness of 0.25 ⁇ m.
  • the base metal thin film formation laminated body from each film was obtained.
  • the thickness of the copper and NiCr layers was confirmed by the fluorescent X-ray method.
  • the base metal thin film formation laminated body from each laminated body was fixed to the frame made from Cu, and the thick copper layer was formed using the copper sulfate plating bath.
  • the electrolytic plating conditions were immersed in an electrolytic plating solution (copper sulfate 80 g / l, sulfuric acid 210 g / l, HCl, a small amount of brightener), and electricity was passed through 1.5 Adm2.
  • a thick copper plating layer (thickening layer) having a thickness of 4 ⁇ m was formed, followed by heat treatment and drying at 120 ° C. for 10 minutes to obtain a metallized laminate.
  • photoresist FR-200, manufactured by Shipley Co., Ltd. was applied and dried, and then contacted and exposed with a glass photomask, and further developed with a 1.2 mass% KOH aqueous solution.
  • Electroless tin plating was performed to a thickness of 5 ⁇ m. Thereafter, annealing was performed at 125 ° C. for 1 hour. The pattern from the resin layer was evaluated by observing drool, pattern residue, pattern peeling, and the like with an optical microscope.
  • FIG. 4A shows a schematic sectional view of the TFT substrate
  • FIG. 4B shows a top view thereof.
  • the laminate of the present invention obtained in Example 1 was used as the substrate 101, and Al (aluminum) 102 was patterned and deposited by 200 nm sputtering on the polyimide layer of the laminate, and the gate wiring bus line 111, gate electrode (Not shown) and a gate wiring 109 were formed.
  • each gate wiring 109 is connected to the gate wiring bus line 111, and this gate wiring bus line 111 is used as a power supply line during anodization.
  • a 300 nm first silicon nitride film 104 is formed on the Al 2 O 3 film by plasma CVD.
  • a 100 nm hydrogenated amorphous silicon (a-Si) 105 film and a 200 nm second silicon film film are formed.
  • Silicon nitride 106 was formed.
  • the temperature of the substrate 101 was 380 ° C.
  • the second silicon nitride 106 was patterned so that only the wiring crossing portion was formed on the TFT channel.
  • an amorphous silicon n layer 107 doped with about 2% phosphorus was deposited to 50 nm and then patterned to leave only the source / drain portion of the TFT.
  • a-Si hydrogenated amorphous silicon
  • a-Si hydrogenated amorphous silicon
  • a-Si hydrogenated amorphous silicon
  • a-Si hydrogenated amorphous silicon
  • depositing 100 nm of Cr (chromium) and 500 nm of Al (aluminum) by sputtering to form a Cr / Al layer 108 patterning is performed, and then signal lines 110, TFT drains, and source wires (not shown) are formed. Etc.).
  • the previously formed gate wiring bus line 111 was removed, and each gate wiring 109 was separated.
  • 100 nm ITO is formed as a transparent electrode 112 by sputtering to form pixel electrodes, terminals and the like.
  • silicon nitride is deposited by plasma CVD, and silicon nitride on the terminal portion is formed by a photoetching process. was removed.
  • a protective film of a polyester film base material is pasted on the UV-irradiated portion of the polyimide layer, a cut is made at the boundary line between the UV irradiated area and the UV non-irradiated area, and the TFT portion formed in the UV irradiated area is peeled off. A substrate was obtained.
  • FIG. 10 is a schematic sectional view of a display device using organic EL elements.
  • the laminate of the present invention obtained in Example 1 was used as a substrate 201, and a first electrode 202 was formed as a pixel electrode on the polyimide layer of the laminate by sputtering using molybdenum.
  • a light emitting layer 203 was formed thereon.
  • the light emitting layer 203 was formed by forming a partition wall 206 on the first electrode 202 and then printing an organic layer containing poly (para-phenylene vinylene) which is not doped as a light emitting material by a screen printing method. At this time, the maximum temperature reached during film drying was 180 ° C. Next, ITO is sputtered as the second electrode 204 on the light emitting layer 203, and then a fluororesin layer is coated as the protective film 206, and a polyimide film is formed at the boundary between the UV irradiated portion and the UV non-irradiated portion as in Application Example 2.
  • the light emitting part was peeled off from the laminated body together with the polyimide film to produce a display device using an organic EL element (self-luminous display device).
  • the highest reached temperature of heat applied to the substrate (laminated body) was 350 ° C.
  • the substrate temperature is heated to 350 ° C. (Fig. 5)
  • an alternating voltage of 60 V and 1000 Hz was applied peak-to-peak to the display device using an organic EL element using the laminate of Example 1 described above, light was emitted in vivid green.
  • display devices using organic EL elements using the laminates of other examples were produced in the same manner as described above, and when a voltage was applied in the same manner as described above, good light emission was obtained.
  • Example 24 A glass plate (Corning EAGLE XG 650 mm ⁇ 830 mm 0.7 mm thickness) as an inorganic layer was submerged in a container filled with a 0.2 wt% isopropyl alcohol solution of n-propyltrimethoxysilane, and the speed was 10 mm per second in a space purged with nitrogen. At the same time, dry nitrogen gas was blown with an air knife to drain the liquid. Next, the glass plate was placed in a 120 ° C. dry oven with a nitrogen purge, and the process up to this point was treated with a silane coupling agent.
  • the thickness of the silane coupling agent layer measured by ellipsometry when the silicon wafer was processed under the same coating conditions was 40 nm.
  • a stainless steel metal mask in which rectangular openings of 68 mm ⁇ 110 mm are arranged in an array via a 5 mm-width shielding portion is stacked on the obtained glass plate treated with a coupling agent, and a gap is formed between the metal mask and the glass plate. It was confirmed that there was no atmospheric pressure plasma treatment as a patterning treatment in an atmospheric pressure plasma treatment apparatus using a mixed gas of nitrogen 95 / oxygen 5 at a flow rate ratio.
  • the atmospheric pressure plasma processing apparatus has a mechanism of a type in which a slit-like long head moves on a workpiece automatically, and the glass plate is exposed to the plasma for about 45 seconds.
  • the surface roughness (Ra) in the treated portion of the treated inorganic layer surface (SC layer surface) was 0.5 nm, and the surface roughness (Ra) in the untreated portion was 0.4 nm.
  • the polyamic acid solution a obtained in Synthesis Example 10 was applied using a die coater, dried at 80 ° C. for 30 minutes and 100 ° C. for 90 minutes in a dry oven in which dry nitrogen gas was passed, and then an inert heat treatment furnace substituted with nitrogen The temperature was raised from 100 ° C. to 200 ° C.
  • the thickness of the polyimide layer of the laminate was 21 ⁇ m.
  • the 180-degree peel strength of the polyimide layer at the mask portion of the obtained laminate was 2.8 N / cm.
  • the 180 degree peel strength at the non-mask portion was 0.67 N / cm.
  • a silicon oxide layer, a source, and a drain are formed by reactive sputtering as a planarization layer and gas barrier layer on the obtained laminate using a predetermined test pattern as a simulation process for manufacturing a thin film transistor array using low-temperature polysilicon.
  • a tantalum layer, a barrier metal layer by a sputtering method as an electrode layer, an amorphous silicon layer by a CVD method as a semiconductor layer is laminated, and the silicon layer is micro-crystallized by annealing at 400 ° C. for 75 minutes, A SiN layer was stacked as a gate insulating layer, and aluminum was stacked as a gate electrode layer.
  • Each layer is patterned by masking or photolithography according to a predetermined test pattern to form a simulated device: thin film transistor array.
  • the device portion is formed in the opening portion of the metal mask during the patterning process.
  • a resist solution a developer solution, an etching solution, and a stripping solution used in a photolithographic method in a vacuum atmosphere and at a high temperature
  • the polyimide layer does not peel from the glass layer, and the process suitability is It was good.
  • the polyimide layer was cut at the boundary between the mask shielding part and the opening part, and the part where the device was formed was peeled off. Peeling could be easily performed by slightly raising the end with a blade. Although it tried to peel similarly about the 5 mm width part which was shielded, it was difficult to peel so that a polyimide layer might not be destroyed.
  • Example 25 The silane coupling agent treatment in Example 24 was changed to the spin coating method, and the atmospheric pressure plasma treatment was carried out in the same manner except that it was replaced with the blast treatment. Went.
  • the silane coupling agent treatment by the spin coater was performed according to the following procedure.
  • a glass plate (Corning EAGLE XG 300mm x 300mm 0.7mm thickness) is mounted on a spin coater manufactured by Japan Create, and n-propyltrimethoxysilane is used as a silane coupling agent, and a 0.1 wt% isopropyl alcohol solution is used.
  • the glass plate was used for coating, and then the glass plate was dried and heat-treated for 10 minutes in a dry oven at 100 ° C.
  • the thickness of the silane coupling agent layer measured by ellipsometry when the silicon wafer was processed under the same coating conditions was 40 nm.
  • a small wet blasting machine manufactured by Macau was used for the blasting, water was used for the medium, and # 2000 silica particles were used for the abrasive. Blasting was performed through a mask, and after blasting, the glass plate was rinsed with ultrapure water, dried with dry air, and proceeded to the next step of applying a polyamic acid solution by a die coater.
  • the surface roughness (Ra) in the treated portion of the inorganic layer surface (SC layer surface) before the coating step was 0.6 nm
  • the surface roughness (Ra) in the untreated portion was 0.5 nm.
  • the 180-degree peel strength of the polyimide layer at the mask portion of the obtained laminate was 3.3 N / cm.
  • the 180 degree peel strength at the non-mask portion was 1.23 N / cm.
  • Example 26 The silane coupling agent treatment in Example 24 was changed to the spin coating method shown in Example 25, the polyamic acid solution was changed to the polyamic acid solution b obtained in Synthesis Example 11, and atmospheric pressure plasma treatment was changed to vacuum plasma treatment. The process was performed in the same manner except that it was replaced with, and a simulation process experiment for fabricating a thin film transistor array using low-temperature polysilicon was performed.
  • the vacuum plasma treatment uses an apparatus for single-wafer glass, a metal mask is placed on the surface of the glass treated with the silane coupling agent, the apparatus is set in the apparatus, the inside of the vacuum chamber is evacuated to 1 ⁇ 10 ⁇ 3 Pa or less, and the vacuum Argon gas was introduced into the chamber, and plasma treatment of argon gas was performed on the glass plate surface for 20 seconds under the conditions of a discharge power of 100 W and a frequency of 15 kHz.
  • the surface roughness (Ra) in the treated portion of the treated inorganic layer surface (SC layer surface) was 0.6 nm
  • the surface roughness (Ra) in the untreated portion was 0.5 nm.
  • the process proceeded to a polyamic acid solution coating step using a die coater, which was the next step, and passed through a predetermined process.
  • the 180-degree peel strength of the polyimide layer at the mask portion of the obtained laminate was 3.1 N / cm.
  • the 180-degree peel strength at the non-mask portion was 0.91 N / cm.
  • Example 27 Thin film transistor array fabrication using low-temperature polysilicon except that the silane coupling agent treatment in Example 24 was changed to the spin coating method shown in Example 25 and the atmospheric pressure plasma treatment was replaced with a corona treatment.
  • a simulated process experiment was conducted. Using a corona treatment device manufactured by Kasuga Denki, electric power with a discharge amount of 1000 W was applied, and treatment was performed at 10 W / m 2 / min. In this experiment, an acrylic plate having a thickness of 0.5 mm processed to the same shape as the metal mask was used instead of the metal mask.
  • the surface roughness (Ra) in the treated portion of the treated inorganic layer surface (SC layer surface) was 0.6 nm, and the surface roughness (Ra) in the untreated portion was 0.5 nm.
  • the process proceeded to a polyamic acid solution coating step using a die coater, which was the next step, and passed through a predetermined process.
  • the 180-degree peel strength of the polyimide layer at the mask portion of the obtained laminate was 3.6 N / cm.
  • the 180 degree peel strength at the non-mask portion was 1.5 N / cm. There was no problem in process passability, and the peelability of the weakly bonded part was also good.
  • Example 28 The silane coupling agent treatment in Example 24 was changed to the spin coating method shown in Example 25, the polyamic acid solution was changed to the polyamic acid solution c obtained in Synthesis Example 12, and atmospheric pressure plasma treatment was performed using actinic radiation. Processing was performed in the same manner except that the electron beam irradiation processing was performed as a kind of processing, and a simulation process experiment for manufacturing a thin film transistor array using low-temperature polysilicon was performed.
  • a Min-EB device manufactured by Toyo Ink
  • the metal mask was processed into the same shape as the metal mask.
  • Example 29 The silane coupling agent treatment in Example 24 was changed to the spin coating method shown in Example 25, the coupling agent was changed to 3-aminopropyltrimethoxysilane, and the polyamide acid solution was changed to the polyamide obtained in Synthesis Example 14.
  • a simulation process experiment of manufacturing a thin film transistor array using low-temperature polysilicon was conducted by changing to the acid solution e and performing the same treatment except that the atmospheric pressure plasma treatment was replaced with the active gas treatment (chlorine gas).
  • the active gas treatment using chlorine gas was performed according to the following procedure. First, set a glass that has been treated with a silane coupling agent on a glass that can be depressurized with a metal mask overlaid.
  • the 180-degree peel strength of the polyimide layer at the mask portion of the obtained laminate was 3.0 N / cm.
  • the 180 degree peel strength at the non-mask portion was 0.8 N / cm.
  • Example 30 The silane coupling agent treatment in Example 24 was changed to the spin coating method shown in Example 25, the polyamic acid solution was changed to the polyamic acid solution b obtained in Synthesis Example 11, and atmospheric pressure plasma treatment was performed using an active gas. Processing was performed in the same manner except that the processing (ozone gas) was used, and a simulation process experiment for manufacturing a thin film transistor array using low-temperature polysilicon was performed.
  • the active gas treatment with ozone was performed as follows. First, set a glass that has been treated with a silane coupling agent on a evacuable chamber with a metal mask overlaid, depressurize the chamber, and then generate an ozone generator (PSA Ozonizer SGA-01-PSA2, Sumitomo Precision Industries).
  • the ozone gas was introduced into the chamber from the product), and after maintaining for 60 seconds after the chamber reached a state filled with one atmosphere of ozone, the ozone gas supply was stopped, the chamber was depressurized and dried again.
  • the glass plate was taken out from the chamber after returning to normal pressure once with air, reducing pressure again, and returning to normal pressure again.
  • the surface roughness (Ra) in the treated portion of the treated inorganic layer surface (SC layer surface) was 0.6 nm, and the surface roughness (Ra) in the untreated portion was 0.5 nm.
  • the process proceeded to a polyamic acid solution coating step using a die coater, which was the next step, and passed through a predetermined process.
  • the 180-degree peel strength of the polyimide layer at the mask portion of the obtained laminate was 2.8 N / cm.
  • the 180 degree peel strength at the non-mask portion was 1.2 N / cm.
  • Example 31 The silane coupling agent treatment in Example 24 was changed to the spin coating method shown in Example 25, the coupling agent was changed to 3-aminopropyltrimethoxysilane, and atmospheric pressure plasma treatment was performed using chemical treatment (peroxidation).
  • the process was performed in the same manner except that the hydrogen treatment was performed, and a simulation process experiment for manufacturing a thin film transistor array using low-temperature polysilicon was performed.
  • the chemical treatment was performed according to the following procedure. As the chemical solution, 5% hydrogen peroxide water was used.
  • a polyimide adhesive tape silicon resin is used as the adhesive
  • Silane coupling agent treated surface of the glass plate so that it has the same shape as the metal mask. It was.
  • a masked glass plate was attached to a spray type etching apparatus, hydrogen peroxide solution was sprayed for 5 minutes by spraying, rinsed with ultrapure water, and after drying, the polyimide tape instead of the mask was peeled off.
  • the surface roughness (Ra) in the treated portion of the treated inorganic layer surface (SC layer surface) was 0.6 nm
  • the surface roughness (Ra) in the untreated portion was 0.5 nm.
  • the process proceeded to a polyamic acid solution coating step using a die coater, which was the next step, and passed through a predetermined process.
  • the 180-degree peel strength of the polyimide layer at the mask portion of the obtained laminate was 3.1 N / cm.
  • the 180 degree peel strength at the non-mask portion was 0.8 N / cm.
  • Example 32 The silane coupling agent treatment in Example 24 was changed to the spin coating method shown in Example 25, the coupling agent was changed to 3-aminopropyltrimethoxysilane, and atmospheric pressure plasma treatment was performed as chemical treatment (sulfuric acid treatment).
  • chemical treatment sulfuric acid treatment
  • the process was carried out in the same manner except for the above, and a simulation process experiment for fabricating a thin film transistor array using low-temperature polysilicon was conducted.
  • the surface roughness (Ra) in the treated portion of the treated inorganic layer surface (SC layer surface) was 0.6 nm
  • the surface roughness (Ra) in the untreated portion was 0.5 nm.
  • the chemical treatment was performed according to the following procedure. A 50% sulfuric acid aqueous solution was used as the chemical solution.
  • a polyimide adhesive tape silicon resin is used as the adhesive
  • a glass plate was submerged in the treatment layer filled with the chemical solution, gently rocked for 3 minutes, pulled up, rinsed with ion exchange water and then with ultrapure water, and dried, and then the polyimide tape instead of the mask was peeled off. Thereafter, the process proceeded to a polyamic acid solution coating step using a die coater, which was the next step, and passed through a predetermined process.
  • the 180-degree peel strength of the polyimide layer at the mask portion of the obtained laminate was 3.3 N / cm.
  • the 180 degree peel strength at the non-mask portion was 0.5 N / cm.
  • Example 33 The silane coupling agent treatment in Example 24 was changed to the spin coating method shown in Example 25, the coupling agent was changed to 3-aminopropyltrimethoxysilane, and atmospheric pressure plasma treatment was performed using chemical treatment (hydrochloric acid treatment). The process was carried out in the same manner except for the above, and a simulation process experiment for fabricating a thin film transistor array using low-temperature polysilicon was conducted.
  • the chemical treatment was performed according to the following procedure. 35% hydrochloric acid was used as the chemical solution.
  • a polyimide adhesive tape silicon resin is used as the adhesive
  • silane coupling agent treated surface of the glass plate so that it has the same shape as the metal mask. It was.
  • a glass plate was submerged in the treatment layer filled with the chemical solution, gently rocked for 3 minutes, pulled up, rinsed with ion exchange water and then with ultrapure water, and dried, and then the polyimide tape instead of the mask was peeled off.
  • the surface roughness (Ra) in the treated portion of the treated inorganic layer surface (SC layer surface) was 0.6 nm, and the surface roughness (Ra) in the untreated portion was 0.5 nm.
  • the process proceeded to a polyamic acid solution coating step using a die coater, which was the next step, and passed through a predetermined process.
  • the 180-degree peel strength of the polyimide layer at the mask portion of the obtained laminate was 3.2 N / cm.
  • the 180 degree peel strength at the non-mask portion was 0.7 N / cm. There was no problem in process passability, and the peelability of the weakly bonded part was also good.
  • Example 34 The silane coupling agent treatment in Example 24 was changed to the spin coating method shown in Example 25, the coupling agent was changed to 3-aminopropyltrimethoxysilane, and atmospheric pressure plasma treatment was performed as chemical treatment (fluorination). A similar process was performed except that the hydroacid treatment was performed, and a simulation process experiment for manufacturing a thin film transistor array using low-temperature polysilicon was performed.
  • the chemical treatment was performed according to the following procedure. A 5% hydrofluoric acid aqueous solution was used as the chemical solution.
  • a polyimide adhesive tape silicon resin is used as the adhesive
  • the glass plate was submerged in the treatment layer filled with the chemical solution, gently rocked for 30 seconds, quickly pulled up, rinsed with ion-exchanged water and then with ultrapure water, and after drying, the polyimide tape instead of the mask was peeled off.
  • the surface roughness (Ra) in the treated portion of the treated inorganic layer surface (SC layer surface) was 0.6 nm, and the surface roughness (Ra) in the untreated portion was 0.5 nm.
  • the process proceeded to a polyamic acid solution coating step using a die coater, which was the next step, and passed through a predetermined process.
  • the 180-degree peel strength of the polyimide layer at the mask portion of the obtained laminate was 3.0 N / cm.
  • the 180 degree peel strength at the non-mask portion was 0.4 N / cm. There was no problem in process passability, and the peelability of the weakly bonded part was also good.
  • Example 35 The silane coupling agent treatment in Example 24 was changed to the spin coating method shown in Example 25, and the treatment was performed in the same manner except that the atmospheric pressure plasma treatment was changed to direct drawing by laser light.
  • a simulation process experiment of the thin film transistor array used was performed.
  • a YAG laser marking device was used as a direct writing device using laser light, and a patterning process was performed by scanning a portion corresponding to the opening of the metal mask with YAG laser light. The output of the YAG laser light was 1/10 of the power that allows marking on the glass.
  • the surface roughness (Ra) in the treated portion of the treated inorganic layer surface (SC layer surface) was 0.6 nm, and the surface roughness (Ra) in the untreated portion was 0.5 nm.
  • the process proceeded to a polyamic acid solution coating step using a die coater, which was the next step, and passed through a predetermined process.
  • the 180-degree peel strength of the polyimide layer at the mask portion of the obtained laminate was 3.2 N / cm.
  • the 180 degree peel strength at the non-mask portion was 0.7 N / cm.
  • Example 36 A glass plate (Corning EAGLE XG 370 mm ⁇ 470 mm 0.7 mm thick) was spin-coated using an isopropyl alcohol solution of 3-aminopropyltrimethoxysilane having a concentration of 0.2% by weight.
  • a glass plate (Corning EAGLE XG 370 mm x 470 mm 0.7 mm thick) is mounted on a spin coater for photoresist coating, 3-aminopropyltrimethoxysilane is used as a silane coupling agent, and the concentration is 0.2% by weight isopropyl alcohol.
  • the glass plate was spin-coated using the solution, and then placed in a dry oven at 100 ° C.
  • the thickness of the silane coupling agent layer measured by ellipsometry was 50 nm at the center and 30 nm at the end.
  • the surface roughness (Ra) in the treated portion of the treated inorganic layer surface (SC layer surface) was 0.6 nm, and the surface roughness (Ra) in the untreated portion was 0.5 nm.
  • a stainless steel metal mask in which rectangular openings of 68 mm ⁇ 110 mm are arranged in an array via a 5 mm-width shielding portion is stacked on the obtained glass plate treated with a coupling agent, and a gap is formed between the metal mask and the glass plate.
  • the atmospheric pressure plasma processing apparatus has a mechanism of a type in which a slit-like long head moves on a workpiece automatically, and the glass plate is exposed to plasma for about 30 seconds.
  • the polyamic acid solution a obtained in Synthesis Example 10 was applied using a die coater, dried at 80 ° C. for 30 minutes and 100 ° C. for 90 minutes in a dry oven in which dry nitrogen gas was passed, and then an inert heat treatment furnace substituted with nitrogen The temperature was raised from 100 ° C. to 200 ° C.
  • the thickness of the polyimide layer of the laminate was 23 ⁇ m.
  • the 180 degree peel strength of the polyimide layer at the mask portion of the obtained laminate was 4.5 N / cm.
  • the 180 degree peel strength at the non-mask portion was 0.35 N / cm.
  • a silicon oxide layer, a source, and a drain are formed by reactive sputtering as a planarization layer and gas barrier layer on the obtained laminate using a predetermined test pattern as a simulation process for manufacturing a thin film transistor array using low-temperature polysilicon.
  • barrier metal layer by sputtering method as electrode layer and amorphous silicon layer by CVD method as semiconductor layer are laminated and annealed at 420 ° C. for 40 minutes, the silicon layer is microcrystallized, A SiN layer was stacked as a gate insulating layer, and aluminum was stacked as a gate electrode layer.
  • Each layer is patterned by masking or photolithography according to a predetermined test pattern to form a simulated device: thin film transistor array.
  • the device portion is formed in the opening portion of the metal mask during the patterning process.
  • a resist solution a developer solution, an etching solution, and a stripping solution used in a photolithographic method in a vacuum atmosphere and at a high temperature
  • the polyimide layer does not peel from the glass layer, and the process suitability is It was good.
  • the polyimide layer was cut at the boundary between the mask shielding part and the opening part, and the part where the device was formed was peeled off. Peeling could be easily performed by slightly raising the end with a blade. Although it tried to peel similarly about the 5 mm width part which was shielded, it was difficult to peel so that a polyimide layer might not be destroyed.
  • a laminate obtained by the production method of the present invention is a laminate in which one surface of a kind of inorganic layer selected from a glass plate, a ceramic plate, a silicon wafer, and a metal is bonded to a resin layer without an adhesive layer.
  • the resin film with a device obtained by the manufacturing method of the present invention is obtained by using the laminate, and the resin layer of the easily peelable portion is cut into the resin layer from the inorganic layer.
  • a resin film with a device can be made by peeling.
  • the laminate of the present invention is a heat-resistant laminate that can be used effectively in the process of manufacturing a fine circuit board on ultra-thin resin, a device structure, etc., and can withstand a temperature rising process such as metallization.
  • this inorganic substrate can be smoothly peeled off, and a circuit or device can be formed with high precision on an extremely thin resin film with excellent insulation, heat resistance, and dimensional stability. It is effective for manufacturing devices such as plates and sensors.
  • FIG. 1 Glass substrate 2: Silane coupling agent layer 3: UV light blocking mask 4: Silane coupling agent layer UV irradiation untreated portion 5: Silane coupling agent layer UV irradiation treatment portion 6: Resin layer 7: Silane coupling agent Resin film on layer UV irradiation treatment part (Fig. 2) 1: Glass substrate 2: Silane coupling agent layer 3: UV light blocking mask 4: Silane coupling agent layer UV light unirradiated part 5: Silane coupling agent layer UV light irradiated part 6: Resin layer 7: Silane coupling agent Resin film 8 on layer UV light irradiation part: circuit (FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】耐熱性に優れた、フィルムデバイスを提供すること、および、このフィルムデバイス作成用に耐熱性樹脂層と無機物の層積層体を提供する。 【解決手段】少なくとも、無機層と樹脂フィルムから構成されてなる積層体および、この積層体を利用したフィルムデバイスの製造方法であって、 (1)無機層の少なくとも片面の表面をカップリング剤処理する工程 (2)前記カップリング剤処理された無機層の少なくとも片面を、あらかじめ決めたパターンに従ってUV照射処理を行うことによって、無機層と樹脂層の間の剥離強度が異なる部分を設ける工程。 (3)該パターン化した無機層のカップリング剤処理面上に樹脂溶液あるいは、樹脂前駆体溶液を塗布して得られた塗布溶液層を乾燥、熱処理し前記樹脂層を形成する工程、 上記(1)~(3)の工程を含むことを特徴とする積層体の製造方法。 および、この積層体を使ってデバイスを作成後に、前記無機基板からあらかじめ決めたパターンに従ってUV露光する工程により、基板に対する接着剥離強度が弱い部分を剥離することによりフィルムデバイスの作成を実現する。

Description

積層体とその製造方法および、この積層体を用いたデバイス構造体の作成方法
 本発明は、樹脂層と無機層から構成されてなる積層体の製造方法に関し、更に詳しくは、あらかじめ決めたパターン通りに、強く接着している部分と、容易に剥離できる部分を有する該積層体の製造方法である。更に詳しくは、本発明はポリイミド層を無機基板に一時的ないし半永久的に積層した積層体を積層する方法に関し、かかる積層体は、半導体素子、MEMS素子など薄膜からなり、微細な加工が必要となるデバイスを、樹脂層表面に形成する際に有用である。
 さらに、本発明にかかる積層体は耐熱性と絶縁性に優れた薄い樹脂層とそれとほぼ同程度の線膨張係数を有するガラス板、セラミック板、シリコンウェハ、金属から選ばれた一種の無機層とが積層された積層体であって、精緻な回路がマウント可能な、寸法安定性と耐熱性と絶縁性に優れた積層体である。本発明はこのような積層体、その製造方法、および該積層体を利用した、デバイス構造体に関する。
 近年、センサー素子、MEMS素子、デイスプレイ素子など機能素子の軽量化、小型化、薄膜化、フレキシビリティ化を目的として、高分子フィルム上にこれらの素子を形成する技術開発が活発に行われている。例えば、情報通信機器(放送機器、移動体無線、携帯通信機器等)、レーダーや高速情報処理装置などといった電子部品の基材の材料としては、従来、耐熱性を有し且つ情報通信機器の信号帯域の高周波数化(GHz帯に達する)にも対応し得るセラミックが用いられていたが、セラミックはフレキシブルではなく薄型化もしにくいので、適用可能な分野が限定されるという欠点があった。
 半導体素子、センサー素子、MEMS素子、ディスプレイ素子などの機能素子を樹脂フィルム表面に形成するに当たっては、樹脂フィルムの特性であるフレキシビリティを利用した、 いわゆるロール・トゥ・ロールプロセスにて加工することが理想とされている。しかしながら、半導体産業、センサー産業、MEMS産業界、ディスプレイ産業界では、ウエハベースないしガラス基板ベースのリジッドな平面基板を対象としたプロセス技術が構築されてきた。現実的な選択として、樹脂フィルムを、金属板、ウエハ、ガラス基板などの無機物からなるリジッドな支持基板に貼り合わせし、所望の素子を形成した後に支持基板から剥離することで、既存インフラを利用して樹脂フィルム上に形成した機能素子を得ることが可能となる。
従来、無機物からなる支持体への樹脂フィルムの貼り合わせは、粘着剤や接着剤を用いて広く行われてきた(特許文献1)。しかしながら樹脂フィルムと無機物からなる支持基板との貼り合わせた積層体に所望の機能素子を形成する場合、かかる機能素子の形成を行う上で支障ないレベルの表面平滑性、寸法安定性、クリーン性、プロセス温度への耐性、微細加工に用いられる薬液への耐性が当該積層体に求められる。特にポリシリコンや酸化物半導体などの機能素子の形成温度が高い場合には、200~500℃程度の温度域でのプロセスが必要となる。例えば低温ポリシリコン薄膜トランジスターの作製においては、脱水素化のために450℃、2時間程度の加熱処理が必要な場合があり、水素化アモルファスシリコン薄膜の作製においては、200℃から300℃程度の温度がフィルムに加わる可能性がある。このように機能素子の形成温度が高い場合には、樹脂フィルムに耐熱性が必要であることは勿論、樹脂フィルムと支持体との接合面(すなわち貼り合せ用の接着剤や粘着剤)がその加工温度に耐えなければならない。しかしながら、従来の貼り合せ用の接着剤や粘着剤は十分な耐熱性を有していなかったため、機能素子の形成温度が高い場合には適用できないのが現状であった。
 また、半導体薄膜のなかでもSiについては、線膨張係数が3ppm/℃程と非常に小さい、Siの薄膜を樹脂フィルム上に形成する場合、フィルムと薄膜の間の線膨張係数の差が大きいと、薄膜中に応力が溜まり、性能の劣化や、薄膜の反り、剥がれをもたらす原因となる。特に薄膜作成プロセス中に高温が加わる場合、温度変化の間に、基板と薄膜の間の線膨張係数の差に起因する応力が大きくなる。
 無機物からなる支持体へ貼り合せる高分子フィルムとしては、耐熱性の観点から融点の低いフィルムは適さず、例えばポリエチレンナフタレート、ポリエチレンテレフタレート、ポリイミド、ポリテトラフルオロエチレンからなる樹脂フィルム、ガラス繊維強化エポキシが用いられる。ポリイミドからなるフィルムは耐熱性に優れ、また、強靭であるので樹脂フィルムを薄くできるという長所を備えている。しかしながら、ポリイミドフィルム層は、一般的に線膨張係数が大きく温度変化による寸法変化が著しくて微細な配線をもつ回路の製造に適さない点等が問題となり、使用できる分野が限定される。このように、耐熱性、高機械的物性、フレキシブル性を具備した基材用として十分な物性のポリイミド層を使ったデバイスは未だ得られていない。
 引張弾性率を高くしたポリイミドフィルム層として、ベンゾオキサゾール環を主鎖に有するポリイミドからなるポリイミドベンゾオキサゾールフィルムが提案されている(特許文献2参照)。このポリイミドベンゾオキサゾールフィルムを誘電層とするプリント配線板も提案されている(特許文献3、特許文献4参照)。
これらのベンゾオキサゾール環を主鎖に有するポリイミドからなるポリイミドベンゾオキサゾールフィルムは、引張破断強度、引張弾性率で改良され、線膨張係数において満足し得る範囲のものとなっているが、その優れた機械的物性の反面で、薄くすればするほど取り扱い上も困難となり、機械的、力学的に不十分であるなどの課題を有していた。
 また、これらのポリイミドフィルム上に熱可塑性樹脂などの接着剤層を設け他の構造補強物を設ける試みもなされているが、構造上の改良においては満足し得ても、これら熱可塑性樹脂などの耐熱性の低さは折角のポリイミドフィルムの耐熱性を台無しにする傾向を有していた。しかも熱可塑性樹脂は、一般に線膨張係数が大きく、かつこの層を薄くすることには限界があることから、加熱を施した際の寸法安定性にも悪影響を与える傾向を有していた。
 他方、樹脂基板を用いた柔軟性を有する表示装置として、固定基板上に、剥離層となる非晶質シリコン膜を介して樹脂基板を形成する工程と、前記樹脂基板上に少なくともTFT素子を形成する工程と、前記非晶質シリコン膜にレーザー光を照射することにより、前記非晶質シリコン膜において前記固定基板から前記樹脂基板を剥離する工程とを行い、前記樹脂基板を用いた柔軟性を有する表示装置を作製することが開示されている(特許文献5)。しかし、剥離に際して接着剤層へのレーザー照射やエッチング手段を用いており、煩雑行程かつ高コストになる。UV照射処理によって樹脂フィルム同士を接着することは、知られており、このときにカップリング剤を使うことも有効であることが示されている(特許文献6)。しかし、この技術はあくまで樹脂フィルム同士の接着に関することであり、カップリング剤自体のUV光照射による、接着剥離力制御を行ったものではない。
特開2008-159935号公報 特開平 06-056992号公報 特表平 11-504369号公報 特表平 11-505184号公報 特開2009-260387号公報 特開2008-19348号公報
 本発明は、上記のような事情に着目してなされたものであり、その目的は、各種デバイスを積層するための基材とするための樹脂層と無機層との積層体であって、デバイス作成時の高温のプロセスでも剥がれる事無く、しかもポリイミド層上のデバイスを作成した後は容易に無機層から樹脂層を剥離することができる積層体を提供することである。
 本発明者らは鋭意検討した結果、無機基板の少なくとも一方の面に、カップリング剤処理を行い、次いで接着剥離強度は異なり表面粗さは略同一である良好接着部分と易剥離部分とを形成するパターン化処理を施して、該パターン化処理をした面上に樹脂層を形成して無機層と樹脂層とを接着させれば、良好接着部分にてデバイス作製時の高温プロセスにおいても剥がれることない十分な接着剥離強度を発現させ、デバイス作製後には易剥離部分に切り込みを入れることで、デバイス付き樹脂フィルムを支持体から容易に剥がすことができること、さらに樹脂層として特定組成のポリイミドを用いることにより、耐熱性をより一層向上させることができ、またポリイミド層の寸法安定性が支持体に近くなるため積層体の反りや変形が小さくなるという利点も得られることを見出し、本発明を完成した。
 すなわち本発明は以下の構成からなる。
1.少なくとも、無機層と樹脂層から構成されてなる積層体の製造方法であって、下記(1)~(3)の工程を含むことを特徴とする積層体の製造方法。
(1)無機層の少なくとも片面の表面をカップリング剤処理する工程
(2)上記(1)の工程によりカップリング剤処理された無機層の少なくとも片面に、無機層と樹脂層の間の接着剥離強度は異なり表面粗さは略同一である良好接着部分と易剥離部分を形成するパターン化処理を行う工程
(3)上記(2)の工程によりパターン化した無機層のカップリング剤処理面上に樹脂溶液あるいは、樹脂前駆体溶液を塗布して得られた塗布溶液層を乾燥、次いで熱処理し前記樹脂層を形成する工程 
2.前記パターン化処理は、カップリング剤処理層の一部に不活性化処理を施して所定のパターンを形成することにより行う1.に記載の積層体の製造方法。
3.前記不活性化処理が、所定部分を被覆ないし遮蔽した上で行われる、ブラスト処理、真空プラズマ処理、大気圧プラズマ処理、コロナ処理、活性放射線照射処理、活性ガス処理、および薬液処理からなる群より選択される少なくとも一種以上の処理を行う2.に記載の積層体の製造方法。
4.前記活性放射線処理が、UV照射処理である3.に記載の積層体の製造方法。
5.前記樹脂層が、芳香族ジアミン類と芳香族テトラカルボン酸類との反応によって得られるポリイミドからなる、1.~4.のいずれかに記載の積層体の製造方法。
6.前記樹脂層が、芳香族ジアミン類と芳香族テトラカルボン酸類との反応によって得られるポリイミドからなり、該芳香族ジアミン類の70モル%以上が少なくともベンゾオキサゾール構造を有する芳香族ジアミン、ジアミノジフェニルエーテル構造を有する芳香族ジアミンおよびフェニレンジアミン構造を有する芳香族ジアミンの1種以上から選択されてなる芳香族ジアミン類からなり、該芳香族テトラカルボン酸類のうち70モル%以上が少なくともピロメリット酸二無水物、ビフェニルテトラカルボン酸ニ無水物の1種以上から選択されてなる芳香族テトラカルボン酸類からなる1.~5.のいずれかに記載の積層体の製造方法。
7.無機層と樹脂層がカップリング剤処理層を介して積層されてなる積層体であって、前記無機層と前記樹脂層との間の剥離強度が異なる良好接着部分と易剥離部分を有しており、該良好接着部分と該易剥離部分とが所定のパターンを形成していることを特徴とする1.~6.のいずれかに記載の製造方法により得られた積層体。
8.前記易剥離部分における無機層と樹脂層との間の180度剥離強度が、良好接着部分で1N/cm以上であり、前記易剥離部分における無機層と樹脂層との間の180度剥離強度が、前記良好接着部分における無機層と樹脂層との間の180度剥離強度の50%以下である7.に記載の積層体。
9.前記樹脂層の厚さが0.5μm~50μmであり、前記樹脂層の面方向の線膨張係数が、-5ppm/℃~+35ppm/℃である7.~8.のいずれかに記載の積層体。
10.樹脂層上にデバイスが形成されてなる構造体を製造する方法であって、無機層と樹脂層を有する7.~9.のいずれかに記載の積層体を用い、該積層体の樹脂層上にデバイスを形成した後、前記積層体の易剥離部分の樹脂層に切り込みを入れて該樹脂層を前記無機層から剥離することを特徴とするデバイス構造体の製造方法。
 本発明の製造方法で得られる積層体は、無機層(ガラス板、セラミック板、シリコンウェハ、金属等)の一面と、樹脂層とが、カップリング剤層を介して貼り合わされた積層体であって、あらかじめ決めたパターンによって、無機層と樹脂層の接着剥離強度が異なり良好接着部分と易剥離部分のポリイミド表面にパターンに従って分かれているので、樹脂層の上にデバイスを作製した後、易剥離部分の樹脂フィルムに切り込みを入れて剥離することによって、容易にデバイス付きの樹脂層を得ることができる。
 本発明によれば、絶縁性で可撓性、耐熱性を兼ね備えた薄い樹脂層に回路などを形成できる。さらに電子部品を搭載して電子デバイスを作成する時にも、薄い樹脂層であっても寸法安定性に優れた無機層に積層され固定されていることで精密な位置決めができ、多層に薄膜作成、回路形成など行なうことができ、プロセス中には熱が加わっても剥がれず、デバイス作成後に必要に応じてこの無機基板を剥がす際にも、樹脂層と基板との剥離がスムースに実施できかつプロセス通過において剥離することのない剥離強度を有する積層体であるため、従来の電子デバイス作成プロセスをそのまま使うことが可能である。
また、単結晶および多結晶Siによる太陽電池などは、薄型化が進むなか、割れ易く、出来上がった後の耐久性に問題があったが、基板とするポリイミド層を本発明のように無機層との積層体とすることにより、これら問題も解消できる。またこのときに容易に剥がせる部分があるため、電極引き出しも可能な補強基板を作製しうる。
[規則91に基づく訂正 19.04.2012] 
UV照射工程例1(1)無機層(2)無機層上にシランカップリング剤塗布乾燥してシランカップリング剤層形成(3)UV光を遮断するマスク設置後にUV照射処理(4)UV照射処理後に、UV光を遮断するマスクの除去(5)樹脂層の作製(6)樹脂フィルムのシランカップリング剤層UV照射処理部周辺の切断とガラスからの剥離 UV照射工程例2(1)無機層(2)無機層上にシランカップリング剤塗布乾燥してシランカップリング剤層形成(3)UV光を遮断するマスク設置後にUV照射処理(4)UV照射処理後に、UV光を遮断するマスクの除去(5)樹脂層の作製と回路配線作成(6)樹脂フィルムのシランカップリング剤層UV照射処理部周辺の切断とガラスからの剥離 パターン例 図4は、デバイス構造体の一例である表示装置(表示用パネル)を示す断面図(1)および上面図(2)である。 図5は、デバイス構造体の他の一例である表示装置(表示用パネル)を示す断面図である。
(積層体)
本発明の積層体の製造方法は、少なくとも無機層と樹脂層から構成される積層体を製造する方法である。
(無機層)
本発明における無機層は、無機物からなり基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、シリコンウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、シリコンウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。
前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/℃以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング7059」や「コーニング1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、SCHOTT社製の「AF32」などが望ましい。
前記セラミック板としては、Al、Mullite、AlN、SiC、Si、BN、結晶化ガラス、Cordierite、Spodumene、Pb-BSG+CaZrO+Al、Crystallized glass+Al、Crystallized Ca-BSG、BSG+Quartz、BSG+Quartz、BSG+Al、Pb+BSG+Al、Glass-ceramic、ゼロデュア材などの基板用セラミックス、TiO、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、アルミナ、MgO、ステアタイト、BaTi、BaTiO、BaTi4+CaZrO3、BaSrCaZrTiO3、Ba(TiZr)O3、PMN-PTやPFN-PFWなどのキャパシター材料、PbNb26、Pb0.5Be0.5Nb26、PbTiO3、BaTiO3、PZT、0.855PZT-95PT-0.5BT、0.873PZT-0.97PT-0.3BT、PLZTなどの圧電材料が含まれる。
前記シリコンウエハとしては、n型或はp型にドーピングされたシリコンウエハ、イントリンシックシリコンウエハ等の全てが含まれ、また、シリコンウエハの表面に酸化シリコン層や各種薄膜が堆積されたシリコンウエハも含まれ、シリコンウエハのほか、ゲルマニウム、シリコンーゲルマニウム、ガリウム-ヒ素、アルミニウム-ガリウム-インジウム、窒素-リン-ヒ素-アンチモンがよく用いられている。さらに、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛) などの汎用の半導体ウエハも含まれる。
 前記金属としては、W、Mo、Pt、Fe、Ni、Auといった単一元素金属、インコネル、モネル、ニモニック、炭素銅、Fe-Ni系インバー合金、スーパーインバー合金、といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。この場合、付加層との全体のCTEが低ければ、主金属層にCu、Alなども用いられる。付加金属層として使用される金属としては、ポリイミドフィルムとの密着性を強固にするもの、拡散がないこと、耐薬品性や耐熱性が良いこと等の特性を有するものであれば限定されるものではないが、クロム、ニッケル、TiN、Mo含有Cuが好適な例として挙げられる。
前記無機層の平面部分は、充分に平坦である事が望ましい。具体的には、表面粗さのP-V値が50nm以下、より好ましくは20nm以下、さらに好ましくは5nm以下である。これより粗いと、ポリイミド層と無機層との剥離強度が不充分となる虞がある。
(樹脂層)
 本発明での樹脂層としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、全芳香族ポリエステル、メソゲン骨格を有するエポキシ樹脂、ポリアセタール、ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエーテルサルフォン、フッ素樹脂、ポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリベンゾチアゾール、ポリイミド、芳香族ポリアミドイミド、芳香族ポリエーテルエーテルケトン、芳香族ポリエーテルケトンケトン、ポリフェニレンスルフィド、芳香族ポリアリレートに例示される耐熱性樹脂から構成される樹脂層であることが好ましい。前記のような耐熱性に優れ、かつ強靭である樹脂材料を適用することができ、このうちポリイミドから構成される樹脂層であることがより好ましい。耐熱性を持ち、寸法安定性が求められることから、芳香環を持ち、極性の大きな連結基として、-CONH-、 -COO-、 -CO-、 -SO- に例示される基を持つことがさらに好ましい。更には、高分子主鎖中に2重鎖構造を導入して剛直な棒状構造を持つことも耐熱、寸法安定の観点から好ましい。別の考え方として、3次元網目構造を作有することも、耐熱性を向上させる手段となる。
(ポリアミド酸)
 本発明におけるポリイミドの前駆体であるポリアミド酸は、芳香族ジアミン類と芳香族テトラカルボン酸類との反応によって得られるポリアミド酸であり、ポリイミドの前駆体となるものである。該ポリアミド酸は溶媒中で、芳香族ジアミン類と芳香族テトラカルボン酸類とを反応させることにより得ることができる。
(芳香族ジアミン類)
ポリアミド酸を構成する芳香族ジアミン類は、その70モル%以上(すなわち全芳香族ジアミン類の70モル%以上)が、ベンゾオキサゾール構造を有する芳香族ジアミン、4,4'‐ジアミノジフェニルエーテル構造を有する芳香族ジアミンおよびパラフェニレンジアミン構造を有する芳香族ジアミンの少なくとも1種以上から選択されてからなる芳香族ジアミン類であることが重要である。当該ジアミンを所定量使用することにより剛直な分子が高度に配向した高弾性率、低熱収縮、低線膨張係数でかつ高い耐熱性を有するポリイミド層を得ることができる。前記ジアミン類のうち、ベンゾオキサゾール構造を有する芳香族ジアミンを使用することが好ましい。
なお、ベンゾオキサゾール構造を有する芳香族ジアミン、4,4'‐ジアミノジフェニルエーテル構造を有する芳香族ジアミンおよびパラフェニレンジアミン構造を有する芳香族ジアミンの少なくとも1種が、芳香族ジアミン類の80モル%以上であることが好ましく、より好ましくは90モル%以上である。
 ベンゾオキサゾール構造を有する芳香族ジアミン類の分子構造は特に限定されるものではなく、具体的には以下のものが挙げられる。ベンゾオキサゾール構造を有する芳香族ジアミンは、単独で用いてもよいし二種以上を併用してもよい。
 5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミノフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール。
 これらの中でも、合成のし易さの観点から、アミノ(アミノフェニル)ベンゾオキサゾールの各異性体が好ましく、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾールがより好ましい。ここで、「各異性体」とは、アミノ(アミノフェニル)ベンゾオキサゾールが有する2つアミノ基が配位位置に応じて定められる各異性体である。
 ジアミノジフェニルエーテル構造を有する芳香族ジアミンとしては、4,4’-ジアミノジフェニルエーテル(4,4’-オキシジアニリン)、3,3’-ジアミノジフェニルエーテルおよび3,4’-ジアミノジフェニルエーテルが挙げられ、特に4,4’-ジアミノジフェニルエーテルが好ましい。
フェニレンジアミン構造を有する芳香族ジアミンとしては、p-フェニレンジアミン(1,4-ジアミノベンゼン)、m-フェニレンジアミン、o-フェニレンジアミンが挙げられ、p-フェニレンジアミンが特に好ましい。
 本発明においては、全ジアミンの30モル%以下であれば下記に例示されるジアミン類を一種または二種以上を併用しても構わない。そのようなジアミン類としては、例えば、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-アミノベンジルアミン、p-アミノベンジルアミン、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、2,2’-ビス(ビフェニル)ベンジジンおよび上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てがハロゲン原子、炭素数1~3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1~3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。
<芳香族テトラカルボン酸類>
ポリアミド酸を構成する芳香族テトラカルボン酸類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族テトラカルボン酸またはこれらの酸無水物を用いることができる。芳香族テトラカルボン酸類が酸無水物で有る場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。芳香族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
 本発明で用いられる芳香族テトラカルボン酸類としては、具体的には、以下のものが挙げられる。これらのテトラカルボン酸ニ無水物は単独で用いてもよいし、二種以上を併用してもよい。これらのうち、ピロメリット酸二無水物またはビフェニルテトラカルボン酸ニ無水物のいずれか1種以上を、全芳香族テトラカルボン酸のうち70モル%以上含有することが好ましい。
ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸ニ無水物、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ニ無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸ニ無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン酸二無水物。
 また、上記芳香族テトラカルボン酸二無水物の芳香環上の水素原子の一部もしくは全てがフェニル基、ビフェニル基、ナフチル基などで置換された芳香族テトラカルボン酸二無水物等を使用してもよい。
 本発明では、ピロメリット酸二無水物、及びビフェニルテトラカルボン酸二無水物の骨格を有する芳香族テトラカルボン酸類とベンゾオキサゾール構造を有する芳香族ジアミン類、4,4'‐ジアミノジフェニルエーテル骨格を有する芳香族ジアミン類の組み合わせで得られるポリイミドを用いることが特に好ましい。なぜなら、上記の組み合わせのポリイミドを使用すると、ポリイミド積層体から反りの小さいポリイミドフィルムが得られるためである。このようなポリイミド積層体のポリイミド層の易剥離部分にデバイスを作製すると、剥離した際にポリイミドフィルム表面に作製したデバイスの破壊が見られない。
上記の好ましい組成において、ビフェニルテトラカルボン酸は全芳香族テトラカルボン酸中の1~50mol%が好ましく、さらに好ましくは5~30mol%、最も好ましくは10~20mol%である。
上記の好ましい組成において、4,4'‐ジアミノジフェニルエーテルは全芳香族ジアミン類中の1~60mol%の範囲が好ましく、さらに好ましくは5~30mol%、最も好ましくは10~30mol%である。
 芳香族テトラカルボン酸類と芳香族ジアミン類とを反応(重合)させてポリアミド酸を得るときに用いる溶媒は、原料となるモノマーおよび生成するポリアミド酸のいずれをも溶解するものであれば特に限定されないが、極性有機溶媒が好ましく、例えば、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリックアミド、エチルセロソルブアセテート、ジエチレングリコールジメチルエーテル、スルホラン、ハロゲン化フェノール類等があげられる。これらの溶媒は、単独あるいは混合して使用することができる。溶媒の使用量は、原料となるモノマーを溶解するのに十分な量であればよく、具体的な使用量としては、モノマーを溶解した溶液に占めるモノマーの重量が、通常5~40重量%、好ましくは10~30重量%となるような量が挙げられる。
 ポリアミド酸を得るための重合反応(以下、単に「重合反応」ともいう)の条件は従来公知の条件を適用すればよく、具体例として、有機溶媒中、0~80℃の温度範囲で、10分~120時間連続して撹拌および/または混合することが挙げられる。必要により重合反応を分割したり、温度を上下させてもかまわない。この場合に、両モノマーの添加順序には特に制限はないが、芳香族ジアミン類の溶液中に芳香族テトラカルボン酸無水物類を添加するのが好ましい。重合反応によって得られるポリアミド酸溶液に占めるポリアミド酸の重量は、好ましくは5~40重量%、より好ましくは10~30重量%であり、前記溶液の粘度はブルックフィールド粘度計による測定(20℃)で、取り扱いやすさの点から、好ましくは1~1000Pa・sであり、より好ましくは3~600Pa・sである。
 重合反応中に真空脱泡することは、良質なポリアミド酸溶液を製造するのに有効である。また、本発明の分子末端封鎖のためにジカルボン酸無水物、トリカルボン酸無水物、アニリン誘導体などの末端封止剤を用いることが出来る。本発明で好ましく用いられるのは、無水フタル酸、無水マレイン酸、4-エチニル無水フタル酸、4-フェニルエチニル無水フタル酸、エチニルアニリン、であり、無水マレイン酸の使用がより好ましい。末端封止剤の使用量は、モノマー成分1モル当たり0.001~1.0モル比である。
 本発明では更に、ポリイミド層の性能向上を目的として、ポリアミド酸溶液に消泡剤、レベリング剤、難燃剤、架橋剤、搖変剤、分散剤などの添加物を加えても良い。これら添加物は、その目的によって様々であり、特に限定されるものではない。また、添加方法、添加時期においても特に限定されるものではない。
 本発明ではポリイミド層の性能向上を目的として、ポリアミド酸溶液にフィラーを加えても良い。本発明におけるフィラーとは、体積平均粒子径が0.001~10μmの無機物からなる微粒子であり、金属、金属酸化物、金属窒化物、金属炭素化物、金属酸塩、リン酸塩、炭酸塩、タルク、マイカ、クレイ、その他粘土鉱物、等からなる粒子を用いることができ、好ましくは酸化珪素、リン酸カルシウム、リン酸水素カルシウム、リン酸2水素カルシウム、ピロリン酸カルシウム、ヒドロキシアパタイト、炭酸カルシウム、ガラスフィラーなどの金属酸化物、リン酸塩、炭酸塩を用いることができる。
(カップリング剤)
 本発明におけるカップリング剤とは、無機層と樹脂層との間に物理的ないし化学的に介在し、両者の接着力を高める作用を有する化合物を意味し、一般的にはシラン系カップリング剤、リン系カップリング剤、チタネート系カップリング剤等として知られている化合物を含む。
カップリング剤層とはカップリング剤処理により形成される主としてカップリング剤で構成される層を意味する。カップリング剤層は、本発明における無機層、ポリイミド層、ならびに一般的な接着剤や粘着剤と比較しても極めて薄く、機械設計的な観点からは無視される程度の厚さである。原理的には最低限、単分子層オーダーの厚さがあれば十分である。厚さは好ましくは0.1nm~500nm、より好ましくは 0.3nm~250nm、さらに好ましくは1nm~100nm、特に好ましくは1nm~50nm、最も好ましくは1nm~20nmである。また、極力カップリング剤が少ないことを望むプロセスでは、5nm以下も可能である。ただし、1nm未満では、剥離強度が低下するか、部分的に付かない部分が出る虞があるため、1nm以上が好ましい。
カップリング剤層の厚さは、エリプソメトリー法、ないし、塗布時のカップリング剤溶液の濃度と塗布量から計算的して求めることができる値である。
カップリング剤は特に限定されるものではないが、アミノ基或はエポキシ基を持ったシランカップリング剤が、好ましい。シランカップリング剤の好ましい具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3―トリエトキシシリルーN-(1,3-ジメチルーブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、トリス-(3-
トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシランなどが挙げられる。
本発明で用いることのできるカップリング剤としては、上記のほかに、1-メルカプト-2-プロパノール、3-メルカプトプロピオン酸メチル、3-メルカプト-2-ブタノール、3-メルカプトプロピオン酸ブチル、3-(ジメトキシメチルシリル)-1-プロパンチオール、4-(6-メルカプトヘキサロイル)ベンジルアルコール、11-アミノ-1-ウンデセンチオール、11-メルカプトウンデシルホスホン酸、11-メルカプトウンデシルトリフルオロ酢酸、2,2‘―(エチレンジオキシ)ジエタンチオール、11-メルカプトウンデシルトリ(エチレングリコール)、(1-メルカプトウンデイックー11-イル)テトラ(エチレングリコール)、1-(メチルカルボキシ)ウンデック-11-イル)ヘキサ(エチレングリコール)、ヒドロキシウンデシルジスルフィド、カルボキシウンデシルジスルフィド、ヒドロキシヘキサドデシルジスルフィド、カルボキシヘキサデシルジスルフィド、テトラキス(2-エチルヘキシルオキシ)チタン、チタンジオクチロキシビス(オクチレングリコレート)、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムトリブトキシモノステアレート、アセトアルコキシアルミニウムジイソプロピレート、n-プロピルトリメトキシシラン、ブチルトリクロロシラン、2-シアノエチルトリエトキシシラン、シクロヘキシルトリクロロシラン、デシルトリクロロシラン、ジアセトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジメチルシラン、ジメトキシジフェニルシラン、ジメトキシメチルフェニルシラン、ドデシルリクロロシラン、ドデシルトリメトキシラン、エチルトリクロロシラン、ヘキシルトリメトキシシラン、オクタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、n-オクチルトリクロロシラン、n-オクチルトリエトキシシラン、n-オクチルトリメトキシシラン、トリエトキシエチルシラン、トリエトキシメチルシラン、トリメトキシメチルシラン、トリメトキシフェニルシラン、ペンチルトリエトキシシラン、ペンチルトリクロロシラン、トリアセトキシメチルシラン、トリクロロヘキシルシラン、トリクロロメチルシラン、トリクロロオクタデシルシラン、トリクロロプロピルシラン、トリクロロテトラデシルシラン、トリメトキシプロピルシラン、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリクロロビニルシラン、トリエトキシビニルシラン、ビニルトリス(2-メトキシエトキシ)シラン、トリクロロ-2-シアノエチルシラン、ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、3-グリシジルオキシプロピルトリメトキシシラン、2,3-ブタンジチオール、1-ブタンチオール、2-ブタンチオール、シクロヘキサンチオール、シクロペンタンチオール、1-デカンチオール、1-ドデカンチオール、3-メルカプトプロピオン酸-2-エチルヘキシル、3-メルカプトプロピオン酸エチル、1-ヘプタンチオール、1-ヘキサデカンチオール、ヘキシルメルカプタン、イソアミルメルカプタン、イソブチルメルカプタン、3-メルカプトプロピオン酸、3-メルカプトプロピオン酸-3-メトキシブチル、2-メチル-1-ブタンチオール、1-オクタデカンチオール、1-オクタンチオール、1-ペンタデカンチオール、1-ペンタンチオール、1-プロパンチオール、1-テトラデカンチオール、1-ウンデカンチオール、1-(12-メルカプトドデシル)イミダゾール、1-(11-メルカプトウンデシル)イミダゾール、1-(10-メルカプトデシル)イミダゾール、1-(16-メルカプトヘキサデシル)イミダゾール、1-(17-メルカプトヘプタデシル)イミダゾール、1-(15-メルカプト)ドデカン酸、1-(11-メルカプト)ウンデカン酸、1-(10-メルカプト)デカン酸などを使用することもできる。
 このうち好ましいものとしては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3―トリエトキシシリルーN-(1,3-ジメチルーブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで高い耐熱性が要求される場合、Siとアミノ基の間を芳香族でつないだものが望ましい。
(カップリング剤処理)
 本発明におけるカップリング剤処理とは、無機層の表面にカップリング剤を存在せしめる処理であり、カップリング剤処理を施してカップリング処理層を形成する方法よしては、カップリング剤を直接もしくは溶剤などで希釈して、無機層に塗布乾燥し熱処理する方法、カップリング剤そのものもしくは溶剤などで希釈した溶液中に無機層を浸漬した後に乾燥し熱処理する方法、樹脂溶液ないし溶融樹脂中に添加し、樹脂フィルム作製と同時にカップリング剤処理する方法等を採用することができる。
 カップリング剤もしくはその希釈液の塗布方法としては、従来公知の方法を採用すればよい。また例えば、凸版材料凹版材料などの印刷用版材のような転写媒体、ないし「はんこ」にカップリング剤もしくはその希釈液を付着させてそれを転写した後、スピンコーターで全面に拡散させる方法、インクジェットによりカップリング剤もしくはその希釈液を全面印刷する方法、その他の既存の印刷手法を利用する方法を採用してもよい。カップリング剤の塗布量(付着量または含有量)は、形成されるカップリング処理層の膜厚が後述する厚さになるよう適宜設定すればよい。熱処理の際の条件は、50~250℃が好ましく、より好ましくは75~165℃、さらに好ましくは95~155℃程度の温度で、好ましくは30秒以上、より好ましくは2分以上、さらに好ましくは5分以上、加熱すればよい。加熱温度が高すぎると、カップリング剤の分解ないし不活性化が生じる場合があり、低すぎると定着が不十分となる。また加熱時間が長すぎても同様の問題が生じる場合があり、加熱時間の上限は好ましくは5時間、さらに好ましくは2時間程度である。なお、カップリング剤処理を行う際には、処理中のpHが性能に大きく影響する事が知られているので、適宜pHを調整することが望ましい。
 (パターン化処理)
 本発明におけるパターン化処理とは、カップリング剤処理層表面に、無機層とポリイミド層との接着強度は異なり表面粗さが略同一である、良好接着部分と易剥離部分を形成する処理をさす。
パターン化処理の一例としては、カップリング剤処理により形成される厚さ数nmから数10nmというごく薄いカップリング処理層において、接着剥離強度が高い良好接着部分と、接着剥離強度が低い易剥離部分との2通りの領域を意図したパターンで形成する。好ましくはこの良好接着部分と易剥離部分とは、表面粗さは略同一である。
パターン化処理の手段としては、カップリング剤処理を施してカップリング処理層を形成し、次いでカップリング処理層の一部に不活性化処理又は活性化処理を施して所定のパターンを形成することにより行うことが好ましい。これにより、支持体と樹脂層の間の剥離強度(接着剥離強度)が強い部分と弱い部分を意図的に作り出すことができる。本発明においては、カップリング処理層の一部に不活性化処理を施すことが、より好ましい。なお、カップリング処理層を不活性化処理するとは、物理的にカップリング処理層を部分的に除去する(いわゆるエッチングする)こと、物理的にカップリング処理層を微視的にマスキングすること、カップリング処理層を化学的に変性することを包含する。
なお、表面粗さが略同一であるとは、良好接着部分の平均表面粗さ(Ra1)と易剥離部分における平均表面粗さ(Ra2)の測定値が、以下の式(1)を満足するものをさす。
 |Ra1―Ra2|÷Ra1×100≦50   (1)
カップリング剤処理層の一部を選択的に不活性化処理して所定のパターンを形成する手段としては、所定のパターンに応じた部分をマスクで一時的に被覆ないし遮蔽したうえで全面にエッチング等を施し、その後マスクを取り去るようにしてもよいし、可能であれば直描方式で所定のパターンに応じてエッチング等を行うようにしてもよい。マスクとしては、一般的にレジスト、フォトマスク、メタルマスクなどとして使われている物をエッチング方法に応じて適宜選択して用いればよい。エッチングの手法としては薬液を用いるウエットエッチング、活性ガスやプラズマなどを用いるドライエッチングのいずれを用いても良い。
パターン形状は、積層するデバイスの種類等に応じて適宜設定すればよく、特に限定されない。一例を挙げると図3に示す通りであり、図3の(1)に示すように、積層体の外周部のみに良好接着部分10が配置され、積層体の内部に易剥離部分20が配置されているパターンや、図3の(2)に示すように、積層体の外周部とともに内部にも線状に良好接着部分10が配置されたパターンが挙げられる。
前記不活性処理としては、ブラスト処理、真空プラズマ処理、大気圧プラズマ処理、コロナ処理、活性放射線照射処理、活性ガス処理、薬液処理からなる群より選択される少なくとも一種以上の処理を使用することが出来る。
前記ブラスト処理とは、平均粒子径が0.1~1000μmの粒子を、気体ないし液体と共に対象物に吹き付ける処理を云う。本発明では、可能な範囲で平均粒子径が小さい粒子を用いたブラスト処理を使用することが好ましい。
 前記真空プラズマ処理とは、減圧されたガス中での放電によって生じるプラズマ中に対象物を暴露するか、ないしは、同放電によって生じたイオンを対象物に衝突させる処理を云う。ガスとしては、ネオン、アルゴン、窒素、酸素、フッ化炭素、二酸化炭素、水素等の単独、ないし混合ガスを用いることができる。
 前記大気圧プラズマ処理とは、概ね大気圧雰囲気下におかれた気体中で生じる放電によって生じるプラズマ中に対象物を暴露するか、ないしは、同放電によって生じたイオンを対象物に衝突させる処理を云う。気体としてはネオン、アルゴン、窒素、酸素、二酸化炭素、水素等の単独ないし混合ガスを用いることができる。
前記コロナ処理とは概ね大気圧雰囲気下におかれた気体中で生じるコロナ放電雰囲気に対象物を暴露するか、ないしは、同放電によって生じたイオンを対象物に衝突させる処理を云う。
前記活性放射線照射処理とは、電子線、アルファ線、X線、ベータ線、赤外線、可視光線、紫外線などの放射線を照射する処理を云う。なお、レーザー光照射処理を行う場合には、特に直描方式で処理を行うことが容易になる。なおこの場合、可視光レーザーであっても、一般の可視光線と比較して遙かに大きなエネルギーを有するため、本発明では活性放射線の一種として扱うことができる。
 前記活性ガス処理とは、カップリング剤処理層に化学的、ないし物理的変化を生じせしめる活性を有する気体、例えばハロゲンガス、ハロゲン化水素ガス、オゾン、高濃度の酸素ガス、アンモニア、有機アルカリ、有機酸などのガスに対象物を暴露する処理を云う。
前記薬液処理とは、カップリング剤処理層に化学的、ないし物理的変化を生じせしめる活性を有する液体、例えばアルカリ溶液、酸溶液、還元剤溶液、酸化剤溶液、などの液体、ないし溶液に対象物を暴露する処理を云う。
本発明に於いて特に生産性の観点からは、このような処理の内、活性放射線とマスクを組み合わせた方法を、ないし大気圧プラズマ処理とマスクを組み合わせた方法が好ましく用いられる。活性放射線処理としては経済性、安全性の観点から紫外線照射処理、すなわちUV照射処理が好ましい。
 またUV処理であれば、無機層がとしてUV透過性を有するものを選択する場合には、無機層のカップリング剤処理を行った面とは逆の面から、直接描画、ないしマスクを介してUV照射を行うこともできる。以上のことから、本発明においては、UV照射により不活性化処理を行うことが好ましく、以下詳細に説明する。
 本発明におけるUV照射処理とは、400nm以下の波長の紫外線(UV光)を発生する装置中に、カップリング剤処理を施した無機層を入れてUV光を照射する処理であり、UV光波長は好ましくは260nm以下であり、更に好ましくは200nm以下の波長であるのがよい。かかる短波長のUV光を酸素が存在する環境下で照射すると、試料(カップリング処理層)にUV光のエネルギーが加わるとともに、試料近傍に励起状態にある活性な酸素やオゾンが発生することとなり、本発明の不活性化処理をより効果的に行うことができる。ただし170nm以下の波長では酸素によるUV光の吸収が著しいため、無機カップリング剤処理層にUV光を到達させるための考慮が必要となる。完全に酸素の無い雰囲気での照射では、活性酸素やオゾンによる、表面改質(不活性化)の効果が現れないため、UV光が通過しつつ、活性酸素やオゾンも到達するように工夫を要する。例えば、窒素雰囲気中にUV光源を置き、石英ガラスを透過させてUV光を当てるといった装置上の工夫により、石英ガラスからカップリング処理層までの距離を短くして、UV光の吸収を抑えるといった工夫のほか、雰囲気を通常の大気ではなく酸素量をコントロールしたものとしてUV光の酸素吸収をコントロールする方法、UV光源、カップリング処理層間の気体の流れを制御することなども、UV光の透過とオゾンの発生量を制御する方法として有効である。
UV光の照射強度は、少なくとも150nm~400nmの波長範囲に感度のピークを持つ紫外線光量計を用いて測定した際に5mW/cm2以上が好ましく、200mW/cm2以下がガラスの変質防止のため望好ましい。UV光の照射時間は、0.1分以上30分以下が好ましく、より好ましくは0.5分以上、さらに好ましくは1分以上、特に好ましくは2分以上であり、より好ましくは10分以下、さらに好ましくは5分以下、特に好ましくは4分以下である。UV光の照射時間が長くなると、生産性が低下する虞があり、逆に短すぎると、より高強度の光源が必要となったり、照射時間のコントロールに精度が要求されることになるので、好ましくない。積算光量に換算すると、30mJ/cm2~360000mJ/cm2が好ましく、より好ましくは300mJ/cm2~120000mJ/cm2であり、さらに好ましくは600mJ/cm2~60000mJ/cm2である。
UV照射処理時のパターン形成は、光を照射する部分と、照射しない部分を意図的に作ることによって行う。パターンを形成する方法としてはUV光を遮蔽する部分と遮蔽しない部分を作るか、UV光をスキャンさせる方法などがありえる。パターンの端部を明確にするためには、UV光を遮断するとともに遮蔽物でカップリング剤処理層を覆うことが有効である。また、UVレーザーの平行光線によってスキャンすることも有効である。
 UV照射処理に使える光源としては、例えば、エキシマランプ、低圧水銀ランプ、高圧水銀ランプ、Xeランプ、Xeエキシマレーザー、ArFエキシマレーザー、KrFエキシマレーザー、XeClエキシマレーザー、XeFエキシマレーザー、Arレーザー、D2ランプなどが挙げられる。中でも、エキシマランプ、低圧水銀ランプ、Xeエキシマレーザー、ArFエキシマレーザー、KrFエキシマレーザーなどが好ましい。
 以上のように不活性化処理されたカップリング処理層には、不活性化(エッチング)されているか否かによって、無機層とフィルムとの剥離強度が強い部分である良好接着部分と、無機層と樹脂フィルムとの剥離強度が弱い部分である易剥離部分とからなるパターンが形成される。例えば、後述の実施例に例示するように、γ-アミノプロピルトリメトキシシランをガラスに塗布した場合は、UV未照射部が剥離強度の強い良好接着部分となり、UV照射によってアミノ基を壊してしまうことで剥離強度が弱まり、UV照射部が易剥離部分となる。これは、後述の測定例に示すように、UV照射によって窒素(N)元素のAtomic percentは下がり、続いて炭素(C)も減ることから、アミノ基、プロピルが壊れていることが示唆されることから推察できる。他方、例えばn-プロピルトリメトキシシランのように官能基のないカップリング剤により支持体にカップリング処理層を形成した場合には、逆に、UV照射していない部分が易剥離部分となり、UV光を照射してプロピル部分を壊してしまうことによって良好接着部分が形成される。支持体としてはガラスを基板とすることが工業的に有利であり、この場合、UV照射によって剥離強度を低下させることがより実用的であるが、用途、使用基板、必要とする剥離強度によっては、UV光照射部分を良好接着部分とすることも考えられる。
(応用)
 本発明での応用例として、樹脂積層体中の樹脂層または積層体の膜厚方向に貫通する孔部分を設けて非樹脂部分を設けてもよい。該部分としては、特に限定はされるものではないが、好ましくは、Cu,Al,Ag,Auなどの金属を主たる成分としている金属で充填されているもの、機械式のドリルやレーザー穴あけによって形成された空孔、および、空孔の壁面に、金属膜がスパッタリング、無電解めっきシード層形成、などにより形成されているものが挙げられる。
以下、ポリイミド系樹脂を用いる場合について例示する。
(ポリイミド層の製造方法)
 ポリイミド層は、パターン化処理を施したカップリング剤処理面上にポリアミド酸溶液を塗布し、乾燥後に加熱ないし化学処理によりイミド化してポリイミド層とすることで得られる。または、溶剤可溶性ポリイミド樹脂の場合は、パターン化処理を施したカップリング剤処理面上にポリイミド樹脂溶液を塗布し、乾燥してポリイミド層とすることでも得られる。また、部分的にはイミド化が完了していないポリアミド酸溶液と溶剤可溶性ポリイミド樹脂の混合状態から乾燥と一部のイミド化を進めるといった、中間的な原料を使ってポリイミド層を形成してもよい。
 ポリアミド酸溶液またはポリイミド樹脂溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリット付き口金からの流延、押出機による押出し、スリットコート、リバースコート、ディップコート等の手段により行うが、これらに限られず従来公知の溶液の塗布手段を適宜用いることができる。
 前記の塗布手段により塗布したポリアミド酸溶液を乾燥する際の加熱温度は、50℃~120℃が好ましく、80℃~100℃がさらに好ましい。処理時間は5分~3時間が好ましく、15分~2時間がさらに好ましい。乾燥後の残溶媒量は25%~50%であることが好ましく、35%~45%であることがさらに好ましい。
 乾燥後のポリアミド酸を加熱してポリイミド層を作製する際の加熱温度は、150~500℃が好ましく、300~450℃がさらに好ましい。加熱時間は0.05~10時間が好ましい。加熱処理は通常、段階的または連続的に昇温しながら行う。昇温速度は好ましく20℃/分以下であり、さらに好ましくは10℃/分以下であり、特に好ましくは5℃/分以下である。また、昇温速度は0.5℃/分以上が最も好ましい。
 加熱によるイミド化を連続的に昇温しながら行う場合、100℃から昇温速度0.5℃~20℃/分で最高到達温度150℃~500℃まで連続的に昇温させ、最高到達温度で0.1分~120分保持する条件が好ましい。より好ましくは、昇温速度が1℃~10℃/分、最高到達温度が300℃~480℃、最高到達温度での保持時間が1~60分であり、最も好ましくは、昇温速度が2℃~5℃/分、最高到達温度が400℃~450℃、最高到達温度での保持時間が5~30分である。なお、ここでは便宜上、乾燥工程とイミド化工程を分けて説明したが、実際には乾燥とイミド化は同時並行的に進行する。比較的低温の乾燥工程では乾燥が支配的に、比較的高温のイミド化工程ではイミド化反応が支配的に進行する。乾燥工程とイミド化工程を分けず、連続した熱処理として行うことは工業生産的には好ましい態様である。
 加熱による乾燥、及びイミド化における昇温条件については、80℃で30分、ついで100℃で90分の乾燥の後、400℃まで5℃/分の昇温速度で上昇させ、400℃で5分間保持することが特に好ましい。
 本発明において樹脂層として溶剤可溶型のポリイミド樹脂、ポリアミドイミド樹脂などを用いる場合において、樹脂溶液を塗布した後の乾燥温度としては、150~380℃が好ましく、185~330℃がさらに好ましい。加熱時間は0.05~10時間が好ましい。加熱処理は通常、段階的または連続的に昇温しながら行う。昇温速度は好ましく20℃/分以下であり、さらに好ましくは10℃/分以下であり、最も特に好ましくは5℃/分以下である。また、昇温速度は0.5℃/分以上が最も好ましくい。
 また、本発明において樹脂層としてポリイミド系樹脂以外の溶剤可溶型の樹脂を用いる場合においては、用いる溶剤の沸点+150℃を越えない範囲の温度、好ましくは沸点+120℃を越えない範囲の温度にて乾燥、熱処理することが好ましい。乾燥時間については少なくても樹脂層の残存溶剤量が0.5質量%以下となるように適宜選択することが好ましい。
 本発明において樹脂層として熱可塑性の樹脂材料を用いる場合においては、樹脂材料を融点ないし軟化温度より35℃以上高い温度で溶融し、溶融状態で無機基板上に塗布し、室温まで20℃/分より遅い速度で冷却することが好ましい。溶融時の温度がこの範囲に充たないと、塗布ムラが生じやすい。溶融温度の上限は特に設けられないが、300℃以下、または融点ないし軟化温度より200℃高い温度を超えないことが好ましい。この温度を超えると樹脂材料の劣化が顕著になり、できあがった製品の機械的強度が不十分となる場合がある。
本発明におけるポリイミド層の30から300℃の間の平均の線膨張係数は、好ましくは、-5ppm/℃~+35ppm/℃であり、より好ましくは-5ppm/℃~+20ppm/℃であり、さらに好ましくは-2ppm/℃~+12ppm/℃であり、特に好ましくは+0ppm/℃~+10ppm/℃であり、最も好ましくは+1ppm/℃~+8ppm/℃である。この範囲から外れると、無機基板との線膨張係数の大きさの差が大きくなる為、熱を加えるプロセス中にポリイミド層と無機層が剥がれ易くなるおそれがある。なお、金属やセラミックスではこの線膨張係数は温度範囲で変化がない事が多いが、ポリイミド層では温度範囲でCTEが変化する事がある。したがって、測定下限を0℃、30℃、50℃といったものに置き換えてもよく、測定上限を200℃、300℃、400℃に置き換えることも可能である。例えば、本発明においてはポリイミドフィルムの線膨張係数は30℃から300℃の間の平均の値を用いているが、用途によって注目する温度範囲は変わり、高温でのプロセスを考慮して、30℃から400℃の範囲を調べる場合、100℃から400℃の範囲の場合もあり、リフロープロセスを念頭において、50℃から280℃の範囲を調べる場合、使用温度範囲として-50℃から150℃の範囲を重視する場合もありえる。
 本発明におけるポリイミド層の厚さは、特に限定されるものではないが、0.5μm~50μmが好ましく、より好ましくは、1μm~40μmであり、更に好ましくは5μm~30μmであり、最も好ましくは7~15μmである。これらのポリイミド層の厚さ斑も20%以下であることが好ましい。0.5μm以下では、厚さの制御が困難であり、無機層から剥がす事が困難となる。50μm以上では、ポリイミド層形成が困難であり、かつ、剥がすときに、該ポリイミド層の折れ曲がりなどがおきやすい。前記範囲の厚さを持ったポリイミド層とすることで、センサーなどの素子の高性能化や電子部品の軽小短薄化に大きく貢献できる。
 ポリイミド層の作製の際に、閉環触媒を用いても良い。本発明で使用される閉環触媒の具体例としては、安息香酸などの芳香族カルボン酸、トリメチルアミン、トリエチルアミンなどの脂肪族第3級アミン、イソキノリン、ピリジン、ベータピコリンなどの複素環式第3級アミンなどが挙げられるが、複素環式第3級アミンから選ばれる少なくとも一種のアミンを使用することが好ましい。閉環触媒の含有量は、閉環触媒の含有量(モル)/前駆体であるポリアミド酸中の含有量(モル)が0.01~10.00となる範囲が好ましい。
 ポリイミド層の作製の際に、脱水剤を用いても良い。例えば、無水酢酸、無水プロピオン酸、無水酪酸などの脂肪族カルボン酸無水物、及び無水安息香酸などの芳香族カルボン酸無水物などが挙げられるが、効率よく脱水できるものであれば、特にこれらに限定されない。脱水剤の含有量は、脱水剤の含有量(モル)/ポリアミド酸の含有量(モル)が0.01~10.00となる範囲が好ましい。
 (積層体)
本発明の積層体は、無機層とポリイミド層とがカップリング剤処理層を介して積層されてなる積層体であり、前記無機層と前記ポリイミド層との間の剥離強度が異なる良好接着部分と易剥離部分とを有しており、該良好接着部分と該易剥離部分とが所定のパターンを形成している。これにより、デバイス作製時の高温プロセスにおいても剥がれることなく、しかもポリイミド層上にデバイスを作製した後には容易に無機層からポリイミド層を剥離することができる積層体となる。本発明の積層体は、本発明の積層体の製造方法により得ることができ、無機層、カップリング処理層、ポリイミド層等の詳細については、上述した通りである。
 本発明における良好接着部分とは、例えばUV光照射の有無によって表面の性質を変えることによって、無機層とポリイミド層の剥離強度が強い部分を指す。本発明における易剥離部分とは、例えばUV光照射の有無によって表面の性質を変えることによって、無機層とポリイミド層の剥離強度が弱い部分を指す。
 本発明において、無機層とポリイミド層との間の180度剥離強度は、この上に積層するデバイスの種類やプロセスに応じて適宜設定すればよく、特に制限されないが、少なくとも、前記易剥離部分の180度剥離強度は、良好接着部分の180度剥離強度の50%以下であることが好ましく、より好ましくは30%以下、特に好ましくは、20%以下である。一般論としては、良好接着部分の180度剥離強度は、0.60N/cm以上であることが好ましく、より好ましくは1.0N/cm以上、さらに好ましくは2.0N/cm以上、特に好ましくは3.0N/cm以上であり、上限値は特に限定されるものではないが、8N/cm以下程度である。前記易剥離部分の180度剥離強度は、前述の良好接着部分に対する比率を満足すればよいが、1.5N/cm以下であることが好ましく、より好ましくは1.0N/cm以下、さらに好ましくは0.50N/cm以下く、特に好ましくは0.40N/cm以下がより好ましく、最も好ましくは0.2N/cm以下である。また、下限値は0.01N/cm以上であることが好ましい。
ここで易剥離部分の180度剥離強度の下限は、ポリイミド層の曲げエネルギーなども加味された値となっている。本発明における180度剥離強度は、実施例で後述する方法で測定することができる。
本発明の積層体においては、無機層とポリイミド層との間には、従来のように接着剤層等は介在せず、介在するのは、例えばカップリング剤に由来するSiを10質量%以上多く含むもののみである。そして無機層とポリイミド層との中間層であるカップリング処理層は非常に薄くできるので、加熱中の脱ガス成分が少なく、ウェットプロセスにおいても溶出しにくく、仮に溶出が起きても微量にとどまるという効果が得られる。またカップリング処理層は、通常、耐熱性がある酸化ケイ素成分が多く、400℃程度の温度での耐熱性が得られる。
(デバイス構造体の製造方法)
本発明のデバイス構造体の製造方法は、支持体とポリイミドフィルムとを有する本発明の積層体を用いて、基材であるポリイミドフィルム上にデバイスが形成されてなる構造体を製造する方法である。
本発明のデバイス構造体の製造方法においては、本発明の積層体のポリイミドフィルム上にデバイスを形成した後、前記積層体の易剥離部分のポリイミドフィルムに切り込みを入れて該ポリイミドフィルムを前記支持体から剥離する。
 前記積層体の易剥離部分のポリイミドフィルムに切り込みを入れる方法としては、刃物などの切断具によってポリイミドフィルムを切断する方法や、レーザーと該積層体を相対的にスキャンさせることによりポリイミドフィルムを切断する方法、ウェータージェットと該積層体を相対的にスキャンさせることによりポリイミドフィルムを切断する方法、半導体チップのダイシング装置により、若干ガラス層まで切り込みつつポリイミドフィルムを切断する方法などがあるが、特に方法は限定されるものではない。例えば、上述した方法を採用するにあたり、切削具に超音波を重畳させたり、往復動作や上下動作などを付け加えて切削性能を向上させる等の手法を適宜採用することもできる。
前記積層体の易剥離部分のポリイミド層に切り込みを入れるにあたり、切り込みを入れる位置は、少なくとも易剥離部分の一部を含んでいればよく、基本的にはパターンに従って切断するのが通常である。ただし、正確にパターンに従い良好接着部分と易剥離部分の境で切断しようとすると誤差も生じることから、パターンより若干易剥離部分側に切り込むことが生産性を上げる点で好ましい。また、剥離させるまでに勝手に剥離してしまうことを防ぐうえでは、該パターンより若干良好接着部分に切り込む生産方式もありえる。更には、良好接着部分の巾を狭く設定するようにすれば、剥離時に良好接着部分に残存するポリイミド層を減らすことができ、利用効率が向上し、該積層体面積に対するデバイス面積が多くなり、生産性が向上する。更には、積層体の外周部の一部に易剥離部分を設けるようにしておき、該外周部を切断位置として、実際には切り込みを入れずに剥がす方式も、本発明の極端な一形式となりえる。
本発明では、積層体のポリイミドフィルムのみに切り込みを入れて剥がすため、積層体の無機層部分については再利用が可能となる。
ポリイミド層を支持体から剥離する方法としては、特に制限されないが、ピンセットなどで端から捲る方法、デバイス付きのポリイミド層の切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、デバイス付きのポリイミド層の切り込み部分の1辺を真空吸着した後にその部分から捲る方法等が採用できる。なお、剥離の際に、デバイス付きのポリイミド層の切り込み部分に曲率が小さい曲がりが生じると、その部分のデバイスに応力が加わることになりデバイスを破壊する虞があるため、極力曲率の大きな状態で剥がすことが望ましい。例えば、曲率の大きなロールに巻き取りながら捲るか、あるいは曲率の大きなロールが剥離部分に位置するような構成の機械を使って捲ることが望ましい。
なお、本発明のデバイス構造体(デバイス付きのポリイミドフィルム)は、最終製品とするまでに補強部材を固定しておくことができる。
この場合、無機層から剥離した後に補強部材を固定してもよいが補強部材を固定させた後にポリイミドフィルムに切り込みを入れて支持体から剥離するか、もしくはポリイミドフィルムに切り込みを入れた後に該切り込み部分に補強部材を固定させ、その後剥離することが好ましい。補強部材としては、別途粘着剤付き高分子フィルムを接着あるいは粘着する方法などが例示できる。粘着剤付き高分子フィルムは、例えばPETフィルムが挙げられるが、既に高温を必要とするプロセスを通過した後であるため、該ポリイミドフィルムより耐熱性の制約は少なく、さまざまな高分子フィルムが選択しうる。また例えば、本発明の積層体の易剥離部分のみに補強部材として粘着剤付きPETフィルムを貼り付けておき、この粘着剤付きPETフィルムが貼りついた状態で易剥離部分に切り込みを入れてデバイス付きのポリイミド層を剥がすようにしてもよいし、本発明の積層体全体に補強部材として粘着剤付きPETフィルムを貼り付けておき、該積層体の易剥離部分に切り込みを入れて粘着剤付きPETフィルムが貼りついた状態でデバイス付きのポリイミド層を剥がすようにしてもよい。
 剥離する前に補強部材を固定させる場合には、補強部材としては、前述の高分子フィルムの他に、極薄ガラス、SUS、などが例示できる。高分子フィルムを使うことで、デバイスの軽量性が保たれる利点があり、透明性と各種加工性、割れにくいことが利点としてある。極薄ガラスを使うことで、ガスバリア性、対薬品安定性、透明性が得られることが利点としてある。SUSを使うことで、電気的にシールドできる点、割れにくいことが利点としてある。
本発明において、基材であるポリイミド層上にデバイスを形成する方法は、従来公知の方法に従い適宜行えばよい。本発明におけるデバイスとしては、特に制限はなく、例えば、電子回路用配線のみ、電気抵抗のほか、コイル、コンデンサーといった受動デバイス、半導体素子などを含む能動デバイス、およびそれらを組み合わせてなる電子回路システムがある。半導体素子としては、太陽電池、薄膜トランジスター、MEMS素子、センサー、論理回路等が挙げられる。前記論理回路としては、NAND、ORを基本とした論理回路および、クロックにより、同期が取られたものも含む。
例えば、本発明の積層体を使用したフィルム状太陽電池は、本発明の積層体のポリイミド層を基材とし、該基材上に半導体からなる光電変換層を含む積層体Xが形成されてなる。この積層体Xは、太陽光のエネルギーを電気エネルギーに変換する光電変換層を必須の構成として有し、通常、得られた電気エネルギーを取出すための電極層などをさらに有するものである。
 以下、フィルム状太陽電池を構成するよう形成される上記積層体Xの典型例として、光電変換層を一対の電極層で挟んでなる積層構造を説明する。しかし、光電変換層を何層か積み重ねた構成なども、PVDやCVDでの作製ならば、本発明の太陽電池といえる。勿論、積層体Xの積層構造は、以下に記載される態様に限定されず、従来技術の太陽電池が有する積層体の構成を適宜参照してよく、保護層や公知補助手段を付加してもよいものである。
前記一対の電極層における一方の電極層(以下、裏面電極層とも記載する)は、好ましくは、ポリイミド層の一主面上に形成される。裏面電極層は従来公知の方法、例えばCVD(ケミカル・ベーパー・デポジション)法やスパッタ法によって導電性無機材料を積層することによって得られる。導電性無機材料としては、Al、Au、Ag、Cu、Ni、ステンレス鋼などの金属薄膜や、In23、SnO2、ZnO、Cd2SnO4、ITO(In23
にSnを添加したもの)などの酸化物半導体系の導電材料などが挙げられる。好ましくは、裏面電極層は金属薄膜であるのがよい。裏面電極層の厚さは特に限定はなく、通常、30~1000nm程度である。また、一部の電極引き出しで、Agペーストといった真空を利用しない膜形成法を採用してもよい。
太陽光のエネルギーを電気エネルギーに変換する光電変換層は、半導体からなる層であり、I族元素とIII族元素とVI族元素とからなる化合物半導体薄膜(カルコパイライト構造半導体薄膜)であるCuInSe2(CIS)膜、またはこれにGaを固溶したCu(In,Ga)Se2(CIGS)膜(以下、両者をまとめてCIS系膜ともいう)、シリコン系半導体からなる層である。シリコン系半導体には、薄膜シリコン層、無定形シリコン層、多結晶シリコン層などが挙げられる。光電変換層は、異なる半導体からなる複数の層を有する積層体であってもよい。また、色素を用いた光電変換層であってもよい。さらに導電性ポリマーやフラーレンなどの有機化合物よる有機薄膜半導体を用いるものでもよい。
薄膜シリコン層は、プラズマCVD法、熱CVD法、スパッタリング法、クラスタイオンビーム法、蒸着法などによって得られるシリコン層である。
 無定形シリコン層は、実質的に結晶性をもたないシリコンからなる層である。実質的に結晶性をもたないことは、X線を照射しても回折ピークを与えないことによって確かめることができる。無定形シリコン層を得る手段は公知であり、そのような手段には、例えば、プラズマCVD法や熱CVD法などが含まれる。
 多結晶シリコン層は、シリコンからなる微小結晶の集合体からなる層である。上述の無定形シリコン層とは、X線の照射により回折ピークを与えることによって区別される。多結晶シリコン層を得る手段は公知であり、そのような手段には、無定形シリコンを熱処理する手段などが含まれる。
光電変換層は、シリコン系半導体層に限られず、例えば、厚膜半導体層であってもよい。厚膜半導体層とは、酸化チタン、酸化亜鉛、ヨウ化銅などのペーストから形成される半導体層である。
半導体材料を光電変換層として構成する手段としては、公知の方法を適宜採用すればよい。例えば、200~500℃の温度下で、SiH4にフォスフィン(PH3)を添加したガス中で高周波プラズマ放電を行うことにより約20nmのa-Si(n層)を形成し、続いてSiH4ガスのみで約500nmのa-Si(i層)を形成し、続いてSiH4にジボラン(B26)を添加して約10nmのp-Si(p層)を形成することができる。
光電変換層を挟む一対の電極層のうち、ポリイミドフィルム基材とは反対側に設けられる電極層(以下、集電電極層ともいう)は、導電フィラーとバインダー樹脂を含む導電性ペーストを固めてなる電極層であってもよいし、透明電極層であってもよい。透明電極層としては、In23、SnO2、ZnO、Cd2SnO4、ITO(In23にSnを添加したもの)などの酸化物半導体系の材料を好ましく用いることができる。
かくして、本発明の好適な態様例である、透明電極/p型a-Si/i型a-Si/n型a-Si/金属電極/ポリイミドフィルムの順で積層されてなるフィルム状太陽電池が得られる。また、p層をa-Si、n層を多結晶シリコンとして、両者の間に薄いアンドープa-Si層を挿入した構造にしてもよい。特に、a-Si/多結晶シリコン系のハイブリッド型にすると、太陽光スペクトルに対する感度が改善される。太陽電池の作製においては、上記構成に加えて、反射防止層、表面保護層などを付加せしめてもよい。
前記薄膜トランジスター(TFT)は、トランジスターを構成する半導体層および素子を構成する絶縁膜、電極、保護絶縁膜などが、薄膜を堆積させて作製されているものをいう。通常シリコンウエハのシリコンを半導体層として使用するものとは区別する。通常薄膜を真空蒸着などのPVD(物理的蒸着)、プラズマCVDなどのCVD(化学的蒸着)といった真空を利用する手法によって作製する。このため、シリコンウエハのように単結晶ではないものを含む。Siを使っても、微結晶シリコンTFT、高温ポリシリコンTFT、低温ポリシリコンTFT、そして酸化物半導体TFT、有機半導体TFTなどを含む。
前記MEMS素子とは、MEMS技術を利用して作製した物を意味し、インクジェットプリンターヘッド、走査型プローブ顕微鏡用プローブ、LSIプローバー用コンタクタ、マスクレス露光用光空間変調器、光集積化素子、赤外線センサー、流量センサー、加速度センサー、MEMSジャイロセンサー、RF MEMS スイッチ、体内・体外血圧センサーそして、グレーティングライトバルブ、デジタルマイクロミラーデバイスなどを使ったビデオプロジェクターなどを含む。
 前記センサーとしては、ストレインゲージ(ひずみゲージ) , ロードセル, 半導体圧力センサー , 光センサー ,光電素子 , フォトダイオード , 磁気センサー
, 接触式温度センサー , サーミスタ温度センサー , 抵抗測温体温度センサー , 熱電対温度センサー , 非接触式温度センサー , 放射温度計 , マイクロフォン
, イオン濃度センサー ,ガス濃度センサー , 変位 センサー, ポテンショメータ , 差動トランス変位 センサー, 回転角センサー , リニアエンコーダ ,
タコジェネレータ , ロータリエンコーダ , 光位置センサー (PSD) , 超音波距離計 , 静電容量変位計 , レーザードップラー振動速度計 , レーザードップラー流速計
, ジャイロセンサー , 加速度センサー, 地震センサー,一次元画像,リニアイメージセンサー, 二次元画像, CCDイメージセンサー, CMOSイメージセンサー,液,
漏液センサー(リークセンサー), 液検知センサー(レベルセンサー), 硬度センサー, 電場センサー, 電流センサー, 電圧センサー, 電力センサー, 赤外線センサー,
放射線センサー, 湿度センサー, においセンサー, 流量センサー, 傾斜センサー, 振動センサー, 時間センサーおよび、これらのセンサーを複合した複合センサーや、これらのセンサーで検出した値から何らかの計算式に基づき別の物理量や感性値などを出力するセンサーなどを含む。
 本発明における、積層体のポリイミド層と無機層との良好接着部分の180度剥離強度は1N/cm以上が好ましく、2N/cm以上がさらに好ましい。また、易剥離部分の180度剥離強度は良好接着部分の50%以下であることが好ましく、30%以下がさらに好ましい。また、易剥離部分の180度剥離強度の値としては1N/cm以下より好ましくは0.5N/cm、更に好ましくは0.05N/cm以下であるが、0.01N/cm以上はあることが好ましい。あまり接着力が弱いと、膜浮きの原因となりやすい。
以上、本発明の具体的態様として樹脂層にポリイミド系樹脂を用いた場合について例示してきたが、本発明においては、樹脂層はポリイミドに限定されることなく先に述べた様々な樹脂を用いて適用することが出来る。
以上に詳述した本発明の積層体の製造方法および本発明のデバイス構造体の製造方法について、各々の一実施態様を、図面を用いて説明すると、図1、図2に示す通りである。
 図1は、本発明の積層体の製造方法の一実施態様を示す模式図であり、(1)はガラス基板1を示し、(2)はガラス基板1上にカップリング剤を塗布乾燥してカップリング処理層2を形成した段階を示し、(3)はUV光遮断マスク3を設置した後にUV光を照射した段階を示し、(4)はUV光を照射後に、UV光遮断マスク3を除去した段階を示している。ここでカップリング処理層2のうちUV露光部はUV照射部5となり、残りの部分はUV未照射部4となっている。(5)はポリイミドフィルム6を貼り付けした段階を示し、(6)はUV照射部上のポリイミドフィルム7に切り込みを入れガラス基板1から剥離した段階を示す。
図2は、本発明のデバイス構造体の製造方法の一実施態様を示す模式図であり、(1)はガラス基板1を示し、(2)はガラス基板1上にカップリング剤を塗布乾燥してカップリング処理層2を形成した段階を示し、(3)はUV光遮断マスク3を設置した後にUV光を照射した段階を示し、(4)はUV光を照射後に、UV光遮断マスク3を除去した段階を示している。ここでカップリング処理層2のうちUV露光部はUV照射部5となり、残りの部分はUV未照射部4となっている。(5)はポリイミドフィルム6を貼り付けし、その後にUV照射部上のポリイミドフィルム7表面へデバイス8を作製した段階を示し、(6)はUV照射部上のポリイミドフィルム7に切り込みを入れガラス基板1から剥離した段階を示す。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、以下の実施例における物性の評価方法は下の通りである。
1.ポリアミド酸又はポリイミドの還元粘度(ηsp/C)
 ポリマー濃度が0.2g/dlとなるようにN-メチル-2-ピロリドン(又は、N,N-ジメチルアセトアミド)に溶解した溶液をウベローデ型の粘度管により30℃で測定した。(ポリアミド酸溶液の調製に使用した溶媒がN,N-ジメチルアセトアミドの場合は、N,N-ジメチルアセトアミドを使用してポリマーを溶解し、測定した。)
2.ポリアミド酸溶液又はポリイミド溶液の溶液粘度
E型粘度計(東機産業株式会社製
RE105U型)を用いて、20℃で測定した。
3.樹脂層などの厚さ
 マイクロメーター(ファインリューフ社製、ミリトロン1245D)を用いて測定した。
4.樹脂層反り測定
 測定対象の樹脂層を20mm×20mmに切り出し、アルミホイル上に置き静電気を除去した。その後、平坦なガラス板上にフィルムを乗せ、4端のガラス板からの距離を定規で測定しそれらの平均を取ることで樹脂層の反りとした。
5.180度剥離強度 
(1)不活性化処理を行わない部分の剥離強度
 無機層に所定のカップリング剤処理を行い、不活性化処理は行わずにポリイミド層を形成し、下記の手法に従って180度剥離強度を測定した。
(2)不活性化部の剥離強度
 無機層に所定のカップリング剤処理を行い、さらに不活性化処理を行った後にポリイミド層を形成し、下記の手法に従って180度剥離強度を測定した。
 
 必要に応じて所定の処理を行った無機層(一辺100mmの正方形)に、ポリアミド酸溶液をアプリケータを用いてポリイミド層の膜厚が25μmとなるようにギャップ調整して、無機層の端から10mm程度が余白となるように塗布し、マッフル炉にて窒素ガス雰囲気下、80℃で30分、ついで2℃/分で100℃まで昇温し、100℃で90分保持することで乾燥を行い、さらに5℃/分の昇温速度で100℃から400℃に昇温して、400℃で、5分温度を維持してポリアミド酸溶液をイミド化し、ポリイミド層/無機層からなる積層体を得て試料とした。試料のポリイミド層にニッカン工業製接着剤シートSAFWを重ね、更にその上に、大き目の市販ポリイミドフィルム25μm厚のものを重ねて100℃にてロールラミネート後に、160℃1時間のプレスを行い、室温冷却の後にSAFWを挟んだ両側の市販ポリイミドフィルムと無機層樹脂層積層体とを市販ポリイミドフィルムが180度折れ曲がる側として、JIS C6471 の180度剥離法に従って、N=5の測定を行い平均値を測定値とした。

装置名     ; 島津製作所社製 オートグラフAG-IS
測定温度    ; 室温 
剥離速度    ; 50mm/min 
雰囲気     ; 大気 
測定サンプル幅 ; 1cm

 なお、8N/cm付近で市販ポリイミド層とSAFWの界面剥離或は、SAFWの材料破壊との混合破壊が起きる為、無機層とポリイミド層の剥離強度はそれ以上とのみ推定できる。
6.樹脂層の線膨張係数(CTE)
 測定対象の樹脂層を無機基板より剥離したものを、下記条件にて伸縮率を測定し、30℃~45℃、45℃~60℃、…と15℃の間隔での伸縮率/温度を測定し、この測定を300℃まで行い、全測定値の平均値を線膨張係数(CTE)として算出した。

  機器名    ; MACサイエンス社製TMA4000S
  試料長さ   ; 20mm
  試料幅    ; 2mm
  昇温開始温度 ; 25℃
  昇温終了温度 ; 400℃
  昇温速度   ; 5℃/min
  雰囲気    ; アルゴン
  初荷重    ;34.5g/mm2

7.カップリング剤処理層厚さ
 カップリング剤処理層(SC層)厚さは、洗浄したシリコンウェハ上に作成したカップリング剤処理層の膜厚について、エリプソメトリー法にて、分光エリプソメータ(Photal社製「FE-5000」)を用いて下記の条件で測定した。なお、支持体としてガラスを用いた場合には、別途、洗浄したSiウエハ上に各実施例、比較例と同様の方法でカップリング剤を塗布乾燥させて得たサンプルを用いた。
 
   反射角度範囲 ; 45°から80°
  波長範囲   ; 250nmから800nm
  波長分解能  ; 1.25nm
  スポット径  ; 1mm
  tanΨ   ; 測定精度±0.01
  cosΔ   ; 測定精度±0.01
  測定     ; 方式回転検光子法
  偏向子角度  ; 45°
  入射角度   ; 70°固定
  検光子    ; 11.25°刻みで0~360°
  波長     ; 250nm~800nm
 
 非線形最小2乗法によるフィッティングで、膜厚を求めた。このとき、モデルとしては、Air/薄膜/Siのモデルで、
   n=C3/λ4+C2/λ2+C1
   k=C6/λ4+C5/λ2+C4
 の式で波長依存C1~C6を求めた。
8.表面組成比測定
 表面組成比測定は、X線光電子分光分析(ESCA)にて行い、測定装置はアルバック・ファイ社製ESCA5801MCを使用したて下記条件で行った。測定に際しては、まず全元素スキャンを行って他の元素の有無を確認した後に、存在する元素のナロースキャンを行って存在比率を測定した。なお、測定に供する試料は予備排気を十分に行った後に測定室に投入して測定を行った。測定前にサンプル表面にイオンを照射して表面を削り取るといった操作は行っていない。
  
励起X線:Mg Kα線
  光電子脱出角度:45°
  分析径:φ800μm
  パスエネルギー: 29.35eV(ナロースキャン)、
187.75eV(全元素スキャン)
  ステップ:       0.125eV(ナロースキャン)、
1.6eV(全元素スキャン)
  分析元素: C,O,N,Si,全元素
  真空度: 1×10-8 Torr以下
 
9.無機層表面の表面粗さRa
 無機層表面(カップリング処理層表面)の表面粗さRa(表面形態)の計測は、表面物性評価機能付走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー株式会社製「SPA300/nanonavi」)を用いて行った。計測はDFMモードで行い、カンチレバーはエスアイアイ・ナノテクノロジー株式会社製「DF3」又は「DF20」を使用し、スキャナーはエスアイアイ・ナノテクノロジー株式会社製「FS-20A」を使用し、走査範囲は10μm四方とし、測定分解能は512×512ピクセルとした。計測像について装置付属のソフトウエアで二次傾き補正を行った後、測定に伴うノイズが含まれる場合には適宜その他の平坦化処理(例えばフラット処理)を使用し、装置付属のソフトウエアでRa値を算出した。任意の3箇所について計測を行ってRa値を求め、それらの平均値を採用した。
[合成例1 ] 
 窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール(DAMBO)を574質量部、N-メチル-2-ピロリドン(NMP)を9900質量部導入し、完全に溶解させた後、ピロメリット酸二無水物(PMDA)を501質量部、末端封止剤としてマレイン酸無水物(MA)を50質量部となるように導入し、25℃の反応温度で96時間攪拌すると、黄色で粘調なポリアミド酸溶液Aを得た。ポリアミド酸溶液の特性を表1に示す。
[合成例2 ]
 合成例1と同様の手順に従って、4-4’オキシジアニリン (ODA)を493質量部、NMPを9000質量部、PMDAを483質量部、MAを48質量部導入し、120時間攪拌することで、黄色で粘調なポリアミド酸溶液Bを得た。
[合成例3 ]
 合成例1と同様の手順に従って、パラフェニレンジアミン (PDA)を268質量部、NMPを8550質量部、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を659質量部、MAを48.6質量部導入し、120時間攪拌することで、黄色で粘調なポリアミド酸溶液Cを得た。ポリアミド酸溶液の特性を表1に示す。
[合成例4 ]
 合成例1と同様の手順に従って、パラフェニレンジアミン (PDA)を133質量部、4-4’オキシジアニリン (ODA)を246質量部、NMPを8550質量部、PMDAを483質量部、MAを48質量部導入し、120時間攪拌することで、黄色で粘調なポリアミド酸溶液Dを得た。
[合成例5 ]
 (エポキシ基含有アルコキシシラン部分縮合物の製造)
 攪拌機、分水器、温度計および窒素ガス導入管を備えた反応装置に、グリシドール200質量部およびテトラメトキシシラン部分縮合物(多摩化学(株)製、メチルシリケート51、Si平均個数4)1280質量部を仕込み、窒素気流下、攪拌しながら、90℃に昇温した後、触媒としてジブチル錫ジラウレート0.3質量部を加え、反応させた。反応中、分水器を使って生成したメタノールを約90g留去した時点で冷却した。ついで、13kPaで約10分間、系内残存メタノール約10gを減圧除去し、エポキシ基含有アルコキシシラン部分縮合物を得た。

(シラン変性ポリアミド酸樹脂組成物の製造)
合成例4のポリアミド酸900質量部を80℃まで昇温し、エポキシ基含有アルコキシシラン部分縮合物26質量部と触媒として2-メチルイミダゾール0.15質量部を加え、80℃で4時間、反応した。室温まで冷却し、シラン変性ポリアミド酸溶液Eを得た。仕込み時の(エポキシ基含有アルコキシシラン部分縮合物(2)のエポキシ基の当量)/(ポリアミド酸に使用したテトラカルボン酸類のカルボン酸基の当量)=0.07。
[合成例6]
 乾燥窒素雰囲気中で、3,6-ジフェニル-ピロメリット酸無水物(DPPMDA)333質量部及び2,2’-ビス(ビフェニル)ベンジジン(BPBz)489質量部、末端封止剤としてマレイン酸無水物(MA)を10質量部をm-クレゾールに溶解し、4質量%の溶液とした。これを2時間室温で撹拌した後、イソキノリンを触媒として加え、窒素気流下、200℃で30分撹拌してポリイミド溶液とした。ポリイミド溶液を2-プロパノール中に再沈して黄色の粉状ポリマーを得た。 得られたポリマーを2-プロパノールで洗浄、乾燥後N-メチル-2-ピロリドンに加熱溶解し、樹脂濃度10質量%のポリイミド溶液Fを得た。
[合成例7]
 窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、N-メチル-2-ピロリドン(NMP)とγ―ブチルラクトンの50:50体積比率の混合溶液を8mL導入し、ビス)4-アミノフェニル)テレフタレート(BAPT)0.888g(2.55mmol)を完全に溶解させた後、1,2,3,4-シクロブタンテトラカルボン酸2無水物(CBDA)0.500g(2.55mmol)を混合して攪拌したところ数分で激しく増粘したため、上記混合溶媒4mlで希釈して、更に1時間攪拌して、透明で黄色で粘調なポリアミド酸溶液Gを得た。この樹脂濃度は10wt%、溶液粘度は57Pa・s、 還元粘度1.8dL/gであった。
[合成例8]
 窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、2,2’-ビス(トリフルオロメチル)ベンジジン5mmol(1.6012g)をモレキュラーシーブス4Aで十分に脱水したN,N-ジメチルアセトアミド15mLに溶解した後、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物粉末5mmol(1.1208g)徐々に加えた。室温で48時間撹拌し透明で薄黄色で粘調なポリアミド酸溶液Hを得た。この樹脂濃度は15wt%、溶液粘度は52Pa・s、 還元粘度1.73dL/gであった。
[合成例9]
 窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン(BAPP)411質量部、N-メチル-2-ピロリドン750質量部、トリエチルアミン5.08質量部を加え、攪拌して溶液とした。
これに1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)202質量部、ピロメリット酸二無水物21.8質量部、NMP204質量部を加えた後、マントルヒーターで200℃まで30分かけて加熱し、留去物を除去しつつ、200℃で5時間保持した。
 N,N-ジメチルアセトアミド1440質量部を添加後、130℃で30分攪拌して均一溶液としてから100℃まで空冷することにより、ポリイミド溶液Iを得た。この溶液の樹脂濃度は20wt%、溶液粘度は200Pa・s、還元粘度は1.11dL/gであった。
(ポリアミド酸溶液)
Figure JPOXMLDOC01-appb-T000001
(ポリアミド酸溶液、ポリイミド溶液)
Figure JPOXMLDOC01-appb-T000002
 [合成例10]
窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール(DAMBO)を574質量部、N-メチル-2-ピロリドン(NMP)を9900質量部導入し、完全に溶解させた後、ピロメリット酸二無水物(PMDA)を501質量部、末端封止剤としてマレイン酸無水物(MA)を25質量部となるように導入し、25℃の反応温度で96時間攪拌すると、黄色で粘調なポリアミド酸溶液aを得た。ポリアミド酸溶液の特性を表3に示す。
[合成例11]
合成例10と同様の手順に従って、パラフェニレンジアミン (PDA)を268質量部、NMPを8550質量部、ビフェニルテトラカルボン酸二無水物(BPDA)、を657質量部、MAを25質量部導入し、120時間攪拌することで、黄色で粘調なポリアミド酸溶液bを得た。ポリアミド酸溶液の特性を表3に示す。
[合成例12]
合成例10と同様の手順に従って、4-4’オキシジアニリン (ODA)を493質量部、NMPを9000質量部、PMDAを483質量部、MAを24質量部導入し、黄色で粘調なポリアミド酸溶液cを得た。ポリアミド酸溶液の特性を表3に示す。
[合成例13]
合成例10と同様の手順に従って、DAMBOを537質量部、ODAを84質量部、NMPを10800質量部、PMDAを580質量部、MAを28質量部導入し、黄色で粘調なポリアミド酸溶液dを得た。ポリアミド酸溶液の特性を表3に示す。
[合成例14]
製造例1と同様の手順に従って、DAMBOを418質量部、ODAを66質量部、NMPを9000質量部、PMDAを401質量部、BPDAを95質量部、MAを21質量部導入し、黄色で粘調なポリアミド酸溶液eを得た。ポリアミド酸溶液の特性を表4に示す。
[合成例15]
製造例1と同様の手順に従って、ジアミンとして、DAMBOを155質量部、ODAを322質量部、NMPを8550質量部、PMDAを451質量部、MAを22.5質量部導入し、黄色で粘調なポリアミド酸溶液fを得た。ポリアミド酸溶液の特性を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[無機層処理例1]
 グローブボックス内を窒素置換した後、カップリング剤(3-アミノプロピルトリメトキシシラン;3-APS)を、N2を流しているグローブボックス内でイソプロピルアルコールによって0.5wt%に希釈したカップリング剤希釈液を作成した後、別に無機層として8インチシリコンウェハ(直径20cm、0.725mm厚)を純水による超音波洗浄5分、エタノールによる超音波洗浄5分、純水による超音波洗浄5分を行った後乾燥し、スピンコーターにセットして、イソプロピルアルコールをかけて1000rpmにて液の振り切りと乾燥を行い、引き続きこのカップリング剤希釈液を回転中央部に滴下させて15秒かけ3000rpmまで回転させ、その後15秒間3000rpmにて回転し、15秒かけて回転を止めることで、全面を濡らした後に乾燥状態とした。これをクリーンベンチ内に置いた100℃に加熱したホットプレート上に1分置き、無機層と反応させ処理済無機層1を得た。結果を表5に示す。また、カップリング剤層の膜厚は、上記の方法でエリプソメーターによって算出した。カップリング剤層の膜厚は11nmであった。
[無機層処理例2 ]
 カップリング剤を3-APS、無機層をガラス(コーニングEAGLE XG 100mm×100mm 0.7mm厚)とした以外は全く処理例1と同様にして処理済無機層2を得た。結果を表5に示す。
[無機層処理例3 ]
 カップリング剤をn-プロピルトリメトキシシラン(n-PS)、無機層をガラス(コーニングEAGLE XG 100mm×100mm 0.7mm厚)とした以外は全く処理例1と同様にして処理済無機層3を得た。結果を表5に示す。
(無機層の処理結果)
Figure JPOXMLDOC01-appb-T000005
 実施例 1
 処理済無機層1のシリコンウェハに接するように、一辺が70mmの正方形がくり抜かれたSUS板をマスクとして置き、シリコンウェハの中央部のみにUV光が当たるようにして、2分間UV照射処理した。UV照射処理は、ランテクニカルサービス株式会社製のUV/O3洗浄改質装置(SKB1102N-01)を使い、UVランプ(SE-1103G05)から3cm程度はなれた距離で、大気雰囲気下、室温で照射を行った。254nmに感度のピークを持つ紫外線光量計を用いて測定した際のUV光の照度は22mW/cm2であった。前記UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。この後、ポリアミド酸溶液Aを、アプリケータにて塗布した。ギャップはポリイミド層の膜厚が25μmとなるように調整した。 Nを流しているマッフル炉に入れ、80℃で30分、ついで2℃/分で100℃まで昇温し、100℃で90分保持することで乾燥を行い、5℃/分の昇温速度で100℃から400℃に昇温して、400℃で、5分温度を維持してポリアミド酸溶液をイミド化し積層体1を得た。また、積層体1のポリイミド層の中のUV照射を行った□70mm部分のうちの概略□60mmをカッターで切り抜き、ピンセットで剥がすことにより、容易にはがすことができ、ポリイミドフィルム1を得た。得られた積層体の評価結果を表6に示す。また、UV照射処理後のカップリング剤層の膜厚は、2分間のUV照射処理後に上記の方法でエリプソメーターによって算出した。今回は測定不能であった。
 実施例 2
 無機層を処理済無機層2とし、ポリイミド層の膜厚が10μmとなるようにアプリケータのギャップを調整した以外は全く実施例1と同様にして積層体2、及びポリイミドフィルム2を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を表6に示す。
 実施例 3
 無機層を処理済無機層3とし、ポリイミド層の膜厚が30μmとなるようにアプリケータのギャップを調整し、シリコンウェハの中心部分□70mmをマスクし、それ以外の部分を1分間UV照射処理した以外は全く実施例1と同様にして積層体3、及びポリイミドフィルム3を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.3nmであった。得られた積層体の評価結果を表6に示す。
 実施例 4
無機層を処理済無機層2とし、ポリイミド層の膜厚が25μmとなるようにアプリケータのギャップを調整し、ポリアミド酸溶液をポリアミド酸溶液Bとした以外は全く実施例1と同様にして積層体4、及びポリイミドフィルム4を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を表6に示す。
 実施例 5
 無機層を処理済無機層2とし、ポリイミド層の膜厚が25μmとなるようにアプリケータのギャップを調整し、ポリアミド酸溶液をポリアミド酸溶液Cとした以外は全く実施例1と同様にして積層体5、及びポリイミドフィルム5を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を表6に示す。
 実施例 6
 無機層を処理済無機層2とし、ポリイミド層の膜厚が25μmとなるようにアプリケータのギャップを調整し、ポリアミド酸溶液をポリアミド酸溶液Dとした以外は全く実施例1と同様にして積層体6、及びポリイミドフィルム6を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.5nmであった。得られた積層体の評価結果を表7に示す。
 実施例 7
 無機層を処理済無機層2、ポリアミド酸溶液をポリアミド酸溶液Eとした以外は全く実施例1と同様にして積層体7、及びポリイミドフィルム7を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.5nmであった。得られた積層体の評価結果を表7に示す。
 実施例 8
 無機層を処理済無機層2、ポリアミド酸溶液をポリイミド溶液Fとし、溶液を塗布した無機層をNを流しているマッフル炉に入れ、80℃で30分、ついで2℃/分で120℃まで昇温し、120℃で15分保持し、5℃/分の昇温速度で120℃から350℃に昇温して、350℃で1時間温度を維持して乾燥させることにより積層体を得た以外は全く実施例1と同様にして積層体7、及びポリイミドフィルム7を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を表7に示す。
 実施例 9
 無機層を処理済無機層2、ポリアミド酸溶液をポリイミド溶液Gとし、ポリイミド層の膜厚が25μmとなるようにアプリケータのギャップを調整し溶液を塗布した無機層をNを流しているマッフル炉に入れ、80℃で50分、ついで、3℃/分の昇温速度で80℃から300℃に昇温して、300℃で1時間温度を維持して乾燥させることにより積層体を得た以外は全く実施例1と同様にして積層体8、及びポリイミドフィルム8を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を表7に示す。
 実施例10
 無機層を処理済無機層2、ポリアミド酸溶液をポリイミド溶液Hとし、ポリイミド層の膜厚が15μmとなるようにアプリケータのギャップを調整し溶液を塗布した無機層をNを流しているマッフル炉に入れ、60℃で120分、ついで、3℃/分の昇温速度で60℃から330℃に昇温して、300℃で2.5時間温度を維持して乾燥させることにより積層体を得た以外は全く実施例1と同様にして積層体9、及びポリイミドフィルム9を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を表7に示す。
 実施例 11
 無機層を処理済無機層2、ポリアミド酸溶液をポリイミド溶液Iとし、溶液を塗布した無機層をNを流しているマッフル炉に入れ、100℃で60分、ついで5℃/分の昇温速度で100℃から200℃に昇温して、200℃で300分温度を維持して乾燥させることにより積層体を得た以外は全く実施例1と同様にして積層体11、及びポリイミドフィルム11を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を表8に示す。
実施例12 
[無機層処理例4 ]
グローブボックス内を窒素置換した後、カップリング剤(3-アミノプロピルトリメトキシシラン;3-APS)を、N2を流しているグローブボックス内でイソプロピルアルコールによって0.8wt%に希釈したカップリング剤希釈液を作成した。無機層として370mm×470mm、厚さ3mmの白板ガラスをスピンコーターにセットして、イソプロピルアルコールをかけて1000rpmにて液の振り切りと乾燥を行い、引き続き、先に得られたカップリング剤希釈液を回転中央部に滴下させて15秒かけ1800rpmまで回転させ、その後1800回転にて30秒間回転を保持し、15秒かけて回転を止めることで、全面を濡らした後に乾燥状態とした。これをクリーンベンチ内に置いた100℃に加熱したホットプレート上に1分置き、無機層と反応させ処理済無機層4を得た。エリプソメーターによって得られたカップリング剤層の厚さは25nmであった。前記UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.6nm、UV未照射部における表面粗さ(Ra)は0.6nmであった。
得られた処理済み無機層に、200mm×300mmの開口部を2カ所有するメタルマスクを重ね、実施例1で使用した物と同じ発光特性を有するUVランプにて、積算照射エネルギーが3000mJ/cm2となるように露光した。
ビスフェノールAをビスフェノール成分とするポリカーボネート樹脂(粘度平均分子量44,000)25質量部を1,3―ジオキソラン50質量部とテトラヒドロフラン50質量部からなる混合溶媒に加えて、45℃で8時間加熱攪拌して溶解することにより、透明な溶液組成物を得た。
得られた溶液塑性物を、UV照射後の処理済み無機層上に、アプリケーターを用いて乾燥厚さが75μmとなるように塗布し、50℃にて10分、さらに温度を75℃に上げて15分、さらに温度を105℃として45分間乾燥を行い、本発明の積層体を得た。
本積層体のUV未照射部分の180度剥離強度は3.4N/cm、UV照射部分の180度剥離強度は0.8N/cmであった。
実施例13 
実施例12と同様に操作してUV照射を行った処理済み無機基板を得た。次いで得られた処理済み無機基板を240℃に加熱し、そこに窒素雰囲気中にて340℃で加熱溶融させたポリエチレンナフタレート樹脂を厚さ120μmとなるように押し出し、平均3℃/分の冷却速度にて室温まで冷却し、本発明の積層体を得た。本積層体のUV未照射部分の180度剥離強度は2.2N/cm、UV照射部分の180度剥離強度は0.4N/cmであった。
実施例14 
実施例12においてポリカーボネート樹脂溶液の代わりに、下記のメラミン硬化型共重合ポリエステル樹脂溶液を用い、乾燥条件を75℃にて15分、105℃にて15分、150℃にて30分とした以外は処理基板 同様に操作し、本発明の積層体を得た。
メラミン硬化型共重合ポリエステル樹脂溶液の調製:
 共重合ポリエステル樹脂(商品名「バイロンV-200」、東洋紡製)100質量部、メラミン樹脂(商品名「スーパーベッカミンJ-820」、大日本インキ製)10質量部をトルエン300質量部を配合し、25℃にて4時間混合攪拌し、メラミン硬化型共重合ポリエステルを得た。
得られた積層体のUV未照射部分の180度剥離強度は2.7N/cm、UV照射部分の180度剥離強度は0.7N/cmであった。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 比較例 1 
 無機層を未処理のガラス(コーニングEAGLE XG 100mm×100mm、0.7mm厚)とした以外は全く実施例1と同様にして積層体11、及びポリイミドフィルム11を得た。得られた積層体の評価結果を表9に示す。
 比較例 2 
 無機層を未処理のシリコンウエハ(直径20cm、0.725mm厚)とした以外は全く実施例1と同様にして積層体12、及びポリイミドフィルム12を得た。得られた積層体の評価結果を表9に示す。
 比較例 3 
 無機層へのUV照射処理を行わなかった以外は全く実施例1と同様にして積層体13を得た。得られた積層体の評価結果を表9に示す。
 比較例 4 
 無機層を処理済無機層2とし、無機層へのUV照射処理を行わなかった以外は全く実施例1と同様にして積層体14を得た。得られた積層体の評価結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 比較例 5 
 無機層へのUV照射処理を行わなかった以外は全く実施例5と同様にして積層体15を得た。得られた積層体の評価結果を表10に示す。
 比較例 6
 無機層へのUV照射処理を行わなかった以外は全く実施例6と同様にして積層体16を得た。得られた積層体の評価結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
実施例15
無機層を処理済み無機層1とし、ポリイミド層の膜厚が25μmとなるようにアプリケーターのギャップを調整し、ポリアミド酸溶液をポリアミド酸溶液aとした以外は全く実施例1と同様にして積層体17、及びポリイミドフィルム12を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を、表11に示す。
 実施例16
無機層を処理済み無機層2とし、ポリイミド層の膜厚が10μmとなるようにアプリケーターのギャップを調整し、ポリアミド酸溶液をポリアミド酸溶液aとした以外は全く実施例1と同様にして積層体18、及びポリイミドフィルム13を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を、表11に示す。
実施例17
無機層を処理済み無機層3とし、ポリイミド層の膜厚が30μmとなるようにアプリケーターのギャップを調整し、ポリアミド酸溶液をポリアミド酸溶液aとした以外は全く実施例1と同様にして積層体19、及びポリイミドフィルム14を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.3nmであった。得られた積層体の評価結果を、表11に示す。
実施例18
無機層を処理済み無機層2とし、ポリイミド層の膜厚が20μmとなるようにアプリケーターのギャップを調整し、ポリアミド酸溶液をポリアミド酸溶液bとした以外は全く実施例1と同様にして積層体20、及びポリイミドフィルム15を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を、表11に示す。
実施例19
無機層を処理済み無機層2とし、ポリイミド層の膜厚が15μmとなるようにアプリケーターのギャップを調整し、ポリアミド酸溶液をポリアミド酸溶液dとした以外は全く実施例1と同様にして積層体21、及びポリイミドフィルム16を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を、表11に示す。
実施例20
無機層を処理済み無機層1とし、ポリイミド層の膜厚が20μmとなるようにアプリケーターのギャップを調整し、ポリアミド酸溶液をポリアミド酸溶液eとした以外は全く実施例1と同様にして積層体22、及びポリイミドフィルム17を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を、表12に示す。
実施例21
無機層を処理済み無機層2とし、ポリイミド層の膜厚が25μmとなるようにアプリケーターのギャップを調整し、ポリアミド酸溶液をポリアミド酸溶液eとした以外は全く実施例1と同様にして積層体23、及びポリイミドフィルム18を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を、表12に示す。
実施例22
無機層を処理済み無機層1とし、ポリイミド層の膜厚が25μmとなるようにアプリケーターのギャップを調整し、ポリアミド酸溶液をポリアミド酸溶液cとした以外は全く実施例1と同様にして積層体24、及びポリイミドフィルム19を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.4nmであった。得られた積層体の評価結果を、表12に示す。
実施例23
無機層を処理済み無機層1とし、ポリイミド層の膜厚が25μmとなるようにアプリケーターのギャップを調整し、ポリアミド酸溶液をポリアミド酸溶液fとした以外は全く実施例1と同様にして積層体25、及びポリイミドフィルム20を得た。UV照射処理後の無機層表面(SC層表面)のUV未照射部における表面粗さ(Ra)は0.4nm、UV未照射部における表面粗さ(Ra)は0.5nmであった。得られた積層体の評価結果を、表12に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
比較例7
無機層を未処理のガラス(コーニングEAGLE XG 100mm×100mm
0.7mm厚)とした以外は全く実施例15と同様にして積層体26、及びポリイミドフィルム21を得た。得られた積層体の評価結果を表13に示す。
比較例8
無機層を未処理のシリコンウェハ(直径20cm、0.725mm厚)とした以外は全く実施例15と同様にして積層体27、及びポリイミドフィルム22を得た。得られた積層体の評価結果を表13に示す。
比較例9
無機層へのUV照射処理を行わなかった以外は全く実施例15と同様にして積層体28を得た。得られた積層体の評価結果を表13に示す。
比較例10
無機層を処理済無機層2とし、無機層へのUV照射処理を行わなかった以外は全く実施例15と同様にして積層体29を得た。得られた積層体の評価結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
(測定例1~5)
 無機層(基板)としてシリコンウェハを50mm×50mm(□50mm)に切断したもの5枚を使い用意し、これを純水による超音波洗浄5min、エタノールによる超音波洗浄5min、純水による超音波洗浄5minを行った後、スピンコーターにセットして、イソプロピルアルコールをかけて1000rpmにて液の振り切りと乾燥を行い、引き続き無機層処理例1と同様にシランカップリング剤のを塗布した後に、110℃のホットプレートで加熱して、厚さ11mmのカップリング剤処理層を形成した。その後に、カップリング剤処理層の面にそれぞれUV照射時間を、0sec、10sec、30sec、120sec、1800sec照射したサンプルを作成した。このときの表面組成比率を表14に示す。
Figure JPOXMLDOC01-appb-T000014
 シリコンウェハに、官能基を持つ3-アミノプロピルトリメトキシシランを塗布した場合、UV照射処理を行っていない部分が良好接着部となり、UV照射処理部分が易剥離部分となる(実施例1)。UV照射処理を行うと、オゾンおよび活性酸素が発生することが知られており、測定例1~5より、UV照射処理を行うと、窒素(N)元素のAtomic percentは下がり、続いて炭素(C)も減ることからアミノプロピル基の分解が示唆されている。官能基を有するカップリング剤処理を行うことで接着強度が高くなり良好接着部となるが、UV照射処理を行うことでオゾンや活性酸素原子による反応が進み、アミノプロピル基が分解し、無機層とポリイミド層との接着強度が低くなり、易剥離性が見られたものと考えられる。
 一方で、n-プロピルトリメトキシシランのように官能基の無いものを無機層に塗布した場合、UV照射処理を行っていない部分が易剥離部分となり、UV照射処理を行っている部分が良好接着部となる(実施例3)。測定例1~5より、UV照射処理することで、酸素(O)が増加しており、プロピル基部分の酸化が示唆される。プロピル基のようなアルキル基へのポリイミド層の接着強度は低く易剥離部分となるが、UV照射処理によりアルキル基からアルデヒド基、カルボキシル基、もしくはカルボン酸基などの官能基が生成したため、UV照射部分が良好接着部分となったと考えられる。
[応用例1]
 実施例5及び比較例2で得られた積層体を、開口部を有するステンレス製の枠を被せてスパッタリング装置内の基板ホルダーに固定した。基板ホルダーと、無機層は密着するように固定して、基板ホルダー内に冷媒を流すことによってフィルムの温度を設定できるようにし、積層体のポリイミド層の温度を2℃に設定した。次いでポリイミド層表面にプラズマ処理を行った。プラズマ処理条件はアルゴンガス中で、周波数13.56MHz、出力200W、ガス圧1×10-3Torrの条件であり、処理時の温度は2℃、処理時間は2分間であった。次いで、周波数13.56MHz、出力450W、ガス圧3×10-3Torrの条件、ニッケル-クロム(クロム10質量%)合金のターゲットを用い、アルゴン雰囲気下にてDCマグネトロンスパッタリング法により、1nm/秒のレートで厚さ7nmのニッケル-クロム合金被膜(下地層)を形成し、次いで、積層体のスパッタ面の裏面を、2℃に温度コントロールした冷媒を中に流した基板ホルダーのSUSプレートと接する状態とすることで積層体のポリイミド層の温度を2℃に設定し、スパッタリングを行った。10nm/秒のレートで銅を蒸着し、厚さ0.25μmの銅薄膜を形成させた。各フィルムからの下地金属薄膜形成積層体を得た。銅およびNiCr層の厚さは蛍光X線法によって確認した。
 その後、各積層体からの下地金属薄膜形成積層体をCu製の枠に固定し、硫酸銅めっき浴をもちいて、厚付銅層を形成した。電解めっき条件は電解めっき液(硫酸銅80g/l、硫酸210g/l、HCl、光沢剤少量)に浸漬、電気を1.5Adm2流した。これにより厚さ4μmの厚付け銅メッキ層(厚付け層)を形成し引き続き120℃で10分間熱処理乾燥し、金属化積層体を得た。
 得られた金属化積層体を使用し、フォトレジスト:FR-200、シプレー社製を塗布・乾燥後にガラスフォトマスクで密着露光し、さらに1.2質量%KOH水溶液にて現像した。次に、HClと過酸化水素を含む塩化第二銅のエッチングラインで、40℃、2kgf/cm2のスプレー圧でエッチングし、ライン/スペース=20μm/20μmのライン列をテストパターンとして形成後、0.5μm厚に無電解スズメッキを行った。その後、125℃、1時間のアニール処理を行った。光学顕微鏡で、だれ、パターン残り、パターン剥がれなどを観察して樹脂層からのパターンを評価した。
 実施例5の樹脂フィルム積層体を用いた場合にはだれ、パターン残り、パターン剥がれの無い良好なパターンが得られた。また、この積層体を窒素置換したマッフル炉内で昇温速度10℃/minで400℃に昇温後に400℃で1時間保持しその後自然降温させても、膨れ、剥がれなど発生することは無かった。
またその後に、無機層から剥離を行っても、パターン剥離などは起きなかった。これにより配線パターンつきの樹脂フィルムが得られた。
比較例2の樹脂フィルム積層体を用いた場合には、フィルム剥がれ、だれ、パターン残り、パターン剥がれが見られ、良好なパターンが得られなかった。
[応用例2] 
本発明のデバイス構造体の一例である表示装置(表示用パネル)の作製例として、TFT基板を作製した。図4(a)にはTFT基板の概略断面図を、図4(b)にはその上面図をそれぞれ示す。
 まず実施例1で得られた本発明の積層体を基板101とし、該積層体のポリイミド層上にAl(アルミニウム)102を200nmスパッタにてパターン化して蒸着させ、ゲート配線バスライン111、ゲート電極(図示せず)及びゲート配線109を形成した。この時点では、各ゲート配線109はゲート配線バスライン111に接続しておき、このゲート配線バスライン111は、陽極化成時に電源供給ラインとして使用することとした。次いでフォトレジストを3μm塗布しフォトエッチングプロセスにより、TFTの部分(領域A)と配線交差部(領域B)をレジスト除去した。この状態で、基板全体101を化成液(3%酒石酸溶液をエチレングリコールで希釈し、アンモニア水を添加して、PH7.0に調整した液)に浸し、ゲート配線バスライン111に+72Vの電圧を30分間加えることにより、領域A、BにおけるAlのうち70nmをAl23に変化させ、100nm程度のAl23膜(陽極化成膜)を形成した。レジストを除去した後、大気中、200℃で1時間加熱を行うことにより、Al23膜のリーク電流の低減を図った。次いでこのAl23膜の上に、プラズマCVD法によって300nmの第一の窒化シリコン104を製膜し、引き続き、100nmの水素化非晶質シリコン(a-Si)105、200nmの第2の窒化シリコン106を製膜した。このとき基板101の温度は380℃とした。その後、第2の窒化シリコン106をパターン化して、TFTのチャネル上を配線交差部のみとした。次いで、2%程度のリンをドープした非晶質シリコンn層107を50nm堆積させた後、パターン化して、TFTのソース・ドレイン部のみに残した。このとき水素化非晶質シリコン(a-Si)105も同時に除去した。次に、100nmのCr(クロム)と500nmのAl(アルミニウム)をスパッタリングにて堆積してCr・Al層108を形成した後、パターン化して、信号線110、TFTのドレイン、ソース電線(図示せず)などを形成した。ここで、先に形成したゲート配線バスライン111は除去して、各々のゲート配線109を分離した。その後、透明電極112として100nmのITOをスパッタリングにて形成して画素電極、端子等を形成し、最後に、プラズマCVDにて窒化シリコンを1μm程度堆積させ、フォトエッチングプロセスによって端子部上の窒化シリコンを除去した。
 次いで、ポリイミド層のUV照射部分に ポリエステルフィルム基材の保護フィルムを貼り付け、UV照射エリアとUV未照射エリアの境界線に切り込みを入れ、UV照射エリアに形成されたTFT部分を剥離し、TFT基板を得た。
また本発明のデバイス構造体の一例である表示装置(表示用パネル)の作製例として、有機EL素子使用表示装置を作製した。図10には有機EL素子使用表示装置の概略断面図を示す。
 まず実施例1で得られた本発明の積層体を基板201とし、該積層体のポリイミドフ層上に画素電極として第一電極202をモリブデンによりスパッタリング法にて形成した後、この第一電極202上に発光層203を形成した。発光層203は、第一電極202上に隔壁206を形成した後、発光物質としてドープ処理していないポリ(パラ-フェニレンビニレン)を含む有機層をスクリーン印刷法にて印刷することにより形成した。このとき膜乾燥時の最高到達温度は180℃であった。次いで、発光層203上に第二電極204としてITOをスパッタリングし、その後、保護膜206としてフッ素樹脂層をコーティングして、応用例2と同様にUV照射部分とUV未照射部分の境界でポリイミドフィルムに切れ目を入れ、積層体からポリイミドフィルムごと発光部を剥離して有機EL素子使用表示装置(自発光型表示装置)を作製した。以上の作製プロセスの中で基板(積層体)に付与された熱の最高到達温度は350℃であった。この際基板温度を350℃まで加熱している。(図5)
 上記の実施例1の積層体を用いた有機EL素子使用表示装置にピークトゥピークで60V、1000Hzの交番電圧を印可したところ、鮮やかな緑色に発光した。
また他の実施例の積層体を用いた有機EL素子使用表示装置についても、それぞれ上記と同様にして作製し、上記と同様に電圧を印加したところ、いずれも良好な発光が得られた。これに対し、各比較例の積層体を用いた有機EL素子使用表示装置を上記と同様にして作製し、上記と同様に電圧を印加したところ、十分な発光が得られなかった。これは、表示装置作製のプロセス中に負荷された熱によって、温度の上下により、積層体のポリイミド層の高温での平面維持性が損なわれ、に劣るための導電層、特に透明導電層がダメージを受けたためと推察される。
(実施例24)
 n-プロピルトリメトキシシランの0.2重量%イソプロピルアルコール溶液を満たした容器に、無機層としてガラス板(コーニングEAGLE XG 650mm×830mm 0.7mm厚)を沈め、窒素置換した空間に毎秒10mmの速度で引き上げ、同時に乾燥窒素ガスをエアナイフで吹き付けて液切りを行った。ついで、ガラス板を乾燥窒素置換した120℃のドライオーブンに15分間入れ、ここまでをシランカップリング剤処理とした。なお、同じ塗布条件にてシリコンウエハを処理した場合のエリプソメトリー法により測定されたシランカップリング剤層の厚さは40nmであった。 
 得られたカップリング剤処理ガラス板に68mm×110mmの長方形の開口部が、5mm幅の遮蔽部を介してアレイ状に配列されたステンレススチール製のメタルマスクを重ね、メタルマスクとガラス板に隙間がないことを確認して、流量比で窒素95/酸素5の混合ガスを用いた大気圧プラズマ処理装置にてパターン化処理として大気圧プラズマ処理を行った。大気圧プラズマ処理装置は、スリット状の横に長いヘッドが自動式にワーク上を移動するタイプの機構を持ち、ガラス板がプラズマに暴露されている時間は概ね45秒程度であった。処理後の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.5nm、未処理部における表面粗さ(Ra)は0.4nmであった。
 次いで、ダイコータを用いて合成例10で得られたポリアミド酸溶液aを塗布し、乾燥窒素ガスを流したドライオーブンで80℃で30分、100℃90分乾燥し、次いで窒素置換したイナート熱処理炉に移し、5℃/分の昇温速度で100℃から200℃まで昇温し、30分保持した後に5℃/分にて450℃まで昇温し、450℃にて1分間保持した後、20℃/分で室温まで冷却し、積層体を得た。積層体のポリイミド層の厚さは21μmであった。
 得られた積層体のマスク部でのポリイミド層の180度剥離強度は2.8N/cmであった。一方、非マスク部での180度剥離強度は0.67N/cmであった。
 得られた積層板上に、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセスとして、所定のテストパターンを用いて、平坦化層兼ガスバリア層として反応性スパッタリング法にて酸化珪素層、ソース、ドレイン電極層としてスパッタリング法にてタンタル層、バリアメタル層、半導体層としてCVD法にてアモルファスシリコン層を積層し、400℃にて75分間アニール処理することによりシリコン層を微多結晶化させた後、ゲート絶縁層としてSiN層、ゲート電極層としてアルミニウムを重ねた。なお各々の層は所定のテストパターンに応じて、マスキングないしフォトリソ法にてパターニングされ、模擬的なデバイス:薄膜トランジスタアレイとなっている。デバイス部分はパターン化処理時のメタルマスクの開口部分に形成されている。以上のプロセス中、真空雰囲気、高温下、フォトリソグラフ法に用いられるレジスト液、現像液、エッチング液、剥離液に暴露されたわけであるが、ポリイミド層はガラス層から剥離することなく、プロセス適性は良好であった。
 次いで、パターン化処理時に用いたメタルマスクのパターンに応じて、マスクの遮蔽部と開口部の境目にてポリイミド層に切れ目を入れ、デバイスが形成されている部分を剥離した。剥離については端部を刃物で僅かに起こすことで容易に行うことが出来た。遮蔽されていた5mm幅の部分についても同様に剥離を試みたが、ポリイミド層を破壊しないように剥離することは困難であった。
(実施例25)
 実施例24におけるシランカップリング剤処理をスピンコート法に変更し、さらに大気圧プラズマ処理を、ブラスト処理に代えた以外は同様に処理を行い、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセス実験を行った。
 スピンコーターによるシランカップリング剤処理は以下の手順に従った。ジャパンクリエイト社製のスピンコーターにガラス板(コーニングEAGLE XG 300mm×300mm 0.7mm厚)を装着し、シランカップリング剤としてn-プロピルトリメトキシシランを用い、濃度0.1重量%イソプロピルアルコール溶液を用いてガラス板にコーティングを行い、次いで、ガラス板を乾燥窒素置換した100℃のドライオーブンに10分間入れて乾燥・熱処理を行った。なお、同じ塗布条件にてシリコンウエハを処理した場合のエリプソメトリー法により測定されたシランカップリング剤層の厚さは40nmであった。 
 ブラスト処理にはマコー社の小型のウエットブラスト処理機を用い、媒体には水を、研磨材には#2000のシリカ粒子を用いた。ブラストはマスクを介して行い、ブラスト終了後にガラス板を超純水にてリンスし、ドライエアで乾燥し、次工程であるダイコータによるポリアミド酸溶液の塗布工程へと進んだ。処理後、塗布工程前の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.6nm、未処理部における表面粗さ(Ra)は0.5nmであった。
結果、得られた積層体のマスク部でのポリイミド層の180度剥離強度は3.3N/cmであった。一方、非マスク部での180度剥離強度は1.23N/cmであった。プロセス通過性には問題なく、弱接着部の剥離性も良好であった。
(実施例26)
 実施例24におけるシランカップリング剤処理を実施例25に示したスピンコート法に変更し、ポリアミド酸溶液を合成例11で得られたポリアミド酸溶液bに変更し、大気圧プラズマ処理を真空プラズマ処理に代えた以外は同様に処理を行い、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセス実験を行った。
真空プラズマ処理は枚葉ガラス用の装置を用い、ガラスのシランカップリング剤処理面にメタルマスクを重ねて装置にセットし、真空チャンバー内を1×10-3Pa以下になるまで真空排気し、真空チャンバー内にアルゴンガスを導入して、放電電力100W、周波数15kHzの条件で20秒間、ガラス板表面にアルゴンガスのプラズマ処理を行った。処理後の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.6nm、未処理部における表面粗さ(Ra)は0.5nmであった。以後、次工程であるダイコータによるポリアミド酸溶液の塗布工程へと進み、所定のプロセスを通した。結果、得られた積層体のマスク部でのポリイミド層の180度剥離強度は3.1N/cmであった。一方、非マスク部での180度剥離強度は0.91N/cmであった。プロセス通過性には問題なく、弱接着部の剥離性も良好であった。
(実施例27)
 実施例24におけるシランカップリング剤処理を実施例25に示したスピンコート法に変更し、大気圧プラズマ処理をコロナ処理に代えた以外は同様に処理を行い、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセス実験を行った。
春日電機製のコロナ処理装置を用い、放電量1000Wの電力を印加し10W/m/minで処理を行った。なお、本実験に於いてはメタルマスクの代わりに、メタルマスクと同じ形状に加工した厚さ0.5mmのアクリル板を用いた。処理後の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.6nm、未処理部における表面粗さ(Ra)は0.5nmであった。以後、次工程であるダイコータによるポリアミド酸溶液の塗布工程へと進み、所定のプロセスを通した。結果、得られた積層体のマスク部でのポリイミド層の180度剥離強度は3.6N/cmであった。一方、非マスク部での180度剥離強度は1.5N/cmであった。プロセス通過性には問題なく、弱接着部の剥離性も良好であった。
(実施例28)
 実施例24におけるシランカップリング剤処理を実施例25に示したスピンコート法に変更し、ポリアミド酸溶液を合成例12で得られたポリアミド酸溶液cに変更し、大気圧プラズマ処理を、活性放射線処理の一種としての電子線照射処理に代えた以外は同様に処理を行い、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセス実験を行った。
 電子線照射装置としてMin-EB装置(東洋インキ製造製)を用い、加速電圧30kVで10kGyを照射してた、なお、本実験に於いてはメタルマスクの代わりに、メタルマスクと同じ形状に加工した厚さ0.5mmのアクリル板を用いた。処理後の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.6nm、未処理部における表面粗さ(Ra)は0.5nmであった。以後、次工程であるダイコータによるポリアミド酸溶液の塗布工程へと進み、所定のプロセスを通した。結果、得られた積層体のマスク部でのポリイミド層の180度剥離強度は3.4N/cmであった。一方、非マスク部での180度剥離強度は0.97N/cmであった。プロセス通過性には問題なく、弱接着部の剥離性も良好であった。
(実施例29)
 実施例24におけるシランカップリング剤処理を実施例25に示したスピンコート法に変更し、カップリング剤を3-アミノプロピルトリメトキシシランに変更し、ポリアミド酸溶液を合成例14で得られたポリアミド酸溶液eに変更し、大気圧プラズマ処理を、活性ガス処理(塩素ガス)に代えた以外は同様に処理を行い、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセス実験を行った。
 塩素ガスを用いた活性ガス処理は以下の手順で行った。まず、減圧可能なチャンバーにシランカップリング剤処理を行ったガラスにメタルマスクを重ねた状態でセットし、チャンバー内を減圧し、次いで窒素ガス95%、塩素ガス5%の混合ガスをチャンバー内に導入し、流量計算上チャンバー内が一気圧の混合ガスで満たされた状態に達してから30秒間保持した後、塩素ガスの供給を止め、窒素ガスを60秒流し続けた後に窒素ガスの供給を止め、再びチャンバー内を減圧し、乾燥空気で常圧に一度戻し、再度減圧して再び常圧に戻す処理をへてチャンバー内からガラス板を取り出した。処理後の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.6nm、未処理部における表面粗さ(Ra)は0.5nmであった。
 以後、次工程であるダイコータによるポリアミド酸溶液の塗布工程へと進み、所定のプロセスを通した。結果、得られた積層体のマスク部でのポリイミド層の180度剥離強度は3.0N/cmであった。一方、非マスク部での180度剥離強度は0.8N/cmであった。プロセス通過性には問題なく、弱接着部の剥離性も良好であった。
(実施例30)
 実施例24におけるシランカップリング剤処理を実施例25に示したスピンコート法に変更し、ポリアミド酸溶液を合成例11で得られたポリアミド酸溶液bに変更し、大気圧プラズマ処理を、活性ガス処理(オゾンガス)に代えた以外は同様に処理を行い、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセス実験を行った。
 オゾンによる活性ガス処理は以下の手順とした。まず、減圧可能なチャンバーにシランカップリング剤処理を行ったガラスにメタルマスクを重ねた状態でセットし、チャンバー内を減圧し、次いでオゾン発生器(PSAオゾナイザーSGA-01-PSA2、住友精密工業社製)からオゾンガスをチャンバー内に導入し、流量計算上チャンバー内が一気圧のオゾンで満たされた状態に達してから60秒間保持した後、オゾンガスの供給を止め、再びチャンバー内を減圧し、乾燥空気で常圧に一度戻し、再度減圧して再び常圧に戻す処理をへてチャンバー内からガラス板を取り出した。処理後の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.6nm、未処理部における表面粗さ(Ra)は0.5nmであった。
 以後、次工程であるダイコータによるポリアミド酸溶液の塗布工程へと進み、所定のプロセスを通した。結果、得られた積層体のマスク部でのポリイミド層の180度剥離強度は2.8N/cmであった。一方、非マスク部での180度剥離強度は1.2N/cmであった。プロセス通過性には問題なく、弱接着部の剥離性も良好であった。
(実施例31)
 実施例24におけるシランカップリング剤処理を実施例25に示したスピンコート法に変更し、カップリング剤を3-アミノプロピルトリメトキシシランに変更し、さらに大気圧プラズマ処理を、薬液処理(過酸化水素処理)に代えた以外は同様に処理を行い、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセス実験を行った。
 薬液処理は以下の手順に従った。薬液としては5%の過酸化水素水を用いた。また、メタルマスクの代わりには、幅5mmにスリットしたポリイミド粘着テープ(粘着剤にシリコーン樹脂を使用)を用い、メタルマスクと同じ形状になるようにガラス板のシランカップリング剤処理面に貼り付けた。スプレー式のエッチング装置にマスキングしたガラス板を装着し、過酸化水素水をスプレーにて5分間吹きつけた後、超純水でリンスし、乾燥後にマスク代わりのポリイミドテープを剥離した。処理後の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.6nm、未処理部における表面粗さ(Ra)は0.5nmであった。
以後、次工程であるダイコータによるポリアミド酸溶液の塗布工程へと進み、所定のプロセスを通した。結果、得られた積層体のマスク部でのポリイミド層の180度剥離強度は3.1N/cmであった。一方、非マスク部での180度剥離強度は0.8N/cmであった。プロセス通過性には問題なく、弱接着部の剥離性も良好であった。
(実施例32)
 実施例24におけるシランカップリング剤処理を実施例25に示したスピンコート法に変更し、カップリング剤を3-アミノプロピルトリメトキシシランに変更し、さらに大気圧プラズマ処理を、薬液処理(硫酸処理)に代えた以外は同様に処理を行い、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセス実験を行った。処理後の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.6nm、未処理部における表面粗さ(Ra)は0.5nmであった。
 薬液処理は以下の手順に従った。薬液としては50%硫酸水溶液を用いた。また、メタルマスクの代わりには、幅5mmにスリットしたポリイミド粘着テープ(粘着剤にシリコーン樹脂を使用)を用い、メタルマスクと同じ形状になるようにガラス板のシランカップリング剤処理面に貼り付けた。次いで薬液を満たした処理層にガラス板を沈め、3分間、緩やかに揺動し、引き上げた後、イオン交換水、次いで超純水でリンスし、乾燥後にマスク代わりのポリイミドテープを剥離した。
以後、次工程であるダイコータによるポリアミド酸溶液の塗布工程へと進み、所定のプロセスを通した。結果、得られた積層体のマスク部でのポリイミド層の180度剥離強度は3.3N/cmであった。一方、非マスク部での180度剥離強度は0.5N/cmであった。プロセス通過性には問題なく、弱接着部の剥離性も良好であった。
(実施例33)
 実施例24におけるシランカップリング剤処理を実施例25に示したスピンコート法に変更し、カップリング剤を3-アミノプロピルトリメトキシシランに変更し、さらに大気圧プラズマ処理を、薬液処理(塩酸処理)に代えた以外は同様に処理を行い、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセス実験を行った。
 薬液処理は以下の手順に従った。薬液としては35%塩酸を用いた。また、メタルマスクの代わりには、幅5mmにスリットしたポリイミド粘着テープ(粘着剤にシリコーン樹脂を使用)を用い、メタルマスクと同じ形状になるようにガラス板のシランカップリング剤処理面に貼り付けた。次いで薬液を満たした処理層にガラス板を沈め、3分間、緩やかに揺動し、引き上げた後、イオン交換水、次いで超純水でリンスし、乾燥後にマスク代わりのポリイミドテープを剥離した。処理後の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.6nm、未処理部における表面粗さ(Ra)は0.5nmであった。
以後、次工程であるダイコータによるポリアミド酸溶液の塗布工程へと進み、所定のプロセスを通した。結果、得られた積層体のマスク部でのポリイミド層の180度剥離強度は3.2N/cmであった。一方、非マスク部での180度剥離強度は0.7N/cmであった。プロセス通過性には問題なく、弱接着部の剥離性も良好であった。
(実施例34)
 実施例24におけるシランカップリング剤処理を実施例25に示したスピンコート法に変更し、カップリング剤を3-アミノプロピルトリメトキシシランに変更し、さらに大気圧プラズマ処理を、薬液処理(フッ化水素酸処理)に代えた以外は同様に処理を行い、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセス実験を行った。
 薬液処理は以下の手順に従った。薬液としては5%フッ化水素酸水溶液を用いた。また、メタルマスクの代わりには、幅5mmにスリットしたポリイミド粘着テープ(粘着剤にシリコーン樹脂を使用)を用い、メタルマスクと同じ形状になるようにガラス板のシランカップリング剤処理面に貼り付けた。次いで薬液を満たした処理層にガラス板を沈め、30秒間、緩やかに揺動し、速やかに引き上げた後、イオン交換水、次いで超純水でリンスし、乾燥後にマスク代わりのポリイミドテープを剥離した。処理後の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.6nm、未処理部における表面粗さ(Ra)は0.5nmであった。
 以後、次工程であるダイコータによるポリアミド酸溶液の塗布工程へと進み、所定のプロセスを通した。結果、得られた積層体のマスク部でのポリイミド層の180度剥離強度は3.0N/cmであった。一方、非マスク部での180度剥離強度は0.4N/cmであった。プロセス通過性には問題なく、弱接着部の剥離性も良好であった。
(実施例35)
 実施例24におけるシランカップリング剤処理を実施例25に示したスピンコート法に変更し、さらに大気圧プラズマ処理を、レーザー光による直接描画に変更した以外は同様に処理を行い、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセス実験を行った。
 レーザー光による直接描画装置としてはYAGレーザーマーキング装置を用い、メタルマスクの開口部に相当する部分をYAGレーザー光で走査することによりパターン化処理とした。なお、YAGレーザー光の出力は、ガラスへのマーキングが可能なパワーの1/10とした。処理後の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.6nm、未処理部における表面粗さ(Ra)は0.5nmであった。 
以後、次工程であるダイコータによるポリアミド酸溶液の塗布工程へと進み、所定のプロセスを通した。結果、得られた積層体のマスク部でのポリイミド層の180度剥離強度は3.2N/cmであった。一方、非マスク部での180度剥離強度は0.7N/cmであった。プロセス通過性には問題なく、弱接着部の剥離性も良好であった。
(実施例36)
 濃度0.2重量%の3-アミノプロピルトリメトキシシランのイソプロピルアルコール溶液を用いてガラス板(コーニングEAGLE XG 370mm×470mm 0.7mm厚)にスピンコーティングを行った。
 フォトレジスト塗布用のスピンコーターに、ガラス板(コーニングEAGLE XG 370mm×470mm 0.7mm厚)を装着し、シランカップリング剤として3-アミノプロピルトリメトキシシランを用い、濃度0.2重量%イソプロピルアルコール溶液を用いてガラス板にスピンコーティングを行い、次いで、クリーン環境下に置かれた100℃のドライオーブンに10分間入れて乾燥・熱処理を行った。エリプソメトリー法により測定されたシランカップリング剤層の厚さは中央部で50nm、端部で30nmであった。処理後の無機層表面(SC層表面)の処理部における表面粗さ(Ra)は0.6nm、未処理部における表面粗さ(Ra)は0.5nmであった。 
 得られたカップリング剤処理ガラス板に68mm×110mmの長方形の開口部が、5mm幅の遮蔽部を介してアレイ状に配列されたステンレススチール製のメタルマスクを重ね、メタルマスクとガラス板に隙間がないことを確認して、流量比で窒素90/酸素10の混合ガスを用いた大気圧プラズマ処理装置にてパターン化処理として大気圧プラズマ処理を行った。大気圧プラズマ処理装置は、スリット状の横に長いヘッドが自動式にワーク上を移動するタイプの機構を持ち、ガラス板がプラズマに暴露されている時間は概ね30秒程度である。
 次いで、ダイコータを用いて合成例10で得られたポリアミド酸溶液aを塗布し、乾燥窒素ガスを流したドライオーブンで80℃で30分、100℃90分乾燥し、次いで窒素置換したイナート熱処理炉に移し、5℃/分の昇温速度で100℃から200℃まで昇温し、30分保持した後に5℃/分にて450℃まで昇温し、450℃にて1分間保持した後、20℃/分で室温まで冷却し、積層体を得た。積層体のポリイミド層の厚さは23μmであった。
 得られた積層体のマスク部でのポリイミド層の180度剥離強度は4.5N/cmであった。一方、非マスク部での180度剥離強度は0.35N/cmであった。
 得られた積層板上に、低温ポリシリコンを用いた薄膜トランジスタアレイ製作の模擬プロセスとして、所定のテストパターンを用いて、平坦化層兼ガスバリア層として反応性スパッタリング法にて酸化珪素層、ソース、ドレイン電極層としてスパッタリング法にてタンタル層、バリアメタル層、半導体層としてCVD法にてアモルファスシリコン層を積層し、420℃にて40分間アニール処理することによりシリコン層を微多結晶化させた後、ゲート絶縁層としてSiN層、ゲート電極層としてアルミニウムを重ねた。なお各々の層は所定のテストパターンに応じて、マスキングないしフォトリソ法にてパターニングされ、模擬的なデバイス:薄膜トランジスタアレイとなっている。デバイス部分はパターン化処理時のメタルマスクの開口部分に形成されている。以上のプロセス中、真空雰囲気、高温下、フォトリソグラフ法に用いられるレジスト液、現像液、エッチング液、剥離液に暴露されたわけであるが、ポリイミド層はガラス層から剥離することなく、プロセス適性は良好であった。
次いで、パターン化処理時に用いたメタルマスクのパターンに応じて、マスクの遮蔽部と開口部の境目にてポリイミド層に切れ目を入れ、デバイスが形成されている部分を剥離した。剥離については端部を刃物で僅かに起こすことで容易に行うことが出来た。遮蔽されていた5mm幅の部分についても同様に剥離を試みたが、ポリイミド層を破壊しないように剥離することは困難であった。
本発明の製造方法で得られる積層体は、ガラス板、セラミック板、シリコンウェハ、金属から選ばれた一種の無機層の一面と、樹脂層とが、接着剤層を介することなく貼り合わされた積層体であり、本発明の製造方法で得られるデバイス付きの樹脂フィルムは、前記積層体を使うことによって得られる、易剥離部分の樹脂層を切り込みを入れて該樹脂層を前記無機層から容易に剥離することによってデバイス付きの樹脂フィルムが作れる。
 本発明の積層体は、極小薄の樹脂上の微細回路基板や、デバイス構造体などを製造する過程に有効に使用でき、金属化などの温度の上がる行程に耐え得る耐熱性のある積層体であり、その後のパターン作成においても寸法変化が小さい為、誤差の小さな回路パターンを得ることが出来る。さらに必要に応じてこの無機基板を剥がすこともスムースにでき、極薄の絶縁性、耐熱性、寸法安定性に優れた樹脂フィルム上に、精度よく回路やデバイス形成ができ、それ故に、微細回路板、センサーなどのデバイス製造に有効である。
(図1)
1:ガラス基板
2:シランカップリング剤層
3:UV光遮断マスク
4:シランカップリング剤層UV照射未処理部
5:シランカップリング剤層UV照射処理部
6:樹脂層
7:シランカップリング剤層UV照射処理部上の樹脂フィルム
(図2)
1:ガラス基板
2:シランカップリング剤層
3:UV光遮断マスク
4:シランカップリング剤層UV光未照射部
5:シランカップリング剤層UV光照射部
6:樹脂層
7:シランカップリング剤層UV光照射部上の樹脂フィルム
8:回路
(図3)
1:シランカップリング剤層UV照射未処理部
2:シランカップリング剤層UV照射処理部
(図4)
1.無機層
 2.Al
 3.陽極化成膜(Al2O3)
 4.第一窒化シリコン
 5.水素化非晶質シリコン
 6.第二窒化シリコン
 7.非晶質シリコンn層
 8.Cr・Al層
 9.ゲート配線
 10.信号線
 11.ゲート配線バスライン
 12.透明電極
 (図5)
 1.積層体(無機層)
 2.第一電極
 3.発光層
 4.第二電極
 5.隔壁
 6.保護膜

Claims (10)

  1.  少なくとも、無機層と樹脂層から構成されてなる積層体の製造方法であって、
    下記(1)~(3)の工程を含むことを特徴とする積層体の製造方法。
    (1)無機層の少なくとも片面の表面をカップリング剤処理する工程
    (2)上記(1)の工程によりカップリング剤処理された無機層の少なくとも片面に、無機層と樹脂層の間の接着剥離強度は異なり表面粗さは略同一である良好接着部分と易剥離部分を形成するパターン化処理を行う工程
    (3)上記(2)の工程によりパターン化処理を施した無機層のカップリング剤処理面上に樹脂溶液あるいは、樹脂前駆体溶液を塗布して得られた塗布溶液層を乾燥、次いで熱処理し前記樹脂層を形成する工程、
  2.  前記パターン化処理は、カップリング剤処理層の一部に不活性化処理を施して所定のパターンを形成することにより行う請求項1に記載の積層体の製造方法。
  3.  前記不活性化処理が、所定部分を被覆ないし遮蔽した上で行われる、ブラスト処理、真空プラズマ処理、大気圧プラズマ処理、コロナ処理、活性放射線照射処理、活性ガス処理、および薬液処理からなる群より選択される少なくとも一種以上の処理を行う請求項2に記載の積層体の製造方法。
  4.  前記活性放射線処理が、UV照射処理である請求項3に記載の積層体の製造方法。
  5.  前記樹脂層が、芳香族ジアミン類と芳香族テトラカルボン酸類との反応によって得られるポリイミドからなる、請求項1~4のいずれかに記載の積層体の製造方法。
  6.  前記樹脂層が、芳香族ジアミン類と芳香族テトラカルボン酸類との反応によって得られるポリイミドからなり、該芳香族ジアミン類の70モル%以上が少なくともベンゾオキサゾール構造を有する芳香族ジアミン、ジアミノジフェニルエーテル構造を有する芳香族ジアミンおよびフェニレンジアミン構造を有する芳香族ジアミンの1種以上から選択されてなる芳香族ジアミン類からなり、該芳香族テトラカルボン酸類のうち70モル%以上が少なくともピロメリット酸二無水物、ビフェニルテトラカルボン酸ニ無水物の1種以上から選択されてなる芳香族テトラカルボン酸類からなる請求項1~5のいずれかに記載の積層体の製造方法。
  7.  無機層と樹脂層がカップリング剤処理層を介して積層されてなる積層体であって、前記無機層と前記樹脂層との間の剥離強度が異なる良好接着部分と易剥離部分を有しており、該良好接着部分と該易剥離部分とが所定のパターンを形成していることを特徴とする請求項1~6のいずれかに記載の製造方法により得られた積層体。
  8.  前記易剥離部分における無機層と樹脂層との間の180度剥離強度が、良好接着部分で1N/cm以上であり、前記易剥離部分における無機層と樹脂層との間の180度剥離強度が、前記良好接着部分における無機層と樹脂層との間の180度剥離強度の50%以下である請求項7に記載の積層体。
  9.  前記樹脂層の厚さが0.5μm~50μmであり、前記樹脂層の面方向の線膨張係数が、-5ppm/℃~+35ppm/℃である請求項7~8のいずれかに記載の積層体の製造方法。
  10. 樹脂層上にデバイスが形成されてなる構造体を製造する方法であって、無機層と樹脂層を有する請求項7~9のいずれかに記載の積層体を用い、該積層体の樹脂層上にデバイスを形成した後、前記積層体の易剥離部分の樹脂層に切り込みを入れて該樹脂層を前記無機層から剥離することを特徴とするデバイス構造体の製造方法。
PCT/JP2012/060141 2011-04-15 2012-04-13 積層体とその製造方法および、この積層体を用いたデバイス構造体の作成方法 WO2012141293A2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280018588.2A CN103619591B (zh) 2011-04-15 2012-04-13 层叠体、其制造方法以及使用该层叠体的器件结构体的制作方法
KR1020137030111A KR101911574B1 (ko) 2011-04-15 2012-04-13 적층체와 그 제조 방법 및 이 적층체를 이용한 디바이스 구조체의 작성 방법
JP2012520613A JP5429375B2 (ja) 2011-04-15 2012-04-13 積層体とその製造方法および、この積層体を用いたデバイス構造体の作成方法
US14/111,374 US9604391B2 (en) 2011-04-15 2012-04-13 Laminate, production method for same, and method of creating device structure using laminate

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011091041 2011-04-15
JP2011-091041 2011-04-15
JP2011120413 2011-05-30
JP2011-120413 2011-05-30
JP2011164326 2011-07-27
JP2011-164326 2011-07-27
JP2012042961 2012-02-29
JP2012-042961 2012-02-29
JP2012-065306 2012-03-22
JP2012065306 2012-03-22

Publications (2)

Publication Number Publication Date
WO2012141293A2 true WO2012141293A2 (ja) 2012-10-18
WO2012141293A3 WO2012141293A3 (ja) 2012-12-20

Family

ID=47009781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060141 WO2012141293A2 (ja) 2011-04-15 2012-04-13 積層体とその製造方法および、この積層体を用いたデバイス構造体の作成方法

Country Status (6)

Country Link
US (1) US9604391B2 (ja)
JP (1) JP5429375B2 (ja)
KR (1) KR101911574B1 (ja)
CN (1) CN103619591B (ja)
TW (1) TWI530392B (ja)
WO (1) WO2012141293A2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026546A (ja) * 2011-07-25 2013-02-04 Dainippon Printing Co Ltd 薄膜デバイス用基板、及び薄膜デバイスの製造方法
WO2013114685A1 (ja) * 2012-02-01 2013-08-08 東洋紡株式会社 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
US20140159264A1 (en) * 2012-12-07 2014-06-12 Sumitomo Bakelite Co., Ltd. Solution of aromatic polyamide for producing display element, optical element, or illumination element
WO2014119648A1 (ja) * 2013-02-04 2014-08-07 東洋紡株式会社 積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
EP2938653A4 (en) * 2012-12-26 2016-07-27 Kolon Inc POLYAMIDE ACID SOLUTION, IMIDIZATION FOIL AND DISPLAY DEVICE
WO2017204186A1 (ja) * 2016-05-23 2017-11-30 日産化学工業株式会社 剥離層形成用組成物及び剥離層
WO2017204182A1 (ja) * 2016-05-23 2017-11-30 日産化学工業株式会社 剥離層形成用組成物及び剥離層
JP2018012248A (ja) * 2016-07-20 2018-01-25 日立化成株式会社 積層体、金属張積層体及びプリント配線板
WO2021241570A1 (ja) * 2020-05-29 2021-12-02 東洋紡株式会社 透明高耐熱フィルムを含む積層体
WO2021241571A1 (ja) * 2020-05-29 2021-12-02 東洋紡株式会社 透明高耐熱フィルムを含む積層体

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862238B2 (ja) * 2011-05-27 2016-02-16 東洋紡株式会社 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
JP5862866B2 (ja) * 2011-05-30 2016-02-16 東洋紡株式会社 積層体の作成方法および、この積層体を利用したフィルムデバイスの作成方法
US10435510B2 (en) 2013-02-07 2019-10-08 Kaneka Corporation Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate
JP6550752B2 (ja) * 2013-09-20 2019-07-31 東洋紡株式会社 リジッド複合積層板とその製造方法、積層体および該積層体を用いたデバイスの製造方法
KR102227637B1 (ko) * 2013-11-07 2021-03-16 삼성디스플레이 주식회사 적외선 감지 소자, 적외선 감지 소자를 포함하는 적외선 센서 및 이의 제조 방법
WO2015147106A1 (ja) * 2014-03-25 2015-10-01 株式会社カネカ 化合物半導体太陽電池の製造方法
JP6130332B2 (ja) * 2014-06-30 2017-05-17 キヤノン・コンポーネンツ株式会社 金属皮膜付樹脂製品の製造方法
JP6807231B2 (ja) 2014-08-12 2021-01-06 株式会社カネカ アルコキシシラン変性ポリアミド酸溶液、それを用いた積層体及びフレキシブルデバイス、並びに積層体の製造方法
JP6589277B2 (ja) * 2015-01-14 2019-10-16 富士電機株式会社 高耐圧受動素子および高耐圧受動素子の製造方法
EP3297824A1 (en) * 2015-05-19 2018-03-28 Corning Incorporated Articles and methods for bonding sheets with carriers
JP7106276B2 (ja) 2015-06-26 2022-07-26 コーニング インコーポレイテッド シート及び担体を有する物品及び方法
US10941241B2 (en) * 2016-02-25 2021-03-09 Showa Denko Materials Co., Ltd. Epoxy resin molding material, molded product, molded cured product, and method for producing molded cured product
WO2018032410A1 (en) 2016-08-17 2018-02-22 Dow Global Technologies Llc Benzophenone derivative, aqueous copolymer dispersion and aqueous coating composition
JP6458099B2 (ja) * 2016-09-16 2019-01-23 旭化成株式会社 ポリイミド前駆体、樹脂組成物、樹脂フィルム及びその製造方法
JP6905200B2 (ja) * 2017-02-27 2021-07-21 Jsr株式会社 基材表面の選択的修飾方法
WO2018181496A1 (ja) * 2017-03-30 2018-10-04 日産化学株式会社 剥離層形成用組成物及び剥離層
KR101960267B1 (ko) * 2017-05-12 2019-03-21 (주)제이스텍 플렉시블 디스플레이 벤딩을 위한 필름 박리방법
WO2018211876A1 (ja) * 2017-05-17 2018-11-22 国立研究開発法人農業・食品産業技術総合研究機構 ビトリゲル膜乾燥体の製造方法及び製造装置
WO2019036335A1 (en) * 2017-08-15 2019-02-21 The Charles Stark Draper Laboratory, Inc. DRIVER WIRE WITH COMPOSITE SHIELD
WO2019036710A1 (en) 2017-08-18 2019-02-21 Corning Incorporated TEMPORARY BINDING USING POLYCATIONIC POLYMERS
CN108328935B (zh) * 2018-04-16 2024-02-27 中国工程物理研究院激光聚变研究中心 交变电场辅助光学元件表面刻蚀处理装置及处理方法
CN109054018B (zh) * 2018-06-06 2021-05-14 华南理工大学 一种聚酰胺酸溶液及其制备方法
CN108794748B (zh) * 2018-06-06 2021-08-10 华南理工大学 一种低介电常数的聚酰亚胺薄膜及其制备方法
CN108794747A (zh) * 2018-06-27 2018-11-13 深圳市华星光电技术有限公司 硅烷偶联剂材料、柔性pi基板的制作方法及柔性pi基板半成品
JP7135554B2 (ja) * 2018-08-03 2022-09-13 Jsr株式会社 下層膜形成用組成物、自己組織化膜の下層膜及びその形成方法並びに自己組織化リソグラフィープロセス
EP3873182A4 (en) * 2018-10-22 2023-01-25 Toyobo Co., Ltd. METHOD OF MAKING DEVICE CONNECTED BODY AND DEVICE CONNECTED BODY
KR20210000805A (ko) 2019-06-25 2021-01-06 삼성디스플레이 주식회사 표시 장치의 제조 방법 및 이에 사용되는 레이저 장치
CN110505767B (zh) * 2019-07-08 2021-03-30 苏州固泰新材股份有限公司 一种软性铜箔基材及其制备方法
KR102616131B1 (ko) * 2020-08-24 2023-12-21 세메스 주식회사 기판 처리 장치, 이온 주입 처리 장치 및 이온 주입 처리 방법
KR20220048517A (ko) * 2020-10-12 2022-04-20 삼성디스플레이 주식회사 표시 장치
CN112645278B (zh) * 2020-12-17 2023-09-15 湖南佳禾芯半导体有限公司 一种用于晶圆芯片探针结构的加工方法
CN113021956B (zh) * 2021-02-02 2022-10-28 山东非金属材料研究所 一种耐压复合材料壳体的成型方法
CN113471256B (zh) * 2021-06-16 2023-04-18 武汉华星光电技术有限公司 显示面板及显示面板的制备方法
CN115849298B (zh) * 2023-01-18 2023-05-09 胜科纳米(苏州)股份有限公司 一种具有梳齿结构芯片的梳齿层去除方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171458A (ja) * 1991-12-26 1993-07-09 Hitachi Chem Co Ltd 金属表面の処理方法
JP2006245303A (ja) * 2005-03-03 2006-09-14 Nikko Kinzoku Kk 銅箔の表面処理方法
JP2006352156A (ja) * 2006-08-17 2006-12-28 Seiko Epson Corp パターン形成基板
JP2009246212A (ja) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd 導電性基板の製造方法及び導電性基板
WO2010071145A1 (ja) * 2008-12-19 2010-06-24 東洋紡績株式会社 積層体およびその製造方法、積層体回路板
JP2010283262A (ja) * 2009-06-08 2010-12-16 Toyobo Co Ltd 積層体およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2265021B (en) * 1992-03-10 1996-02-14 Nippon Steel Chemical Co Photosensitive materials and their use in forming protective layers for printed circuit and process for preparation of printed circuit
JP3090768B2 (ja) * 1992-03-10 2000-09-25 新日鐵化学株式会社 積層体
JPH0656992A (ja) 1992-08-05 1994-03-01 Unitika Ltd ポリイミドフィルム
US5741585A (en) 1995-04-24 1998-04-21 The Dow Chemical Company Polyamic acid precursors and methods for preparing higher molecular weight polyamic acids and polyimidebenzoxazole
US5670262A (en) 1995-05-09 1997-09-23 The Dow Chemical Company Printing wiring board(s) having polyimidebenzoxazole dielectric layer(s) and the manufacture thereof
JP2002196337A (ja) * 2000-09-06 2002-07-12 Seiko Epson Corp 電気光学装置の製造方法及び製造装置、並びに液晶パネルの製造方法及び製造装置
JP4919474B2 (ja) 2006-07-13 2012-04-18 国立大学法人京都大学 光照射による樹脂の接着方法および樹脂物品の製造方法
WO2008020984A2 (en) * 2006-08-08 2008-02-21 World Properties, Inc. Circuit materials with improved bond, method of manufacture thereof, and articles formed therefrom
US8257820B2 (en) * 2006-08-08 2012-09-04 World Properties, Inc. Circuit materials with improved bond, method of manufacture thereof, and articles formed therefrom
JP5138927B2 (ja) 2006-12-25 2013-02-06 共同印刷株式会社 フレキシブルtft基板及びその製造方法とフレキシブルディスプレイ
JP5304490B2 (ja) 2009-07-02 2013-10-02 東洋紡株式会社 積層体およびその製造方法
JP5147794B2 (ja) 2009-08-04 2013-02-20 株式会社半導体エネルギー研究所 表示装置の作製方法及び電子書籍の作製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171458A (ja) * 1991-12-26 1993-07-09 Hitachi Chem Co Ltd 金属表面の処理方法
JP2006245303A (ja) * 2005-03-03 2006-09-14 Nikko Kinzoku Kk 銅箔の表面処理方法
JP2006352156A (ja) * 2006-08-17 2006-12-28 Seiko Epson Corp パターン形成基板
JP2009246212A (ja) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd 導電性基板の製造方法及び導電性基板
WO2010071145A1 (ja) * 2008-12-19 2010-06-24 東洋紡績株式会社 積層体およびその製造方法、積層体回路板
JP2010283262A (ja) * 2009-06-08 2010-12-16 Toyobo Co Ltd 積層体およびその製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026546A (ja) * 2011-07-25 2013-02-04 Dainippon Printing Co Ltd 薄膜デバイス用基板、及び薄膜デバイスの製造方法
WO2013114685A1 (ja) * 2012-02-01 2013-08-08 東洋紡株式会社 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
US20140159264A1 (en) * 2012-12-07 2014-06-12 Sumitomo Bakelite Co., Ltd. Solution of aromatic polyamide for producing display element, optical element, or illumination element
CN104838303A (zh) * 2012-12-07 2015-08-12 艾克伦聚合物系统公司 用于制造显示元件、光学元件或照明元件的芳香族聚酰胺溶液
EP2938653A4 (en) * 2012-12-26 2016-07-27 Kolon Inc POLYAMIDE ACID SOLUTION, IMIDIZATION FOIL AND DISPLAY DEVICE
WO2014119648A1 (ja) * 2013-02-04 2014-08-07 東洋紡株式会社 積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JPWO2014119648A1 (ja) * 2013-02-04 2017-01-26 東洋紡株式会社 積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
WO2017204182A1 (ja) * 2016-05-23 2017-11-30 日産化学工業株式会社 剥離層形成用組成物及び剥離層
WO2017204186A1 (ja) * 2016-05-23 2017-11-30 日産化学工業株式会社 剥離層形成用組成物及び剥離層
CN109153852A (zh) * 2016-05-23 2019-01-04 日产化学株式会社 剥离层形成用组合物和剥离层
CN109196051A (zh) * 2016-05-23 2019-01-11 日产化学株式会社 剥离层形成用组合物和剥离层
JPWO2017204186A1 (ja) * 2016-05-23 2019-03-28 日産化学株式会社 剥離層形成用組成物及び剥離層
CN109153852B (zh) * 2016-05-23 2022-07-05 日产化学株式会社 剥离层形成用组合物和剥离层
JP2018012248A (ja) * 2016-07-20 2018-01-25 日立化成株式会社 積層体、金属張積層体及びプリント配線板
WO2021241570A1 (ja) * 2020-05-29 2021-12-02 東洋紡株式会社 透明高耐熱フィルムを含む積層体
WO2021241571A1 (ja) * 2020-05-29 2021-12-02 東洋紡株式会社 透明高耐熱フィルムを含む積層体

Also Published As

Publication number Publication date
JP5429375B2 (ja) 2014-02-26
US9604391B2 (en) 2017-03-28
US20140042662A1 (en) 2014-02-13
KR101911574B1 (ko) 2018-10-24
KR20140027265A (ko) 2014-03-06
WO2012141293A3 (ja) 2012-12-20
TWI530392B (zh) 2016-04-21
TW201307061A (zh) 2013-02-16
JPWO2012141293A1 (ja) 2014-07-28
CN103619591B (zh) 2016-02-24
CN103619591A (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5429375B2 (ja) 積層体とその製造方法および、この積層体を用いたデバイス構造体の作成方法
JP5862238B2 (ja) 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
JP6217631B2 (ja) 積層体の作成方法および、積層体および、この積層体を利用したデバイス付き積層体の作成方法および、デバイス付き積層体
JP5224011B2 (ja) 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
JP5862866B2 (ja) 積層体の作成方法および、この積層体を利用したフィルムデバイスの作成方法
JP6003883B2 (ja) 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
CN107073891B (zh) 硅烷偶联剂层层叠高分子膜
JP6550752B2 (ja) リジッド複合積層板とその製造方法、積層体および該積層体を用いたデバイスの製造方法
JP6181984B2 (ja) 高分子フィルム積層基板
JP6354310B2 (ja) 積層体形成用ポリイミドフィルム
JPWO2014119648A1 (ja) 積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JP6848496B2 (ja) 積層体
JP2013226784A (ja) 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
JP6950713B2 (ja) 高分子フィルム積層基板およびフレキシブル電子デバイスの製造方法
JP6201513B2 (ja) 積層体の製造方法及びそれを用いたデバイス構造体の製造方法
JP6981012B2 (ja) デバイス形成用仮支持基板およびデバイスの製造方法
JP6981011B2 (ja) デバイス形成用仮支持基板およびデバイスの製造方法
JP2018137345A (ja) デバイス形成用仮支持基板およびデバイスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280018588.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012520613

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771032

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14111374

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137030111

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12771032

Country of ref document: EP

Kind code of ref document: A2