JP6181984B2 - 高分子フィルム積層基板 - Google Patents

高分子フィルム積層基板 Download PDF

Info

Publication number
JP6181984B2
JP6181984B2 JP2013121295A JP2013121295A JP6181984B2 JP 6181984 B2 JP6181984 B2 JP 6181984B2 JP 2013121295 A JP2013121295 A JP 2013121295A JP 2013121295 A JP2013121295 A JP 2013121295A JP 6181984 B2 JP6181984 B2 JP 6181984B2
Authority
JP
Japan
Prior art keywords
polymer film
film
coupling agent
silane coupling
inorganic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013121295A
Other languages
English (en)
Other versions
JP2014237270A (ja
Inventor
奥山 哲雄
哲雄 奥山
勝貴 中瀬
勝貴 中瀬
一成 小林
一成 小林
郷司 前田
郷司 前田
正平 宮武
正平 宮武
工藤 孝夫
孝夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Geomatec Co Ltd
Original Assignee
Toyobo Co Ltd
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd, Geomatec Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2013121295A priority Critical patent/JP6181984B2/ja
Publication of JP2014237270A publication Critical patent/JP2014237270A/ja
Application granted granted Critical
Publication of JP6181984B2 publication Critical patent/JP6181984B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、無機基板と高分子フィルム層(以下、「高分子フィルム」ともいう)との間に薄膜を備えている高分子フィルム積層基板であって、フレキシブルな電子デバイスを製造するのに有用であり、かつ無機基板のリサイクル性にも優れた高分子フィルム積層基板に関する。
近年、半導体素子、MEMS素子、ディスプレイ素子など機能素子の軽量化、小型・薄型化、フレキシビリティ化を目的として、高分子フィルム上にこれらの素子を形成する技術開発が活発に行われている。すなわち、情報通信機器(放送機器、移動体無線、携帯通信機器等)、レーダーや高速情報処理装置などといった電子部品の基材の材料としては、従来、耐熱性を有し且つ情報通信機器の信号帯域の高周波数化(GHz帯に達する)にも対応し得るセラミックが用いられていたが、セラミックはフレキシブルではなく薄型化もしにくいので、適用可能な分野が限定されるという欠点があったため、最近は高分子フィルムが基板として用いられている。
半導体素子、MEMS素子、ディスプレイ素子などの機能素子を高分子フィルム表面に形成するにあたっては、高分子フィルムの特性であるフレキシビリティを利用した、いわゆるロール・ツー・ロールプロセスにて加工することが理想とされている。しかしながら、半導体産業、MEMS産業、ディスプレイ産業等の業界では、これまでウエハベースまたはガラス基板ベース等のリジッドな平面基板を対象としたプロセス技術が構築されてきた。そこで、既存インフラを利用して機能素子を高分子フィルム上に形成するために、高分子フィルムを、例えばガラス板、セラミック板、シリコンウエハ、金属板などの無機物からなるリジッドな支持体に貼り合わせ、その上に所望の素子を形成した後に支持体から剥離するというプロセスが用いられている。
ところで、高分子フィルムと無機物からなる支持体とを貼り合わせた積層体に所望の機能素子を形成するプロセスにおいては、該積層体は高温に曝されることが多い。例えば、ポリシリコンや酸化物半導体などの機能素子の形成においては200〜500℃程度の温度域での工程が必要である。また、低温ポリシリコン薄膜トランジスターの作製においては脱水素化のために450℃程度の加熱が必要になる場合があり、水素化アモルファスシリコン薄膜の作製においては200〜300℃程度の温度がフィルムに加わる場合がある。したがって、積層体を構成する高分子フィルムには耐熱性が求められるが、現実問題としてかかる高温域にて実用に耐える高分子フィルムは限られている。また、支持体への高分子フィルムの貼り合わせには一般に粘着剤や接着剤を用いることが考えられるが、その際の高分子フィルムと支持体との接合面(すなわち貼り合せ用の接着剤や粘着剤)にも耐熱性が求められる。しかし、通常の貼り合せ用の接着剤や粘着剤は十分な耐熱性を有していないため、機能素子の形成温度が高い場合には接着剤や粘着剤による貼り合わせは適用できない。
高分子フィルムを無機基板に貼り付ける耐熱接着手段がないため、かかる用途においては、高分子溶液または高分子の前駆体溶液を無機基板上に塗布して支持体上で乾燥・硬化させてフィルム化し、当該用途に使用する技術が知られている。しかしながら、かかる手段により得られる高分子フィルムは、脆く裂けやすいため、高分子フィルム表面に形成された機能素子は支持体から剥離する際に破壊してしまう場合が多い。特に支持体から大面積のフィルムを剥離するのは極めて難しく、およそ工業的に成り立つ歩留まりを得ることはできない。
このような事情に鑑み、機能素子を形成するための高分子フィルムと支持体との積層体として、耐熱性に優れ強靭で薄膜化が可能なポリイミドフィルムを、シランカップリング剤を介して無機物からなる支持体(無機層)に貼り合わせてなる積層体が提案されている(特許文献1〜3)。
ところで、高分子フィルムは元来、柔軟な素材であり、多少の伸縮や曲げ伸ばしを行ってもよい。一方で、高分子フィルム上に形成された機能素子は、多くの場合、無機物からなる導電体、半導体を所定のパターンにて組み合わせた微細な構造を有しており、微小な伸縮や曲げ伸ばしといったストレスによって、その構造は破壊され、電子デバイスとしての特性は損なわれてしまう。かかるストレスは、無機基板から高分子フィルムを機能素子ごと剥離するときに生じやすい。そのため、特許文献1〜3に記載の積層体では、高分子フィルムを支持体から剥離する際に機能素子の構造が破壊されるおそれがある。
そこで、無機基板上にカップリング剤処理を施してカップリング処理層を形成し、次いでカップリング処理層の一部に不活性化処理を施して、ポリイミドフィルムを貼り合わせた際に、無機基板から比較的剥離しにくい良接着部分と、無機基板から比較的剥離しやすい易剥離部分とを作り、ポリイミドフィルムの易剥離部分の上に機能素子を形成し、ポリイミドフィルムの易剥離部分に切り込みを入れて、易剥離部分のみを機能素子ごと剥離することにより、機能素子に与えるストレスを減じた状態にて無機基板からポリイミドフィルムを剥離可能とする技術が提案されている(特許文献4)。
特開2010−283262号公報 特開2011−011455号公報 特開2011−245675号公報 特開2013−010342号公報
上述した特許文献4では、積層体を従来のガラス板やシリコンウエハなどの無機物の基板上に直接機能素子を形成するプロセスに供することが可能であり、さらに良接着部分と易剥離部分を設けることにより、高分子フィルム上に形成した機能素子を、高分子フィルムごと無機基板から比較的容易に剥離することができる。そのため、フレキシブルな電子デバイスの作製する際に非常に有用である。しかしながら、かかる技術の提案においても、必ずしも全ての問題点が解決されたわけではない。
特許文献4に提案された技術において、カップリング剤を塗布した無機基板に不活性化処理を行い、カップリング剤層の活性度を変化させた場合、良接着部分と易剥離部分とには接着強度差が生じるため、易剥離部分のみを剥離することが比較的容易になる。しかしながら、易剥離部分内での接着強度は一様ではなく、バラツキが存在する。かかるバラツキは、カップリング剤層の厚さのバラツキやカップリング剤の元々の活性度のバラツキが存在していることに加え、カップリング剤層に不活性化処理を行う際のバラツキが相まって、さらに易剥離部分の接着強度のバラツキが増すこととなる。
シランカップリング剤を用いた接着は、シランカップリング剤の官能基と、高分子フィルムの活性点との化学反応によるものと解釈されるが、かかる化学反応は貼り合わせ工程のときだけでなく、貼り合わせ後に機能素子を高分子フィルム上に形成する際にも、暴露される温度、湿度、雰囲気、活性エネルギー線量などに伴って、化学反応状態が変化し、接着の進行にも影響を及ぼす。化学反応には結合反応と解離反応があり、反応場では両者が複雑に絡み合っている。その結果、易剥離部分において、化学反応の程度、形態の異なる場所が生じ、易剥離部分の中でも接着力は一様ではなく、バラツキが存在する。よって、高分子フィルムを無機基板から剥離する工程では機能素子が微小なストレスによって容易に破壊されるおそれがあり、この方法で電子デバイスを工業的に生産するには困難を伴う。
また、フレキシブルな電子デバイスを工業的に生産する事を考えた場合、仮支持体である無機基板のリサイクル性は製造コストに直結する重要な課題となる。無機基板のリサイクル性は、高分子フィルムを剥離した後の無機基板表面の状態に大きく左右される。
シランカップリング剤は、無機基板、特にシリコンウエハやガラス板の表面の水酸基と化学反応を生じ、強固な共有結合を行うことが知られている。よって、表面に結合したシランカップリング剤層が残存した状態で無機基板をリサイクルしようとしても、元々の無機基板表面と同等の性状を有する表面にはならないため、一度使用した無機基板上に再度シランカップリング剤を均一に塗布することは非常に困難である。一方、シランカップリング剤層を完全に除去するには無機基板表面を再研磨するに等しい手間が必要であり、無機基板のリサイクルコストが高くなってしまう。よって、無機基板を低コストでリサイクルするのは非常に困難であった。
本発明者らは前記課題を解決するために鋭意検討した結果、所定の材料を用いて、無機基板表面の少なくとも片面の一部に薄膜を形成し、その薄膜の上にシランカップリング剤を塗布することによって、シランカップリング剤を安定かつ均一に塗布することが可能となることを見いだした。その結果、高分子フィルムをシランカップリング剤層の上に積層したときに、易剥離部において容易に高分子フィルムをシランカップリング剤層ごと無機基板から剥離することが可能となる。これにより、精度の高いフレキシブル電子デバイスを高収率で製造可能となる上に、無機基板のリサイクル性も改善されることとなった。
すなわち、本発明は以下の構成からなる。
本発明は、無機基板の少なくとも片面の一部に薄膜が連続又は不連続に形成され、薄膜の上にシランカップリング剤層が連続又は不連続に形成され、さらにシランカップリング剤層の上に高分子フィルム層が積層された高分子フィルム積層基板であって、無機基板表面のイソプロピルアルコールに対する接触角と薄膜表面のイソプロピルアルコールに対する接触角との差が5度以内であり、高分子フィルムが積層された面は、高分子フィルムに切り込みを入れると高分子フィルムをシランカップリング剤層ごと無機基板から容易に分離できる領域である易剥離部と容易に分離できない領域である良好接着部とからなり、良好接着部における無機基板と高分子フィルムとの接着強度は、易剥離部における無機基板と高分子フィルムとの接着強度の2倍以上であることを特徴とする。
前記薄膜には、Cr、貴金属、金属炭化物、又は金属窒化物の少なくとも1つが含まれていることが好ましい。
前記無機基板の少なくとも片面において、上記薄膜が不連続に形成されており、上記易剥離部では上記薄膜に覆われており、上記良好接着部では上記薄膜に覆われていないことが好ましい。
前記高分子フィルムはポリイミドフィルムであることが好ましい。
本発明に係る高分子フィルム積層基板は、高分子フィルム上に電子デバイス(機能素子)を形成する際に、無機基板に高分子フィルム材料を仮支持するために用いられるのが好ましい。
また、本発明には、フレキシブル電子デバイスの製造方法も包含され、この方法は無機基板の少なくとも片面の一部に薄膜を連続又は不連続に形成する工程と、薄膜の上にシランカップリング剤層を連続又は不連続に形成する工程と、シランカップリング剤層の上に複数の高分子フィルム層を積層する工程と、加熱加圧することで隣接する互いの層を接着する工程と、高分子フィルム上に電子デバイスを形成する工程と、高分子フィルム層に切り込みを入れ、高分子フィルム層の少なくとも一部を電子デバイス及びシランカップリング剤層ごと無機基板から剥離する工程とを備えることを特徴とする。
上記製造方法においては、高分子溶液または高分子の前駆体溶液をシランカップリング剤層または高分子フィルム層上に塗布し、塗布した溶液を乾燥、加熱することによって高分子フィルム層を積層するのが好ましい。また、薄膜に所定のパターンを形成する工程を含むのが好ましい。
本発明によれば、高分子フィルムと無機基板との間に薄膜を形成することにより、シランカップリング剤の均質な塗布が可能となり、また高分子フィルムを無機基板から剥離する際に、安定に、かつ一定の低い力で剥離することが可能となる。そして、高分子フィルム層を無機基板から剥離する際に高分子フィルム層に切り込みを入れると高分子フィルム層をシランカップリング剤層ごと無機基板から剥離でき、そして、高分子フィルム層が剥離されなかった箇所については、無機基板上から高分子フィルム層を除去すると、ケイ酸ガラス成分を主体とした成分のみが無機基板上に残存することとなる。従って、良好接着部の領域(薄膜が形成されていなかった領域)では、高分子フィルム層の除去後、無機基板表面と近い性状の表面となるため、シランカップリング剤の再塗布も比較的容易であり、無機基板のリサイクル性が大幅に向上する。
さらに、本発明によれば、薄膜を所定のパターンとすることで、高分子フィルムが積層された面は、高分子フィルムに切り込みを入れると、高分子フィルムをシランカップリング剤層ごと無機基板から容易に分離できる領域である易剥離部と容易に分離できない領域である良好接着部とを作り分けることができ、易剥離部周辺に沿って切り込みを入れて、易剥離部の高分子フィルム上に形成された機能素子部分を高分子フィルムと一体で無機基板から剥離することが可能となる。
本発明において、高耐熱性を有する高分子フィルムを用いれば、耐熱性に劣る接着剤や粘着剤を用いることなく無機基板と高分子フィルムとを貼り合わせが可能であり、例えば180℃以上といった高温が必要な場合であっても高分子フィルム上に機能素子を形成することができる。一般に半導体、誘電体等は、高温で形成した方が膜質の良い薄膜が得られるため、より高性能な電子デバイスの形成が期待できる。
従って、本発明の高分子フィルム積層基板を用いれば、誘電体素子、半導体素子、MEMS素子、ディスプレイ素子、発光素子、光電変換素子、圧電変換素子、熱電変換素子等の電子デバイスが高分子フィルム上に形成したフレキシブル電子デバイスの製造に有用である。
(高分子フィルム積層基板およびその製造方法)
本発明は、無機基板の少なくとも片面の一部に薄膜が連続又は不連続に形成され、薄膜の上にシランカップリング剤層が連続又は不連続に形成され、さらにシランカップリング剤層の上に高分子フィルム層が積層された高分子フィルム積層基板である。
<無機基板>
本発明においては高分子フィルムの支持体として無機基板を用いる。また、高分子フィルム上に電子デバイスを形成して、フレキシブル電子デバイスを製造する場合においても、無機基板は高分子フィルム材料を仮支持するために用いられる。
無機基板としては無機物からなる基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、半導体ウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、半導体ウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。
前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/K以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング(登録商標)7059」や「コーニング(登録商標)1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、SCHOTT社製の「AF32」などが望ましい。
前記セラミック板としては、Al、Mullite、AlN、SiC、Si、BN、結晶化ガラス、Cordierite、Spodumene、Pb−BSG+CaZrO+Al、Crystallized glass+Al、Crystallized Ca−BSG、BSG+Quartz、BSG+Al、Pb+BSG+Al、Glass−ceramic、ゼロデュア材などの基板用セラミックス、TiO、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、アルミナ、MgO、ステアタイト、BaTi、BaTiO、BaTi4+CaZrO3、BaSrCaZrTiO3、Ba(TiZr)O3、PMN−PTやPFN−PFWなどのキャパシター材料、PbNb26、Pb0.5Be0.5Nb26、PbTiO3、BaTiO3、PZT、0.855PZT−95PT−0.5BT、0.873PZT−0.97PT−0.3BT、PLZTなどの圧電材料が含まれる。
前記半導体ウエハとしては、特に限定されないが、シリコンウエハなどの半導体ウエハや化合物半導体ウエハ等を用いることができる。
シリコンウエハとは、単結晶ないし多結晶のシリコンを薄板状に加工した物であり、n型或はp型にドーピングされたシリコンウエハ、イントリンシックシリコンウエハ等の全てが含まれ、また、シリコンウエハの表面に酸化シリコン層や各種薄膜が堆積されたシリコンウエハも含まれる。
また、シリコンウエハ以外の半導体ウエハ、化合物半導体ウエハなども前記半導体ウエハとして用いることができ、例えば、ゲルマニウム、シリコン−ゲルマニウム、ガリウム−ヒ素、アルミニウム−ガリウム−インジウム、窒素−リン−ヒ素−アンチモン、SiC、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛)などのウエハが挙げられる。
前記金属としては、W、Mo、Pt、Fe、Ni、Auといった単一元素金属や、インコネル、モネル、ニモニック、炭素銅、Fe−Ni系インバー合金、スーパーインバー合金、といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。この場合、付加層との全体の線膨張係数(CTE)が低ければ、主金属層にCu、Alなども用いられる。付加金属層として使用される金属としては、高分子フィルムとの密着性を強固にするもの、拡散がないこと、耐薬品性や耐熱性が良いこと等の特性を有するものであれば限定されるものではないが、Cr、Ni、TiN、Mo含有Cuなどが好適な例として挙げられる。
前記無機基板の平面部分は、充分に平坦である事が望ましい。具体的には、表面粗さのP−V値が50nm以下、より好ましくは20nm以下、さらに好ましくは5nm以下である。これより粗いと、高分子フィルム層と無機基板との接着強度が不充分となる場合がある。
前記無機基板の厚さは特に制限されないが、取り扱い性の観点より10mm以下の厚さが好ましく、3mm以下がより好ましく、1.3mm以下がさらに好ましい。厚さの下限については特に制限されないが、好ましくは0.07mm以上、より好ましくは0.15mm以上、さらに好ましくは0.3mm以上である。
前記無機基板の面積は、高分子フィルム積層基板やフレキシブル電子デバイスの生産効率・コストの観点より、大面積であることが好ましい。具体的には、1000cm2以上であることが好ましく、1500cm2以上であることがより好ましく、2000cm2以上であることがさらに好ましい。
<薄膜>
本発明においては、無機基板の少なくとも片面の一部に薄膜が連続又は不連続に形成されている。以下の例示は無機基板の片面側にのみ高分子フィルムを貼りつける形態を前提に説明するが、無機基板の両面に高分子フィルムを貼りつける形態も本発明の範囲内である。
薄膜には、少なくとも、Cr、貴金属、金属炭化物、金属窒化物の少なくとも1つが含まれる。特に、無機基板として、ガラス板ないしシリコンウエハを用いた場合には、少なくとも、Cr、貴金属、金属炭化物、金属窒化物の少なくとも1つが含まれるのが好ましい。薄膜は、Cr、貴金属、金属炭化物、金属窒化物の少なくとも1つが含まれる成膜源(蒸着源やターゲット)を用いて形成される。
Crを主たる成膜源とする場合、成膜源にはCrが90質量%以上含まれているのが好ましい。また、Crと併用する元素としては、遷移金属元素であれば特に制限されないが、好ましくは、マンガン、コバルト、バナジウム、ニッケル、鉄、モリブデン等を例示することが出来る。これらの副成分は成膜源の10質量%を越えない範囲でCrと組み合わせて使用することができる。
貴金属としては金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等を例示することができ、それらの中でも、金、白金を用いるのが好ましい。貴金属を主たる成膜源とする場合、成膜源には上記金属の少なくとも一種が85質量%以上含まれているのが好ましい。
金属炭化物としては、水に対して安定な金属炭化物を意味し、例えば、炭化タングステン、炭化モリブデン、炭化チタン、炭化タンタル、炭化ニオブ、炭化バナジウム、炭化ジルコニウム、炭化珪素、炭化硼素などを挙げることができ、それらの中でも、炭化珪素、炭化硼素を用いるのが好ましい。金属炭化物を主たる成膜源とする場合、成膜源には金属炭化物が80質量%以上含まれているのが好ましく、より好ましくは85質量%以上、さらに好ましくは90質量%以上である。
なお、アルカリ金属、アルカリ土類金属の炭化物は水により分解する場合があるため、好ましくない。
金属窒化物としては、窒化チタン、窒化ジルコニウム、窒化ニオブ、窒化タンタル、窒化クロム、窒化バナジウム、窒化珪素、窒化ガリウム等を例示することができ、それらの中でも、窒化チタン、窒化ジルコニウム、窒化珪素を用いるのが好ましい。金属窒化物を主たる成膜源とする場合、成膜源には金属窒化物が80質量%以上含まれているのが好ましく、より好ましくは85質量%以上、さらに好ましくは90質量%以上である。
薄膜を形成する手法については、特に制限されず、成膜源の種類、特性に応じて、蒸着、スパッタリング、反応性スパッタリング、イオンビームスパッタリング、CVD等の公知の薄膜形成手段を用いることができる。
蒸着源やターゲットを用いて薄膜を形成することができるが、成膜源にCr、貴金属、金属炭化物、金属窒化物以外の物質を含む場合のように複数の物質が含まれている場合、合金にして単一の蒸着源やターゲットを用いて薄膜を形成してもよいし、合金にすることなく、複数の蒸着源やターゲットを用いて薄膜を形成してもよい。
<シランカップリング剤処理>
本発明においてシランカップリング剤とは、無機基板と高分子フィルム層との間に物理的ないし化学的に介在し、両者間の接着力を高める作用を有する化合物を意味する。
カップリング剤は、特に限定されるものではないが、アミノ基あるいはエポキシ基を持ったシランカップリング剤が好ましい。シランカップリング剤の好ましい具体例としては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、2−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシラン塩酸塩、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン、トリス−(3−トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。
本発明で用いることのできるシランカップリング剤としては、上記のほかに、n−プロピルトリメトキシシラン、ブチルトリクロロシラン、2−シアノエチルトリエトキシシラン、シクロヘキシルトリクロロシラン、デシルトリクロロシラン、ジアセトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジメチルシラン、ジメトキシジフェニルシラン、ジメトキシメチルフェニルシラン、ドデシルトリクロロシラン、ドデシルトリメトキシラン、エチルトリクロロシラン、ヘキシルトリメトキシシラン、オクタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、n−オクチルトリクロロシラン、n−オクチルトリエトキシシラン、n−オクチルトリメトキシシラン、トリエトキシエチルシラン、トリエトキシメチルシラン、トリメトキシメチルシラン、トリメトキシフェニルシラン、ペンチルトリエトキシシラン、ペンチルトリクロロシラン、トリアセトキシメチルシラン、トリクロロヘキシルシラン、トリクロロメチルシラン、トリクロロオクタデシルシラン、トリクロロプロピルシラン、トリクロロテトラデシルシラン、トリメトキシプロピルシラン、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリクロロビニルシラン、トリエトキシビニルシラン、ビニルトリス(2−メトキシエトキシ)シラン、トリクロロ−2−シアノエチルシラン、ジエトキシ(3−グリシジルオキシプロピル)メチルシラン、3−グリシジルオキシプロピル(ジメトキシ)メチルシラン、3−グリシジルオキシプロピルトリメトキシシランなどを使用することもできる。
本発明では、1つの分子中に1個のケイ素原子を有するシランカップリング剤が特に好ましく、例えば、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、2−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで特に高い耐熱性が要求される場合、Siとアミノ基の間を芳香族基でつないだものが望ましい。
本発明で用いることのできるカップリング剤としては、上記のシランカップリング剤以外のカップリング剤も併用することができる。例えば、1−メルカプト−2−プロパノール、3−メルカプトプロピオン酸メチル、3−メルカプト−2−ブタノール、3−メルカプトプロピオン酸ブチル、3−(ジメトキシメチルシリル)−1−プロパンチオール、4−(6−メルカプトヘキサロイル)ベンジルアルコール、11−アミノ−1−ウンデセンチオール、11−メルカプトウンデシルホスホン酸、11−メルカプトウンデシルトリフルオロ酢酸、2,2’−(エチレンジオキシ)ジエタンチオール、11−メルカプトウンデシルトリ(エチレングリコール)、(1−メルカプトウンデイック−11−イル)テトラ(エチレングリコール)、1−(メチルカルボキシ)ウンデック−11−イル)ヘキサ(エチレングリコール)、ヒドロキシウンデシルジスルフィド、カルボキシウンデシルジスルフィド、ヒドロキシヘキサドデシルジスルフィド、カルボキシヘキサデシルジスルフィド、テトラキス(2−エチルヘキシルオキシ)チタン、チタンジオクチロキシビス(オクチレングリコレート)、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムトリブトキシモノステアレート、アセトアルコキシアルミニウムジイソプロピレート、3−グリシジルオキシプロピルトリメトキシシラン、2,3−ブタンジチオール、1−ブタンチオール、2−ブタンチオール、シクロヘキサンチオール、シクロペンタンチオール、1−デカンチオール、1−ドデカンチオール、3−メルカプトプロピオン酸−2−エチルヘキシル、3−メルカプトプロピオン酸エチル、1−ヘプタンチオール、1−ヘキサデカンチオール、ヘキシルメルカプタン、イソアミルメルカプタン、イソブチルメルカプタン、3−メルカプトプロピオン酸、3−メルカプトプロピオン酸−3−メトキシブチル、2−メチル−1−ブタンチオール、1−オクタデカンチオール、1−オクタンチオール、1−ペンタデカンチオール、1−ペンタンチオール、1−プロパンチオール、1−テトラデカンチオール、1−ウンデカンチオール、1−(12−メルカプトドデシル)イミダゾール、1−(11−メルカプトウンデシル)イミダゾール、1−(10−メルカプトデシル)イミダゾール、1−(16−メルカプトヘキサデシル)イミダゾール、1−(17−メルカプトヘプタデシル)イミダゾール、1−(15−メルカプト)ドデカン酸、1−(11−メルカプト)ウンデカン酸、1−(10−メルカプト)デカン酸などを使用することもできる。
<シランカップリング剤層の形成方法>
シランカップリング剤層の形成方法としては、シランカップリング剤溶液を塗布する方法や蒸着法などを用いることが出来る。
シランカップリング剤溶液を塗布する方法としては、シランカップリング剤をアルコールなどの溶媒で希釈した溶液を用いて、スピンコート法、カーテンコート法、ディップコート法、スリットダイコート法、グラビアコート法、バーコート法、コンマコート法、アプリケーター法、スクリーン印刷法、スプレーコート法等の従来公知の溶液の塗布手段を適宜用いることができる。シランカップリング剤溶液を塗布する方法を用いた場合、塗布後に速やかに乾燥し、さらに100±30℃程度で数十秒〜10分程度の熱処理を行うことが好ましい。熱処理により、シランカップリング剤と被塗布面の表面とが化学反応により結合される。
また、シランカップリング剤層を蒸着法によって形成することもでき、具体的には、基板をシランカップリング剤の蒸気、すなわち実質的に気体状態のシランカップリング剤に暴露して形成する。シランカップリング剤の蒸気は、液体状態のシランカップリング剤を40℃〜シランカップリング剤の沸点程度までの温度に加温することによって得ることが出来る。シランカップリング剤の沸点は、化学構造によって異なるが、概ね100〜250℃の範囲である。ただし200℃以上の加熱は、シランカップリング剤の有機基側の副反応を招く恐れがあるため好ましくない。
シランカップリング剤を加温する環境は、加圧下、常圧下、減圧下のいずれでも構わないが、シランカップリング剤の気化を促進する場合には常圧下ないし減圧下が好ましい。多くのシランカップリング剤は可燃性液体であるため、密閉容器内にて、好ましくは容器内を不活性ガスで置換した後に気化作業を行うことが好ましい。
無機基板をシランカップリング剤に暴露する時間は特に制限されないが、20時間以内が好ましく、より好ましくは60分以内、さらに好ましくは15分以内、最も好ましくは1分以内である。
無機基板をシランカップリング剤に暴露する間の無機基板の温度は、シランカップリング剤の種類と、求めるシランカップリング剤層の厚さにより−50℃から200℃の間の適正な温度に制御することが好ましい。
シランカップリング剤に暴露された無機基板は、好ましくは、暴露後に、70℃〜200℃、さらに好ましくは75℃〜150℃に加熱される。かかる加熱によって、無機基板表面の水酸基などと、シランカップリング剤のアルコキシ基やシラザン基が反応し、シランカップリング剤処理が完了する。加熱に要する時間は10秒以上10分以内である。暴露後の加熱温度が高すぎたり、暴露後の加熱時間が長すぎる場合にはシランカップリング剤の劣化が生じる場合がある。また暴露後の加熱時間が短すぎると処理効果が得られない。なお、シランカップリング剤に暴露中の基板温度が既に80℃以上である場合には、暴露後の加熱を省略することも出来る。
本発明では、蒸着法を用いて、無機基板のシランカップリング剤層を形成させたい面を下向きに保持してシランカップリング剤蒸気に暴露することが好ましい。シランカップリング剤溶液を塗布する方法では、必然的に塗布中および塗布前後に無機基板の塗布面が上を向くため、作業環境下の浮遊異物などが無機基板表面に沈着する可能性を否定できない。しかしながら蒸着法では無機基板のシランカップリング剤層を形成させたい面を下向きに保持することが出来るため、環境中の異物が無機基板の表面(あるいは薄膜表面)やシランカップリング剤層の表面に付着する可能性が低くなる。
なおシランカップリング剤処理前の無機基板表面を短波長UV/オゾン照射などの手段により清浄化したり液体洗浄剤で清浄化するのが好ましい。
シランカップリング剤層の膜厚は、無機基板、高分子フィルム等と比較しても極めて薄く、機械設計的な観点からは無視される程度の厚さであり、原理的には最低限、単分子層オーダーの厚さがあれば十分である。一般には400nm未満であり、200nm以下が好ましく、さらに実用上は100nm以下が好ましく、より好ましくは50nm以下、さらに好ましくは10nm以下である。ただし、計算上5nm以下の領域になるとシランカップリング剤層が均一な塗膜としてではなく、クラスター状に存在するおそれがある。なお、シランカップリング剤層の膜厚は、エリプソメトリー法または塗布時のシランカップリング剤溶液の濃度と塗布量から計算して求めることができる。
<高分子フィルム>
薄膜及びシランカップリング剤層が形成された無機基板の上に、高分子の溶液や高分子前駆体溶液を塗布し、乾燥・製膜することによって高分子フィルム層を形成することが可能である。
本発明における高分子フィルムとしては、ポリイミド・ポリアミドイミド・ポリエーテルイミド・フッ素化ポリイミドといった芳香族ポリイミド、脂環族ポリイミドなどのポリイミド系樹脂、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン−2,6−ナフタレートといった全芳香族ポリエステル、半芳香族ポリエステルなどの共重合ポリエステル、ポリメチルメタクリレートに代表される共重合(メタ)アクリレート、ポリカーボネート、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルケトン、酢酸セルロース、硝酸セルロース、芳香族ポリアミド、ポリ塩化ビニル、ポリフェノール、ポリアリレート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスチレン等のフィルムを用いることが出来、耐熱性が100℃以上の高分子を用いたフィルム、所謂エンジニアリングプラスチックを用いたフィルムであることが好ましい。エンジニアリングプラスチックを用いたフィルムとは、例えば、芳香族ポリエステルフィルムであることが好ましく、さらには耐熱温度が150℃を越える芳香族ポリアミドフィルム、ポリアミドイミドフィルム、ポリイミドフィルムなどのスーパーエンプラフィルムなどを挙げることができる。ここに耐熱性とはガラス転移温度ないしは熱変形温度をいう。
以下にポリイミド系樹脂フィルムについての詳細を説明する。一般にポリイミド系樹脂フィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(以下では「ポリアミド酸フィルム」ともいう)となし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。
ポリアミド酸を構成するジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、芳香族ジアミン類の中では、ベンゾオキサゾール構造を有する芳香族ジアミン類がより好ましい。ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類は、単独で用いてもよいし二種以上を併用してもよい。
ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール、6−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール、5−アミノ−2−(m−アミノフェニル)ベンゾオキサゾール、6−アミノ−2−(m−アミノフェニル)ベンゾオキサゾール、2,2’−p−フェニレンビス(5−アミノベンゾオキサゾール)、2,2’−p−フェニレンビス(6−アミノベンゾオキサゾール)、1−(5−アミノベンゾオキサゾロ)−4−(6−アミノベンゾオキサゾロ)ベンゼン、2,6−(4,4’−ジアミノジフェニル)ベンゾ[1,2−d:5,4−d’]ビスオキサゾール、2,6−(4,4’−ジアミノジフェニル)ベンゾ[1,2−d:4,5−d’]ビスオキサゾール、2,6−(3,4’−ジアミノジフェニル)ベンゾ[1,2−d:5,4−d’]ビスオキサゾール、2,6−(3,4’−ジアミノジフェニル)ベンゾ[1,2−d:4,5−d’]ビスオキサゾール、2,6−(3,3’−ジアミノジフェニル)ベンゾ[1,2−d:5,4−d’]ビスオキサゾール、2,6−(3,3’−ジアミノジフェニル)ベンゾ[1,2−d:4,5−d’]ビスオキサゾール等が挙げられる。
上述したベンゾオキサゾール構造を有する芳香族ジアミン類以外の芳香族ジアミン類としては、例えば、2,2’−ジメチル−4,4’−ジアミノビフェニル、1,4−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン(ビスアニリン)、1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、m−フェニレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン、m−アミノベンジルアミン、p−アミノベンジルアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホキシド、3,4’−ジアミノジフェニルスルホキシド、4,4’−ジアミノジフェニルスルホキシド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,4−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−アミノフェノキシ)フェ
ニル]ブタン、2,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルホキシド、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、4,4’−ビス[(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、3,4’−ジアミノジフェニルスルフィド、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス[4−(3−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(3−アミノフェノキシ)フェニル]エタン、ビス[4−(3−アミノフェノキシ)フェニル]スルホキシド、4,4’−ビス[3−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[3−(3−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4−{4−(4−アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−トリフルオロメチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−フルオロフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−メチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−シアノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、3,3’−ジアミノ−4,4’−ジフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジフェノキシベンゾフェノン、3,3’−ジアミノ−4−フェノキシベンゾフェノン、4,4’−ジアミノ−5−フェノキシベンゾフェノン、3,4’−ジアミノ−4−フェノキシベンゾフェノン、3,4’−ジアミノ−5’−フェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジビフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジビフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジビフェノキシベンゾフェノン、3,3’−ジアミノ−4−ビフェノキシベンゾフェノン、4,4’−ジアミノ−5−ビフェノキシベンゾフェノン、3,4’−ジアミノ−4−ビフェノキシベンゾフェノン、3,4’−ジアミノ−5’−ビフェノキシベンゾフェノン、1,3−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,3−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、1
,4−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、2,6−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾニトリル、および上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1〜3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1〜3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。
前記脂肪族ジアミン類としては、例えば、1,2−ジアミノエタン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン等が挙げられる。
前記脂環式ジアミン類としては、例えば、1,4−ジアミノシクロヘキサン、4,4’−メチレンビス(2,6−ジメチルシクロヘキシルアミン)等が挙げられる。
芳香族ジアミン類以外のジアミン(脂肪族ジアミン類および脂環式ジアミン類)の合計量は、全ジアミン類の20質量%以下が好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。換言すれば、芳香族ジアミン類は全ジアミン類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
ポリアミド酸を構成するテトラカルボン酸類としては、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環族テトラカルボン酸類(その酸無水物を含む)を用いることができる。中でも、芳香族テトラカルボン酸無水物類、脂環族テトラカルボン酸無水物類が好ましく、耐熱性の観点からは芳香族テトラカルボン酸無水物類がより好ましく、光透過性の観点からは脂環族テトラカルボン酸類がより好ましい。これらが酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
脂環族テトラカルボン酸類としては、例えば、シクロブタンテトラカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸、3,3’,4,4’−ビシクロヘキシルテトラカルボン酸等の脂環族テトラカルボン酸、およびこれらの酸無水物が挙げられる。これらの中でも、2個の無水物構造を有する二無水物(例えば、シクロブタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’−ビシクロヘキシルテトラカルボン酸二無水物等)が好適である。なお、脂環族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
脂環式テトラカルボン酸類は、透明性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
芳香族テトラカルボン酸類としては、特に限定されないが、ピロメリット酸残基(すなわちピロメリット酸由来の構造を有するもの)であることが好ましく、その酸無水物であることがより好ましい。このような芳香族テトラカルボン酸類としては、例えば、ピロメリット酸二無水物、3,3',4,4'−ビフェニルテトラカルボン酸二無水物、4,4'−オキシジフタル酸二無水物、3,3',4,4'−ベンゾフェノンテトラカルボン酸二無水物、3,3',4,4'−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン酸無水物等が挙げられる。
芳香族テトラカルボン酸類は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
シランカップリング剤層上への高分子の溶液や高分子前駆体溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート、カーテンコート、スリットダイコート等従来公知の溶液の塗布手段を適宜用いることができる。
例えば、ポリイミド系樹脂フィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を無機基板に所定の厚さとなるように塗布し、乾燥した後に、高温熱処理して脱水閉環反応を行わせる熱イミド化法又は無水酢酸等を脱水剤とし、ピリジン等を触媒として用いる化学イミド化法を行うことによって得ることができる。
熱可塑性の高分子である場合は、溶融延伸法により高分子フィルム層を得ることが出来る。また、熱可塑性の高分子でない場合は、溶液製膜法により高分子フィルム層を得ることが出来る。さらに、高分子によっては、シランカップリング剤層上に高分子材料そのものやその前駆体の溶液を塗布・乾燥してフィルム化する手法を用いることもできる。
本発明の高分子フィルムの厚さは3μm以上が好ましく、より好ましくは11μm以上であり、さらに好ましくは24μm以上であり、より一層好ましくは45μm以上である。高分子フィルムの厚さの上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには250μm以下であることが好ましく、より好ましくは150μm以下であり、さらに好ましくは90μm以下である。
本発明の高分子フィルムは、ガラス転移温度が250℃以上、好ましくは300℃以上、さらに好ましくは350℃以上であり、あるいは500℃以下の領域においてガラス転移点が観測されないことが好ましい。本発明におけるガラス転移温度は、示差熱分析(DSC)により求めるものである。
本発明の高分子フィルムの30℃から300℃の間の平均のCTEは、好ましくは、−5ppm/℃〜+20ppm/℃であり、より好ましくは−5ppm/℃〜+15ppm/℃であり、さらに好ましくは1ppm/℃〜+10ppm/℃である。CTEが前記範囲であると、一般的な支持体(無機基板)との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供しても高分子フィルムと無機基板とが剥がれることを回避できる。
本発明における高分子フィルムの引張破断強度は、60MPa以上が好ましく、より好ましくは120MPa以上であり、さらに好ましくは240MPa以上である。引張破断強度の上限は特に制限されないが、事実上1000MPa程度未満である。なお、前記高分子フィルムの引張破断強度とは、高分子フィルムの流れ方向(MD方向)の引張破断強度及び幅方向(TD方向)の引張破断強度の平均値を指す。
本発明における高分子フィルムの厚さ斑は、20%以下であることが好ましく、より好ましくは12%以下、さらに好ましくは7%以下、特に好ましくは4%以下である。厚さ斑が20%を超えると、狭小部へ適用し難くなる傾向がある。なお、フィルムの厚さ斑は、例えば接触式の膜厚計にて被測定フィルムから無作為に10点程度の位置を抽出してフィルム厚を測定し、下記式に基づき求めることができる。
フィルムの厚さ斑(%)
=100×(最大フィルム厚−最小フィルム厚)÷平均フィルム厚
本発明における高分子フィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺高分子フィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状高分子フィルムの形態のものがより好ましい。
高分子フィルムを特にフレキシブルディスプレイ素子の製造に用いる場合には、無色透明性を有するポリイミド系樹脂フィルムを用いることが好ましいが、反射型又は自発光型のディスプレイの背面素子を形成する場合においては、この限りではない。
高分子フィルムにおいては、ハンドリング性および生産性を確保する為、高分子フィルム中に滑材(粒子)を添加・含有させて、高分子フィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。前記滑材(粒子)とは、無機物からなる微粒子であり、金属、金属酸化物、金属窒化物、金属炭素化物、金属酸塩、リン酸塩、炭酸塩、タルク、マイカ、クレイ、その他粘土鉱物等からなる粒子を用いることができる。好ましくは、酸化珪素、リン酸カルシウム、リン酸水素カルシウム、リン酸二水素カルシウム、ピロリン酸カルシウム、ヒドロキシアパタイト、炭酸カルシウム、ガラスフィラーなどの金属酸化物、リン酸塩、炭酸塩を用いることができる。滑材は1種のみであってもよいし、2種以上であってもよい。
前記滑材(粒子)の体積平均粒子径は、通常0.001〜10μmであり、好ましくは0.03〜2.5μm、より好ましくは0.05〜0.7μm、さらに好ましくは0.05〜0.3μmである。かかる体積平均粒子径は光散乱法で得られる測定値を基準とする。粒子径が下限より小さいと高分子フィルムの工業的生産が困難となり、また上限を超えると表面の凹凸が大きくなりすぎて貼り付け強度が弱くなり、実用上の支障が出る虞がある。
前記滑材の添加量は、高分子フィルム中の高分子成分に対する添加量として、0.02〜5質量%であり、好ましくは0.04〜1質量%、より好ましくは0.08〜0.4質量%である。滑材の添加量が少なすぎると滑材添加の効果が期待し難く、滑り性の確保がそれほどなく高分子フィルム製造に支障をきたす場合があり、多すぎると、フィルムの表面凹凸が大きくなり過ぎて、滑り性の確保が見られても平滑性の低下を招いたり、高分子フィルムの破断強度や破断伸度の低下を招いたり、CTEの上昇を招くなどの課題を招く場合がある。
高分子フィルムに滑材(粒子)を添加・含有させる場合、滑材が均一に分散した単層の高分子フィルムとしてもよいが、例えば、一方の面が滑材を含有させた高分子フィルムで構成され、他方の面が滑材を含有しないか含有していても滑材含有量が少量である高分子フィルムで構成された多層の高分子フィルムとしてもよい。このような多層の高分子フィルムにおいては、一方の層(フィルム)表面に微細な凹凸が付与されて該層(フィルム)で滑り性を確保することができ、良好なハンドリング性や生産性を確保できる。
多層高分子フィルムは、溶融延伸製膜法にて製造される場合、例えば、滑材を含有しないか又はその含有量が少量である高分子含有溶液で形成したフィルムの上に、滑材を多く含有する高分子含有溶液を塗布して積層することにより得ることが出来る。もちろん、この逆で、滑剤を含有する高分子含有溶液で形成したフィルムの上に、滑材を含有しないか又はその含有量が少量である高分子含有溶液を塗布して積層することにより得ることも出来る。
溶液製膜法を用いて得られるポリイミドフィルムのような高分子フィルムの場合にも同様で、例えば、ポリアミド酸溶液(ポリイミドの前駆体溶液)として、滑材(好ましくは平均粒子径0.05〜2.5μm程度)をポリアミド酸溶液中のポリマー固形分に対して0.02質量%〜50質量%(好ましくは0.04〜3質量%、より好ましくは0.08〜1.2質量%)含有したポリアミド酸溶液と、滑材を含有しないか又はその含有量が少量(好ましくはポリアミド酸溶液中のポリマー固形分に対して0.02質量%未満、より好ましくは0.01質量%未満)である2種のポリアミド酸溶液を用いて製造することができる。
多層高分子フィルムの多層化(積層)方法は、両層の密着に問題が生じなければ、特に限定されるものではなく、かつ接着剤層などを介することなく密着するものであればよい。
高分子フィルムがポリイミドフィルムである場合、例えば、i)一方のポリイミドフィルムを作製後、このポリイミドフィルム上に他方のポリアミド酸溶液を連続的に塗布してイミド化する方法、ii)一方のポリアミド酸溶液を流延しポリアミド酸フィルムを作製後このポリアミド酸フィルム上に他方のポリアミド酸溶液を連続的に塗布した後、イミド化する方法、iii)共押し出しによる方法、iv)滑材を含有しないか又はその含有量が少量であるポリアミド酸溶液で形成したフィルムの上に、滑材を多く含有するポリアミド酸溶液をスプレーコート、Tダイ塗工などで塗布してイミド化する方法などを例示できる。本発明では、上記i)ないし上記ii)の方法を用いることが好ましい。
多層の高分子フィルムにおける各層の厚さの比率は、特に限定されないが、滑材を多く含有する高分子層を(a)層、滑材を含有しないか又はその含有量が少量である高分子層を(b)層とすると、(a)層/(b)層は0.05〜0.95が好ましい。(a)層/(b)層が0.95を超えると(b)層の平滑性が失われがちとなり、一方0.05未満の場合、表面特性の改良効果が不足し易滑性が失われることがある。
<高分子フィルムの表面活性化処理>
本発明において用いられる高分子フィルムには表面活性化処理を行うことが好ましい。高分子フィルムに表面活性化処理を行うことによって、高分子フィルムの表面は官能基が存在する状態(いわゆる活性化した状態)に改質され、無機基板に対する接着性が向上する。
本発明における表面活性化処理とは、乾式又は湿式の表面処理である。乾式の表面処理としては、例えば、真空プラズマ処理、常圧プラズマ処理、紫外線・電子線・X線などの活性エネルギー線を表面に照射する処理、コロナ処理、火炎処理、イトロ処理等を挙げることができる。湿式の表面処理としては、例えば、高分子フィルム表面を酸ないしアルカリ溶液に接触させる処理を挙げることができる。
本発明においては複数の表面活性化処理を組み合わせて行っても良い。かかる表面活性化処理は高分子フィルム表面を清浄化し、さらに活性な官能基を生成する。生成された官能基は、シランカップリング剤層と水素結合や化学反応などにより結びつき、高分子フィルム層とシランカップリング剤層とを強固に接着することが可能となる。
また、プラズマ処理を行うと高分子フィルム表面をエッチングする効果も得ることが出来る。特に滑剤粒子を比較的多く含む高分子フィルムにおいては、滑剤による突起が、高分子フィルムと無機基板との接着を阻害する場合がある。この場合、プラズマ処理によって高分子フィルム表面を薄くエッチングし、滑剤粒子の一部を露出せしめた上で、フ酸にて処理を行えば、高分子フィルム表面近傍の滑剤粒子を除去することが可能である。
本発明において好ましく用いられる表面活性化処理は、乾式の表面処理であるプラズマ処理と湿式の表面処理である酸溶液に接触させる処理との組み合わせである。
プラズマ処理は、特に限定されるものではないが、真空中でのRFプラズマ処理、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、大気圧プラズマ処理、コロナ処理などがあり、フッ素を含むガス処理、イオン源を使ったイオン打ち込み処理、PBII法を使った処理、熱プラズマに暴露する火炎処理、イトロ処理なども含める。これらの中でも真空中でのRFプラズマ処理、マイクロ波プラズマ処理、大気圧プラズマ処理が好ましい。
プラズマ処理の適当な条件としては、酸素プラズマ、CF4、C26などフッ素を含むプラズマなど化学的にエッチング効果が高いことが知られるプラズマ、或はArプラズマのように物理的なエネルギーを高分子表面に与えて物理的にエッチングする効果の高いプラズマによる処理が望ましい。また、CO2、H2、N2などプラズマ、およびこれらの混合気体や、さらに水蒸気を付加することも好ましい。短時間での処理を目指す場合、プラズマのエネルギー密度が高く、プラズマ中のイオンの持つ運動エネルギーが高いもの、活性種の数密度が高いプラズマが望ましい。この観点からは、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、高いエネルギーのイオンを打ち込みやすいイオン源によるプラズマ照射、PBII法なども望ましい。
表面活性化処理は、高分子フィルムの片面のみに施してもよいし、両面に施してもよい。片面にプラズマ処理を行う場合、並行平板型電極でのプラズマ処理で片側の電極上に高分子フィルムを接して置くことにより、高分子フィルムの電極と接していない側の面のみにプラズマ処理を施すことができる。また2枚の電極間の空間に電気的に浮かせる状態で高分子フィルムを置くようにすれば、両面にプラズマ処理が行える。また、高分子フィルムの片面に保護フィルムを貼った状態でプラズマ処理を行うことで片面処理が可能となる。なお保護フィルムとしては粘着剤付のPETフィルムやオレフィンフィルムなどが使用できる。
<加圧加熱処理>
本発明の積層体は、シランカップリング剤層を設けた無機基板と前記高分子フィルムとを重ね合わせて加圧加熱処理することにより作製される。
加圧加熱処理は、例えば、大気圧雰囲気下あるいは真空中で、プレス、ラミネート、ロールラミネート等を、加熱しながら行えばよい。またフレキシブルなバッグに入れた状態で加圧加熱する方法も応用できる。生産性の向上や、高い生産性によりもたらされる低加工コスト化の観点からは、大気雰囲気下でのプレスまたはロールラミネートが好ましく、特にロールを用いて行う方法(ロールラミネート等)が好ましい。
加圧加熱処理の際の圧力としては、1MPa〜20MPaが好ましく、さらに好ましくは3MPa〜10MPaである。圧力が高すぎると、無機基板を破損する虞があり、圧力が低すぎると、密着しない部分が生じ、接着が不充分になる場合がある。加圧加熱処理の際の温度としては、150℃〜400℃、さらに好ましくは250℃〜350℃である。高分子フィルムがポリイミドフィルムである場合には、温度が高すぎると、ポリイミドフィルムにダメージを与える虞があり、温度が低すぎると、密着力が弱くなる傾向がある。
また加圧加熱処理は、上述のように大気圧雰囲気中で行うこともできるが、全面の安定した接着強度を得る為には、真空下で行うことが好ましい。このとき真空度は、通常の油回転ポンプによる真空度で充分であり、10Torr以下程度あれば充分である。
加圧加熱処理に使用することができる装置としては、真空中でのプレスを行うには、例えば井元製作所製の「11FD」等を使用でき、真空中でのロール式のフィルムラミネーターあるいは真空にした後に薄いゴム膜によりガラス全面に一度に圧力を加えるフィルムラミネーター等の真空ラミネートを行うには、例えば名機製作所製の「MVLP」等を使用できる。
前記加圧加熱処理は加圧プロセスと加熱プロセスとに分離して行うことが可能である。この場合、まず、比較的低温(例えば120℃未満、より好ましくは95℃以下の温度)で高分子フィルムと無機基板とを加圧(好ましくは0.2〜50MPa程度)して両者の密着確保し、その後、低圧(好ましくは0.2MPa未満、より好ましくは0.1MPa以下)もしくは常圧にて比較的高温(例えば120℃以上、より好ましくは120〜250℃、さらに好ましくは150〜230℃)で加熱することにより、密着界面の化学反応が促進されて高分子フィルムと無機基板とを積層できる。
<各層表面の接触角>
薄膜表面のイソプロピルアルコールに対する接触角は、0.2度〜10度が好ましく、0.5度〜9度がより好ましく、0.9度〜7.5度がさらに好ましい。薄膜表面のイソプロピルアルコールに対する接触角がこの範囲を超えると、シランカップリング剤の塗布量が不安定となり塗布斑が生じやすくなる。
無機基板表面のイソプロピルアルコールに対する接触角と薄膜表面のイソプロピルアルコールに対する接触角との差が5度以下であり、好ましくは4度以下であり、より好ましくは3度以下であり、さらに好ましくは2度以下である。
無機基板表面のイソプロピルアルコールに対する接触角と薄膜表面のイソプロピルアルコールに対する接触角との差が5度を超えると、シランカップリング剤を無機基板表面上に塗布した場合とシランカップリング剤を薄膜表面上に塗布した場合とでは、シランカップリング剤の塗布量が異なり、シランカップリング剤層の厚さが、結果としてシランカップリング剤を無機基板表面上に塗布した場合と、シランカップリング剤を薄膜表面上に塗布した場合とで異なることになる。特に、無機基板表面のイソプロピルアルコールに対する接触角よりも、薄膜形成時における薄膜表面のイソプロピルアルコールに対する接触角の方が大きく、その差が5度を超えている場合には、薄膜表面上において、シランカップリング剤が島状に分散した形で塗布されてしまい、高分子フィルムとの接着力の均一性が損なわれる場合があり、また薄膜表面上のシランカップリング剤の塗布にバラツキが生じて、薄膜表面に凹凸が生じやすくなり、高分子フィルムの貼りつけに支障がでる場合がある。
無機基板表面のイソプロピルアルコールに対する接触角は、0.3〜15度が好ましく、1〜12度がより好ましく、1.5〜9度がさらに好ましい。無機基板表面のイソプロピルアルコールに対する接触角がこの範囲を超えると、シランカップリング剤の塗布量が不安定となり塗布斑が生じやすくなる。
薄膜表面の水に対する接触角は、2度〜30度が好ましく、3度〜25度がより好ましく、5度〜21度がさらに好ましい。薄膜表面の水に対する接触角がこの範囲を超えると、シランカップリング剤の塗布量が不安定となり塗布斑が生じやすくなる。
薄膜表面の塩化メチレンに対する接触角は、18〜45度が好ましい。薄膜表面の塩化メチレンに対する接触角がこの範囲を超えると、シランカップリング剤の塗布量が不安定となり塗布斑が生じやすくなる。
なお、接触角が測定される際の無機基板や薄膜材料の表面は、工業的に実現可能なレベルにて有機物、シリコンオイル等による汚染の無い表面としており、好ましくはUVオゾン洗浄(酸素存在下に200nm以下の波長のUVを照射するドライ洗浄処理)後の表面である。
<接着強度>
高分子フィルムが積層された面は、高分子フィルムに切り込みを入れると高分子フィルムをシランカップリング剤層ごと無機基板から容易に分離できる領域である易剥離部と容易に分離できない領域である良好接着部とからなる。易剥離部と良好接着部とからなるようにするには、後述のパターン化を行うのが好ましい。
良好接着部における無機基板と高分子フィルムとの接着強度は易剥離部における無機基板と高分子フィルムとの接着強度の2倍以上であり、3倍以上であることが好ましく、さらに好ましくは5倍以上である。以下、良好接着部における無機基板と高分子フィルムとの接着強度の易剥離部における無機基板と高分子フィルムとの接着強度に対する倍率を接着強度倍率という。また、上記接着強度倍率は100倍以下であることが好ましく、より好ましくは50倍以下である。なお、接着強度の測定方法については後述する。
接着強度倍率が2倍未満であると、高分子フィルムを無機基板から剥離する際に、良好接着部と易剥離部との接着強度差を利用してデバイス形成部を低ストレスにて剥離する事が困難となり、フレキシブル電子デバイスの収率を低下させてしまうおそれがある。逆に接着強度倍率が100倍より大きいと、易剥離部が無機基板から剥離したり、易剥離部にウキ、ブリスター(塗膜の膨れ)等が発生する原因となる場合がある。
良好接着部の接着強度が0.8N/cm以上であることが好ましく、より好ましくは1.5N/cm以上、さらに好ましくは2.4N/cm以上、最も好ましくは3.2N/cm以上である。
易剥離部の接着強度は、1.0N/cm未満であることが好ましく、より好ましくは0.67N/cm未満であり、さらに好ましくは0.34N/cm未満である。また、易剥離部の接着強度は0.06N/cm以上であることが好ましく、より好ましくは0.12N/cm以上である。易剥離部の接着強度が0.06N/cm未満であると、プロセス中に高分子フィルムや無機基板側に生じるストレスなどの影響により、易剥離部が無機基板から剥離したり、易剥離部にウキ、ブリスター等が発生する原因となる場合がある。
<薄膜のパターン化>
薄膜は連続的に無機基板の全面に形成されていてもよいが、薄膜はパターン化に形成されているのが好ましい。本発明においては、薄膜が形成されていない部分が、良好接着部となる。すなわち、無機基板のリサイクルの際に無機基板上にシランカップリング剤層を介して高分子フィルム層が残存している部分である。好ましくは、薄膜は良好接着部が易剥離部を取り囲むようになっているのが好ましいので、薄膜は易剥離部を取り囲むようにパターン形成されていることが好ましい。薄膜のパターン化手段については一般的なマスキング法、あるいは前面に薄膜を形成した後にレジストを用いてのエッチング法、リフトオフ法など公知の手段を用いることができる。
パターン形状は、積層するデバイスの種類等に応じて適宜設定すればよく、特に限定されず、必要なデバイスの形状が平面上に単独ないし複数がタイリングされているパターンとすればよい。
<シランカップリング剤層のパターン化>
本発明においては、上述の薄膜形成によるパターン化に組み合わせて、または上述の薄膜形成によるパターン化に代えて、シランカップリング剤層もパターン化を行うことができる。シランカップリング剤層のパターン化処理とは、意図的にカップリング剤の塗布量や表面活性化処理の活性度等を操作した領域を作ることをいう。これにより、積層体において、無機基板と高分子フィルムとの間の剥離強度が異なる良好接着部と易剥離部とを有することとなり、所定のパターンを形成することができる。パターン化処理として、シランカップリング剤塗布を行う際に、あらかじめ所定のパターンで準備されたマスクを用いて、シランカップリング剤の塗布量を操作する方法を例示できる。またシランカップリング剤の塗布面に活性エネルギー線照射を行い、その際に、マスキングないしスキャン操作などの手法を併用することによりパターン化することも可能である。ここに活性エネルギー線照射とは、紫外線、電子線、X線等のエネルギー線を照射する操作、さらには極短波長の紫外線照射処理のように紫外線照射光効果と同時に照射面近傍で発生するオゾンガスガス暴露の効果を併せ持つものを含める。さらにこれらの他に、コロナ処理、真空プラズマ処理、常圧プラズマ処理、サンドブラスト処理等によってパターン化処理を行うことも可能である。
<高分子フィルム層のパターン化処理>
本発明においては、上述の薄膜形成によるパターン化に組み合わせて、高分子フィルム層にもパターン化処理を行うことができる。ここでのパターン化処理とは、意図的に表面活性化処理の活性度等を操作した領域を作ることをいう。
パターン化処理として、表面活性化処理を行う際に、あらかじめ所定のパターンで準備されたマスクを用いて表面活性化処理量を操作する方法を例示できる。また表面活性化処理を行う際にマスキングないしスキャン操作などの手法を併用することによりパターン化処理することも可能である。表面活性化後の高分子フィルム表面に、さらに別の活性エネルギー線処理をマスキングないしスキャニングを併用して行い、活性度の強弱を実現することも可能である。ここに活性エネルギー線照射とは、紫外線、電子線、X線等のエネルギー線を照射する操作、さらには極短波長の紫外線照射処理のように紫外線照射光効果と同時に照射面近傍で発生するオゾンガスガス暴露の効果を併せ持つものを含める。さらにこれらの他に、コロナ処理、真空プラズマ処理、常圧プラズマ処理、サンドブラスト処理等によってパターン化処理を行うことも可能である。なお、薄膜における易剥離部の位置と高分子フィルム層における易剥離部の位置とを合致させるのが好ましい。
以上のように、薄膜、シランカップリング剤、高分子フィルム層の各々単独に、あるいは組み合わせてパターン化処理を行うことによって、積層体において無機基板と高分子フィルムとの間の剥離強度が異なる良好接着部と易剥離部を有することとなり、高分子フィルムに切り込みを入れて剥離することによってデバイスを搭載した高分子フィルムを無機基板から容易に分離することが可能になる。
<フレキシブル電子デバイスの製造方法>
本発明の積層体を用いると、既存の電子デバイス製造用の設備、プロセスを用いて積層体の高分子フィルム上に電子デバイスを形成し、積層体から高分子フィルムごと剥離することで、フレキシブルな電子デバイスを作製することができる。
本発明における電子デバイスとは、電気配線を担う配線基板、トランジスタ、ダイオードなどの能動素子や、抵抗、キャパシタ、インダクタなどの受動デバイスを含む電子回路、他、圧力、温度、光、湿度などをセンシングするセンサー素子、発光素子、液晶表示、電気泳動表示、自発光表示などの画像表示素子、無線、有線による通信素子、演算素子、記憶素子、MEMS素子、太陽電池、薄膜トランジスタなどをいう。
高分子フィルム積層基板から電子デバイスが載置された高分子フィルムを剥離する方法としては、例えば、無機基板側から強い光を照射し、無機基板と高分子フィルムとの間の接着部位を熱分解又は光分解させて剥離する方法、あらかじめ接着強度を弱めておき、高分子フィルムの弾性強度限界値未満の力で高分子フィルムを引きはがす方法、加熱水、加熱蒸気などに晒し、無機基板と高分子フィルム界面の結合強度を弱めて剥離させる方法などを挙げることができるが、高分子フィルムの易剥離部にあたる位置に電子デバイスを形成し、次いで、易剥離部の外周部に切り込みを入れ、高分子フィルムの電子デバイスが形成された領域を無機基板から剥離する方法が好ましい。この方法により、高分子フィルムと無機基板の剥離がより容易になる。
本発明のデバイス構造体の製造方法においては、上述した方法で作製された積層体の高分子フィルム上にデバイスを形成した後、上記積層体の易剥離部の高分子フィルムに切り込みを入れて該高分子フィルムを上記無機基板から剥離する。
上記積層体の易剥離部の高分子フィルムに切り込みを入れる方法としては、刃物などの切削具によって高分子フィルムを切断する方法や、レーザーと積層体を相対的にスキャンさせることにより高分子フィルムを切断する方法、ウォータージェットと積層体を相対的にスキャンさせることにより高分子フィルムを切断する方法、半導体チップのダイシング装置により若干ガラス層まで切り込みつつ高分子フィルムを切断する方法などがあるが、特に方法は限定されるものではない。例えば、上述した方法を採用するにあたり、切削具に超音波を重畳させたり、往復動作や上下動作などを付け加えて切削性能を向上させる等の手法を適宜採用することもできる。
上記積層体の高分子フィルムの易剥離部に切り込みを入れるにあたり、切り込みを入れる位置は、少なくとも易剥離部の一部を含んでいればよく、基本的にはパターンに従って切断するのが通常である。ただし、正確にパターンに従い良好接着部と易剥離部の境で切断しようとすると誤差も生じることから、パターンより若干易剥離部側に切り込むことが生産性を上げる点で好ましい。また、剥離させるまでに勝手に剥離してしまうことを防ぐうえでは、該パターンより若干良好接着部に切り込む生産方式もありえる。更には、良好接着部の幅を狭く設定するようにすれば、剥離時に良好接着部に残存する高分子フィルムを減らすことができ、高分子フィルムの利用効率が向上し、該積層体面積に対するデバイス面積が多くなり、生産性が向上する。
デバイス付きの高分子フィルムを無機基板から剥離する方法としては、特に制限されないが、ピンセットなどで端から捲る方法、高分子フィルムの切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、高分子フィルムの切り込み部分の1辺を真空吸着した後にその部分から捲る方法等が採用できる。なお、剥離の際に、高分子フィルムの切り込み部分に曲率が小さい曲がりが生じると、その部分のデバイスに応力が加わることになりデバイスを破壊するおそれがあるため、極力曲率の大きな状態で剥がすことが望ましい。例えば、曲率の大きなロールに巻き取りながら捲るか、あるいは曲率の大きなロールが剥離部分に位置するような構成の機械を使って捲ることが望ましい。
また、剥離する部分に予め別の補強基材を貼りつけて、補強基材ごと剥離する方法も有用である。剥離するフレキシブル電子デバイスが、表示デバイスのバックプレーンである場合、あらかじめ表示デバイスのフロントプレーンを貼りつけて、無機基板上で一体化した後に両者を同時に剥がし、フレキシブルな表示デバイスを得ることも可能である。
<無機基板のリサイクル>
本発明の高分子フィルム積層基板においては、電子デバイスを剥離した後、高分子フィルム積層基板から残存する高分子フィルムを完全に除去し、簡便な洗浄処理等を行う事により、無機基板を再利用することができる。これは、易剥離部における薄膜とシランカップリング剤層との接着力が均一で安定しており、高分子フィルム層の剥離がスムースに行えるために、無機基板側に剥離残渣がほとんど残らないことによる。このことは高分子フィルムを剥離する際の剥離面が、薄膜表面(薄膜とシランカップリング剤層との界面)になるためと考えられる。このため、高分子フィルムを剥離した後では、無機基板に薄膜が形成された状態(以下、この状態の無機基板を薄膜積層無機基板という)を維持している。
高分子フィルム層に切り込みを入れて無機基板から剥離した場合、剥離を行っていない領域では高分子フィルム層が無機基板上に残存することとなる。無機基板上に残存した高分子フィルム層については、レーザー剥離やアルカリ薬液処理等の適切な処方によって除去する必要がある。
薄膜をパターン状に形成した場合、高分子フィルム層が剥離されなかった箇所については、高分子フィルム層の除去を行うと、シランカップリング剤層が露出することになる。しかし、上記除去によって、高分子フィルム層のみならずシランカップリング剤層の有機部分についても相当量が除去されているため、シランカップリング剤の無機成分、すなわちケイ酸ガラス成分を主体とした成分のみが無機基板上に残存することとなる。従って、良好接着部の領域(薄膜が形成されていなかった領域)では、高分子フィルム層の除去後であっても無機基板表面と近い性状の表面となる。
したがって、薄膜積層無機基板は、最初にシランカップリング剤層を形成したときと同様に再度シランカップリング剤層を形成して、シランカップリング剤層の上に高分子フィルム層を積層することが可能であり、リサイクル性の高い薄膜積層無機基板として、薄膜表面にシランカップリング剤層を形成し、シランカップリング剤層上に高分子フィルム層を積層し、高分子フィルム層上に電子デバイスを形成した後に高分子フィルムに切り込みを入れて、高分子フィルム層を無機基板から剥離する、という一連のサイクルを繰り返して電子デバイスを作成することが可能となる。
薄膜積層無機基板の再利用時において、無機基板表面のイソプロピルアルコールに対する接触角と薄膜表面のイソプロピルアルコールに対する接触角との差が5度以下であることが好ましく、より好ましくは4度以下であり、さらに好ましくは3度以下であり、最も好ましくは2度以下である。
薄膜積層無機基板の再利用時において、良好接着部における無機基板と高分子フィルムとの接着強度は、易剥離部における無機基板と高分子フィルムとの接着強度の2倍以上であることが好ましく、より好ましくは3倍以上であり、さらに好ましくは5倍以上である。
薄膜積層無機基板の再利用時において、良好接着部の接着強度が0.8N/cm以上であることが好ましく、より好ましくは1.5N/cm以上、さらに好ましくは2.4N/cm以上、最も好ましくは3.2N/cm以上である。
薄膜積層無機基板の再利用時において、易剥離部の接着強度は、1.0N/cm未満であることが好ましく、より好ましくは0.67N/cm未満であり、さらに好ましくは0.34N/cm未満である。また、易剥離部の接着強度は0.06N/cm以上であることが好ましく、より好ましくは0.12N/cm以上である。易剥離部の接着強度の下限が0.06N/cm未満であると、プロセス中に高分子フィルムや無機基板側に生じるストレスなどの影響により、易剥離部が無機基板から剥離したり、易剥離部にウキ、ブリスター等が発生する原因となる場合がある。
以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
以下の実施例における物性の評価方法は下記の通りである。
<ポリアミド酸溶液の還元粘度>
ポリマー濃度が0.2g/dlとなるようにN,N−ジメチルアセトアミドに溶解した溶液についてウベローデ型の粘度管を用いて30℃で測定した。
<高分子フィルムの厚さ>
高分子フィルムの厚さは、マイクロメーター(ファインリューフ社製「ミリトロン1245D」)を用いて測定した。
<高分子フィルムの厚さ斑>
高分子フィルムの厚さ斑は、マイクロメーター(ファインリューフ社製「ミリトロン1245D」)を用いて、被測定フィルムから無作為に10点を抽出してフィルム厚を測定し、得られた10個の値の最大値(最大フィルム厚)、最小値(最小フィルム厚)、および平均値(平均フィルム厚)から、下記式に基づき算出した。
フィルムの厚さ斑(%)=100×(最大フィルム厚−最小フィルム厚)÷平均フィルム厚
<高分子フィルムの引張弾性率、引張破断強度および引張破断伸度>
測定対象とする高分子フィルムから、流れ方向(MD方向)及び幅方向(TD方向)がそれぞれ100mm×10mmである短冊状の試験片を切り出し、引張試験機(島津製作所社製「オートグラフ(登録商標);機種名AG−5000A」)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張破断強度および引張破断伸度を測定した。
<高分子フィルムの線膨張係数(CTE)>
測定対象とする高分子フィルムの流れ方向(MD方向)および幅方向(TD方向)について、下記条件にて伸縮率を測定し、15℃の間隔(30℃〜45℃、45℃〜60℃、…)での伸縮率/温度を測定し、この測定を420℃まで行って、MD方向およびTD方向で測定した全測定値の平均値を線膨張係数(CTE)として算出した。
機器名 ; MACサイエンス社製「TMA4000S」
試料長さ ; 20mm
試料幅 ; 2mm
昇温開始温度 ; 30℃
昇温終了温度 ; 420℃
昇温速度 ; 5℃/分
雰囲気 ; アルゴン
初荷重 ; 34.5g/mm2
<ガラス転移温度>
DSC示差熱分析装置を用いて、室温から500℃までの範囲での構造変化に起因する吸放熱の有無から高分子フィルムのガラス転移温度を求めた。いずれの高分子フィルムにおいてもガラス転移温度は観察されなかった。
<高分子フィルムの評価:滑り性>
高分子フィルム2枚を、異なる面同士で重ね合わせ(すなわち、同じ面同士ではなく、フィルムロールとして巻いた場合の巻き外面と巻き内面とを重ね合わせ)、重ねた高分子フィルムを親指と人差し指で挟み、軽く摺り合わせたときに、高分子フィルムと高分子フィルムが滑る場合を「○」又は「良好」、滑らない場合を「×」又は「不良」と評価した。なお、巻き外面同士あるいは巻き内面同士では滑らない場合もあるが、これは評価項目とはしない。
<接触角>
無機基板表面及び薄膜材料表面のイソプロピルアルコール、水、又はヨウ化メチレンに対する接触角は、無機基板表面及び薄膜材料表面を後述のUVオゾン洗浄を行った後に測定した。
UVオゾン洗浄:ランテクニカルサービス株式会社製のUV/O3洗浄改質装置(「SKB1102N−01」)とUVランプ(「SE−1103G05」)とを用い、該UVランプから3cm程度離れた距離から60秒照射を行った。なお、照射時にはUV/O3洗浄改質装置内には特別な気体は入れず空気中とし、UV照射は、大気雰囲気、室温で行った。なお、UVランプは185nm(不活性化処理を促進するオゾンを発生させうる短波長)と254nmの波長の輝線を出しており、このとき照度は20mW/cm2程度(照度計(「ORC UV−M03AUV」)にて254nmの波長で測定)であった。
接触角の測定:接触角の測定は、協和界面科学社製接触角計 CA−X型を用いてJIS R3257の静滴法に準じて行った。具体的には、被測定対象から約50mm×50mmのフィルム試料を切り出し、温度 23℃ 湿度50%RHの環境下で、得られた測定物の試料片を接触角の測定対象である面を上にして水平に置き、イソプロピルアルコール、水、ヨウ化メチレンの各溶媒について5回ずつ接触角を測定し、その平均値をフィルム試料に対する各溶媒の接触角とした。フィルム試料に対するイソプロピルアルコールの接触角測定は、イソプロピルアルコールの滴下量を2.5μlとし、10秒間静置後の接触角を読み取って行った。フィルム試料に対する水の接触角測定は、水の滴下量を1.8μlとし1分間静置後の接触角を読み取って行った。フィルム試料に対するヨウ化メチレンの接触角測定は、ヨウ化メチレンの滴下量を0.9μlとし、30秒間静置後の接触角を読み取って行った。
<シランカップリング剤層の厚さ>
シランカップリング剤層(SC層)の厚さ(nm)は、別途、洗浄したSiウエハ上に各実施例、比較例と同様の方法でシランカップリング剤を塗布乾燥させて得たサンプルを作製し、このSiウエハ上に形成したシランカップリング剤層の膜厚について、エリプソメトリー法にて、分光エリプソメータ(Photal社製「FE−5000」)を用いて下記の条件で測定した。
反射角度範囲 ; 45°から80°
波長範囲 ; 250nmから800nm
波長分解能 ; 1.25nm
スポット径 ; 1mm
tanΨ ; 測定精度±0.01
cosΔ ; 測定精度±0.01
測定 ; 方式回転検光子法
偏向子角度 ; 45°
入射角度 ; 70°固定
検光子 ; 11.25°刻みで0〜360°
波長 ; 250nm〜800nm
非線形最小2乗法によるフィッティングで膜厚を算出した。このとき、モデルとしては、Air/薄膜/Siのモデルで、
n=C3/λ4+C2/λ2+C1
k=C6/λ4+C5/λ2+C4
の式で波長依存C1〜C6を求めた。
<接着強度>
仮支持用無機基板に、所定の方法でシランカップリング剤を塗布し、次いで所定のプロセスを経て高分子フィルムをラミネートした。そして、仮支持用無機基板と高分子フィルムとの接着強度(180度剥離強度)は、JIS C6471に記載の180度剥離法に従い、下記条件で測定した。なお、この測定に供するサンプルには、100mm×1000mmの支持体(ガラス)に対してポリイミドフィルムのサイズを110mm×2000mmに設計することにより片側にポリイミドフィルムの未接着部分を設け、この部分を“つかみしろ”とした。
装置名 : 島津製作所社製「オートグラフ(登録商標)AG−IS」
測定温度 : 室温
剥離速度 : 50mm/分
雰囲気 : 大気
測定サンプル幅 : 10mm
<外観>
品位については、積層体全体の目視検査での結果である。
<ポリイミドフィルムの製造>
〔製造例1〕
(ポリアミド酸溶液の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、3,3',4,4'−ビフェニルテトラカルボン酸二無水物(BPDA)398質量部と、パラフェニレンジアミン(PDA)147質量部とを、4600質量部のN、N−ジメチルアセトアミドに溶解させて加え、滑材としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC−ST30」)をシリカ(滑材)がポリアミド酸溶液中のポリマー固形分総量に対して0.15質量%になるように加え、25℃の反応温度で24時間攪拌して、表1に示す還元粘度を有する褐色で粘調なポリアミド酸溶液V1を得た。
(ポリイミドフィルムの作製)
上記で得られたポリアミド酸溶液V1を、スリットダイを用いて幅1050mmの長尺ポリエステルフィルム(東洋紡社製「A−4100」)の平滑面(無滑材面)上に、最終膜厚(イミド化後の膜厚)が25μmとなるように塗布し、105℃にて20分間乾燥した後、ポリエステルフィルムから剥離して、幅920mmの自己支持性のポリアミド酸フィルムを得た。
次いで、得られた自己支持性ポリアミド酸フィルムをピンテンターによって、150℃〜420℃の温度領域で段階的に昇温させて(1段目180℃×5分間、2段目270℃×10分間、3段目420℃×5分間)熱処理を施してイミド化させ、両端のピン把持部分をスリットにて落とし、幅850mmの長尺ポリイミドフィルムF1(1000m巻き)を得た。得られたフィルムF1の特性を表1に示す。
〔製造例2〕
(ポリアミド酸溶液の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール(DAMBO)223質量部と、N,N−ジメチルアセトアミド4416質量部とを加えて完全に溶解させ、次いで、ピロメリット酸二無水物(PMDA)217質量部とともに、滑材として前記コロイダルシリカ分散体をシリカ(滑材)がポリアミド酸溶液中のポリマー固形分総量に対して0.12質量%になるように加え、25℃の反応温度で24時間攪拌して、表1に示す還元粘度を有する褐色で粘調なポリアミド酸溶液V2を得た。
(ポリイミドフィルムの作製)
ポリアミド酸溶液V1に代えて、上記で得られたポリアミド酸溶液V2を用い、ピンテンターによって、150℃〜485℃の温度領域で段階的に昇温させた(1段目150℃×5分間、2段目220℃×5分間、3段目485℃×10分間)以外は製造例1と同様に操作し、幅850mmの長尺ポリイミドフィルムF2(1000m巻き)を得た。得られたフィルムF2の特性を表1に示す。
〔製造例3〕
(ポリアミド酸溶液の調製)
製造例2において、前記コロイダルシリカ分散体を添加しなかった以外は同様に操作し、ポリアミド酸溶液V3を得た。
(ポリイミドフィルムの作製)
上記で得られたポリアミド酸溶液V3をコンマコーターを用いて幅1050mmの長尺ポリエステルフィルム(東洋紡社製「A−4100」)の平滑面(無滑材面)上に、最終膜厚(イミド化後の膜厚)が約5μmとなるように塗布し、次いでポリアミド酸溶液V2をスリットダイを用いて、最終膜厚がV3を含めて38μmとなるように塗布し、105℃にて25分間乾燥した後、ポリエステルフィルムから剥離して、幅920mmの自己支持性のポリアミド酸フィルムを得た。
次いで、得られた自己支持性ポリアミド酸フィルムをピンテンターによって、180℃〜495℃の温度領域で段階的に昇温させて(1段目180℃×5分間、2段目220℃×5分間、3段目495℃×10分間)熱処理を施してイミド化させ、両端のピン把持部分をスリットにて落とし、幅850mmの長尺ポリイミドフィルムF3(1000m巻き)を得た。得られたフィルムF3の特性を表1に示す。
Figure 0006181984
<プラズマ処理フィルムの製造>
製造例1で得られたポリイミドフィルムF1の片面に真空プラズマ処理を施して、プラズマ処理ポリイミドフィルムP1を得た。得られたプラズマ処理ポリイミドフィルムP1の特性を表2に示す。
真空プラズマ処理としては、平行平板型の電極を使ったRIEモード、RFプラズマによる処理を採用し、真空チャンバー内に窒素ガスを導入し、13.54MHzの高周波電力を導入するようにし、処理時間は3分間とした。
また、プラズマ処理ポリイミドフィルムP1において、ポリイミドフィルムF1に代えてポリイミドフィルムF2を用いたこと以外はプラズマ処理ポリイミドフィルムP1と同様にして、プラズマ処理ポリイミドフィルムP2を得た。
さらに、プラズマ処理ポリイミドフィルムP1において、ポリイミドフィルムF1に代えてポリイミドフィルムF3を用いたこと、ポリイミドフィルムF3の滑剤を含まない層側の片面に同様にプラズマ処理を行ったこと以外はプラズマ処理ポリイミドフィルムP1と同様にして、プラズマ処理ポリイミドフィルムP3を得た。
また、プラズマ処理ポリイミドフィルムP1において、ポリイミドフィルムF1に代えて厚さ100μmのポリエチレンテレフタレート(PET)フィルムA4100(東洋紡社製)を用いたこと以外はプラズマ処理ポリイミドフィルムP1と同様にして、プラズマ処理PETフィルムP4を得た。
さらに、プラズマ処理ポリイミドフィルムP1において、ポリイミドフィルムF1に代えて厚さ100μmのポリエチレンナフタレート(PEN)フィルム「テオネックス(登録商標)」(帝人社製)を用いたこと以外はプラズマ処理ポリイミドフィルムP1と同様にして、プラズマ処理PENフィルムP5を得た。
得られたプラズマ処理フィルムP1〜P5の特性を表2に示す。
Figure 0006181984
<無機基板への薄膜形成>
370mm×470mm×1.1mmtのソーダガラス板を超純水を用いて超音波洗浄を行い、HEPAフィルターを通じた乾燥空気により十分に乾燥させた。その後、薄膜加工用の真空チャンバーに入れ、50mm×80mmの開口部を複数有する田の字形状が連結したパターンのステンレススチール製マスクを介して、DCスパッタリング法により、基板温度100℃で、厚さ49nmの金薄膜を田の字形状が連結したパターンに形成し、薄膜積層無機基板G1を得た。
370mm×470mm×0.7mmtのコーニング社製ガラス(EAGLE XG(登録商標))を超純水で超音波洗浄をし、HEPAフィルターを通じた乾燥空気により十分に乾燥させた。その後、薄膜加工用の真空チャンバーに入れ、50mm×80mmの開口部を複数有する田の字形状が連結したパターンのステンレススチール製マスクを介して、DCスパッタリング法により、無加熱で、厚さ48nmのCr薄膜を田の字形状が連結したパターンに形成し、薄膜積層無機基板G2を得た。
370mm×470mm×0.7mmtのコーニング社製ガラス(EAGLE XG(登録商標))を超純水を用いて超音波洗浄を行い、HEPAフィルターを通じた乾燥空気により十分に乾燥させた。その後、薄膜加工用の真空チャンバーに入れ、50mm×80mmの開口部を複数有する田の字形状が連結したパターンのステンレススチール製マスクを介して、DCスパッタリング法により、無加熱で、厚さ50nmの炭化ケイ素薄膜を田の字形状が連結したパターンに形成し、薄膜積層無機基板G3を得た。
薄膜積層無機基板G2において、DCスパッタリング法により、無加熱で、厚さ48nmのCr薄膜を形成したことに代えて、DC反応性スパッタリング法により、基板温度210℃で、厚さ98nmの窒化ケイ素薄膜を形成したこと以外は薄膜積層無機基板G2と同様にして、薄膜積層無機基板G4を得た。
薄膜積層無機基板G2において、厚さ48nmのCr薄膜に代えて厚さ46nmのチタン薄膜を形成したこと以外は薄膜積層無機基板G2と同様にして、薄膜積層無機基板G5を得た。
薄膜積層無機基板G2において、DCスパッタリング法により、厚さ48nmのCr薄膜を形成したことに代えて、RFスパッタリング法により、厚さ150nmのシリコン薄膜を形成したこと以外は薄膜積層無機基板G2と同様にして、薄膜積層無機基板G6を得た。
薄膜積層無機基板G2において、マスクを介して、厚さ48nmのCr薄膜を形成したことに代えて、マスクを介さずに、厚さ55nmの炭化ケイ素薄膜を形成したこと以外は薄膜積層無機基板G2と同様にして、薄膜積層無機基板G7を得た。
薄膜積層無機基板G2において、マスクを介して、DCスパッタリング法により、厚さ48nmのCr薄膜を形成したことに代えて、マスクを介さずに、EB蒸着法により、厚さ15nmのフッ素系撥水膜を形成したこと以外は薄膜積層無機基板G2と同様にして、薄膜積層無機基板G8を得た。
370mm×470mm×0.7mmtのコーニング社製ガラス(EAGLE XG(登録商標))を超純水で超音波洗浄し、HEPAフィルターを通じた乾燥空気により十分に乾燥させたものを無機基板G9とした。
薄膜形成時の条件等については、表3に示す。
Figure 0006181984
<無機基板へのシランカップリング剤層形成>
<塗布例1(スピンコート法)>
シランカップリング剤として3−アミノプロピルトリメトキシシラン(信越化学工業社製「KBM−903」)をイソプロピルアルコールによって0.5質量%に希釈したシランカップリング剤希釈液を調製した。上記薄膜積層無機基板G1をジャパンクリエイト社製スピンコーターに設置して、イソプロピルアルコール70mlを回転中央部に滴下して500rpmにて液の振り切りと乾燥を行い、引き続き、上記シランカップリング剤希釈液約35mlを回転中央部に滴下して、まず500rpmにて10秒間回転させ、次いで回転数を1500rpmまで上げて20秒間回転させ、シランカップリング剤希釈液を振り切った。次に、クリーンベンチ内に載置されている100℃に加熱したホットプレートに、シランカップリング剤が塗布された上記薄膜積層無機基板G1をシランカップリング剤塗布面が上になるように載せ、約3分間加熱して、シランカップリング剤塗布基板S1を得た。
シランカップリング剤塗布基板S1において、薄膜積層無機基板G1を薄膜積層無機基板G2〜G8と変更した以外は、シランカップリング剤塗布基板S1と同様にシランカップリング剤塗布基板S2〜S8、S10を得た。
シランカップリング剤塗布基板S1において、薄膜積層無機基板G1を薄膜積層無機基板G9と変更し、シランカップリング剤層にパターン化を行った以外は、シランカップリング剤塗布基板S1と同様にシランカップリング剤塗布基板S9を得た。なお、シランカップリング剤層のパターン化は、ステンレススチール製マスクにより必要部分を遮光し、UVオゾン洗浄で用いたランテクニカルサービス株式会社製のUV/O3洗浄改質装置(「SKB1102N−01」)とUVランプ(「SE−1103G05」)とにより、該UVランプから3cm程度離れた距離から240秒照射を行うことによって実施した。
<塗布例2(気相塗布法)>
ホットプレートを有する真空チャンバーを用い、以下の条件にて無機基板へのシランカップリング剤塗布を行った。
シランカップリング剤(信越化学工業社製「KBM−903」:3−アミノプロピルトリメトキシシラン)100質量部をシャーレに満たし、ホットプレートの上に静置した。このときホットプレート温度は25℃である。次いでシランカップリング剤の液面から垂直方向に300mm離れた箇所に、薄膜積層無機基板G2を薄膜面を下にして水平に保持し、真空チャンバーを閉じ、大気圧にて酸素濃度が0.1体積%以下となるまで窒素ガスを導入した。次いで窒素ガスの導入を止め、チャンバー内を3×10-4Paまで減圧し、ホットプレート温度を120℃まで昇温し、10分間保持してシランカップリング剤蒸気への暴露を行った。その後、ホットプレート温度を下げ、同時に真空チャンバー内にクリーンな窒素ガスを静かに導入して大気圧まで戻し、ガラス板を取り出し、クリーン環境下にて100℃のホットプレートに、シランカップリング剤塗布面を上にして載せ、約3分間熱処理を行い、表4に示すシランカップリング剤塗布基板V2を得た。
シランカップリング剤塗布基板V2において使用した薄膜積層無機基板G2を薄膜積層無機基板G3、G4と変更した以外は、シランカップリング剤塗布基板V2と同様にシランカップリング剤塗布基板V3、V4を得た。
Figure 0006181984
<実施例1>
<積層体の作製と初期特性の評価>
得られたシランカップリング剤塗布基板S1のシランカップリング剤層側に、360mm×460mmの長方形にトリミングしたプラズマ処理フィルムP1のプラズマ処理面を、周囲にシランカップリング剤塗布基板が幅5mm露出するように重ね、得られたシランカップリング剤処理済支持体のシランカップリング剤層の上に、各実施例ごとにそれぞれプラズマ処理フィルムP1を、ラミネーター(クライムプロダクツ社製SE650nH)を用いて仮ラミネートした。ラミネート条件は、無機基板側温度100℃、ラミネート時のロール圧力5kg/cm2、ロール速度5mm/秒とした。仮ラミネート後のポリイミドフィルムはフィルムの自重では剥がれないが、フィルム端部を引っ掻くと簡単に剥がれる程度の接着性であった。その後、得られた仮ラミネート積層基板をクリーンオーブンに入れ、200℃にて30分間加熱した後、室温まで放冷して、高分子フィルム積層基板を得た。得られた積層基板の特性を表5に示す。
なお、積層体における高分子フィルムと無機基板との接着強度については、薄膜形成をパターン状に行った試料については、薄膜形成部での接着強度を易剥離部の接着強度、薄膜が形成されていない部分の接着強度を良好接着部の接着強度とした。また活性エネルギー線などを用いて不活性化処理を行った試料の場合には、不活性化した部分の接着強度を易剥離部の接着教、不活性化されていない部分の接着強度を良好接着部の接着強度とした。
<リサイクル特性の評価>
接着強度を測定した積層基板と同様の工程で製作した積層基板について、リサイクルに相当する操作を行い、無機基板を再利用した場合の特性についての評価を行った。具体的には、易剥離部周辺に切り込みを入れて無機基板から剥離した後、一部の高分子フィルム層が残った基板を10%の水酸化ナトリウム水溶液に室温にて20時間浸積し、ブラッシングし、次いで水洗の後、液晶基板用ガラス洗浄装置にてクリーニング洗浄を行い、乾燥後にドライ環境にて3分間のUVオゾン洗浄を行い、以後、無機基板へのシランカップリング剤層形成、積層体の作製をリサイクル前と同様に行い、外観品位の観察、および易剥離部、良好接着部における接着強度を評価した。リサイクル特性について表5に示す。
<実施例2〜7>
実施例1において使用したシランカップリング剤塗布基板をS2、S3、S4、S7、S10、V2に変更したこと以外は、実施例1と同様にして、実施例2〜7の高分子フィルム積層基板を得た。また、リサイクル特性の評価結果を実施例1と同様に行った。
得られた積層基板の評価結果、リサイクル特性の評価結果を表5に示す。
<比較例1〜3>
実施例1において使用したシランカップリング剤塗布基板をS5、S6、S8に変更したこと以外は、実施例1と同様にして、比較例1〜3の高分子フィルム積層基板を得た。また、リサイクル特性の評価結果を実施例1と同様に行った。
得られた積層基板の評価結果、リサイクル特性の評価結果を表5に示す。
<比較例4>
実施例1において使用したシランカップリング剤塗布基板を、薄膜を形成していないシランカップリング剤塗布基板S9に変更したこと以外は、実施例1と同様にして、比較例4の高分子フィルム積層基板を得た。また、リサイクル特性の評価結果を実施例1と同様に行った。
得られた積層基板の評価結果、リサイクル特性の評価結果を表5に示す。なお、リサイクル時には易剥離部に高分子フィルムと無機基板との間に異物が入ったためと見られる突起が散見された。
Figure 0006181984
<実施例8〜15>
シランカップリング剤塗布基板とプラズマ処理フィルムを表6に示す組み合わせにて適宜替えて、実施例1と同様に操作を行い、同様に評価した。結果を表6に示す。なお、プラズマ処理フィルムP4又はP5を用いた場合においては、ラミネート後のクリーンオーブンによる熱処理温度を150℃とした。また、リサイクル特性の評価結果を実施例1と同様に行った。
得られた積層基板の評価結果、リサイクル特性の評価結果を表6に示す。
Figure 0006181984
<応用例1>
実施例1、実施例2、実施例3、実施例13、実施例15、比較例2にて得られた積層体を用い、以下の工程により、高分子フィルム上にボトムゲート型構造を有する薄膜トランジスタアレイを作製した。
高分子フィルム側全面に反応性スパッタリング法を用いてSiONからなる100nmのガスバリア膜を形成した。次いで、厚さ80nmのアルミニウム層をスパッタリング法にて形成し、フォトリソグラフ法によりゲート配線とゲート電極を形成した。続いて、スリットダイコーターを用いてエポキシ樹脂系のゲート絶縁膜(厚さ80nm)を形成した。さらに、スパッタリング法にて5nmのCr層、40nmの金層を形成し、フォトリソグラフ法にてソース電極とドレイン電極を形成した。加えて、スリットダイコーターを用いて、絶縁層兼ダム層となるエポキシ樹脂を塗布し、UV−YAGレーザーによるアブレーションにて、ソース電極とドレイン電極を含む半導体層用の厚さ250nmのダム層を直径100μmの円形となるように形成し、また上部電極との接続点となるビア形成も同時に行った。そして、インクジェット印刷法により有機半導体であるポリチオフェンをダム内に塗出、ビア部には銀ペーストを埋め込み、さらに上部電極としてアルミ配線を形成し640×480ピクセルを有する薄膜トランジスタアレイを形成した。
得られた薄膜トランジスタアレイをバックプレーンとし、フロントプレーンに電気泳動表示媒体を重ねることにより、ディスプレイ素子とし、トランジスタの収率と表示性能を、各ピクセルのON/OFFにて判定した。その結果、いずれの積層体を用いて作製された薄膜トランジスタアレイでは、いずれも表示性能は良好であった。
また、薄膜トランジスタアレイにフロントプレーンを重ねた後に、薄膜パターン外周の0.5mm程度内側に沿ってUV−YAGレーザーにて高分子フィルム部を焼き切り、切れ目の端部から薄いカミソリ上の刃を用いてすくい上げるように剥離を行った。
実施例1、実施例2,実施例3、実施例13、及び実施例15にて得られた積層体を用いて作製された薄膜トランジスタアレイでは容易に剥離が可能であり、フレキシブル電気泳動ディスプレイデバイスを得ることができた。
一方、比較例2にて得られた積層体を用いて作製された薄膜トランジスタアレイでは、上記剥離を行うのに上記各実施例に比較して大きな力を要した。また、剥離前の電気泳動部の表示は良好であったが、剥離後は一部の走査線に動作不良が生じ、書き換えが出来ないエリアが生じた。
<応用例2>
応用例1にてフレキシブル電気泳動ディスプレイデバイスを剥離した後に、無機基板を10%の水酸化ナトリウム水溶液に室温にて20時間浸積した。その後、水洗を行い、さらに液晶基板用ガラス洗浄装置にてクリーニング洗浄を行い、乾燥後にUVオゾン洗浄を3分間行った。以後、上記<無機基板へのシランカップリング剤層形成>の工程に戻り、それ以降の工程については最初に積層体を作製したときと同様の作製法を行うことにより積層体を得た。得られた積層体の品位は良好で、十分にリサイクル使用が可能な状態であった。
<応用例3>
実施例4〜9、実施例12、実施例14にて得られた積層体を、開口部を有するステンレス製の枠を被せてスパッタリング装置内の基板ホルダーに固定した。基板ホルダーと積層体の支持体とを密着するように固定して、基板ホルダー内に冷媒を流すことによって、積層体の温度を設定できるようにし、積層体の温度を2℃に設定した。まず、積層体の高分子フィルム表面にプラズマ処理を施した。プラズマ処理条件は、アルゴンガス中で、周波数13.56MHz、出力200W、ガス圧1×10-3Torrの条件とし、処理時の温度は2℃、処理時間は2分間とした。次いで、周波数13.56MHz、出力450W、ガス圧3×10-3Torrの条件で、ニッケル−クロム(Cr10質量%)合金のターゲットを用いて、アルゴン雰囲気下にてDCマグネトロンスパッタリング法により、1nm/秒のレートで厚さ11nmのニッケル−クロム合金被膜(下地層)を形成した。次いで、積層体の温度を2℃に設定し、スパッタリングを行った。そして、10nm/秒のレートで銅を蒸着させ、厚さ0.22μmの銅薄膜を形成した。このようにして、各積層体から下地金属薄膜形成フィルム付きの積層板を得た。なお、銅およびNiCr層の厚さは蛍光X線法によって確認した。
次に、各フィルムからの下地金属薄膜形成フィルム付きの積層板をCu製の枠に固定し、硫酸銅めっき浴を用い、電解めっき液(硫酸銅80g/l、硫酸210g/l、HCl、光沢剤少量)に浸漬し、電気を1.5A/dm2流すことにより、厚さ4μmの厚付け銅メッキ層(厚付け層)を形成した。引き続き120℃で10分間熱処理して乾燥し、積層体の高分子フィルム面に銅箔層を形成した。
得られた各銅箔層に対して、フォトレジスト(シプレー社製「FR−200」)を塗布乾燥した後に、ガラスフォトマスクでオフコンタクト露光し、さらに1.2質量%KOH水溶液にて現像した。次に、HClおよび過酸化水素を含む塩化第二銅のエッチングラインで、40℃、2kgf/cm2のスプレー圧でエッチングし、ライン/スペース=20μm/20μmのライン列をテストパターンとして形成した。次いで、0.5μm厚に無電解スズメッキを施した後、125℃で1時間のアニール処理を行い、配線パターンを得た。
得られた配線パターンを光学顕微鏡で観察し、またテストパターンを用いて断線/短絡の有無をチェックした。結果、いずれも配線パターンには、断線、短絡は無く、パターン形状も良好であった。次いで、応用例1と同様の手法にてガラス板から高分子フィルムを剥離し、フレキシブル配線基板とした。得られたフレキシブル配線板の屈曲性は良好であった。
本発明の高分子フィルム積層基板は、高分子フィルム上に電子デバイスを形成した後に、電子デバイスが載置された高分子フィルムを無機基板から容易に剥離することが可能である。また、上記剥離を行った無機基板をリサイクルしても、電子デバイスが載置された高分子フィルムを無機基板からリサイクル前と同様に容易に剥離することが可能であり、特にフレキシブルな電子デバイスの製造に有用であり、産業界への寄与は大きい。

Claims (7)

  1. 無機基板の少なくとも片面の一部にCr、貴金属、金属炭化物、又は金属窒化物から選択される少なくとも一種を含む薄膜が不連続に形成され、薄膜の上にシランカップリング剤層が連続に形成され、さらにシランカップリング剤層の上に高分子フィルム層が積層された高分子フィルム積層基板であって、
    無機基板表面のイソプロピルアルコールに対する接触角と薄膜表面のイソプロピルアルコールに対する接触角との差が5度以下であり、
    高分子フィルムが積層された面は、高分子フィルムに切り込みを入れると高分子フィルムをシランカップリング剤層ごと無機基板から容易に分離できる領域である易剥離部と容易に分離できない領域である良好接着部とからなり、
    上記易剥離部は上記薄膜に覆われた部分であり、上記良好接着部は上記薄膜に覆われていない部分であり、
    上記高分子フィルム積層基板において、高分子フィルム層のみを180度剥離したときの上記良好接着部における接着強度は、上記易剥離部における接着強度の2倍以上である
    ことを特徴とする高分子フィルム積層基板。
  2. 前記高分子フィルムはポリイミドフィルムである請求項1に記載の高分子フィルム積層基板。
  3. 高分子フィルム上に電子デバイスを形成する際に、無機基板に高分子フィルム材料を仮支持するために用いられる請求項1又は2に記載の高分子フィルム積層基板。
  4. 無機基板の少なくとも片面の一部にCr、貴金属、金属炭化物、又は金属窒化物から選択される少なくとも一種を含む薄膜を不連続に形成する工程と、
    薄膜の上にシランカップリング剤層を連続に形成する工程と、
    シランカップリング剤層の上に複数の高分子フィルム層を積層する工程と、
    加熱加圧することで隣接する互いの層を接着する工程と、
    高分子フィルム上に電子デバイスを形成する工程と、
    高分子フィルム層に切り込みを入れ、高分子フィルム層における上記薄膜に覆われた易剥離部の少なくとも一部を電子デバイス及びシランカップリング剤層ごと無機基板から剥離する工程と、
    を備えることを特徴とするフレキシブル電子デバイスの製造方法。
  5. 高分子フィルム層を積層する上記工程において、
    高分子溶液をシランカップリング剤層または高分子フィルム層上に塗布し、塗布した溶液を乾燥することによって高分子フィルム層を積層する
    請求項に記載のフレキシブル電子デバイスの製造方法。
  6. 高分子フィルム層を積層する上記工程において、
    高分子の前駆体溶液をシランカップリング剤層または高分子フィルム層上に塗布し、塗布した溶液を乾燥し、その後加熱することによって高分子フィルム層を積層する
    請求項4に記載のフレキシブル電子デバイスの製造方法。
  7. 薄膜に所定のパターンを形成する工程を含む請求項4〜6のいずれか1項に記載のフレキシブル電子デバイスの製造方法。
JP2013121295A 2013-06-07 2013-06-07 高分子フィルム積層基板 Expired - Fee Related JP6181984B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013121295A JP6181984B2 (ja) 2013-06-07 2013-06-07 高分子フィルム積層基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013121295A JP6181984B2 (ja) 2013-06-07 2013-06-07 高分子フィルム積層基板

Publications (2)

Publication Number Publication Date
JP2014237270A JP2014237270A (ja) 2014-12-18
JP6181984B2 true JP6181984B2 (ja) 2017-08-16

Family

ID=52134885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013121295A Expired - Fee Related JP6181984B2 (ja) 2013-06-07 2013-06-07 高分子フィルム積層基板

Country Status (1)

Country Link
JP (1) JP6181984B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11809933B2 (en) 2018-11-13 2023-11-07 Ppg Industries Ohio, Inc. Method of detecting a concealed pattern
US11808833B2 (en) 2016-10-28 2023-11-07 Ppg Industries Ohio, Inc. Coatings for increasing near-infrared detection distances
US12001034B2 (en) 2019-01-07 2024-06-04 Ppg Industries Ohio, Inc. Near infrared control coating, articles formed therefrom, and methods of making the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178237A (ja) * 2014-03-19 2015-10-08 東洋紡株式会社 積層無機基板、積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
WO2018139427A1 (ja) * 2017-01-25 2018-08-02 東洋紡株式会社 高分子フィルム積層基板およびフレキシブル電子デバイスの製造方法
JP6848496B2 (ja) * 2017-02-08 2021-03-24 東洋紡株式会社 積層体
JP6981010B2 (ja) * 2017-02-22 2021-12-15 東洋紡株式会社 デバイス形成用仮支持基板およびデバイスの製造方法
JP6981011B2 (ja) * 2017-02-22 2021-12-15 東洋紡株式会社 デバイス形成用仮支持基板およびデバイスの製造方法
JP6981012B2 (ja) * 2017-02-22 2021-12-15 東洋紡株式会社 デバイス形成用仮支持基板およびデバイスの製造方法
JP6907698B2 (ja) * 2017-05-18 2021-07-21 東洋紡株式会社 積層体及びフレキシブル電子デバイスの製造方法
KR102264420B1 (ko) * 2017-11-03 2021-06-11 주식회사 엘지화학 디스플레이 기판용 폴리이미드 필름
CN114845863A (zh) * 2020-02-04 2022-08-02 三井金属矿业株式会社 带载体的金属箔
CN113517517B (zh) * 2021-03-05 2022-12-30 深圳市新非泽科技有限公司 锂电池隔膜用涂覆浆料及涂覆工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973122B2 (ja) * 2005-10-27 2012-07-11 東レ株式会社 回路基板用部材および回路基板の製造方法
JP5126555B2 (ja) * 2008-12-19 2013-01-23 東洋紡株式会社 積層体およびその製造方法、積層体回路板
JP5304490B2 (ja) * 2009-07-02 2013-10-02 東洋紡株式会社 積層体およびその製造方法
CN102596565B (zh) * 2009-08-27 2014-09-10 旭硝子株式会社 挠性基材-支撑体的层叠结构体、带有支撑体的电子装置用面板、以及电子装置用面板的制造方法
US8980409B2 (en) * 2011-04-15 2015-03-17 Toyobo Co., Ltd. Laminate, method for producing same, and method for producing device structure using same
JP5862238B2 (ja) * 2011-05-27 2016-02-16 東洋紡株式会社 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
JP5862866B2 (ja) * 2011-05-30 2016-02-16 東洋紡株式会社 積層体の作成方法および、この積層体を利用したフィルムデバイスの作成方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808833B2 (en) 2016-10-28 2023-11-07 Ppg Industries Ohio, Inc. Coatings for increasing near-infrared detection distances
US11977154B2 (en) 2016-10-28 2024-05-07 Ppg Industries Ohio, Inc. Coatings for increasing near-infrared detection distances
US11809933B2 (en) 2018-11-13 2023-11-07 Ppg Industries Ohio, Inc. Method of detecting a concealed pattern
US12050950B2 (en) 2018-11-13 2024-07-30 Ppg Industries Ohio, Inc. Method of detecting a concealed pattern
US12001034B2 (en) 2019-01-07 2024-06-04 Ppg Industries Ohio, Inc. Near infrared control coating, articles formed therefrom, and methods of making the same

Also Published As

Publication number Publication date
JP2014237270A (ja) 2014-12-18

Similar Documents

Publication Publication Date Title
JP6181984B2 (ja) 高分子フィルム積層基板
JP6447135B2 (ja) 積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
CN107073891B (zh) 硅烷偶联剂层层叠高分子膜
JP5862238B2 (ja) 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
JP5429375B2 (ja) 積層体とその製造方法および、この積層体を用いたデバイス構造体の作成方法
JP6003883B2 (ja) 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
JPWO2016031746A6 (ja) シランカップリング剤層積層高分子フィルム
WO2015041190A1 (ja) リジッド複合積層板とその製造方法、積層体および該積層体を用いたデバイスの製造方法
JP2015178237A (ja) 積層無機基板、積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JP6210201B2 (ja) フレキシブル電子デバイスの製造方法
JP6332617B2 (ja) ポリイミド前駆体フィルム層/無機基板積層体、およびその製造方法、ポリイミドフィルム層/無機基板積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JP6848496B2 (ja) 積層体
KR102476038B1 (ko) 고분자 필름 적층 기판 및 플렉시블 전자 디바이스의 제조 방법
JP6638415B2 (ja) フレキシブル電子デバイスの製造方法
JP2013226784A (ja) 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
JP2017124586A (ja) フレキシブル電子デバイスの製造方法
JP7205687B2 (ja) 積層体、積層体の製造方法、及び、金属含有層付き耐熱高分子フィルム
JP6201513B2 (ja) 積層体の製造方法及びそれを用いたデバイス構造体の製造方法
JP6981011B2 (ja) デバイス形成用仮支持基板およびデバイスの製造方法
JP6981012B2 (ja) デバイス形成用仮支持基板およびデバイスの製造方法
JP6981010B2 (ja) デバイス形成用仮支持基板およびデバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170721

R150 Certificate of patent or registration of utility model

Ref document number: 6181984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees