WO2012133453A1 - 固体潤滑剤 - Google Patents

固体潤滑剤 Download PDF

Info

Publication number
WO2012133453A1
WO2012133453A1 PCT/JP2012/058002 JP2012058002W WO2012133453A1 WO 2012133453 A1 WO2012133453 A1 WO 2012133453A1 JP 2012058002 W JP2012058002 W JP 2012058002W WO 2012133453 A1 WO2012133453 A1 WO 2012133453A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium
calcium sulfate
solid lubricant
water
crystal
Prior art date
Application number
PCT/JP2012/058002
Other languages
English (en)
French (fr)
Inventor
小見山 忍
敦 芹田
森 和彦
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to JP2013507637A priority Critical patent/JP5674921B2/ja
Publication of WO2012133453A1 publication Critical patent/WO2012133453A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/061Carbides; Hydrides; Nitrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/085Phosphorus oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/103Clays; Mica; Zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • C10M2215/222Triazines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/26Waterproofing or water resistance
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants

Definitions

  • the present invention relates to a solid lubricant that reduces friction and suppresses seizure through a contact interface in a situation where a metal surface and a solid surface such as a mold rub against each other.
  • Solid lubricants are used on surfaces where metal parts rub against each other and plastic working contact surfaces that are formed into a desired shape by applying a large pressure to the metal mass, and are responsible for reducing friction on these friction surfaces and suppressing seizure. It is a solid lubricant.
  • the contact pressure in an environment where a solid lubricant is used is very high, and the temperature rises due to friction, so that the solid lubricant requires heat resistance in addition to friction reduction.
  • industrially used solid lubricants molybdenum disulfide, graphite and the like are well known, and graphite fluoride, boron nitride, tungsten disulfide, melamine cyanurate and the like are well known.
  • the general lubrication mechanism of a solid lubricant is based on the fact that it destroys itself on the friction surface. The smaller the force required when the solid lubricant breaks, the smaller the friction.
  • Many solid lubricants have a cleaved surface with weak bonds between crystal lattices, and when a shearing force is applied to the friction surface, the crystal breaks at the cleaved surface.
  • crystals of solid lubricants such as molybdenum disulfide and graphite have a crystal structure such that they are laminated in layers on a cleavage plane, and friction is reduced by slippage due to breakage of the bond of the cleavage layer.
  • the lubrication mechanism of a solid lubricant having a cleaved surface can be easily understood by comparing the stacked cards as one crystal. It is a strong crystal lattice in which each card is laminated with a cleavage plane. When a shear force is applied to the crystal through the friction surface, the stacked structure of the cards easily collapses and spreads to the friction surface. At this time, the resistance to the shear force is very small, reducing the friction on the friction surface. It will be.
  • the situation where the solid lubricant spreads to the friction surface due to crystal collapse is called spreading. If, for example, a set of 52 cards is expanded with respect to the area of the friction surface on which a single crystal is placed, it is possible to cover and protect up to 52 times the area. In the field of plastic processing where solid lubricant is used, for example, spreading has a great effect. In particular, in forging and the like, the surface of a steel material, which is a workpiece, is often stretched dozens of times by processing, and the surface cannot be covered with a simple lubricating film. When the lubricating film on the friction surface is cut, the friction increases rapidly and seizure occurs between the mold and the workpiece. Since the solid lubricant has a spreading function, it is possible to efficiently suppress the lubrication film breakage on the friction surface.
  • solid lubricants are required to have heat resistance and pressure resistance that can be adapted to the environment in which they are used.
  • ease of cleavage and spreading described above are also important factors.
  • These elements are considered to be excellent in practical use, and solid lubricants that are very often used in machine sliding parts and plastic working are graphite and molybdenum disulfide.
  • molybdenum disulfide has an excellent performance that is no exaggeration to say that it is a synonym for solid lubricants, and has been used widely since ancient times.
  • Lubricating paints that use molybdenum disulfide as a film with a binder component such as resin are used for machine sliding parts.
  • the lubricating paint is used as a lubricating coating agent applied to the surface of a steel material before processing even in the plastic processing field such as forging, and allows cold forging with a high degree of processing and high difficulty.
  • the metal-based plastic working water-based lubricant disclosed in Patent Document 1 is one or more selected from (A) a water-soluble inorganic salt, (B) molybdenum disulfide, and graphite. And (C) a wax, and these components are dissolved or dispersed in water, and the solid content concentration ratio (weight ratio) (B) / (A) is 1.0 to 5.0. , (C) / (A) is 0.1 to 1.0.
  • the lubricating film obtained by using the water-based lubricant for plastic working of a metal material is two-dimensionally compared with the lubricating film for plastic working disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2000-63880) or the like.
  • the performance is enhanced by containing at least one selected from molybdenum sulfide and graphite in a specific ratio.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 10-368766
  • Patent Document 3 Japanese Patent Application Laid-Open No. 10-368766
  • Japanese Patent Application Laid-Open No. 10-368766 Japanese Patent Application Laid-Open No. 10-368766
  • Patent Document 3 Japanese Patent Application Laid-Open No. 10-368766
  • a lubricating coating containing melamine cyanurate is disclosed, and excellent lubricity is maintained.
  • these solid lubricants are generally difficult to use due to their high price, and it is not practical as an input technology to the “manufacturing site” where cost reduction is screamed.
  • FIG. 1 shows an example of calcium sulfate crystal, which has a cleavage plane that is preferable as a solid lubricant in the crystal lattice and is broken so that the cleavage plane slides in an environment such as a friction surface to which a shearing force is applied. To reduce friction. It is also preferable as a solid lubricant that calcium sulfate dihydrate has a Mohs hardness of about 2 and is relatively soft among minerals, and is considered to have a small shearing force required for breaking by cleavage.
  • calcium sulfate is a transparent crystal, and is a non-black solid lubricant that appears white due to light scattering when in a fine particle state.
  • it is industrially inexpensive and easy to obtain.
  • it is easy to synthesize by reacting sulfuric acid and calcium hydroxide, etc., and can be controlled to a desired crystal shape and size according to the synthesis conditions, and is a very easy-to-use solid lubricant.
  • calcium sulfate has one aspect that is difficult to use on the contact surface with metal.
  • Calcium sulfate crystals are slightly soluble in water, and calcium ions and sulfate ions are eluted in water. Therefore, if calcium sulfate crystals are attached to the metal surface in a humid environment, the metal surface is easily corroded by the release of sulfate ions. For this reason, for example, lubricating paints and plastic working lubricants containing calcium sulfate as a solid lubricant are difficult to apply to metal materials such as steel materials that continue to be exposed to high humidity.
  • the present invention is a non-black, inexpensive, readily available, and rusted counterpart metal in a humid environment, which is a problem when using calcium sulfate having excellent lubrication performance as a solid lubricant on the surface of a metal material such as steel. It aims at improving the characteristic which it is easy to make. That is, an object of the present invention is to provide calcium sulfate crystals as a solid lubricant that do not easily rust the surface of a counterpart metal even when kept in contact with the surface of a steel material in a humid environment.
  • the solid lubricant according to the present invention comprises calcium sulfate crystals whose crystal surface is coated with a calcium compound that is hardly soluble or insoluble in water.
  • calcium compounds calcium salts of inorganic acids, calcium salts of organic acids including polymers and fatty acids can be used, and the solubility of these calcium compounds in water is the water of calcium sulfate dihydrate. It is preferable that the solubility is less than In this specification, it is defined that 0.2 g of calcium sulfate dihydrate is dissolved in 100 g of water at normal temperature (20 ° C.).
  • the degree of coating is not limited as long as the adhesion of calcium sulfate crystals can be confirmed by SEM observation.
  • hardly soluble means that the amount of dissolution is 0.2 g or less in 100 g of water at normal temperature (20 ° C.). Insoluble means 0.02 g or less in 100 g of water at normal temperature (20 ° C.).
  • calcium sulfate By coating the surface of the calcium sulfate crystal with a calcium compound that is sparingly soluble or insoluble in water, calcium sulfate as a solid lubricant that is highly expected in terms of performance and cost can be obtained.
  • Low-cost, high-performance sliding lubrication paint and plastic processing lubricant containing calcium sulfate can be applied to a wide range of metal materials including steel materials, making it economical for manufacturing sites.
  • the industrial utility value of the present invention is extremely large, such as a large effect.
  • FIG. 1 is an atomic model diagram of calcium sulfate dihydrate crystals.
  • FIG. 2 shows a shape image of a calcium sulfate hydrate crystal produced by the preferred synthetic dispersion method of this embodiment and a site where the thickness of the crystal is observed.
  • FIG. 3 is a chart example when a calcium sulfate hydrate crystal that can be used in this preferred embodiment is analyzed by an X-ray diffraction method, and the intensity ratio of (020) plane / (021) plane is 10 or more.
  • FIG. 4 is a chart example when a calcium sulfate hydrate crystal having a shape outside the range of the preferred embodiment is analyzed by an X-ray diffraction method.
  • FIG. 5 is an image diagram of the ball ironing process in which the lubrication performance was evaluated.
  • FIG. 6 is an evaluation standard showing the degree of seizure when the lubrication performance is evaluated.
  • FIG. 7 is an SEM photograph of calcium sulfate crystals showing a state where there is no deposit.
  • FIG. 8 is an SEM photograph of calcium sulfate crystals to which calcium tungstate was adhered (dispersed adhesion).
  • FIG. 9 is an SEM photograph of calcium sulfate crystals to which calcium oxalate is adhered (high-density adhesion).
  • FIG. 5 is an image diagram of the ball ironing process in which the lubrication performance was evaluated.
  • FIG. 6 is an evaluation standard showing the degree of seizure when the lubrication performance is evaluated.
  • FIG. 7 is an SEM photograph of calcium sulfate crystals showing a state where there is no deposit.
  • FIG. 8 is an SEM photograph of calcium sulfate crystal
  • FIG. 10 is an SEM photograph of calcium sulfate crystals to which calcium stearate is adhered (high-density adhesion).
  • FIG. 11 is an SEM photograph of calcium sulfate crystals to which calcium phosphate is attached (high density attached to the edge portion) according to Example 3.
  • coated calcium sulfate crystal according to an embodiment of the present invention will be described in detail.
  • the form described below is only an example, and the present invention is not limited to this form.
  • Calcium sulfate crystals as the core> Calcium sulfate that coats the surface in this form is not particularly limited, and is a by-product from reagents, production from natural deposits, process of producing phosphoric acid from phosphate ore, process of producing hydrofluoric acid from fluorite, etc. It can be used regardless of its manufacturing process, such as an aqueous dispersion slurry of calcium sulfate, which can be synthesized by adding sulfuric acid to a slurry in which calcium carbonate or calcium hydroxide is dispersed in water.
  • calcium sulfate that can be used in this embodiment exhibits good lubricating characteristics as a solid lubricant, it can be converted to calcium sulfate dihydrate or calcium sulfate dihydrate by contact with water. is necessary.
  • examples of such calcium sulfate include calcium sulfate 0.5 hydrate and soluble anhydrous salts ( ⁇ -CaSO 4 , III ⁇ -CaSO 4 that can be easily converted to 0.5 hydrate in the presence of moisture. , III ⁇ -CaSO 4 ) and the like.
  • the stable anhydrous salt (II-CaSO 4 ) which is inactive and difficult to shift to 0.5 hydrate even in the presence of moisture, has a greatly different crystal lattice structure and poor friction reducing ability. It does not fit the purpose.
  • the crystal shape of calcium sulfate is not particularly limited, and examples thereof include a scale shape, a plate shape, and a column shape.
  • the preferred calcium sulfate is a hydrate of calcium sulfate, characterized in that the thickness of crystals precipitated by reacting sulfuric acid or sulfate with a calcium compound in water is a scale-like shape having a thickness of 1.5 ⁇ m or less. It is.
  • the calcium sulfate hydrate used in this preferred embodiment is sulfuric acid or sulfate ⁇ for example, alkali metal salt of sulfuric acid (for example, sodium or potassium salt) or magnesium salt ⁇ , calcium hydroxide, inorganic acid or organic acid. It is synthesized by a side decomposition reaction by contacting a calcium compound such as a calcium salt (for example, calcium carbonate, various calcium phosphates, calcium chloride, calcium oxalate, calcium citrate, etc.) in water. For example, after dispersing calcium carbonate powder in water using a propeller stirrer and adding sulfuric acid having a sulfate radical (SO 4 ) with stirring, calcium sulfate hydrate crystals were precipitated and dispersed in water.
  • a calcium salt for example, calcium carbonate, various calcium phosphates, calcium chloride, calcium oxalate, calcium citrate, etc.
  • a suspension in a state can be produced.
  • a method of adding a calcium carbonate dispersion in sulfuric acid may also be used.
  • it is an equimolar reaction with calcium in a calcium compound (for example, calcium carbonate), but it is preferable to add a slightly larger amount of sulfate radical based on the reaction efficiency (for this reason, it will be described later).
  • the shape of the calcium sulfate hydrate crystals formed in the suspension varies greatly depending on various synthetic environments including concentration and temperature. When the synthesis is performed so that the concentration of the product crystals is 10% by mass or less and the reaction temperature is controlled to 30 ° C.
  • the calcium sulfate hydrate crystal suspension synthesized and precipitated as described above is usually used after neutralizing the pH of the suspension to near neutral or higher by adding an alkali such as sodium hydroxide. If an attempt is made to produce a dry film of calcium sulfate crystals in the state where a large amount of unreacted sulfuric acid remains, an anhydride having poor lubricating performance is likely to be produced during the drying process, which is not preferable.
  • the average shape of a single crystal measured from a scanning electron microscope image of the calcium sulfate hydrate crystal synthesized by the above method is the average thickness of the crystal shown in the schematic diagram of the crystal appearance illustrated in FIG. It is preferable that it is a scale shape of 1.5 ⁇ m or less.
  • the average thickness is an average value of results obtained by arbitrarily selecting and measuring 100 crystals on the SEM.
  • the lower limit value of the average thickness of the crystal is not particularly limited, but is 0.1 ⁇ m, for example.
  • an aqueous dispersion obtained by adding the synthesized calcium sulfate hydrate crystals to pure water is dried and solidified at a temperature of 80 ° C.
  • the intensity ratio of the plane / (021) plane is preferably 10 or more, more preferably 30 or more, and still more preferably 50 or more.
  • the strength ratio of (020) plane / (021) plane in this preferred embodiment is an index indicating the ease of taking a laminated structure in which calcium sulfate hydrate crystals are selectively oriented in the (020) plane, (020)
  • the intensity ratio of the plane / (021) plane is less than 10.
  • the strength ratio of the (020) plane / (021) plane of the calcium sulfate hydrate crystals blended in the lubricating coating agent is less than 10
  • the aggregate density of the calcium sulfate hydrate crystals in the lubricating coating is Since it becomes a sparse state and it is easy to fall off without being able to endure the shearing force when it is introduced into the contact interface between the mold and the workpiece surface in plastic processing, the function as a lubricating coating required in this preferred embodiment It becomes difficult to express.
  • the present preferred embodiment is not limited to this upper limit value.
  • an aqueous coating agent is produced in the same manner as in the case of the non-black solid lubricant described above.
  • a pulverizing / dispersing machine such as a bead mill or a homogenizer, and the manufacturing cost is greatly increased.
  • Calcium compound that coats calcium sulfate and is hardly soluble or insoluble in water As the water-insoluble or insoluble calcium compound (coating compound) that coats the calcium sulfate crystal surface, calcium salts of inorganic acids, calcium salts of organic acids including polymers and fatty acids, and the like are used. be able to.
  • Such compounds include calcium fluoride, calcium iodate, calcium hydroxide, calcium phosphonate, calcium phosphate, calcium monohydrogen phosphate, calcium diphosphate, calcium metaphosphate, calcium carbonate, calcium silicate, calcium metasilicate, and tetrabora.
  • the calcium compound is preferably less soluble in water than calcium sulfate dihydrate, and more preferably insoluble in water.
  • the solubility (at room temperature) in water of a calcium compound that is hardly soluble or insoluble in water is preferably less than 0.2 g / 100 g, and more preferably less than 0.005 g / 100 g. More preferably, it is less than 0.001 g / 100 g.
  • the metal has little influence on the corrosion of the target metal even if it is slightly dissolved.
  • Examples of such a compound are compounds having a passivating action, such as tungstate and molybdate.
  • the coated calcium sulfate in this embodiment has a structure in which at least a part of the calcium sulfate as a nucleus (for example, a side wall portion where the plate end is exposed in the case of scaly) or almost all is coated with a coating compound.
  • a coating compound for example, a side wall portion where the plate end is exposed in the case of scaly
  • Fig. 8 is an example of calcium tungstate
  • Fig. 7 is an example of uncoated calcium sulfate
  • “High-density adhesion” in which precipitates were deposited at a higher density than in dispersed adhesion (FIG.
  • the coating layer by a coating compound may not be one layer, but may be two or more layers (layers of different coating compounds).
  • the solubility of the upper layer is preferably lower than that of the lower layer.
  • the solubility of at least one coating compound is preferably less than 0.2 g / 100 g.
  • the calcium sulfate crystal / calcium salt coating (mass ratio) is preferably 5 to 2000, more preferably 10 to 1000, and more preferably 10 to 500.
  • the calcium sulfate crystal / calcium salt coating (mass ratio) is calculated from, for example, the known mass of calcium sulfate, which is the object to be treated, and the calculated mass value of the calcium salt consisting of each element quantified by fluorescent X-rays. Can be sought.
  • the method for producing a coated calcium sulfate according to the present embodiment includes a calcium sulfate hydrate crystal in which calcium sulfate and a calcium compound that binds to the calcium ion and is insoluble or insoluble are combined with the calcium sulfate hydrate crystal dispersed in water. And a step of allowing the component to be formed above to exist in the water.
  • a liquid medium ⁇ solution or dispersion (anion dispersion) ⁇ containing the above component a component that binds calcium ions to form a hardly soluble or insoluble calcium compound on the calcium sulfate hydrate crystal
  • the calcium salt coating is preferably deposited in an alkaline manner.
  • the method for making the system alkaline is not particularly limited, but ammonia, amine, and the like tend to dissolve the calcium sulfate crystal itself, so it is preferable to make it alkaline with an alkali metal (especially filtration washing after production). If not).
  • the coating of calcium compounds on the surface of calcium sulfate crystals is usually carried out with inorganic acids or the like for precipitating the calcium compounds to be coated against the state where calcium sulfate crystals are stirred and dispersed in water in which calcium ions are dissolved. It is carried out by gradually adding an aqueous liquid in which one or more selected from alkali metal salts of organic acids are dissolved or dispersed (anion dispersed) in water.
  • it does not limit as a method of dissolving calcium ion in water what is necessary is just to dissolve calcium by stirring and dispersing the calcium sulfate crystal
  • An aqueous liquid in which one or more selected from inorganic acids and alkali metal salts of organic acids for precipitating the calcium compound to be coated in this form is dissolved or dispersed in water in which calcium ions are dissolved is added.
  • inorganic acids and organic acids that are stably dissolved or dispersed in water form a salt with calcium and become insoluble, or the dispersion state in water becomes unstable, thereby causing precipitation.
  • the insolubilized or destabilized calcium salt is seen as a precipitate on the surface of the calcium sulfate crystals.
  • the solubility of calcium sulfate dihydrate crystals as a calcium ion source in water is about 0.2 g / 100 g
  • the calcium ion dissolved in the bath is about 0.05 g / 100 g.
  • the coating treatment of the calcium sulfate crystal surface with a calcium compound that is sparingly soluble or insoluble in water may be carried out with two or more layers of calcium compounds by carrying out a treatment reaction stepwise, and two or more kinds of calcium compounds may be coated simultaneously. It may be formed by a treatment reaction. Since the coating state on the calcium sulfate crystal surface varies depending on the type of calcium compound, coating treatment with two or more calcium compounds is expected to enhance the rust prevention effect in a supplemental or synergistic manner.
  • a first sparingly soluble or insoluble salt for example, calcium phosphate
  • a portion of the first sparingly soluble or insoluble salt for example, calcium phosphate salt
  • the second sparingly soluble or insoluble salt for example, calcium salt of phosphoric acid having a lower solubility.
  • Calcium carbonate carbonate synergistically enhances the dissolution delay effect.
  • the first hardly soluble or insoluble salt for example, calcium salt of phosphoric acid
  • the second hardly soluble or insoluble salt for example, calcium carbonate salt
  • Calcium sulfate crystals whose surface is coated with a calcium compound that is sparingly soluble or insoluble in water can suppress the release of sulfate ions in a humid environment, so rusting of the partner metal even when in contact with a metal surface such as steel It becomes difficult to promote.
  • the coated calcium sulfate crystal according to this embodiment is useful as a solid lubricant.
  • the solid sulfate of this embodiment calcium sulfate crystals coated with a calcium compound that is sparingly soluble or insoluble in water, can also be used in a powdered state by drying following washing filtration. It can also be used in a slurry state in which it is coated in water or dispersed in water after washing and filtering.
  • a solid lubricating film can be formed by mechanical coating such as projection on the surface of machine sliding parts and the surface of workpieces for plastic working, as well as lubricating paints for sliding and plastic working.
  • a slurry in which the solid lubricant of this embodiment is dispersed in water can be made into a lubricant film by mixing with a film-forming component such as a resin or an inorganic salt.
  • a film-forming component such as a resin or an inorganic salt.
  • organic lubricating components such as soap, wax, and oil, supplemental rust preventive additives, viscosity modifiers, and the like can be appropriately mixed depending on applications.
  • the intensity ratio of the (020) plane / (021) plane obtained from the analysis result of the calcium sulfate crystal by the X-ray diffraction method was 21.5.
  • a slurry is prepared by stirring and mixing 20 g of this scaly calcium sulfate powder in 70 g of pure water, and sodium tungstate (for the purpose of precipitating calcium salt of tungstic acid (solubility in water 0.0024 g / 100 g)) therein 10 g of a 3% by mass aqueous solution was gradually added dropwise while stirring with a magnetic stirrer. Thereafter, stirring for 10 minutes was continued, and the coating treatment on calcium sulfate crystals was completed.
  • a slurry is prepared by stirring and mixing 20 g of calcium sulfate heptahydrate powder (plate-like crystal having a thickness of 5 ⁇ m or more) for reagent chemistry manufactured by Kishida Chemical Co., Ltd. into 70 g of pure water, and then (tungsten) 10 g of a 3% by weight aqueous solution of sodium tungstate (for the purpose of precipitating a calcium salt of acid (with a solubility in water of 0.0024 g / 100 g)) was gradually added dropwise while stirring with a magnetic stirrer. Thereafter, stirring for 60 minutes was continued, and the coating treatment on calcium sulfate crystals was completed.
  • the intensity ratio of (020) plane / (021) plane obtained from the analysis result of this calcium sulfate crystal by X-ray diffraction was 119.9.
  • a slurry is prepared by stirring and mixing 20 g of this scaly calcium sulfate powder in 70 g of pure water, and sodium oxalate (for the purpose of precipitation of calcium oxalate (solubility in water 0.0007 g / 100 g)) therein 10 g of a 1.5% by mass aqueous solution was gradually added dropwise while stirring with a magnetic stirrer. Thereafter, stirring for 10 minutes was continued, and the coating treatment on calcium sulfate crystals was completed.
  • sodium silicate for the purpose of precipitation of an aggregate of silicon oxide or a calcium salt of silicate (substantially insoluble in water)
  • a slurry is prepared by stirring and mixing 20 g of calcium sulfate dihydrate powder (reagent first grade, manufactured by Kishida Chemical Co., Ltd.) with 70 g of pure water, and 10 g of a 2 mass% aqueous solution of sodium oxalate is stirred with a magnetic stirrer. The solution was gradually added dropwise. Thereafter, stirring for 10 minutes was continued, and the coating treatment on calcium sulfate crystals was completed. After the coating treatment, the slurry of calcium sulfate powder is filtered with a filter paper, then filtered and washed for 10 minutes using running pure water, and dried with a hot air dryer at 60 ° C. to complete the production of the solid lubricant 11. did.
  • the solubility of calcium oxalate in water is 143 g / 100 g, which is not the calcium compound required in the present invention.
  • a slurry is prepared by stirring and mixing 20 g of calcium sulfate dihydrate powder (reagent grade, manufactured by Kishida Chemical Co., Ltd.) with 70 g of pure water, and 10 g of a 2% by weight aqueous solution of sodium lactate is stirred with a magnetic stirrer. While gradually dropping. Thereafter, stirring for 10 minutes was continued, and the coating treatment on calcium sulfate crystals was completed.
  • the slurry of the calcium sulfate powder after the coating treatment is filtered with a filter paper, then filtered and washed for 10 minutes using running pure water, and dried with a hot air dryer at 60 ° C. to complete the production of the solid lubricant 12. did.
  • the solubility of calcium lactate in water is 5 g / 100 g, which is not the calcium compound required in the present invention.
  • each solid lubricant produced by coating the calcium sulfate crystals and a comparative calcium sulfate dihydrate powder each had a solid content concentration of 10 It adjusted with the pure water so that it might become mass%, and polyvinyl alcohol aqueous solution was added with respect to this so that the mass ratio of calcium sulfate / polyvinyl alcohol might be set to 5. Subsequently, what added the sodium hydroxide aqueous solution so that pH of each adjustment liquid might be set to the processing liquid for corrosion resistance evaluation.
  • Each corrosion resistance evaluation treatment liquid is applied to a degreased and washed cold-rolled steel sheet so that the coating mass after evaporation of water becomes 10 g / m 2 , and dried quickly with hot air for each corrosion resistance evaluation test piece. It was created.
  • the corrosion resistance evaluation of the prepared test piece the rusting state after leaving the test piece for 120 hours in a constant temperature and humidity chamber at a temperature of 30 ° C. and a humidity of 70% was evaluated according to the following evaluation criteria.
  • the evaluation standard is x, the corrosion resistance improvement effect of calcium sulfate crystals is not recognized.
  • Rust area ratio is less than 10% ⁇ : Rust area ratio is 10% or more and less than 20% ⁇ : Rust area ratio is 20% or more and less than 50% ⁇ : Rust area ratio is 50% or more
  • the results of the corrosion resistance evaluation are shown in Table 1.
  • the calcium sulfate reagent of the comparative example shows a remarkable rusting situation, whereas the solid lubricants 1 to 10 of the examples all suppressed rusting of the steel material.
  • solid lubricants 11 and 12 which are comparative examples using a combination of inorganic acid salts and organic acid salts of alkali acid salts, in which hardly soluble or insoluble calcium compounds are not precipitated during the coating treatment of calcium sulfate crystals, are compared.
  • As with the calcium sulfate reagent remarkable rusting was observed.
  • An object of the present invention is to provide a coating for making it difficult to rust the surface of a metal material that comes into contact without degrading the performance of calcium sulfate as a solid lubricant.
  • the lubricant performance evaluation using the seizure acceleration test was performed including Examples and Comparative Examples of the solid lubricant produced in I and a general solid lubricant as a reference.
  • Example and Comparative Example of Solid Lubricant Produced in I, and Comparative Calcium Sulfate Dihydrate Powder (Reagent Grade 1, Kishida Chemical Co., Ltd.), Evaluation of Lubricating Performance Using Graphite and Molybdenum Disulfide as Reference Adjustment of the lubricating paint for applying a film treatment to the test piece and preparation of the test piece for evaluating the lubricating performance were performed as follows.
  • an aqueous dispersion having a solid content of 15% by mass was prepared so that the solid mass ratio of solid lubricant: binder: lubricant was 7: 2: 1.
  • polyvinyl alcohol was used as a binder
  • an aqueous dispersion of carnauba wax was used as a lubricant.
  • the lubricant paint prepared for each was applied to the surface of the barrel-shaped test piece and then dried in a hot air oven at 100 ° C. to form a film of the lubricant paint on the surface of the test piece.
  • the adhesion amount of the formed film was about 15 g / m 2 .
  • the said barrel-shaped test piece is created by upsetting to a 45% upsetting rate in a state where both ends of a cylindrical steel material (S10C) having a diameter of 14 mm and a length of 32 mm are restrained from spreading. We used what we did.
  • the surface roughness in the vicinity of the most protruding portion on the side surface of the test piece was about Rz 9 ⁇ m.
  • FIG. 5 shows an image diagram of the ironing process.
  • the upper and lower end surfaces of the barrel-shaped test piece are sandwiched between molds, and three ball-shaped molds (SUJ-2 bearing balls having a diameter of 10 mm) are used for the side projecting portion.
  • the maximum surface area expansion of the ironing part is a strong process exceeding 200 times.
  • the degree of seizure in the latter half of the ironing process with a large surface area expansion is evaluated according to the evaluation criteria shown in FIG.
  • the results of lubricating performance evaluation are shown in Table 2.
  • the solid lubricants 1 to 8 and 10 of this example and the solid lubricants 11 and 12 of the comparative example were equivalent to the calcium sulfate, and no adverse effect on the lubrication performance due to the coating treatment was observed.
  • the lubrication performance was improving compared with calcium sulfate.
  • the lubricating performance of calcium sulfate was an intermediate performance between molybdenum disulfide and graphite evaluated as a reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】 非黒色で、安価で、入手し易く、固体潤滑剤としての優れた潤滑性能を有する硫酸カルシウムを鋼材などの金属材料表面に使用するにあたって問題となる、多湿環境で相手金属を錆させ易い特性を改善する手段の提供。 【解決手段】 結晶表面が水に難溶性若しくは不溶性のカルシウム化合物により被覆されている硫酸カルシウム結晶を含有することを特徴とする固体潤滑剤。

Description

固体潤滑剤
 本発明は、金属表面と金型などの固体表面とが擦れ合う状況において、その接触界面に介することで摩擦の低減と焼付きの抑制とを担う固体潤滑剤に関するものである。
 固体潤滑剤は、金属部品同士が擦れ合う表面や、金属塊に大きな圧力を加えることで所望の形状に形作る塑性加工の接触面などに用いられ、それら摩擦面の摩擦低減と焼付きの抑制を担っている固体状の潤滑剤である。一般に、固体潤滑剤が使用される環境の接触圧力は非常に高く、摩擦による温度上昇も激しい環境のため、固体潤滑剤には摩擦低減能の他に耐熱能も必要とされる。固体潤滑剤として工業的に用いられているものとしては、二硫化モリブデンや黒鉛などが有名であり、その他にフッ化黒鉛、窒化ホウ素、二硫化タングステン、メラミンシアヌレートなどもよく知られている。
 一般的な固体潤滑剤の潤滑機構は、摩擦面で自らが破壊することによるものであり、固体潤滑剤が破壊する際に必要な力が小さいほど摩擦は小さくなる。固体潤滑剤は結晶格子間の結合が弱いへき開面を有するものが多く、摩擦面でせん断力が加わるとへき開面での結晶の破壊が発生する。例えば、二硫化モリブデンや黒鉛などの固体潤滑剤の結晶はへき開面で層状に積層したような結晶構造を有しており、このへき開層の結合の破壊による滑りによって摩擦を低減している。
 へき開面を有する固体潤滑剤の潤滑機構は、重ねられたカードを一つの結晶として例えると分かり易い。カード一枚一枚がへき開面で積層した強固な結晶格子である。摩擦面に介する結晶にせん断力が加えられるとカードの積み重ねられた構造は容易に崩壊し、摩擦面に広がっていく、このとき、せん断力に対する抵抗は非常に小さく、摩擦面の摩擦を低減したことになる。
 固体潤滑剤の結晶崩壊により摩擦面に広がっていく状況を展延という。結晶一個が置かれた摩擦面の面積に対して例えば52枚セットのカードが展延していくと最大で52倍の面積を被覆保護できることになる。固体潤滑剤が使用される、例えば、塑性加工の分野では展延が大きな効果を示す。特に鍛造などでは被加工材である鋼材表面が加工により何十倍にも引き延ばされることがしばしばあり、単なる潤滑膜では表面の被覆保護ができなくなってしまう。摩擦面の潤滑膜が切れてしまうと摩擦は急激に上昇し、金型と被加工材との焼付きが生じる。固体潤滑剤は展延機能を有することで摩擦面の潤滑膜切れを効率良く抑制できているのである。
 固体潤滑剤の性能の良し悪しとして、もちろん使用環境に適応できる耐熱能や耐圧能が求められるが、上述した、へき開し易さや展延し易さなども重要な要素である。これらの要素が実用的に優れているとされ、機械摺動部や塑性加工などで非常に多く使用されている固体潤滑剤が黒鉛(グラファイト)や二硫化モリブデンである。特に二硫化モリブデンは固体潤滑剤の代名詞といっても過言ではないほど優れた性能を有しており古くから広範囲で用いられている。機械摺動部用には、二硫化モリブデンを樹脂などのバインダ成分で皮膜とする潤滑塗料が使用されている。当該潤滑塗料は、鍛造などの塑性加工分野でも加工前の鋼材表面に塗布して用いる潤滑皮膜剤として用いられ、加工度が大きく難易度が高い冷間鍛造を可能としている。
 例えば、特許文献1(国際公開番号WO2002/012419号公報)で示される金属材料塑性加工用水系潤滑剤は、(A)水溶性無機塩と(B)二硫化モリブデン及びグラファイトから選ばれる1種以上の滑剤と、(C)ワックスとを含有し、かつこれらの成分が水に溶解又は分散しており、固形分濃度比(重量比)(B)/(A)が1.0~5.0、(C)/(A)が0.1~1.0であることを特徴とするものである。当該金属材料塑性加工用水系潤滑剤を用いて得られた潤滑皮膜は、それまでに特許文献2(特開2000-63880号公報)などで開示されてきた塑性加工用潤滑皮膜に比べて、二硫化モリブデン及びグラファイトから選ばれる1種以上を特定比率で含有することにより性能を引き上げている。これらの優れた効果は、二硫化モリブデン及びグラファイトなどの、いわゆる固体潤滑剤が摩擦界面に薄膜状に展延していくことによる摩擦の緩和と表面被覆による焼付抑制によるものと考えられ、難易度が高い鍛造を対象とした潤滑皮膜での固体潤滑剤の役割の重要さが示唆されるものである。
 一方で、最近の作業環境のクリーン化を求める労働環境情勢から、黒色系物質の使用を極端に嫌うケースが多くなってきているほか、国際情勢による原料調達や価格の不安定さなどのリスクを抱える工業原料の排除を要望する動きなどから、将来的には、二硫化モリブデンなどの黒色系固体潤滑材料を含有する潤滑被膜には頼れなくなってきている。そのような背景から、原料調達やコスト変動によるリスクが少なく、且つ作業環境を汚しにくい非黒色系であって、優れた鍛造性能を呈することができる新たな固体潤滑材料の登場が待たれていた。
 非黒色系の固体潤滑剤としては、メラミンシアヌレート、チッ化ホウ素、フッ化カーボンなどが有名であり、これらを含有する潤滑剤は多く開示されている。特許文献3(特開平10-36876号公報)はその一例であるが、メラミンシアヌレートを含有する潤滑被膜の実施例が開示されており優れた潤滑性を保持するものとされている。しかし、これらの固体潤滑剤は一般に価格が高いために使い難く、コスト削減が叫ばれている「もの作り現場」への投入技術としては現実的ではない。
 上述したように、これからの新たな固体潤滑剤としての要件としては、潤滑性能はもちろんのこと、非黒色であることや低コストであることなどが求められるようになる。そのような固体潤滑剤として適していると考えられるのものとして硫酸カルシウムが挙げられる。図1は硫酸カルシウム結晶の一例であるが、固体潤滑剤として好ましいとされるへき開面を結晶格子に有しており、せん断力がかかる摩擦面などの環境においてはへき開面が滑るように破壊されることで摩擦を低減する。また、硫酸カルシウム2水和物のモース硬度は2程度と鉱物類の中でも比較的柔らかく、へき開による破壊に要するせん断力が小さいと考えられることも固体潤滑剤として好ましい。
 一般に硫酸カルシウムは透明な結晶であり、微粒子状態であると光散乱により白色に見える非黒色系の固体潤滑剤である。また、工業的に安価であり入手し易い。更に、硫酸と水酸化カルシウムとを反応させるなどして合成することも容易であり、合成条件により所望の結晶形状やサイズにコントロールすることも可能であり非常に使い易い固体潤滑剤である。
 一方、硫酸カルシウムには金属との接触面への使用をし難い一面がある。硫酸カルシウム結晶は水に僅かに溶ける性質をもち、水中ではカルシウムイオンと硫酸イオンが溶出する。そのため硫酸カルシウム結晶を多湿環境などで金属表面に付着させておくと、硫酸イオンの放出により金属表面を腐食し易くしてしまうことになる。このため、例えば、硫酸カルシウムを固体潤滑剤として含有する潤滑塗料や塑性加工用潤滑剤は、多湿状態にさらされ続ける鋼材などの金属材料に対しては適用し難い。
国際公開番号WO2002/012419号公報 特開2000-63880号公報 特開平10-36876号公報
 本発明は、非黒色で、安価で、入手し易く、固体潤滑剤としての優れた潤滑性能を有する硫酸カルシウムを鋼材などの金属材料表面に使用するにあたって問題となる、多湿環境で相手金属を錆させ易い特性を改善することを目的とする。即ち、本発明は、多湿環境で鋼材表面などに接触し続けても相手金属表面を錆させ難い、固体潤滑剤としての硫酸カルシウム結晶の提供を目的とする。
 上記課題は、硫酸カルシウム結晶の表面を、水に難溶性若しくは不溶性のカルシウム化合物で被覆することで解決できる。即ち、本発明に係る固体潤滑剤は、結晶表面が水に難溶性若しくは不溶性のカルシウム化合物により被覆されている硫酸カルシウム結晶からなる。カルシウム化合物としては、無機酸のカルシウム塩、高分子や脂肪酸を含めた、有機酸類のカルシウム塩などを使用することができ、それら、カルシウム化合物の水に対する溶解度は、硫酸カルシウム2水和物の水に対する溶解度未満であることが好ましい。なお、本明細書では、硫酸カルシウム2水和物は常温(20℃)の水100g中に0.2g溶解するものと規定する。また、硫酸カルシウム結晶の表面すべてが被覆されている必要は無く、少なくとも一部が被覆されていればよい。加えて、被覆の程度であるが、SEMによる観察で硫酸カルシウム結晶の付着が確認できる程度であればよい。尚、難溶性とは、溶解量が常温(20℃)の水100g中に0.2g以下であることを意味する。不溶性とは、溶解量が常温(20℃)の水100g中に0.02g以下であることを意味する。
 硫酸カルシウム結晶の表面を、水に難溶性若しくは不溶性のカルシウム化合物で被覆することにより、性能面でもコスト面でも大いに期待される固体潤滑剤としての硫酸カルシウムを得ることができる。硫酸カルシウムを含有する低コストで高性能な摺動潤滑塗料や塑性加工用潤滑剤などを、鉄鋼材料をはじめとした各種金属材料に対して広範囲に適用できるようになり、ものづくり現場への経済的効果も大きいことなど、本発明の産業上の利用価値は極めて大きい。
図1は、硫酸カルシウム2水和物結晶の原子モデル図である。 図2は、好適な本形態の合成分散法で製造した硫酸カルシウムの水和物結晶の形状イメージと結晶の厚みを観察する部位を示したものである。 図3は、好適な本形態で使用できる硫酸カルシウム水和物結晶をX線回折法で分析した際のチャート例で、(020)面/(021)面の強度比が10以上である。 図4は、好適な本形態の範囲外の形状である硫酸カルシウム水和物結晶をX線回折法で分析した際のチャート例で、(020)面/(021)面の強度比が10未満である。 図5は、潤滑性能評価を行ったボールしごき工程のイメージ図である。 図6は、潤滑性能評価を行う際の焼付き程度を示す評価基準である。 図7は、付着物が無い状態を示した硫酸カルシウム結晶のSEM写真である。 図8は、タングステン酸カルシウムが付着(分散状付着)した硫酸カルシウム結晶のSEM写真である。 図9は、シュウ酸カルシウムが付着(高密度状付着)した硫酸カルシウム結晶のSEM写真である。 図10は、ステアリン酸カルシウムが付着(高密度状付着)した硫酸カルシウム結晶のSEM写真である。 図11は、実施例3に係る、リン酸カルシウムが付着(エッジ部に高密度状付着)した硫酸カルシウム結晶のSEM写真である。
 以下、本発明の一形態に係る被覆硫酸カルシウム結晶を詳細に説明する。なお、下記で述べる形態は一例に過ぎず、本発明は本形態に限定されるものではない。
<成分:核となる硫酸カルシウム結晶>
 本形態で表面の被覆を行う硫酸カルシウムは、特に限定されず、試薬、天然鉱床からの産出、リン鉱石からリン酸を製造する過程やホタル石からフッ酸を製造する過程などからの副生成物、炭酸カルシウムや水酸化カルシウムを水に分散したスラリーに硫酸を添加していくなどして合成できる硫酸カルシウムの水分散スラリーなど、その製造プロセスには関係なく使用できる。但し、本形態に使用できる硫酸カルシウムは、固体潤滑剤として良好な潤滑特性を呈するために、硫酸カルシウムの2水和物、若しくは水との接触により硫酸カルシウムの2水和物と成り得ることが必要である。そのような硫酸カルシウムとしては、硫酸カルシウムの0.5水和物や、水分の存在下で容易に0.5水和物に変化できる可溶型無水塩(γ-CaSO、IIIβ-CaSO、IIIα-CaSO)などが挙げられる。なお、不活性なため水分の存在下でも0.5水塩に移行し難い安定型無水塩(II-CaSO)は、結晶格子構造が大きく異なっており摩擦低減能が乏しくなるため本発明の目的には合わない。ここで、硫酸カルシウムの結晶形状は、特に限定されず、例えば、鱗片状、板状、柱状を挙げることができる。
(固体潤滑剤として好適な硫酸カルシウム)
 ここで、好適な硫酸カルシウムは、硫酸若しくは硫酸塩とカルシウム化合物とを水中で反応させることで析出する結晶の厚みが1.5μm以下の鱗片状であることを特徴とする硫酸カルシウムの水和物である。
 本好適形態で使用される硫酸カルシウムの水和物は、硫酸若しくは硫酸塩{例えば、硫酸のアルカリ金属塩(例えばナトリウムやカリウム塩)やマグネシウム塩}と、水酸化カルシウムや無機酸若しくは有機酸のカルシウム塩(例えば、炭酸カルシウム、リン酸カルシウム各種、塩化カルシウム、シュウ酸カルシウム、クエン酸カルシウム等)などのカルシウム化合物と、を水中で接触させることによる副分解反応によって合成される。例えば、プロペラ攪拌機を用いて炭酸カルシウム粉末を水に分散した後に、硫酸根(SO4)を有する硫酸を攪拌添加していくことにより、硫酸カルシウムの水和物結晶が析出し水に分散された状態の懸濁液を製造できる。なお、硫酸中に炭酸カルシウム分散液を添加する方法でもよい。ここで、理想的にはカルシウム化合物(例えば、炭酸カルシウム)中のカルシウムとの等モルの反応であるが、反応効率を踏まえ若干多めの硫酸根を添加することが好適である(このため、後述するアルカリを添加して中和処理を実行することが好適となる)。この時、懸濁液中に生成される硫酸カルシウムの水和物結晶の形状は、濃度や温度をはじめとした様々な合成環境により大きく変化するが、例えば、合成析出される硫酸カルシウムの水和物結晶濃度が10質量%以下になるように、また、反応温度を30℃以下に制御して合成を行うと、鱗片状の微細結晶が得やすくなる。なお、合成時のプロペラ攪拌なども効率を高めた方がよい。前述のように合成析出させた、硫酸カルシウムの水和物結晶懸濁液は、通常、水酸化ナトリウムなどのアルカリの添加により懸濁液のpHを中性付近以上に中和して用いる。未反応の硫酸が多く残った状態で硫酸カルシウム結晶の乾燥被膜を作成しようとすると、乾燥過程にて潤滑性能に乏しい無水和物が生成しやすくなるため好ましくない。
 前記方法で合成された硫酸カルシウムの水和物結晶の走査型電子顕微鏡での観察像から計測される単一結晶の平均形状は図2に例示される結晶外観の模式図に示す結晶の平均厚みとして1.5μm以下の鱗片状であることが好適である。ここで、当該平均厚みは、SEM上で任意に100個の結晶を選んで計測した結果の平均値である。なお、結晶の平均厚みの下限値は特に限定されないが、例えば0.1μmである。また、合成された硫酸カルシウムの水和物結晶を純水中に添加した水分散液を平坦面上(例えばガラス若しくは四フッ化エチレン製の板面上)で80℃以下の温度で乾燥固化することで、平坦面上に形成された結晶集合体の平滑面を対象とした、図3に例示されるようなCu管球を用いたX線回析法での分析結果から得られる(020)面/(021)面の強度比が10以上であることが好ましく、30以上であることがより好ましく、50以上であることが更に好ましい。本好適形態での、(020)面/(021)面の強度比は、硫酸カルシウムの水和物結晶が(020)面で選択的に配向した積層構造のとり易さを示す指標であり、図4に例示されるように合成された硫酸カルシウムの水和物結晶形状が十分に鱗片状となっていない場合(例えば柱状や塊状に成長した結晶厚み1.5μmを超えるもの)の(020)面/(021)面の強度比は10未満となる。潤滑被膜剤中に配合する硫酸カルシウムの水和物結晶の(020)面/(021)面の強度比が10未満である場合は、潤滑被膜中における硫酸カルシウムの水和物結晶の集合密度が疎な状態となり、塑性加工における金型と被加工材表面との接触界面に導入される際のせん断力に耐えられずに脱落し易くなるため、本好適形態で要求する潤滑被膜としての機能を発現し難くなる。なお、(020)面/(021)面の強度比が200以上の硫酸カルシウムの水和物結晶を合成することは通常は困難なため、現実的な意味として本好適形態では好ましい上限を200未満とするが、理想的には(020)面/(021)面の強度比がより大きいほど(020)選択的面配向での積層構造が潤滑被膜中で密となり潤滑被膜の性能向上に大きく寄与するため、本好適形態はこの上限値に限定されない。
 なお、天然セッコウや無機・有機化学工業から副産される化学セッコウなどの硫酸カルシウムの市販品を用いようとすると、前述した非黒色系の固体潤滑剤の場合と同様に水性被膜剤を製造する際に、ビーズミルやホモジナイザーなどの粉砕分散機を用いて微粒子状に分散させる必要があり製造コストを大幅に高めることから本好適形態の趣旨には合わない。
<成分:硫酸カルシウムを被覆する、水に難溶性若しくは不溶性のカルシウム化合物>
 本形態において硫酸カルシウム結晶表面を被覆する、水に難溶性若しくは不溶性のカルシウム化合物(被覆化合物)としては、無機酸のカルシウム塩、高分子や脂肪酸を含めた、有機酸類のカルシウム塩などを使用することができる。そのような化合物としては、フッ化カルシウム、ヨウ素酸カルシウム、水酸化カルシウム、ホスホン酸カルシウム、リン酸カルシウム、リン酸一水素カルシウム、二リン酸カルシウム、メタリン酸カルシウム、炭酸カルシウム、ケイ酸カルシウム、メタケイ酸カルシウム、四ホウ酸カルシウム、タングステン酸カルシウム、モリブデン酸カルシウム、シュウ酸カルシウム、ステアリン酸カルシウム、オレイン酸カルシウム、その他、カルシウムがカルボキシル基などの水和基に配位することで水不溶性になる水溶性樹脂若しくは水分散性樹脂エマルションなどが挙げられる。カルシウム化合物は、水に対する溶解度が硫酸カルシウム2水和物に比べて小さいことが好ましく、水に不溶性であることがより好ましい。具体的には、水に難溶性若しくは不溶性のカルシウム化合物の水に対する溶解度(常温)が0.2g/100g未満であることが好適であり、0.005g/100g未満であることがより好適であり、0.001g/100g未満であることがより好適である。加えて、これらの内、多少溶解しても対象金属の腐食への影響が少ないものであることが好適である。そのような化合物としては、例えば、不動態化作用を有する化合物、例えば、タングステン酸塩やモリブデン酸塩である。
<構造>
 本形態における被覆硫酸カルシウムは、核となる硫酸カルシウムの少なくとも一部(例えば鱗片状のものであれば、板末端が剥き出しとなった側壁部)又は略全部が被覆化合物で被覆されている構造を採る{例えば、被覆されていない硫酸カルシウム結晶(図7は被覆されていない硫酸カルシウムの例)と対比し、微粒子がまばらに付着した「分散状付着」(図8はタングステン酸カルシウムの例);分散状付着よりも高密度で析出物が付着した「高密度状付着」(図9はシュウ酸カルシウムの例、図10はステアリン酸カルシウムの例);結晶全体に亘って析出物が付着した「全体付着」;結晶の一部(例えば端面)に偏在して付着する「偏在付着」}。ここで、被覆化合物による被覆層は1層でなくてもよく、2層以上の複数層(異なる被覆化合物の層)であってもよい。また、この場合、上層の溶解度(常温・常圧下での水に対する溶解度)は下層のそれよりも低いことが好適である。他方、1層の場合でも、複数種の被覆化合物を含有していてもよい。また、この場合、少なくとも1の被覆化合物の溶解度は、0.2g/100g未満であることが好適である。また、硫酸カルシウム結晶/カルシウム塩被覆物(質量比)は、5~2000が好適であり、10~1000が好適であり、10~500がより好適である。ここで、硫酸カルシウム結晶/カルシウム塩被覆物(質量比)は、例えば、被処理物である硫酸カルシウムの既知質量と、蛍光エックス線で定量した各元素からなるカルシウム塩の計算質量値とから計算で求めることができる。
<製造方法>
 本形態に係る被覆硫酸カルシウムの製造方法は、硫酸カルシウム水和物結晶が水中に分散した状態で、カルシウムイオンと、カルシウムイオンと結合して難溶性若しくは不溶性のカルシウム化合物を硫酸カルシウム水和物結晶上に形成させる成分と、を当該水中に存在させる工程を含むことを特徴とする。ここで、前記成分(カルシウムイオンと結合して難溶性若しくは不溶性のカルシウム化合物を硫酸カルシウム水和物結晶上に形成させる成分)を含有する液体媒体{溶液又は分散液(アニオン分散液)}を、硫酸カルシウム水和物結晶の分散水中に撹拌しながら滴下することが好適である。また、カルシウム塩被覆物の析出はアルカリ性で行うことが好適である。尚、系をアルカリ性にする手法としては、特に限定されないが、アンモニアやアミン等は硫酸カルシウム結晶自体を溶解する傾向があるため、アルカリ金属でアルカリ性にすることが好適である(特に製造後にろ過洗浄をしない場合)。例えば、硫酸カルシウム結晶の表面へのカルシウム化合物の被覆は、通常、カルシウムイオンが溶存している水中に硫酸カルシウム結晶を撹拌分散した状態に対して、被覆するカルシウム化合物を析出するための無機酸類や有機酸類のアルカリ金属塩から選ばれる一種以上を水に溶解又は分散(アニオン分散)した水性液を徐々に添加していくことで行う。なお、水中へカルシウムイオンを溶存させる方法としては限定しないが、表面被覆の対象の硫酸カルシウム結晶を水中に撹拌分散することによりカルシウムを溶存させればよい。
 カルシウムイオンが溶存している水中に、本形態で被覆するカルシウム化合物を析出するための無機酸類や有機酸類のアルカリ金属塩から選ばれる一種以上を水に溶解又は分散した水性液を添加していくと、水中に安定に溶解、若しくは分散している無機酸類や有機酸類がカルシウムとの塩をつくり不溶化、若しくは水への分散状態が不安定化することで析出を生じる。このとき硫酸カルシウム結晶が液中に分散していると、不溶化又は不安定化したカルシウム塩は硫酸カルシウム結晶の表面への析出物としてみられる。
 カルシウムイオンの供給源である硫酸カルシウム2水和物結晶の水への溶解度を、おおよそ0.2g/100gとすると、浴中に溶存するカルシウムイオンは0.05g/100g程度である。そこに無機酸類や有機酸類のアルカリ金属塩の水性液を添加すると、溶存しているカルシウムは消費され反応生成物としてのカルシウム化合物が析出する。更に硫酸カルシウム結晶が溶解しカルシウムイオンが供給されると、カルシウム化合物の析出は更に進み、硫酸カルシウム結晶の表面はカルシウム化合物により覆われていくことになる。
 水に難溶性若しくは不溶性のカルシウム化合物による硫酸カルシウム結晶表面の被覆処理は、処理反応を段階的に行うことで2層以上のカルシウム化合物で被覆してもよく、2種以上のカルシウム化合物を同時の処理反応により形成してもよい。カルシウム化合物の種類により硫酸カルシウム結晶表面での被覆状態が異なるため、2種以上のカルシウム化合物での被覆処理は補足的若しくは相乗的に防錆効果を高めることが期待される。例えば、結晶が溶解し易い箇所(例えば、鱗片状の場合にはエッジ部)を中心に濃化することで硫酸カルシウムの溶解を遅延させる第一の難溶性又は不溶性塩(例えば、リン酸のカルシウム塩)に対して、それらがカバーできていない部分や当該第一の難溶性又は不溶性塩(例えば、リン酸のカルシウム塩)の析出部分を更に溶解度が小さい第二の難溶性又は不溶性塩(例えば、炭酸のカルシウム塩)が覆うことで溶解遅延効果を相乗的に高めている。反応順序を逆にすると、第二の難溶性又は不溶性塩(例えば、炭酸のカルシウム塩)で覆ってしまった上層には第一の難溶性又は不溶性塩(例えば、リン酸のカルシウム塩)が析出し難くなることも考えられ、相乗的な効果が得られなくなる場合がある。
<被覆硫酸カルシウムの性状>
 水に難溶性若しくは不溶性のカルシウム化合物により表面を被覆された硫酸カルシウム結晶では、多湿環境下での硫酸イオンの放出を抑えられるため、鋼材などの金属表面に接触していても相手金属の発錆を促進させ難くなる。
<使用方法(用途)>
 本形態に係る被覆硫酸カルシウム結晶は、固体潤滑剤として有用である。ここで、本形態の固体潤滑剤である、水に難溶性若しくは不溶性のカルシウム化合物による被覆処理を施した硫酸カルシウム結晶は、洗浄ろ過に次いでの乾燥により粉末化した状態で使用することもできるが、水中で被覆処理したまま、若しくは洗浄ろ過後に水に分散するなどしたスラリー状態で使用することもできる。粉末状態のものは、機械摺動部品表面や塑性加工用被加工材表面に対する投射などの機械的な被覆処理により固体潤滑膜を形成することができるほか、摺動用や塑性加工用の潤滑塗料に練り込んで、又は摺動摩擦面に直接若しくは油などと混合した状態で供給することもできる。本形態の固体潤滑剤を水に分散したスラリー状態のものは、樹脂や無機塩類などの皮膜形成成分と混合することで潤滑皮膜剤とすることができる。この際に用途により、石けん、ワックス、油などの有機潤滑成分や、補足的な防錆添加剤や粘度調整剤などを、適宜、混合することも可能である。
 以下、本発明の実施例を比較例と共に挙げることによって、本発明をその効果と共に更に具体的に説明する。なお、本発明はこれらの実施例によって制限されるものではない。
I.固体潤滑剤の製造
<固体潤滑剤の製造実施例1>
 70gの純水に、キシダ化学株式会社製試薬一級の硫酸カルシウム2水和物粉末(結晶の厚み5μm以上の板状結晶、(020)面/(021)面のX線回折法での強度比8.7)20gを撹拌混合したスラリーを調製し、そこへ(炭酸のカルシウム塩(水への溶解度0.0015g/100g)の析出を目的とした)炭酸ナトリウムの1質量%水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。その後10分間の撹拌を継続し、硫酸カルシウム結晶への被覆処理を終了とした。被覆処理後の硫酸カルシウム粉末のスラリーはろ紙によりろ過し、次いで純水流水を用いて10分間のろ過洗浄を施し、60℃の熱風乾燥機で乾燥することで固体潤滑剤1
の製造を終了とした。得られた固体潤滑剤1の電子顕微鏡観察から、2μm程度の球状析出物が硫酸カルシウム結晶表面全体にまばらに付着している様子が観察される(硫酸カルシウム結晶/カルシウム塩析出物の質量比=246)。
<固体潤滑剤の製造実施例2>
 70gの純水に、キシダ化学株式会社製試薬一級の硫酸カルシウム2水和物粉末(結晶の厚み5μm以上の板状結晶、(020)面/(021)面のX線回折法での強度比8.7)20gを撹拌混合したスラリーを調製し、そこへ(炭酸のカルシウム塩(水への溶解度0.0015g/100g)の析出を目的とした)炭酸ナトリウムの2質量%水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。その後10分間の撹拌を継続し、硫酸カルシウム結晶への被覆処理を終了とした。被覆処理後の硫酸カルシウム粉末のスラリーをもって固体潤滑剤2の製造を終了とした。得られた固体潤滑剤2の電子顕微鏡観察から、2μm程度の球状析出物が硫酸カルシウム結晶表面全体にまばらに付着している様子が観察される(硫酸カルシウム結晶/カルシウム塩析出物の質量比=246)。
<固体潤滑剤の製造実施例3>
 40gの純水に、キシダ化学株式会社製試薬一級の硫酸カルシウム2水和物粉末(結晶の厚み5μm以上の板状結晶、(020)面/(021)面のX線回折法での強度比8.7)20gを撹拌混合したスラリーに水酸化ナトリウム水溶液を加えてpHを8に調整し、そこへ(リン酸のカルシウム塩(水への溶解度0.0043g/100g)の析出を目的とした)リン酸水素ナトリウムの1質量%水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。その後10分間の撹拌を継続し、硫酸カルシウム結晶への被覆処理を終了とした。被覆処理後の硫酸カルシウム粉末のスラリーはろ紙によりろ過し、次いで純水流水を用いて10分間のろ過洗浄を施し、60℃の熱風乾燥機で乾燥することで固体潤滑剤3の製造を終了とした。得られた固体潤滑剤3の電子顕微鏡観察(図11参照)から、1μm以下の程度の柱状析出物が硫酸カルシウム結晶端面付近に濃化して付着している様子が観察される(硫酸カルシウム結晶/カルシウム塩析出物の質量比=238)。
<固体潤滑剤の製造実施例4>
 冷却機を用いて10℃以下の液温に制御した条件において、水405gに炭酸カルシウム45gを攪拌混合した懸濁液450gに対して、8.0質量%の硫酸水溶液550gを回転数800rpmのプロペラ攪拌機を用いながら5分間かけて攪拌添加した。更に30分間のプロペラ攪拌を継続することで合成を終えた。ここで合成された硫酸カルシウムスラリーをろ過し乾燥することで平均厚みが1.2μmの鱗片状である硫酸カルシウム結晶粉末を得た。なお、この硫酸カルシウム結晶のX線回折法での分析結果から得られる(020)面/(021)面の強度比は21.5であった。この鱗片状の硫酸カルシウム粉末20gを純水70gに撹拌混合したスラリーを調製し、そこへ(タングステン酸のカルシウム塩(水への溶解度0.0024g/100g)の析出を目的とした)タングステン酸ナトリウムの3質量%水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。その後10分間の撹拌を継続し、硫酸カルシウム結晶への被覆処理を終了とした。被覆処理後の硫酸カルシウム粉末のスラリーはろ紙によりろ過し、次いで純水流水を用いて10分間のろ過洗浄を施し、100℃の熱風乾燥機で乾燥することで固体潤滑剤4の製造を終了とした。得られた固体潤滑剤4の電子顕微鏡観察から、0.1μm以下の針状結晶の集合析出物が硫酸カルシウム結晶表面全体に付着している様子が観察される(硫酸カルシウム結晶/カルシウム塩析出物の質量比=86)。
<固体潤滑剤の製造実施例5>
 70gの純水に、キシダ化学株式会社製試薬化学用の硫酸カルシウム0.5水和物の粉末(結晶の厚み5μm以上の板状結晶)20gを撹拌混合したスラリーを調製し、そこへ(タングステン酸のカルシウム塩(水への溶解度0.0024g/100g)の析出を目的とした)タングステン酸ナトリウムの3質量%水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。その後60分間の撹拌を継続し、硫酸カルシウム結晶への被覆処理を終了とした。被覆処理後の硫酸カルシウム粉末のスラリーはろ紙によりろ過し、次いで純水流水を用いて10分間のろ過洗浄を施し、80℃の熱風乾燥機で乾燥することで固体潤滑剤5の製造を終了とした。得られた固体潤滑剤5の電子顕微鏡観察から、0.1μm以下の針状結晶の集合析出物が硫酸カルシウム結晶表面全体に付着している様子が観察される(硫酸カルシウム結晶/カルシウム塩析出物の質量比=86)。
<固体潤滑剤の製造実施例6>
 5.2質量%の硫酸水溶液550gに対して、水420gに対して炭酸カルシウム30gを攪拌混合したスラリー450gを、回転数800rpmのプロペラ攪拌機を用いながら10分間かけて徐々に攪拌添加した。なお、添加終了後の液温は約30℃であった。ここで合成された硫酸カルシウムスラリーをろ過し乾燥することで平均厚みが0.8μmの鱗片状である硫酸カルシウム結晶粉末を得た。なお、この硫酸カルシウム結晶のX線回折法での分析結果から得られる(020)面/(021)面の強度比は119.9であった。この鱗片状の硫酸カルシウム粉末20gを純水70gに撹拌混合したスラリーを調製し、そこへ(シュウ酸のカルシウム塩(水への溶解度0.0007g/100g)の析出を目的とした)シュウ酸ナトリウムの1.5質量%水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。その後10分間の撹拌を継続し、硫酸カルシウム結晶への被覆処理を終了とした。被覆処理後の硫酸カルシウム粉末のスラリーはろ紙によりろ過し、次いで純水流水を用いて10分間のろ過洗浄を施し、60℃の熱風乾燥機で乾燥することで固体潤滑剤6の製造を終了とした。得られた固体潤滑剤6の電子顕微鏡観察から、0.1μm未満の微細結晶の集合析出物が硫酸カルシウム結晶表面全体に密度高く付着している様子が観察される(硫酸カルシウム結晶/カルシウム塩析出物の質量比=192)。
<固体潤滑剤の製造実施例7>
 70gの純水に、キシダ化学株式会社製試薬一級の硫酸カルシウム2水和物粉末(結晶の厚み5μm以上の板状結晶、(020)面/(021)面のX線回折法での強度比8.7)20gを撹拌混合したスラリーを調製し、そこへ(酸化ケイ素の凝集体若しくはケイ酸のカルシウム塩(水にほぼ不溶)の析出を目的とした)ケイ酸ナトリウム(3SiO・NaO)の2質量%水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。その後10分間の撹拌を継続し、硫酸カルシウム結晶への被覆処理を終了とした。被覆処理後の硫酸カルシウム粉末のスラリーはろ紙によりろ過し、次いで純水流水を用いて10分間のろ過洗浄を施し、60℃の熱風乾燥機で乾燥することで固体潤滑剤7の製造を終了とした。得られた固体潤滑剤7の電子顕微鏡観察から、0.1μm未満の微細結晶の集合析出物が硫酸カルシウム結晶表面全体に密度高く付着している様子が観察される(硫酸カルシウム結晶/カルシウム塩析出物の質量比=104)。
<固体潤滑剤の製造実施例8> 
 70gの純水に、キシダ化学株式会社製試薬一級の硫酸カルシウム2水和物粉末(結晶の厚み5μm以上の板状結晶、(020)面/(021)面のX線回折法での強度比8.7)20gを撹拌混合したスラリーに水酸化ナトリウム水溶液を加えてpHを8に調整し、そこへ(リン酸のカルシウム塩(水への溶解度0.0043g/100g)の析出を目的とした)リン酸水素ナトリウムの0.5質量%水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。更に(炭酸のカルシウム塩(水への溶解度0.0015g/100g)の析出を目的とした)炭酸ナトリウムの0.5質量%水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。その後20分間の撹拌を継続し、硫酸カルシウム結晶への被覆処理を終了とした。被覆処理後の硫酸カルシウム粉末のスラリーはろ紙によりろ過し、次いで純水流水を用いて10分間のろ過洗浄を施し、60℃の熱風乾燥機で乾燥することで固体潤滑剤8の製造を終了とした。得られた固体潤滑剤8の電子顕微鏡観察から、1μm以下の程度の柱状析出物が硫酸カルシウム結晶端面付近に濃化して付着しており、それを含めて、0.1μm未満の微細結晶の集合析出物が硫酸カルシウム結晶表面全体に密度高く付着している様子が観察される(硫酸カルシウム結晶/カルシウム塩析出物の質量比=242)。
<固体潤滑剤の製造実施例9>
 70gの純水に、キシダ化学株式会社製試薬一級の硫酸カルシウム2水和物粉末(結晶の厚み5μm以上の板状結晶、(020)面/(021)面のX線回折法での強度比8.7)20gを撹拌混合したスラリーを85℃まで昇温し、そこへ(ステアリン酸のカルシウム塩(水に不溶)の析出を目的とした)ステアリン酸カリウムを90℃の熱水に3質量%の濃度で溶かした水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。その後30分間の撹拌を継続し、硫酸カルシウム結晶への被覆処理を終了とした。被覆処理後の硫酸カルシウム粉末のスラリーをもって固体潤滑剤9の製造を終了とした。得られた固体潤滑剤9の電子顕微鏡観察から、膜状及び1~10μm程度の球状の析出物が硫酸カルシウム結晶表面全体に密度高く付着している様子が観察される(硫酸カルシウム結晶/カルシウム塩析出物の質量比=67)。
<固体潤滑剤の製造実施例10>
 70gの純水に、キシダ化学株式会社製試薬一級の硫酸カルシウム2水和物粉末(結晶の厚み8μm以上の柱状結晶、(020)面/(021)面のX線回折法での強度比3.6)20gを撹拌混合したスラリーを調製し、そこへ(ポリアクリル酸のカルシウム塩(水にほぼ不溶)の析出を目的とした)分子量5000のポリアクリル酸カリウム2質量%水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。その後20分間の撹拌を継続し、硫酸カルシウム結晶への被覆処理を終了とした。被覆処理後の硫酸カルシウム粉末のスラリーはろ紙によりろ過し、次いで純水流水を用いて10分間のろ過洗浄を施し、60℃の熱風乾燥機で乾燥することで固体潤滑剤10の製造を終了とした。得られた固体潤滑剤10の電子顕微鏡観察から、1μm以上の析出物集合体が硫酸カルシウム結晶表面全体にまばらに付着している様子が観察される(硫酸カルシウム結晶/カルシウム塩析出物の質量比=41)。
<固体潤滑剤の製造比較例1>
 70gの純水に、硫酸カルシウム2水和物の粉末(試薬一級、キシダ化学株式会社製)20gを撹拌混合したスラリーを調製し、そこへシュウ化ナトリウムの2質量%水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。その後10分間の撹拌を継続し、硫酸カルシウム結晶への被覆処理を終了とした。被覆処理後の硫酸カルシウム粉末のスラリーはろ紙によりろ過し、次いで純水流水を用いて10分間のろ過洗浄を施し、60℃の熱風乾燥機で乾燥することで固体潤滑剤11の製造を終了とした。なお、シュウ化カルシウムの水への溶解度は143g/100gであり、本発明で求めるカルシウム化合物ではない。
<固体潤滑剤の製造比較例2>
 70gの純水に、硫酸カルシウム2水和物の粉末(試薬一級、キシダ化学株式会社製)20gを撹拌混合したスラリーを調製し、そこへ乳酸ナトリウムの2質量%水溶液10gをマグネットスターラーで撹拌しながら徐々に滴下した。その後10分間の撹拌を継続し、硫酸カルシウム結晶への被覆処理を終了とした。被覆処理後の硫酸カルシウム粉末のスラリーはろ紙によりろ過し、次いで純水流水を用いて10分間のろ過洗浄を施し、60℃の熱風乾燥機で乾燥することで固体潤滑剤12の製造を終了とした。なお、乳酸カルシウムの水への溶解度は5g/100gであり、本発明で求めるカルシウム化合物ではない。
II.耐食性評価
 Iにて、硫酸カルシウム結晶に対する被覆処理を行うことにより製造した各固体潤滑剤、及び比較の硫酸カルシウム2水和物粉末(試薬一級、キシダ化学株式会社製)それぞれの固形分濃度が10質量%になるように純水で調整し、これに対し、硫酸カルシウム/ポリビニルアルコールの質量比が5となるようにポリビニルアルコール水溶液を加えた。次いでそれぞれの調整液のpHが10となるように水酸化ナトリウム水溶液を加えたものを、耐食性評価用処理液とした。各耐食性評価用処理液は、脱脂洗浄済の冷延鋼板上に水分揮発後の皮膜付着質量が10g/mになるように塗布し、熱風により速やかに乾燥することで各耐食性評価用試験片を作成した。作成した試験片の耐食性評価は、温度30℃、湿度70%の恒温恒湿器内に試験片を120時間放置した後の発錆状況を以下の評価基準により評価した。なお、評価基準が×の場合には硫酸カルシウム結晶の耐食性改善効果は認められない。
<耐食性評価基準>
 ◎ : 発錆面積率が10%未満
 ○ : 発錆面積率が10%以上20%未満
 △ : 発錆面積率が20%以上50%未満
 × : 発錆面積率が50%以上
 耐食性評価の結果を表1に示す。比較例の硫酸カルシウム試薬では顕著な発錆状況が見られているのに対して、実施例の固体潤滑剤1~10は全てにおいて鋼材の発錆を抑制していた。それに対して、硫酸カルシウム結晶に対する被覆処理時に難溶性若しくは不溶性のカルシウム化合物が析出しない組み合わせの無機酸塩類や有機酸塩類のアルカリ金属塩を使用した比較例である固体潤滑剤11及び12では、比較の硫酸カルシウム試薬と同様に顕著な発錆が見られた。
Figure JPOXMLDOC01-appb-I000001
III.潤滑性能評価
 本発明の目的は、硫酸カルシウムの固体潤滑剤としての性能を低下させずに、接する金属材料表面を錆させ難くするための被覆を施すことである。この意味から、Iにて製造した固体潤滑剤の実施例及び比較例、及び参考として一般的な固体潤滑剤も含めて、焼付き促進試験を用いた潤滑性能評価を行った。
 Iにて製造した固体潤滑剤の実施例及び比較例、及び比較の硫酸カルシウム2水和物粉末(試薬一級、キシダ化学株式会社製)、参考としての黒鉛と二硫化モリブデンを用いて潤滑性能評価用試験片に皮膜処理を施すための潤滑塗料の調整、及び潤滑性能評価用試験片の作成は以下の要領で行った。
 前記潤滑塗料は、固体潤滑剤:バインダ:滑剤の固形分質量比が7:2:1になるように固形分15質量%の水分散液を調製した。なお調製には、バインダとしてポリビニルアルコールを用い、滑剤としてカルナバワックスの水分散液を用いた。それぞれに調整した潤滑塗料は、樽状形状の試験片表面に塗布し、次いで100℃の熱風炉中で乾燥することで試験片表面に潤滑塗料の皮膜を形成した。形成された皮膜の付着量は、大凡、15g/m前後であった。なお、前記樽状試験片は、直径14mmで長さ32mmの円柱状鋼材(S10C)の両端面が広がらないように拘束した状態で45%の据込み率までの据込み加工をすることで作成したものを使用した。試験片側面の最張出し部位付近の表面粗さはRz9μm程度であった。
 潤滑性能評価は、参考文献(高橋昭紀・広瀬仁俊・小見山忍・王志剛:第62回塑性加工連合会講演論文集,(2011),89-90)に開示されている据込み-ボールしごき形摩擦試験法におけるしごき工程のみを利用して行った。図5にしごき工程のイメージ図を示す。樽状試験片の上下端面を金型で挟み込み、側面張出し部分を対象に3個のボール状金型(直径10mmのSUJ-2ベアリングボール)を用いたしごき加工を行う。しごき部の最大表面積拡大は200倍を超える強加工である。各潤滑皮膜の潤滑性能評価は、表面積拡大が大きいしごき加工後半部の焼付き程度を図6に示す評価基準により評価する。
 潤滑性能評価結果を表2に示す。本実施例の固体潤滑剤1~8及び10、比較例の固体潤滑剤11及び12の潤滑性能は硫酸カルシウムと同等であり、被覆処理による潤滑性能への悪影響は見られなかった。なお、本実施例の固体潤滑剤9については硫酸カルシウムに比べて潤滑性能が向上していた。硫酸カルシウムの潤滑性能は、参考として評価した二硫化モリブデンと黒鉛との中間的な性能であった。
Figure JPOXMLDOC01-appb-I000002

Claims (4)

  1.  結晶表面が水に難溶性若しくは不溶性のカルシウム化合物により被覆されている硫酸カルシウム結晶を含有することを特徴とする固体潤滑剤。
  2.  上記、水に難溶性若しくは不溶性のカルシウム化合物の水に対する溶解度が0.2g/100g未満であることを特徴とする請求項1に記載の固体潤滑剤。
  3.  硫酸カルシウム結晶が水中に分散した状態で、カルシウムイオンと、カルシウムイオンと結合して難溶性若しくは不溶性のカルシウム化合物を硫酸カルシウム水和物結晶上に形成させる成分と、を当該水中に存在させる工程を含むことを特徴とする固体潤滑剤の製造方法。
  4.  結晶表面が水に難溶性若しくは不溶性のカルシウム化合物により被覆されている硫酸カルシウム結晶を含有する固体潤滑剤と、バインダ成分と、滑剤と、を含有することを特徴とする潤滑塗料。
PCT/JP2012/058002 2011-03-28 2012-03-27 固体潤滑剤 WO2012133453A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507637A JP5674921B2 (ja) 2011-03-28 2012-03-27 固体潤滑剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011069106 2011-03-28
JP2011-069106 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012133453A1 true WO2012133453A1 (ja) 2012-10-04

Family

ID=46931167

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2012/058002 WO2012133453A1 (ja) 2011-03-28 2012-03-27 固体潤滑剤
PCT/JP2012/058003 WO2012133454A1 (ja) 2011-03-28 2012-03-27 高潤滑性固体潤滑剤
PCT/JP2012/058004 WO2012133455A1 (ja) 2011-03-28 2012-03-27 塑性加工用潤滑被膜剤とその製造方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/058003 WO2012133454A1 (ja) 2011-03-28 2012-03-27 高潤滑性固体潤滑剤
PCT/JP2012/058004 WO2012133455A1 (ja) 2011-03-28 2012-03-27 塑性加工用潤滑被膜剤とその製造方法

Country Status (8)

Country Link
US (1) US9487732B2 (ja)
EP (1) EP2692838B1 (ja)
JP (3) JP5745035B2 (ja)
KR (2) KR101508454B1 (ja)
CN (2) CN103443254B (ja)
ES (1) ES2704009T3 (ja)
PL (1) PL2692838T3 (ja)
WO (3) WO2012133453A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104403749A (zh) * 2014-10-22 2015-03-11 安徽荣达阀门有限公司 一种低油雾防腐成膜保护金属切削油及其制备方法
CN104403744A (zh) * 2014-10-22 2015-03-11 安徽荣达阀门有限公司 一种综合性能好的乳化切削油及其制备方法
CN104403743A (zh) * 2014-10-22 2015-03-11 安徽荣达阀门有限公司 一种高效抗磨抗氧耐高温乳化切削油及其制备方法
CN104371803A (zh) * 2014-10-22 2015-02-25 安徽荣达阀门有限公司 一种新型抗氧化防腐冷却好的切削油及其制备方法
CN104371798A (zh) * 2014-10-22 2015-02-25 安徽荣达阀门有限公司 一种合金专用稀释型乳化切削油及其制备方法
CN104450017A (zh) * 2014-10-22 2015-03-25 安徽荣达阀门有限公司 一种用于黑色及有色金属切削的添加磨料的乳化切削油及其制备方法
CN104450015A (zh) * 2014-10-22 2015-03-25 安徽荣达阀门有限公司 一种成膜性好的保护金属切面的乳化切削油及其制备方法
JP6757556B2 (ja) * 2015-04-27 2020-09-23 日本パーカライジング株式会社 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
JP6545520B2 (ja) * 2015-04-27 2019-07-17 日本パーカライジング株式会社 金属材料用水系潤滑皮膜剤、表面処理金属材料及び金属材料の潤滑皮膜形成方法
JP6439584B2 (ja) * 2015-05-26 2018-12-19 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP6480265B2 (ja) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 鉄基粉末冶金用混合粉及びその製造方法並びに焼結体及びその製造方法
JP6920784B2 (ja) * 2015-05-29 2021-08-18 日本パーカライジング株式会社 含水潤滑膜剤、表面処理金属材料、及び、金属材料の含水潤滑膜形成方法
CN105368562A (zh) * 2015-11-30 2016-03-02 安徽创奇乐智能游乐设备有限公司 一种抗磨性好水基纳米二硫化钨等温模锻润滑剂及其制备方法
JP6512204B2 (ja) * 2015-12-04 2019-05-15 Jfeスチール株式会社 ステンレス鋼板用潤滑塗料および潤滑ステンレス鋼板
JP2017159357A (ja) * 2016-03-11 2017-09-14 富士ゼロックス株式会社 金属筒状体の製造方法、電子写真感光体用基材の製造方法、電子写真感光体の製造方法及びインパクトプレス加工用金属塊
CN107723068B (zh) * 2017-10-26 2020-08-28 湖南金化科技集团有限公司 一种水溶性锻造用润滑剂组合物
WO2019231875A1 (en) * 2018-05-29 2019-12-05 Henkel IP & Holding GmbH Anaerobic paste compositions
US10872715B1 (en) * 2019-06-24 2020-12-22 Essex Furukawa Magnet Wire Usa Llc Magnet wire with insulation including an organometallic compound
JP2019157141A (ja) * 2019-07-01 2019-09-19 日本パーカライジング株式会社 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
KR102501758B1 (ko) * 2020-11-23 2023-02-21 주식회사 파인트코리아 개질된 천연 무수 석고 및 전처리 생분해성 수지를 포함하는 생분해성 수지 조성물 및 그 제조 방법
CN112500907A (zh) * 2020-12-09 2021-03-16 广东石油化工学院 聚醚磷酸钙量子点及其制备方法
CN116497267B (zh) * 2022-01-19 2025-02-18 宝山钢铁股份有限公司 一种具有优良加工性和防腐性能的免涂油带钢及其制造方法
CN115651742B (zh) * 2022-10-25 2023-11-14 常州大学 磷化反应型金刚线拉拔油及制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395255A (en) * 1977-01-31 1978-08-21 Yoshimasa Okano Swelling grounding resistance reducing agent
JPS54118955A (en) * 1978-03-07 1979-09-14 Aichi Steel Works Ltd Lubricant for plastic working
JPS5730796A (en) * 1980-07-30 1982-02-19 Tokuyama Soda Co Ltd Lubricant oil composition
JPS5765795A (en) * 1980-10-08 1982-04-21 Nippon Steel Corp Lubricated metallic plate having excellent ddep drawability
JPH0217932A (ja) * 1988-07-05 1990-01-22 Nippon Chem Ind Co Ltd 改質無機質粒子及びその製法
JPH05230493A (ja) * 1992-02-17 1993-09-07 Sky Alum Co Ltd アルミニウム材の温間成形加工用潤滑剤
JPH08151592A (ja) * 1994-11-30 1996-06-11 Mitsubishi Heavy Ind Ltd 潤滑皮膜材、潤滑皮膜の製造方法及び潤滑皮膜を施したボルト・ナット

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355448A (en) * 1976-10-29 1978-05-19 Aichi Steel Works Ltd Warm and hot forging method
US4168241A (en) * 1978-03-14 1979-09-18 Aichi Steel Works, Limited Lubricant and method for non-chip metal forming
US4308182A (en) * 1978-06-06 1981-12-29 Pennwalt Corporation Dry wire drawing lubricants based on Poly (3,5-dithio-1,2,4-thiadiazole) and Poly (2,5-dithio-1,3,4-thiadiazole)
US5033950A (en) * 1983-12-14 1991-07-23 Sacmi-Cooperativa Meccanici Imola-Soc. Coop. A R.L. Mold for molding ceramic materials
US5308516A (en) * 1989-06-08 1994-05-03 Century Oils, Inc. Friction modifiers
US5173204A (en) * 1989-06-08 1992-12-22 Century Oils (Canada), Inc. Solid lubricant with high and positive friction characteristic
US4931161A (en) * 1989-07-12 1990-06-05 Chevron Research Company Cleanup of oily wastes
US6194357B1 (en) 1996-06-21 2001-02-27 Henkel Corporation Waterborne lubricant for the cold plastic working of metals
JP3517522B2 (ja) 1996-06-21 2004-04-12 日本パーカライジング株式会社 金属材料の冷間塑性加工用水系潤滑剤
JPH1036876A (ja) 1996-07-24 1998-02-10 Makoto Futsukusu Kk 潤滑剤組成物
JP3713830B2 (ja) * 1996-09-06 2005-11-09 住友金属工業株式会社 皮膜密着性と耐キズつき性に優れた表面潤滑処理金属材
JP3314201B2 (ja) 1996-11-21 2002-08-12 科学技術振興事業団 水性冷間鍛造潤滑剤
JP3881129B2 (ja) 1998-06-09 2007-02-14 日本パーカライジング株式会社 金属材料の塑性加工用潤滑剤組成物
US6455476B1 (en) 1998-06-09 2002-09-24 Henkel Corporation Composition and process for lubricated plastic working of metals
IN192718B (ja) * 1998-06-09 2004-05-15 Nihon Parkerizing
EP1152709B1 (en) * 1999-02-02 2005-01-12 Wright Medical Technology, Inc. Controlled release composite
EP1319702B1 (en) 2000-08-07 2016-11-09 Henkel AG & Co. KGaA Aqueous lubricant for plastic working of metallic material and method of lubricant film processing
TW571000B (en) * 2001-10-19 2004-01-11 Nihon Parkerizing Methods of preparing metal wires for plastic processing
JP3772268B2 (ja) * 2001-12-26 2006-05-10 日本パーカライジング株式会社 冷間塑性加工用キャリア皮膜の形成方法
CN102173410A (zh) * 2004-08-16 2011-09-07 株式会社Mec国际 成膜用品和成膜方法以及脱模剂
WO2006084386A1 (en) * 2005-02-14 2006-08-17 Kelsan Technologies Corp. Solid stick compositions comprising thermosetting plastic
JP2006335578A (ja) * 2005-05-31 2006-12-14 Nittetsu Mining Co Ltd 葉片状二水石膏及びその製造方法
US8344084B2 (en) * 2005-06-14 2013-01-01 Basf Construction Polymers Gmbh Liquid admixture composition
WO2008062538A1 (fr) * 2006-11-24 2008-05-29 Nittetsu Mining Co., Ltd. Gypse dihydrate en paillettes et son procédé de production
JP2008188673A (ja) * 2007-01-12 2008-08-21 Kobe Steel Ltd 塑性加工用金属材料およびその製造方法、並びに塑性加工製品
EP2198835A4 (en) * 2007-09-19 2011-06-22 Ohken Co Ltd POWDERY COSMETICS AND METHOD FOR PRODUCING FLAKED CALCIUM SULFATE DIHYDRATE FOR USE IN A COSMETICS
JP2009185311A (ja) * 2008-02-04 2009-08-20 Kobe Steel Ltd 塑性加工用金属材
JP5091831B2 (ja) 2008-10-20 2012-12-05 日本パーカライジング株式会社 鍛造用潤滑皮膜評価方法及び鍛造用潤滑皮膜評価装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395255A (en) * 1977-01-31 1978-08-21 Yoshimasa Okano Swelling grounding resistance reducing agent
JPS54118955A (en) * 1978-03-07 1979-09-14 Aichi Steel Works Ltd Lubricant for plastic working
JPS5730796A (en) * 1980-07-30 1982-02-19 Tokuyama Soda Co Ltd Lubricant oil composition
JPS5765795A (en) * 1980-10-08 1982-04-21 Nippon Steel Corp Lubricated metallic plate having excellent ddep drawability
JPH0217932A (ja) * 1988-07-05 1990-01-22 Nippon Chem Ind Co Ltd 改質無機質粒子及びその製法
JPH05230493A (ja) * 1992-02-17 1993-09-07 Sky Alum Co Ltd アルミニウム材の温間成形加工用潤滑剤
JPH08151592A (ja) * 1994-11-30 1996-06-11 Mitsubishi Heavy Ind Ltd 潤滑皮膜材、潤滑皮膜の製造方法及び潤滑皮膜を施したボルト・ナット

Also Published As

Publication number Publication date
EP2692838A4 (en) 2014-11-19
ES2704009T3 (es) 2019-03-13
CN103443254A (zh) 2013-12-11
JP5674921B2 (ja) 2015-02-25
WO2012133455A1 (ja) 2012-10-04
KR101508454B1 (ko) 2015-04-07
WO2012133454A1 (ja) 2012-10-04
EP2692838A1 (en) 2014-02-05
KR20130130055A (ko) 2013-11-29
CN103517970B (zh) 2016-06-22
KR20130130054A (ko) 2013-11-29
JPWO2012133454A1 (ja) 2014-07-28
JP5450892B2 (ja) 2014-03-26
US20140162917A1 (en) 2014-06-12
CN103517970A (zh) 2014-01-15
CN103443254B (zh) 2015-12-02
EP2692838B1 (en) 2018-11-07
PL2692838T3 (pl) 2019-06-28
JP5745035B2 (ja) 2015-07-08
US9487732B2 (en) 2016-11-08
JPWO2012133453A1 (ja) 2014-07-28
JPWO2012133455A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5674921B2 (ja) 固体潤滑剤
JP5457452B2 (ja) 耐食性に優れる塑性加工用水系潤滑剤および塑性加工性に優れる金属材料
JP5682021B2 (ja) 難結晶性を有し、耐吸湿性、耐食性及び加工性に優れる金属材料塑性加工用水系潤滑剤及びその潤滑皮膜を形成させた金属材料
CN100510039C (zh) 用金属皂涂覆的粒子、其制品及制备方法、润滑涂层形成剂及润滑涂层
JP7036481B2 (ja) ヘミモルファイト含有の潤滑皮膜を形成させるための潤滑剤組成物および金属加工材の表面に該潤滑皮膜を形成する方法と、該潤滑皮膜を備えた金属加工材
WO2019004328A1 (ja) 潤滑剤、金属材、金属材の塑性加工方法及び成形加工金属材の製造方法
JP3218401B2 (ja) 防錆顔料組成物
WO2015146466A1 (ja) 耐食性及び加工性に優れた皮膜を有する鋼線材及びその製造方法
JPS63238921A (ja) 鉄鋼材料の引抜加工方法
Savrik et al. Nano zinc borate as a lubricant additive
JP4751053B2 (ja) 塑性加工潤滑剤
JP3733372B2 (ja) 表面調整剤及び表面調整方法
WO2002086038A1 (fr) Agent lubrifiant destine a etre utilise dans le travail de materiaux metalliques et procede de traitement desdits materiaux
EP4176103A1 (en) Improved activation agent for manganese phosphating processes
JPS6045680B2 (ja) 金属加工用潤滑剤の製造方法
JP2007169682A (ja) 被覆組成物用原液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507637

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765009

Country of ref document: EP

Kind code of ref document: A1