EP1319702B1 - Aqueous lubricant for plastic working of metallic material and method of lubricant film processing - Google Patents

Aqueous lubricant for plastic working of metallic material and method of lubricant film processing Download PDF

Info

Publication number
EP1319702B1
EP1319702B1 EP01925970.4A EP01925970A EP1319702B1 EP 1319702 B1 EP1319702 B1 EP 1319702B1 EP 01925970 A EP01925970 A EP 01925970A EP 1319702 B1 EP1319702 B1 EP 1319702B1
Authority
EP
European Patent Office
Prior art keywords
lubricative
metallic material
aqueous lubricant
wax
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01925970.4A
Other languages
German (de)
French (fr)
Other versions
EP1319702A4 (en
EP1319702A1 (en
Inventor
Yasuo c/o Nihon Parkerizing Co. Ltd. IMAI
Shuji c/o Nihon Parkerizing Co. Ltd. NAGATA
Masayuki c/o Nihon Parkerizing Co. Ltd. YOSHIDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1319702A1 publication Critical patent/EP1319702A1/en
Publication of EP1319702A4 publication Critical patent/EP1319702A4/en
Application granted granted Critical
Publication of EP1319702B1 publication Critical patent/EP1319702B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C9/00Cooling, heating or lubricating drawing material
    • B21C9/005Cold application of the lubricant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C9/00Cooling, heating or lubricating drawing material
    • B21C9/02Selection of compositions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J3/00Lubricating during forging or pressing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/10Metal oxides, hydroxides, carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/02Natural products
    • C10M159/06Waxes, e.g. ozocerite, ceresine, petrolatum, slack-wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/0413Carbon; Graphite; Carbon black used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/042Carbon; Graphite; Carbon black halogenated, i.e. graphite fluoride
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • C10M2201/0663Molybdenum sulfide used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/0803Inorganic acids or salts thereof used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/081Inorganic acids or salts thereof containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/082Inorganic acids or salts thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • C10M2201/0873Boron oxides, acids or salts used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/1023Silicates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/105Silica
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • C10M2205/143Synthetic waxes, e.g. polythene waxes used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • C10M2205/163Paraffin waxes; Petrolatum, e.g. slack wax used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/246Iron or steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • This invention relates to an aqueous lubricant used for plastic working of metallic material such as iron and steel, stainless steel, titanium, aluminum and others, wherein the surface of the metallic material has not been given any chemical conversion treatment. Also, it relates to a process of using the lubricant.
  • this invention relates to an aqueous lubricant used for producing a lubricative film suitable for plastic deforming work such as forging, wire drawing, tube drawing and others, on the surface of the metallic materials such as iron and steel, stainless steel, titanium, aluminum and others, wherein the surface of the metallic material has not been subjected to any chemical conversion treatment.
  • lubricative film are generally provided on the surface of the metallic material in order to prevent burning defects and galling defects which are arisen by metallic contact between the metallic material and tool.
  • lubricative film being provided on the metal surface
  • lubricative film in which lubricative agent is made to adhere physically on the metal surface
  • other type of lubricative film in which chemical conversion layer are produced on the metal surface previously by chemical conversion treatment of the metallic material and then lubricative agent are applied on the chemical conversion layer.
  • the lubricative agent being adhered physically on the metal surface are used generally for cold working of slight amount of reduction since adhesive power of these are inferior than the adhesive power of the lubricative agent being applied on the chemical conversion layer.
  • phosphate film or oxalate film are provided on the metal surface, which has a role as a carrier for the lubricative agent being applied on it.
  • the lubricative film of this type are constructed by 2 layers, the carrier layer and the lubricative agent layer, and shows very excellent resistance against burning defect of the metallic material. And are used in a wide range of the cold working such as wire drawing, tube drawing, forging and others. And besides in the field of the cold working of heavy amount of reduction, it is widely used to provide a phosphate film or oxalate film, and a lubricative agent are applied on that.
  • the lubricative agent applied on the chemical conversion layer may be divided into two groups in terms of the usage.
  • the first group includes a lubricative agent to be mechanically adhered onto the chemical conversion layer and the second group includes a lubricative agent which reacts with the chemical conversion layer.
  • the first group of lubricative agent includes those being prepared by using mineral oil, vegetable oil or synthetic oil as base oil and containing an extreme pressure additive in the base oil, also includes other one being prepared by dissolving a solid lubricative agent, such as graphite and molybdenum disulfide, together with a binder component into the water. These are adhered and then dried.
  • a solid lubricative agent such as graphite and molybdenum disulfide
  • These lubricative agent of the first group may have advantages of easy for handling the solution since they may be used simply by means of spray coating or dipping coating. However, as they have just a low lubricative properties, they tend to be used for a case where slight amount of deformation of the metallic material is required.
  • a reactive soap such as sodium stearate is used for a cold working where high lubricative property is required
  • the reactive soap reacts with the chemical conversion layer and provides a layer of high lubricative property.
  • JP52-20967A wherein a lubricant composition containing water soluble polymer or its aqueous emulsion as the base component, a solid lubricant and a film-forming agent has been disclosed.
  • a lubricant composition containing water soluble polymer or its aqueous emulsion as the base component, a solid lubricant and a film-forming agent has been disclosed.
  • no composition which has the same degree of preferable effect as in the conventional process of using a chemical conversion layer has been obtained.
  • JP10-8085A relates to an aqueous lubricant used for plastic working of metallic material in which (A) water soluble inorganic salt, (B) solid lubricative agent, (C) at least one oil selected from a group consisting of mineral oil, animal oil, vegetable oil and synthetic oil, (D) surface active agent and (E) water are well dispersed and emulsified homogeneously.
  • the lubricant according to this prior art is too unstable to use in an industry since it has to keep to emulsify the oil component, and is not showing a stable properties.
  • JP2000-63880A As another prior art, an invention of JP2000-63880A can be cited.
  • This prior art is directed to a lubricant used for plastic working of metallic material comprising (A) synthetic resin, (B) water soluble inorganic salt and water, wherein the ratio of (B)/(A) by weight in solid state is in a range from 0. 25/1 to 9/1 and the synthetic resin is kept dissolved or dispersed in the composition.
  • this composition is also not stable to show a high lubricative properties in cold working of heavy amount of reduction, since its main component is the synthetic resin.
  • WO 99/64544 A1 discloses lubricants for the plastic working of metals constituted of a water soluble inorganic salts selected from tungstate, sulfate or borate, a lubricative agent selected from graphite powder or molybdenum disulfide and a polyethylene wax.
  • the inventors have investigated for solving the problems described above and have found that the excellent lubricative properties can be obtained by the aqueous solution containing water soluble inorganic salt, lubricative agent being selected from molybdenum disulphide and graphite, and wax at the specific ratio. Further, they have found out a method of lubricative film processing on the metal surface in saving the treating energy and in saving the treating space.
  • the present invention is an aqueous lubricant used for working the metallic material which contains (A) water soluble inorganic salt, being selected from a group of sulfate, silicate, borate, molybdate and tungstate, (B) lubricative agent being selected from molybdenum disulphid and graphite, and (C) wax, and these components are dissolved or dispersed in water and weight ratio in solid state of (B)/(A) is in the range of 1.0 ⁇ 5.0 and a weight ratio in solid state of (C)/(A) is in the range of 0.1 ⁇ 1.0.
  • A water soluble inorganic salt, being selected from a group of sulfate, silicate, borate, molybdate and tungstate
  • B lubricative agent being selected from molybdenum disulphid and graphite
  • C wax
  • wax as above is water dispersed natural wax or synthetic wax having melting point between 70 ⁇ 150°C.
  • the present invention is a method of processing of the lubrication film of 0.5 ⁇ 40g/m 2 as adherent weight on the surface of the metallic material wherein the aqueous lubricant of above is applied to the cleaned surface of the metallic material and is then dried. It is preferable that the surface of the metallic material is previously cleaned by one or more process selected from a group of shot blasting, sand blasting, alkaline degreasing and acid cleaning, and also preferable that the aqueous lubricant is applied on the surface of the metallic material after the metallic material is heated to 60 ⁇ 100°C.
  • the water soluble inorganic salt (A) used in the aqueous lubricant of the invention is contained in order to give hardness and strength to the coating film. For this purpose, it is required to have a property to be uniformly dissolved in the aqueous solution and to form a strong lubricative film after drying.
  • the inorganic salt giving such property it is preferable to use at least one selected from a group consisting of sulfate, silicate, borate, molybdate and tungstate.
  • sulfate, silicate, borate, molybdate and tungstate As the examples for the inorganic salt described above, sodium sulfate, potassium sulfate, potassium silicate, sodium borate (sodium tetraborate), potassium borate (potassium tetraborate), ammonium borate (ammonium tetraborate), ammonium molybdate, sodium molybdate and sodium tungstate may be given. Any of these salts may be used either alone or in combination of 2 or more salts.
  • one or more than one of the lubricative agent (B) being selected from molybdenum disulphide and graphite are used in order to enhance the lubricative properties. They are contained in a form of being dispersed, and the known surfactant may be used when necessary.
  • the (B)/(A), namely the weight ratio in solid state of the water soluble inorganic salt (A) and the lubricative agent (B), is in a range of 1.0 ⁇ 5.0. And is preferable to be 2.0 ⁇ 4.0.
  • the ratio is less than 1.0, sliding properties of the lubricative film are decreased.
  • the ratio exceeds 5.0, the aqueous lubricant become unstable.
  • wax (C) it is preferable to use a natural wax or a synthetic wax, though there is no specific limitation in its chemical structure and the type.
  • the wax may melt by a heat generated during the plastic deformation of the metallic material thereby improve the lubricative property of the coating layer. For this reason, it is preferable to use those having a melting point in a range of 70 ⁇ 150°C and being stable in aqueous lubricant and those not to weaken the strength of the lubricative film so as to perform the preferable lubrication from the early stage of the plastic working.
  • the practical examples for the wax may include paraffin wax, micro crystalline wax, petrolatum wax, fisher ⁇ tropsch wax, polyethylene wax, polypropylene wax, carnauba wax, montane wax and the like. These waxes are preferably combined with another component and contained in a form of water dispersion or water emulsion in the aqueous lubricant of the invention.
  • the (C)/(A), namely the weight ratio in solid state of water soluble inorganic salt (A) and the wax (C) is in a range of 0.1 ⁇ 1.0, and more preferably in a range of 0. 2 ⁇ 0. 8.
  • the ratio is less than 0. 1, sliding property of the lubricative film may be insufficient, while the adhesive performance of the coating layer may be insufficient when the ratio is more than 1. 0.
  • any surface active agent of nonionic, anionic, amphoteric and cationic type may be used.
  • the nonionic surface active agent may include polyoxyethylene alkyl ether, polyoxyalkylene(ethylene and/or propylene) alkyl phenyl ether, polyoxyethylene alkyl ester comprising polyethylene glycol (or ethylene oxide) and higher fatty acid (C12 ⁇ C18, for example), polyoxyethylene sorbitan alkyl ester comprising sorbitan, polyethylene glycol and higher fatty acid (C12 ⁇ C18, for example).
  • the anionic surface active agent may include fatty acid salts, sulfuric acid ester salt, sulfonate salt, phosphoric acid ester salt, and dithiophosphoric acid ester salt.
  • the amphoteric surface active agent may include carboxylates either in amino acid configuration or in betaine configuration, sulfuric acid ester salt, sulfonate salt, phosphoric acid ester salt.
  • the cationic surface active agent may include amine salt of fatty acid, quaternary ammonium salt and the like.
  • Each of these surface active agent may be used either alone or in combination of two or more of them.
  • Aqueous lubricant of the present invention may further be applied as a lubricant for cold working (wire drawing, tube drawing, forging, etc) when the metallic materials of iron and steel, stainless steel, copper or copper alloy, aluminum or aluminum alloy, titanium or titanium alloy are already coated by known process of forming the phosphate layer (zinc phosphate, manganese phosphate, iron phosphate, tin phosphate, etc), oxalte layer (iron oxalate, etc), cryolite and calcium aluminate layer.
  • Shape of the metallic material is not especially limited, and not only bar and block but also shaped product being produced by hot forging (gear, shaft, etc) may be used.
  • a purified surface of the metallic material is made to contact with the aforementioned aqueous lubricant and then dried, and produce the lubricative film of 0.5 ⁇ 40g/m 2 on the surface of the metallic material.
  • the processing of the lubricative film of the invention is non-reactive type.
  • the amount of the lubricative film produced on the surface of the metal may be adjusted according to the degree of deformation of the plastic cold working. And it is more preferable to be in a range of 2 ⁇ 20g/m 2 .
  • the lubricity becomes insufficient.
  • dregs may appear in the working and the cavity provided on the surface of the tool may be crammed by arisen dregs.
  • the amount of the lubricative film may be calculated from the surface area of the metallic material and the weight difference before and after the treatment.
  • treatment solution may be obtained by diluting the concentrated aqueous lubricant by water.
  • the type of the water used for this dilution is not limited, but deionized water or distilled water are preferable.
  • surface cleaning of the metallic material is preferable to be carried out by one or more cleaning step being selected from shot blasting, sand blasting, alkali decreasing and acid cleaning.
  • the main purpose of these cleaning is to remove a oxide scale being grown in the annealing or to remove a contamination of oil or others.
  • waste water may be possible to decrease to zero, for example, by shot blasting for cleaning the surface and by producing the lubricative film using the aqueous lubricant of the invention.
  • aqueous lubricant of the invention there are no specific limitation in the method of applying the aqueous lubricant of the invention to the surface of the metallic material. And dipping method, flow coat method, spray method and other method can be used. The application is sufficient when the surface is sufficiently covered by the aqueous lubricant, and there is no restriction in applying time.
  • the aqueous lubricant is to be dried. Drying may be done by keeping it under the ordinary temperature, and it may also be preferable by keeping it at 60 ⁇ 150°C for 10 ⁇ 60 minutes.
  • the aqueous lubricant is applied after heating the metallic material to 60 ⁇ 100°C in order to increase the drying efficiency. Also, it is preferable to apply the aqueous lubricant after being heated to 50 ⁇ 90°C.
  • drying efficiency may be much improved and the loss of heat energy may be much decreased.
  • Die (1) has an inner surface of the funnel like shape.
  • Rod sample (2) are set on the top of the die (1) as in Fig. 2 (A) , then being pressed and the bottom of the sample (2) are forced to move into the funnel hole of the die (1) as shown in Fig. 2 (B) .
  • spike having the shape corresponding to the funnel are produced.
  • the height of the formed spike are shown as spike height in Table 1. The lubricating is excellent when the spike has a large spike height.
  • Aqueous lubricant 1 as below (containing 1 wt % of nonionic surfactant for dispersion) was used and treated in Process A above.
  • Aqueous lubricant 1 Aqueous lubricant 1
  • Aqueous lubricant 2 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in Process B above.
  • Aqueous lubricant 3 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in Process A above.
  • Aqueous lubricant 4 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in Process A above.
  • Aqueous lubricant 5 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in Process B above.
  • Aqueous lubricant 6 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in Process A above.
  • Aqueous lubricant 7 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in treating process B above.
  • Aqueous lubricant 8 as below was used in treating process A above.
  • Aqueous lubricant 9 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in treating process A above
  • Comparative example 1 where lubricative agent is not contained and comparative example 2 where wax is not contained are inferior in their lubricative properties.
  • comparative example 3 where treatment was carried out in a conventional process of using the chemical conversion layer of phosphate and reactive soap the lubricative property is as excellent as in the present invention.
  • much waste matter may appear from the reaction of chemical conversion, and special complicated equipments become necessary in disposal of waste water and for controlling the aqueous lubricant, and the burden for keeping the environment become increase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)

Description

    FIELD OF THE INVENTION
  • This invention relates to an aqueous lubricant used for plastic working of metallic material such as iron and steel, stainless steel, titanium, aluminum and others, wherein the surface of the metallic material has not been given any chemical conversion treatment. Also, it relates to a process of using the lubricant.
  • Being described in more detail, this invention relates to an aqueous lubricant used for producing a lubricative film suitable for plastic deforming work such as forging, wire drawing, tube drawing and others, on the surface of the metallic materials such as iron and steel, stainless steel, titanium, aluminum and others, wherein the surface of the metallic material has not been subjected to any chemical conversion treatment.
  • BACKGROUND ART
  • When cold plastic working are performed on the metallic material such as iron and steel, stainless steel and others, lubricative film are generally provided on the surface of the metallic material in order to prevent burning defects and galling defects which are arisen by metallic contact between the metallic material and tool.
  • Regarding the lubricative film being provided on the metal surface, there are lubricative film in which lubricative agent is made to adhere physically on the metal surface and other type of lubricative film in which chemical conversion layer are produced on the metal surface previously by chemical conversion treatment of the metallic material and then lubricative agent are applied on the chemical conversion layer.
  • The lubricative agent being adhered physically on the metal surface are used generally for cold working of slight amount of reduction since adhesive power of these are inferior than the adhesive power of the lubricative agent being applied on the chemical conversion layer.
  • In using the chemical conversion film, phosphate film or oxalate film are provided on the metal surface, which has a role as a carrier for the lubricative agent being applied on it. The lubricative film of this type are constructed by 2 layers, the carrier layer and the lubricative agent layer, and shows very excellent resistance against burning defect of the metallic material. And are used in a wide range of the cold working such as wire drawing, tube drawing, forging and others. And besides in the field of the cold working of heavy amount of reduction, it is widely used to provide a phosphate film or oxalate film, and a lubricative agent are applied on that.
  • The lubricative agent applied on the chemical conversion layer may be divided into two groups in terms of the usage. The first group includes a lubricative agent to be mechanically adhered onto the chemical conversion layer and the second group includes a lubricative agent which reacts with the chemical conversion layer.
  • The first group of lubricative agent includes those being prepared by using mineral oil, vegetable oil or synthetic oil as base oil and containing an extreme pressure additive in the base oil, also includes other one being prepared by dissolving a solid lubricative agent, such as graphite and molybdenum disulfide, together with a binder component into the water. These are adhered and then dried.
  • These lubricative agent of the first group may have advantages of easy for handling the solution since they may be used simply by means of spray coating or dipping coating. However, as they have just a low lubricative properties, they tend to be used for a case where slight amount of deformation of the metallic material is required.
  • On the others hand, in the second group of the lubricative agent, a reactive soap such as sodium stearate is used for a cold working where high lubricative property is required The reactive soap reacts with the chemical conversion layer and provides a layer of high lubricative property.
  • However, since the reactive soap cause a chemical reaction, composition control of the solution, temperature control for the chemical reaction and the renewal control of the deteriorated solution by discharging of the waste from the solution, etc, become very important during the process.
  • Recently, it is a big issue to reduce waste products from the industries for global environmental protection. And therefore, new lubricative agent and new lubricative process which do not discharge waste products have been highly desired. Also, some new processes which enable to simplify the complex control of the process and the solution in the above explained second group have been further desired.
  • In order to solve problems as described above, JP52-20967A , wherein a lubricant composition containing water soluble polymer or its aqueous emulsion as the base component, a solid lubricant and a film-forming agent has been disclosed. However, no composition which has the same degree of preferable effect as in the conventional process of using a chemical conversion layer has been obtained.
  • In order to solve the problems as described above, another prior art of JP10-8085A has been disclosed. This prior art relates to an aqueous lubricant used for plastic working of metallic material in which (A) water soluble inorganic salt, (B) solid lubricative agent, (C) at least one oil selected from a group consisting of mineral oil, animal oil, vegetable oil and synthetic oil, (D) surface active agent and (E) water are well dispersed and emulsified homogeneously. However, the lubricant according to this prior art is too unstable to use in an industry since it has to keep to emulsify the oil component, and is not showing a stable properties.
  • As another prior art, an invention of JP2000-63880A can be cited. This prior art is directed to a lubricant used for plastic working of metallic material comprising (A) synthetic resin, (B) water soluble inorganic salt and water, wherein the ratio of (B)/(A) by weight in solid state is in a range from 0. 25/1 to 9/1 and the synthetic resin is kept dissolved or dispersed in the composition. However, this composition is also not stable to show a high lubricative properties in cold working of heavy amount of reduction, since its main component is the synthetic resin.
  • WO 99/64544 A1 discloses lubricants for the plastic working of metals constituted of a water soluble inorganic salts selected from tungstate, sulfate or borate, a lubricative agent selected from graphite powder or molybdenum disulfide and a polyethylene wax.
  • Therefore, it is an object of this invention to provide an aqueous lubricant used for plastic working of metallic material and a method of lubricative film processing, in which the metallic material has not been subjected to any chemical conversion treatment, and in which the problems existing in the conventional process may be solved and the problems in the global environmental protection may also be improved and is applicable to many sorts of metallic materials.
  • DISCLOSURE OF THE INVENTION
  • The inventors have investigated for solving the problems described above and have found that the excellent lubricative properties can be obtained by the aqueous solution containing water soluble inorganic salt, lubricative agent being selected from molybdenum disulphide and graphite, and wax at the specific ratio. Further, they have found out a method of lubricative film processing on the metal surface in saving the treating energy and in saving the treating space.
  • Namely, the present invention is an aqueous lubricant used for working the metallic material which contains (A) water soluble inorganic salt, being selected from a group of sulfate, silicate, borate, molybdate and tungstate, (B) lubricative agent being selected from molybdenum disulphid and graphite, and (C) wax, and these components are dissolved or dispersed in water and weight ratio in solid state of (B)/(A) is in the range of 1.0∼5.0 and a weight ratio in solid state of (C)/(A) is in the range of 0.1∼1.0.
  • It is preferable that wax as above is water dispersed natural wax or synthetic wax having melting point between 70∼150°C.
  • Also, the present invention is a method of processing of the lubrication film of 0.5∼40g/m2 as adherent weight on the surface of the metallic material wherein the aqueous lubricant of above is applied to the cleaned surface of the metallic material and is then dried. It is preferable that the surface of the metallic material is previously cleaned by one or more process selected from a group of shot blasting, sand blasting, alkaline degreasing and acid cleaning, and also preferable that the aqueous lubricant is applied on the surface of the metallic material after the metallic material is heated to 60∼ 100°C.
  • BRIEF DESCRIPTION OF DRAWINGS
    • Fig 1 : Illustrative drawing of rear punching test.
    • Fig 2 : Illustrative drawing of spike test.
    BEST MODES FOR CARRYING OUT THE INVENTION
  • Now, the present invention is explained further in detail. The water soluble inorganic salt (A) used in the aqueous lubricant of the invention is contained in order to give hardness and strength to the coating film. For this purpose, it is required to have a property to be uniformly dissolved in the aqueous solution and to form a strong lubricative film after drying.
  • As the inorganic salt giving such property, it is preferable to use at least one selected from a group consisting of sulfate, silicate, borate, molybdate and tungstate. As the examples for the inorganic salt described above, sodium sulfate, potassium sulfate, potassium silicate, sodium borate (sodium tetraborate), potassium borate (potassium tetraborate), ammonium borate (ammonium tetraborate), ammonium molybdate, sodium molybdate and sodium tungstate may be given. Any of these salts may be used either alone or in combination of 2 or more salts.
  • In the present invention one or more than one of the lubricative agent (B) being selected from molybdenum disulphide and graphite are used in order to enhance the lubricative properties. They are contained in a form of being dispersed, and the known surfactant may be used when necessary.
  • The (B)/(A), namely the weight ratio in solid state of the water soluble inorganic salt (A) and the lubricative agent (B), is in a range of 1.0∼5.0. And is preferable to be 2.0∼4.0. When the ratio is less than 1.0, sliding properties of the lubricative film are decreased. However, when the ratio exceeds 5.0, the aqueous lubricant become unstable.
  • As wax (C), it is preferable to use a natural wax or a synthetic wax, though there is no specific limitation in its chemical structure and the type. The wax may melt by a heat generated during the plastic deformation of the metallic material thereby improve the lubricative property of the coating layer. For this reason, it is preferable to use those having a melting point in a range of 70∼150°C and being stable in aqueous lubricant and those not to weaken the strength of the lubricative film so as to perform the preferable lubrication from the early stage of the plastic working.
  • The practical examples for the wax may include paraffin wax, micro crystalline wax, petrolatum wax, fisher·tropsch wax, polyethylene wax, polypropylene wax, carnauba wax, montane wax and the like. These waxes are preferably combined with another component and contained in a form of water dispersion or water emulsion in the aqueous lubricant of the invention.
  • The (C)/(A), namely the weight ratio in solid state of water soluble inorganic salt (A) and the wax (C) is in a range of 0.1∼1.0, and more preferably in a range of 0. 2∼0. 8. When the ratio is less than 0. 1, sliding property of the lubricative film may be insufficient, while the adhesive performance of the coating layer may be insufficient when the ratio is more than 1. 0.
  • It is still possible to add further another oil or another solid lubricative matter to the aqueous lubricant of this invention in cold working with heavy amount of deformation.
  • When a surface active agent is required for dispersing the lubricative matter and the wax. in the aqueous lubricant, any surface active agent of nonionic, anionic, amphoteric and cationic type may be used. Although being not limited, the nonionic surface active agent may include polyoxyethylene alkyl ether, polyoxyalkylene(ethylene and/or propylene) alkyl phenyl ether, polyoxyethylene alkyl ester comprising polyethylene glycol (or ethylene oxide) and higher fatty acid (C12∼C18, for example), polyoxyethylene sorbitan alkyl ester comprising sorbitan, polyethylene glycol and higher fatty acid (C12∼C18, for example).
  • Although being not limited, the anionic surface active agent may include fatty acid salts, sulfuric acid ester salt, sulfonate salt, phosphoric acid ester salt, and dithiophosphoric acid ester salt. Although being not limited, the amphoteric surface active agent may include carboxylates either in amino acid configuration or in betaine configuration, sulfuric acid ester salt, sulfonate salt, phosphoric acid ester salt.
  • Although being not limited, the cationic surface active agent may include amine salt of fatty acid, quaternary ammonium salt and the like.
  • Each of these surface active agent may be used either alone or in combination of two or more of them.
  • Aqueous lubricant of the present invention may further be applied as a lubricant for cold working (wire drawing, tube drawing, forging, etc) when the metallic materials of iron and steel, stainless steel, copper or copper alloy, aluminum or aluminum alloy, titanium or titanium alloy are already coated by known process of forming the phosphate layer (zinc phosphate, manganese phosphate, iron phosphate, tin phosphate, etc), oxalte layer (iron oxalate, etc), cryolite and calcium aluminate layer.
  • Shape of the metallic material is not especially limited, and not only bar and block but also shaped product being produced by hot forging (gear, shaft, etc) may be used.
  • According to a method of the lubricative film processing in this invention, a purified surface of the metallic material is made to contact with the aforementioned aqueous lubricant and then dried, and produce the lubricative film of 0.5∼40g/m2 on the surface of the metallic material. Thus the processing of the lubricative film of the invention is non-reactive type. The amount of the lubricative film produced on the surface of the metal may be adjusted according to the degree of deformation of the plastic cold working. And it is more preferable to be in a range of 2∼20g/m2.
  • When it is less than 0.5g/m2, the lubricity becomes insufficient. When more than 40g/m2, although special problems may not arise in lubricity, dregs may appear in the working and the cavity provided on the surface of the tool may be crammed by arisen dregs. The amount of the lubricative film may be calculated from the surface area of the metallic material and the weight difference before and after the treatment.
  • The weight concentration of the components are adjusted in order to control the amount of the lubricative film as above. In many cases, treatment solution may be obtained by diluting the concentrated aqueous lubricant by water. The type of the water used for this dilution is not limited, but deionized water or distilled water are preferable.
  • In the processing of the lubricative film of the invention, surface cleaning of the metallic material is preferable to be carried out by one or more cleaning step being selected from shot blasting, sand blasting, alkali decreasing and acid cleaning. The main purpose of these cleaning is to remove a oxide scale being grown in the annealing or to remove a contamination of oil or others.
  • Recently, the reduction of the desposal of the waste water has been desired from the environmental point of view. In this invention, waste water may be possible to decrease to zero, for example, by shot blasting for cleaning the surface and by producing the lubricative film using the aqueous lubricant of the invention.
  • There are no specific limitation in the method of applying the aqueous lubricant of the invention to the surface of the metallic material. And dipping method, flow coat method, spray method and other method can be used. The application is sufficient when the surface is sufficiently covered by the aqueous lubricant, and there is no restriction in applying time.
  • After the application, it is necessary that the aqueous lubricant is to be dried. Drying may be done by keeping it under the ordinary temperature, and it may also be preferable by keeping it at 60∼150°C for 10 ∼60 minutes.
  • It is preferable that the aqueous lubricant is applied after heating the metallic material to 60∼100°C in order to increase the drying efficiency. Also, it is preferable to apply the aqueous lubricant after being heated to 50∼90°C.
  • Thus, drying efficiency may be much improved and the loss of heat energy may be much decreased.
  • EXAMPLES
  • The advantageous effect of this invention will be explained more practically by showing embodiment examples and comparative examples.
  • (Sample for rear punching test)
  • Serious of steel rod samples of JIS S45C being spherodizing annealed, obtained in the market, having a diameter of 30mm and having a serious of heights in 18∼40mm as shown in Fig (A) in which height of each rod are different in 2mm each other.
  • (Sample for spike test)
  • Steel rod samples of JIS S45C being spherodizing annealed, obtained in the market and having a diameter of 25mm and having a height of 30mm.
  • (Treating Process) • Process A
    • ① Degreasing : using decreasing agent on the market (FINE CLEANER R 4360, by Nihon Parkerizing Co. , Ltd), concentration :20g/L, temperature : 60°C, dipping time : 10 minutes.
    • ② Washing : by tap water, 60°C, dipping for 30 sec.
    • ③ Lubricating treatment : contacting with lubricant, at 60°C, dipping for 10 sec.
    • ④ Drying : 80°C, for 3min.
    • Process B
    • ① Shot blasting : Particle diameter : 0.5mm, treating for 5 min.
    • ② Washing : by tap water, 90°C, dipping for 90sec.
    • ③ Lubricating treatment :contacting with lubricant at 70°C, dipping for 5 sec.
    • ④ Drying : room temperature (air blow), for 3 min.
    (Rear Punching Test) ············Fig. 1
  • Series of steel rod samples in Fig. 1 (A) are cold worked by 200 ton crank press in Fig. 1 (B) to produce series of cup shaped products shown in Fig. 1 (C). In each punching, 10mm of bottom end was left, and the reduction of the sect i onal area was 50%. The defects on the inner surface of cup are inspected, and the maximum depth (Zmm) or cup for which no defects are observed are shown as punch depth (mm) in Table 1. In this test, die material is JIS SKDII, punch material is JIS HAP40, punch diameter is 21.21mm, punching is 30 stroke/min.
  • (Spike Test) ············Fig. 2
  • Spike test has been carried out in the same way as show in JP5-7969A .
  • Die (1) has an inner surface of the funnel like shape. Rod sample (2) are set on the top of the die (1) as in Fig. 2 (A), then being pressed and the bottom of the sample (2) are forced to move into the funnel hole of the die (1) as shown in Fig. 2 (B). By this process, spike having the shape corresponding to the funnel are produced. The height of the formed spike are shown as spike height in Table 1. The lubricating is excellent when the spike has a large spike height.
  • (Embodiment example 1)
  • Aqueous lubricant 1 as below (containing 1 wt % of nonionic surfactant for dispersion) was used and treated in Process A above.
  • Aqueous lubricant 1
    • water soluble inorganic salt : sodium tetraborate,
    • lubricative agent : molybdenum disulfide
    • wax polyethylene wax
    • ratio (B/A) : 3. 0
    • ratio (C/A) : 0. 4
    • amount of produced film, g/m2 : 15
    (Embodiment example 2)
  • Aqueous lubricant 2 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in Process B above.
  • Aqueous lubricant 2
    • water soluble inorganic salt : sodium tetraborate
    • lubricative agent : graphite
    • wax : polyethylene wax
    • ratio. (B/A) : 2. 0
    • ratio (C/A) : 0.8
    • amount of produced film, g/m2 : 15
    (Embodiment example 3)
  • Aqueous lubricant 3 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in Process A above.
  • Aqueous lubricant 3
    • water soluble inorganic salt : sodium silicate
    • lubricative agent : graphite
    • wax : polyethylene wax
    • ratio (B/A) : 1.0
    • ratio (C/A) : 1.0
    • amount of produced film, g/m2 : 15
    (Embodiment example 4)
  • Aqueous lubricant 4 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in Process A above.
  • Aqueous lubricant 4
    • water soluble inorganic salt : sodium tungstate,
    • lubricative agent : molybdenum disulfide
    • wax : paraffin wax
    • ratio (B/A) : 4. 0
    • ratio (C/A) : 0.1
    • amount of produced film : g/m2 : 15
    (Embodiment example 5)
  • Aqueous lubricant 5 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in Process B above.
  • Aqueous lubricant 5
    • water soluble inorganic salt : potassium sulfate
    • lubricative agent : molybdenum disulfide
    • wax : paraffin wax
    • ratio (B/A) : 3.0
    • ratio (C/A) : 0.5
    • amount of produced film, g/m2 : 15
    (Comparative example 1)
  • Aqueous lubricant 6 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in Process A above.
  • Aqueous lubricant 6
    • water soluble inorganic salt : potassium sulfate
    • wax : paraffin wax
    • ratio (C/A) : 0.1
    • amount of the produced film, g/m2 : 10
    (Comparative example 2)
  • Aqueous lubricant 7 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in treating process B above.
  • Aqueous lubricant 7
    • water soluble inorganic shalt : potassium sulfate
    • lubricative agent : molybdenum disulfate
    • ratio (B/A) : 0. 5
    • amount of produced film, g/m2 : 15
    (Comparative example 3)
  • Treatment was carried out in Process C as below.
  • • Process C
    • ① Degreasing : using degreasing agent on the market (FINE CLEANER R 4360, by Nihon Parkerizing Co.,Ltd), concentration : 20g/L, temperature : 60°C, dipping time : 10 min
    • ② Washing : by tap water, room temperature, dipping for 30 sec.
    • ③ Chemical conversion treatment : using chemical conversion agent containing zinc phosphate obtained in the market (PALBOND R 181X, by Nihon Parkerizing Co. , Ltd), concentration : 90g/L, temperature : 80°C, dipping time : 10 min.
    • ④ Washing : by tap water, room temperature, dipping for 30 sec,
    • ⑤ Soap treatment : Reactive soap lubricating matter on the market (PALUBE R 235, by Nihon Parkerizing Co.,Ltd), concentration : 70g/L, temperature : 80°C, dipping for 5 min
    • ⑥ Drying : 80°C, 3 min
    (Comparative example 4)
  • Aqueous lubricant 8 as below was used in treating process A above.
  • Aqueous lubricant 8
    • water soluble inorganic salt : borax : 10 %
    • lubricative agent : calcium stearate : 10%
    • oil constituent : palm oil ; 0.5 %
    • surfactant : polyoxyethylene alkyl alcohol ; 1 %
    • others : water
    • amount of produced film, g/m2 : 10
    (Comparative example 5)
  • Aqueous lubricant 9 as below (containing 1 wt % of nonionic surfactant for dispersion) was used in treating process A above
  • Aqueous lubricant 9
    • water soluble inorganic salt : sodium tetraborate
    • synthetic resin : urethane resin
    • metallic salt of fatty acid : calcium stearate ratio in solid state water soluble inorganic salt / synthetic resin = 2 / 2
      Figure imgb0001
      ratio in solid state calcium stearate / synthetic resin = 3 / 1
      Figure imgb0002
    • amount of produced film, g/m2 : 10
  • Test results are shown in Table 1. It is clear from Table 1 that embodiment example 1∼5 where aqueous lubricant for working of metallic material according to the present invention exhibit the excellent lubricity and simple and easy treating process.
  • Comparative example 1 where lubricative agent is not contained and comparative example 2 where wax is not contained are inferior in their lubricative properties. In comparative example 3, where treatment was carried out in a conventional process of using the chemical conversion layer of phosphate and reactive soap, the lubricative property is as excellent as in the present invention. However, much waste matter may appear from the reaction of chemical conversion, and special complicated equipments become necessary in disposal of waste water and for controlling the aqueous lubricant, and the burden for keeping the environment become increase.
  • Also it is proved that the lubricity in spike test are inferior in comparative example 4 which is the same as those shown in JP10-8085A and in comparative example 5 which uses synthetic resin as main constituent and is the same as those shown in JP2000- 63880A .
  • ADVANTAGE OF THE INVENTION
  • As it is clear from the description of above, it became possible to produce the film with the high lubricity in the simple and easy treatment by using the aqueous lubricant and the method of lubricative film processing of the present invention. Also, the amount of arised waste matter was decreased and the preferable environmental protection became possible. Thus, this invention has a great industrial applicability. Table 1
    Number of step in treating process treatment punch depth (mm) spike height (mm)
    embodiment example 1   4 application type 60 13.2
    embodiment example 2   4 application type 60 13.2
    embodiment example 3   4 application type 60 13.2
    embodiment example 4   4 application type 60 13.1
    embodiment example 5   4 application type 60 13.1
    comparative example 1   4 application type 40 11.6
    comparative example 2   4 application type 40 11.7
    comparative example 3   6 reactive type/ much waste matter 56 13. 0
    comparative example 4   4 application type 56 12. 5
    comparative example 5   4 application type 56 12.6

Claims (5)

  1. Aqueous lubricant used for plastic working of metallic material which contains (A) water soluble inorganic salt being selected from a group of sulfate, silicate, borate, molybdate and tungstate, (B) one or more than one lubricative agent being selected from molybdenum disulfide and graphite, and (C) wax, and these components are dissolved or dispersed in water and weight ratio of (B) / (A) in solid state is in the range of 1.0 to 5.0 and weight ratio of (C) / (A) in solid state is in the range of 0.1 to 1.0.
  2. Aqueous lubricant used for plastic working of metallic material according to claim (1) wherein the wax is water dispersed natural wax or synthetic wax having melting point between 70 to 150 °C.
  3. Method of lubricative film processing wherein aqueous lubricant according to any of claim (1) to (2) is applied to the cleaned surface of the metallic material and is dried, and produce the lubricative film of 0.5 to 40 g/m2 on the surface of the metallic material.
  4. Method of lubricative film processing according to claim (3) wherein the cleaned surface is obtained by one or more than one cleaning step being selected from a group of shot blasting, sand blasting, alkali degreasing and acid cleaning.
  5. Method of lubricative film processing according to any of claim (3) to (4) wherein the aqueous lubricant according to any of claim (1) to (2) is applied to the metallic material after the metallic material is heated to 60 to 100 °C.
EP01925970.4A 2000-08-07 2001-04-26 Aqueous lubricant for plastic working of metallic material and method of lubricant film processing Expired - Lifetime EP1319702B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000237968 2000-08-07
JP2000237968 2000-08-07
PCT/JP2001/003639 WO2002012419A1 (en) 2000-08-07 2001-04-26 Aqueous lubricant for plastic working of metallic material and method of lubricant film processing

Publications (3)

Publication Number Publication Date
EP1319702A1 EP1319702A1 (en) 2003-06-18
EP1319702A4 EP1319702A4 (en) 2004-08-11
EP1319702B1 true EP1319702B1 (en) 2016-11-09

Family

ID=18729743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01925970.4A Expired - Lifetime EP1319702B1 (en) 2000-08-07 2001-04-26 Aqueous lubricant for plastic working of metallic material and method of lubricant film processing

Country Status (8)

Country Link
US (1) US20030130137A1 (en)
EP (1) EP1319702B1 (en)
JP (1) JP3984158B2 (en)
KR (1) KR100621693B1 (en)
CN (1) CN1214095C (en)
CA (1) CA2418942C (en)
MX (1) MXPA03000789A (en)
WO (1) WO2002012419A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299838C (en) * 2005-01-28 2007-02-14 武汉理工大学 Semifinished product composite lubricating film coating method for cold forging
WO2007088649A1 (en) 2006-01-31 2007-08-09 Nissan Motor Co., Ltd. Nanoparticle-containing lubricating oil compositions
US20090048129A1 (en) * 2006-01-31 2009-02-19 Nissan Motor Co., Ltd. Nanoparticle-containing lubricating oil compositions
CN101747980B (en) * 2008-12-08 2012-08-22 北京有色金属研究总院 Lubricant used for swing and rolling forming and use method thereof
KR101156399B1 (en) * 2009-11-16 2012-06-13 김영량 Surface lubrication treatment material for hot and constant temperature pozing process
JP5541575B2 (en) * 2010-03-18 2014-07-09 新日鐵住金ステンレス株式会社 Stainless steel wire rod for warm forging and its plastic working method
CN102092987B (en) * 2010-12-02 2012-10-10 二重集团(德阳)重型装备股份有限公司 Thermal-insulation adhesive for die-forging of forge pieces and preparation method thereof
KR20130130054A (en) 2011-03-28 2013-11-29 니혼 파커라이징 가부시키가이샤 Highly lubricating solid lubricant
CN102784983A (en) * 2011-05-20 2012-11-21 昆山市瑞捷精密模具有限公司 Working solution for high-speed wire electrical discharge machining
JP2013209625A (en) * 2012-02-27 2013-10-10 Kobe Steel Ltd Water-soluble lubricating agent for plastic working, metal material for plastic working, and worked metal article
US9192973B1 (en) 2013-03-13 2015-11-24 Meier Tool & Engineering, Inc. Drawing process for titanium
JP6694769B2 (en) 2015-09-30 2020-05-20 株式会社神戸製鋼所 Steel wire rod with excellent corrosion resistance and appearance after processing
KR102006129B1 (en) * 2017-09-21 2019-08-01 재단법인 포항산업과학연구원 Pre-treatment agent for metal stainless steel drawing process and method for preparing the same
CN108219912B (en) * 2017-12-30 2023-02-03 常州市奥普泰科光电有限公司 Water-based metal cutting fluid and preparation method thereof
KR102004352B1 (en) * 2018-05-30 2019-10-17 김영량 Water-dispersible lubricant compositions for warm and hot forging
CN109609250A (en) * 2019-01-03 2019-04-12 上海润莱博化工有限公司 A kind of water-soluble metal contour machining procedure lubricant and preparation method thereof
TWI679070B (en) * 2019-04-09 2019-12-11 金允成企業股份有限公司 Forging and drawing method for aluminum alloy pipe fittings
CN112195055B (en) * 2020-09-30 2022-08-19 郑州机械研究所有限公司 Drawing lubricant for flux-cored copper-based solder wire, drawing lubrication method, flux-cored copper-based solder wire and application thereof
CN113210448B (en) * 2021-05-17 2022-06-03 西北有色金属研究院 Cold drawing preparation method of TB9 titanium alloy disc wire with lubricating coating
CN113399483B (en) * 2021-06-07 2022-10-18 威海银兴预应力线材有限公司 Environment-friendly lubricating coating agent for cold-drawn steel wire and preparation method and application thereof
CN114806692A (en) * 2022-05-16 2022-07-29 北京天海工业有限公司 Easy-to-clean lubricating liquid suitable for multi-pass stamping and deep drawing of aluminum alloy
CN116333806A (en) * 2023-03-21 2023-06-27 颖兴新材料(广东)有限公司 Silicon-containing lubricating composition with high corrosion resistance, and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168241A (en) * 1978-03-14 1979-09-18 Aichi Steel Works, Limited Lubricant and method for non-chip metal forming
SU840089A1 (en) * 1979-09-18 1981-06-23 Forostyan Yurij N Grease for hot pressure-working of metals
US4403490A (en) * 1981-06-24 1983-09-13 E/M Lubricants, Inc. Metal forming lubricant and method of use thereof
CH669129A5 (en) * 1986-04-04 1989-02-28 Lonza Ag LUBRICANT SYSTEM FOR SHEET AND PROFILE ROLLING MILLS.
US6194357B1 (en) * 1996-06-21 2001-02-27 Henkel Corporation Waterborne lubricant for the cold plastic working of metals
IN192718B (en) * 1998-06-09 2004-05-15 Nihon Parkerizing
US6455476B1 (en) * 1998-06-09 2002-09-24 Henkel Corporation Composition and process for lubricated plastic working of metals
JP2000309793A (en) * 1999-04-27 2000-11-07 Nippon Parkerizing Co Ltd Water-based lubricant for plastic working of metallic material
AU6212000A (en) * 1999-07-13 2001-01-30 Century Chemical Corporation Improved process and product for lubricating metal prior to cold forming

Also Published As

Publication number Publication date
CN1468294A (en) 2004-01-14
JP3984158B2 (en) 2007-10-03
KR100621693B1 (en) 2006-09-08
WO2002012419A1 (en) 2002-02-14
CA2418942C (en) 2010-09-14
CN1214095C (en) 2005-08-10
MXPA03000789A (en) 2004-11-01
KR20030027002A (en) 2003-04-03
EP1319702A4 (en) 2004-08-11
EP1319702A1 (en) 2003-06-18
CA2418942A1 (en) 2003-02-07
US20030130137A1 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
EP1319702B1 (en) Aqueous lubricant for plastic working of metallic material and method of lubricant film processing
EP1319703B1 (en) Aqueous lubricant for plastic working of metallic material and method for forming lubricant film
CA2713541C (en) A process for the coating of metallic surfaces with a phosphate layer and then with a polymeric lubricant layer
KR101633016B1 (en) Method for coating metal surfaces with a wax-containing lubricant composition
AU2009209699B2 (en) Method for coating metal surfaces with a lubricant composition
WO2013129268A1 (en) Water-soluble lubricating agent for plastic working, metal material for plastic working, and worked metal article
JPWO2002020704A1 (en) Water-based one-step type lubricant for high efficiency cold forging
WO2011040261A1 (en) Aqueous lubricating coating agent for metal material plasticity processing, and metal material having excellent plasticity
EP4174155A1 (en) Boron-free water-based lubricant for plastic working

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030214

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR IT LI

A4 Supplementary search report drawn up and despatched

Effective date: 20040629

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 10N 40:24 Z

Ipc: 7C 10M 143:02 J

Ipc: 7C 10M 125:26 J

Ipc: 7C 10M 125:02 J

Ipc: 7C 10M 173/00 J

Ipc: 7B 21J 3/00 B

Ipc: 7B 21C 9/00 B

Ipc: 7B 21C 9/02 B

Ipc: 7C 10M 111/00 A

Ipc: 7C 10M 173/00 B

17Q First examination report despatched

Effective date: 20051115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL AG & CO. KGAA

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160601

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60150196

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60150196

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170424

Year of fee payment: 17

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170810

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180420

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180420

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60150196

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430