WO2012132958A1 - リチウム二次電池及びその製造方法 - Google Patents

リチウム二次電池及びその製造方法 Download PDF

Info

Publication number
WO2012132958A1
WO2012132958A1 PCT/JP2012/056845 JP2012056845W WO2012132958A1 WO 2012132958 A1 WO2012132958 A1 WO 2012132958A1 JP 2012056845 W JP2012056845 W JP 2012056845W WO 2012132958 A1 WO2012132958 A1 WO 2012132958A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
material layer
conductive agent
Prior art date
Application number
PCT/JP2012/056845
Other languages
English (en)
French (fr)
Inventor
勝一郎 澤
福井 厚史
泰三 砂野
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/004,245 priority Critical patent/US9070940B2/en
Priority to JP2013507384A priority patent/JP6049611B2/ja
Priority to CN201280026583.4A priority patent/CN103563131A/zh
Publication of WO2012132958A1 publication Critical patent/WO2012132958A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium secondary battery and a method for manufacturing the same.
  • Patent Document 1 describes a negative electrode obtained by sintering an active material layer containing a silicon-containing active material and a polyimide binder in a non-oxidizing atmosphere.
  • An object of the present invention is to provide a lithium secondary battery excellent in cycle characteristics and a method for manufacturing the same.
  • the lithium secondary battery of the present invention includes a negative electrode.
  • the negative electrode has a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is disposed on the negative electrode current collector.
  • the negative electrode active material layer includes negative electrode active material particles, negative electrode conductive agent particles, and a negative electrode binder.
  • concentration of the negative electrode electrically conductive agent particle in the surface layer on the opposite side to the negative electrode collector of a negative electrode active material layer is higher than the density
  • the method for producing a lithium secondary battery of the present invention is a method by which the lithium secondary battery of the present invention can be produced.
  • a negative electrode mixture slurry containing negative electrode active material particles, negative electrode conductive agent particles, and a negative electrode binder and having a viscosity of 70 mPa ⁇ s to 120 mPa ⁇ s is prepared.
  • a negative electrode active material layer is formed by applying a negative electrode mixture slurry onto a negative electrode current collector and drying the applied negative electrode mixture slurry by setting an initial drying temperature in a range of 100 ° C. to 150 ° C. .
  • FIG. 1 is a schematic perspective view showing an electrode body produced in an example.
  • the hatched region in FIG. 1 does not represent a cross section.
  • FIG. 2 is a schematic plan view showing the lithium secondary battery produced in the example. In FIG. 2, the hatched area does not represent a cross section.
  • FIG. 3 is a schematic cross-sectional view along the line AA shown in FIG.
  • FIG. 4A is a reflected electron image of a scanning electron microscope (SEM) on the surface of the negative electrode in one example.
  • FIG. 4B is an EDS (energy dispersion method) image of the negative electrode surface in one example.
  • FIG. 5A is a reflected electron image of a scanning electron microscope (SEM) on the negative electrode surface in another example.
  • FIG. 5B is an EDS (energy dispersion method) image of the negative electrode surface in another example.
  • FIG. 6A is a reflected electron image of a scanning electron microscope (SEM) on the negative electrode surface in the comparative example.
  • FIG. 6B is an EDS (energy dispersion method) image of the negative electrode surface in the comparative example.
  • FIG. 7 is an image obtained by superimposing a scanning electron microscope (SEM) image of the cross section of the negative electrode of Example 1 and a mapping image of oxygen element (O).
  • FIG. 8 is a mapping image of oxygen element (O) in the cross section of the negative electrode of Example 1.
  • FIG. 9 is a mapping image of carbon element (C) in the cross section of the negative electrode of Example 1.
  • the concentration of the negative electrode conductive agent particle in the surface layer of the negative electrode active material layer opposite to the negative electrode current collector is greater than the concentration of the negative electrode conductive agent particle in the central portion of the negative electrode active material layer. high.
  • the surface layer of the negative electrode active material layer opposite to the negative electrode current collector is generally in contact with the separator.
  • the separator holds a large amount of electrolytic solution. Accordingly, the negative electrode active material can be obtained by allowing the negative electrode active material layer to have a large amount of negative electrode conductive agent particles having high liquid retention and liquid absorption in the surface layer opposite to the negative electrode current collector.
  • the layer can be supplied efficiently. As a result, lithium ions are easily supplied to the negative electrode active material particles. Therefore, deterioration of the negative electrode active material particles can be suppressed, and good charge / discharge characteristics can be obtained.
  • the average particle diameter of the negative electrode active material particles is preferably larger than the average particle diameter of the negative electrode conductive agent particles.
  • the negative electrode conductive agent particles having a small average particle diameter are converted into the negative electrode active material layer as the solvent component in the negative electrode mixture slurry evaporates. It becomes easy to move to the surface side opposite to the negative electrode current collector. For this reason, the density
  • the average particle diameter of the negative electrode active material particles is larger than the average particle diameter of the negative electrode conductive agent particles in the range of 2 ⁇ m to 10 ⁇ m.
  • the average particle diameter of the negative electrode active material particles is not sufficiently large with respect to the average particle diameter of the negative electrode conductive agent particles, the concentration of the negative electrode conductive agent particles in the surface layer opposite to the negative electrode current collector of the negative electrode active material layer is It may be difficult to increase.
  • the average particle diameter of the negative electrode active material particles is too large with respect to the average particle diameter of the negative electrode conductive agent particles, the dispersibility of the particles contained in the negative electrode mixture slurry deteriorates when the negative electrode mixture slurry is produced. There is a case.
  • the average particle diameter of the negative electrode active material particles is preferably in the range of 7 ⁇ m to 12 ⁇ m.
  • the average particle diameter of the negative electrode conductive agent particles is preferably in the range of 2 ⁇ m to 5 ⁇ m.
  • the BET specific surface area of the negative electrode conductive agent particles is preferably larger than the BET specific surface area of the negative electrode active material particles.
  • the liquid retention property of the negative electrode conductive agent particles is higher than the liquid retention property of the negative electrode active material particles. Therefore, the effect of improving the liquid retention of the negative electrode by the negative electrode conductive agent particles is further increased.
  • the BET specific surface area of the negative electrode conductive agent particles is more preferably 7 m 2 / g to 15 m 2 / g. If the BET specific surface area of the negative electrode conductive agent particles is too small, the liquid retention property of the negative electrode conductive agent particles is lowered, and thus the charge / discharge characteristics may be deteriorated.
  • the BET specific surface area of the negative electrode conductive agent particles is too large, the amount of the negative electrode binder present around the negative electrode conductive agent particles increases, and therefore the amount of the negative electrode binder present around the negative electrode active material particles decreases. For this reason, the adhesiveness between negative electrode active material particles falls and the outstanding charging / discharging characteristic may not be acquired.
  • the negative electrode conductive agent particles for example, metal particles or carbon materials such as carbon black can be used. Among these, a carbon material is more preferably used as the negative electrode conductive agent particle. Graphite particles are more preferably used as negative electrode conductive agent particles. Graphite particles have many voids. For this reason, the graphite particles have a lower density than NMP. Therefore, when graphite particles are used as the negative electrode conductive agent particles, the negative electrode conductive agent easily moves to the surface layer of the negative electrode active material layer opposite to the negative electrode current collector when the negative electrode mixture slurry is dried.
  • the content of the negative electrode conductive agent particles in the negative electrode active material layer is preferably in the range of 1% by mass to 10% by mass with respect to the mass of the negative electrode active material. If the content of the negative electrode conductive agent particles in the negative electrode active material layer is too small, the cycle characteristics and the like may not be sufficiently improved. When there is too much content of the negative electrode electrically conductive agent particle in a negative electrode active material layer, the quantity of the negative electrode binder which exists around a negative electrode active material particle will reduce. For this reason, while the adhesiveness between negative electrode active material particles falls, the adhesiveness of a negative electrode active material layer and a negative electrode collector may fall. Therefore, the charge / discharge characteristics may deteriorate.
  • the negative electrode active material particles include at least one of silicon and an alloy containing silicon.
  • the silicon alloy include solid solutions of silicon and one or more other elements, intermetallic compounds, and eutectic alloys.
  • Examples of a method for producing an alloy containing silicon include an arc melting method, a liquid quenching method, a mechanical alloying method, a sputtering method, a chemical vapor deposition method, and a firing method.
  • Specific examples of the liquid quenching method include a single roll quenching method, a twin roll quenching method, and an atomizing method such as a gas atomizing method, a water atomizing method, and a disk atomizing method.
  • the negative electrode active material particles may be particles made of at least one of silicon and a silicon alloy coated with a metal, an alloy, or the like.
  • the negative electrode active material particles may have a nucleus containing at least one of silicon and a silicon alloy, and a coating layer that covers the nucleus and is made of a metal, an alloy, or the like.
  • Examples of the method for coating the core with the coating layer include an electroless plating method, an electrolytic plating method, a chemical reduction method, a vapor deposition method, a sputtering method, and a chemical vapor deposition method.
  • the negative electrode binder is preferably a polyimide resin obtained by imidizing a tetracarboxylic acid anhydride with diamine, for example.
  • a polyimide resin obtained by imidizing a tetracarboxylic acid anhydride with a diamine can be formed, for example, by reacting an esterified product of a tetracarboxylic acid anhydride with an alcohol and a diamine compound. Specifically, heat treatment is performed in a non-oxidizing atmosphere in a state where a layer containing a mixture of an ester compound of tetracarboxylic anhydride with an alcohol and a diamine is disposed on the negative electrode current collector.
  • the binder precursor a mixture of an ester compound of a tetracarboxylic acid anhydride and a diamine, which is a mixture of monomer components of a polyimide resin, may be used.
  • the viscosity of the binder precursor can be made lower than the viscosity of the binder precursor in a polymer state such as a general polyamic acid as a precursor of the polyimide resin. Therefore, the binder precursor is likely to enter the irregularities on the surface of the negative electrode active material particles when preparing the negative electrode mixture slurry or applying the negative electrode mixture slurry. Therefore, the anchor effect generated between the negative electrode active material particles and the binder and the anchor effect generated between the negative electrode current collector and the binder are increased.
  • the adhesion between the negative electrode active material particles and the adhesion between the negative electrode active material layer and the negative electrode current collector can be further improved.
  • the viscosity of a binder precursor can be made low, it becomes easy for a negative electrode electrically conductive agent particle to move to the opposite side to the negative electrode collector of a negative electrode active material layer. Therefore, it is easy to increase the concentration of the negative electrode conductive agent particles in the surface layer of the negative electrode active material layer opposite to the negative electrode current collector.
  • alcohols that esterify tetracarboxylic acid anhydrides include compounds having one alcoholic hydroxy group.
  • Specific examples of the compound having one alcoholic hydroxy group include aliphatic alcohols such as methanol, ethanol, isopropanol and butanol.
  • the negative electrode binder is preferably a polyimide resin obtained by imidizing tetracarboxylic anhydride with diamine.
  • the tetracarboxylic acid anhydride preferably includes at least one of a tetracarboxylic acid anhydride represented by the following formula (1) and a tetracarboxylic acid anhydride represented by the following formula (2).
  • the diamine preferably contains a diamine represented by the following formula (3).
  • the tetracarboxylic acid anhydride represented by the formula (1) and the diamine represented by the formula (3) are contained in the negative electrode mixture slurry, during the heat treatment of the negative electrode active material layer, the tetracarboxylic acid anhydride and A polymerization reaction and an imidization reaction occur between the diamine and a polyimide resin having a structure represented by the following formula (4).
  • the tetracarboxylic acid anhydride represented by the formula (2) and the diamine represented by the formula (3) are contained in the negative electrode mixture slurry, during the heat treatment of the negative electrode active material layer, the tetracarboxylic acid anhydride and A polymerization reaction and an imidization reaction occur between the diamine and at least one of polyimide resins having a structure represented by the following formula (5).
  • the polyimide resin having the structure represented by the formula (4) and the polyimide resin having the structure represented by the formula (5) are excellent in mechanical strength and adhesion. Therefore, by including a polyimide resin having a structure represented by formula (4) or formula (5) in the negative electrode active material layer, adhesion between the negative electrode active material particles or the negative electrode active material layer and the negative electrode current collector The adhesion between the two can be improved. As a result, excellent charge / discharge characteristics can be obtained.
  • tetracarboxylic acid anhydrides examples include 1,2,4,5-benzenetetracarboxylic acid 1,2: 4,5-dianhydride (also known as pyromellitic dianhydride), 3,3 ', 4,4 Aromatics such as' -diphenylsulfonetetracarboxylic dianhydride, 3,3 ', 4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3', 4,4'-diphenylmethanetetracarboxylic dianhydride Tetracarboxylic dianhydride can also be preferably used.
  • diamines examples include p-phenylenediamine, 3,3′-diaminobenzophenone, 4,4′-diaminobiphenyl, 4,4′-diaminodiphenyl sulfone, 4,4′-diaminophenyl ether, 4,4′-diaminophenyl.
  • Aromatic diamines such as methane, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene Can also be preferably used.
  • the negative electrode binder may further contain a hexavalent or higher polycarboxylic acid anhydride or a trivalent or higher polyvalent amine.
  • the polycarboxylic acid anhydride undergoes a polymerization reaction and an imidization reaction with a diamine or a polyvalent amine.
  • a polyimide resin having a crosslinked structure is formed.
  • the polyvalent amine undergoes a polymerization reaction and an imidization reaction with a tetracarboxylic acid anhydride or a polycarboxylic acid anhydride.
  • a polyimide resin having a crosslinked structure is formed.
  • the polyimide resin having a crosslinked structure is excellent in mechanical strength. For this reason, the strength of the negative electrode binder is further improved. Accordingly, it is possible to obtain better charge / discharge characteristics.
  • polycarboxylic acid anhydrides include benzenehexacarboxylic acid dianhydride (mellitic anhydride), 1,2,3,4,5,6-cyclohexane, which is an anhydride of benzenehexacarboxylic acid (mellitic acid).
  • mellitic anhydride 1,2,3,4,5,6-cyclohexane
  • examples include hexacarboxylic acid anhydride.
  • polyvalent amine examples include tris (4-aminophenyl) methanol (also known as pararose aniline), tris (4-aminophenyl) methane, 3,4,4′-triaminodiphenyl ether, 3,4,4. '-Triaminobenzophenone, 3,4,4'-triaminodiphenylmethane, 1,4,5-triaminonaphthalene, tris (4-aminophenyl) amine, 1,2,4-triaminobenzene, 1,3 And aromatic triamines such as 5-triaminobenzene.
  • polyvalent amine examples include triamines such as 2,4,6-triamino-1,3,5-triazine (also known as melamine) and 1,3,5-triaminocyclohexane, tetrakis (4-aminophenyl), and the like.
  • triamines such as 2,4,6-triamino-1,3,5-triazine (also known as melamine) and 1,3,5-triaminocyclohexane, tetrakis (4-aminophenyl), and the like.
  • tetraamines such as' N'-tetrakis (4-methylphenyl) benzidine.
  • the negative electrode current collector can be composed of, for example, a conductive metal foil.
  • the conductive metal foil include a foil made of a metal such as copper, nickel, iron, titanium, cobalt, manganese, tin, silicon, chromium, zirconium, or an alloy containing one or more of these metals.
  • the negative electrode current collector is more preferably composed of a conductive metal foil containing a metal element that easily diffuses into the active material particles.
  • the negative electrode current collector is more preferably composed of a foil made of copper or an alloy containing copper.
  • the thickness of the negative electrode current collector can be, for example, about 10 ⁇ m to 100 ⁇ m.
  • the positive electrode active material preferably used include lithium transition metal composite oxides containing cobalt, nickel, manganese and the like.
  • Specific examples of the lithium transition metal composite oxide include LiCoO 2 and Li a Ni 1- bc Co b Al c O 2 (where a, b and c are 0 ⁇ a ⁇ 1.1, 0. 1 ⁇ b ⁇ 0.3, satisfying 0.03 ⁇ c ⁇ 0.10) and the like.
  • Li a Ni 1- bc Co b Al c O 2 (where a, b and c are 0 ⁇ a ⁇ 1.1, 0.1 ⁇ b ⁇ 0.3, 0.03 ⁇ c ⁇ 0. 10) has a high Ni composition ratio.
  • a lithium transition metal composite oxide having a high Ni composition ratio is used as a positive electrode active material, than when a lithium transition metal composite oxide having a low Ni composition ratio such as LiCoO 2 is used as a positive electrode active material, The weight energy density in the same potential range increases. For this reason, by using a lithium transition metal composite oxide having a high Ni composition ratio as the positive electrode active material, it is possible to increase the energy density of the lithium secondary battery.
  • the crystal structure of the lithium transition metal composite oxide having a high Ni composition ratio is likely to deteriorate during charging or the like.
  • elution of metal components such as Ni and Co occurs.
  • the eluate such as Ni and Co migrates at the time of charge and discharge and reaches the surface of the negative electrode.
  • the eluate that has reached the surface of the negative electrode side-reacts with the electrolyte on the negative electrode surface.
  • the negative electrode conductive agent particles serve as a filter that collects the eluate.
  • Li a Ni 1- bc Co b Al c O 2 (where a, b and c are 0 ⁇ a ⁇ 1.1, 0.1 ⁇ b ⁇ 0.3, 0.03 ⁇ c ⁇ 0.10) is used as a positive electrode active material, a large amount of negative electrode conductive agent particles are present on the surface layer of the negative electrode active material layer opposite to the negative electrode current collector. It is effective to use a negative electrode.
  • the solvent preferably used for the non-aqueous electrolyte include, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and fluoroethylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, cyclic Examples thereof include a mixed solvent of carbonate and chain carbonate.
  • solute preferably used for the non-aqueous electrolyte include, for example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 and mixtures thereof.
  • a gel polymer electrolyte in which a polymer electrolyte such as polyethylene oxide or polyacrylonitrile is impregnated with an electrolytic solution, or an inorganic solid electrolyte such as LiI or Li 3 N may be used.
  • the nonaqueous electrolyte preferably contains CO 2 .
  • the viscosity of the negative electrode mixture slurry is in the range of 70 mPa ⁇ s to 120 mPa ⁇ s. If the viscosity of the negative electrode mixture slurry is too low, handling of the negative electrode mixture slurry becomes difficult, and problems such as difficulty in controlling the thickness of the negative electrode active material layer during application may occur. When the viscosity of the negative electrode mixture slurry is too high, the negative electrode active material layer of the negative electrode conductive material particles when the negative electrode mixture slurry applied on the negative electrode current collector is dried is transferred to the surface layer opposite to the negative electrode current collector. Movement may be difficult to occur.
  • the negative electrode mixture slurry applied on the negative electrode current collector by setting the initial drying temperature in the range of 100 ° C. to 150 ° C. If the initial drying temperature is too low, the evaporation rate of the solvent component in the negative electrode mixture slurry during drying decreases. For this reason, it may be difficult for the negative electrode conductive agent particles to move to the surface layer of the negative electrode active material layer opposite to the negative electrode current collector. If the initial drying temperature is too high, the negative electrode binder may be altered by heat, and the function as the negative electrode binder may deteriorate. If the initial drying temperature is too high, the negative electrode conductive material may not easily move to the surface layer of the negative electrode active material layer opposite to the negative electrode current collector.
  • the temperature of the heat treatment is preferably a temperature lower than the temperature at which the negative electrode binder is reduced by 5% by mass.
  • the temperature of the heat treatment is preferably a temperature exceeding the glass transition temperature of the negative electrode binder.
  • the temperature of the negative electrode active material layer exceeds the glass transition temperature of the negative electrode binder, the negative electrode binder becomes a plastic region. For this reason, a negative electrode binder becomes easy to enter into the unevenness
  • the anchor effect between the negative electrode binder and each of the negative electrode active material particles and the negative electrode current collector is more greatly expressed. Therefore, the adhesion between the negative electrode active material particles is further improved, and the adhesion between the negative electrode active material layer and the negative electrode current collector is further improved.
  • Example 1 (Production of negative electrode) (Preparation of negative electrode active material particles) Polycrystalline silicon fine particles were introduced into a fluidized bed having an internal temperature of 800 ° C., and monosilane (SiH 4 ) was introduced to produce granular polycrystalline silicon.
  • the granular polycrystalline silicon was pulverized using a jet mill and then classified by a classifier.
  • polycrystalline silicon powder (negative electrode active material particles) having a median diameter of 9 ⁇ m was obtained.
  • the median diameter was a diameter having a cumulative volume of 50% in the particle size distribution measurement by the laser light diffraction method.
  • the crystallite size of the polycrystalline silicon powder was calculated by the Scherrer equation using the half width of the silicon (111) peak of powder X-ray diffraction.
  • the crystallite size of the polycrystalline silicon powder was 44 nm.
  • the BET specific surface area of the polycrystalline silicon powder was 0.9 m 2 / g.
  • Negative electrode active material particles, graphite powder as negative electrode conductive agent particles, and negative electrode binder precursor solution a1 were mixed.
  • the average particle size of the graphite powder was 3 ⁇ m.
  • the BET specific surface area of the graphite powder was 12.5 m 2 / g.
  • the mass ratio of the negative electrode active material particles, the negative electrode conductive agent particles, and the negative electrode binder was 89.53: 3. 73: 6.74.
  • NMP was further mixed with the obtained mixture to obtain a negative electrode mixture slurry having a viscosity of 75 mPa ⁇ s.
  • the viscosity was measured with a TV-22 viscometer manufactured by Toki Sangyo Co., Ltd.
  • the negative electrode mixture slurry was applied on one surface of the negative electrode current collector in air at 25 ° C., and left for 1 minute to form a negative electrode active material layer. Thereafter, the negative electrode active material layer was dried by passing through a drying path at a line speed of 5 m / min.
  • the drying path was composed of four chambers each having a length of 1.5 m.
  • the temperature of the first chamber was 110 ° C.
  • the temperature of the second chamber was 120 ° C.
  • the temperature of the third chamber was 120 ° C.
  • the temperature in the fourth chamber was 120 ° C.
  • the wind speed in each of the first to fourth chambers was set to 6 m / sec.
  • a copper alloy foil having both surfaces roughened by electrolytic copper and a thickness of 18 ⁇ m (C7025 alloy foil, composition: Cu 96.2 mass%, Ni 3 mass%, Si 0.65 mass%) , Mg 0.15% by mass).
  • the surface roughness Ra (JIS B 0601-1994) of each surface of the copper alloy stay was 0.25 ⁇ m.
  • the average peak spacing S (JIS B 0601-1994) on each surface of the copper alloy stay was 0.85 ⁇ m.
  • a negative electrode active material layer was similarly formed on the other surface of the negative electrode current collector.
  • the negative electrode current collector with the negative electrode active material layer formed on both sides was rolled in air at 25 ° C. Thereafter, the rolled product was cut into a rectangular shape having a length of 380 mm and a width of 52 mm, and then heat-treated in an argon atmosphere at 400 ° C. for 10 hours to produce a negative electrode.
  • the mass per unit area of the negative electrode active material layer was 5.6 mg / cm 2 .
  • the thickness of the negative electrode active material layer was 56 ⁇ m.
  • a nickel plate as a negative electrode current collecting tab was connected to the end of the negative electrode.
  • the negative electrode binder precursor solution a1 was dried in air at 120 ° C. to remove NMP. Then, it heat-processed for 10 hours in 400 degreeC argon atmosphere. An infrared (IR) absorption spectrum of the obtained sample was measured. As a result, a peak derived from an imide bond was detected in the vicinity of 1720 cm ⁇ 1 . From this result, it confirmed that the polymerization reaction and the imidation reaction advanced and the polyimide compound was producing
  • Li 2 CO 3 and CoCO 3 were mixed in a mortar so that the molar ratio of Li and Co was 1: 1. Thereafter, the mixture was heat-treated in an air atmosphere at 800 ° C. for 24 hours. Then, this was pulverized to obtain a lithium cobalt composite oxide powder represented by LiCoO 2 .
  • the average particle size of the lithium cobalt composite oxide powder was 10 ⁇ m.
  • the BET specific surface area of the obtained lithium cobalt composite oxide powder (positive electrode active material powder) was 0.37 m 2 / g.
  • LiCoO 2 powder as a positive electrode active material powder, carbon material powder as a positive electrode conductive material particle, and polyvinylidene fluoride as a positive electrode binder are added to NMP as a dispersion medium, and then kneaded to obtain a positive electrode mixture slurry. Obtained.
  • the mass ratio of LiCoO 2 powder, carbon material powder and polyvinylidene fluoride was 95: 2.5: 2.5.
  • the positive electrode mixture slurry was applied on both surfaces of an aluminum foil as a positive electrode current collector, dried, and then rolled to produce a positive electrode.
  • the thickness of the aluminum foil was 15 ⁇ m.
  • the length of the aluminum foil was 402 mm.
  • the width of the aluminum foil was 50 mm.
  • the length of the coating part on the one main surface side of the aluminum foil was 340 mm.
  • variety of the application part of the one main surface side of aluminum foil was 50 mm.
  • the length of the application part on the other main surface side of the aluminum foil was 270 mm.
  • the width of the application part on the other main surface side of the aluminum foil was 50 mm.
  • the amount of the active material layer on the aluminum foil was 48 mg / cm 2 at the portion where the active material layer was formed on both sides.
  • the total thickness of the active material layer was 143 ⁇ m at the portion where the active material layer was formed on both sides.
  • An aluminum plate was connected to the uncoated portion of the positive electrode active material layer at the end of the positive electrode as a positive electrode current collecting tab.
  • the positive electrode and the negative electrode were opposed to each other with a separator having a thickness of 20 ⁇ m, and the positive electrode tab and the negative electrode tab were wound in a spiral shape using a cylindrical core so that both of the positive electrode tab and the negative electrode tab had the outermost periphery. Thereafter, the winding core was pulled out to produce a spiral electrode body. Next, the spiral electrode body was crushed to obtain a flat electrode body.
  • a schematic perspective view of the produced flat electrode body is shown in FIG. As shown in FIG. 1, the end portions of the positive electrode current collecting tab 1 and the negative electrode current collecting tab 2 are taken out from the electrode body 3.
  • a polyethylene microporous membrane was used as the separator. The length of the polyethylene microporous membrane was 450 mm. The width of the polyethylene microporous membrane was 54.5 mm. The piercing strength of the polyethylene microporous membrane was 340 g. The porosity of the polyethylene microporous membrane was 45%.
  • Battery A1 has an exterior body 4 made of an aluminum laminate.
  • the outer layer body 4 has a closed portion 5 in which ends of aluminum foil are heat-sealed.
  • the battery A1 further includes a positive electrode current collector tab 1, a negative electrode current collector tab 2, and an electrode body 3 (flat electrode body) wound in a state where the separator 8 is sandwiched between the positive electrode 6 and the negative electrode 7. .
  • a battery B1 was produced in the same manner as in Example 1 except that the drying conditions of the applied negative electrode mixture slurry were as follows.
  • the product was passed through the drying path at a line speed of 1 m / min.
  • the temperature of the first chamber was 60 ° C.
  • the temperature of the second chamber was 60 ° C.
  • the third temperature was set to 60 ° C.
  • the fourth temperature was chamber 120 ° C.
  • the wind speed in the first chamber was set to 2 m / sec.
  • the wind speed in the second chamber was set to 2 m / sec.
  • the wind speed in the third chamber was set to 2 m / sec.
  • the wind speed in the fourth chamber was set to 6 m / sec.
  • Constant current charging was performed until the battery voltage reached 4.2 V at a current of 1000 mA. Further, constant voltage charging was performed until the current value reached 50 mA at a voltage of 4.2 V.
  • the cycle life was obtained by the following calculation method.
  • Cycle life The number of cycles when the capacity maintenance rate reached 90%.
  • the capacity retention ratio is a value obtained by dividing the discharge capacity at the nth cycle by the discharge capacity at the first cycle.
  • Table 1 shows the cycle life of each of the battery A1 and the battery B1.
  • Liquid absorbency 1 / (required time to complete penetration)
  • Table 1 shows the drying conditions of the negative electrode mixture slurry and the viscosity of the negative electrode mixture slurry.
  • Table 1 shows that the liquid absorption property of the negative electrode active material layer in battery A1 is higher than the liquid absorption property of the negative electrode active material layer of battery B1. It can be seen that battery A1 has a better cycle life than battery B2.
  • Example 2 Example except that 70% by mass of the negative electrode binder precursor and 30% by mass of a polymer type polyimide binder (trade name “U Varnish A” manufactured by Ube Industries) were used as the negative electrode binder precursor.
  • a negative electrode mixture slurry was prepared.
  • As a negative electrode binder precursor the substantially same thing as the negative electrode binder precursor used in Example 1 was used.
  • the viscosity of the negative electrode mixture slurry was 110 mPa ⁇ s. Other than that was carried out similarly to Example 1, and produced the negative electrode and the battery.
  • the charge / discharge cycle characteristics of the battery produced in Example 2 were evaluated.
  • the measurement conditions for the charge / discharge cycle characteristics are the same as the charge / discharge cycle conditions.
  • the battery produced in Example 2 had a charge / discharge cycle life of 98. From this result, it can be seen that the cycle life of the battery prepared in Example 2 is comparable to the cycle life of the battery A1.
  • the carbon element (C) was mapped by SEM-EDS (energy dispersion method) on the surfaces of the negative electrode produced in Example 1, the negative electrode produced in Example 2, and the negative electrode produced in Comparative Example 1. .
  • the carbon element (C) is contained in the negative electrode binder and the negative electrode conductive agent particles. For this reason, the total distribution of the negative electrode binder and the negative electrode conductive agent particles can be estimated by mapping the carbon element (C).
  • FIG. 4A is a reflected electron image of a scanning electron microscope (SEM) on the negative electrode surface of Example 1.
  • FIG. 5A is a reflected electron image of a scanning electron microscope (SEM) on the negative electrode surface of Example 2.
  • FIG. 6A is a reflected electron image of a scanning electron microscope (SEM) on the negative electrode surface of Comparative Example 1.
  • FIG. 4B is an EDS mapping image of the negative electrode surface of Example 1.
  • FIG. 5B is an EDS mapping image of the negative electrode surface of Example 2.
  • 6B is an EDS mapping image of the negative electrode surface of Comparative Example 1.
  • FIG. In the EDS mapping image the carbon element (C) is shown in white.
  • the mass ratio of the negative electrode active material particles, the negative electrode conductive agent particles, and the negative electrode binder in the negative electrode active material layer is 89.53: 3.73: 6.74. is there.
  • the true density of the negative electrode active material particles is 2.34 g / cm 3 .
  • the true density of the negative electrode conductive agent particles is 2.26 g / cm 3 .
  • the true density of the negative electrode binder is 1.4 g / cm 3 . Therefore, the volume ratio of the negative electrode active material particles, the negative electrode conductive agent particles, and the negative electrode binder in the negative electrode active material layer (negative electrode active material particles: negative electrode conductive agent particles: negative electrode binder) is 85.6: 3.69: 10. .71. Therefore, the total volume ratio of the negative electrode conductive agent particles and the negative electrode binder in the negative electrode active material layer is 14.4% by volume.
  • the total volume ratio of the negative electrode conductive agent particles and the negative electrode binder in the negative electrode active material layer is 14.4% by volume.
  • the concentration of carbon element (C) on the surface of the negative electrode active material layer is higher than the concentration of carbon element (C) in the center of the negative electrode active material layer.
  • FIG. 4B (Example 1) and FIG. 5B (Example 2) and FIG. 6B (Comparative Example 1) in Example 1 and Example 2, the negative electrode It can be seen that the concentration of carbon element (C) on the surface of the active material layer is higher than the concentration of carbon atoms (C) in the central portion of the negative electrode active material layer.
  • the negative electrode binder is dispersed in the form of small dots on the surface of the negative electrode active material particles.
  • the graphite particles that are the negative electrode conductive agent particles exist in a state where the negative electrode conductive agents are relatively hardened. In the SEM image, the black part is considered to be a lump of graphite particles.
  • the carbon element (C) exists in a solid state also in the EDS images of FIGS. 4B and 5B. Therefore, the cause of the high concentration of carbon element (C) in the surface layer of the negative electrode active material layer opposite to the negative electrode current collector is that the negative electrode conductive agent particles are on the surface layer opposite to the negative electrode current collector of the negative electrode active material layer. It can be seen that there are many.
  • the presence of a large amount of negative electrode conductive agent particles in the surface layer of the negative electrode active material layer opposite to the negative electrode current collector allows the negative electrode active material layer to retain electrolyte (liquid absorption and liquid retention). Seems to be higher.
  • the lithium ion is sufficiently supplied to the negative electrode active material particles, and the deterioration of the negative electrode active material particles is suppressed. It is considered that charge / discharge cycle characteristics can be obtained.
  • oxygen element (O) mapping was performed on the cross section of the negative electrode prepared in Example 1 by SEM-EDS (energy dispersion method) using a scanning electron microscope (SEM) manufactured by JEOL.
  • SEM scanning electron microscope
  • the acceleration voltage was 15 keV.
  • the irradiation current was 60 nA.
  • the field of view was 22 ⁇ m (the thickness of the negative electrode active material layer) ⁇ 44 ⁇ m (twice the thickness of the negative electrode active material layer).
  • FIG. 7 shows an image obtained by superimposing a scanning electron microscope (SEM) image of the cross section of the negative electrode of Example 1 and a mapping image of oxygen element (O).
  • SEM scanning electron microscope
  • O oxygen element
  • Example 1 the carbon element (C) was mapped to the cross section of the negative electrode produced in Example 1.
  • FIG. 9 the mapping image of the carbon element (C) of the cross section of the negative electrode of Example 1 is shown.
  • the distribution of the negative electrode conductive agent particles in Example 1 can be estimated by taking into consideration both the result of the carbon element (C) ratio and the result of the oxygen element (O) ratio.
  • the ratio of the carbon element in the part T1 on the opposite side of the negative electrode current collector of the negative electrode active material layer is the ratio of the carbon element in the part T2 and the part T3. You can see that there are more. For this reason, in part T1, it turns out that at least one of a negative electrode electrically conductive agent particle and a negative electrode binder is unevenly distributed.
  • the ratio of the oxygen element in the portion T1 on the opposite side of the negative electrode current collector of the negative electrode active material layer is the ratio of the oxygen element in the portion T2 and the portion T3. You can see that there are more. For this reason, it turns out that the negative electrode binder is unevenly distributed in the part T1.
  • the difference (part) between the proportion of oxygen element (O) in the portion T1 of the negative electrode active material layer opposite to the negative electrode current collector and the proportion of oxygen element (O) in the central portion T2 of the negative electrode active material layer corresponds to the difference between the proportion of the negative electrode binder in T1 and the proportion of the negative electrode binder in the portion T2)
  • the proportion of the carbon element (C) in the portion T1 and the proportion of the carbon element (C) in the portion T2 corresponds to the difference between the total ratio of the negative electrode binder and the negative electrode conductive agent particles in the portion T1 and the total ratio of the negative electrode binder and the negative electrode conductive agent particles in the portion T2.
  • the negative electrode conductive agent particles in the portion T1 of the negative electrode active material layer opposite to the negative electrode current collector are also compared by comparing the concentrations of the oxygen element (O) and the carbon element (C) in the portions T1 and T3. Can be found unevenly distributed.
  • Example 3 lithium nickel cobalt aluminum composite oxide was used as the positive electrode active material.
  • the positive electrode active material produced above, the carbon material powder as the positive electrode conductive agent particles, and polyvinylidene fluoride as the positive electrode binder were added to NMP as the dispersion medium, and then kneaded to obtain a positive electrode mixture slurry.
  • the mass ratio of the positive electrode active material, the carbon material powder, and the polyvinylidene fluoride was 95: 2.5: 2.5.
  • the positive electrode mixture slurry was applied on both sides of an aluminum foil as a positive electrode current collector, dried, and then rolled.
  • the thickness of the aluminum foil was 15 ⁇ m.
  • the length of the aluminum foil was 402 mm.
  • the width of the aluminum foil was 50 mm.
  • the length of the coating part on the one main surface side of the aluminum foil was 340 mm.
  • variety of the application part of the one main surface side of aluminum foil was 50 mm.
  • the length of the application part on the other main surface side of the aluminum foil was 270 mm.
  • the width of the application part on the other main surface side of the aluminum foil was 50 mm.
  • the amount of the active material layer on the aluminum foil was 36.6 mg / cm 2 at the portion where the active material layer was formed on both sides.
  • the total thickness of the active material layer on the aluminum foil was 117 ⁇ m at the portion where the active material layer was formed on both sides.
  • the aluminum plate was connected to the uncoated part of the positive electrode active material layer in the edge part of a positive electrode as a positive electrode current collection tab.
  • a battery A2 was produced in the same manner as in Example 1 except that the positive electrode obtained as described above was used.
  • the viscosity of the negative electrode mixture slurry at the time of preparing the negative electrode is 70 mPa ⁇ s to 120 mPa ⁇ s, and It can be seen that the battery A2 having an initial drying temperature of 100 ° C. to 150 ° C. after drying of the negative electrode mixture slurry exhibits an excellent cycle life as compared with the battery B2.
  • the battery A2 using the lithium nickel cobalt aluminum composite oxide as the positive electrode active material From the difference in cycle life between the battery A1 and the battery B1 using the lithium cobalt composite oxide as the positive electrode active material (see Table 1), the battery A2 using the lithium nickel cobalt aluminum composite oxide as the positive electrode active material and The difference in cycle life with battery B2 is greater. This is because the lithium nickel cobalt aluminum composite oxide is more susceptible to deterioration of the crystal structure at high potential and more elution of Ni and Co than the lithium cobalt composite oxide, but the negative electrode current collector of the negative electrode active material layer It is considered that the side reaction on the negative electrode surface between the eluate of Ni and Co and the electrolytic solution was suppressed by the presence of many negative electrode conductive agent particles on the surface layer on the opposite side to.
  • the present invention can be applied to, for example, a driving power source of a mobile information terminal such as a mobile phone, a notebook computer, and a PDA, in particular, where high energy density is required.
  • a driving power source of a mobile information terminal such as a mobile phone, a notebook computer, and a PDA
  • high energy density is required.
  • it can be expected to be used for high power applications such as HEVs and electric tools.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 サイクル特性に優れたリチウム二次電池を提供する。 リチウム二次電池は、負極活物質粒子と負極導電剤粒子と負極バインダーとを含む負極活物質層が負極集電体上に設けられた負極と、正極活物質を含む正極と、非水電解質とを備える。負極活物質層の負極集電体とは反対側の表層における負極導電剤粒子の濃度が、負極活物質層の中央部における負極導電剤粒子の濃度より高い。

Description

リチウム二次電池及びその製造方法
 本発明は、リチウム二次電池及びその製造方法に関する。
 特許文献1には、ケイ素を含む材料から成る活物質とポリイミドバインダーとを含む活物質層を、非酸化性雰囲気下で焼結して得られる負極が記載されている。
特開2002-260637号公報
 ケイ素を含む材料を負極活物質として用いたリチウム二次電池の充放電サイクル特性を高めることが求められている。
 本発明の目的は、サイクル特性に優れたリチウム二次電池及びその製造方法を提供することにある。
 本発明のリチウム二次電池は、負極を備える。負極は、負極集電体と、負極活物質層とを有する。負極活物質層は、負極集電体の上に配されている。負極活物質層は、負極活物質粒子と、負極導電剤粒子と、負極バインダーとを含む。負極活物質層の負極集電体とは反対側の表層における負極導電剤粒子の濃度が、負極活物質層の中央部における負極導電剤粒子の濃度より高い。
 本発明リチウム二次電池の製造方法は、上記本発明のリチウム二次電池を製造することができる方法である。本発明リチウム二次電池の製造方法では、負極活物質粒子と負極導電剤粒子と負極バインダーとを含み、粘度が70mPa・s~120mPa・sである負極合剤スラリーを調製する。負極合剤スラリーを負極集電体の上に塗布し、初期乾燥温度を100℃~150℃の範囲に設定して塗布された負極合剤スラリーを乾燥することにより、負極活物質層を形成する。
 本発明によれば、サイクル特性に優れたリチウム二次電池及びその製造方法を提供することができる。
図1は、実施例において作製した電極体を示す模式的斜視図である。図1においてハッチングを附した領域は、断面を表していない。 図2は、実施例において作製したリチウム二次電池を示す模式的平面図である。図2においてハッチングを附した領域は、断面を表していない。 図3は、図2に示すA-A線に沿う模式的断面図である。 図4(a)は、一実施例における負極表面の走査型電子顕微鏡(SEM)の反射電子像である。図4(b)は、一実施例における負極表面のEDS(エネルギー分散法)像である。 図5(a)は、他の実施例における負極表面の走査型電子顕微鏡(SEM)の反射電子像である。図5(b)は、他の実施例における負極表面のEDS(エネルギー分散法)像である。 図6(a)は、比較例における負極表面の走査型電子顕微鏡(SEM)の反射電子像である。図6(b)は、比較例における負極表面のEDS(エネルギー分散法)像である。 図7は、実施例1の負極の断面の走査型電子顕微鏡(SEM)像と、酸素元素(O)のマッピング像とを重ね合わせた像である。 図8は、実施例1の負極の断面の酸素元素(O)のマッピング像である。 図9は、実施例1の負極の断面の炭素元素(C)のマッピング像である。
 本実施形態に係るリチウム二次電池では、負極活物質層の負極集電体とは反対側の表層における負極導電剤粒子の濃度が、負極活物質層の中央部における負極導電剤粒子の濃度より高い。負極活物質層の負極集電体とは反対側の表層は、一般にセパレータと接している。セパレータには、電解液が多く保持されている。従って、負極活物質層の負極集電体とは反対側の表層に保液性及び吸液性の高い負極導電剤粒子を多く存在させることにより、セパレータに保持されている電解液を負極活物質層に効率的に供給することができる。この結果、負極活物質粒子へのリチウムイオンの供給が行われやすくなる。従って、負極活物質粒子の劣化を抑制することができるとともに、良好な充放電特性を得ることができる。
 負極活物質粒子の平均粒径が、負極導電剤粒子の平均粒径よりも大きいことが好ましい。この場合、負極集電体上に塗布された負極合剤スラリーを乾燥させる際に、負極合剤スラリー中の溶剤成分の蒸発に伴って、平均粒径の小さな負極導電剤粒子が負極活物質層の負極集電体とは反対側の表面側に移動しやすくなる。このため、負極活物質層の負極集電体とは反対側の表層における負極導電剤粒子の濃度が高くなりやすい。負極活物質粒子の平均粒径が、負極導電剤粒子の平均粒径よりも2μm以上10μm以下の範囲で大きいことがより好ましい。負極活物質粒子の平均粒径が負極導電剤粒子の平均粒径に対して十分に大きくない場合は、負極活物質層の負極集電体とは反対側の表層における負極導電剤粒子の濃度を高めることが困難になる場合がある。一方、負極活物質粒子の平均粒径が負極導電剤粒子の平均粒径に対して大きすぎると、負極合剤スラリーを作製する際に、負極合剤スラリーに含まれる粒子の分散性が悪くなる場合がある。
 具体的には、負極活物質粒子の平均粒径は、7μm~12μmの範囲であることが好ましい。負極導電剤粒子の平均粒径は、2μm~5μmの範囲であることが好ましい。負極活物質粒子の平均粒径が大きすぎると、充電時の負極活物質粒子の体積変化量が大きくなりすぎる。従って、負極活物質層と負極集電体との密着性が低下する場合がある。
 負極導電剤粒子のBET比表面積は、負極活物質粒子のBET比表面積よりも大きいことが好ましい。この場合、負極導電剤粒子の保液性の方が負極活物質粒子の保液性よりも高い。従って、負極導電剤粒子による負極の保液性向上効果がより大きくなる。負極導電剤粒子のBET比表面積は、7m/g~15m/gであることがより好ましい。負極導電剤粒子のBET比表面積が小さすぎると、負極導電剤粒子の保液性が低くなるため、充放電特性が低下する場合がある。負極導電剤粒子のBET比表面積が大きすぎると、負極導電剤粒子の周りに存在する負極バインダーの量が多くなるため、負極活物質粒子の周りに存在する負極バインダーの量が少なくなる。このため、負極活物質粒子間の密着性が低下し、優れた充放電特性が得られない場合がある。
 負極導電剤粒子として、例えば、金属粒子や、カーボンブラックなどの炭素材料などを用いることができる。なかでも、炭素材料が負極導電剤粒子としてより好ましく用いられる。黒鉛粒子が負極導電剤粒子としてさらに好ましく用いられる。黒鉛粒子は多くの空隙を有する。このため、黒鉛粒子は、NMPよりも低い密度を有する。よって、負極導電剤粒子として黒鉛粒子を用いた場合は、負極合剤スラリーを乾燥させる際に、負極活物質層の負極集電体とは反対側の表層に負極導電剤が移動しやすい。
 負極活物質層中における負極導電剤粒子の含有量は、負極活物質の質量に対して1質量%~10質量%の範囲であることが好ましい。負極活物質層中における負極導電剤粒子の含有量が少なすぎると、サイクル特性等を十分に改善できない場合がある。負極活物質層中における負極導電剤粒子の含有量が多すぎると、負極活物質粒子の周りに存在する負極バインダーの量が減少する。このため、負極活物質粒子間の密着性が低下すると共に、負極活物質層と負極集電体との密着性が低下する場合がある。従って、充放電特性が低下する場合がある。
 負極活物質粒子は、ケイ素及びケイ素を含む合金のうちの少なくとも一方を含む。ケイ素合金の具体例としては、ケイ素と他の1種以上の元素との固溶体や金属間化合物、共晶合金などが挙げられる。ケイ素を含む合金の作製方法としては、アーク溶解法、液体急冷法、メカニカルアロイング法、スパッタリング法、化学気相成長法、焼成法などが挙げられる。液体急冷法の具体例としては、単ロール急冷法、双ロール急冷法、及びガスアトマイズ法、水アトマイズ法、ディスクアトマイズ法などのアトマイズ法が挙げられる。
 また、負極活物質粒子は、金属や合金等で被覆されたケイ素及びケイ素合金の少なくとも一方からなる粒子であってもよい。負極活物質粒子は、ケイ素及びケイ素合金の少なくとも一方を含む核と、核を覆っており、金属や合金などからなる被覆層とを有していてもよい。核を被覆層で被覆させる方法としては、例えば、無電解めっき法、電解めっき法、化学還元法、蒸着法、スパッタリング法、化学気相成長法などが挙げられる。
 負極バインダーは、例えば、テトラカルボン酸無水物をジアミンでイミド化することにより得られるポリイミド樹脂であることが好ましい。テトラカルボン酸無水物をジアミンでイミド化することにより得られるポリイミド樹脂は、例えば、テトラカルボン酸無水物のアルコールとのエステル化物と、ジアミン化合物とを反応させることにより形成することができる。具体的には、テトラカルボン酸無水物のアルコールとのエステル化合物と、ジアミンとの混合物を含む層を負極集電体上に配置した状態で、非酸化性雰囲気下で熱処理を行う。これにより、上記エステル化合物とジアミンとの間に、重合反応及びイミド化反応が生じる。その結果、テトラカルボン酸無水物をジアミンでイミド化することにより得られるポリイミド樹脂を含む負極活物質層を形成することができる。
 バインダー前駆体として、ポリイミド樹脂のモノマー成分の混合物である、テトラカルボン酸無水物のアルコールとのエステル化合物とジアミンの混合物を用いてもよい。この場合、バインダー前駆体の粘度を、ポリイミド樹脂の前駆体として一般的なポリアミド酸のようなポリマー状態のバインダー前駆体の粘度よりも低くすることが可能となる。従って、負極合剤スラリー作製時や、負極合剤スラリーの塗布時などにおいて、負極活物質粒子表面の凹凸内へバインダー前駆体が入り込みやすくなる。よって、負極活物質粒子とバインダーとの間に生じるアンカー効果、及び負極集電体とバインダーとの間に生じるアンカー効果が大きくなる。その結果、負極活物質粒子間の密着性、及び負極活物質層と負極集電体との間の密着性をさらに改善し得る。また、バインダー前駆体の粘度を低くすることができるので、負極導電剤粒子が負極活物質層の負極集電体とは反対側に移動しやすくなる。従って、負極活物質層の負極集電体とは反対側の表層における負極導電剤粒子の濃度を高めやすい。
 テトラカルボン酸無水物をエステル化するアルコール類の具体例としては、例えば、アルコ-ル性のヒドロキシ基を1個有する化合物が挙げられる。アルコ-ル性のヒドロキシ基を1個有する化合物の具体例としては、例えば、メタノ-ル、エタノ-ル、イソプロパノ-ル、ブタノ-ルなどの脂肪族アルコ-ルが挙げられる。
 負極バインダーは、テトラカルボン酸無水物をジアミンでイミド化することにより得られるポリイミド樹脂であることが好ましい。この場合、テトラカルボン酸無水物は、下記式(1)で表されるテトラカルボン酸無水物及び下記式(2)で表されるテトラカルボン酸無水物の少なくとも一種を含むことが好ましい。上記ジアミンは下記式(3)で表されるジアミンを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000001
……… (1)
Figure JPOXMLDOC01-appb-C000002
……… (2)
Figure JPOXMLDOC01-appb-C000003
……… (3)
 式(1)で表されるテトラカルボン酸無水物と式(3)で表されるジアミンとが負極合剤スラリーに含まれている場合、負極活物質層の熱処理時に、テトラカルボン酸無水物とジアミンとの間で重合反応とイミド化反応とが生じ、下記式(4)で表される構造を有するポリイミド樹脂が形成される。式(2)で表されるテトラカルボン酸無水物と式(3)で表されるジアミンとが負極合剤スラリーに含まれている場合、負極活物質層の熱処理時に、テトラカルボン酸無水物とジアミンとの間で重合反応とイミド化反応とが生じ、下記式(5)で表される構造を有するポリイミド樹脂の少なくとも一方が形成される。
Figure JPOXMLDOC01-appb-C000004
……… (4)
Figure JPOXMLDOC01-appb-C000005
……… (5)
 式(4)で表される構造を有するポリイミド樹脂及び式(5)で表される構造を有するポリイミド樹脂は、機械強度及び密着性に優れる。このため、式(4)や式(5)で表される構造を有するポリイミド樹脂を負極活物質層に含ませることにより、負極活物質粒子同士の密着性や負極活物質層と負極集電体との間の密着性を改善できる。その結果、優れた充放電特性を得ることができる。
 テトラカルボン酸無水物としては、1,2,4,5-ベンゼンテトラカルボン酸1,2:4,5-二無水物(別名;ピロメリット酸二無水物)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物も好ましく用いることができる。
 ジアミンとしては、p-フェニレンジアミン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノフェニルエーテル、4,4’-ジアミノフェニルメタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン等の芳香族ジアミンも好ましく用いることができる。
 負極バインダーには、6価以上のポリカルボン酸無水物や3価以上の多価アミンがさらに含まれていてもよい。負極活物質層の熱処理時に、ポリカルボン酸無水物はジアミンや多価アミンと重合反応及びイミド化反応する。その結果、架橋構造を有するポリイミド樹脂が形成される。負極活物質層の熱処理時に、多価アミンはテトラカルボン酸無水物やポリカルボン酸無水物と、重合反応及びイミド化反応する。その結果、架橋構造を有するポリイミド樹脂が形成される。架橋構造を有するポリイミド樹脂は、機械強度に優れている。このため、負極バインダーの強度がさらに改善される。従って、更に良好な充放電特性を得ることが可能となる。
 ポリカルボン酸無水物の具体例としては、ベンゼンヘキサカルボン酸(メリト酸)の無水物であるベンゼンヘキサカルボン酸三無水物(無水メリト酸)、1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸無水物などが挙げられる。
 多価アミンの具体例としては、トリス(4-アミノフェニル)メタノール(別名;パラローズアニリン)、トリス(4-アミノフェニル)メタン、3,4,4’-トリアミノジフェニルエーテル、3,4,4’-トリアミノベンゾフェノン、3,4,4’-トリアミノジフェニルメタン、1,4,5-トリアミノナフタレン、トリス(4-アミノフェニル)アミン、1,2,4-トリアミノベンゼン、1,3,5-トリアミノベンゼン等の芳香族トリアミンが挙げられる。多価アミンの具体例としては、2,4,6-トリアミノ-1,3,5-トリアジン(別名;メラミン)、1,3,5-トリアミノシクロヘキサン等のトリアミンや、テトラキス(4-アミノフェニル)メタン、3,3’,4,4’-テトラアミノジフェニルエーテル、3,3’,4,4’-テトラアミノベンゾフェノン、3,3’,4,4’-テトラアミノジフェニルメタン、N,N,N’N’-テトラキス(4-メチルフェニル)ベンジジン等のテトラアミンなども挙げられる。
 負極集電体は、例えば、導電性金属箔により構成することができる。導電性金属箔の具体例としては、例えば、銅、ニッケル、鉄、チタン、コバルト、マンガン、錫、ケイ素、クロム、ジルコニウム等の金属またはこれらの金属の一種以上を含む合金からなる箔が挙げられる。負極集電体は、活物質粒子中に拡散しやすい金属元素を含有する導電性金属箔により構成されていることがより好ましい。具体的には、負極集電体は、銅または銅を含む合金からなる箔により構成されていることがより好ましい。
 負極集電体の厚みは、例えば、10μm~100μm程度とすることができる。
 好ましく用いられる正極活物質の具体例としては、コバルト、ニッケル、マンガンなどを含むリチウム遷移金属複合酸化物などが挙げられる。リチウム遷移金属複合酸化物の具体例としては、例えばLiCoOやLiNi1-b-cCoAl(式中、a,b及びcは0<a≦1.1、0.1≦b≦0.3、0.03≦c≦0.10を満たす)で表されるリチウム遷移金属複合酸化物などが挙げられる。
 LiNi1-b-cCoAl(式中、a,b及びcは0<a≦1.1、0.1≦b≦0.3、0.03≦c≦0.10を満たす)で表されるリチウム遷移金属複合酸化物は、高いNi組成比を有する。このようなNi組成比が高いリチウム遷移金属複合酸化物を正極活物質として使用した場合、LiCoOのようなNi組成比が低いリチウム遷移金属複合酸化物を正極活物質として使用した場合よりも、同じ電位範囲における重量エネルギー密度が高くなる。このため、Ni組成比が高いリチウム遷移金属複合酸化物を正極活物質として使用することにより、リチウム二次電池の高エネルギー密度化が可能である。しかしながら、Ni組成比が高いリチウム遷移金属複合酸化物からは、充電時にLiが多く引き出される。このため、充電時等において、Ni組成比が高いリチウム遷移金属複合酸化物の結晶構造が劣化しやすい。一般に、結晶構造の劣化が生じた場合には、金属成分であるNiやCoなどの溶出が起こる。このNiやCoなどの溶出物は充放電時に泳動し、負極の表面に到達する。負極の表面に到達した溶出物は、負極表面上で電解液と副反応する。負極導電剤粒子は、溶出物を捕集するフィルターとしての役割を果たす。このため、負極導電剤粒子が負極活物質層の負極集電体とは反対側の表層に多く存在していると、NiやCoなどの溶出物と電解液との副反応が抑制されやすい。従って、LiNi1-b-cCoAl(式中、a,b及びcは0<a≦1.1、0.1≦b≦0.3、0.03≦c≦0.10を満たす)で表されるリチウム遷移金属複合酸化物を正極活物質として用いた場合は、負極導電剤粒子が負極活物質層の負極集電体とは反対側の表層に多く存在する負極を用いることが効果的である。
 非水電解質に好ましく用いられる溶媒の具体例としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートやフルオロエチレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネート、環状カーボネートと鎖状カーボネートとの混合溶媒などが挙げられる。
 非水電解質に好ましく用いられる溶質の具体例としては、例えば、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO及びそれらの混合物等が挙げられる。非水電解質として、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸させたゲル状ポリマー電解質や、LiI、LiNなどの無機固体電解質を用いてもよい。
 非水電解質には、COが含まれていることが好ましい。
 リチウム二次電池を製造するに際しては、負極合剤スラリーの粘度を、70mPa・s~120mPa・sの範囲とすることがこのましい。負極合剤スラリーの粘度が低すぎると、負極合剤スラリーの扱いが困難となり、塗布時に負極活物質層の厚みの制御が困難になる等の問題が生じる場合がある。負極合剤スラリーの粘度が高すぎると、負極集電体上に塗布された負極合剤スラリーの乾燥時における負極導電剤粒子の負極活物質層の負極集電体とは反対側の表層への移動が生じにくくなる場合がある。
 負極集電体上に塗布された負極合剤スラリーを、初期乾燥温度を100℃~150℃の範囲に設定して乾燥させることがこのましい。初期乾燥温度が低すぎると、乾燥時の負極合剤スラリー中の溶剤成分の蒸発速度が低下する。このため、負極導電剤粒子が負極活物質層の負極集電体とは反対側の表層へ移動し難くなる場合がある。初期乾燥温度が高すぎると、負極バインダーが熱により変質し、負極バインダーとしての機能が低下する場合がある。初期乾燥温度が高すぎると、負極導電材が負極活物質層の負極集電体とは反対側の表層へ移動しにくくなる場合もある。
 負極合剤スラリーを乾燥させた後に、非酸化性雰囲気下で負極活物質層を熱処理することが好ましい。熱処理の温度は、負極バインダーが5質量%減少する温度を下回る温度であることが好ましい。負極バインダーがガラス転移温度を有している場合には、熱処理の温度は、負極バインダーのガラス転移温度を超える温度であることが好ましい。負極活物質層の温度が負極バインダーのガラス転移温度を超えると、負極バインダーが可塑性領域となる。このため、負極活物質粒子や負極集電体の表面に存在する凹凸に負極バインダーが入り込みやすくなる。よって、負極バインダーと、負極活物質粒子及び負極集電体のそれぞれとの間のアンカー効果がより大きく発現する。従って、負極活物質粒子同士の密着性がさらに改善されると共に、負極活物質層と負極集電体との密着性もさらに改善される。
 本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 <実施例1>
 〔負極の作製〕
 (負極活物質粒子の作製)
 内温が800℃である流動層内に多結晶珪素微粒子を導入すると共に、モノシラン(SiH)を送入することで粒状の多結晶ケイ素を作製した。
 次に、この粒状の多結晶ケイ素をジェットミルを用いて粉砕した後、分級機にて分級した。その結果、メディアン径が9μmの多結晶ケイ素粉末(負極活物質粒子)が得られた。メディアン径は、レーザー光回折法による粒度分布測定における累積体積50%の径とした。
 多結晶ケイ素粉末の結晶子サイズを、粉末X線回折のケイ素の(111)ピークの半値幅を用いてscherrerの式によって算出した。多結晶ケイ素粉末の結晶子サイズは、44nmであった。多結晶ケイ素粉末のBET比表面積は、0.9m/gであった。
 (負極バインダー前駆体の作製)
 式(1)で示される3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物を2当量のエタノールでエステル化したものと、式(3)で示されるm-フェニレンジアミンとを、N-メチル-2-ピロリドン(NMP)に溶解させることにより負極バインダー前駆体溶液a1を得た。式(1)で表される化合物と、式(3)で表される化合物のモル比(式(1)で表される化合物:式(3)で表される化合物)は、100:100とした。
 (負極合剤スラリーの作製)
 負極活物質粒子と、負極導電剤粒子としての黒鉛粉末と、負極バインダー前駆体溶液a1とを混合した。黒鉛粉末の平均粒径は、3μmであった。黒鉛粉末のBET比表面積は、12.5m/gであった。負極活物質粒子と負極導電剤粒子と負極バインダー(負極バインダー前駆体溶液a1を乾燥させてNMPを除去し、重合反応及びイミド化反応させた後のもの)の質量比を89.53:3.73:6.74とした。得られた混合物に、NMPをさらに混合して、粘度が75mPa・sである負極合剤スラリーを得た。粘度は、東機産業(株)製TV-22粘度計により測定した。
 (負極の作製)
 負極合剤スラリーを、負極集電体の片面上に、25℃の空気中で塗布し、1分間放置することにより負極活物質層を形成した。その後、ライン速度を5m/minとして乾燥路を通過させることにより負極活物質層を乾燥させた。乾燥路は、各室の長さが1.5mである4室から構成されていた。第1室の温度を110℃とした。第2室の温度を120℃とした。第3室の温度を120℃とした。第4室の温度を120℃とした。第1~第4室のそれぞれにおける風速を、6m/secに設定した。負極集電体として、両面が電解銅粗化されており、厚さが18μmである銅合金箔(C7025合金箔、組成;Cu 96.2質量%、Ni 3質量%、Si 0.65質量%、Mg 0.15質量%)を用いた。銅合金泊の各面の表面粗さRa(JIS B 0601-1994)は、0.25μmであった。銅合金泊の各面の平均山間隔S(JIS B 0601-1994)は、0.85μmであった。
 その後、負極集電体のもう一方の面上にも、同様に負極活物質層を形成した。次に、両面上に負極活物質層が形成された負極集電体を25℃の空気中で圧延した。その後、圧延物を長さが380mmであり、幅が52mmである長方形状に切り抜いた後、アルゴン雰囲気下で400℃、10時間熱処理することにより負極を作製した。負極活物質層の単位面積当たりの質量は5.6mg/cmであった。負極活物質層の厚みは56μmであった。
 負極の端部には、負極集電タブとしてのニッケル板を接続した。
 負極活物質層の熱処理によって、負極バインダー前駆体溶液a1からポリイミド化合物が生成したことを確認するために以下の実験を行った。負極バインダー前駆体溶液a1を、120℃の空気中で乾燥させてNMPを除去した。その後、400℃のアルゴン雰囲気下で10時間熱処理した。得られたサンプルの赤外線(IR)吸収スペクトルを測定した。その結果、1720cm-1付近にイミド結合由来のピークが検出された。この結果から、負極バインダー前駆体溶液a1を熱処理することにより、重合反応とイミド化反応とが進行してポリイミド化合物が生成していることを確認した。
 〔正極の作製〕
 (リチウム遷移金属複合酸化物の作製)
 LiCOとCoCOとを、LiとCoとのモル比が1:1になるようにして乳鉢にて混合した。その後、混合物を800℃の空気雰囲気中にて24時間熱処理した。その後、これを粉砕して、LiCoOで表されるリチウムコバルト複合酸化物の粉末を得た。リチウムコバルト複合酸化物の粉末の平均粒径は、10μmであった。得られたリチウムコバルト複合酸化物粉末(正極活物質粉末)のBET比表面積は、0.37m/gであった。
 (正極の作製)
 正極活物質粉末としてのLiCoO粉末と、正極導電材粒子としての炭素材料粉末と、正極バインダーとしてのポリフッ化ビニリデンとを、分散媒としてのNMPに加えた後、混練し、正極合剤スラリーを得た。LiCoO粉末と炭素材料粉末とポリフッ化ビニリデンとの質量比(LiCoO粉末:炭素材料粉末:ポリフッ化ビニリデン)は、95:2.5:2.5とした。
 正極合剤スラリーを、正極集電体としてのアルミニウム箔の両面の上に塗布し、乾燥させた後に、圧延することにより正極を作製した。アルミニウム箔の厚みは、15μmであった。アルミニウム箔の長さは、402mmであった。アルミニウム箔の幅は、50mmであった。アルミニウム箔の一主面側の塗布部の長さは、340mmであった。アルミニウム箔の一主面側の塗布部の幅は、50mmであった。アルミニウム箔の他主面側の塗布部の長さは、270mmであった。アルミニウム箔の他主面側の塗布部の幅は、50mmであった。アルミニウム箔上の活物質層量は、両面に活物質層が形成されている部分で48mg/cmであった。活物質層の総厚みは、両面に活物質層が形成されている部分で143μmであった。
 正極の端部にある正極活物質層の未塗布部分に、正極集電タブとしてアルミニウム板を接続した。
 〔非水電解液の作製〕
 アルゴン雰囲気下で、フルオロエチレンカーボネート(FEC)とメチルエチルカーボネート(MEC)とを混合した。フルオロエチレンカーボネート(FEC)とメチルエチルカーボネート(MEC)との体積比(FEC:MEC)は、2:8とした。得られた混合溶媒に対し、六フッ化リン酸リチウム(LiPF)を溶解させた。LiPFの濃度は、1モル/リットルとした。次に、この溶液に対して0.4質量%の濃度となるように二酸化炭素ガスを溶存させ、非水電解液を得た。
 〔電極体の作製〕
 正極と負極とを、厚さが20μmであるセパレータを介して対向させ、正極タブ及び負極タブが共に最外周となるように、円柱型の巻き芯を用いて、渦巻き状に巻回した。その後、巻き芯を引き抜いて、渦巻状の電極体を作製した。次に、渦巻き状の電極体を押し潰して、扁平型の電極体を得た。作製した扁平型の電極体の模式的斜視図を図1に示す。図1に示されるように、電極体3からは、正極集電タブ1及び負極集電タブ2のそれぞれの端部が取り出されている。なお、セパレータとして、ポリエチレン製微多孔膜を用いた。ポリエチレン製微多孔膜の長さは、450mmであった。ポリエチレン製微多孔膜の幅は、54.5mmであった。ポリエチレン製微多孔膜の突き刺し強度は、340gであった。ポリエチレン製微多孔膜の空孔率は、45%であった。
 〔電池の作製〕
 扁平型電極体及び非水電解液を、25℃、1気圧の二酸化炭素雰囲気下でアルミニウムラミネート製の外装体内に挿入し、図2及び図3に示される構造を有する扁平型電池A1を作製した。
 電池A1は、アルミニウムラミネートからなる外装体4を有する。外層体4は、アルミニウム箔の端部同士がヒートシールされた閉口部5を有する。電池A1は、正極集電タブ1と、負極集電タブ2と、正極6及び負極7の間にセパレータ8を挟んだ状態で巻回された電極体3(扁平型電極体)とをさらに有する。
 <比較例1>
 塗布された負極合剤スラリーの乾燥条件を以下のようにしたこと以外は、実施例1と同様にして電池B1を作製した。
 ライン速度1m/minで乾燥路を通過させた。第1室の温度を60℃とした。第2室の温度を60℃とした。第3の温度を室60℃とした。第4の温度を室120℃とした。第1室における風速を2m/secに設定した。第2室における風速を2m/secに設定した。第3室における風速を2m/secに設定した。第4室における風速を6m/secに設定した。
 〔充放電サイクル特性の評価〕
 電池A1及び電池B1のそれぞれについて、下記の充放電サイクル条件にて充放電サイクル特性を評価した。
 (充放電サイクル条件)
 ・1サイクル目の充電条件
 50mAの電流で4時間定電流充電を行った。その後、200mAの電流で電池電圧が4.2Vとなるまで定電流充電を行った。更に、4.2Vの電圧で電流値が50mAとなるまで定電圧充電を行った。
 ・1サイクル目の放電条件
 200mAの電流で電池電圧が2.75Vとなるまで定電流放電を行った。
 ・2サイクル目以降の充電条件
 1000mAの電流で電池電圧が4.2Vとなるまで定電流充電を行った。更に、4.2Vの電圧で電流値が50mAとなるまで定電圧充電を行った。
 ・2サイクル目以降の放電条件
 1000mAの電流で電池電圧が2.75Vとなるまで定電流放電を行った。
 以下の計算方法で、サイクル寿命を求めた。
 ・サイクル寿命;容量維持率が90%になった時のサイクル数とした。容量維持率は、nサイクル目の放電容量を、1サイクル目の放電容量で除した値である。
 電池A1及び電池B1のそれぞれのサイクル寿命を表1に示す。
 〔負極活物質層の吸液性評価〕
 電池A1及び電池B1のそれぞれにおける負極活物質層の吸液性の評価を行った。
 まず、負極活物質層表面上に、ピペットを用いてPC(プロピレンカーボネート)を2μl滴下した。滴下後、PCが負極活物質層内に完全に浸透するまでの時間(単位;sec)を測定した。この時間を用い、下記の式により、吸液性を求めた。
 吸液性=1/(浸透終了までの必要時間)
 電池A1及び電池B1のそれぞれの吸液性を表1に示す。表1には、負極合剤スラリーの乾燥条件及び負極合剤スラリーの粘度を併せて示している。
Figure JPOXMLDOC01-appb-T000006
 表1から、電池A1における負極活物質層の吸液性は、電池B1の負極活物質層の吸液性よりも高いことが分かる。電池A1は、電池B2よりも優れたサイクル寿命を有することが分かる。
 〔負極活物質層の表面のSEM及びEDS測定〕
 <実施例2>
 負極バインダー前駆体70質量%と、ポリマータイプのポリイミドバインダー(宇部興産社製、商品名「UワニスA」)30質量%とを混合したものを負極バインダー前駆体として用いたこと以外は、実施例1と同様にして負極合剤スラリーを作製した。負極バインダー前駆体としては、実施例1で用いた負極バインダー前駆体と実質的に同様のものを用いた。負極合剤スラリーの粘度は、110mPa・sであった。それ以外は、実施例1と同様にして、負極および電池を作製した。
 実施例2で作製した電池の充放電サイクル特性を評価した。充放電サイクル特性の測定条件は、上記充放電サイクル条件と同様である。実施例2で作製した電池の充放電サイクル寿命は、98であった。この結果から、実施例2で作成した電池のサイクル寿命は、電池A1のサイクル寿命と同程度であることが分かる。
 実施例1で作製した負極、実施例2で作製した負極及び比較例1で作製した負極のそれぞれの表面を走査型電子顕微鏡(SEM)で観察した。実施例1で作製した負極、実施例2で作製した負極及び比較例1で作製した負極のそれぞれの表面に対して、SEM-EDS(エネルギー分散法)により炭素元素(C)のマッピングを行った。炭素元素(C)は、負極バインダーと負極導電剤粒子とに含まれる。このため、炭素元素(C)のマッピングを行うことにより、負極バインダーと負極導電剤粒子との合計の分布を推定することができる。
 図4(a)は実施例1の負極表面の走査型電子顕微鏡(SEM)の反射電子像である。図5(a)は実施例2の負極表面の走査型電子顕微鏡(SEM)の反射電子像である。図6(a)は比較例1の負極表面の走査型電子顕微鏡(SEM)の反射電子像である。また、図4(b)は実施例1の負極表面のEDSマッピング像である。図5(b)は実施例2の負極表面のEDSマッピング像である。図6(b)は比較例1の負極表面のEDSマッピング像である。EDSマッピング像においては、炭素元素(C)が白く表されている。
 負極活物質層中の負極活物質粒子と負極導電剤粒子と負極バインダーとの質量比(負極活物質粒子:負極導電剤粒子:負極バインダー)は、89.53:3.73:6.74である。負極活物質粒子の真密度は2.34g/cmである。負極導電剤粒子の真密度は、2.26g/cmである。負極バインダーの真密度は、1.4g/cmである。このため、負極活物質層中の負極活物質粒子と負極導電剤粒子と負極バインダーとの体積比(負極活物質粒子:負極導電剤粒子:負極バインダー)は、85.6:3.69:10.71である。従って、負極活物質層中の負極導電剤粒子と負極バインダーとの総体積割合は14.4体積%となる。
 SEM-EDS分析により炭素元素(C)を検出した結果、活物質層の表面における炭素元素(C)の割合は、実施例1では、15.5面積%であった。活物質層の表面における炭素元素(C)の割合は、実施例2(図5(b))では、16.1面積%であった。活物質層の表面における炭素元素(C)の割合は、比較例1(図6(b))では、14.3面積%であった。
 上述のように、負極活物質層中における負極導電剤粒子と負極バインダーとの総体積割合は、14.4体積%である。実施例1及び実施例2のそれぞれにおいては、負極活物質層の表面における炭素元素(C)の濃度が、負極活物質層の中央部における炭素元素(C)の濃度よりも高いことがわかる。図4(b)(実施例1)及び図5(b)(実施例2)と、図6(b)(比較例1)との比較からも、実施例1及び実施例2においては、負極活物質層の表面における炭素元素(C)の濃度が負極活物質層の中央部における炭素原子(C)の濃度よりも高くなっていることが分かる。
 負極バインダーは、負極活物質粒子の表面上に小さな点状に分散して存在している。負極導電剤粒子である黒鉛粒子は、負極導電剤同士が比較的に固まった状態で存在する。SEM像において、黒い部分が黒鉛粒子の塊であると考えられる。
 実施例1のSEM像を示す図4(a)及び実施例2のSEM像を示す図5(a)においては、比較例1のSEM像を示す図6(a)よりも、黒い部分の面積が大きい。このことから、図4(b)及び図5(b)のEDS像においても、炭素元素(C)が固まった状態で存在することが分かる。よって、負極活物質層の負極集電体とは反対側の表層において炭素元素(C)の濃度が高い要因は、負極導電剤粒子が負極活物質層の負極集電体とは反対側の表層に多く存在していることであることが分かる。
 以上の結果から、負極活物質層の負極集電体とは反対側の表層に負極導電剤粒子が多く存在することにより、負極活物質層の電解液保持性(吸液性及び保液性)が高くなっていると考えられる。このことにより、充放電時に負極活物質粒子の体積変化が生じた際にも、負極活物質粒子へのリチウムイオンの供給が十分に行われ、負極活物質粒子の劣化が抑制されて、優れた充放電サイクル特性が得られるものと考えられる。
 負極バインダーは、酸素元素を含むため、酸素元素(O)のマッピング像から負極バインダーの分布を推定することができる。そこで、実施例1で作製した負極の断面に対して、JEOL社製走査型電子顕微鏡(SEM)を用いてSEM-EDS(エネルギー分散法)により酸素元素(O)のマッピングを行った。加速電圧は、15keVとした。照射電流は、60nAとした。視野は、22μm(負極活物質層の厚み)×44μm(負極活物質層の厚みの2倍)とした。
 図7に、実施例1の負極の断面の走査型電子顕微鏡(SEM)像と、酸素元素(O)のマッピング像とを重ね合わせた像を示す。図8に、実施例1の負極の断面の酸素元素(O)のマッピング像を示す。
 図8に示すマッピング像から、視野全体における酸素元素(O)の面積に対する、負極活物質層の負極集電体とは反対側の表面から深さ22/3μmの部分T1における酸素元素(O)の面積の割合(T1/全体)を求めた。図8に示すマッピング像から、視野全体における酸素元素(O)の面積に対する、負極活物質層の中央部の深さ22/3μmの部分T2における酸素元素(O)の面積の割合(T1/全体)を求めた。図8に示すマッピング像から、視野全体における酸素元素(O)の面積に対する、負極活物質層の負極集電体側の表面から深さ22/3μmの部分T3における酸素元素(O)の面積の割合(T1/全体)を求めた。結果を表2に示す。
 同様に、実施例1で作製した負極の断面に対して、炭素元素(C)のマッピングを行った。図9に、実施例1の負極の断面の炭素元素(C)のマッピング像を示す。
 図9に示すマッピング像から、視野全体における炭素元素(C)の面積に対する、負極活物質層の負極集電体とは反対側の表面から深さ22/3μmの部分T1における炭素元素(C)の面積の割合(T1/全体)を求めた。図9に示すマッピング像から、視野全体における炭素元素(C)の面積に対する、負極活物質層の中央部の深さ22/3μmの部分T2における炭素元素(C)の面積の割合(T1/全体)を求めた。図9に示すマッピング像から、視野全体における炭素元素(C)の面積に対する、負極活物質層の負極集電体側の表面から深さ22/3μmの部分T3における炭素元素(C)の面積の割合(T1/全体)を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
 表2に示す炭素元素(C)の割合の結果から、実施例1における負極導電剤粒子と負極バインダーとの合計の分布を推定することができる。酸素元素(O)の割合の結果から、実施例1における負極バインダーの分布を推定することができる。従って、炭素元素(C)の割合の結果と、酸素元素(O)の割合の結果との両方を勘案することによって、実施例1における負極導電剤粒子の分布を推定することができる。
 まず、表2に示す炭素元素(C)の割合の結果から、負極活物質層の負極集電体とは反対側の部分T1における炭素元素の割合が、部分T2や部分T3における炭素元素の割合よりも多いことが分かる。このため、部分T1において、負極導電剤粒子と負極バインダーの少なくとも一方が偏在していることが分かる。
 また、表2に示す酸素元素(O)の割合の結果から、負極活物質層の負極集電体とは反対側の部分T1における酸素元素の割合が、部分T2や部分T3における酸素元素の割合よりも多いことが分かる。このため、部分T1において、負極バインダーが偏在していることが分かる。
 ここで、負極活物質層の負極集電体とは反対側の部分T1における酸素元素(O)の割合と、負極活物質層の中央部分T2における酸素元素(O)の割合との差(部分T1における負極バインダーの割合と、部分T2における負極バインダーの割合との差に対応する。)に比べて、部分T1における炭素元素(C)の割合と、部分T2における炭素元素(C)の割合との差(部分T1における負極バインダー及び負極導電剤粒子の合計割合と、部分T2における負極バインダー及び負極導電剤粒子の合計割合との差に対応する。)の方が大きい。これより、部分T1では、負極バインダーのみならず、負極導電剤粒子も偏在しているということが分かる。つまり、部分T1において、負極バインダーのみならず、負極導電剤粒子も偏在しているため、部分T1における酸素元素(O)の割合と部分T2における酸素元素(O)の割合との差よりも、部分T1における炭素元素(C)の割合と部分T2における炭素元素(C)の割合との差の方が、大きくなったものと考えられる。すなわち、実施例1においては、負極導電剤粒子のみならず、負極バインダーも、部分T2よりも部分T1に多く存在していることが分かる。
 なお、部分T1と部分T3における酸素元素(O)と炭素元素(C)との濃度を比較することによっても、負極活物質層の負極集電体とは反対側の部分T1において負極導電剤粒子が偏在していることを見出すことができる。
 <実施例3>
 本実施例では、正極活物質として、リチウムニッケルコバルトアルミニウム複合酸化物を用いた。
 〔正極の作製〕
 (リチウム遷移金属複合酸化物の作製)
 LiOHと、ニッケルを金属元素の主成分とする複合水酸化物(Ni0.80Co0.17Al0.03(OH))とを、乳鉢にて混合した後、空気雰囲気中にて720℃で20時間熱処理した。ニッケルを金属元素の主成分とする複合水酸化物(Ni0.80Co0.17Al0.03(OH))とのモル比(LiOH:Ni0.80Co0.17Al0.03(OH))は、1.05:1とした。その後、得られた材料を粉砕して、Li1.05Ni0.80Co0.17Al0.03で表されるリチウムニッケルコバルトアルミニウム複合酸化物の粉末を得た。リチウムニッケルコバルトアルミニウム複合酸化物の粉末の平均粒径は10μmであった。リチウムニッケルコバルトアルミニウム複合酸化物の粉末(正極活物質)のBET比表面積は、0.39m/gであった。
 (正極の作製)
 上記作製の正極活物質と、正極導電剤粒子としての炭素材料粉末と、正極バインダーとしてのポリフッ化ビニリデンとを、分散媒としてのNMPに加えた後、混練し、正極合剤スラリーを得た。正極活物質と炭素材料粉末とポリフッ化ビニリデンとの質量比(正極活物質:炭素材料粉末:ポリフッ化ビニリデン)は、95:2.5:2.5とした。
 正極合剤スラリーを、正極集電体としてのアルミニウム箔の両面の上に塗布し、乾燥した後、圧延した。アルミニウム箔の厚みは、15μmであった。アルミニウム箔の長さは、402mmであった。アルミニウム箔の幅は、50mmであった。アルミニウム箔の一主面側の塗布部の長さは、340mmであった。アルミニウム箔の一主面側の塗布部の幅は、50mmであった。アルミニウム箔の他主面側の塗布部の長さは、270mmであった。アルミニウム箔の他主面側の塗布部の幅は、50mmであった。アルミニウム箔上の活物質層量は、両面に活物質層が形成されている部分で36.6mg/cmであった。アルミニウム箔上の活物質層の総厚みは、両面に活物質層が形成されている部分で117μmであった。
 正極の端部にある正極活物質層の未塗布部分には、正極集電タブとしてアルミニウム板を接続した。
 〔電池の作製〕
 上記のようにして得られた正極を用いたこと以外は、実施例1と同様にして電池A2を作製した。
 <比較例2>
 正極として、実施例3で作製した正極と実質的に同様の正極を用いたこと以外は、比較例1と同様にして電池B2を作製した。
 〔充放電サイクル特性及び活物質層の吸液性の評価〕
 電池A2及び電池B2のそれぞれについて、上記と同様にして、サイクル寿命及び吸液性を評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000008
 表3に示す結果から、正極活物質としてリチウムニッケルコバルトアルミニウム複合酸化物を用いたリチウム二次電池においても、負極作製時の負極合剤スラリーの粘度が70mPa・s~120mPa・sであり、且つ負極合剤スラリーの塗布後の乾燥時の初期乾燥温度が100℃~150℃であった電池A2は、電池B2に比べて、優れたサイクル寿命を示していることが分かる。
 正極活物質としてリチウムコバルト複合酸化物を用いた電池A1と電池B1とのサイクル寿命の差(表1参照)よりも、正極活物質としてリチウムニッケルコバルトアルミニウム複合酸化物を用いたときの電池A2と電池B2とのサイクル寿命の差の方が大きい。これは、リチウムニッケルコバルトアルミニウム複合酸化物はリチウムコバルト複合酸化物に比べ、高電位時の結晶構造の劣化が生じやすく、NiやCoの溶出が多く生じるが、負極活物質層の負極集電体とは反対側の表層に負極導電剤粒子が多く存在していることにより、NiやCoの溶出物と電解液との負極表面上での副反応が抑制されたことによるものと考えられる。
 本発明は、例えば、携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源で、特に高エネルギー密度が必要とされる用途に適用することができる。また、HEVや電動工具などの高出力用途への展開も期待できる。
 1…正極集電タブ
 2…負極集電タブ
 3…電極体
 4…外装体
 5…外装体の閉口部
 6…正極
 7…負極
 8…セパレータ

Claims (8)

  1.  負極集電体と、
     前記負極集電体の上に設けられており、負極活物質粒子と、負極導電剤粒子と、負極バインダーとを含む負極活物質層と、
    を有する負極を備え、
     前記負極活物質層の前記負極集電体とは反対側の表層における前記負極導電剤粒子の濃度が、前記負極活物質層の中央部における前記負極導電剤粒子の濃度より高い、リチウム二次電池。
  2.  前記負極活物質粒子の平均粒径が、前記負極導電剤粒子の平均粒径よりも大きい、請求項1に記載のリチウム二次電池。
  3.  前記負極導電剤粒子のBET比表面積が、前記負極活物質粒子のBET比表面積に比べて大きい、請求項1または2に記載のリチウム二次電池。
  4.  前記負極活物質粒子として、ケイ素及びケイ素合金の少なくとも一方が含まれる、請求項1~3のいずれか一項に記載のリチウム二次電池。
  5.  前記負極導電剤粒子が黒鉛粒子である、請求項1~4のいずれか1項に記載のリチウム二次電池。
  6.  化学式LiNi1-b-cCoAl(式中、a、b及びcは0<a≦1.1、0.1≦b≦0.3、0.03≦c≦0.10を満たす。)で表されるリチウム遷移金属複合酸化物を含む正極をさらに備える、請求項1~5のいずれか1項に記載のリチウム二次電池。
  7.  前記負極活物質層の前記負極集電体とは反対側の表層における前記負極導電剤粒子の濃度と、前記負極活物質層の中央部における前記負極導電剤粒子の濃度との差が、前記負極活物質層の前記負極集電体とは反対側の表層における前記負極バインダーの濃度と、前記負極活物質層の中央部における前記負極バインダーの濃度との差よりも大きい、請求項1~6のいずれか一項に記載のリチウム二次電池。
  8.  請求項1~7のいずれか一項に記載のリチウム二次電池を製造する方法であって、
     前記負極活物質粒子と前記負極導電剤粒子と前記負極バインダーとを含み、粘度が70mPa・s~120mPa・sである負極合剤スラリーを調製する工程と、
     前記負極合剤スラリーを前記負極集電体の上に塗布し、初期乾燥温度を100℃~150℃の範囲に設定して前記塗布された負極合剤スラリーを乾燥させることにより、前記負極活物質層を形成する工程と、
    を備える、リチウム二次電池の製造方法。
PCT/JP2012/056845 2011-03-31 2012-03-16 リチウム二次電池及びその製造方法 WO2012132958A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/004,245 US9070940B2 (en) 2011-03-31 2012-03-16 Lithium secondary battery and method for manufacturing the same
JP2013507384A JP6049611B2 (ja) 2011-03-31 2012-03-16 リチウム二次電池及びその製造方法
CN201280026583.4A CN103563131A (zh) 2011-03-31 2012-03-16 锂二次电池及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-079254 2011-03-31
JP2011079254 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132958A1 true WO2012132958A1 (ja) 2012-10-04

Family

ID=46930691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056845 WO2012132958A1 (ja) 2011-03-31 2012-03-16 リチウム二次電池及びその製造方法

Country Status (4)

Country Link
US (1) US9070940B2 (ja)
JP (1) JP6049611B2 (ja)
CN (1) CN103563131A (ja)
WO (1) WO2012132958A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115051A1 (ja) * 2014-01-31 2015-08-06 三洋電機株式会社 非水電解質二次電池用負極
KR20190062400A (ko) * 2016-10-13 2019-06-05 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 리튬 이온 2차 전지 및 이를 이용한 전기 기기
JP2019114462A (ja) * 2017-12-25 2019-07-11 トヨタ自動車株式会社 リチウム二次電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168786A1 (ja) * 2012-05-11 2013-11-14 国立大学法人鳥取大学 リチウムイオン二次電池用負極
CN105633410B (zh) * 2014-10-29 2019-06-18 江苏华东锂电技术研究院有限公司 负极材料以及应用该负极材料的锂离子电池
JP2019535110A (ja) * 2016-10-11 2019-12-05 ジーアールエスティー・インターナショナル・リミテッド リチウムイオン電池用アノードスラリー
JP6616278B2 (ja) 2016-12-27 2019-12-04 株式会社エンビジョンAescジャパン リチウムイオン二次電池用電極
CN113675367B (zh) 2018-11-05 2023-08-25 宁德新能源科技有限公司 正极极片、电化学装置及包含其的电子装置
WO2020138187A1 (ja) * 2018-12-26 2020-07-02 宇部興産株式会社 全固体二次電池用電極、全固体二次電池、及び全固体二次電池の製造方法
CN115911511B (zh) * 2022-12-13 2024-10-01 江苏正力新能电池技术股份有限公司 一种锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222648A (ja) * 2001-01-24 2002-08-09 Toshiba Corp 正極活物質,その製造方法およびリチウムイオン二次電池
JP2007073334A (ja) * 2005-09-07 2007-03-22 Sanyo Electric Co Ltd リチウム二次電池
JP2007257868A (ja) * 2006-03-20 2007-10-04 Sony Corp 負極および電池
JP2009104900A (ja) * 2007-10-23 2009-05-14 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極
JP2010165471A (ja) * 2009-01-13 2010-07-29 Sanyo Electric Co Ltd リチウム二次電池
JP2010182479A (ja) * 2009-02-04 2010-08-19 Toyota Industries Corp リチウムイオン二次電池用負極及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1339116A3 (en) * 1994-05-30 2005-03-23 Canon Kabushiki Kaisha Rechargeable lithium battery
JP3477981B2 (ja) * 1996-03-29 2003-12-10 新神戸電機株式会社 非水電解質二次電池及びその製造法
US6468693B1 (en) * 1999-07-29 2002-10-22 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP4212263B2 (ja) 2000-09-01 2009-01-21 三洋電機株式会社 リチウム二次電池用負極及びその製造方法
JP2007080652A (ja) * 2005-09-14 2007-03-29 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
JP4337875B2 (ja) * 2006-12-29 2009-09-30 ソニー株式会社 正極合剤、ならびに非水電解質二次電池およびその製造方法
JP4296205B2 (ja) * 2007-03-29 2009-07-15 株式会社東芝 非水電解質電池、電池パック及び自動車
JP2009064714A (ja) * 2007-09-07 2009-03-26 Toyota Motor Corp 電極体およびそれを用いたリチウム二次電池
CN101859885A (zh) * 2009-04-09 2010-10-13 上海比亚迪有限公司 一种电池极片,其制备方法及包含该极片的二次电池
KR101074783B1 (ko) * 2010-05-12 2011-10-19 삼성에스디아이 주식회사 전극 조성물, 리튬 전지용 전극, 이의 제조방법 및 리튬 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222648A (ja) * 2001-01-24 2002-08-09 Toshiba Corp 正極活物質,その製造方法およびリチウムイオン二次電池
JP2007073334A (ja) * 2005-09-07 2007-03-22 Sanyo Electric Co Ltd リチウム二次電池
JP2007257868A (ja) * 2006-03-20 2007-10-04 Sony Corp 負極および電池
JP2009104900A (ja) * 2007-10-23 2009-05-14 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極
JP2010165471A (ja) * 2009-01-13 2010-07-29 Sanyo Electric Co Ltd リチウム二次電池
JP2010182479A (ja) * 2009-02-04 2010-08-19 Toyota Industries Corp リチウムイオン二次電池用負極及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115051A1 (ja) * 2014-01-31 2015-08-06 三洋電機株式会社 非水電解質二次電池用負極
CN106030864A (zh) * 2014-01-31 2016-10-12 三洋电机株式会社 非水电解质二次电池用负极
JPWO2015115051A1 (ja) * 2014-01-31 2017-03-23 三洋電機株式会社 非水電解質二次電池用負極
US10270086B2 (en) 2014-01-31 2019-04-23 Sanyo Electric Co., Ltd. Nonaqueous-electrolyte secondary-battery negative electrode
KR20190062400A (ko) * 2016-10-13 2019-06-05 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 리튬 이온 2차 전지 및 이를 이용한 전기 기기
KR102366059B1 (ko) 2016-10-13 2022-02-22 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 리튬 이온 2차 전지 및 이를 이용한 전기 기기
JP2019114462A (ja) * 2017-12-25 2019-07-11 トヨタ自動車株式会社 リチウム二次電池

Also Published As

Publication number Publication date
CN103563131A (zh) 2014-02-05
US9070940B2 (en) 2015-06-30
US20140004415A1 (en) 2014-01-02
JPWO2012132958A1 (ja) 2014-07-28
JP6049611B2 (ja) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6049611B2 (ja) リチウム二次電池及びその製造方法
JP5583447B2 (ja) リチウム二次電池及びその製造方法
KR102098797B1 (ko) 전극 재료용 슬러리 및 그 제조 방법, 음극, 전지, 및, 폴리이미드 코팅 활물질 입자
JP5361232B2 (ja) リチウム二次電池及びその製造方法
JP5626644B2 (ja) リチウム二次電池負極用バインダー、リチウム二次電池用負極、リチウム二次電池、リチウム二次電池負極用バインダー前駆体溶液及びリチウム二次電池用負極の製造方法
WO2011067982A1 (ja) 活物質粒子およびその利用
US10381648B2 (en) Polyimide coated lithium titanate particles and use thereof in a lithium ion battery
JP2011048921A (ja) リチウム二次電池及びその製造方法
CN110010848B (zh) 表面涂布的正极活性材料、其制备方法以及包含其的正极和锂二次电池
JP5504800B2 (ja) リチウム複合金属酸化物および正極活物質
WO2010030019A1 (ja) 非水電解質二次電池
WO2013099558A1 (ja) リチウム二次電池の負極の製造方法、リチウム二次電池の負極及びリチウム二次電池
JP2015512130A (ja) リチウム二次電池用電極活物質及びその製造方法
US20110311871A1 (en) Negative electrode for lithium secondary batteries and lithium secondary battery
KR101849826B1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2010098187A1 (ja) リチウム複合金属酸化物および正極活物質
JP5810497B2 (ja) リチウム複合金属酸化物および非水電解質二次電池
JP2014067592A (ja) リチウム二次電池用負極、リチウム二次電池、及びリチウム二次電池用負極の製造方法
JP6414058B2 (ja) 電極用バインダー組成物および電極
JP2013149483A (ja) リチウム二次電池の負極の製造方法、リチウム二次電池の負極、リチウム二次電池、及びリチウム二次電池の負極用の導電性金属粉末
CN114512643A (zh) 正极活性材料以及制备方法,正极,锂离子二次电池
WO2013080775A1 (ja) リチウム二次電池の負極、その製造方法、及びリチウム二次電池
KR20240100228A (ko) 리튬 이차전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507384

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14004245

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765814

Country of ref document: EP

Kind code of ref document: A1