WO2012132813A1 - ナトリウムイオン二次電池用添加剤及びナトリウムイオン二次電池 - Google Patents

ナトリウムイオン二次電池用添加剤及びナトリウムイオン二次電池 Download PDF

Info

Publication number
WO2012132813A1
WO2012132813A1 PCT/JP2012/055921 JP2012055921W WO2012132813A1 WO 2012132813 A1 WO2012132813 A1 WO 2012132813A1 JP 2012055921 W JP2012055921 W JP 2012055921W WO 2012132813 A1 WO2012132813 A1 WO 2012132813A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
sodium ion
sodium
negative electrode
secondary battery
Prior art date
Application number
PCT/JP2012/055921
Other languages
English (en)
French (fr)
Inventor
伊藤 淳史
大澤 康彦
慎一 駒場
直明 藪内
渉 村田
徹 石川
祐多 松浦
Original Assignee
日産自動車株式会社
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 学校法人東京理科大学 filed Critical 日産自動車株式会社
Priority to EP12763283.4A priority Critical patent/EP2693556B1/en
Priority to CN201280013464.5A priority patent/CN103493279B/zh
Priority to US14/007,250 priority patent/US9466855B2/en
Publication of WO2012132813A1 publication Critical patent/WO2012132813A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an additive for a sodium ion secondary battery and a sodium ion secondary battery. More specifically, the present invention relates to an additive for sodium ion secondary battery capable of improving durability and a sodium ion secondary battery using the same.
  • the present invention has been made in view of such problems of the conventional technology. And the place made into the objective is to provide the sodium ion secondary battery using the additive for sodium ion secondary batteries which can improve durability, and this.
  • the additive for sodium ion secondary batteries of the present invention is characterized by containing a compound comprising at least one of a saturated cyclic carbonate having a fluoro group and a chain carbonate having a fluoro group.
  • the sodium ion secondary battery of the present invention is a non-aqueous electrolysis comprising the additive for sodium ion secondary battery and a non-aqueous solvent comprising a saturated cyclic carbonate or a non-aqueous solvent comprising a saturated cyclic carbonate and a chain carbonate.
  • a liquid, a positive electrode, and a negative electrode including a negative electrode active material made of hard carbon and having a coating film made of a composite material containing carbon, oxygen, fluorine and sodium on the surface.
  • FIG. 1 is a schematic cross-sectional view showing an example of a sodium ion secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the results of cyclic voltammetry tests in each example.
  • FIG. 3 is a graph showing the capacity after each charge / discharge cycle of each example.
  • FIG. 4 is a graph showing the capacity after each charge / discharge cycle of each example.
  • FIG. 5 is a graph showing the capacity after each charge / discharge cycle in each example.
  • FIG. 6 is a graph showing the capacity after each charge / discharge cycle of each example.
  • FIG. 7 is a graph showing the charge / discharge efficiency after each charge / discharge cycle in each example.
  • FIGS. 8A to 8E are scanning electron microscope images of Reference Example, Comparative Example 1-1, Example 1-1, Example 1-3, and Example 1-4, respectively.
  • the additive for sodium ion secondary batteries of this embodiment consists of at least one selected from the group consisting of a saturated cyclic carbonate having a fluoro group and a chain carbonate having a fluoro group.
  • Such an additive is reduced and decomposed first on the negative electrode surface as compared with the nonaqueous solvent constituting the nonaqueous electrolytic solution, for example, at the time of the first charge, and contributes to the formation of a coating film on the negative electrode surface. And since a film is formed, the decomposition
  • this film is called a solid electrolyte film, that is, a SEI (Solid Electrolyte Interface) film.
  • sodium ethoxide or the like is generated by the decomposition of the electrolyte solution on the negative electrode.
  • these by-products are oxidatively decomposed on the positive electrode, the decomposition of the electrolytic solution is further promoted.
  • a saturated cyclic carbonate having a fluoro group such as fluoroethylene carbonate (FEC)
  • FEC fluoroethylene carbonate
  • Preferred examples of the additive include saturated cyclic carbonates having 1 to 2 fluoro groups and chain carbonates having 1 to 2 fluoro groups from the viewpoint of easy formation of a film. These can be used individually by 1 type or in mixture of 2 or more types. Among these, considering the ease of forming a film, preferred examples include saturated cyclic carbonates having one fluoro group and chain carbonates having one fluoro group. Note that the present invention is not limited to these as long as the same effects can be obtained. For example, it may have 3 to 4 fluoro groups.
  • a compound represented by the following general formula (1) or general formula (2) can be given as a preferred example in consideration of the ease of forming a film. These can be used individually by 1 type or in mixture of 2 or more types.
  • R 1 in the formula (1) represents a C 2-4 alkylene group having a fluorine atom.
  • R 2 and R 3 in the formula (2) may be the same as or different from each other, and each represents an alkyl group having 1 to 3 carbon atoms having a fluorine atom.
  • Examples of the saturated cyclic carbonate having 1 to 2 fluoro groups represented by the general formula (1) include fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC). Among these, fluoroethylene carbonate (FEC) can be mentioned as a suitable example in consideration of the ease of forming a film.
  • Examples of the saturated chain carbonate having 1 to 2 fluoro groups represented by the general formula (2) include fluoromethyl methyl carbonate, (difluoromethyl) methyl carbonate, and (1-fluoroethyl) methyl carbonate. Can be mentioned.
  • FIG. 1 shows an example of a sodium ion secondary battery according to an embodiment of the present invention.
  • the sodium ion secondary battery 1 of the present embodiment has a configuration in which a battery element 10 to which a positive electrode tab 21 and a negative electrode tab 22 are attached is enclosed in an exterior body 30.
  • the positive electrode tab 21 and the negative electrode tab 22 are led out in the opposite directions from the inside of the exterior body 30 toward the outside.
  • the positive electrode tab and the negative electrode tab may be led out in the same direction from the inside of the exterior body toward the outside.
  • such a positive electrode tab and a negative electrode tab can be attached to the positive electrode collector and negative electrode collector which are mentioned later by ultrasonic welding, resistance welding, etc., for example.
  • the positive electrode tab 21 and the negative electrode tab 22 are made of materials such as aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), stainless steel (SUS), and alloys thereof. However, the material is not limited to these, and a conventionally known material that can be used as a tab for a sodium ion secondary battery can be used.
  • the positive electrode tab and the negative electrode tab may be made of the same material or different materials. Further, as in the present embodiment, a separately prepared tab may be connected to a positive electrode current collector and a negative electrode current collector described later, and each positive electrode current collector and each negative electrode current collector described later are in a foil shape. In some cases, tabs may be formed by extending each one.
  • the said exterior body 30 is formed with the film-shaped exterior material from a viewpoint of size reduction and weight reduction, for example.
  • the conventionally well-known material which can be used for the exterior body for sodium ion secondary batteries can be used.
  • a polymer-metal composite laminate sheet with excellent thermal conductivity should be used to efficiently transfer heat from the heat source of the automobile and to quickly heat the inside of the battery to the battery operating temperature. Is preferred.
  • the battery element 10 in the sodium ion secondary battery 1 of the present embodiment has a configuration in which a plurality of unit cell layers 14 including a positive electrode 11, an electrolyte layer 13, and a negative electrode 12 are stacked.
  • the positive electrode 11 has a configuration in which a positive electrode active material layer 11B is formed on both surfaces of the positive electrode current collector 11A.
  • the negative electrode 12 has a configuration in which a negative electrode active material layer 12B is formed on both surfaces of the negative electrode current collector 12A, and a coating 12C is formed on the surface of the negative electrode active material layer 12B on the electrolyte layer 13 side. ing.
  • the positive electrode active material layer 11B formed on one surface of the positive electrode current collector 11A in one positive electrode 11 and the one surface of the negative electrode current collector 12A in the negative electrode 12 adjacent to the positive electrode 11 were formed.
  • the negative electrode active material layer 12 ⁇ / b> B faces the electrolyte layer 13.
  • a plurality of positive electrodes, electrolyte layers, and negative electrodes are laminated in this order, and the adjacent positive electrode active material layer 11B, electrolyte layer 13, coating 12C, and negative electrode active material layer 12B are formed as a single cell layer 14. Constitute.
  • the sodium ion secondary battery 1 has a configuration in which a plurality of single battery layers 14 are stacked so that they are electrically connected in parallel.
  • the negative electrode current collector 12A located on the outermost layer of the battery element 10 has a negative electrode active material layer 12B and a coating 12C formed only on one side.
  • an insulating layer (not shown) may be provided on the outer periphery of the unit cell layer in order to insulate between the adjacent positive electrode current collector and negative electrode current collector.
  • a material for the insulating layer formed on the outer periphery of the unit cell layer a material that can hold the electrolyte contained in the electrolyte layer and prevent the electrolyte from leaking is preferable.
  • general-purpose plastics such as polypropylene (PP), polyethylene (PE), polyurethane (PUR), polyamide resin (PA), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and polystyrene (PS) Can be used.
  • thermoplastic olefin rubber, silicone rubber, etc. can also be used.
  • the positive electrode current collector 11A and the negative electrode current collector 12A are made of a conductive material such as foil or mesh aluminum, copper, stainless steel (SUS), for example. However, it is not limited to these, The conventionally well-known material which can be used as a collector for sodium ion secondary batteries can be used.
  • the negative electrode active material layer 12B contains hard carbon as a negative electrode active material, and may contain a binder and a conductive additive as necessary.
  • Hard carbon refers to non-graphitizable carbon that does not migrate to graphite and maintains a random structure even when fired at 3000 ° C.
  • soft carbon refers to graphitizable carbon that transitions to graphite when fired at 3000 ° C. These are sometimes classified as low crystalline carbon.
  • the negative electrode active material layer may contain another negative electrode active material in addition to the hard carbon as long as it is formed as a secondary battery.
  • negative electrode active materials include graphite (natural graphite, artificial graphite, etc.) which is highly crystalline carbon, and soft carbon described above which is an example of low crystalline carbon.
  • Other negative electrode active materials include, for example, carbon black (Ketjen black, acetylene black, channel black, lamp black, oil furnace black, thermal black, etc.), fullerene, carbon nanotube, carbon nanofiber, carbon nanohorn, carbon Carbon materials such as fibrils and polyacene can also be mentioned.
  • negative electrode active materials for example, Si, Ge, Sn, Pb, In, Zn, H, Ca, Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg
  • a single element of an element that forms an alloy with sodium such as Ga, Tl, C, N, Sb, Bi, O, S, Se, Te, and Cl, and an oxide containing these elements (silicon monoxide (SiO), SiO x ( Examples thereof include 0 ⁇ x ⁇ 2), tin dioxide (SnO 2 ), SnO x (0 ⁇ x ⁇ 2), SnSiO 3 and the like) and carbides (silicon carbide (SiC) and the like).
  • examples of other negative electrode active materials include metal materials such as sodium metal, and sodium-transition metal composite oxides such as sodium-titanium composite oxide (sodium titanate: Na 4 Ti 5 O 12 ). You can also. However, it is not limited to these, The conventionally well-known material which can be used as a negative electrode active material for sodium ion secondary batteries can be used. These negative electrode active materials may be used alone or in combination of two or more.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PI polyimide
  • PA polyamide
  • PVC polyvinyl chloride
  • PMA polymethyl acrylate
  • PMMA polyether nitrile
  • PE polyethylene
  • PP polypropylene
  • PAN polyacrylonitrile
  • thermosetting resin such as an epoxy resin, a polyurethane resin, or a urea resin, or a rubber material such as styrene butadiene rubber (SBR)
  • SBR styrene butadiene rubber
  • the conventionally well-known material which can be used as a binder for sodium ion secondary batteries can be used. These binders may be used alone or in combination of two or more.
  • the conductive aid examples include carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber.
  • carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber.
  • the material is not limited to these, and a conventionally known material that can be used as a conductive additive for a sodium ion secondary battery can be used.
  • These conductive assistants may be used alone or in combination of two or more.
  • the coating 12C is made of a composite material containing carbon, oxygen, fluorine and sodium. This coating is formed by the above-described additive being reduced and decomposed first on the negative electrode surface as compared with the nonaqueous solvent constituting the nonaqueous electrolytic solution, for example, at the time of the first charge. . Further, this coating is called an SEI coating as described above.
  • the component of the film can be specified by, for example, X-ray photoelectron spectroscopy (XPS) analysis.
  • XPS X-ray photoelectron spectroscopy
  • the film 12 ⁇ / b> C may be formed on the entire surface of the negative electrode as in the present embodiment, or may be formed on a part, although not shown.
  • a film may be formed on all or part of the surface of the negative electrode active material layer.
  • a film may be formed on all or a part of the surface of the negative electrode active material.
  • the positive electrode active material layer 11B includes one or more positive electrode materials capable of occluding and releasing sodium as a positive electrode active material, and includes a binder and a conductive aid as necessary. You may go out. In addition, the binder and the conductive auxiliary agent described above can be used.
  • a sodium-containing compound As a positive electrode material capable of occluding and releasing sodium, for example, a sodium-containing compound is preferable from the viewpoint of capacity and output characteristics.
  • the sodium-containing compound include a layered oxide-based material such as sodium iron composite oxide (NaFeO 2 ), sodium cobalt composite oxide (NaCoO 2 ), sodium chromium composite oxide (NaCrO 2 ), and sodium manganese composite oxide.
  • sodium-containing compound examples include sodium manganese composite oxide (NaMn 2 O 4 ) and sodium nickel manganese composite oxide (NaNi 1/2 Mn 3/2 O 2 ).
  • examples of the sodium-containing compound include olivine-based materials such as a sodium iron phosphate compound (NaFePO 4 ), a sodium manganese phosphate compound (NaMnPO 4 ), and a sodium cobalt phosphate compound (NaCoPO 4 ).
  • the sodium-containing compound may be mentioned for example, fluoride olivine material Na 2 FePO 4 F, Na 2 MnPO 4 F, and Na 2 CoPO 4 F.
  • organic active materials such as polymer radical compounds and ⁇ -conjugated polymers known from organic radical batteries can also be mentioned.
  • the element which forms a compound with sodium such as solid sulfur and sulfur-carbon composite material, can also be mentioned. However, it is not limited to these, and other sodium-containing transition metal oxides, sodium-containing transition metal sulfides, sodium-containing transition metal fluorides, etc., as long as they can occlude and release sodium. Conventionally known materials can also be used.
  • active materials other than those described above may be used, for example, sodium metal may be used.
  • sodium metal when sodium metal is used as the active material, since sodium metal has a lower potential than hard carbon, the battery has a negative electrode on the sodium metal side and a positive electrode on the hard carbon side.
  • the optimum particle diameter when the optimum particle diameter is different in expressing the unique effect of each active material, the optimum particle diameters may be mixed and used for expressing each unique effect. There is no need to make the particle size of the material uniform.
  • the average particle size of the hard carbon may be the same as the average particle size of the negative electrode active material contained in the existing negative electrode active material layer, and is not particularly limited. . From the viewpoint of higher output, it is preferably in the range of 1 to 20 ⁇ m. However, it is not limited to such a range at all, and may be outside this range as long as the effects of the present embodiment can be effectively expressed.
  • Examples of the electrolyte layer 13 include those in which a layer structure is formed using a nonaqueous electrolytic solution or a polymer gel electrolyte held in a separator described later. Furthermore, what formed the laminated structure using the polymer gel electrolyte can be mentioned.
  • the non-aqueous electrolyte is preferably used, for example, in a sodium ion secondary battery. Specifically, the non-aqueous electrolyte is configured by dissolving a sodium salt and the above-described additives in a non-aqueous solvent that is an organic solvent.
  • the mixing ratio of the additive is not particularly limited, but it is preferably included in the nonaqueous electrolytic solution at a ratio of 0.5 to 10% by volume, more preferably included at a ratio of 0.5 to 5% by volume. Preferably, it is contained at a ratio of 0.5 to 2% by volume. By making it within the above-mentioned range, it is possible to obtain a suitable film production amount for improving the durability of the battery.
  • the sodium salt examples include inorganic acid anion salts such as NaPF 6 , NaBF 4 , NaClO 4 , NaAsF 6 , NaTaF 6 , NaAlCl 4 , Na 2 B 10 Cl 10 , NaCF 3 SO 3 , Na (CF 3 SO 2 ) 2 N, at least one sodium salt selected from organic acid anion salts such as Na (C 2 F 5 SO 2 ) 2 N, and the like.
  • the non-aqueous solvent for example, a non-aqueous solvent composed of a saturated cyclic carbonate or a non-aqueous solvent composed of a saturated cyclic carbonate and a chain carbonate can be applied.
  • saturated cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) and the like.
  • chain carbonate examples include dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), and diethyl carbonate (DEC).
  • ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-dibutoxyethane
  • Lactones such as butyrolactone
  • nitriles such as acetonitrile
  • esters such as methyl propionate
  • amides such as dimethylformamide
  • Lactones such as butyrolactone
  • nitriles such as acetonitrile
  • esters such as methyl propionate
  • amides such as dimethylformamide
  • the microporous film which consists of polyolefins, such as polyethylene and a polypropylene, can be mentioned, for example.
  • the polymer gel electrolyte include those containing a polymer constituting the polymer gel electrolyte and a non-aqueous electrolyte in a conventionally known ratio.
  • the polymer gel electrolyte is a solid polymer electrolyte having ion conductivity containing the above-mentioned electrolytic solution usually used in a sodium ion secondary battery, but is not limited to this. A structure in which a similar electrolyte solution is held in a polymer skeleton having no conductivity is also included.
  • polymers having no sodium ion conductivity used for the polymer gel electrolyte examples include polyvinylidene fluoride (PVdF), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and polymethyl methacrylate (PMMA). It can. However, it is not necessarily limited to these. Since PAN, PMMA, etc. have almost no ionic conductivity, they can be used as the above polymer having ionic conductivity, but here, as a polymer having no sodium ion conductivity used for the polymer gel electrolyte. Illustrated.
  • PVdF polyvinylidene fluoride
  • PVC polyvinyl chloride
  • PAN polyacrylonitrile
  • PMMA polymethyl methacrylate
  • the solid polymer electrolyte examples include those formed by dissolving the sodium salt in polyethylene oxide (PEO), polypropylene oxide (PPO), and the like. From the viewpoint of reducing the internal resistance, it is preferable that the electrolyte layer is thin. For example, the thickness of the electrolyte layer is usually 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • a positive electrode is produced.
  • the positive electrode active material and, if necessary, a conductive additive, a binder, and a viscosity adjusting solvent are mixed to prepare a positive electrode mixture.
  • this positive electrode mixture is applied to a positive electrode current collector, dried, and compression molded to form a positive electrode active material layer.
  • a negative electrode For example, when using a granular negative electrode active material, a negative electrode active material and a conductive support agent, a binder, and a viscosity adjusting solvent are mixed as needed, and a negative electrode mixture is produced. Thereafter, this negative electrode mixture is applied to a negative electrode current collector, dried and compression molded to form a negative electrode active material layer.
  • the positive electrode tab is attached to the positive electrode and the negative electrode tab is attached to the negative electrode. Then, a positive electrode, a separator, and a negative electrode are laminated. Further, the laminated product is sandwiched between polymer-metal composite laminate sheets, and the outer peripheral edge except for one side is heat-sealed to form a bag-like outer package.
  • a nonaqueous electrolytic solution containing a sodium salt such as sodium hexafluorophosphate, a nonaqueous solvent such as propylene carbonate, and an additive such as fluoroethylene carbonate is prepared.
  • This non-aqueous electrolyte is injected into the interior from the opening of the exterior body. Then, the opening part of an exterior body is heat-sealed and sealed. In this way, a laminate type sodium ion secondary battery is completed.
  • the sodium ion secondary battery described above when charged, sodium ions are released from the positive electrode active material layer and inserted into the negative electrode active material layer through the electrolyte layer.
  • sodium ions are released from the negative electrode active material layer and inserted in the positive electrode active material layer through the electrolyte layer.
  • an SEI film derived from the additive is formed on the negative electrode particularly during initial charging.
  • the additive contained in the non-aqueous electrolyte acts on the negative electrode to form a film, thereby suppressing the decomposition of the non-aqueous solvent in the negative electrode.
  • production of sodium ethoxide etc. is suppressed, decomposition
  • Example 1-1 to Example 1-4, Example 2-1, Comparative Example 1-1 to Comparative Example 3-1 Hard carbon (manufactured by Kureha Co., Ltd., Carbotron P), polyvinylidene fluoride (PVdF) as a binder and N-methyl-2-pyrrolidone (NMP) as a viscosity adjusting solvent are mixed by hand to obtain a working electrode mixture.
  • Hard carbon manufactured by Kureha Co., Ltd., Carbotron P
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • metal sodium foil was used as the counter electrode.
  • As the separator a glass filter having a thickness of 0.38 mm was used.
  • the working electrode and the counter electrode were laminated in the order of the working electrode, the separator, and the counter electrode through one glass filter having a thickness of 0.38 mm to obtain a single cell layer having a three-layer structure.
  • the obtained single cell layer was placed in one case of a coin-type battery, and a gasket was attached to maintain insulation between the electrodes.
  • a syringe and a non-aqueous electrolyte solution shown below were injected into this, and a spring and a spacer were laminated. Furthermore, the other case was overlapped and caulked to obtain a sodium secondary battery.
  • a non-aqueous electrolyte solution dissolved to 1 mol / L was used.
  • Comparative Example 1-1 a nonaqueous electrolytic solution in which NaClO 4 as an electrolyte salt was dissolved in PC (no FEC added) as a nonaqueous solvent so as to have a concentration of 1 mol / L was used.
  • Comparative Example 2-1 a nonaqueous electrolytic solution in which NaPF 6 as an electrolyte salt was dissolved to a concentration of 1 mol / L in PC (no FEC added) as a nonaqueous solvent was used.
  • non-aqueous solvent PC (without FEC added) was dissolved in sodium bis (trifluoromethanesulfonyl) amide (NaTFSA) as an electrolyte salt to a concentration of 1 mol / L.
  • NaTFSA sodium bis (trifluoromethanesulfonyl) amide
  • Example 3-1 and Comparative example 4-1 NaNi 0.5 Mn 0.5 O 2 as a positive electrode active material, polyvinylidene fluoride (PVdF) as a binder, acetylene black as a conductive auxiliary agent, N-methyl-2-pyrrolidone (NMP) as a viscosity adjusting solvent, Were mixed by hand to obtain a positive electrode mixture.
  • the obtained positive electrode mixture was applied onto an aluminum foil as a positive electrode current collector, dried in a vacuum dryer at 90 ° C., and punched into a circle having a diameter of 10 mm to obtain a positive electrode.
  • a metal sodium foil was used as the negative electrode.
  • a glass filter having a thickness of 0.38 mm was used as the separator. The positive electrode and the negative electrode were laminated in the order of the positive electrode, the separator, and the negative electrode through one glass filter having a thickness of 0.38 mm to obtain a single cell layer having a three-layer structure.
  • the obtained single cell layer was placed in one case of a coin-type battery, and a gasket was attached to maintain insulation between the electrodes.
  • a syringe was used to inject the following nonaqueous electrolyte solution, and a spring and a spacer were laminated. Furthermore, the other case was overlapped and caulked to obtain a sodium secondary battery.
  • a non-aqueous electrolyte solution dissolved to 1 mol / L was used.
  • Comparative Example 4-1 a nonaqueous electrolytic solution in which NaClO 4 as an electrolyte salt was dissolved in PC (no FEC added) as a nonaqueous solvent so as to have a concentration of 1 mol / L was used.
  • the charging / discharging of the obtained hard carbon / sodium secondary battery was performed as follows.
  • a sodium secondary battery is connected to a charging / discharging device (HJ0501SM8A, manufactured by Hokuto Denko Co., Ltd.), and constant current charging is performed at a current density of 25 mA / g until the potential difference reaches 0 V, and constant current discharging is performed until the potential difference reaches 2 V. Went.
  • the above charge / discharge cycle was taken as one cycle, charge / discharge was performed from 1 cycle to 50 cycles under the same charge / discharge conditions, and the capacity after each cycle was measured. Depending on the example, about 40 cycles or about 100 cycles may be performed.
  • the obtained results are shown in FIGS. Note that the temperature during charging / discharging was kept at about 25 ° C.
  • the charge / discharge test of the NaNi 1/2 Mn 1/2 O 2 / sodium secondary battery was performed as follows.
  • a sodium secondary battery was connected to a charging / discharging device (HJ0501SM8A, manufactured by Hokuto Denko Co., Ltd.), and constant current charging was performed at a current density of 23.9 mA / g until the potential difference reached 3.8 V. This potential difference was 2.2 V.
  • Constant current discharge was performed until The above charge / discharge cycle was taken as one cycle, and charge / discharge was performed from 1 cycle to 50 cycles under the same charge / discharge conditions, and the capacity after each cycle was calculated. The obtained result is shown in FIG. Furthermore, the charge / discharge efficiency after each cycle was calculated. The obtained results are shown in FIG. The temperature during charging / discharging was kept at about 25 ° C.
  • the sodium secondary batteries of Examples 1-1 to 1-4 and Example 2-1 are Comparative Example 1-1, Comparative Example 2-1, and Comparative Example 3.
  • the capacity decrease was suppressed and the durability was improved.
  • FIG. 3 shows the relationship between the type of electrolyte salt and the battery capacity. From FIG. 3, it was found that when the additive of the present invention was not added, the capacity decreased rapidly as the number of cycles increased.
  • FIG. 4 shows the relationship between the additive amount and battery capacity.
  • FIG. 4 shows that durability is improved when 0.5 to 10% by volume of FEC is added. In particular, when 0.5 to 2% by volume was added, it was found that even after 50 cycles, the capacity was hardly decreased and the durability was remarkably improved.
  • FIG. 5 shows the relationship between the combination of the additive and the electrolyte salt and the battery capacity. From FIG. 5, it was found that when FEC and NaClO 4 were combined, capacity decrease was hardly observed even after 50 cycles, and the durability was remarkably improved.
  • FIG. 6 shows that Example 3-1 in which FEC was added to PC clearly improved the cycle characteristics as compared with Comparative Example 4-1 with PC alone. Moreover, it turned out that the charging / discharging efficiency for every cycle is also improved about 7% from FIG.
  • the negative electrode surfaces of the sodium secondary batteries of Examples 1-1 to 1-4 and Example 2-1 after charge and discharge were analyzed by X-ray photoelectron spectroscopy (XPS). As a result, since carbon, oxygen, fluorine and sodium were detected, it was found that a film made of a composite material containing these was formed on the negative electrode surface.
  • XPS X-ray photoelectron spectroscopy
  • the negative electrode surface was observed using the scanning electron microscope (SEM) about the sodium secondary battery of each example after charging / discharging. This SEM observation was performed under conditions of magnification: ⁇ 10000 and acceleration voltage: 5 kV. As a reference example, the surface of the hard carbon itself was also observed using SEM under the same conditions. A part of the obtained results is shown in FIG. 8A is an SEM image of the reference example, and FIGS. 8B to 8E are Comparative Example 1-1, Example 1-1, Example 1-3, and Example 1-4, respectively. It is a SEM image of the negative electrode surface of the sodium secondary battery corresponding to.
  • SEM scanning electron microscope
  • Example 1-1 As shown in FIG. 8, in Example 1-1, Example 1-3, and Example 1-4, a coating on the negative electrode surface was observed. On the other hand, this film was not observed in Comparative Example 1-1 to which no FEC was added. Moreover, from these results, it was recognized that the amount of coating produced increased as the amount added increased. In particular, in Example 1-4, it was clearly observed that the amount of coating produced increased.
  • the additive for a sodium ion secondary battery of the present invention may be a saturated cyclic carbonate having a fluoro group or a chain carbonate having a fluoro group, and other configurations are not particularly limited. Absent.
  • the sodium ion secondary battery of this invention should just be provided with the predetermined non-aqueous electrolyte and the predetermined negative electrode mentioned above, and it does not specifically limit regarding another structure.
  • the present invention can be applied not only to the above-described laminate type battery and coin (button) type battery, but also to a conventionally known form / structure such as a can type battery.
  • the present invention can be applied not only to the above-described stacked type (flat type) battery but also to a conventionally known form / structure such as a wound type (cylindrical) battery.
  • the present invention is not limited to an ordinary battery such as the above-described internal parallel connection type, as well as an internal series connection type when viewed in terms of electrical connection in a sodium ion secondary battery, that is, an electrode structure.
  • Conventionally known forms and structures such as bipolar batteries can also be applied.
  • a battery element in a bipolar battery generally includes a bipolar electrode in which a negative electrode active material layer is formed on one surface of a current collector and a positive electrode active material layer is formed on the other surface, an electrolyte layer, A plurality of layers.
  • a saturated cyclic carbonate having a fluoro group or a chain carbonate having a fluoro group is used as an additive for a sodium ion secondary battery, the durability of the sodium ion secondary battery is improved. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明のナトリウムイオン二次電池用添加剤は、フルオロ基を有する飽和環状カーボネート及びフルオロ基を有する鎖状カーボネートの少なくとも一方からなる化合物を含む。また、本発明のナトリウムイオン二次電池(1)は、前記ナトリウムイオン二次電池用添加剤、並びに飽和環状カーボネートからなる非水溶媒、又は飽和環状カーボネート及び鎖状カーボネートからなる非水溶媒を含む非水電解液と、正極(11)と、表面に炭素、酸素、フッ素及びナトリウムを含有する複合材からなる被膜を有すると共にハードカーボンからなる負極活物質を含む負極(12)と、を備える。

Description

ナトリウムイオン二次電池用添加剤及びナトリウムイオン二次電池
 本発明は、ナトリウムイオン二次電池用添加剤及びナトリウムイオン二次電池に関する。更に詳細には、本発明は、耐久性を向上し得るナトリウムイオン二次電池用添加剤及びこれを用いたナトリウムイオン二次電池に関する。
 近年、大気汚染や地球温暖化への対策として、二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵となるモータ駆動用二次電池の開発が盛んに行われている。モータ駆動用二次電池としては、高い理論エネルギを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。しかしながら、リチウムは、例えばナトリウムと比較して資源的に豊富でないため、高価である。従って、電池の低コスト化及び安定的な供給のために、リチウムイオン二次電池に代わるナトリウムイオン二次電池についても、現在開発が進められている。
 従来、粘度が低くて比伝導度が大きく、高い電位においても分解し難く、充放電が高い正電位の領域にまで及ぶ物質を正極活物質として利用することが可能なナトリウムイオン電池用電解液が提案されている。例えば、鎖式飽和炭化水素ジニトリル化合物や鎖式シアノエーテル化合物及びシアノ酢酸エステルなどのニトリル化合物等と、環状カーボネートや環状エステル、鎖状カーボネート等とを含むナトリウムイオン電池用電解液が提案されている(特許文献1参照。)。
特開2010-165674号公報
 しかしながら、上記特許文献1に記載のナトリウムイオン電池用電解液を用いたナトリウムイオン電池にあっては、電池構成を工夫することで高い正電位での電解液分解を抑制できるものの、負極表面での電解液分解を抑制することができていなかった。また、正極表面での電解液被分解物の更なる分解を抑制することができず、耐久性が乏しいという問題点があった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、その目的とするところは、耐久性を向上させ得るナトリウムイオン二次電池用添加剤及びこれを用いたナトリウムイオン二次電池を提供することにある。
 すなわち、本発明のナトリウムイオン二次電池用添加剤は、フルオロ基を有する飽和環状カーボネート及びフルオロ基を有する鎖状カーボネートの少なくとも一方からなる化合物を含むことを特徴とする。
 また、本発明のナトリウムイオン二次電池は、上記ナトリウムイオン二次電池用添加剤、並びに飽和環状カーボネートからなる非水溶媒、又は飽和環状カーボネート及び鎖状カーボネートからなる非水溶媒を含む非水電解液と、正極と、表面に炭素、酸素、フッ素及びナトリウムを含有する複合材からなる被膜を有すると共にハードカーボンからなる負極活物質を含む負極と、を備える。
図1は、本発明の一実施形態に係るナトリウムイオン二次電池の一例を示す概略断面図である。 図2は、各例のサイクリックボルタンメトリー試験の結果を示すグラフである。 図3は、各例の各充放電サイクル後の容量を示すグラフである。 図4は、各例の各充放電サイクル後の容量を示すグラフである。 図5は、各例の各充放電サイクル後の容量を示すグラフである。 図6は、各例の各充放電サイクル後の容量を示すグラフである。 図7は、各例の各充放電サイクル後の充放電効率を示すグラフである。 図8(a)~(e)は、それぞれ参考例、比較例1-1、実施例1-1、実施例1-3及び実施例1-4の走査型電子顕微鏡像である。
 以下、本発明のナトリウムイオン二次電池用添加剤及びナトリウムイオン二次電池について詳細に説明する。
 まず、本発明の一実施形態に係るナトリウムイオン二次電池用添加剤について詳細に説明する。本実施形態のナトリウムイオン二次電池用添加剤は、フルオロ基を有する飽和環状カーボネート及びフルオロ基を有する鎖状カーボネートからなる群より選ばれる少なくとも1種からなるものである。
 このような添加剤は、例えば最初の充電の際に、非水電解液を構成する非水溶媒と比較して先に負極表面で還元分解され、負極表面の被膜の形成に寄与する。そして、被膜が形成されるため、上述した添加剤を用いたナトリウムイオン二次電池は、非水溶媒の分解が抑制され、容量の低下が抑制されることとなる。つまり、上述した添加剤を用いたナトリウムイオン二次電池は、耐久性が向上したものとなる。なお、詳しくは後述するが、この被膜は固体電解質被膜、すなわちSEI(Solid Electrolyte Interface)被膜と呼ばれるものである。
 また、被膜が形成されない場合は、負極上で電解液の分解が起こることにより、ナトリウムエトキシド等が生成する。これらの副生成物が正極上において酸化分解されると、電解液の分解が更に促進される。例えば、フルオロエチレンカーボネート(FEC)等のフルオロ基を有する飽和環状カーボネートを添加することにより、このナトリウムエトキシド等の生成プロセスが抑制され、正極上での電解液の分解が抑制されることとなる。つまり、このような観点からも、上述した添加剤を用いたナトリウムイオン二次電池は、耐久性が向上したものとなる。
 上記添加剤としては、被膜を形成し易いという観点から、フルオロ基を1ないし2個有する飽和環状カーボネートやフルオロ基を1ないし2個有する鎖状カーボネートを好適例として挙げることができる。これらは1種を単独で又は2種以上を混合して用いることができる。その中でも、被膜の形成し易さを考慮すると、フルオロ基を1個有する飽和環状カーボネートやフルオロ基を1個有する鎖状カーボネートを好適例として挙げることができる。なお、同程度の効果を奏するものであれば、これらに限定されるものではない。例えばフルオロ基を3ないし4個有するものであってもよい。
 上記添加剤としては、被膜の形成し易さを考慮すると、下記一般式(1)又は一般式(2)で表される化合物を好適例として挙げることができる。これらは1種を単独で又は2種以上を混合して用いることができる。
Figure JPOXMLDOC01-appb-C000003
 式(1)中のRは、フッ素原子を有する炭素数が2~4のアルキレン基を示す。
Figure JPOXMLDOC01-appb-C000004
 式(2)中のR及びRは、互いに同一であっても、異なっていてもよく、フッ素原子を有する炭素数が1~3のアルキル基を示す。
 上記一般式(1)で表されるフルオロ基を1ないし2個有する飽和環状カーボネートとしては、例えばフルオロエチレンカーボネート(FEC)やジフルオロエチレンカーボネート(DFEC)を挙げることができる。その中でも、被膜の形成し易さを考慮すると、フルオロエチレンカーボネート(FEC)を好適例として挙げることができる。また、上記一般式(2)で表されるフルオロ基を1ないし2個有する飽和鎖状カーボネートとしては、例えば、フルオロメチルメチルカーボネート、(ジフルオロメチル)メチルカーボネート、(1-フルオロエチル)メチルカーボネートを挙げることができる。
 次に、本発明の一実施形態に係るナトリウムイオン二次電池について図面を参照しながら詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
[ナトリウムイオン二次電池の構成]
 図1に、本発明の一実施形態に係るナトリウムイオン二次電池の一例を示す。図1に示すように、本実施形態のナトリウムイオン二次電池1は、正極タブ21及び負極タブ22が取り付けられた電池要素10が外装体30の内部に封入された構成を有している。そして、本実施形態においては、正極タブ21及び負極タブ22が、外装体30の内部から外部に向かって、それぞれ反対の方向に導出されている。なお、図示しないが、正極タブ及び負極タブが、外装体の内部から外部に向かって、同一方向に導出される構成としてもよい。また、このような正極タブ及び負極タブは、例えば超音波溶接や抵抗溶接などにより後述する正極集電体及び負極集電体に取り付けることができる。
[正極タブ及び負極タブ]
 上記正極タブ21及び負極タブ22は、例えば、アルミニウム(Al)や銅(Cu)、チタン(Ti)、ニッケル(Ni)、ステンレス鋼(SUS)、これらの合金などの材料により構成される。しかしながら、これらに限定されるものではなく、ナトリウムイオン二次電池用のタブとして用いることができる従来公知の材料を用いることができる。なお、正極タブ及び負極タブは、同一材質のものを用いてもよく、異なる材質のものを用いてもよい。また、本実施形態のように、別途準備したタブを後述する正極集電体及び負極集電体に接続してもよいし、後述する各正極集電体及び各負極集電体が箔状である場合は、それぞれを延長することによってタブを形成してもよい。
[外装体]
 上記外装体30は、例えば、小型化、軽量化の観点から、フィルム状の外装材で形成されたものであることが好ましい。ただし、これに限定されるものではなく、ナトリウムイオン二次電池用の外装体に使用可能な従来公知の材料で形成されたものを用いることができる。なお、自動車に適用する場合、自動車の熱源から効率よく熱を伝え、電池内部を迅速に電池動作温度まで加熱するために、例えば、熱伝導性に優れた高分子-金属複合ラミネートシートを用いることが好適である。
[電池要素]
 図1に示すように、本実施形態のナトリウムイオン二次電池1における電池要素10は、正極11と、電解質層13と、負極12とからなる単電池層14を複数積層した構成を有している。正極11は、正極集電体11Aの両方の表面に正極活物質層11Bが形成された構成を有している。また、負極12は、負極集電体12Aの両方の表面に負極活物質層12Bが形成され、更に、負極活物質層12Bの電解質層13側の表面に被膜12Cが形成された構成を有している。
 このとき、一の正極11における正極集電体11Aの片方の表面に形成された正極活物質層11Bと、その正極11に隣接する負極12における負極集電体12Aの片方の表面に形成された負極活物質層12Bとが電解質層13を介して対向する。このようにして、正極、電解質層、負極が、この順に複数積層されており、隣接する正極活物質層11B、電解質層13、被膜12C及び負極活物質層12Bは、1つの単電池層14を構成する。すなわち、本実施形態のナトリウムイオン二次電池1は、単電池層14が複数積層されることにより、電気的に並列接続された構成を有するものとなる。なお、電池要素10の最外層に位置する負極集電体12Aには、片面のみに、負極活物質層12B及び被膜12Cが形成されている。
 また、単電池層の外周には、隣接する正極集電体や負極集電体の間を絶縁するために、図示しない絶縁層が設けられていてもよい。単電池層の外周に形成される絶縁層の材料としては、電解質層などに含まれる電解質を保持し、電解質の液漏れを防止できるものが好ましい。具体的には、ポリプロピレン(PP)、ポリエチレン(PE)、ポリウレタン(PUR)、ポリアミド系樹脂(PA)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリスチレン(PS)などの汎用プラスチックを使用することができる。また、熱可塑オレフィンゴムやシリコーンゴムなどを使用することもできる。
[正極集電体及び負極集電体]
 正極集電体11A及び負極集電体12Aは、例えば、箔状又はメッシュ状のアルミニウム、銅、ステンレス(SUS)などの導電性の材料により構成される。しかしながら、これらに限定されるものではなく、ナトリウムイオン二次電池用の集電体として使用可能な従来公知の材料を用いることができる。
[負極活物質層]
 負極活物質層12Bは、負極活物質として、ハードカーボンを含んでおり、必要に応じ、バインダや導電助剤を含んでいてもよい。なお、「ハードカーボン」とは、3000℃で焼成しても、黒鉛に移行せず、ランダムな構造を維持する難黒鉛化炭素のことである。これに対する「ソフトカーボン」とは、3000℃で焼成した場合、黒鉛に移行する易黒鉛化炭素のことである。これらは、低結晶性カーボンと分類されることもある。
 また、負極活物質層は、二次電池として成立するのであれば、ハードカーボンに加えて、他の負極活物質を含んでいてもよい。他の負極活物質としては、例えば、高結晶性カーボンであるグラファイト(天然グラファイト、人造グラファイト等)、低結晶性カーボンの一例である上述したソフトカーボンを挙げることができる。また、他の負極活物質としては、例えば、カーボンブラック(ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等)、フラーレン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンフィブリル、ポリアセンなどの炭素材料を挙げることもできる。更に、他の負極活物質としては、例えば、Si、Ge、Sn、Pb、In、Zn、H、Ca、Sr、Ba、Ru、Rh、Ir、Pd、Pt、Ag、Au、Cd、Hg、Ga、Tl、C、N、Sb、Bi、O、S、Se、Te、Cl等のナトリウムと合金化する元素の単体、これらの元素を含む酸化物(一酸化ケイ素(SiO)、SiO(0<x<2)、二酸化スズ(SnO)、SnO(0<x<2)、SnSiOなど)及び炭化物(炭化ケイ素(SiC)など)等を挙げることもできる。更にまた、他の負極活物質としては、例えば、ナトリウム金属等の金属材料、ナトリウム-チタン複合酸化物(チタン酸ナトリウム:NaTi12)等のナトリウム-遷移金属複合酸化物を挙げることもできる。しかしながら、これらに限定されるものではなく、ナトリウムイオン二次電池用の負極活物質として使用可能な従来公知の材料を用いることができる。これらの負極活物質は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 バインダとしては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)などの熱可塑性樹脂を使用することができる。しかしながら、これらに限定されるものではない。例えば、エポキシ樹脂、ポリウレタン樹脂、ユリア樹脂などの熱硬化性樹脂やスチレンブタジエンゴム(SBR)などのゴム系材料をバインダとして使用することもできる。また、これらに限定されるものではなく、ナトリウムイオン二次電池用のバインダとして使用可能な従来公知の材料を用いることができる。これらのバインダは、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 導電助剤としては、例えば、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料を挙げることができる。しかしながら、これらに限定されるものではなく、ナトリウムイオン二次電池用の導電助剤として使用可能な従来公知の材料を用いることができる。これらの導電助剤は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
[被膜]
 被膜12Cは、炭素、酸素、フッ素及びナトリウムを含有する複合材からなるものである。この被膜は、上述した添加剤が、例えば最初の充電の際に、非水電解液を構成する非水溶媒と比較して先に負極表面で還元分解されることにより、形成されるものである。また、この被膜は、上述したように、SEI被膜と呼ばれるものである。なお、被膜の成分は、例えばX線光電子分光(XPS)分析により特定することができる。ここで、被膜12Cは、本実施形態のように負極の全面に形成されていてもよく、図示しないが、一部に形成されていてもよい。例えば、負極集電体に負極活物質を含有する負極活物質層が被覆された構造を有する負極においては、その負極活物質層の表面の全部又は一部に被膜が形成されていればよい。また、例えば、負極が粒子状の負極活物質を含有する場合には、負極活物質の表面の全部又は一部に被膜が形成されていればよい。
[正極活物質層]
 上記正極活物質層11Bは、正極活物質として、ナトリウムを吸蔵及び放出することが可能な正極材料のいずれか1種又は2種以上を含んでおり、必要に応じてバインダや導電助剤を含んでいてもよい。なお、バインダや導電助剤は上記説明したものを用いることができる。
 ナトリウムを吸蔵及び放出することが可能な正極材料としては、例えば容量、出力特性の観点からナトリウム含有化合物が好ましい。ナトリウム含有化合物としては、例えば、層状酸化物系材料であるナトリウム鉄複合酸化物(NaFeO)、ナトリウムコバルト複合酸化物(NaCoO)、ナトリウムクロム複合酸化物(NaCrO)、ナトリウムマンガン複合酸化物(NaMnO)、ナトリウムニッケル複合酸化物(NaNiO)、ナトリウムニッケルチタン複合酸化物(NaNi1/2Ti1/2)、ナトリウムニッケルマンガン複合酸化物(NaNi1/2Mn1/2)、ナトリウム鉄マンガン複合酸化物(Na2/3Fe1/3Mn2/3)、ナトリウムニッケルコバルトマンガン複合酸化物(NaNi1/3Co1/3Mn1/3)、それらの固溶体や非化学量論組成の化合物などを挙げることができる。他にも、ナトリウム含有化合物として、ナトリウムマンガン複合酸化物(NaMn)、ナトリウムニッケルマンガン複合酸化物(NaNi1/2Mn3/2)などを挙げることもできる。更に、ナトリウム含有化合物としては、例えばオリビン系材料であるナトリウム鉄リン酸化合物(NaFePO)、ナトリウムマンガンリン酸化合物(NaMnPO)、ナトリウムコバルトリン酸化合物(NaCoPO)などを挙げることもできる。また、ナトリウム含有化合物としては、例えばフッ化オリビン系材料であるNaFePOF、NaMnPOF、NaCoPOFなどを挙げることもできる。更に、有機ラジカル電池で知られる、高分子ラジカル化合物、π共役系高分子などの有機活物質などを挙げることもできる。更にまた、固体の硫黄、硫黄・炭素複合材料などのナトリウムと化合物を作る元素も挙げることができる。しかしながら、これらに限定されるものではなく、ナトリウムを吸蔵及び放出することが可能なものであれば、その他のナトリウム含有遷移金属酸化物、ナトリウム含有遷移金属硫化物、ナトリウム含有遷移金属フッ化物などの従来公知の材料を用いることもできる。
 なお、上記以外の活物質を用いてもよく、例えばナトリウム金属を用いることもできる。ナトリウム金属を活物質として用いる場合、ナトリウム金属はハードカーボンよりも電位が低いため、電池としてはナトリウム金属側が負極、ハードカーボン側が正極となる。また、活物質それぞれ固有の効果を発現する上で、最適な粒径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒径同士を混合して用いればよく、全ての活物質の粒径を均一化させる必要はない。例えば、負極活物質として粒子形態のハードカーボンを用いる場合、ハードカーボンの平均粒子径は、既存の負極活物質層に含まれる負極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1~20μmの範囲であればよい。ただし、このような範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、この範囲を外れていてもよい。
[電解質層]
 上記電解質層13としては、例えば、後述するセパレータに保持させた非水電解液や高分子ゲル電解質を用いて層構造を形成したものを挙げることができる。更には、高分子ゲル電解質を用いて積層構造を形成したものなどを挙げることができる。非水電解液としては、例えば、ナトリウムイオン二次電池で用いられるものであることが好ましく、具体的には、有機溶媒である非水溶媒にナトリウム塩及び上述した添加剤が溶解して構成される。添加剤の配合割合は、特に限定されるものではないが、非水電解液において0.5~10体積%の割合で含むことが好ましく、0.5~5体積%の割合で含むことがより好ましく、0.5~2体積%の割合で含むことが更に好ましい。上記範囲内とすることにより、電池の耐久性を向上させる上で好適な被膜生成量が得られる。
 ナトリウム塩としては、例えば、NaPF、NaBF、NaClO、NaAsF、NaTaF、NaAlCl、Na10Cl10等の無機酸陰イオン塩、NaCFSO、Na(CFSON、Na(CSON等の有機酸陰イオン塩の中から選ばれる、少なくとも1種類のナトリウム塩等を挙げることができる。また、非水溶媒としては、例えば、飽和環状カーボネートからなる非水溶媒や飽和環状カーボネート及び鎖状カーボネートからなる非水溶媒を適用することができる。
 飽和環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などを挙げることができる。また、鎖状カーボネートとしては、ジメチルカーボネート(DMC)、メチルエチルカーボネート(EMC)、ジエチルカーボネート(DEC)などを挙げることができる。また、他の非水溶媒を含んでいてもよく、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジブトキシエタン等のエーテル類;γ-ブチロラクトン等のラクトン類;アセトニトリル等のニトリル類;プロピオン酸メチル等のエステル類;ジメチルホルムアミド等のアミド類;酢酸メチル、蟻酸メチルの中から選ばれる1種類又は2種以上を混合したものを使用することもできる。
 なお、セパレータとしては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜を挙げることができる。高分子ゲル電解質としては、高分子ゲル電解質を構成するポリマーと非水電解液を従来公知の比率で含有したものを挙げることができる。高分子ゲル電解質は、イオン導伝性を有する固体高分子電解質に、通常ナトリウムイオン二次電池で用いられる上記電解液を含有させたものであるが、これに限定されるものではなく、ナトリウムイオン導伝性を持たない高分子の骨格中に、同様の電解液を保持させたものも含まれる。
 高分子ゲル電解質に用いられるナトリウムイオン導伝性を持たない高分子としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリビニルクロライド(PVC)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)などが使用できる。但し、これらに限られるわけではない。なお、PAN、PMMAなどはイオン伝導性がほとんどないため、上記イオン伝導性を有する高分子とすることもできるが、ここでは高分子ゲル電解質に用いられるナトリウムイオン導伝性を持たない高分子として例示した。
 固体高分子電解質としては、例えばポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)などに上記ナトリウム塩が溶解して構成されるものを挙げることができる。内部抵抗を低減させるという観点からは、電解質層の厚みは薄い方が好ましい。例えば、電解質層の厚みは、通常1~100μmであり、好ましくは5~50μmである。
 次に、上述した本実施形態におけるナトリウムイオン二次電池の製造方法の一例について説明する。
 まず、正極を作製する。例えば粒状の正極活物質を用いる場合には、正極活物質と必要に応じて導電助剤、バインダ及び粘度調整溶剤とを混合し、正極合剤を作製する。次いで、この正極合剤を正極集電体に塗布し、乾燥させ、圧縮成型して正極活物質層を形成する。
 また、負極を作製する。例えば粒状の負極活物質を用いる場合には、負極活物質と必要に応じて導電助剤、バインダ及び粘度調整溶剤とを混合し、負極合剤を作製する。この後、この負極合剤を負極集電体に塗布し、乾燥させ、圧縮成型して負極活物質層を形成する。
 ここで、正極に正極タブを取り付けるとともに、負極に負極タブを取り付ける。その後、正極、セパレータ及び負極を積層する。更に、積層したものを高分子-金属複合ラミネートシートで挟み、一辺を除く外周縁部を熱融着して袋状の外装体とする。
 次いで、六フッ化リン酸ナトリウムなどのナトリウム塩と、プロピレンカーボネートなどの非水溶媒と、フルオロエチレンカーボネートなどの添加剤とを含む非水電解液を準備する。この非水電解液を外装体の開口部から内部に注入する。その後、外装体の開口部を熱融着し封入する。このようにして、ラミネート型のナトリウムイオン二次電池が完成する。
 以上に説明したナトリウムイオン二次電池では、充電を行うと、正極活物質層からナトリウムイオンが放出され、電解質層を介して負極活物質層に吸蔵される。放電を行うと、負極活物質層からナトリウムイオンが放出され、電解質層を介して正極活物質層に吸蔵される。また、特に初期充電時において、添加剤に由来するSEI被膜が負極上に形成される。このように、非水電解液に含ませた添加剤が負極に作用して被膜を形成することにより、負極における非水溶媒の分解が抑制される。これにより、ナトリウムエトキシド等の生成が抑制されるため、正極における非水溶媒の分解が抑制され、ナトリウムイオン二次電池の容量低下が抑制される。
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 (実施例1-1~実施例1-4、実施例2-1、比較例1-1~比較例3-1)
 ハードカーボン(株式会社クレハ製、カーボトロンP)とバインダであるポリフッ化ビニリデン(PVdF)と粘度調整溶剤であるN-メチル-2-ピロリドン(NMP)とを手混ぜで混合して、作用極合剤を得た。得られた作用極合剤を、作用極集電体である銅箔上に塗布し、80℃の真空乾燥機内で乾燥させ、直径10mmの円形に打ち抜いて、作用極を得た。なお、ハードカーボンとポリフッ化ビニリデンは、質量比で、ハードカーボン:ポリフッ化ビニリデン=90:10の割合で混合した。一方、対極としては、金属ナトリウム箔を用いた。また、セパレータとしては、厚み0.38mmのガラスフィルターを用いた。上記作用極と対極を、厚み0.38mmのガラスフィルター1枚を介して、作用極、セパレータ、対極の順に積層して3層構造の単電池層を得た。得られた単電池層をコイン型電池の一方のケース内に配置し、極間の絶縁性を保つためにガスケットを装着させた。これにシリンジを用いて下記に示す非水電解液を注液し、スプリング及びスペーサーを積層した。更に、他方のケースを重ね合わせ、かしめを行って、ナトリウム二次電池を得た。
 実施例1-1においては、非水溶媒であるプロピレンカーボネート(PC)と添加剤であるフルオロエチレンカーボネート(FEC)とをPC:FEC=99.5:0.5(体積比)の割合で混合した溶媒に、電解質塩としての過塩素酸ナトリウム(NaClO)を濃度が1mol/Lとなるように溶解させた非水電解液を用いた。実施例1-2においては、非水溶媒であるPCと添加剤であるFECとをPC:FEC=99:1(体積比)の割合で混合した溶媒に、電解質塩としてのNaClOを濃度が1mol/Lとなるように溶解させた非水電解液を用いた。実施例1-3においては、非水溶媒であるPCと添加剤であるFECとをPC:FEC=98:2(体積比)の割合で混合した溶媒に、電解質塩としてのNaClOを濃度が1mol/Lとなるように溶解させたものを用いた。実施例1-4においては、非水溶媒であるPCと添加剤であるFECとをPC:FEC=90:10(体積比)の割合で混合した溶媒に、電解質塩としてのNaClOを濃度が1mol/Lとなるように溶解させた非水電解液を用いた。実施例2-1においては、非水溶媒であるPCと添加剤であるFECとをPC:FEC=98:2(体積比)の割合で混合した溶媒に、電解質塩としての六フッ化リン酸ナトリウム(NaPF)を濃度が1mol/Lとなるように溶解させた非水電解液を用いた。
 比較例1-1においては、非水溶媒であるPC(FEC無添加)に、電解質塩としてのNaClOを濃度が1mol/Lとなるように溶解させた非水電解液を用いた。比較例2-1においては、非水溶媒であるPC(FEC無添加)に、電解質塩としてのNaPFを濃度が1mol/Lとなるように溶解させた非水電解液を用いた。比較例3-1においては、非水溶媒であるPC(FEC無添加)に、電解質塩としてのナトリウムビス(トリフルオロメタンスルホニル)アミド(NaTFSA)を濃度が1mol/Lとなるように溶解させた非水電解液を用いた。
 (実施例3-1、比較例4-1)
 正極活物質であるNaNi0.5Mn0.5とバインダであるポリフッ化ビニリデン(PVdF)と導電助剤であるアセチレンブラックと粘度調整溶剤であるN-メチル-2-ピロリドン(NMP)とを手混ぜして、正極合剤を得た。得られた正極合剤を、正極集電体であるアルミニウム箔上に塗布し、90℃の真空乾燥機内で乾燥させ、直径10mmの円形に打ち抜いて、正極を得た。なお、NaNi0.5Mn0.5とポリフッ化ビニリデンとアセチレンブラックとは、質量比で、NaNi0.5Mn0.5:ポリフッ化ビニリデン:アセチレンブラック=80:10:10の割合で混合した。一方、負極としては、金属ナトリウム箔を用いた。また、セパレータとしては、厚み0.38mmのガラスフィルターを用いた。上記正極と負極を、厚み0.38mmのガラスフィルター1枚を介して、正極、セパレータ、負極の順に積層して3層構造の単電池層を得た。得られた単電池層をコイン型電池の一方のケース内に配置し、極間の絶縁性を保つためにガスケットを装着させた。これにシリンジを用いて下記の非水電解液を注液し、スプリング及びスペーサーを積層した。更に、他方のケースを重ね合わせ、かしめを行って、ナトリウム二次電池を得た。
 実施例3-1においては、非水溶媒であるPCと添加剤であるFECを、体積比で、PC:FEC=90:10の割合で混合した溶媒に、電解質塩としてのNaClOを濃度が1mol/Lとなるように溶解させた非水電解液を用いた。比較例4-1においては、非水溶媒であるPC(FEC無添加)に、電解質塩としてのNaClOを濃度が1mol/Lとなるように溶解させた非水電解液を用いた。
[サイクリックボルタンメトリー試験]
 実施例3-1及び比較例4-1で用いる非水電解液の酸化分解電位を測定するため、サイクリックボルタンメトリー試験を行った。作用極としては、直径10mmのアルミニウム箔、負極及び参照極としては金属ナトリウムを使用した。測定時の走査速度は0.20mV/電位範囲は、1.5-3.8Vvs.Na/Naとした。得られた結果を図2に示す。
 得られたハードカーボン/ナトリウム二次電池の充放電を次のように行った。ナトリウム二次電池を充放電装置(北斗電工株式会社製、HJ0501SM8A)に接続して、電位差が0Vとなるまで電流密度を25mA/gとして定電流充電し、この電位差が2Vとなるまで定電流放電を行った。以上の充放電サイクルを1サイクルとして、同じ充放電条件にて、1サイクル~50サイクルまで充放電を行って、各サイクル後の容量を測定した。なお、例によっては40サイクル程度行う場合や100サイクル程度行う場合もある。得られた結果を図3~図5に示す。なお、充放電時の温度は、約25℃に保持することとした。
 また、NaNi1/2Mn1/2/ナトリウム二次電池の充放電試験は次のように行った。ナトリウム二次電池を充放電装置(北斗電工株式会社製、HJ0501SM8A)に接続して、電位差が3.8Vとなるまで電流密度23.9mA/gとして定電流充電し、この電位差が2.2Vとなるまで定電流放電を行った。以上の充放電サイクルを1サイクルとして、同じ充放電条件にて、1サイクル~50サイクルまで充放電を行って、各サイクル後の容量を算出した。得られた結果を図6に示す。更に、各サイクル後の充放電効率を算出した。得られた結果を図7に示す。なお充放電時の温度は、約25℃に保持することとした。
 図2において、実線で示すPC単独のCV曲線からは、3V付近からはっきりと酸化電流が流れることによる電流ピークが観察された。一方、破線で示すFECを添加したPCのCV曲線からは、図中の矢印に示すように、酸化電流の抑制が観測された。この結果は、対極側で生成した電解液分解物の酸化分解反応が抑制された結果であると考えられる。
 図3~図5に示す結果によると、実施例1-1~実施例1-4及び実施例2-1のナトリウム二次電池は、比較例1-1、比較例2-1及び比較例3-1のナトリウム二次電池と比して、容量低下が抑制されており、耐久性が向上していることが分かった。
 図3は、電解質塩の種類と電池容量の関係を示したものである。図3から、本発明の添加剤を添加しない場合には、サイクル数の増加するにつれて、急激な容量低下が生じることが分かった。
 図4は、添加剤の添加量と電池容量の関係を示したものである。図4から、FECを0.5~10体積%添加した場合、耐久性が向上することが分かった。特に、0.5~2体積%添加した場合は、50サイクル後においても、容量低下が殆ど観察されず、耐久性が顕著に向上することが分かった。
 図5は、添加剤と電解質塩との組み合わせと電池容量の関係を示したものである。図5から、FECとNaClOとを組み合わせた場合には、50サイクル後においても、容量低下が殆ど観察されず、耐久性が顕著に向上することが分かった。
 図6から、PCにFECを添加した実施例3-1は、PC単独の比較例4-1と比較して、明らかにサイクル特性が向上することが分かった。また、図7から、各サイクル毎の充放電効率も7%程度改善されることが分かった。
 また、充放電後における実施例1-1~実施例1-4及び実施例2-1のナトリウム二次電池について、その負極表面をX線光電子分光(XPS)分析した。その結果、炭素、酸素、フッ素及びナトリウムが検出されたため、これらを含む複合材からなる被膜が負極表面に形成されていることが分かった。
 また、容量低下の改善要因を調べるため、充放電後における各例のナトリウム二次電池について、負極表面を走査型電子顕微鏡(SEM)を用いて観察した。このSEM観察は、倍率:×10000、加速電圧:5kVの条件下で行った。なお、参考例として、ハードカーボン自体の表面もSEMを用いて同様の条件下で観察した。得られた結果の一部を図8に示す。図8(a)は、参考例のSEM像であり、図8(b)~(e)は、それぞれ比較例1-1、実施例1-1、実施例1-3及び実施例1-4に対応するナトリウム二次電池の負極表面のSEM像である。
 図8に示すとおり、実施例1-1、実施例1-3及び実施例1-4においては、負極表面の被膜が観察された。一方、FEC無添加である比較例1-1ではこの被膜が観察されなかった。また、これらの結果から、添加量の増加するにつれて、被膜の生成量が増加する傾向が認められた。特に、実施例1-4においては、被膜の生成量が増加していることが明確に観察された。
 以上の結果から、負極表面において、添加されたFECが関与した還元分解が起こることで被膜が形成されるものと考えられ、この被膜により、非水溶媒の分解が抑制されることが示唆された。このようにして、上述した正極、電解液等と組み合わせてなるナトリウムイオン二次電池の容量低下が抑制され、ナトリウム二次電池の耐久性を向上させることが示唆された。なお、この被膜は、過度に生成すると抵抗成分となりうることから、被膜が過剰に生成することで容量低下の原因となりうることが示唆された。
 このように、FECを添加することにより、ナトリウムイオン二次電池の容量低下が抑制されることが示唆された。このような現象には、負極表面に形成された被膜が関与していることが示唆された。すなわち、本発明のナトリウムイオン二次電池用添加剤を用いることにより、ナトリウムイオン二次電池のサイクル特性、すなわち、耐久性を向上させることができることが分かった。
 特願2011-070344号(出願日:2011年3月28日)、特願2011-164334号(出願日:2011年7月27日)及び特願2012-020828号(出願日:2012年2月2日)の全内容は、ここに引用される。
 以上、実施形態及び実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、本発明のナトリウムイオン二次電池用添加剤は、フルオロ基を有する飽和環状カーボネートやフルオロ基を有する鎖状カーボネートからなるものであればよく、他の構成に関しては、特に限定されるものではない。また、本発明のナトリウムイオン二次電池は、上述した所定の非水電解液と所定の負極を備えたものであればよく、他の構成に関しては、特に限定されるものではない。例えば、上述したラミネート型電池やコイン(ボタン)型電池だけでなく、缶型電池など従来公知の形態・構造についても適用することができる。また、例えば、本発明は、上述した積層型(扁平型)電池だけでなく、巻回型(円筒型)電池など従来公知の形態・構造についても適用することができる。更に、例えば、本発明は、ナトリウムイオン二次電池内の電気的な接続形態、つまり電極構造で見た場合、上述した内部並列接続タイプのような通常の電池だけでなく、内部直列接続タイプの双極型電池など従来公知の形態・構造についても適用することができる。なお、双極型電池における電池要素は、一般的に、集電体の一方の表面に負極活物質層が形成され、他方の表面に正極活物質層が形成された双極型電極と、電解質層とを複数積層した構成を有している。
 本発明によれば、ナトリウムイオン二次電池用添加剤として、フルオロ基を有する飽和環状カーボネートやフルオロ基を有する鎖状カーボネートを用いることなどとしたため、ナトリウムイオン二次電池の耐久性を向上させることができる。
  1 ナトリウムイオン二次電池
  10 電池要素
  11 正極
  11A 正極集電体
  11B 正極活物質層
  12 負極
  12A 負極集電体
  12B 負極活物質層
  12C 被膜
  13 電解質層
  14 単電池層
  21 正極タブ
  22 負極タブ
  30 外装体

Claims (7)

  1.  フルオロ基を有する飽和環状カーボネート及びフルオロ基を有する鎖状カーボネートの少なくとも一方の化合物を含むことを特徴とするナトリウムイオン二次電池用添加剤。
  2.  前記化合物が、1ないし2個のフルオロ基を有することを特徴とする請求項1に記載のナトリウムイオン二次電池用添加剤。
  3.  前記飽和環状カーボネートが、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001

     (式(1)中のRは、フッ素原子を有し、炭素数が2~4のアルキレン基を示す。)で表され、
     前記鎖状カーボネートが、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002

    (式(2)中のR及びRは、互いに同一であっても、異なっていてもよく、フッ素原子を有し、炭素数が1~3のアルキル基を示す。)で表される化合物であることを特徴とする請求項1又は2に記載のナトリウムイオン二次電池用添加剤。
  4.  前記フルオロ基を有する飽和環状カーボネートが、フルオロエチレンカーボネート及びジフルオロエチレンカーボネートの少なくとも一方の化合物であることを特徴とする請求項1~3のいずれか1つの項に記載のナトリウムイオン二次電池用添加剤。
  5.  請求項1~4のいずれか1つの項に記載のナトリウムイオン二次電池用添加剤、並びに飽和環状カーボネートからなる非水溶媒、又は飽和環状カーボネート及び鎖状カーボネートからなる非水溶媒を含む非水電解液と、
     正極と、
     表面に炭素、酸素、フッ素及びナトリウムを含有する複合材からなる被膜を有すると共にハードカーボンからなる負極活物質を含む負極と、
     を備えることを特徴とするナトリウムイオン二次電池。
  6.  請求項1~4のいずれか1つの項に記載のナトリウムイオン二次電池用添加剤、並びに飽和環状カーボネートからなる非水溶媒、又は飽和環状カーボネート及び鎖状カーボネートからなる非水溶媒を含む非水電解液と、
     ハードカーボンからなる正極活物質を含む正極と、
     表面に炭素、酸素、フッ素及びナトリウムを含有する複合材からなる被膜を有すると共にナトリウム金属からなる負極活物質を含む負極と、
     を備えることを特徴とするナトリウムイオン二次電池。
  7.  前記ナトリウムイオン二次電池用添加剤を、前記非水電解液において0.5~10体積%の割合で含むことを特徴とする請求項5又は6に記載のナトリウムイオン二次電池。
PCT/JP2012/055921 2011-03-28 2012-03-08 ナトリウムイオン二次電池用添加剤及びナトリウムイオン二次電池 WO2012132813A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12763283.4A EP2693556B1 (en) 2011-03-28 2012-03-08 Additive for sodium ion secondary batteries, and sodium ion secondary battery
CN201280013464.5A CN103493279B (zh) 2011-03-28 2012-03-08 钠离子二次电池用添加剂以及钠离子二次电池
US14/007,250 US9466855B2 (en) 2011-03-28 2012-03-08 Additive for sodium ion secondary battery and sodium ion secondary battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011070344 2011-03-28
JP2011-070344 2011-03-28
JP2011164334 2011-07-27
JP2011-164334 2011-07-27
JP2012020828A JP6086467B2 (ja) 2011-03-28 2012-02-02 ナトリウムイオン二次電池
JP2012-020828 2012-02-02

Publications (1)

Publication Number Publication Date
WO2012132813A1 true WO2012132813A1 (ja) 2012-10-04

Family

ID=46930556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055921 WO2012132813A1 (ja) 2011-03-28 2012-03-08 ナトリウムイオン二次電池用添加剤及びナトリウムイオン二次電池

Country Status (6)

Country Link
US (1) US9466855B2 (ja)
EP (1) EP2693556B1 (ja)
JP (1) JP6086467B2 (ja)
CN (1) CN103493279B (ja)
TW (1) TWI456819B (ja)
WO (1) WO2012132813A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069597A1 (ja) * 2011-11-10 2013-05-16 住友電気工業株式会社 ナトリウム電池用の負極活物質、負極及びナトリウム電池
US20140239905A1 (en) * 2013-02-28 2014-08-28 Semiconductor Energy Laboratory Co., Ltd. Electrochemical device
WO2014159542A1 (en) 2013-03-13 2014-10-02 Ceramatec, Inc. Low temperature battery with molten sodium-fsa electrolyte
WO2014164883A1 (en) 2013-03-13 2014-10-09 Ceramatec, Inc. Low temperature secondary cell with sodium intercalation electrode
WO2014161746A1 (en) 2013-04-05 2014-10-09 Solvay Sa An electrolyte composition and a sodium ion battery comprising the same
JP2014216249A (ja) * 2013-04-26 2014-11-17 三菱自動車工業株式会社 ナトリウムイオン二次電池
EP2881366A1 (en) 2013-12-04 2015-06-10 Solvay SA Method for manufacturing NaPO2F2
US9431681B2 (en) 2013-09-05 2016-08-30 Ceramatec, Inc. High temperature sodium battery with high energy efficiency
US9431656B2 (en) 2013-05-30 2016-08-30 Ceramatec, Inc. Hybrid molten/solid sodium anode for room/intermediate temperature electric vehicle battery
US9537179B2 (en) 2013-09-25 2017-01-03 Ceramatec, Inc. Intermediate temperature sodium-metal halide battery
US9876253B2 (en) 2013-06-06 2018-01-23 Field Upgrading Usa, Inc. Low viscosity/high conductivity sodium haloaluminate electrolyte
US10020543B2 (en) 2010-11-05 2018-07-10 Field Upgrading Usa, Inc. Low temperature battery with molten sodium-FSA electrolyte
US10056651B2 (en) 2010-11-05 2018-08-21 Field Upgrading Usa, Inc. Low temperature secondary cell with sodium intercalation electrode
US10224577B2 (en) 2011-11-07 2019-03-05 Field Upgrading Usa, Inc. Battery charge transfer mechanisms
US10734686B2 (en) 2015-04-17 2020-08-04 Field Upgrading Usa, Inc. Sodium-aluminum battery with sodium ion conductive ceramic separator
CN114122395A (zh) * 2020-08-31 2022-03-01 中南大学 一种钠离子电池用负极极片的制备及其应用
CN115832199A (zh) * 2022-12-02 2023-03-21 宁德时代新能源科技股份有限公司 一种用于钠离子电池的正极极片及钠离子电池

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5812482B2 (ja) * 2011-09-06 2015-11-11 国立研究開発法人産業技術総合研究所 ナトリウム二次電池、ナトリウム二次電池用負極の製造方法および電気機器
JP6358871B2 (ja) * 2013-06-26 2018-07-18 国立大学法人鳥取大学 ナトリウムイオン二次電池用負極およびその製造方法並びにナトリウムイオン二次電池
JP5923747B2 (ja) 2013-12-04 2016-05-25 パナソニックIpマネジメント株式会社 ナトリウム二次電池
WO2015125840A1 (ja) * 2014-02-21 2015-08-27 住友化学株式会社 ナトリウム二次電池
WO2016002194A1 (en) * 2014-06-30 2016-01-07 Sharp Kabushiki Kaisha Electrolyte additives for transition metal cyanometallate electrode stabilization
JP6666259B2 (ja) * 2014-11-13 2020-03-13 住友電気工業株式会社 蓄電デバイスの負極活物質層形成用組成物、その組成物を含む負極および蓄電デバイス、並びに、蓄電デバイス用負極の製造方法
JP6487712B2 (ja) * 2015-02-23 2019-03-20 昭和電工パッケージング株式会社 蓄電デバイス
JP2016162553A (ja) * 2015-02-27 2016-09-05 ソニー株式会社 電解液、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR101677537B1 (ko) * 2015-06-19 2016-11-29 한국과학기술연구원 겔 폴리머 전해질 및 이를 포함하는 이차전지
CN105070902A (zh) * 2015-07-17 2015-11-18 济南大学 一种基于混合过渡金属的钠二次电池正极材料制备方法
CN108140832A (zh) * 2015-09-30 2018-06-08 株式会社可乐丽 钠离子二次电池负极用碳质材料和使用其的钠离子二次电池
US10276856B2 (en) * 2015-10-08 2019-04-30 Nanotek Instruments, Inc. Continuous process for producing electrodes and alkali metal batteries having ultra-high energy densities
US9985315B1 (en) * 2015-10-22 2018-05-29 Caterpillar Inc. Hydrothermal carbon anode, polymer stabilized, sodium-ion cell
CN107148697A (zh) * 2015-12-30 2017-09-08 深圳先进技术研究院 一种新型钠离子电池及其制备方法
FI128461B (en) 2016-03-04 2020-05-29 Broadbit Batteries Oy Rechargeable sodium cells for use in high energy density batteries
CN106099185A (zh) * 2016-07-05 2016-11-09 惠州市豪鹏科技有限公司 一种电解液及包括该电解液的锂离子电池
US10910679B2 (en) * 2016-07-19 2021-02-02 Uchicago Argonne, Llc Photo-assisted fast charging of lithium manganese oxide spinel (LiMn2O4) in lithium-ion batteries
EP3506412B1 (en) * 2016-08-29 2022-01-05 GS Yuasa International Ltd. Nonaqueous electrolyte energy storage device
CN106450247B (zh) * 2016-10-28 2020-02-21 南开大学 用于钠/钾离子二次电池的金属铋负极和醚基电解液
KR102006818B1 (ko) * 2016-12-21 2019-08-02 울산과학기술원 소듐 메탈 이차 전지용 전해질, 및 이를 포함하는 소듐 메탈 이차 전지
US20200112025A1 (en) * 2017-06-28 2020-04-09 Nippon Electric Glass Co., Ltd. Positive electrode active material for sodium-ion secondary battery
JP7172015B2 (ja) 2017-09-12 2022-11-16 セントラル硝子株式会社 非水電解液用添加剤、非水電解液電池用電解液、及び非水電解液電池
KR102229450B1 (ko) * 2017-11-03 2021-03-17 주식회사 엘지화학 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
CN110165218B (zh) * 2019-04-04 2021-02-19 中南大学 一种正极补钠剂在钠离子电池中的应用
KR20210112059A (ko) * 2020-03-04 2021-09-14 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 리튬 이차 전지
CN113140723A (zh) * 2021-03-02 2021-07-20 复旦大学 一种基于金属铋负极的宽温钠离子电池
CN113036212A (zh) * 2021-03-05 2021-06-25 星恒电源股份有限公司 一种具有高倍率性能的非水电解液及钠离子电池
US20240274879A1 (en) 2021-05-13 2024-08-15 Central Glass Co., Ltd. Electrolyte solution for nonaqueous sodium ion battery, nonaqueous sodium ion battery, and method for producing nonaqueous sodium ion battery
EP4340093A1 (en) 2021-05-13 2024-03-20 Central Glass Co., Ltd. Electrolyte for non-aqueous sodium ion battery, non-aqueous sodium ion battery, and method for producing same
CN113381075A (zh) * 2021-06-09 2021-09-10 中南大学 一种适配于硬碳负极的钠离子电池电解液及其制备和使用方法
KR20240024832A (ko) 2021-06-23 2024-02-26 샌트랄 글래스 컴퍼니 리미티드 비수 전해액, 비수 나트륨 이온 전지, 비수 칼륨 이온 전지, 비수 나트륨 이온 전지의 제조 방법, 및 비수 칼륨 이온 전지의 제조 방법
CN114156539A (zh) * 2021-12-21 2022-03-08 华南师范大学 钠二次电池电解液及钠二次电池
CN114400382A (zh) * 2022-01-10 2022-04-26 温州大学碳中和技术创新研究院 一种匹配钴基磷酸盐正极材料的钠金属电池高压电解液
WO2024169769A1 (zh) * 2023-02-15 2024-08-22 辉能科技股份有限公司 可自我毒化的锂二次电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216508A (ja) * 2005-02-07 2006-08-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009123707A (ja) * 2009-01-13 2009-06-04 Nec Corp 電解液および非水電解液二次電池
JP2011049126A (ja) * 2009-08-28 2011-03-10 Equos Research Co Ltd ナトリウムイオン電池用負極活物質及びそれを用いたナトリウムイオン電池
JP2012018801A (ja) * 2010-07-07 2012-01-26 Mitsubishi Heavy Ind Ltd 二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082719A1 (ja) 2005-02-07 2006-08-10 Sanyo Electric Co., Ltd. 正極および非水電解質二次電池
JP5142544B2 (ja) * 2006-03-20 2013-02-13 三洋電機株式会社 非水電解質二次電池
US9786944B2 (en) * 2008-06-12 2017-10-10 Massachusetts Institute Of Technology High energy density redox flow device
JP5375580B2 (ja) 2008-12-18 2013-12-25 株式会社エクォス・リサーチ ナトリウムイオン電池用電解液
JP4853976B2 (ja) * 2009-03-26 2012-01-11 日東電工株式会社 異方性フィルムの製造方法
JP2010262905A (ja) * 2009-05-11 2010-11-18 Sony Corp 非水電解液電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216508A (ja) * 2005-02-07 2006-08-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009123707A (ja) * 2009-01-13 2009-06-04 Nec Corp 電解液および非水電解液二次電池
JP2011049126A (ja) * 2009-08-28 2011-03-10 Equos Research Co Ltd ナトリウムイオン電池用負極活物質及びそれを用いたナトリウムイオン電池
JP2012018801A (ja) * 2010-07-07 2012-01-26 Mitsubishi Heavy Ind Ltd 二次電池

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10056651B2 (en) 2010-11-05 2018-08-21 Field Upgrading Usa, Inc. Low temperature secondary cell with sodium intercalation electrode
US10020543B2 (en) 2010-11-05 2018-07-10 Field Upgrading Usa, Inc. Low temperature battery with molten sodium-FSA electrolyte
US10224577B2 (en) 2011-11-07 2019-03-05 Field Upgrading Usa, Inc. Battery charge transfer mechanisms
WO2013069597A1 (ja) * 2011-11-10 2013-05-16 住友電気工業株式会社 ナトリウム電池用の負極活物質、負極及びナトリウム電池
US20140239905A1 (en) * 2013-02-28 2014-08-28 Semiconductor Energy Laboratory Co., Ltd. Electrochemical device
EP2973838A4 (en) * 2013-03-13 2016-10-12 Ceramatec Inc LOW TEMPERATURE SECONDARY CELL WITH A SODIUM INTERCALING ELECTRODE
EP2973832A4 (en) * 2013-03-13 2016-10-12 Ceramatec Inc LOW TEMPERATURE BATTERY WITH MELTED SODIUM FSA ELECTROLYTE
WO2014159542A1 (en) 2013-03-13 2014-10-02 Ceramatec, Inc. Low temperature battery with molten sodium-fsa electrolyte
WO2014164883A1 (en) 2013-03-13 2014-10-09 Ceramatec, Inc. Low temperature secondary cell with sodium intercalation electrode
CN105122532B (zh) * 2013-04-05 2020-08-07 索尔维公司 一种电解质组合物以及一种包含该电解质组合物的钠离子电池
WO2014161746A1 (en) 2013-04-05 2014-10-09 Solvay Sa An electrolyte composition and a sodium ion battery comprising the same
CN105122532A (zh) * 2013-04-05 2015-12-02 索尔维公司 一种电解质组合物以及一种包含该电解质组合物的钠离子电池
JP2014216249A (ja) * 2013-04-26 2014-11-17 三菱自動車工業株式会社 ナトリウムイオン二次電池
US9431656B2 (en) 2013-05-30 2016-08-30 Ceramatec, Inc. Hybrid molten/solid sodium anode for room/intermediate temperature electric vehicle battery
US9876253B2 (en) 2013-06-06 2018-01-23 Field Upgrading Usa, Inc. Low viscosity/high conductivity sodium haloaluminate electrolyte
US9431681B2 (en) 2013-09-05 2016-08-30 Ceramatec, Inc. High temperature sodium battery with high energy efficiency
US9537179B2 (en) 2013-09-25 2017-01-03 Ceramatec, Inc. Intermediate temperature sodium-metal halide battery
EP2881366A1 (en) 2013-12-04 2015-06-10 Solvay SA Method for manufacturing NaPO2F2
US10734686B2 (en) 2015-04-17 2020-08-04 Field Upgrading Usa, Inc. Sodium-aluminum battery with sodium ion conductive ceramic separator
CN114122395A (zh) * 2020-08-31 2022-03-01 中南大学 一种钠离子电池用负极极片的制备及其应用
CN114122395B (zh) * 2020-08-31 2024-03-19 中南大学 一种钠离子电池用负极极片的制备及其应用
CN115832199A (zh) * 2022-12-02 2023-03-21 宁德时代新能源科技股份有限公司 一种用于钠离子电池的正极极片及钠离子电池

Also Published As

Publication number Publication date
TW201240188A (en) 2012-10-01
EP2693556A4 (en) 2014-09-17
EP2693556A1 (en) 2014-02-05
JP6086467B2 (ja) 2017-03-01
CN103493279B (zh) 2017-04-12
US20140017574A1 (en) 2014-01-16
TWI456819B (zh) 2014-10-11
JP2013048077A (ja) 2013-03-07
CN103493279A (zh) 2014-01-01
EP2693556B1 (en) 2018-06-06
US9466855B2 (en) 2016-10-11

Similar Documents

Publication Publication Date Title
JP6086467B2 (ja) ナトリウムイオン二次電池
JP5957947B2 (ja) 双極型電極およびこれを用いた双極型リチウムイオン二次電池
US9484599B2 (en) Non-aqueous electrolyte secondary battery
JP7014169B2 (ja) リチウム二次電池
JP6032457B2 (ja) 固溶体リチウム含有遷移金属酸化物及びリチウムイオン二次電池
WO2013146219A1 (ja) ナトリウム二次電池用電極及びナトリウム二次電池
JP2013243010A (ja) 非水二次電池の製造方法
CN112563497B (zh) 非水电解液二次电池
WO2018101391A1 (ja) リチウムイオン二次電池
JP2013114882A (ja) リチウムイオン二次電池
JP2013161622A (ja) 固溶体リチウム含有遷移金属酸化物及びリチウムイオン二次電池
JP5417867B2 (ja) 双極型二次電池
JP2020537309A (ja) リチウム金属二次電池及びそれを含む電池モジュール
JPWO2016181926A1 (ja) リチウムイオン二次電池
JP6941535B2 (ja) リチウムイオン二次電池の製造方法
JP2018092785A (ja) リチウムイオン二次電池用電解液およびリチウムイオン二次電池
JP6249242B2 (ja) 非水電解質二次電池
JP6102442B2 (ja) リチウムイオン二次電池
JP2011054408A (ja) 非水系二次電池および非水系二次電池の充電方法
JP2010287481A (ja) リチウムイオン二次電池用電解質
WO2016171276A1 (ja) リチウムイオン電池
CN114792844A (zh) 用于具有含硅电极的电化学电池的电解质
JP2012065474A (ja) 電気自動車の制御装置
TWI825137B (zh) 電解液及電化學裝置
JP5569229B2 (ja) リチウムイオン二次電池のニッケル含有正極用集電体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763283

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14007250

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE