WO2006082719A1 - 正極および非水電解質二次電池 - Google Patents

正極および非水電解質二次電池 Download PDF

Info

Publication number
WO2006082719A1
WO2006082719A1 PCT/JP2006/300880 JP2006300880W WO2006082719A1 WO 2006082719 A1 WO2006082719 A1 WO 2006082719A1 JP 2006300880 W JP2006300880 W JP 2006300880W WO 2006082719 A1 WO2006082719 A1 WO 2006082719A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
negative electrode
nonaqueous electrolyte
Prior art date
Application number
PCT/JP2006/300880
Other languages
English (en)
French (fr)
Inventor
Takao Inoue
Masahisa Fujimoto
Kumiko Kanai
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005030892A external-priority patent/JP4739770B2/ja
Priority claimed from JP2005030890A external-priority patent/JP4739769B2/ja
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to US11/883,815 priority Critical patent/US8815449B2/en
Publication of WO2006082719A1 publication Critical patent/WO2006082719A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode and a nonaqueous electrolyte secondary battery comprising the positive electrode, the negative electrode and a nonaqueous electrolyte.
  • non-aqueous electrolyte secondary batteries that use non-aqueous electrolytes as secondary batteries with high energy density, such as charging and discharging by moving lithium ions between a positive electrode and a negative electrode, are available. Many are used.
  • a lithium transition metal composite having a layered structure such as lithium nickelate (LiNiO) or lithium cobaltate (LiCoO) is generally used as a positive electrode.
  • An oxide is used, and a carbon material capable of inserting and extracting lithium, a lithium metal, a lithium alloy, or the like is used as the negative electrode (see, for example, Patent Document 1).
  • a potential of 4V and a theoretical capacity of about 260mAhZg can be obtained.
  • an electrolyte such as lithium tetrafluoroborate (LiBF) or lithium hexafluorophosphate (LiPF) in an organic solvent such as ethylene carbonate or jetyl carbonate.
  • LiBF lithium tetrafluoroborate
  • LiPF lithium hexafluorophosphate
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-151549
  • Mn manganese
  • nickel or cobalt the capacity of the nonaqueous electrolyte secondary battery is halved.
  • LiMnO lithium manganate
  • LiMn 2 O 3 Lithium manganate (LiMn 2 O 3) having a channel structure is used. LiMn O above
  • LiMnO It changes to LiMn O. Note that the layered structure LiMnO is not chemically stable.
  • a non-aqueous electrolyte secondary battery using sodium ions can store and release lithium ions in the same manner as a non-aqueous electrolyte secondary battery using lithium ions. When this is used, sodium ions are not sufficiently occluded and released from the negative electrode, and a high charge / discharge capacity density cannot be obtained! /.
  • An object of the present invention is to provide a positive electrode that has low material strength and can sufficiently occlude and release ions.
  • Another object of the present invention is to provide an inexpensive non-aqueous electrolyte secondary battery that can perform reversible charging / discharging, obtain good cycle characteristics, and is inexpensive.
  • the positive electrode according to one aspect of the present invention is an acid-containing material containing sodium and manganese.
  • the positive electrode according to the present invention when the positive electrode is made of an oxide containing sodium and manganese, sodium ions are sufficiently occluded and released from the positive electrode. In addition, low cost can be achieved by using abundant sodium.
  • the oxide includes Na 2 MnO, x is greater than 0 and less than or equal to 1, and y is greater than 0.1 and 0.
  • It may be smaller than 1. This ensures that sodium ions are occluded and released from the positive electrode.
  • the crystal system of the oxide may be hexagonal, orthorhombic, monoclinic or tetragonal. In this case, sodium ions are efficiently occluded and released from the positive electrode.
  • a non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte containing sodium ions, and the positive electrode has an acidity including sodium and manganese. It is.
  • the negative electrode may contain simple tin or germanium. In this case, sodium ions are sufficiently occluded and released from the negative electrode.
  • the negative electrode may include a current collector made of metal, and the simple tin and the simple germanium may be formed in a thin film on the current collector. In this case, simple tin and germanium are easily formed as a thin film on the current collector.
  • the surface of the current collector may be roughened.
  • the deposited tin or germanium alone force layer hereinafter referred to as negative electrode active material layer
  • the surface has a shape corresponding to the uneven shape on the current collector by roughening.
  • the arithmetic mean roughness of the surface of the current collector may be 0.1 m or more and 10 ⁇ m or less. In this case, reversible charge / discharge is more easily performed, and more excellent charge / discharge characteristics can be obtained.
  • the non-aqueous electrolyte may include sodium hexafluorophosphate. In this case, safety is improved.
  • the nonaqueous electrolyte is selected from the group consisting of cyclic carbonates, chain carbonates, esters, cyclic ethers, chain ethers, nitriles and amides. May contain two or more. In this case, low cost can be achieved and safety can be improved.
  • sodium ions are sufficiently occluded and released from the positive electrode.
  • low cost can be achieved by using resource-rich sodium.
  • reversible charging / discharging can be performed by using the positive electrode, and low cost can be achieved by using resource-rich sodium. I can plan.
  • FIG. 1 is a schematic explanatory view of a test cell of a nonaqueous electrolyte secondary battery according to a first embodiment.
  • FIG. 2 is a perspective view showing a nonaqueous electrolyte secondary battery according to a second embodiment.
  • FIG. 3 is a schematic cross-sectional view of the nonaqueous electrolyte secondary battery of FIG.
  • FIG. 4 is a schematic diagram of a sputtering apparatus.
  • FIG. 5 is a graph showing the charge / discharge characteristics of the nonaqueous electrolyte secondary battery of Example 1.
  • FIG. 6 is a graph showing the charge / discharge characteristics of the nonaqueous electrolyte secondary battery of Example 2.
  • FIG. 7 is a graph showing the charge / discharge characteristics of the nonaqueous electrolyte secondary battery of Example 3.
  • a nonaqueous electrolyte secondary battery includes a working electrode (hereinafter referred to as a positive electrode), a counter electrode (hereinafter referred to as a negative electrode), and a nonaqueous electrolyte.
  • sodium manganate (Na MnO) as the positive electrode active material 85 parts by weight of sodium manganate (Na MnO) as the positive electrode active material (for example, sodium manganate (Na MnO) as the positive electrode active material (for example, sodium manganate (Na MnO) as the positive electrode active material (for example, sodium manganate (Na MnO) as the positive electrode active material (for example, sodium manganate (Na MnO) as the positive electrode active material (for example, sodium MnO) as the positive electrode active material (for example, sodium manganate (Na MnO) as the positive electrode active material).
  • the sodium manganate has a hexagonal crystal system (crystal structure) in JCPDSOoint Committee on Powder Diffraction Standards, which contains X-ray diffraction data of about 6000 types of inorganic and organic compounds. Crystalline card number 270751 sodium manganate is used.
  • SGI Crystalline
  • the positive electrode material is mixed with, for example, 10% by weight of a methylpyrrolidone solution with respect to the positive electrode material to prepare a slurry as a positive electrode mixture.
  • the slurry is applied to a positive electrode current collector, for example, on a 3 cm x 3 cm region of an aluminum foil having a thickness of 18 ⁇ m, for example, by a doctor blade method, and then dried to thereby produce a positive electrode active material. Form a layer.
  • a positive electrode tab is attached on the region of the aluminum foil where the positive electrode active material layer is not formed, thereby producing a positive electrode.
  • binder of the positive electrode material instead of poly (vinylidene fluoride), polytetrafluoroethylene, polyethylene oxide, polyvinyl acetate, polymetatalylate, polyacrylate, polyacrylonitrile, polybutyl alcohol, styrene butadiene At least one selected from rubber, carboxymethyl cellulose and the like can be used.
  • poly (vinylidene fluoride) polytetrafluoroethylene, polyethylene oxide, polyvinyl acetate, polymetatalylate, polyacrylate, polyacrylonitrile, polybutyl alcohol, styrene butadiene At least one selected from rubber, carboxymethyl cellulose and the like can be used.
  • the amount of the binder is in the range of 0 to 30% by weight of the whole positive electrode material, preferably in the range of 0 to 20% by weight, and more preferably in the range of 0 to 10% by weight.
  • the conductive agent of the positive electrode material other carbon materials such as acetylene black and graphite can be used instead of ketjen black. If the addition amount of the conductive agent is small, the conductivity in the positive electrode material cannot be sufficiently improved. On the other hand, if the addition amount is too large, the proportion of the positive electrode active material contained in the positive electrode material decreases and is high. Energy density cannot be obtained. Therefore, the amount of the conductive agent is in the range of 0 to 30% by weight of the positive electrode material, preferably in the range of 0 to 20% by weight, more preferably The range is 0 to 10% by weight.
  • the positive electrode current collector it is possible to use foamed aluminum, foamed nickel, or the like in order to increase electronic conductivity.
  • non-aqueous electrolyte an electrolyte salt dissolved in a non-aqueous solvent can be used.
  • non-aqueous solvent examples include cyclic carbonates, chain carbonates, esters, cyclic ethers, chain ethers, nitriles, amides and the like, which are usually used as non-aqueous solvents for batteries. Combination power.
  • Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, etc., and those in which some or all of these hydrogen groups are fluorinated can be used.
  • ethylene carbonate, propylene carbonate, butylene carbonate, etc. and those in which some or all of these hydrogen groups are fluorinated can be used.
  • Trifluoropropylene carbonate, fluorethyl carbonate and the like Trifluoropropylene carbonate, fluorethyl carbonate and the like.
  • chain carbonic acid ester examples include dimethyl carbonate, ethyl methyl carbonate, dimethylol carbonate, methinorepropinole carbonate, ethyl propyl carbonate, and methyl isopropyl carbonate. Some or all of them may be fluorinated.
  • esters examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and ⁇ -petit-mouth rataton.
  • Cyclic ethers include 1,3 dioxolane, 4-methyl 1,3 dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2 butylene oxide, 1,4 dioxane, 1,3,5 trioxane, furan, Examples include 2-methylfuran, 1,8 cineole, and crown ether.
  • chain ethers examples include 1,2 dimethoxyethane, jetyl ether, dipropyl etherenole, diisopropino enoenole, dibutino enoate, dihexino ethenore, ethyl vinyl ether, butyl vinyl ether, Methyl phenyl ether, ethyl phenyl enoleate, butinole eno eno ethenore, pentino le eno eno ethenore, methoxy tono lene, benzino retino eno ethenore, diphenino reieno enore, dipenzino ree noetole, ⁇ dimethoxy Cybenzene, 1,2-diethoxyethane, 1,2-dibutoxetane, diethylene glycol dimethylol ether, diethylene glycol jetino ether, diethylene glyco
  • nitriles include acetonitrile
  • examples of amides include dimethylformamide.
  • electrolyte salt examples include sodium hexafluorophosphate (NaPF) and sodium tetrafluoroborate.
  • nonaqueous electrolyte a nonaqueous solvent in which ethylene carbonate and jetyl carbonate are mixed at a volume ratio of 50:50 is mixed with sodium hexafluorophosphate as an electrolyte salt of ImolZl. What was added so that it might become a density
  • FIG. 1 is a schematic explanatory diagram of a test cell of the nonaqueous electrolyte secondary battery according to the present embodiment.
  • a lead is attached to the positive electrode 1 and, for example, a lead is attached to the negative electrode 2 having a sodium metal force.
  • the negative electrode 2 made of sodium metal the negative electrode 2 made of another material such as a carbon material capable of inserting and extracting sodium ions may be used.
  • the separator 4 is inserted between the positive electrode 1 and the negative electrode 2, and the positive electrode 1, the negative electrode 2, and the reference electrode 3 made of, for example, sodium metal are disposed in the cell container 10. Then, a test cell is produced by injecting the nonaqueous electrolyte 5 into the cell container 10.
  • sodium ions are sufficiently occluded and released.
  • low cost can be achieved by using resource-rich sodium.
  • the positive electrode as described above is used for a nonaqueous electrolyte secondary battery. Accordingly, reversible charging / discharging can be performed, and an inexpensive non-aqueous electrolyte secondary battery can be provided.
  • the negative electrode current collector for example, a rolled foil having a thickness of 26 ⁇ m is prepared, which has a roughened copper force whose surface is formed in an uneven shape by depositing copper by an electrolytic method.
  • a negative electrode active material layer is formed by depositing, for example, a tin (Sn) simple substance having a thickness of 2 m on the rolled foil.
  • the deposited tin simple substance is amorphous.
  • the rolled foil on which the negative electrode active material layer is formed is cut into a size of 2 cm ⁇ 2 cm, and the negative electrode tab is attached to the rolled foil to produce a negative electrode.
  • the arithmetic average roughness Ra which is a parameter representing the surface roughness defined in the Japanese Industrial Standard (JIS B 0601-1994) for the roughened rolled foil, is from 0 to 10 m. It is preferable that The arithmetic average roughness Ra can be determined, for example, by a stylus type surface roughness meter.
  • FIG. 2 is a perspective view showing the nonaqueous electrolyte secondary battery according to the present embodiment.
  • the nonaqueous electrolyte secondary battery according to the present embodiment includes an exterior body 40.
  • the negative electrode tab 47 and the positive electrode tab 48 are provided so as to be pulled out from the exterior body 40 to the outside.
  • FIG. 3 is a schematic cross-sectional view of the nonaqueous electrolyte secondary battery in FIG.
  • the exterior body 40 is formed of, for example, a laminate film having an aluminum force.
  • a negative electrode current collector 41 and a positive electrode current collector 43 are provided in the outer package 40.
  • a negative electrode active material layer 42 containing tin is formed on the negative electrode current collector 41, and the positive electrode current collector 4
  • a positive electrode active material layer 44 is formed on 3.
  • the negative electrode active material layer 42 formed on the negative electrode current collector 41 and the positive electrode active material layer 44 formed on the positive electrode current collector 43 are provided so as to face each other with the separator 45 interposed therebetween. ⁇ .
  • a nonaqueous electrolyte 46 is injected into the exterior body 40.
  • a sealing portion 40a sealed by welding is formed at the end of the exterior body 40 on the side from which the negative electrode tab 47 and the positive electrode tab 48 are drawn.
  • the negative electrode tab 47 connected to the negative electrode current collector 41 is drawn to the outside through the sealing portion 40a.
  • the positive electrode tab 48 connected to the positive electrode current collector 43 is also pulled out to the outside through the sealing portion 40a, like the negative electrode tab 47.
  • Sodium ions are sufficiently occluded and released from the positive electrode according to the present embodiment. Also, sodium ions are sufficiently occluded and released from the negative electrode containing simple tin.
  • non-aqueous electrolyte 2 that can perform reversible charging and discharging and can obtain good cycle characteristics.
  • a secondary battery can be provided.
  • resource-rich sodium can reduce the cost of non-aqueous electrolyte secondary batteries.
  • the non-aqueous electrolyte secondary battery according to the present embodiment is different from the non-aqueous electrolyte secondary battery according to the second embodiment in that the configuration of the negative electrode is different. The details will be described below.
  • the negative electrode current collector 41 for example, a rolled foil having a thickness of 26 ⁇ m, for example, having a roughened copper force whose surface is formed uneven by depositing copper by an electrolytic method is prepared.
  • a negative electrode active material layer 42 made of, for example, germanium (Ge) alone having a thickness of 0.5 ⁇ m is formed on the negative electrode current collector 41 as the rolled foil using the sputtering apparatus shown in FIG. So that it is deposited.
  • Table 1 shows the deposition conditions. The deposited germanium alone is amorphous.
  • the negative electrode current collector 41 on which the negative electrode active material layer 42 having a single germanium force was deposited was cut into a size of 2 cm x 2 cm, and a negative electrode tab 47 was attached thereto to produce a negative electrode. .
  • the arithmetic average roughness Ra defined in the Japanese Industrial Standard CJIS B 0601-1994) for the roughened rolled foil is preferably 0 .: m or more and 10 / zm or less. Les.
  • Sodium ions are sufficiently occluded and released from the positive electrode according to the present embodiment.
  • sodium ions are sufficiently occluded and released from the negative electrode containing germanium alone.
  • non-aqueous electrolyte 2 that can perform reversible charge / discharge and can obtain good cycle characteristics.
  • a secondary battery can be provided.
  • resource-rich sodium can reduce the cost of non-aqueous electrolyte secondary batteries.
  • FIG. 5 is a graph showing the charge / discharge characteristics of the nonaqueous electrolyte secondary battery of Example 1.
  • the discharge capacity density per lg of the positive electrode active material was about 151 mAhZg, and charge / discharge was satisfactorily performed.
  • FIG. 6 is a graph showing the charge / discharge characteristics of the nonaqueous electrolyte secondary battery of Example 2.
  • the discharge capacity density per lg of the negative electrode active material S was about 197 mAhZg, indicating that charge / discharge was performed well.
  • the discharge capacity density per lg of negative electrode active material was about 207 mAhZg, and good cycle characteristics were obtained.
  • FIG. 7 is a graph showing the charge / discharge characteristics of the nonaqueous electrolyte secondary battery of Example 3.
  • the discharge capacity density per lg of the negative electrode active material S was about 398 mAhZg, indicating that charge / discharge was performed well.
  • the discharge capacity density per lg of the negative electrode active material was about 400 mAhZg, and good cycle characteristics were obtained.
  • the nonaqueous electrolyte secondary battery according to the present invention can be used as various power sources such as a portable power source and an automobile power source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 正極活物質としてのマンガン酸ナトリウム粉末、導電剤としてのカーボンブラック粉末および結着剤としてのポリテトラフルオロエチレンをそれぞれ含む材料(以下、正極材料と呼ぶ)を用意する。この正極材料をN-メチルピロリドン溶液に混合することにより正極合剤としてのスラリーを作製する。このスラリーを正極集電体上に塗布することにより作用極を作製する。また、錫またはゲルマニウムを含む負極を作製する。さらに、非水電解質としては、エチレンカーボネートとジエチルカーボネートとを混合した非水溶媒に、電解質塩としての六フッ化リン酸ナトリウムを添加したものを用いる。

Description

明 細 書
正極および非水電解質二次電池
技術分野
[0001] 本発明は、正極ならびに当該正極、負極および非水電解質からなる非水電解質二 次電池に関する。
背景技術
[0002] 現在、高工ネルギー密度の二次電池として、非水電解質を使用し、例えばリチウム イオンを正極と負極との間で移動させて充放電を行うようにした非水電解質二次電池 が多く利用されている。
[0003] このような非水電解質二次電池において、一般に正極としてニッケル酸リチウム (Li NiO )、コバルト酸リチウム (LiCoO )等の層状構造を有するリチウム遷移金属複合
2 2
酸化物が用いられ、負極としてリチウムの吸蔵および放出が可能な炭素材料、リチウ ム金属、リチウム合金等が用いられている(例えば、特許文献 1参照)。
[0004] 上記非水電解質二次電池を用いることにより、 150〜180mAhZgの放電容量、約
4Vの電位および約 260mAhZgの理論容量を得ることができる。
[0005] また、非水電解質として、エチレンカーボネート、ジェチルカーボネート等の有機溶 媒に四フッ化ホウ酸リチウム (LiBF )、六フッ化リン酸リチウム (LiPF )等の電解質
4 6
塩を溶解させたものが使用されている。
特許文献 1 :特開 2003— 151549号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記従来のようなリチウムイオンを利用した非水電解質二次電池に お!、ては、その正極として主にコバルト(Co)またはニッケル (Ni)の酸化物を使用す るため、資源的に限りがある。
[0007] また、上記非水電解質二次電池においてニッケル酸リチウムまたはコノ レト酸リチ ゥム力 全てのリチウムイオンが放出されると、ニッケル酸リチウムまたはコバルト酸リ チウムの結晶構造が崩壊する。その結果、ニッケル酸リチウムまたはコバルト酸リチウ ム力 酸素が放出され、安全性が懸念される。そのため、上記の放電容量をさらに向 上させることができない。
[0008] 一方、ニッケルまたはコバルトの代わりに資源的に豊富なマンガン (Mn)を用いる 場合もあるが、この場合、非水電解質二次電池の容量が半減する。
[0009] また、マンガンを用いる場合には、リチウムイオンの移動性を向上させるための層状 構造を有するマンガン酸リチウム (LiMnO )が作製しにくい。それにより、一般にスピ
2
ネル構造を有するマンガン酸リチウム(LiMn O )が用いられる。上記 LiMn O に
2 4 2 4 おいては、リチウムイオンが全て放出されても、 MnOの状態が維持される。マンガン
2
は 4価の状態が安定なため、酸素を放出することもなぐ安全性は優れている。
[0010] しかしながら、 LiMn Oを用いる場合には、 4Vの電位を得ることができるが、 100
2 4
〜 120mAhZgの放電容量しか得ることができな 、。
[0011] また、層状構造を有する LiMnOの作製の試みはなされている力 電位が 3V程度
2
と低くなるとともに、充放電サイクルを繰り返し行うと、上記 LiMnO力 Sスピネル構造の
2
LiMn O に変化してしまう。なお、層状構造の LiMnOが化学的に安定でないのは
2 4 2
、リチウムイオンの半径が小さ!/、ためであるとされて!/、る。
[0012] 一方、最近では、リチウムイオンの代わりにナトリウムイオンを利用した非水電解質 二次電池の研究が始められて 、る。
[0013] ナトリウムイオンを利用した非水電解質二次電池において、リチウムイオンを利用し た非水電解質二次電池と同様に、リチウムイオンを吸蔵および放出することができる 実用性の高い炭素を含む負極を用いた場合、この負極に対してナトリウムイオンが十 分に吸蔵および放出されず、高 、充放電容量密度を得ることができな!/、。
[0014] また、ナトリウムイオンを利用した非水電解質二次電池において、珪素を含む負極 を用いた場合、この負極に対してはナトリウムイオンが吸蔵および放出されない。
[0015] そこで、ナトリウムイオンを利用した非水電解質二次電池の負極として、ナトリウムを 含む金属を用いる研究が進められている。ナトリウムは海水中に豊富に含まれ、ナトリ ゥムを利用することにより低コストィ匕を図ることができる。
[0016] し力しながら、この非水電解質二次電池の充放電反応は、ナトリウムイオンの溶解 および析出により行われるため、充放電効率および充放電特性が良好でない。 [0017] また、充放電を繰り返し行うと、非水電解質中に樹枝状の析出物 (デンドライト)が生 成されやすくなる。そのため、上記デンドライトにより内部短絡が発生する場合があり
、十分な安全性の確保が困難である。
[0018] 本発明の目的は、安価な材料力もなりかつイオンを十分に吸蔵および放出すること が可能な正極を提供することである。
[0019] 本発明の他の目的は、可逆的な充放電を行うことが可能で、良好なサイクル特性を 得ることが可能で安価な非水電解質二次電池を提供することである。
課題を解決するための手段
[0020] 本発明の一局面に従う正極は、ナトリウムおよびマンガンを含む酸ィ匕物力 なるも のである。
[0021] 本発明に係る正極においては、正極がナトリウムおよびマンガンを含む酸ィ匕物から なることにより、ナトリウムイオンが正極に対して十分に吸蔵および放出される。また、 資源的に豊富なナトリウムを使用することにより低コストィ匕が図れる。
[0022] 酸化物は、 Na MnO を含み、 xは 0より大きく 1以下であり、 yは 0. 1より大きく 0
2
. 1より小さくてもよい。それにより、ナトリウムイオンが正極に対して確実に吸蔵および 放出される。
[0023] 酸化物の結晶系は、六方晶系、斜方晶系、単斜晶系または正方晶系であってもよ い。この場合、ナトリウムイオンが正極に対して効率よく吸蔵および放出される。
[0024] 本発明の他の局面に従う非水電解質二次電池は、正極と、負極と、ナトリウムイオン を含む非水電解質とを備え、正極は、ナトリウムおよびマンガンを含む酸ィ匕物力 な るものである。
[0025] 本発明に係る非水電解質二次電池においては、ナトリウムおよびマンガンを含む酸 化物からなる正極を用いることにより、ナトリウムイオンが正極に対して十分に吸蔵お よび放出される。
[0026] また、上記のような正極を用いることにより、可逆的な充放電を行うことが可能で良 好なサイクル特性を得ることが可能な非水電解質二次電池を提供することができる。 さらに、資源的に豊富なナトリウムを使用することにより非水電解質二次電池の低コス ト化が図れる。 [0027] 負極は、錫単体またはゲルマニウム単体を含んでもょ 、。この場合、負極に対して ナトリウムイオンが十分に吸蔵および放出される。
[0028] 負極は、金属からなる集電体を含み、錫単体およびゲルマニウム単体は、集電体 上に薄膜状に形成されてもよい。この場合、錫単体およびゲルマニウム単体が集電 体上に薄膜として容易に形成される。
[0029] 集電体の表面は、粗面化されて 、てもよ 、。この場合、表面が粗面化された負極の 集電体上に錫単体またはゲルマニウム単体を堆積させると、この堆積された錫単体 またはゲルマニウム単体力もなる層(以下、負極活物質層と呼ぶ)の表面は、粗面化 による集電体上の凹凸形状に対応した形状となる。
[0030] このような負極活物質層を用いて充放電を行うと、負極活物質層の膨張および収縮 に伴う応力が負極活物質層の凹凸部に集中し、負極活物質層の凹凸部に切れ目が 形成される。この切れ目によって充放電により発生する応力が分散される。それにより
、可逆的な充放電が行われやすくなり、優れた充放電特性を得ることができる。
[0031] 集電体の表面の算術平均粗さは、 0. 1 m以上 10 μ m以下であってもよい。この 場合、可逆的な充放電がより行われやすくなり、より優れた充放電特性を得ることが できる。
[0032] 非水電解質は、六フッ化リン酸ナトリウムを含んでもよい。この場合、安全性が向上 される。
[0033] 非水電解質は、環状炭酸エステル、鎖状炭酸エステル、エステル類、環状エーテ ル類、鎖状エーテル類、二トリル類およびアミド類カゝらなる群カゝら選択される 1種また は 2種以上を含んでもよい。この場合、低コストィ匕が図れるとともに安全性が向上され る。
発明の効果
[0034] 本発明の正極によれば、ナトリウムイオンが正極に対して十分に吸蔵および放出さ れる。また、資源的に豊富なナトリウムを使用することにより低コストィ匕を図ることがで きる。
[0035] 本発明の非水電解質二次電池によれば、上記正極を用いることにより、可逆的な 充放電を行うことができ、資源的に豊富なナトリウムを使用することにより低コストィ匕が 図れる。
図面の簡単な説明
[0036] [図 1]図 1は第 1の実施の形態に係る非水電解質二次電池の試験セルの概略説明図 である。
[図 2]図 2は第 2の実施の形態に係る非水電解質二次電池を示す斜視図である。
[図 3]図 3は図 2の非水電解質二次電池の模式的断面図である。
[図 4]図 4はスパッタリング装置の概略模式図である。
[図 5]図 5は実施例 1の非水電解質二次電池の充放電特性を示したグラフである。
[図 6]図 6は実施例 2の非水電解質二次電池の充放電特性を示したグラフである。
[図 7]図 7は実施例 3の非水電解質二次電池の充放電特性を示したグラフである。 発明を実施するための最良の形態
[0037] 以下の実施の形態に係る非水電解質二次電池は、作用極 (以下、正極と呼ぶ)、 対極 (以下、負極と呼ぶ)、および非水電解質により構成される。
[0038] なお、以下に説明する各種材料および当該材料の厚さおよび濃度等は以下の記 載に限定されるものではなぐ適宜設定することができる。
[0039] (1)第 1の実施の形態
(正極の作製)
例えば 85重量部の正極活物質としてのマンガン酸ナトリウム(Na MnO ) (例え
X 2+y ば、 0< χ≤1, -0. Ky< 0. 1)粉末、 10重量部の導電剤としてのカーボンブラッ ク粉末であるケッチェンブラックおよび 5重量部の結着剤としてのポリフッ化ビ-リデン をそれぞれ含む材料 (以下、正極材料と呼ぶ)を用意する。なお、上記正極活物質の マンガン酸ナトリウムとして、例えば上記 Xが 0. 7である場合の Na MnO を用いる
0.7 2+y
[0040] 本実施の形態では、上記マンガン酸ナトリウムとして、約 6000種類の無機化合物 および有機化合物の X線回折データが収録されている JCPDSOoint Committee on Powder Diffraction Standards)における結晶系(結晶構造)が六方晶系のカード番号 270751のマンガン酸ナトリウムを用いる。
[0041] なお、上記カード番号 270751のマンガン酸ナトリウムの代わりに、結晶系が斜方 晶系(S.G. Pmmn)のカード番号 250844、 720415および 720831のマンガン酸ナト リウム、斜方晶系(S.G. C)のカード番号 270747および 270752のマンガン酸ナトリ ゥム、斜方晶系のカード番号 380965のマンガン酸ナトリウム、単斜晶系(b軸)の力 ード番号 250845および 270749のマンガン酸ナトリウム、単斜晶系(b軸) (S.G. C2/ m)のカード番号 720830のマンガン酸ナトリウム、ならびに正方晶系(S.G. I)のカー ド番号 270747のマンガン酸ナトリウムを用いることができる。
[0042] 上記正極材料を、この正極材料に対して例えば 10重量%の?^ メチルピロリドン溶 液に混合することにより正極合剤としてのスラリーを作製する。
[0043] 次に、ドクターブレード法により、上記スラリーを正極集電体である例えば厚さ 18 μ mのアルミニウム箔における 3cm X 3cmの領域の上に塗布した後、乾燥させることに より正極活物質層を形成する。
[0044] 次いで、正極活物質層を形成しないアルミニウム箔の領域の上に正極タブを取り付 けることにより正極を作製する。
[0045] なお、上記正極材料の結着剤としては、ポリフッ化ビ-リデンの代わりに、ポリテトラ フルォロエチレン、ポリエチレンオキサイド、ポリビニルアセテート、ポリメタタリレート、 ポリアタリレート、ポリアクリロニトリル、ポリビュルアルコール、スチレン ブタジエンラ バー、カルボキシメチルセルロース等力も選択される少なくとも 1種を用いることができ る。
[0046] なお、結着剤の量が多 、と、正極材料に含まれる正極活物質の割合が少なくなる ため、高いエネルギー密度が得られなくなる。したがって、結着剤の量は、正極材料 の全体の 0〜30重量%の範囲とし、好ましくは 0〜20重量%の範囲とし、より好ましく は 0〜 10重量%の範囲とする。
[0047] また、上記正極材料の導電剤としては、ケッチェンブラックの代わりに、例えばァセ チレンブラックおよび黒鉛等の他の炭素材料を用いることができる。なお、導電剤の 添加量が少ないと、正極材料における導電性を充分に向上させることができない一 方、その添加量が多くなり過ぎると、正極材料に含まれる正極活物質の割合が少なく なり高いエネルギー密度が得られなくなる。したがって、導電剤の量は、正極材料の 全体の 0〜30重量%の範囲とし、好ましくは 0〜20重量%の範囲とし、より好ましくは 0〜10重量%の範囲とする。
[0048] さらに、正極集電体としては、電子導電性を高めるために発砲アルミニウム、発砲- ッケル等を用いることも可能である。
[0049] (非水電解質の作製)
非水電解質としては、非水溶媒に電解質塩を溶解させたものを用いることができる
[0050] 非水溶媒としては、通常電池用の非水溶媒として用いられる環状炭酸エステル、鎖 状炭酸エステル、エステル類、環状エーテル類、鎖状エーテル類、二トリル類、アミド 類等およびこれらの組合せ力 なるものが挙げられる。
[0051] 環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレ ンカーボネート等が挙げられ、これらの水素基の一部または全部がフッ素化されて!/ヽ るものも用いることが可能で、例えば、トリフルォロプロピレンカーボネート、フルォロ ェチルカーボネート等が挙げられる。
[0052] 鎖状炭酸エステルとしては、ジメチルカーボネート、ェチルメチルカーボネート、ジ ェチノレカーボネート、メチノレプロピノレカーボネート、ェチルプロピルカーボネート、メ チルイソプロピルカーボネート等が挙げられ、これらの水素基の一部または全部がフ ッ素化されて 、るものも用いることが可能である。
[0053] エステル類としては、酢酸メチル、酢酸ェチル、酢酸プロピル、プロピオン酸メチル 、プロピオン酸ェチル、 γ—プチ口ラタトン等が挙げられる。環状エーテル類としては 、 1, 3 ジォキソラン、 4—メチル 1、 3 ジォキソラン、テトラヒドロフラン、 2—メチ ルテトラヒドロフラン、プロピレンォキシド、 1, 2 ブチレンォキシド、 1, 4 ジォキサン 、 1, 3, 5 トリオキサン、フラン、 2—メチルフラン、 1, 8 シネオール、クラウンエー テル等が挙げられる。
[0054] 鎖状エーテル類としては、 1, 2 ジメトキシェタン、ジェチルエーテル、ジプロピル エーテノレ、ジイソプロピノレエーテノレ、ジブチノレエーテノレ、ジへキシノレエーテノレ、ェチ ルビニルエーテル、ブチルビニルエーテル、メチルフエニルエーテル、ェチルフエ二 ノレエーテノレ、ブチノレフエニノレエーテノレ、ペンチノレフエニノレエーテノレ、メトキシトノレェン 、ベンジノレエチノレエーテノレ、ジフエニノレエーテノレ、ジペンジノレエーテノレ、 ο ジメトキ シベンゼン、 1, 2—ジエトキシェタン、 1, 2—ジブトキシェタン、ジエチレングリコール ジメチノレエーテル、ジエチレングリコールジェチノレエーテル、ジエチレングリコールジ ブチルエーテル、 1, 1ージメトキシメタン、 1, 1ージエトキシェタン、トリエチレングリコ ールジメチルエーテル、テトラエチレングリコールジメチル等が挙げられる。
[0055] 二トリル類としては、ァセトニトリル等が挙げられ、アミド類としては、ジメチルホルムァ ミド等が挙げられる。
[0056] 電解質塩としては、例えば六フッ化リン酸ナトリウム (NaPF )、四フッ化ホウ酸ナトリ
6
ゥム(NaBF ) , NaCF SO
4 3 3、 NaBeTi等の非水溶媒に可溶な過酸化物でない安全 性の高いものを用いる。なお、上記の電解質塩のうち 1種を用いてもよぐあるいは 2 種以上を組み合わせて用いてもょ 、。
[0057] 本実施の形態では、非水電解質として、エチレンカーボネートとジェチルカーボネ 一トとを体積比 50: 50の割合で混合した非水溶媒に、電解質塩としての六フッ化リン 酸ナトリウムを ImolZlの濃度になるように添加したものを用いる。
[0058] (非水電解質二次電池の作製)
図 1は、本実施の形態に係る非水電解質二次電池の試験セルの概略説明図であ る。
[0059] 図 1に示すように、不活性雰囲気下において、正極 1にリードを取り付けるとともに、 例えばナトリウム金属力もなる負極 2にリードを取り付ける。なお、ナトリウム金属からな る負極 2の代わりに、ナトリウムイオンを吸蔵および放出することが可能な例えば炭素 材料等の他の材料からなる負極 2を用いてもよ 、。
[0060] 次に、正極 1と負極 2との間にセパレータ 4を挿入し、セル容器 10内に正極 1、負極 2および例えばナトリウム金属からなる参照極 3を配置する。そして、セル容器 10内に 上記非水電解質 5を注入することにより試験セルを作製する。
[0061] (第 1の実施の形態における効果)
本実施の形態に係る正極を用いることにより、ナトリウムイオンが十分に吸蔵および 放出される。また、資源的に豊富なナトリウムを使用することにより低コストィ匕が図れる
[0062] さらに、本実施の形態においては、上記のような正極を非水電解質二次電池に用 いることにより、可逆的な充放電を行うことが可能となるとともに、安価な非水電解質 二次電池を提供することができる。
[0063] (2)第 2の実施の形態
(正極の作製)
上述の第 1の実施の形態と同じ正極を作製する。
[0064] (負極の作製)
負極集電体として、電解法により銅が析出されることにより表面が凹凸状に形成さ れた粗面化銅力もなる例えば厚さ 26 μ mの圧延箔を用意する。
[0065] 上記圧延箔上に、例えば厚さ 2 mの錫(Sn)単体を堆積させることにより負極活物 質層を形成する。なお、堆積された錫単体は非晶質である。
[0066] 次に、負極活物質層が形成された圧延箔を 2cm X 2cmの大きさに切り取り、負極タ ブを圧延箔に取り付けることにより負極を作製する。
[0067] ここで、上記粗面化された圧延箔における日本工業規格 (JIS B 0601— 1994) に定められた表面粗さを表すパラメータである算術平均粗さ Raは、 0. 以上 10 m以下であることが好ましい。算術平均粗さ Raは、例えば触針式表面粗さ計により 柳』定することができる。
[0068] 表面が凹凸状に形成された圧延箔からなる負極集電体上に非晶質の負極活物質 層を堆積させると、負極活物質層の表面は、負極集電体上の凹凸形状に対応した形 状となる。
[0069] このような負極活物質層を用いて充放電を行うと、負極活物質層の膨張および収縮 に伴う応力が負極活物質層の凹凸部に集中し、負極活物質層の凹凸部に切れ目が 形成される。この切れ目によって充放電により発生する応力が分散される。それにより 、可逆的な充放電が行われやすくなり、優れた充放電特性を得ることができる。
[0070] (非水電解質の作製)
上述の第 1の実施の形態と同じ非水電解質を作製する。
[0071] (非水電解質二次電池の作製)
上記の正極、負極および非水電解質を用いて、以下に示すように、非水電解質二 次電池を作製する。 [0072] 図 2は、本実施の形態に係る非水電解質二次電池を示す斜視図である。
[0073] 図 2に示すように、本実施の形態に係る非水電解質二次電池は、外装体 40を備え
、負極タブ 47および正極タブ 48が外装体 40内から外部に引き出されるように設けら れている。
[0074] 図 3は、図 2の非水電解質二次電池の模式的断面図である。外装体 40は、例えば アルミニウム力もなるラミネートフィルムにより形成される。
[0075] 図 3に示すように、外装体 40内に負極集電体 41および正極集電体 43が設けられ ている。
[0076] 負極集電体 41上には錫を含む負極活物質層 42が形成されており、正極集電体 4
3上には正極活物質層 44が形成されている。
[0077] 負極集電体 41上に形成された負極活物質層 42および正極集電体 43上に形成さ れた正極活物質層 44は、セパレータ 45を介して互いに対向するように設けられて ヽ る。
[0078] また、外装体 40内には非水電解質 46が注入されている。負極タブ 47および正極 タブ 48が引き出されている側の外装体 40の端部には、溶着により封口された封口部 40aが形成されている。
[0079] 負極集電体 41に接続された負極タブ 47は、上記封口部 40aを介して外部に引き 出されている。なお、図 3において図示していないが、正極集電体 43に接続された 正極タブ 48についても、負極タブ 47と同様に、封口部 40aを介して外部に引き出さ れている。
[0080] (第 2の実施の形態における効果)
本実施の形態に係る正極に対しては、ナトリウムイオンが十分に吸蔵および放出さ れる。また、錫単体を含む負極に対してもナトリウムイオンが十分に吸蔵および放出さ れる。
[0081] また、本実施の形態においては、上記のような正極および負極を用いることにより、 可逆的な充放電を行うことが可能で良好なサイクル特性を得ることが可能な非水電 解質二次電池を提供することができる。さらに、資源的に豊富なナトリウムを使用する ことにより非水電解質二次電池の低コストィ匕が図れる。 [0082] (3)第 3の実施の形態
本実施の形態に係る非水電解質二次電池が、上記第 2の実施の形態に係る非水 電解質二次電池と異なる点は、負極の構成が異なる点である。以下、詳細に説明す る。
[0083] (負極の作製)
負極集電体 41として、電解法により銅が析出されることにより表面が凹凸状に形成 された粗面化銅力もなる例えば厚さ 26 μ mの圧延箔を用意する。
[0084] 上記圧延箔カ なる負極集電体 41上に、図 4に示すスパッタリング装置を用いて、 例えば厚さ 0. 5 μ mのゲルマニウム(Ge)単体からなる負極活物質層 42を以下のよ うに堆積させる。堆積条件を表 1に示す。なお、堆積されたゲルマニウム単体は非晶 質である。
[0085] [表 1]
Figure imgf000013_0001
[0086] 最初に、チャンバ 50内を 1 X 10— 4 Paまで真空排気した後、チャンバ 50内にアルゴ ンを導入し、チャンバ 50内のガス圧力が 1. 7〜1. 8 X 10— 1 Paになるようにガス圧力 を安定させる。
[0087] 次に、チャンバ 50内のガス圧力が安定した状態で、高周波電源 52によりゲルマ二 ゥム単体のスパッタ源 51に高周波電力を所定時間印加する。それにより、負極集電 体 41上にゲルマニウム単体力もなる負極活物質層 42が堆積される。
[0088] 次レ、で、ゲルマニウム単体力 なる負極活物質層 42が堆積された負極集電体 41 を、 2cm X 2cmの大きさに切り取り、負極タブ 47をこれに取り付けることにより負極を 作製する。
[0089] ここで、上記粗面化された圧延箔における日本工業規格 CJIS B 0601 - 1994) に定められた算術平均粗さ Raは、 0.: m以上 10 /z m以下であることが好ましレ、。 [0090] (第 3の実施の形態における効果)
本実施の形態に係る正極に対しては、ナトリウムイオンが十分に吸蔵および放出さ れる。また、ゲルマニウム単体を含む負極に対してもナトリウムイオンが十分に吸蔵お よび放出される。
[0091] また、本実施の形態においては、上記のような正極および負極を用いることにより、 可逆的な充放電を行うことが可能で良好なサイクル特性を得ることが可能な非水電 解質二次電池を提供することができる。さらに、資源的に豊富なナトリウムを使用する ことにより非水電解質二次電池の低コストィ匕が図れる。
実施例
[0092] (実施例 1およびその評価)
以下に示すように、上記第 1の実施の形態に基づ 、て作製した試験セルを用いて 非水電解質二次電池の充放電特性を調べた。
[0093] 図 5は、実施例 1の非水電解質二次電池の充放電特性を示したグラフである。
[0094] 作製した試験セルにおいて、 0. 15mAの定電流で、参照極 3を基準とする正極 1 の電位が 4. 2Vに達するまで充電を行った。
[0095] その後、 0. 15mAの定電流で、参照極 3を基準とする正極 1の電位が 1. 5Vに達 するまで放電を行うことにより充放電特性を調べた。
[0096] その結果、正極活物質 lg当たりの放電容量密度が約 151mAhZgとなり、良好に 充放電が行われて 、ることがわかった。
[0097] すなわち、ナトリウムイオンが正極 1に対して可逆的に吸蔵および放出されているこ とが明らかになった。それにより、リチウムイオンを利用する従来の非水電解質二次 電池に代わる新たな非水電解質二次電池の有効性を確認することができた。
[0098] (実施例 2およびその評価)
以下に示すように、上記第 2の実施の形態に基づいて作製した非水電解質二次電 池の充放電特性を調べた。
[0099] 図 6は、実施例 2の非水電解質二次電池の充放電特性を示したグラフである。
[0100] 上記の非水電解質二次電池において、 1. 2mAの定電流で負極活物質 lg当たり の充電容量密度が約 225mAhZgになるまで充電を行い、 1. 2mAの定電流で放 電終止電圧が 1. 5Vになるまで放電を行った。
[0101] 上記の結果、充放電の 1サイクル目において、負極活物質 lg当たりの放電容量密 度力 S約 197mAhZgとなり、良好に充放電が行われていることがわかった。
[0102] また、同様に、充放電の 5サイクル目において、負極活物質 lg当たりの放電容量密 度が約 207mAhZgとなり、良好なサイクル特性が得られた。
[0103] すなわち、ナトリウムイオンが正極および負極に対して可逆的に吸蔵および放出さ れていることが明らかになった。それにより、リチウムイオンを利用する従来の非水電 解質二次電池に代わる新たな非水電解質二次電池の有効性を確認することができ た。
[0104] (実施例 3およびその評価)
以下に示すように、上記第 3の実施の形態に基づいて作製した非水電解質二次電 池の充放電特性を調べた。
[0105] 図 7は、実施例 3の非水電解質二次電池の充放電特性を示したグラフである。
[0106] 上記の非水電解質二次電池において、 0. 2mAの定電流で負極活物質 lg当たり の充電容量密度が約 412mAhZgになるまで充電を行い、 0. 2mAの定電流で放 電終止電圧が 1. 5Vになるまで放電を行った。
[0107] 上記の結果、充放電の 1サイクル目において、負極活物質 lg当たりの放電容量密 度力 S約 398mAhZgとなり、良好に充放電が行われていることがわかった。
[0108] また、同様に、充放電の 10サイクル目において、負極活物質 lg当たりの放電容量 密度が約 400mAhZgとなり、良好なサイクル特性が得られた。
[0109] すなわち、ナトリウムイオンが正極および負極に対して可逆的に吸蔵および放出さ れていることが明らかになった。それにより、リチウムイオンを利用する従来の非水電 解質二次電池に代わる新たな非水電解質二次電池の有効性を確認することができ た。
産業上の利用可能性
[0110] 本発明に係る非水電解質二次電池は、携帯用電源、自動車用電源等の種々の電 源として利用することができる。

Claims

請求の範囲
[1] ナトリウムおよびマンガンを含む酸ィ匕物からなる、正極。
[2] 前記酸化物は、 Na MnO を含み、前記 xは 0より大きく 1以下であり、前記 yは— 0
2
. 1より大きく 0. 1より小さい、請求項 1記載の正極。
[3] 前記酸化物の結晶系は、六方晶系、斜方晶系、単斜晶系または正方晶系である、請 求項 1記載の正極。
[4] 正極と、負極と、ナトリウムイオンを含む非水電解質とを備え、前記正極は、ナトリウム およびマンガンを含む酸化物からなる、非水電解質二次電池。
[5] 前記負極は、錫単体またはゲルマニウム単体を含む、請求項 4記載の非水電解質二 次電池。
[6] 前記負極は、金属からなる集電体を含み、
前記錫単体およびゲルマニウム単体は、前記集電体上に薄膜状に形成された、請 求項 5記載の非水電解質二次電池。
[7] 前記集電体の表面は、粗面化されて!/、る、請求項 6記載の非水電解質二次電池。
[8] 前記集電体の表面の算術平均粗さは、 0. 1 μ m以上 10 μ m以下である、請求項 6 記載の非水電解質二次電池。
[9] 前記非水電解質は、六フッ化リン酸ナトリウムを含む、請求項 4記載の非水電解質二 次電池。
[10] 前記非水電解質は、環状炭酸エステル、鎖状炭酸エステル、エステル類、環状エー テル類、鎖状エーテル類、二トリル類およびアミド類カゝらなる群カゝら選択される 1種ま たは 2種以上を含む、請求項 4記載の非水電解質二次電池。
PCT/JP2006/300880 2005-02-07 2006-01-20 正極および非水電解質二次電池 WO2006082719A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/883,815 US8815449B2 (en) 2005-02-07 2006-01-20 Positive electrode and non-aqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005030892A JP4739770B2 (ja) 2005-02-07 2005-02-07 非水電解質二次電池
JP2005030890A JP4739769B2 (ja) 2005-02-07 2005-02-07 非水電解質二次電池
JP2005-030892 2005-02-07
JP2005-030890 2005-02-07

Publications (1)

Publication Number Publication Date
WO2006082719A1 true WO2006082719A1 (ja) 2006-08-10

Family

ID=36777108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300880 WO2006082719A1 (ja) 2005-02-07 2006-01-20 正極および非水電解質二次電池

Country Status (3)

Country Link
US (1) US8815449B2 (ja)
KR (1) KR100982595B1 (ja)
WO (1) WO2006082719A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110003191A1 (en) * 2008-02-04 2011-01-06 Sumitomo Chemical Company, Limited Sodium secondary battery
US20120015256A1 (en) * 2009-03-27 2012-01-19 Tokyo University Of Science Educational Foundation Administrative Organization Sodium ion secondary battery
US8790831B2 (en) 2008-02-04 2014-07-29 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive active electrode active material, and sodium secondary battery
CN107045948A (zh) * 2017-04-11 2017-08-15 南京理工大学 NaxMnO2正极材料、制备方法及其应用
US10122014B2 (en) 2008-02-04 2018-11-06 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135092A (ja) * 2007-11-09 2009-06-18 Sumitomo Chemical Co Ltd 複合金属酸化物およびナトリウム二次電池
EP2242131A1 (en) * 2008-02-04 2010-10-20 Sumitomo Chemical Company, Limited Composite metal oxide and sodium rechargeable battery
CN102027625B (zh) 2008-04-07 2017-05-03 卡内基美浓大学 钠离子为主的水相电解质电化学二次能源储存装置
JP5625390B2 (ja) 2009-03-13 2014-11-19 住友化学株式会社 複合金属酸化物、電極およびナトリウム二次電池
CN103348511B (zh) 2011-02-15 2016-08-31 住友化学株式会社 钠二次电池电极及钠二次电池
WO2012148569A2 (en) 2011-03-01 2012-11-01 Aquion Energy Inc. Profile responsive electrode ensemble
US8298701B2 (en) 2011-03-09 2012-10-30 Aquion Energy Inc. Aqueous electrolyte energy storage device
JP6086467B2 (ja) * 2011-03-28 2017-03-01 日産自動車株式会社 ナトリウムイオン二次電池
US8137830B2 (en) 2011-07-19 2012-03-20 Aquion Energy, Inc. High voltage battery composed of anode limited electrochemical cells
US8945751B2 (en) 2011-07-19 2015-02-03 Aquion Energy, Inc. High voltage battery composed of anode limited electrochemical cells
WO2013129831A1 (en) * 2012-02-27 2013-09-06 Sk Innovation Co.,Ltd. Turbostratic na birnessite and method for preparing the same
US8652672B2 (en) 2012-03-15 2014-02-18 Aquion Energy, Inc. Large format electrochemical energy storage device housing and module
US8945756B2 (en) 2012-12-12 2015-02-03 Aquion Energy Inc. Composite anode structure for aqueous electrolyte energy storage and device containing same
KR102144996B1 (ko) 2013-09-30 2020-08-18 삼성전자주식회사 양극활물질, 및 이를 포함하는 양극 및 나트륨이차전지
KR102149334B1 (ko) 2013-10-21 2020-08-28 삼성전자주식회사 양극활물질, 및 이를 포함하는 양극 및 나트륨이차전지
WO2017179917A1 (ko) * 2016-04-12 2017-10-19 세종대학교산학협력단 나트륨계 전극 활물질 및 이를 포함하는 이차전지

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171910A (ja) * 1997-12-12 1999-06-29 Showa Denko Kk 電気化学的重合性組成物及びその用途
JPH11171912A (ja) * 1997-12-12 1999-06-29 Showa Denko Kk 重合性組成物及びその用途
JP2001332256A (ja) * 2000-05-22 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> 電極材料、その製造方法及びそれを用いた電池
JP2001332258A (ja) * 2000-05-22 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> 複酸化物電極材料、その製造方法及びそれを用いた電池
JP2002279995A (ja) * 2001-03-15 2002-09-27 Sony Corp 電 池
JP2002280080A (ja) * 2001-03-16 2002-09-27 Sony Corp 二次電池の充電方法
JP2002280078A (ja) * 2001-03-16 2002-09-27 Sony Corp 電 池
JP2003086179A (ja) * 2001-09-10 2003-03-20 Nippon Telegr & Teleph Corp <Ntt> 電極材料、その製造方法及びそれを用いた電池
JP2003109594A (ja) * 2001-10-01 2003-04-11 Showa Denko Kk 電極材料、該電極材料の製造方法、該電極材料を用いた電池用電極及び該電極を用いた電池
JP2004111329A (ja) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2004296270A (ja) * 2003-03-27 2004-10-21 Sanyo Electric Co Ltd リチウム二次電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668596A (en) * 1985-04-19 1987-05-26 Allied Corporation Negative electrodes for non-aqueous secondary batteries composed on conjugated polymer and alkali metal alloying or inserting material
US5503930A (en) * 1994-03-07 1996-04-02 Tdk Corporation Layer structure oxide
DE69531849T2 (de) * 1994-05-30 2004-08-05 Canon K.K. Wiederaufladbare Lithiumbatterie
US5558961A (en) * 1994-06-13 1996-09-24 Regents, University Of California Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material
JPH08138744A (ja) * 1994-11-16 1996-05-31 Fuji Photo Film Co Ltd 非水二次電池
JP3263725B2 (ja) * 1997-07-03 2002-03-11 独立行政法人産業技術総合研究所 混合アルカリ水熱法による層状岩塩型リチウムマンガン酸化物の製造方法
GB9807774D0 (en) * 1998-04-09 1998-06-10 Danionics As Electrochemical cell
JP4201509B2 (ja) 2001-03-06 2008-12-24 三洋電機株式会社 リチウム二次電池用電極及びリチウム二次電池
US6872492B2 (en) 2001-04-06 2005-03-29 Valence Technology, Inc. Sodium ion batteries
JP2002313337A (ja) 2001-04-13 2002-10-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP4152618B2 (ja) 2001-11-12 2008-09-17 日本電信電話株式会社 層状酸化物電池用正極活物質の製造方法
CA2424561A1 (en) * 2002-04-02 2003-10-02 Nippon Shokubai Co., Ltd. Material for electrolytic solutions and use thereof
JP3664253B2 (ja) * 2002-12-26 2005-06-22 ソニー株式会社 二次電池用負極およびそれを用いた二次電池
KR200380067Y1 (ko) 2004-12-27 2005-03-28 희 일 김 의자

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171910A (ja) * 1997-12-12 1999-06-29 Showa Denko Kk 電気化学的重合性組成物及びその用途
JPH11171912A (ja) * 1997-12-12 1999-06-29 Showa Denko Kk 重合性組成物及びその用途
JP2001332256A (ja) * 2000-05-22 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> 電極材料、その製造方法及びそれを用いた電池
JP2001332258A (ja) * 2000-05-22 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> 複酸化物電極材料、その製造方法及びそれを用いた電池
JP2002279995A (ja) * 2001-03-15 2002-09-27 Sony Corp 電 池
JP2002280080A (ja) * 2001-03-16 2002-09-27 Sony Corp 二次電池の充電方法
JP2002280078A (ja) * 2001-03-16 2002-09-27 Sony Corp 電 池
JP2003086179A (ja) * 2001-09-10 2003-03-20 Nippon Telegr & Teleph Corp <Ntt> 電極材料、その製造方法及びそれを用いた電池
JP2003109594A (ja) * 2001-10-01 2003-04-11 Showa Denko Kk 電極材料、該電極材料の製造方法、該電極材料を用いた電池用電極及び該電極を用いた電池
JP2004111329A (ja) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2004296270A (ja) * 2003-03-27 2004-10-21 Sanyo Electric Co Ltd リチウム二次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110003191A1 (en) * 2008-02-04 2011-01-06 Sumitomo Chemical Company, Limited Sodium secondary battery
US8790831B2 (en) 2008-02-04 2014-07-29 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive active electrode active material, and sodium secondary battery
US10122014B2 (en) 2008-02-04 2018-11-06 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
US20120015256A1 (en) * 2009-03-27 2012-01-19 Tokyo University Of Science Educational Foundation Administrative Organization Sodium ion secondary battery
US9559381B2 (en) * 2009-03-27 2017-01-31 Tokyo University Of Science Educational Foundation Administrative Organization Sodium ion secondary battery
CN107045948A (zh) * 2017-04-11 2017-08-15 南京理工大学 NaxMnO2正极材料、制备方法及其应用

Also Published As

Publication number Publication date
KR100982595B1 (ko) 2010-09-15
US20090053613A1 (en) 2009-02-26
KR20070100918A (ko) 2007-10-12
US8815449B2 (en) 2014-08-26

Similar Documents

Publication Publication Date Title
WO2006082719A1 (ja) 正極および非水電解質二次電池
JP4739769B2 (ja) 非水電解質二次電池
JP4739770B2 (ja) 非水電解質二次電池
US8685573B2 (en) Cathode active material and lithium ion rechargeable battery using the material
JP2010062113A (ja) リチウムイオン二次電池
JP2003282055A (ja) 非水電解液二次電池
JP2004047180A (ja) 非水電解質電池
JP2006344509A (ja) リチウム二次電池
JP2008097879A (ja) リチウムイオン二次電池
CN102361095A (zh) 一种高比功率锂离子电池及其制备方法
JP5089028B2 (ja) ナトリウム二次電池
JP2008091041A (ja) 非水電解質二次電池
KR100982599B1 (ko) 정극 및 그것을 이용한 비수 전해질 이차 전지
JP7432608B2 (ja) 正極片、当該正極片を含む電気化学装置及び電子装置
WO2006082721A1 (ja) 非水電解質二次電池
JP2007134245A (ja) 電解液および電池
JP2007103198A (ja) 負極および電池
JP7432607B2 (ja) 正極片、当該正極片を含む電気化学装置及び電子装置
WO2007040114A1 (ja) 非水電解質二次電池用電極および非水電解質二次電池
JP5360860B2 (ja) 非水電解液二次電池
JP2011096520A (ja) 非水電解質二次電池用負極極板及びこの負極極板を用いた非水電解質二次電池
WO2012086618A1 (ja) 負極活物質、負極および非水電解液二次電池
JP2013239356A (ja) リチウムイオン二次電池用負極保護剤、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
JP2006024417A (ja) 電池の製造方法
JP4989049B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200680004220.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077020363

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06712105

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712105

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11883815

Country of ref document: US