WO2012124780A1 - エポキシ樹脂組成物およびその製造方法ならびにそれを用いた半導体装置 - Google Patents

エポキシ樹脂組成物およびその製造方法ならびにそれを用いた半導体装置 Download PDF

Info

Publication number
WO2012124780A1
WO2012124780A1 PCT/JP2012/056762 JP2012056762W WO2012124780A1 WO 2012124780 A1 WO2012124780 A1 WO 2012124780A1 JP 2012056762 W JP2012056762 W JP 2012056762W WO 2012124780 A1 WO2012124780 A1 WO 2012124780A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
general formula
epoxy resin
Prior art date
Application number
PCT/JP2012/056762
Other languages
English (en)
French (fr)
Inventor
清佳 竹田
富川 真佐夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US14/004,841 priority Critical patent/US9123689B2/en
Priority to JP2013504774A priority patent/JP5811172B2/ja
Priority to CN201280008508.5A priority patent/CN103370354B/zh
Priority to KR1020137023998A priority patent/KR101868190B1/ko
Publication of WO2012124780A1 publication Critical patent/WO2012124780A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an epoxy resin composition excellent in heat resistance, having a low coefficient of thermal expansion and excellent workability dissolved in a ketone solvent, and a semiconductor device using the same.
  • solder has been changed from a conventional lead-containing solder to a lead-free type solder composed of tin, silver and the like.
  • lead-free solder solder connection at a higher temperature than that of lead-containing solder is required, and a glass transition temperature higher than ever is required for the substrate material.
  • a method of adding an inorganic filler is generally used to reduce the thermal expansion coefficient of an epoxy resin (see, for example, Patent Document 1).
  • a phloroglucinol is added to the epoxy resin (see, for example, Patent Document 2), or a curing agent having three or more phenolic hydroxyl groups is added to the epoxy resin (for example, , Patent Document 3), a resin composition containing a cyanate ester resin added to an epoxy resin (see, for example, Patent Document 4), an epoxy resin, a polyphenolic epoxy resin curing agent, and a polyethersulfone. (For example, refer patent document 5) etc. are proposed.
  • thermosetting resin composition containing a bismaleimide compound and an epoxy resin can be used to increase the adhesiveness to a semiconductor element, or can be a liquid epoxy resin, a curing agent, or a polyether type. It has been disclosed that a liquid epoxy resin composition containing a compound or a composition containing a polyimide having a special structure with an epoxy resin can increase heat resistance (see, for example, Patent Document 7). ). However, the resin compositions disclosed therein have a problem of insufficient workability and heat resistance, such as not being dissolved in a low boiling point solvent.
  • thermosetting resin composition comprising a polyimide obtained by reacting a substituted guanamine compound and at least two unsaturated N-substituted maleimide groups (see Patent Document 8), epoxy A curable resin composition that is compatible with an equivalent 200-1000 polymer and an epoxy compound (see Patent Document 9), an adhesive for electronic materials composed of a polyimide having a hydroxyl group and an epoxy resin (see Patent Document 10), an amino group and phenol Heat-resistant resin composition comprising a compound having a group, a bismaleimide compound and an epoxy resin (see Patent Document 11), a polymer of a bismaleimide compound and a diamine, and a resin composition comprising a polyethersulfone resin and an epoxy resin (Patent Document) 12), a maleimide compound having a hydroxyl group having a specific structure And a heat resistant composition comprising an epoxy compound having two or more glycidyl groups (see Patent Document 13), and a heat resistant composition
  • JP 2006-28294 A (Claims) JP 2010-95646 A (Claims) JP 2010-95645 A (Claims) JP 2010-90237 A (Claims) JP 2001-72833 A (Claims) JP 2003-221443 A (Claims) JP 2008-81686A (Claims) JP 2009-149742 A (Claims) JP 2008-274300 A (Claims) JP 2004-35650 A (Claims) JP 2007-169454 A (Claims) JP 2009-155354 A (Claims) JP 2009-161605 A (Claims) JP 07-268077 A (Claims)
  • the present invention provides an epoxy resin composition that satisfies all of storage stability, heat resistance after curing, and low thermal expansibility, can be dissolved in a solvent such as cyclohexanone, and has low viscosity and high workability. With the goal.
  • the resin composition of the present invention has the following constitution. That is, the present invention contains (a) a compound having an imide structure represented by general formula (1) and (b) a compound having at least two epoxy groups, and (a) represented by general formula (1).
  • An epoxy resin composition in which a compound having an imide structure has a number average molecular weight of 1000 to 5000 is provided.
  • R 1 has 50% or more of the structure represented by the general formula (2);
  • R 2 is any one selected from the following formula (4) and different.
  • the benzene ring in any structure selected from the following formula (4) may be a hydroxyl group, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, or 1 to 4 may be substituted by one or more groups selected from an alkoxyl group having 4 carbon atoms, a fluoroalkoxyl group having 1 to 4 carbon atoms, an ester group having 2 to 5 carbon atoms, a carboxyl group, a cyano group, and a nitro group;
  • G is any one selected from the following formula (5), and different ones may be mixed.
  • R 4 and R 5 may be independent of each other or may be mixed together, and may be an alkyl group having 1 to 4 carbon atoms, It represents a group selected from a 1 to 4 fluoroalkyl group, an alkoxyl group having 1 to 4 carbon atoms, a fluoroalkoxyl group having 1 to 4 carbon atoms, an ester group having 2 to 5 carbon atoms, a carboxyl group, a cyano group, and a nitro group.
  • X is a direct bond, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —C (C 2 F 5 ) 2 —, —O—, —SO 2 —, fluorene , —CO—, —COO—, —CONH—, —CF 2 —, and any one selected from the following formulas (3) to (5) may be present together; Represents an integer of 0 to 3, s and t represent an integer of 0 to 4 and s + t>0; w is 0 It represents an integer of 8.)
  • the epoxy resin composition has an extremely high glass transition temperature, a low coefficient of thermal expansion, and an excellent processability that is soluble in ketone solvents such as methyl ethyl ketone and cyclohexanone. Can be provided.
  • the epoxy resin composition of the present invention contains (a) a compound having an imide structure represented by the above general formula (1) and (b) a compound having at least two epoxy groups, and (a) the above general formula.
  • the number average molecular weight of the compound having an imide structure represented by (1) is 1000 to 5000.
  • R 1 has 50% or more of the structure represented by the general formula (2).
  • R 2 is any one selected from the above formula (4), and different ones may be mixed.
  • the benzene ring in any structure selected from the above formula (4) has a hydroxyl group, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, and a carbon number 1 or more selected from a carboxyl group, a cyano group, and a nitro group of a fluoroalkoxyl group having 1 to 4 carbon atoms, an ester group having 2 to 5 carbon atoms (the carbon number of R in the ester group represented by -COOR is 1 to 4) It may be substituted with a group.
  • v represents an integer of 1 to 8; G is any one selected from the above formula (5), and different ones may be mixed.
  • “different things may be mixed” means that when there is only one thing represented by the symbol in one molecule, the difference between different molecules. It means that what is represented by the symbol may be different. In the case where there can be a plurality of compounds represented by the symbol in one molecule, it means that the components represented by the symbol may be different within one molecule.
  • each of R 4 and R 5 may be independent of each other or may be a mixture of different alkyl groups having 1 to 4 carbon atoms, It represents a group selected from a 1 to 4 fluoroalkyl group, an alkoxyl group having 1 to 4 carbon atoms, a fluoroalkoxyl group having 1 to 4 carbon atoms, an ester group having 2 to 5 carbon atoms, a carboxyl group, a cyano group, and a nitro group. .
  • an alkyl group having 1 to 3 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, and a carboxyl group are preferable.
  • X is a direct bond, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —C (C 2 F 5 ) 2 —, —O—, —SO 2 —, fluorene, Any one selected from —CO—, —COO—, —CONH—, —CF 2 —, and the above formulas (3) to (5) may be mixed.
  • a direct bond, -C (CF 3) 2 - , - O -, - SO 2 -, fluorene are preferred.
  • p and q represent an integer of 0 to 3
  • s and t represent an integer of 0 to 4
  • w represents an integer of 0 to 8.
  • the compound (a) having an imide structure represented by the general formula (1) used in the present invention is a diamine compound having a phenolic hydroxyl group, a carbonic acid such as tetracarboxylic dianhydride, maleic anhydride or nadic anhydride. It can be obtained by reacting a dicarboxylic anhydride having a carbon double bond.
  • solubility with a low molecular weight can be improved in the reaction with diamine, and during the epoxy group curing reaction, maleic anhydride, nadic anhydride, etc. Reaction occurs with double bonds or with an amino group, and the molecular weight of the compound having an imide structure increases. Thereby, mechanical properties can be improved.
  • diamine compounds having a phenolic hydroxyl group examples include 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (6FAP, manufactured by AZ Electronic Materials), 9,9-bis ( 3-amino-4-hydroxyphenyl) fluorene (BAHF, manufactured by AZ Electronic Materials Co., Ltd.)), 9,9-bis (4-amino-3-hydroxyphenyl) fluorene, dihydroxybenzidine, bis (3-amino- 4-hydroxyphenyl) sulfone (ABPS, manufactured by AZ Electronic Materials), bis (3-amino-4-hydroxyphenyl) ether (ADPE), bis (3-amino-4-hydroxyphenyl) propane, hydroxyphenylene Diamine, Dihydroxydiaminobenze Bis (4-amino-3-hydroxyphenyl) sulfone, 2,2-bis (4-amino-3-hydroxyphenyl) hexafluoropropane, bis (aminophenoxy) hydroxybenzene, bis
  • Diamine having 1 to 4 aromatic rings such as propane and bis (aminophenyl) fluorene, ethylenediamine, diaminopropane, diaminobutane, diaminoheptane, diaminohexane, diaminocycloheptane, diaminocyclohexane, methylenebis (aminocyclohexane), etc.
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetra Carboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, diphenyl ether tetracarboxylic dianhydride, diphenylsulfone tetracarboxylic dianhydride, hexa Fluoroisopropylidene-bis (phthalic anhydride), phenylenebisoxybis (phthalic anhydride), bis (phenyltrimellitic anhydride), hydroquinonebis (trimellitic anhydride), (isopropylidenediphenoxy) bis (Phthalic anhydride), etc., and these can be reacted
  • the benzene ring of these acid anhydrides is a hydroxyl group, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, or a fluoroalkoxyl having 1 to 4 carbon atoms. It may be substituted with one or more groups selected from a group, an ester group having 2 to 5 carbon atoms, a carboxyl group, a cyano group and a nitro group.
  • the number average molecular weight of the compound having an imide structure represented by the general formula (1) is 1000 to 5000, preferably 1000 to 4000, and preferably 1000 to 3000. More preferably.
  • the weight average molecular weight is preferably 10,000 or less.
  • the weight average molecular weight is desirably 1000 or more. Therefore, a desirable weight average molecular weight range is 1000 to 10,000, and more preferably 1000 to 5000.
  • a dicarboxylic anhydride having a carbon-carbon double bond such as 1,3-dione
  • This reaction is generally performed in a polar solvent having a high boiling point such as N-methyl-2-pyrrolidone (NMP) or gamma-butyrolactone, but the imide structure represented by the general formula (1) of the present invention is used. Since the compound having a ketone group dissolves in a solvent having a ketone group, a diamine compound is dissolved in a solvent such as cyclohexanone, and a dicarboxylic acid anhydride having a carbon-carbon double bond such as maleic anhydride or nadic anhydride, tetracarboxylic A compound having an imide structure represented by the general formula (1) can be obtained by adding acid dianhydride and reacting while distilling off water at a temperature of 100 ° C.
  • NMP N-methyl-2-pyrrolidone
  • gamma-butyrolactone gamma-butyrolactone
  • a base compound such as pyridine, triethylamine or isoquinoline or an acid anhydride such as acetic anhydride may be added as a catalyst for imidization.
  • an acid-type or base-type ion exchange resin can also be used as an imidation catalyst.
  • the solvent is distilled off with an evaporator, or poured into water or alcohol to precipitate a compound having an imide structure represented by the general formula (1). And collected by filtration, washed and dried to obtain the desired compound having an imide structure represented by the general formula (1). Further, after evaporation, a ketone solvent may be added to replace the solvent.
  • a solid of the compound having an imide structure represented by the general formula (1) may be obtained by the above method, but (b) at least two or more in the solution. You may mix with the compound which has the epoxy group of.
  • (B) As a compound having at least two epoxy groups used in the present invention, those of bisphenol A type (for example, “jER (registered trademark)” 828, trade name, manufactured by Mitsubishi Chemical Corporation), bisphenol F type (For example, “JER (registered trademark) 807, trade name) manufactured by Mitsubishi Chemical Corporation”, biphenyl type (for example, “jER (registered trademark)“ YX4000, trade name ”manufactured by Mitsubishi Chemical Corporation), Phenol novolac type (for example, Mitsubishi Chemical Corporation “jER (registered trademark) 152, trade name), cresol novolac type (for example, DIC Corporation, manufactured by“ Epiclon (registered trademark) ”N660, commodity Name), glycidylamine type (for example, “jER (registered trademark)” 604, trade name, manufactured by Mitsubishi Chemical Corporation), cyclopentadiene type (For example, “Epiclon (registered trademark)” HP7200, product name) manufactured by DIC Corporation,
  • Examples of the compound (b) having at least two or more epoxy groups used in the present invention include bifunctional epoxy resins, trifunctional epoxy resins, and polyfunctional epoxy resins having four or more epoxy groups.
  • Bifunctional epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, aliphatic glycidyl ether type epoxy resin, alicyclic glycidyl ether type epoxy resin, glycidyl aniline type epoxy resin, cyclohexane A pentadiene type epoxy resin and a naphthalene type epoxy resin are mentioned.
  • Examples of the trifunctional epoxy resin include a triazine skeleton-containing epoxy resin, an aminophenol type epoxy resin, and an aminocresol type epoxy resin.
  • Examples of the polyfunctional epoxy resin having four or more epoxy groups include a cresol novolac epoxy resin, a phenol novolac epoxy resin, a biphenyl epoxy resin, a naphthalene epoxy resin, and an aromatic glycidylamine epoxy resin.
  • the epoxy resins represented by the general formulas (6) to (8) are preferably used in that the epoxy equivalent is small, the crosslinking density in the cured product is increased, and the low thermal expansion and high heat resistance are greatly improved.
  • the epoxy resin represented by the general formula (9) is preferably used from the viewpoint of enhancing the rigidity and orientation of the cured product and greatly improving the low thermal expansion and the high heat resistance.
  • R 6 to R 37 may be independent from each other or may be mixed together, and may be a hydrogen atom, halogen atom, carbon
  • An alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms, and a cycloalkyl group (preferably having 6 to 8 carbon atoms and preferred cycloalkyl groups appearing below) Are the same) and an aryl group (preferably having 6 to 8 carbon atoms, and the same preferred aryl groups appearing below).
  • R 6 to R 37 include, but are not limited to, a methyl group, an ethyl group, and a propyl group.
  • Y 1 to Y 4 may be independent from each other or may be mixed together, and may be a direct bond, methylene group, ether group, thioether group, SO 2 group, isopropylene group And a group selected from the group represented by the following general formula (10).
  • preferred examples include a direct bond, a methylene group, and an SO 2 group.
  • R 38 and R 39 may be independent from each other or may be mixed together, and may be a hydrogen atom, a halogen atom, a carbon number of 1 to 6 A group selected from an alkyl group, an alkoxy group, a fluoroalkyl group, a cycloalkyl group, and an aryl group. Of these, preferred are a methyl group, an ethyl group, and a propyl group.
  • aminophenol type epoxy compound represented by the general formula (6) examples include p-aminophenol, m-aminophenol, p-aminocresol, trifluoromethylhydroxyaniline, hydroxyphenylaniline, methoxyhydroxyaniline, Triglycidyl compounds such as butylhydroxyaniline and hydroxynaphthylaniline can be mentioned.
  • aromatic glycidylamine type epoxy compounds represented by the general formulas (7) and (8) include tetraglycidyldiaminodiphenyl ether, tetraglycidyltetramethyldiaminodiphenyl ether, tetraglycidyltetraethyldiaminodiphenylether, tetraglycidylbis ( Aminophenoxyphenyl) propane, tetraglycidylbis (aminophenoxyphenyl) sulfone, tetraglycidylbis (trifluoromethyl) diaminobiphenyl, tetraglycidylbenzidine, tetraglycidyltolidine, tetraglycidyl-p-phenylenediamine, tetraglycidyl-m-phenylenediamine , Tetraglycidyldiaminotoluene, tetraglycidyldiamin
  • Alpha .'- bis (4-aminophenyl) -1,4-diisopropylbenzene and epichlorohydrin 1 like 4 addition reaction product.
  • Commercially available products include ELM434 (trade name, manufactured by Sumitomo Chemical Co., Ltd.), “Araldite (registered trademark)” MY720, “Araldite” MY721, “Araldite” MY722, “Araldite” MY9512, “Araldite” MY9612, “Araldite” MY9634, “Araldite” MY9663 (above, trade name, manufactured by Vantico Co., Ltd.), “jER (registered trademark)” 604 (manufactured by Mitsubishi Chemical Corporation), TGDAS (above, trade name, Konishi Chemical Industry ( Etc.).
  • These epoxy compounds have good storage stability, a large density of epoxy groups in the compound, a high crosslinking density after curing, and excellent heat resistance and thermal expansion after curing. .
  • the naphthalene type epoxy compound represented by the above general formula (9) can be obtained from a tetraglycidylated product through a tetravalent naphthol intermediate which is a condensate of dihydroxynaphthalene and formaldehyde.
  • a tetravalent naphthol intermediate which is a condensate of dihydroxynaphthalene and formaldehyde.
  • Specific examples thereof include “Epicron (registered trademark)” HP4700, “Epicron” HP4710, “Epicron” HP4770 (trade name, manufactured by DIC Corporation), and the like.
  • the naphthalene skeleton in the compound has increased rigidity and strong orientation, and is excellent in heat resistance and thermal expansion after curing.
  • the equivalent of the epoxy group in the compound having at least two epoxy groups is (a) the equivalent of the hydroxyl group of the compound having an imide group represented by the general formula (1) and the general formula (2).
  • the groups represented by R 4 and R 5 it is preferable to add the same equivalent as the total equivalent of the functional groups (hydroxyl group, carboxyl group, cyano group) that react with the epoxy group.
  • the equivalent of epoxy refers to the mass of a resin containing one equivalent of an epoxy group, and can be obtained by dividing the molecular weight obtained from the structural formula by the number of epoxy groups contained in the structure, as well as JIS-K7236 ( 2001)-It can also be determined by the potentiometric titration method described in ISO3001.
  • the functional group that reacts with the hydroxyl group of the compound having an imide group represented by the general formula (1) and the epoxy group represented by R 4 and R 5 in the general formula (2) is 1: 1 with the epoxy group. Therefore, the relationship between the equivalent of the functional group that reacts with the epoxy group and the equivalent of the epoxy group is preferably 0.7 to 1.2: 1, and preferably 0.9 to 1.1: 1. Is more preferable.
  • the compound having at least two epoxy groups functions as a curing agent for the compound (a) having an imide group represented by the general formula (1).
  • the curing agent refers to an agent that has an effect of curing alone
  • the curing accelerator refers to an agent that has an effect of promoting the reaction when used together with the curing agent.
  • novolak resins As other curing agents and curing accelerators, it is preferable to use novolak resins, phenol resins, aliphatic polyamines, alicyclic polyamines, and aromatic polyamines.
  • Aliphatic polyamines include diethyltriamine, triethylenetetramine, xylenediamine, etc., alicyclic polyamines such as isophorone diamine, 1,3-bisaminomethylcyclohexane, norbornene diamine, etc. Examples include diaminodiphenylmethane and diaminodiphenylsulfone.
  • curing agents are preferably added in the same amount as the equivalent of the epoxy group in the compound (b) having at least two or more epoxy groups.
  • the hydroxyl group (OH) of other curing agents and curing accelerators reacts with epoxy groups 1: 1, and the amino group (NH 2 ) of other curing agents and curing accelerators reacts 1: 2 with epoxy groups. Therefore, the relationship between the equivalent of the reactive group of the other curing agent and the equivalent of the epoxy group is preferably 0.7 to 1.2: 1, more preferably 0.9 to 1.1: 1. . If the relationship between the equivalents of reactive groups of other curing agents and the equivalents of epoxy groups is 0.7 to 1.2: 1, there is little reaction between epoxy groups, and the glass transition temperature and chemical resistance are reduced. In addition, since other unreacted other curing agents and curing accelerators are reduced, an increase in water absorption and a decrease in chemical resistance are less likely to occur.
  • curing agents or curing accelerators that can be used in the epoxy resin composition of the present invention
  • acid anhydrides, dicyandiamide and derivatives thereof, imidazoles and derivatives thereof, condensates of amine derivatives and formaldehyde urea formaldehyde, (Melamine formaldehyde), organometallic complexes, polythiols, onium salts and the like can be mentioned, and two or more of these may be used.
  • acid anhydrides include succinic anhydride, itaconic anhydride, phthalic anhydride, pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, hexahydrophthal Acid anhydride, methyltetrahydrophthalic anhydride, “ADEKA HARDNER (registered trademark)” EH-3326, “ADEKA HARDNER” EH-703, “ADEKA HARDNER” EH-705A (above, trade name, Asahi Denka Kogyo Co., Ltd.) ), “Epicron” B-570, “Epicron” B-650 (trade name, manufactured by Dainippon Ink and Chemicals), “Licacid (registered trademark)” MH-700 (trade name, Shin Nippon Rika) Etc.).
  • Dicyandiamide and its derivatives include DICY7, DICY15, and DICY50 (above, trade names, manufactured by Mitsubishi Chemical Corporation), “Amicure (registered trademark)” AH-154, “Amicure” AH-162 (above, trade names, Ajinomoto) Fine Techno Co., Ltd.).
  • Examples of imidazoles and their derivatives include imidazole, 2-methylimidazole, 2-undecylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxy.
  • Imidazole imidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1 -Cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, IS-1000, IS-1000D, IM-1000, SP-1000, IA-100A, IA-100P, IA-100F ( Less than Trade name, Nikko Materials Co.'s, Ltd.) imidazole silane of the like.
  • condensation product of amine derivative and formaldehyde examples include 4-chloro-phenyl-N, N-dimethylurea and 3,4-dichlorophenyl-N, N-dimethylurea (DCMU).
  • organometallic complexes examples include triphenylphosphine and triphenylphosphonium triphenylborate
  • polythiols examples include aliphatic polythioethers, aliphatic polythioesters, aromatic ring-containing polythioethers, and the like.
  • onium salts include onium salts such as sulfonium and iodonium, and onium salt-type diphenyliodonium hexafluorophosphate, triphenylsulfonium hexafluorophosphate, Syracure UVI-6992, Syracure UVI-6974 (above, trade names, Dow Chemical Japan Co., Ltd.), Adekaoptomer SP150, Adekaoptomer SP170 (above, trade name, manufactured by Asahi Denka Kogyo Co., Ltd.), Sun-Aid SI-60L, SI-80L, SI-100L, SI-150L (The above is a trade name, manufactured by Sanshin Chemical Industry Co., Ltd.).
  • onium salts such as sulfonium and iodonium
  • onium salt-type diphenyliodonium hexafluorophosphate triphenylsulfonium hexafluorophosphate
  • microcapsule-type latent curing agents and amine adducts examples include molding latent curing agents and the like.
  • the microcapsule type latent curing agent is a curing agent having a core (core material) / shell (capsule film) structure, and various imidazole compounds and triphenylphosphine are used as the core.
  • Organic polymers and inorganics are used as the shell. Compounds and the like.
  • the amine adduct type latent curing agent is a pulverized product obtained by reacting an imidazole compound, a tertiary amino group-containing compound or a hydrazide compound with an epoxy compound, an isocyanate compound, or the like to obtain a high molecular weight, and has a solubility at room temperature. Is low and shows potential.
  • “Amicure” PN-23, “Amicure” PN-40, “Amicure” MY-24, “Amicure” MY-H above, trade name, manufactured by Ajinomoto Fine Techno Co., Ltd.
  • the content of these other curing agents and curing accelerators is preferably 0.1 to 60 parts by weight with respect to 100 parts by weight of the compound (b) having at least two or more epoxy groups. More preferably, it is a part.
  • the content of other curing agents and curing accelerators is preferably 0.1 to 60 parts by weight or more, (b) the compound having at least two epoxy groups is effectively cured to 60 parts by weight or less. The reaction start at room temperature can be suppressed.
  • an oxetane compound other than the compound having at least two epoxy groups can be contained.
  • the thermal stability is increased, so that the heat resistance after curing can be improved.
  • monofunctional oxetane compounds include “Ethanacol (registered trademark)” EHO, “Ethanacol” OXMA (trade name, manufactured by Ube Industries, Ltd.), OXT-101, OXT- 211, OXT-212, OXT-610 (above, trade name, manufactured by Toa Gosei Co., Ltd.) and 3-ethyl-3- (cyclohexyloxy) methyloxetane.
  • bifunctional oxetane compound examples include “ethanacol”. OXBP, “Ethanacol” OXTP, “Ethanacol” OXIPA (above, trade name, manufactured by Ube Industries, Ltd.), OXT-121, OXT-221 (above, trade name, manufactured by Toa Gosei Co., Ltd.), trifunctional oxetane Compounds include oxetaneated phenol resin, oxetanyl silicate, phenol novolac oxetane Thing, and the like. Two or more of these may be contained.
  • the content of these oxetane compounds is preferably 0.1 to 60 parts by weight with respect to 100 parts by weight of the compound (b) having at least two epoxy groups.
  • the content of the oxetane compound is 0.1 parts by weight or more, the heat resistance of the epoxy resin composition is increased, and when the content is 60 parts by weight or less, layer separation of the cured product can be prevented.
  • the epoxy resin composition of the present invention is preferably dissolved in (c) cyclohexanone at a concentration of 30% by weight or more. As a result, it is easily compatible with many epoxy resins and can be easily dried thereafter, resulting in less shrinkage during curing.
  • Propyl ketone, methyl amyl ketone, methyl cyclohexanone, ethyl cyclohexanone, methyl dipropyl ketone, methyl propyl ketone, mesityl oxide, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and the like can also be used as the reaction solvent.
  • ether solvents 1,4-dioxane, tetrahydrofuran, glycidol, diglyme glycol ether solvents methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, diethylene glycol methyl ethyl ether, etc.
  • the epoxy resin composition of the present invention may contain 0.1 to 1% by weight of a solvent having a ketone group other than cyclohexanone or cyclohexanone for the purpose of adjusting the viscosity or improving the coating property.
  • a solvent having a ketone group other than cyclohexanone or cyclohexanone for the purpose of adjusting the viscosity or improving the coating property.
  • the epoxy resin composition of the present invention comprises (d) at least one inorganic fine particle selected from the group consisting of boron nitride, silica, titania, zirconia, silicon nitride, alumina, ceria, talc and calcium carbonate, silica-titania composite particles.
  • inorganic fine particles selected from the group consisting of boron nitride, silica, titania, zirconia, silicon nitride, alumina, ceria, talc and calcium carbonate, silica-titania composite particles.
  • thermal conductivity can be imparted or the thermal linear expansion coefficient of the cured film can be reduced.
  • boron nitride, silica, titania, alumina, calcium carbonate, and silica-titania composite particles are preferable.
  • the surface of the inorganic fine particles is treated with various coupling agents such as silane, titanium and aluminum, fatty acids, phosphate esters, etc., or rosin treatment Those subjected to acidic treatment and basic treatment are also preferably used.
  • a silane coupling agent which is a silane coupling agent, is preferable in order to increase the affinity with the epoxy compound, and in particular, a silane coupling agent having an epoxy group is preferably used from the viewpoint of increasing toughness.
  • Preferred examples of the silane coupling agent include ⁇ -glycidoxytrimethoxysilane, ⁇ -glycidoxytriethoxysilane, ⁇ -glycidoxytripropoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltripropoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-amino And propyltripropoxysilane. Two or more of these may be used.
  • the content of these (d) inorganic fine particles is preferably 5 to 5000 parts by weight with respect to 100 parts by weight of the compound (b) having at least two epoxy groups.
  • the content of the inorganic fine particles is 5 parts by weight or more, the thermal expansion coefficient can be reduced, and when the content is 5000 parts by weight or less, the adhesiveness and mechanical properties of the epoxy resin composition can be maintained. More preferably, it is 30 to 500 parts by weight with respect to 100 parts by weight as a total of the compound having an imide group as the component (a) and the epoxy compound as the component (b).
  • the average particle diameter of the inorganic fine particles is preferably 5 nm to 30 ⁇ m, more preferably 10 nm to 10 ⁇ m.
  • the average particle diameter in the present invention is determined by using a transmission electron microscope (H-7100FA type, manufactured by Hitachi, Ltd.), with a cross section of a coating film having a thickness of 20 ⁇ m prepared by using an ultrathin section method. , Observed at an accelerating voltage of 100 kV at an observation magnification of 200,000 times, selected 50 arbitrary particles from the obtained image, measured the particle size of each single particle, and obtained the number average value thereof It is.
  • the particle diameter is 5 nm or more, an appropriate viscosity can be imparted, and at the same time, stable particle dispersibility can be obtained.
  • the particle diameter is set to 30 ⁇ m or less, low viscosity can be improved and sedimentation of inorganic fine particles can be prevented. it can.
  • the epoxy resin composition of the present invention can contain (e) at least one organic fine particle selected from the group consisting of polyimide, polyamide, polyamideimide, polystyrene, polyacrylonitrile, polyphenylene ether, polyester and polycarbonate.
  • organic fine particles By containing these organic fine particles, toughness, heat resistance, and low hygroscopicity can be imparted.
  • the content of these organic fine particles is preferably 5 to 1000 parts by weight with respect to 100 parts by weight of the compound (b) having at least two or more epoxy groups. When the amount is 5 parts by weight or more, toughness, heat resistance, and mechanical properties are improved, and when the amount is 1000 parts by weight or less, the mechanical properties can be maintained, and the solution viscosity does not increase excessively.
  • the average particle size of the organic fine particles is preferably 5 nm to 10 ⁇ m, more preferably 5 nm to 5 ⁇ m.
  • the method for measuring the average particle size of the organic fine particles is the same as the method for measuring the average particle size of the inorganic fine particles.
  • phenoxy resin polyurethane, polypropylene, acrylonitrile-butadiene copolymer (NBR), styrene-butadiene copolymer, (SBR), acrylonitrile-butadiene-methacrylic acid copolymer, acrylonitrile-butadiene-acrylic acid copolymer, etc. It may contain.
  • the epoxy resin composition of the present invention contains a nonionic, cationic, anionic surfactant, a wetting agent such as a polyvalent carboxylic acid, an amphoteric substance, a resin having a highly sterically hindered substituent, and the like. May be.
  • a stabilizer e.g., a stabilizer, a dispersing agent, an anti-settling agent, a plasticizer, antioxidant, etc. as needed.
  • the epoxy resin composition of the present invention is, for example, one or more tetracarboxylic acid anhydrides selected from diamines having a structure represented by the following general formula (2) ′ of 50 mol% or more and the following formula (4) ′: And one or more compounds selected from the following formula (5) ′ are mixed in a solvent having a ketone group (c) ′ under conditions of 50 to 80 ° C. for 0.5 to 2 hours, and (a) the above general formula It can be obtained by obtaining a compound having an imide structure represented by (1) and further mixing (b) a compound having at least two epoxy groups.
  • R 4 and R 5 may be independent of each other or may be mixed together, and may be an alkyl group having 1 to 4 carbon atoms or carbon atoms.
  • X represents a direct bond, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —C (C 2 F 5 ) 2 —, —O—, —SO 2 —, Any one selected from fluorene, —CO—, —COO—, —CONH—, —CF 2 —, and the following formula (3) may be mixed: p and q are 0 to 3
  • organic / inorganic fine particles, a curing agent, a curing accelerator and the like can be mixed in the same manner.
  • organic / inorganic fine particles there may be mentioned a method of dispersing using a method such as ultrasonic dispersion, ultrasonic dispersion, ball mill, roll mill, kneader, clear mix, homogenizer, media disperser and the like.
  • a method of dispersing using a method such as ultrasonic dispersion, ultrasonic dispersion, ball mill, roll mill, kneader, clear mix, homogenizer, media disperser and the like.
  • it is preferable to carry out at 0 degreeC or more and it is more preferable to carry out at 10 degreeC or more. By carrying out at 0 degreeC or more and 80 degrees C or less, it becomes an appropriate viscosity and can fully stir.
  • the compound having an imide structure represented by the general formula (1) can be obtained by reacting in a ketone solvent (for example, cyclohexanone), so that (b) at least 2 is added to the solution after this reaction.
  • a ketone solvent for example, cyclohexanone
  • a compound having two or more epoxy groups may be mixed.
  • the epoxy resin composition of the present invention is suitably used as an adhesive (underfill agent) for joining a semiconductor element and a substrate.
  • the film obtained by curing the thermosetting resin composition of the present invention is used for applications such as a protective film for semiconductor elements, an interlayer insulating film for multilayer wiring for high-density mounting, and a wiring protective insulating film for circuit boards. Used. Thus, a semiconductor device can be obtained.
  • Hydroxyl equivalent (g / eq) ((Mwb ⁇ Mb + Mwa + Ma + Mwe ⁇ 2) ⁇ (Mb + Ma + 2-1) ⁇ 18) / (OHb + OHa + OHe)
  • Mwb represents the molecular weight of the diamine component
  • Mwa represents the molecular weight of the acid component
  • Mwe represents the molecular weight of the end-capping agent
  • OHb represents the number of hydroxyl groups in the diamine component
  • OHa represents the number of hydroxyl groups in the acid component
  • OHe represents the number of hydroxyl groups in the end-capping agent.
  • Mb represents the molar ratio of the diamine component when the molar ratio of the end capping agent is 2
  • Ma similarly represents the molar ratio of the acid component when the molar ratio of the end capping agent is 2.
  • Mb represents the molar ratio of the diamine component when the molar ratio of the end capping agent is 2
  • Ma similarly represents the molar ratio of the acid component when the molar ratio of the end capping agent is 2.
  • the cured film on the obtained silicon wafer was immersed in 47 wt% hydrofluoric acid for 7 minutes at room temperature, then washed with tap water, and carefully peeled from the silicon wafer so as not to be broken.
  • NMP was added to the epoxy resin composition to a solid content concentration of 70% by weight, a solution was prepared, and then applied by spin coating, followed by a hot plate at 120 ° C. (Dainippon Screen) Baking was performed for 3 minutes with SKW-636 manufactured by Manufacture Co., Ltd. to prepare a pre-baked film having a thickness of 10 ⁇ m ⁇ 1 ⁇ m. This film was placed in an inert oven (INH-21CD manufactured by Koyo Thermo System Co., Ltd.), raised to a curing temperature of 170 ° C. over 30 minutes, and heat-treated at 170 ° C. for 120 minutes. Thereafter, the oven was gradually cooled to 50 ° C.
  • inert oven IH-21CD manufactured by Koyo Thermo System Co., Ltd.
  • the cured film on the obtained silicon wafer was immersed in 47% hydrofluoric acid at room temperature for 7 minutes, washed with tap water, and carefully peeled from the silicon wafer so as not to be broken.
  • the cured film obtained by the above method was cut out to 3 mm ⁇ 17 mm, and using a thermomechanical analyzer SS-6100 (manufactured by Seiko Instruments Inc.), a tensile mode, a temperature range of 25 to 150 ° C., a rate of temperature increase
  • the elongation of the cured film was measured under the conditions of 5 ° C./min, initial load 0.5 g, and chuck interval 15 mm. From the obtained measurement results, an average coefficient of thermal expansion at 25 to 150 ° C. was calculated using the following formula.
  • L 25 is the sample length at 25 ° C.
  • L 150 is the sample length at 150 ° C.
  • Average coefficient of thermal linear expansion (1 / L 25 ) [(L 150 ⁇ L 25 ) / (150 ⁇ 25)]
  • Viscosity measurement NMP was added to the epoxy resin composition so as to have a solid content of 70% by weight, a solution was prepared, 1 ml was weighed, and measured at 25 ° C. using an E-type viscometer manufactured by Tokimec. did. When the viscosity exceeds 1000 mPa ⁇ s, workability is lowered.
  • Synthesis Example 1 Synthesis of Compound A having an imide structure (Examples 1, 10 to 13) (See Table 1 for the structure of each compound) 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (hereinafter referred to as 6FAP) as a diamine component in a 500 mL three-necked flask equipped with a nitrogen introduction tube, a stirring rod, and a thermometer under a dry nitrogen stream 36.6 g (100 mmol) manufactured by AZ Materials Co., Ltd. was dissolved in 100 g of cyclohexanone (manufactured by Wako Pure Chemical Industries, Ltd.).
  • 6FAP 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane
  • Synthesis Example 2 Synthesis of Compound B having an imide structure (Example 2)
  • 36.6 g (100 mmol) of 6FAP as a diamine component was dissolved in 120 g of cyclohexanone under a dry nitrogen stream.
  • PMDA 16.4g (75 mmol) was added here as an acid component, and it stirred at 60 degreeC for 1 hour.
  • 4.9 g (50 mmol) of MA as an end-capping agent was added together with 15 g of cyclohexanone, and after stirring for 1 hour at 60 ° C., the temperature was changed to 160 ° C. for 6 hours, The reaction was performed while adding cyclohexanone. Thereafter, the mixture was cooled, and cyclohexanone was added so that the content of Compound B having an imide structure in the solution was 30% by weight.
  • Synthesis Example 3 Synthesis of Compound C having an imide structure (Example 3)
  • 36.6 g (100 mmol) of 6FAP as a diamine component was dissolved in 120 g of cyclohexanone under a dry nitrogen stream.
  • BPDA 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride
  • Synthesis Example 4 Synthesis of Compound D having an imide structure (Example 4) Bis (3-amino-4-hydroxyphenyl) sulfone (ABPS, manufactured by AZ Materials Co., Ltd.) as a diamine component in a 500 mL three-necked flask equipped with a nitrogen introduction tube, a stirring rod, and a thermometer under a dry nitrogen stream 28.0 g (100 mmol) was dissolved in 160 g of cyclohexanone.
  • ABPS (3-amino-4-hydroxyphenyl) sulfone
  • Synthesis Example 5 Synthesis of Compound E having an imide structure (Example 5) Bis (3-amino-4-hydroxyphenyl) ether (ADPE, manufactured by AZ Materials Co., Ltd.) as a diamine component in a 500 mL three-necked flask equipped with a nitrogen inlet tube, a stirring rod, and a thermometer under a dry nitrogen stream 23.2 g (100 mmol) was dissolved in 150 g of cyclohexanone. To this, 22.2 g (50 mmol) of 6FDA as an acid component and 9.8 g (100 mmol) of MA as an end-capping agent were added and stirred at 60 ° C. for 1 hour.
  • ADPE (3-amino-4-hydroxyphenyl) ether
  • the temperature was set to 160 ° C., and the reaction was carried out for 6 hours while distilling out the coming water and adding cyclohexanone appropriately. Thereafter, the mixture was cooled and cyclohexanone was added so that the content of the compound E having an imide structure in the solution was 30% by weight.
  • Synthesis Example 6 Synthesis of Compound F having an imide structure (Example 6)
  • 36.6 g (100 mmol) of 6FAP as a diamine component was dissolved in 160 g of cyclohexanone under a dry nitrogen stream.
  • PMDA 10.9g (50 mmol) was added here as an acid component
  • NA 16.4g (100 mmol) was added as terminal blocker, and it stirred at 60 degreeC for 1 hour. Thereafter, the temperature was set to 160 ° C., and the reaction was carried out for 6 hours while distilling out the coming water and adding cyclohexanone appropriately. Thereafter, the mixture was cooled, and cyclohexanone was added so that the content of the compound F having an imide structure in the solution was 30% by weight.
  • Synthesis Example 7 Synthesis of Compound G having an imide structure (Example 7) A 9,9-bis (3-amino-4-hydroxyphenyl) fluorene (hereinafter referred to as BAHF (FL)) is used as a diamine component in a 500 mL three-necked flask equipped with a nitrogen introduction tube, a stirring rod, and a thermometer under a dry nitrogen stream. 38.0 g (100 mmol) of JFE Chemical Co., Ltd. was dissolved in 160 g of cyclohexanone. PMDA 10.9g (50 mmol) was added here as an acid component, and MA 9.8g (100 mmol) was added as terminal blocker, and it stirred at 60 degreeC for 1 hour.
  • BAHF 9,9-bis (3-amino-4-hydroxyphenyl) fluorene
  • the temperature was set to 160 ° C., and the reaction was carried out for 6 hours while distilling out the coming water and adding cyclohexanone appropriately. Thereafter, the mixture was cooled, and cyclohexanone was added so that the content of the compound G having an imide structure in the solution was 30% by weight.
  • Synthesis Example 8 Synthesis of Compound H having an imide structure (Example 8) BAHF (FL) 38.0 g (100 mmol) was dissolved in 160 g of cyclohexanone as a diamine component in a 500 mL three-necked flask equipped with a nitrogen introduction tube, a stirring rod, and a thermometer under a dry nitrogen stream.
  • BSAA (isopropylidenediphenoxy) bis (phthalic anhydride)
  • MA is used as a terminal blocking agent.
  • Synthesis Example 9 Synthesis of Compound I having an imide structure (Example 9) 10.0 g (50 mmol) of 4,4-diaminodiphenyl ether (DAE, manufactured by Tokyo Chemical Industry Co., Ltd.) as a diamine component in a 500 mL three-necked flask equipped with a nitrogen introduction tube, a stirring rod, and a thermometer under a dry nitrogen stream ), 76.0 g (200 mmol) of BAHF (FL) was dissolved in 160 g of cyclohexanone.
  • DAE 4,4-diaminodiphenyl ether
  • Synthesis Example 10 Synthesis of Compound J having an imide structure (Comparative Example 1)
  • 36.6 g (100 mmol) of 6FAP as a diamine component was dissolved in 100 g of cyclohexanone under a dry nitrogen stream.
  • 19.6 g (200 mmol) of MA as an end-capping agent was added together with 35 g of cyclohexanone, stirred at 60 ° C. for 1 hour, and then at a temperature of 160 ° C. for 6 hours.
  • the reaction was performed while adding cyclohexanone. Thereafter, the solution was cooled, and cyclohexanone was added so that the content of the compound J having an imide structure in the solution was 30% by weight.
  • Synthesis Example 11 Synthesis of Compound K having an imide structure (Comparative Example 2) In a 500 mL three-necked flask equipped with a nitrogen inlet tube, a stir bar, and a thermometer, 36.6 g (100 mmol) of 6FAP as a diamine component and 19.6 g (90 mmol) of PMDA as an acid component and 130 g of cyclohexanone as a diamine component. And mixed at 60 ° C. for 1 hour. 1.96 g (20 mmol) of MA was added here as a terminal blocking agent, and after stirring at 60 ° C. for 1 hour, the temperature became 160 ° C. and after a while, a precipitate was deposited.
  • N-methylpyrrolidone manufactured by Mitsubishi Chemical Corporation
  • cyclohexanone was added appropriately and stirred for 4 hours while removing the solvent and water at 180 ° C. Thereafter, the mixture was cooled, and cyclohexanone was added so that the content of the compound K having an imide group in the solution was 20% by weight.
  • Synthesis Example 12 Synthesis of Compound L having an imide structure (Comparative Example 3)
  • 31.0 g (100 mmol) of bis (3,4-dicarboxyphenyl) ether dianhydride (ODPA, Manac Co., Ltd.) as an acid component and a diamine component 32.9 g (90 mmol) of 6FAP was mixed in 150 g of cyclohexanone and stirred at a temperature of 60 ° C.
  • Synthesis Example 13 Synthesis of Compound M having an imide structure (Comparative Example 4)
  • a 500 mL three-necked flask equipped with a nitrogen inlet tube, a stir bar, and a thermometer 3,3′-diaminodiphenyl sulfone (3,3′-DDS, manufactured by Tokyo Chemical Industry Co., Ltd.) as a diamine component in a dry nitrogen stream 24.8 g (100 mmol) was dissolved in 100 g of cyclohexanone.
  • Synthesis Example 14 Synthesis of Compound N having an imide structure (Comparative Examples 7 and 8, JP2009-161605 Synthesis Example 2)
  • a 2 L glass four-necked flask equipped with a stirrer, a cooling condenser, a thermometer, and a dropping funnel 98.06 g (1.0 mol) of MA, 600 g of N-methylpyrrolidone, and 200 g of toluene were charged and completely dissolved.
  • 247 g (0.5 mol) of 2,2′-methylenebis ⁇ 4-methyl-6- (3,5-dimethyl-4-aminobenzyl) phenol ⁇ was added while paying attention to the reaction temperature. Aging was carried out at 30 ° C. for 30 minutes.
  • Example 1 50 g of the solution of Compound A having an imide structure obtained in Synthesis Example 1, bisphenol A type epoxy compound “jER” 828 (trade name: hereinafter referred to as jER828, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 185 g / eq) 10.9 g was mixed with stirring at 25 ° C. for 60 minutes using a planetary stirring deaerator (Mazerustar (Kurabo Co., Ltd.)) to obtain an epoxy resin composition 1. The resulting epoxy resin composition 1 was evaluated for cyclohexanone solubility, glass transition temperature, coefficient of thermal expansion, and viscosity by the above methods.
  • Example 2 An epoxy resin composition 2 was obtained and evaluated in the same manner as in Example 1, except that 50 g of the compound B having an imide structure was used instead of 50 g of the compound A having an imide structure. .
  • Example 3 An epoxy resin composition 3 was obtained and evaluated in the same manner as in Example 1, except that 53 g of the compound C having an imide structure was used instead of 30 g of the compound A having an imide structure. .
  • Example 4 An epoxy resin composition 4 was obtained and evaluated in the same manner as in Example 1, except that 52 g of the compound D having an imide structure was used instead of 50 g of the compound A having an imide structure. .
  • Example 5 An epoxy resin composition 5 was obtained and evaluated in the same manner as in Example 1 except that 48 g of the compound E having an imide structure was used instead of 50 g of the compound A having an imide structure. .
  • Example 6 An epoxy resin composition 6 was obtained in the same manner as in Example 1 except that 56 g of the compound F having an imide structure was used instead of 50 g of the compound A having an imide structure, and evaluated in the same manner as in Example 1. .
  • Example 7 An epoxy resin composition 7 was obtained in the same manner as in Example 1 except that 52.6 g of the compound G having an imide structure was used instead of 50 g of the compound A having an imide structure. evaluated.
  • Example 8 The epoxy resin composition 8 was obtained in the same manner as in Example 1 except that 66 g of the compound H solution having an imide structure was used instead of 50 g of the compound A solution having an imide structure, and evaluated in the same manner as in Example 1. did.
  • Example 9 An epoxy resin composition 9 was obtained in the same manner as in Example 1 except that 91.4 g of the compound I having an imide structure was used instead of 50 g of the compound A having an imide structure. evaluated.
  • Comparative Example 1 An epoxy resin composition 10 was obtained in the same manner as in Example 1 except that 49 g of the compound J having an imide structure was used instead of 50 g of the compound A having an imide structure, and evaluated in the same manner as in Example 1. .
  • Comparative Example 2 An epoxy resin composition 11 was obtained in the same manner as in Example 1 except that 76 g of the compound K solution having an imide structure was used instead of 50 g of the compound A solution having an imide structure, and evaluated in the same manner as in Example 1. However, layer separation of epoxy and polyimide occurred during the curing reaction.
  • Comparative Example 3 An epoxy resin composition 12 was obtained in the same manner as in Example 1 except that 64.5 g of the solution of compound L having an imide structure was used instead of 50 g of the solution of compound A having an imide structure. evaluated.
  • Example 1 was used except that 50 g of a compound M having an imide structure (bismaleimide compound solution) was used instead of 50 g of the compound A having an imide structure, and 1 g of N-methylimidazole was added as a curing agent.
  • the epoxy resin composition 13 was obtained and evaluated in the same manner as in Example 1.
  • Comparative Example 5 Instead of 50 g of the compound A solution having an imide structure, polyethersulfone resin (manufactured by Sumitomo Chemical Co., Ltd., trade name, Sumika Excel 5003P, weight average molecular weight 67250, terminal phenolic hydroxyl group content 46 mol%, glass transition temperature) 230 ° C.) 15 g, 4,4′-diaminodiphenylsulfone (hereinafter referred to as 4,4′-DDS, manufactured by Wako Pure Chemical Industries, Ltd.) 10 g was used except that a solution of 35 g of N-methylpyrrolidone was used. In the same manner as in Example 1, an epoxy resin composition 14 was obtained and evaluated in the same manner as in Example 1.
  • polyethersulfone resin manufactured by Sumitomo Chemical Co., Ltd., trade name, Sumika Excel 5003P, weight average molecular weight 67250, terminal phenolic hydroxyl group content 46 mol%, glass transition temperature) 230
  • Comparative Example 6 Although it replaced with 50 g of solutions of the compound A which has an imide structure instead of using the solution which melt
  • Example 10 Epoxy resin in the same manner as in Example 1 except that cresol novolac type epoxy compound “Epiclon” N660 (trade name, hereinafter referred to as N660, manufactured by DIC Corporation, epoxy equivalent 207 g / eq) was used instead of jER828. A composition 15 was obtained and evaluated in the same manner as in Example 1.
  • cresol novolac type epoxy compound “Epiclon” N660 trade name, hereinafter referred to as N660, manufactured by DIC Corporation, epoxy equivalent 207 g / eq
  • Example 11 The same procedure as in Example 1 was performed except that 5.4 g of p-aminophenol type epoxy compound “jER” 630 (trade name, jER630, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 96 g / eq) was used instead of Epicoat 828. Thus, an epoxy resin composition 16 was obtained and evaluated in the same manner as in Example 1.
  • Example 12 In place of jER828, 7.7 g of tetraglycidyl diaminodiphenylsulfone (trade name, TGDAS, manufactured by Konishi Chemical Industry Co., Ltd., epoxy equivalent: 138 g / eq) and bisphenol F type epoxy compound “jER” 807 (trade name, hereinafter referred to as jER807) An epoxy resin composition 17 was obtained in the same manner as in Example 1 except that 5.0 g of epoxy equivalent, 171 g / eq) manufactured by Mitsubishi Chemical Corporation and 1.8 g of 4,4′-DDS were used. And evaluated in the same manner.
  • TGDAS tetraglycidyl diaminodiphenylsulfone
  • jER807 bisphenol F type epoxy compound
  • Example 13 Instead of jER828, naphthalene type epoxy compound “Epiclon” HP4710 (trade name, manufactured by DIC Corporation, epoxy equivalent 171 g / eq) 17 g and jER807 2.5 g, 4,4′-DDS 3.6 g were used.
  • the epoxy resin composition 18 was obtained and evaluated in the same manner as in Example 1.
  • Comparative Example 7 An epoxy resin was prepared in the same manner as in Example 1 except that 50 g of a hydroxyl group-containing maleimide N was used instead of 50 g of the compound A having an imide structure, and a cresol novolac epoxy compound N660 was used instead of “jER” 828. A resin composition 19 was obtained and evaluated in the same manner as in Example 1.
  • Comparative Example 8 The epoxy resin composition 20 was obtained in the same manner as in Example 1 except that 50 g of the hydroxyl group-containing maleimide N solution was used instead of 50 g of the compound A solution having an imide structure, and evaluated in the same manner as in Example 1.
  • Tables 1 and 2 show the compositions and evaluation results of Examples and Comparative Examples.
  • the epoxy resin composition has an extremely high glass transition temperature, a low coefficient of thermal expansion, and an excellent processability that is soluble in ketone solvents such as methyl ethyl ketone and cyclohexanone. Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 作業性に優れ、硬化後の耐熱性に優れたエポキシ樹脂組成物が開示されている。エポキシ樹脂組成物は、フェノール性水酸基を有する、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(6FAP)等のジアミンと、テトラカルボン酸二無水物とを反応させて得られる特定のイミド構造を有する化合物であってその数平均分子量が1000~5000のものと、ビスフェノールA型エポキシ樹脂等の、少なくとも2つのエポキシ基を有する化合物を含む。

Description

エポキシ樹脂組成物およびその製造方法ならびにそれを用いた半導体装置
 本発明は、耐熱性に優れ、熱膨張率が低く、ケトン系の溶媒に溶解する作業性の優れたエポキシ樹脂組成物およびそれを用いた半導体装置に関する。
 近年、半導体素子の大型化が急速に進み、半導体素子と基板との間に大きな熱応力が発生している。これはシリコンよりなる半導体素子の熱膨張率とエポキシ樹脂をもとにした基板との熱膨張率の差によるものである。この熱応力は、半導体素子と基板を接合する半田バンプに集中し、それを緩和するためにアンダーフィル剤などを充填している。このような応力緩和である程度の効果はあるものの、本質的に基板の熱膨張率を半導体素子程度に低下させることが必要となってきている。
 また、環境に対する影響を小さくするため、半田についても従来の鉛入りのものから、スズと銀などからなる鉛フリータイプの半田になってきている。鉛フリー半田となることで、鉛入りの半田より高温での半田接続が必要になり、基板材料にこれまで以上に高いガラス転移温度が必要になってきている。
 エポキシ樹脂の低熱膨張率化には、無機フィラーを入れる方法が一般的である(例えば、特許文献1参照)。
 エポキシ樹脂の高ガラス転移温度化には、エポキシ樹脂にフロログルシノールを添加するもの(例えば、特許文献2参照)や、エポキシ樹脂にフェノール性水酸基を3つ以上有する硬化剤を添加するもの(例えば、特許文献3参照)、エポキシ樹脂にシアネートエステル樹脂を添加するもの(例えば、特許文献4参照)、エポキシ樹脂、多価フェノール系のエポキシ樹脂硬化剤およびポリエーテルスルホンを含有する樹脂組成物を添加するもの(例えば、特許文献5参照)などが提案されている。
 また、ビスマレイミド化合物とエポキシ樹脂を含有する熱硬化性樹脂組成物(例えば、特許文献6参照)とすることで半導体素子との接着性を高めることや、液状エポキシ樹脂、硬化剤、ポリエーテル系化合物を含有する液状エポキシ樹脂組成物とすることや、エポキシ樹脂と特殊な構造を有したポリイミドを含んだ組成物とすることで高耐熱化することが開示されている(例えば、特許文献7参照)。しかしながら、これらに開示された樹脂組成物は、低沸点の溶媒に溶解しないなど作業性の点、耐熱性が不十分であるという問題があった。
 また作業性、耐熱性を改善することを目的として、置換グアナミン化合物と少なくとも2個の不飽和N-置換マレイミド基を反応させたポリイミドよりなる熱硬化性樹脂組成物(特許文献8参照)、エポキシ当量200-1000のポリマーとエポキシ化合物による相溶した硬化性樹脂組成物(特許文献9参照)、ヒドロキシル基を有するポリイミドとエポキシ樹脂による電子材料用接着剤(特許文献10参照)、アミノ基とフェノール基を有する化合物とビスマレイミド化合物とエポキシ樹脂によりなる耐熱性樹脂組成物(特許文献11参照)、ビスマレイミド化合物とジアミンとの重合物、ポリエーテルスルホン樹脂とエポキシ樹脂よりなる樹脂組成物(特許文献12参照)、特定構造を有するヒドロキシル基を有したマレイミド化合物と2個以上のグリシジル基を有するエポキシ化合物による耐熱性組成物(特許文献13参照)、エポキシ化合物とビスマレイミド化合物とヒドロキシマレイミド化合物よりなる耐熱性組成物(特許文献14参照)など多数の耐熱性樹脂組成物が提案されている。しかしながらこれらに開示された樹脂組成物は、配合するポリイミドなどの分子量が大きくエポキシ樹脂組成物と混合したときの粘度が高くなりすぎる問題があった。
特開2006-28294号公報(特許請求の範囲) 特開2010-95646号公報(特許請求の範囲) 特開2010-95645号公報(特許請求の範囲) 特開2010-90237号公報(特許請求の範囲) 特開2001-72833号公報(特許請求の範囲) 特開2003-221443号公報(特許請求の範囲) 特開2008-81686号公報(特許請求の範囲) 特開2009-149742号公報(特許請求の範囲) 特開2008-274300号公報(特許請求の範囲) 特開2004-35650号公報(特許請求の範囲) 特開2007-169454号公報(特許請求の範囲) 特開2009-155354号公報(特許請求の範囲) 特開2009-161605号公報(特許請求の範囲) 特開平07-268077号公報(特許請求の範囲)
 上記課題に鑑み、本発明は保存安定性、硬化後の耐熱性、低熱膨張性の全てを満たすとともに、シクロヘキサノンなどの溶媒に溶解でき、低粘度で作業性の高いエポキシ樹脂組成物を提供することを目的とする。
 上記課題を解決するため、本発明の樹脂組成物は下記の構成からなる。すなわち本発明は、(a)一般式(1)で表されるイミド構造を有する化合物および(b)少なくとも2つのエポキシ基を有する化合物を含有し、(a)一般式(1)で表されるイミド構造を有する化合物の数平均分子量が1000~5000であるエポキシ樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-C000017
(一般式(1)中、Rは、一般式(2)で表される構造を示すものを50%以上有する;Rは下式(4)から選ばれるいずれかであって異なるものが混在していても良い;また下式(4)から選ばれるいずれかの構造におけるベンゼン環は、水酸基、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシル基、炭素数1~4のフルオロアルコキシル基、炭素数2~5のエステル基、カルボキシル基、シアノ基およびニトロ基から選ばれる1以上の基により置換されていても良い;vは1~8の整数を表す;Gは下式(5)から選ばれるいずれかであって異なるものが混在していても良い)。
Figure JPOXMLDOC01-appb-C000018
(一般式(2)中、R,Rは、互いに独立して、それぞれ単一のものであっても異なるものが混在していても良く、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシル基、炭素数1~4のフルオロアルコキシル基、炭素数2~5のエステル基、カルボキシル基、シアノ基、ニトロ基から選ばれる基を表す;Xは直接結合、-CH-、-C(CH-、-C(CF-、-C(C-、-O-、-SO-、フルオレン、-CO-、-COO-、-CONH-、-CF-、および下式(3)~(5)から選ばれるいずれかであって異なるものが混在していても良い;p、qは0~3の整数を表し、s、tは0~4の整数を表し、s+t>0である;wは0~8の整数を表す。)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 本発明によれば、エポキシ樹脂組成物では極めて高いガラス転移温度を有し、熱膨張率が低く、かつメチルエチルケトン、シクロヘキサノンのようなケトン系の溶媒に可溶な加工性の優れたエポキシ樹脂組成物を提供することができる。
 本発明のエポキシ樹脂組成物は(a)上記一般式(1)で表されるイミド構造を有する化合物および(b)少なくとも2つ以上のエポキシ基を有する化合物を含有し、(a)上記一般式(1)で表されるイミド構造を有する化合物の数平均分子量が1000~5000である。
 一般式(1)中、Rは、上記一般式(2)で表される構造を示すものを50%以上有する。Rは上記式(4)から選ばれるいずれかであって異なるものが混在していても良い。また上記式(4)から選ばれるいずれかの構造におけるベンゼン環は、水酸基、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシル基、炭素数1~4のフルオロアルコキシル基、炭素数2~5のエステル基(-COORで示されるエステル基中のRの炭素数が1~4)の、カルボキシル基、シアノ基およびニトロ基から選ばれる1以上の基により置換されていても良い。vは1~8の整数を表す;Gは上記式(5)から選ばれるいずれかであって異なるものが混在していても良い。なお、本明細書及び請求の範囲において、「異なるものが混在していても良い」は、1つの分子中にその符号で表されるものが1つしかない場合には、異なる分子間でその符号で表されるものが異なっていてもよいことを意味する。1つの分子中にその符号で表されるものが複数個存在し得る場合には、これに加えて、1つの分子内でもその符号で表されるものが異なっていてもよいことを意味する。
 上記一般式(2)中、R,Rは、互いに独立して、それぞれ単一のものであっても異なるものが混在していても良く、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシル基、炭素数1~4のフルオロアルコキシル基、炭素数2~5のエステル基、カルボキシル基、シアノ基、ニトロ基から選ばれる基を表す。これらのうち、炭素数1~3のアルキル基、炭素数1~3のフルオロアルキル基、カルボキシル基が好ましい。Xは直接結合、-CH-、-C(CH-、-C(CF-、-C(C-、-O-、-SO-、フルオレン、-CO-、-COO-、-CONH-、-CF-、および上記式(3)~(5)から選ばれるいずれかであって異なるものが混在していても良い。これらのうち、直接結合、-C(CF-、-O-、-SO-、フルオレンが好ましい。p、qは0~3の整数を表し、s、tは0~4の整数を表し、s+t>0である;wは0~8の整数を表す。
 本発明に用いる(a)一般式(1)で表されるイミド構造を有する化合物は、フェノール性水酸基を有したジアミン化合物、テトラカルボン酸二無水物、無水マレイン酸や無水ナジック酸等の炭素-炭素二重結合を有するジカルボン酸無水物を反応させることで得ることが出来る。無水マレイン酸、無水ナジック酸等を末端に導入することで、ジアミンとの反応では低い分子量で溶解性を向上させることができ、エポキシ基の硬化反応中に、無水マレイン酸、無水ナジック酸等の二重結合同士や、アミノ基と反応が起こり、イミド構造を有する化合物の分子量が高くなる。これにより、機械物性を向上させることができる。
 フェノール性水酸基を有したジアミン化合物の例としては、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(6FAP、AZエレクトロニックマテリアルズ(株)製)、9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン(BAHF、AZエレクトロニックマテリアルズ(株)製))、9,9-ビス(4-アミノ-3-ヒドロキシフェニル)フルオレン、ジヒドロキシベンジジン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン(ABPS、AZエレクトロニックマテリアルズ(株)製)、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル(ADPE)、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ヒドロキシフェニレンジアミン、ジヒドロキシジアミノベンゼン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、2,2-ビス(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(アミノフェノキシ)ヒドロキシベンゼン、ビス(3-アミノ-4-ヒドロキシフェノキシ)ベンゼン、ビス(4-アミノ-3-ヒドロキシフェノキシ)ベンゼンなどを挙げることができる。
 さらに、ジアミン成分の50%未満の範囲で、フェノール性水酸基の無い、フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、ジアミノジフェニルプロパン、ビスアミノフェノキシベンゼン、ビスアミノフェノキシフェニルスルホン、ビスアミノフェノキシフェニルプロパン、ビス(アミノフェニル)フルオレンなどの芳香族環を1~4個有したジアミン、エチレンジアミン、ジアミノプロパン、ジアミノブタン、ジアミノヘプタン、ジアミノヘキサン、ジアミノシクロヘプタン、ジアミノシクロヘキサン、メチレンビス(アミノシクロヘキサン)などの脂肪族のジアミン化合物、カルボキシル基を有したジアミノ安息香酸、ビス(3-カルボキシ-4-アミノフェニル)メタンなどのジアミン化合物で変性することも出来る。
 また、テトラカルボン酸二酸無水物としては、無水ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ジフェニルエーテルテトラカルボン酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、ヘキサフルオロイソプロピリデン-ビス(フタール酸無水物)、フェニレンビスオキシビス(フタール酸無水物)、ビス(フェニルトリメリット酸無水物)、ヒドロキノンビス(トリメリット酸無水物)、(イソプロピリデンジフェノキシ)ビス(フタール酸無水物)、などが挙げられ、これらを反応させて高分子量にすることもできるが、高分子量にすると溶解性が低下する恐れがある。さらに、これらの酸無水物のベンゼン環は、水酸基、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシル基、炭素数1~4のフルオロアルコキシル基、炭素数2~5のエステル基、カルボキシル基、シアノ基およびニトロ基から選ばれる1以上の基により置換されていても良い。
 ケトン系溶媒(後述)への溶解性から、一般式(1)で表されるイミド構造を有する化合物の数平均分子量が1000~5000であり、1000~4000であることが好ましく、1000~3000であることがより好ましい。また重量平均分子量は10000以下が良い。また、ガラス転移温度を高くするには重量平均分子量が1000以上あることが望ましい。このようなことから望ましい重量平均分子量範囲としては1000~10000であり、さらには1000~5000が好ましい。
 また末端に無水マレイン酸、シクロヘキセンジカルボン酸無水物、無水ナジック酸、テトラヒドロベンゾ[3,4]シクロブタ[1,2、c]フラン-1,3-ジオン、8-オキサトリシクロ[4,3,1,02,5]デカ-3-エン-7、9-ジオン、ビシクロ[2,2,2]オクト-5エン-ジカルボン酸無水物、オクタヒドロナフト[2,3-c]フラン-1,3-ジオン等の炭素-炭素二重結合を有するジカルボン酸無水物を反応させることで、末端に炭素-炭素二重結合を有するイミド結合を有する化合物を得ることができる。
 この反応は、N-メチル-2-ピロリドン(NMP)やガンマブチロラクトンなどの高沸点の極性溶媒中で行うのが一般的であるが、本発明の一般式(1)で表されるイミド構造を有する化合物がケトン基を有する溶媒に溶解するので、シクロヘキサノンなどの溶媒にジアミン化合物を溶解させ、ここに無水マレイン酸や無水ナジック酸等の炭素-炭素二重結合を有するジカルボン酸無水物、テトラカルボン酸二無水物を加えて、100℃以上の温度で水を留去させながら反応することで目的の一般式(1)で表されるイミド構造を有する化合物を得ることが出来る。この反応にはピリジン、トリエチルアミン、イソキノリンなどの塩基化合物や、無水酢酸などの酸無水物をイミド化の触媒として加えても良い。また、イミド化触媒として酸型や塩基型のイオン交換樹脂を用いることもできる。
 重合後に、ケトン系以外の溶媒を用いた場合は、溶媒をエバポレーターで留去したり、水やアルコールなどに投入して一般式(1)で表されるイミド構造を有する化合物の固体を析出させて、ろ別したりして集め、洗浄、乾燥して目的の一般式(1)で表されるイミド構造を有する化合物を得る。また、エバポレート後にケトン系の溶媒を入れて溶媒置換しても良い。
 ケトン系の溶媒を用いて反応させた場合は、上記の方法で一般式(1)で表されるイミド構造を有する化合物の固体を得てもいいが、溶液のまま(b)少なくとも2つ以上のエポキシ基を有する化合物と混合してもよい。
 本発明に用いる(b)少なくとも2つ以上のエポキシ基を有する化合物としては、ビスフェノールA型のもの(例えば、三菱化学(株)製  “jER(登録商標)”828、商品名)、ビスフェノールF型のもの(例えば、三菱化学(株)製  “jER(登録商標)”807、商品名)、ビフェニル型のもの(例えば、三菱化学(株)製  “jER(登録商標)”YX4000、商品名)、フェノールノボラック型のもの(例えば、三菱化学(株)製  “jER(登録商標)”152、商品名)、クレゾールノボラック型のもの(例えば、DIC(株)製  “エピクロン(登録商標)”N660、商品名)、グリシジルアミン型のもの(例えば、三菱化学(株)製  “jER(登録商標)”604、商品名)、シクロペンタジエン型のもの(例えば、DIC(株)製  “エピクロン(登録商標)”HP7200、商品名)、ナフタレン型のもの(例えば、DIC(株)製  “エピクロン(登録商標)”HP4032、“エピクロン”HP4710、商品名)、アルキルジグリシジルエーテル型のもの(例えば、三菱化学(株)製 YED216、商品名)などが挙げられ、これらを混合して用いてもよい。また、粘度の調整などのために、1価のエポキシ基を有する化合物(例えば、三菱化学(株)製  “jER(登録商標)”801、商品名)を混合して用いてもよい。
 本発明に用いる(b)少なくとも2つ以上のエポキシ基を有する化合物は、2官能型エポキシ樹脂、3官能型エポキシ樹脂、エポキシ基が4つ以上の多官能型エポキシ樹脂が挙げられる。2官能型エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂肪族グリシジルエーテル型エポキシ樹脂、脂環式グリシジルエーテル型エポキシ樹脂、グリシジルアニリン型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂が挙げられる。3官能型エポキシ樹脂としてはトリアジン骨格含有エポキシ樹脂、アミノフェノール型エポキシ樹脂、アミノクレゾール型エポキシ樹脂が挙げられる。エポキシ基が4つ以上の多官能型エポキシ樹脂としてはクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂が挙げられる。
 これらの中でも一般式(6)~(8)で表されるエポキシ樹脂は、エポキシ当量が小さく、硬化物中の架橋密度を高め、低熱膨張性と高耐熱性を大きく向上する点で好ましく用いられる。また一般式(9)で表されるエポキシ樹脂は、硬化物の剛直性と配向性を強め、低熱膨張性と高耐熱性を大きく向上する点で好ましく用いられる。
Figure JPOXMLDOC01-appb-C000022
 上記一般式(6)~(9)中、R~R37は、互いに独立して、それぞれ単一のものであっても異なるものが混在していても良く、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のフルオロアルキル基、シクロアルキル基(好ましくは炭素数6~8、以下に出てくるシクロアルキル基の好ましいものも同じ)およびアリール基(好ましくは炭素数6~8、以下に出てくるアリール基の好ましいものも同じ)から選ばれる基を表す。R~R37の好ましいものとしてメチル基、エチル基、プロピル基を挙げることができるがこれらに限定されるものではない。Y~Yは、互いに独立して、それぞれ単一のものであっても異なるものが混在していても良く、直接結合、メチレン基、エーテル基、チオエーテル基、SO基、イソプロピレン基および下記一般式(10)で表される基から選ばれる基を表す。これらのうち、好ましいものとして直接結合、メチレン基、SO基を挙げることができる。
Figure JPOXMLDOC01-appb-C000023
 上記一般式(10)中、R38、R39は、互いに独立して、それぞれ単一のものであっても異なるものが混在していても良く、水素原子、ハロゲン原子、炭素数1~6のアルキル基、アルコキシ基、フルオロアルキル基、シクロアルキル基およびアリール基から選ばれる基を表す。これらのうち、好ましいものとしてメチル基、エチル基、プロピル基を挙げることができる。
 上記一般式(6)で表されるアミノフェノール型エポキシ化合物の具体例としては、p-アミノフェノール、m-アミノフェノール、p-アミノクレゾール、トリフルオロメチルヒドロキシアニリン、ヒドロキシフェニルアニリン、メトキシヒドロキシアニリン、ブチルヒドロキシアニリン、ヒドロキシナフチルアニリンなどのトリグリシジル化物が挙げられる。市販品としては、ELM120、ELM100(以上、商品名、住友化学工業(株)製)、“アラルダイト(登録商標)”MY0500、“アラルダイト” MY0510(以上、商品名、Vantico(株)製)、“jER(登録商標)”630(以上、商品名、三菱化学(株)製)などが挙げられる。これらのエポキシ化合物は、低粘度性を有し、かつ化合物中のエポキシ基の密度が大きく、硬化後の架橋密度を高くすることができ、硬化後の耐熱性と熱膨張性に優れている。
 上記一般式(7)および(8)で表される芳香族系グリシジルアミン型エポキシ化合物の具体例としては、テトラグリシジルジアミノジフェニルエーテル、テトラグリシジルテトラメチルジアミノジフェニルエーテル、テトラグリシジルテトラエチルジアミノジフェニルエーテル、テトラグリシジルビス(アミノフェノキシフェニル)プロパン、テトラグリシジルビス(アミノフェノキシフェニル)スルホン、テトラグリシジルビス(トリフルオロメチル)ジアミノビフェニル、テトラグリシジルベンジジン、テトラグリシジルトリジン、テトラグリシジル-p-フェニレンジアミン、テトラグリシジル-m-フェニレンジアミン、テトラグリシジルジアミノトルエン、テトラグリシジルジアミノキシレン、テトラグリシジルジアミノジフェニルスルホン、テトラグリシジルジアミノジフェニルメタン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼンとエピクロルヒドリンの1:4の付加反応生成物などが挙げられる。市販品としては、ELM434(以上、商品名、住友化学工業(株)製)、“アラルダイト(登録商標)”MY720、“アラルダイト” MY721、“アラルダイト” MY722、“アラルダイト” MY9512、“アラルダイト” MY9612、“アラルダイト” MY9634、“アラルダイト” MY9663(以上、商品名、Vantico(株)製)、“jER(登録商標)”604(三菱化学(株)製)、TGDAS(以上、商品名、小西化学工業(株)製)、などが挙げられる。これらのエポキシ化合物は、保存安定性が良好であり、かつ化合物中のエポキシ基の密度が大きく、硬化後の架橋密度を高くすることができ、硬化後の耐熱性と熱膨張性に優れている。
 上記一般式(9)で表されるナフタレン型エポキシ化合物は、ジヒドロキシナフタレンと、ホルムアルデヒドとの縮合体である4価ナフトール中間体を経たテトラグリシジル化物から得ることができる。これらの具体例としては、“エピクロン(登録商標)”HP4700、“エピクロン”HP4710、“エピクロン”HP4770(以上、商品名、DIC(株)製)などが挙げられる。これらのエポキシ樹脂は化合物中のナフタレン骨格が剛直性と強い配向性を強め、硬化後の耐熱性と熱膨張性に優れている。
 (b)少なくとも2つ以上のエポキシ基を有する化合物中のエポキシ基の当量は、(a)一般式(1)で表されるイミド基を有する化合物の水酸基の当量および一般式(2)中のR、Rで表される基のうちエポキシ基と反応する官能基(水酸基、カルボキシル基、シアノ基)の当量の合計を合わせた当量と同当量加えることが好ましい。エポキシの当量とは1当量のエポキシ基を含む樹脂の質量を指し、構造式から求めた分子量を、その構造中に含まれるエポキシ基の数で除算して求めることができる他、JIS-K7236(2001)・ISO3001記載の電位差滴定法により求めることもできる。
 (a)一般式(1)で表されるイミド基を有する化合物の水酸基および一般式(2)中のR、Rで表されるエポキシ基と反応する官能基はエポキシ基と1:1で反応するので、エポキシ基と反応する官能基の当量とエポキシ基の当量との関係は0.7~1.2:1とすることが好ましく、0.9~1.1:1とすることがより好ましい。
 (a)一般式(1)で表されるイミド基を有する化合物の水酸基および一般式(2)中のR、Rで表されるエポキシ基と反応する官能基とエポキシ基の当量との関係が0.7~1.2:1であれば、エポキシ基同士の反応が少なく、ガラス転移温度の低下や耐薬品性の低下などが起こりにくくなり、また未反応の他の硬化剤や硬化促進剤が少なくなるため、吸水率の増加や、耐薬品性の低下が起こりにくくなる。
 本発明のエポキシ樹脂組成物は、(b)少なくとも2つ以上のエポキシ基を有する化合物は(a)一般式(1)で表されるイミド基を有する化合物の硬化剤として作用を有するが、(b)少なくとも2つ以上のエポキシ基を有する化合物の硬化反応を促進する目的で、他の硬化剤や硬化促進剤を含有することもできる。ここで、硬化剤とは、単独で硬化する作用を有するものをいい、硬化促進剤とは、硬化剤とともに用いて反応を促進する作用を有するものをいう。
 他の硬化剤や硬化促進剤としてはノボラック樹脂、フェノール樹脂、脂肪族ポリアミン、脂環式ポリアミン、芳香族ポリアミンを用いることが好ましい。脂肪族ポリアミンとしては、ジエチルトリアミン、トリエチレンテトラミン、キシレンジアミン等、脂環式ポリアミンとしては、イソホロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ノルボルネンジアミン等、芳香族ポリアミンとしては、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等が挙げられる。
 これらの硬化剤は、(b)少なくとも2つ以上のエポキシ基を有する化合物中のエポキシ基の当量と同当量加えるのが好ましい。他の硬化剤や硬化促進剤の水酸基(OH)はエポキシ基と1:1で反応し、また他の硬化剤や硬化促進剤のアミノ基(NH)はエポキシ基と1:2で反応するので、他の硬化剤の反応基の当量とエポキシ基の当量との関係は0.7~1.2:1とすることが好ましく、0.9~1.1:1とすることがより好ましい。他の硬化剤の反応基の当量とエポキシ基の当量との関係が0.7~1.2:1であれば、エポキシ基同士の反応が少なく、ガラス転移温度の低下や耐薬品性の低下などが起こりにくくなり、また未反応の他の硬化剤や硬化促進剤が少なくなるため、吸水率の増加や、耐薬品性の低下が起こりにくくなる。
 また、本発明のエポキシ樹脂組成物に用いることのできる他の硬化剤または硬化促進剤として、酸無水物、ジシアンジアミドとその誘導体、イミダゾール類とその誘導体、アミン誘導体とホルムアルデヒドの縮合体(尿素ホルムアルデヒド、メラミンホルムアルデヒド)、有機金属錯体、ポリチオール類、オニウム塩類等も挙げることができ、これらを2種以上用いてもよい。
 具体的には、酸無水物としては、無水こはく酸、イタコン酸無水物、無水フタール酸、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ヘキサハイドロフタル酸無水物、メチルテトラハイドロフタル酸無水物、“アデカハードナー(登録商標)”EH-3326、“アデカハードナー”EH-703、“アデカハードナー”EH-705A(以上、商品名、旭電化工業(株)製)、“エピクロン”B-570、“エピクロン”B-650(以上、商品名、大日本インキ化学(株)製)、“リカシッド(登録商標)”MH-700(商品名、新日本理化(株)製)等が挙げられる。ジシアンジアミドとその誘導体としては、DICY7、DICY15、DICY50(以上、商品名、三菱化学(株)製)、“アミキュア(登録商標)”AH-154、“アミキュア”AH-162(以上、商品名、味の素ファインテクノ(株)製)等が挙げられる。イミダゾール類とその誘導体としては、イミダゾール、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、イミダゾール、2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイトや、IS-1000、IS-1000D、IM-1000、SP-1000、IA-100A、IA-100P、IA-100F(以上商品名、日鉱マテリアルズ(株)製)等のイミダゾールシラン等が挙げられる。アミン誘導体とホルムアルデヒドの縮合体(尿素ホルムアルデヒド、メラミンホルムアルデヒド)としては、4-クロロ-フェニル-N,N-ジメチル尿素、3,4-ジクロロフェニル-N,N-ジメチル尿素(DCMU)が挙げられる。有機金属錯体としては、トリフェニルホスフィン、トリフェニルホスホニウムトリフェニルボレート等、ポリチオール類としては、脂肪族ポリチオエーテル、脂肪族ポリチオエステル、芳香族環含有ポリチオエーテル等が挙げられる。オニウム塩類としては、スルホニウムやヨードニウム等のオニウム塩が挙げられ、オニウム塩型のジフェニルヨードニウムヘキサフロロホスフェート、トリフェニルスルホニウムヘキサフロロホスフェート、サイラキュアーUVI-6992、サイラキュアーUVI-6974(以上、商品名、ダウ・ケミカル日本(株)製)、アデカオプトマーSP150、アデカオプトマーSP170(以上、商品名、旭電化工業(株)製)、サンエイドSI-60L、SI-80L、SI-100L、SI-150L(以上、商品名、三新化学工業(株)製)等が挙げられる。
 その他に、エポキシ化合物に混合した状態で長時間保存でき、熱・光・圧力・湿気等の刺激を与えると硬化反応を開始する硬化剤の例としては、マイクロカプセル型潜在性硬化剤、アミンアダクト型潜在性硬化剤等が挙げられる。マイクロカプセル型潜在性硬化剤は、コア(芯物質)/シェル(カプセル膜)構造を有する硬化剤であり、コアとしては、種々のイミダゾール化合物やトリフェニルホスフィン等、シェルとしては、有機ポリマーや無機化合物等が挙げられる。具体的には、 “ノバキュア(登録商標)”HX-3941HP、“ノバキュア”HXA3922HP、“ノバキュア”HXA3932HP、“ノバキュア”HXA3042HP(以上商品名、旭化成ケミカルズ(株)製)が挙げられる。アミンアダクト型潜在性硬化剤は、イミダゾール化合物、3級アミノ基含有化合物またはヒドラジド化合物をエポキシ化合物やイソシアネート化合物等と反応させて高分子量化したものを微粉砕化したものであり、常温での溶解度が低く、潜在性を示す。具体的には、“アミキュア”PN-23、“アミキュア”PN-40、“アミキュア”MY-24、“アミキュア”MY-H(以上、商品名、味の素ファインテクノ(株)製)、“フジキュア(登録商標)”FXR-1030(商品名、富士化成(株)製) “アミキュア”VDH、“アミキュア”UDH(以上、商品名、味の素ファインテクノ(株)製)が挙げられる。
 これらの他の硬化剤および硬化促進剤の含有量は(b)少なくとも2つ以上のエポキシ基を有する化合物100重量部に対して0.1~60重量部であることが好ましく、10~50重量部であることがより好ましい。他の硬化剤および硬化促進剤の含有量を0.1重量部以上とすることで(b)少なくとも2つ以上のエポキシ基を有する化合物の硬化を効果的に行い、60重量部以下とすることで室温での反応開始を抑制することができる。
 さらに(b)少なくとも2つ以上のエポキシ基を有する化合物以外のオキセタン化合物を含有することができる。オキセタン化合物を含有することで、熱安定性が上昇するため、硬化後の耐熱性を向上させることができる。このようなオキセタン化合物のうち、1官能性オキセタン化合物としては、“エタナコール(登録商標)”EHO、“エタナコール”OXMA、(以上、商品名、宇部興産(株)製)、OXT-101、OXT-211、OXT-212、OXT-610(以上、商品名、東亜合成(株)製)、3-エチル-3-(シクロヘキシロキシ)メチルオキセタンが挙げられ、2官能性オキセタン化合物としては、“エタナコール“OXBP、“エタナコール”OXTP、“エタナコール”OXIPA(以上、商品名、宇部興産(株)製)、OXT-121、OXT-221(以上、商品名、東亜合成(株)製)、3官能性オキセタン化合物としては、オキセタン化フェノール樹脂や、オキセタニルシリケート、フェノールノボラック型オキセタン化合物が挙げられる。これらを2種以上含有してもよい。これらのオキセタン化合物の含有量は(b)少なくとも2つ以上のエポキシ基を有する化合物100重量部に対して0.1~60重量部が好ましい。オキセタン化合物の含有量を0.1重量部以上とすることでエポキシ樹脂組成物の耐熱性を高め、60重量部以下とすることで硬化物の層分離を防ぐことができる。
 本発明のエポキシ樹脂組成物は、(c)シクロヘキサノンに30重量%以上の濃度で溶解することが好ましい。これにより多くのエポキシ樹脂と容易に相溶するとともにその後の乾燥が簡単に行え、硬化時の収縮がより少なくなる。
 また本発明の(c)シクロヘキサノンに30重量%以上の濃度で溶解するエポキシ樹脂組成物であれば、シクロヘキサノン以外のケトン基を有した溶剤であるアセトン、アセトニルアセトン、ジイソブチルケトン、ジエチルケトン、ジプロピルケトン、メチルアミルケトン、メチルシクロヘキサノン、エチルシクロヘキサノン、メチルジプロピルケトン、メチルプロピルケトン、メシチルオキシド、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノンなども反応溶媒に用いることができる。またエーテル系溶剤の1,4-ジオキサン、テトラヒドロフラン、グリシドール、ジグライム、グリコールエーテル系溶剤のメチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールメチルエチルエーテル、その他ベンジルアルコール、プロパノール、N-メチルピロリドン、γ-ブチロラクトン、酢酸エチル、N,N-ジメチルホルムアミド等を、(c)シクロヘキサノンや上記シクロヘキサン以外のケトン基を有した溶剤の他に、全溶媒の50重量%以下の範囲で混合したものであっても、反応溶媒に用いることができる。またこれらを2種以上混合してもよい。
 また本発明のエポキシ樹脂組成物は、粘度を調節したり、塗布性を向上する目的でシクロヘキサノンや、シクロヘキサノン以外のケトン基を有した溶剤を0.1~1重量%含有していてもよい。これらの溶剤含有量を0.1~1重量%とすることで熱処理時の溶媒飛散によるボイドの発生を抑制することができ、また一般式(1)で表されるイミド構造を有する化合物の粒子を凝集させることなく保存安定性を良好にすることができる。
 本発明のエポキシ樹脂組成物は、(d)窒化ホウ素、シリカ、チタニア、ジルコニア、窒化ケイ素、アルミナ、セリア、タルクおよび炭酸カルシウム、シリカ-チタニア複合粒子からなる群より選ばれる少なくとも一種の無機微粒子を含有することができる。これらの無機微粒子を含有することにより、熱伝導性を付与したり、硬化膜の熱線膨張係数を低減することができる。熱伝導性を付与する場合は、窒化ホウ素、シリカ、チタニア、アルミナ、炭酸カルシウム、シリカ-チタニア複合粒子が好ましい。さらに、無機微粒子とマトリックス樹脂の界面を強固に結合するために、無機微粒子表面をシラン系、チタン系、アルミニウム系などの各種カップリング剤、脂肪酸、リン酸エステルなどで処理したものや、ロジン処理、酸性処理、塩基性処理を施したものも好適に用いられる。シラン系のカップリング剤であるシランカップリング剤はエポキシ化合物との親和性を高めるため好ましく、特にエポキシ基を有するシランカップリング剤は、強靭性を高める点から好ましく用いられる。シランカップリング剤の好ましい例としては、γ-グリシドキシトリメトトキシシラン、γ-グリシドキシトリエトトキシシラン、γ-グリシドキシトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリプロポキシシランなどが挙げられる。これらを2種以上用いてもよい。
 これら(d)無機微粒子の含有量は、(b)少なくとも2つ以上のエポキシ基を有する化合物100重量部に対して5~5000重量部が好ましい。無機微粒子の含有量が5重量部以上であることで熱線膨張係数を低減することができ、5000重量部以下とすることでエポキシ樹脂組成物の接着性、機械特性を維持することが出来る。さらに好ましくは、(a)成分のイミド基を有する化合物と(b)成分のエポキシ化合物との総量100重量部に対して30~500重量部である。
 また、無機微粒子の平均粒子径は5nm~30μmが好ましく、さらに好ましくは10nm~10μmである。ここで、本発明における平均粒子径は、超薄切片法を用いて調製した厚さ20μmのコーティング被膜の断面を、透過型電子顕微鏡(日立製作所(株)製、H-7100FA型)を用いて、加速電圧100kVの条件にて観察倍率200000倍で観察し、得られた像から任意の粒子を50個選んで個々の粒子単一の粒子径を測定し、それらの数平均値を求めたものである。粒子径が5nm以上であることで、適度な粘性を付与すると同時に安定した粒子分散性を得ることができ、30μm以下とすることで、低粘度性を向上し、無機微粒子の沈降を防ぐことができる。
 本発明のエポキシ樹脂組成物は、(e)ポリイミド、ポリアミド、ポリアミドイミド、ポリスチレン、ポリアクリロニトリル、ポリフェニレンエーテル、ポリエステルおよびポリカーボネートからなる群より選ばれる少なくとも一種の有機微粒子を含有することができる。これらの有機微粒子を含有することにより、靭性や耐熱性、低吸湿性を付与することができる。これらの有機微粒子の含有量は(b)少なくとも2つ以上のエポキシ基を有する化合物100重量部に対して5~1000重量部であることが好ましい。5重量部以上とすることで靭性、耐熱性、機械特性が向上し、1000重量部以下とすることで機械特性を維持でき、溶液粘度が上がり過ぎなくなる。
 また、有機微粒子の平均粒子径は5nm~10μmが好ましく、さらに好ましくは5nm~5μmである。有機微粒子の平均粒子径の測定方法は、上記の無機微粒子の平均粒子径の測定方法と同様である。
 その他にフェノキシ樹脂、ポリウレタン、ポリプロピレン、アクリロニトリル-ブタジエン共重合体(NBR)、スチレン-ブタジエン共重合体、(SBR)、アクリロニトリル-ブタジエン-メタクリル酸共重合体、アクリロニトリル-ブタジエン-アクリル酸共重合体等を含有してもよい。
 そのほか、本発明のエポキシ樹脂組成物は、ノニオン性、カチオン性、アニオン性の界面活性剤、多価カルボン酸等の湿潤剤、両親和性物質、高立体障害の置換基を有する樹脂等を含有してもよい。また、必要に応じて、安定化剤、分散剤、沈降防止剤、可塑剤、酸化防止剤等を含有してもよい。
 本発明のエポキシ樹脂組成物は、例えば、下記一般式(2)’で表される構造を示すものを50モル%以上有するジアミン、下式(4)’から選ばれる1以上のテトラカルボン酸無水物および下式(5)’から選ばれる1以上の化合物を(c)’ケトン基を有した溶剤中で50~80℃の条件下0.5~2時間混合して(a)前記一般式(1)で表されるイミド構造を有する化合物を得て、さらに(b)少なくとも2つ以上のエポキシ基を有する化合物を混合することで得ることができる。
Figure JPOXMLDOC01-appb-C000024
(一般式(2)’中、R,Rは、互いに独立して、それぞれ単一のものであっても異なるものが混在していても良く、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシル基、炭素数1~4のフルオロアルコキシル基、炭素数2~5のエステル基、カルボキシル基、シアノ基、ニトロ基から選ばれる基を表す。Xは直接結合、-CH-、-C(CH-、-C(CF-、-C(C-、-O-、-SO-、フルオレン、-CO-、-COO-、-CONH-、-CF-、および下式(3)から選ばれるいずれかであって異なるものが混在していても良い。p、qは0~3の整数を表し、s、tは0~4の整数を表し、s+t>0である。wは0~8の整数を表す。)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 なお、一般式(2)’中の各符号で表されるものの好ましいものは上記一般式(2)について述べたものと同様である。
 また有機/無機微粒子、硬化剤、硬化促進剤等も同様に混合することが出来る。特に有機/無機微粒子を混合させる場合は、超音波分散、超音波分散、ボールミル、ロールミル、ニーダー、クレアミックス、ホモジナイザー、メディア分散機等の方法を用いて分散させる方法が挙げられる。また、エポキシ樹脂組成物を混合するときは80℃以下で行うことが好ましく40℃以下で行うことがより好ましい。また0℃以上で行うことが好ましく、10℃以上で行うことがより好ましい。0℃以上、80℃以下で行うことで、適切な粘度となり十分撹拌することができる。
 また(a)一般式(1)で表されるイミド構造を有する化合物は、ケトン系の溶媒(例えばシクロヘキサノン)中で反応させて得ることが出来るため、この反応後の溶液に(b)少なくとも2つ以上のエポキシ基を有する化合物を混合してもよい。
 本発明のエポキシ樹脂組成物は、半導体素子と基板を接合するための接着剤(アンダーフィル剤)として好適に用いられる。その他にも、本発明の熱硬化性樹脂組成物を硬化して得られる膜は、半導体素子の保護膜、高密度実装用多層配線の層間絶縁膜、回路基板の配線保護絶縁膜等の用途に用いられる。これらにより半導体装置を得ることができる。
 以下実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例中の評価は以下の方法により行った。
 (1)水酸基当量
 (1-1)末端封止剤を用いた場合
 各実施例および比較例で使用したジアミン成分、酸成分、末端封止剤それぞれの分子量、水酸基の数、モル比を用いて以下の計算式で求めた。なお各成分のモル比については末端封止剤のモル比を2として計算した。
水酸基当量(g/eq)=((Mwb×Mb+Mwa+Ma+Mwe×2)-(Mb+Ma+2-1)×18)/(OHb+OHa+OHe)
 ここでMwbはジアミン成分の分子量を、Mwaは酸成分の分子量を、Mweは末端封止剤の分子量を表す。またOHbはジアミン成分の水酸基の数を、OHaは酸成分の水酸基の数を、OHeは末端封止剤の水酸基の数を表す。またMbは末端封止剤のモル比を2としたときのジアミン成分のモル比を、Maは同じく末端封止剤のモル比を2としたときの酸成分のモル比を表す。
 (1-2)ジアミン成分のみを用いた場合
 以下の計算式で求めた。
水酸基当量(g/eq)=Mwb/OHb
 (1-3)酸成分のみを用いた場合
 以下の計算式で求めた。
水酸基当量(g/eq)=Mwa/OHa
 (2)一般式(1)におけるvの平均値
 各実施例および比較例で使用したジアミン成分、酸成分、末端封止剤それぞれのモル比を用いて以下の計算式で求めた。なお各成分のモル比については末端封止剤のモル比を2として計算した。
一般式(1)におけるvの平均値=(Mb/(Mb-Ma))-1
 ここでMbは末端封止剤のモル比を2としたときのジアミン成分のモル比を、Maは同じく末端封止剤のモル比を2としたときの酸成分のモル比を表す。
 (3)数平均分子量
 ゲルパーミエーションクロマトグラフィー(日本ウォーターズ(株)製 Waters 2690)を用い、ポリスチレン換算で数平均分子量を求めた。カラムは東ソー(株)製 TOSOH TXK-GEL α-2500、およびα-4000を用い、移動層にはNMPを用いた。
 (4)シクロヘキサノン溶解性
 エポキシ樹脂組成物をシクロヘキサノンに固形分30重量%で混合し、肉眼で溶解するかどうかを観察した。完全に溶解している場合は○、完全に溶解していない場合は×とした。
 (5)ガラス転移温度
 エポキシ樹脂組成物にNMPを固形分濃度70重量%になるように加えて溶液を作製した後、スピンコート法でシリコンウエハ上に塗布し、次いで120℃のホットプレート(大日本スクリーン製造(株)製SKW-636)で3分間ベークし、厚さ10μm±1μmのプリベーク膜を作製した。この膜をイナートオーブン(光洋サーモシステム(株)製INH-21CD)に投入し、170℃の硬化温度まで80分間かけて上昇させ、170℃で120分間加熱処理を行った。その後、オーブン内が50℃以下になるまで徐冷し、キュア膜を得た。次に得られたシリコンウエハ上のキュア膜を47重量%フッ化水素酸に室温で7分間浸した後、水道水で洗浄し、破れないように慎重にシリコンウエハから剥離した。
 上記の方法で得られたキュア膜10mgをアルミニウムセルに入れ、シールしたものを測定用サンプルとした。示差走査熱量計DSC-50(島津製作所(株)製)を用いて、窒素流量20ml/分の条件で、昇温速度5℃/分で300℃まで昇温し、アニール処理した後、冷却し、昇温速度20℃/分で再び30℃~300℃の温度範囲で測定を行った。dDSC/dtの極小点における温度をガラス転移温度とした。
 (6)熱膨張率の測定
 エポキシ樹脂組成物にNMPを固形分濃度70重量%になるように加えて溶液を作製した後、スピンコート法で塗布し、次いで120℃のホットプレート(大日本スクリーン製造(株)製SKW-636)で3分間ベークし、厚さ10μm±1μmのプリベーク膜を作製した。この膜をイナートオーブン(光洋サーモシステム(株)製INH-21CD)に投入し、170℃の硬化温度まで30分間かけて上昇させ、170℃で120分間加熱処理を行った。その後、オーブン内が50℃以下になるまで徐冷し、キュア膜を得た。次に得られたシリコンウエハ上のキュア膜を47%フッ化水素酸に室温で7分間浸した後、水道水で洗浄し、破れないように慎重にシリコンウエハから剥離した。
 上記の方法で得られたキュア膜を3mm×17mmに切り出し、熱機械分析装置SS-6100(セイコーインスツルメント(株)製)を用いて、引っ張りモード、温度範囲25~150℃、昇温速度5℃/分、初期荷重0.5g、チャック間15mmの条件でキュア膜の伸びを測定した。得られた測定結果から下記の計算式を用いて25~150℃の平均熱線膨張係数を算出した。ここでL25は25℃でのサンプル長、L150は150℃でのサンプル長である。
平均熱線膨張係数=(1/L25)[(L150-L25)/(150-25)]
 (7)粘度の測定
 エポキシ樹脂組成物にNMPを固形分濃度70重量%になるように加えて溶液を作製して1mlをはかり取り、トキメック社製E型粘度計を用いて、25℃で測定した。粘度は1000mPa・sを超えると作業性が低下する。
 合成例1:イミド構造を有する化合物Aの合成(実施例1、10~13)(各化合物の構造については表1参照)
 窒素導入管、攪拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ジアミン成分として2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(以下6FAPとする、AZマテリアルズ(株)製)36.6g(100ミリモル)をシクロヘキサノン(和光純薬工業(株)製)100gに溶解させた。ここに酸成分として無水ピロメリット酸二無水物(以下PMDAとする、ダイセル工業(株)製)10.9g(50ミリモル)を加え、60℃で1時間攪拌した。その後、末端封止剤として無水マレイン酸(以下MAとする、和光純薬工業(株)製)9.8g(100ミリモル)をシクロヘキサノン35gとともに加え、60℃で1時間攪拌後、温度を160℃にして6時間、出てくる水を留去しながら、適宜、シクロヘキサノンを追加しながら反応させた。
 その後冷却し、溶液のイミド構造を有する化合物Aの含量が30重量%になるようにシクロヘキサノンを追加した。
 合成例2:イミド構造を有する化合物Bの合成(実施例2)
 窒素導入管、攪拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ジアミン成分として6FAP 36.6g(100ミリモル)をシクロヘキサノン 120gに溶解させた。ここに酸成分としてPMDA 16.4g(75ミリモル)を加え、60℃で1時間攪拌した。その後、末端封止剤としてMA 4.9g(50ミリモル)をシクロヘキサノン15gとともに加え、60℃で1時間攪拌後、温度を160℃にして6時間、出てくる水を留去しながら、適宜、シクロヘキサノンを追加しながら反応させた。
 その後冷却し、溶液のイミド構造を有する化合物Bの含量が30重量%になるようにシクロヘキサノンを追加した。
 合成例3:イミド構造を有する化合物Cの合成(実施例3)
 窒素導入管、攪拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ジアミン成分として6FAP 36.6g(100ミリモル)をシクロヘキサノン 120gに溶解させた。ここに酸成分として2,3,3‘,4’-ビフェニルテトラカルボン酸二無水物(BPDA、LINCHUAN CHEMICAL(株)製))14.7g(55ミリモル)を加え、60℃で1時間攪拌した。その後、末端封止剤としてMA 8.8g(90ミリモル)をシクロヘキサノン15gとともに加え、60℃で1時間攪拌後、温度を160℃にして6時間、出てくる水を留去しながら、適宜、シクロヘキサノンを追加しながら反応させた。
 その後冷却し、溶液のイミド構造を有する化合物Cの含量が30重量%になるようにシクロヘキサノンを追加した。
 合成例4:イミド構造を有する化合物Dの合成(実施例4)
 窒素導入管、攪拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ジアミン成分としてビス(3-アミノ-4-ヒドロキシフェニル)スルホン(ABPS、AZマテリアルズ(株)製) 28.0g(100ミリモル)をシクロヘキサノン160gに溶解させた。ここに酸成分としてヘキサフルオロプロピリデンビス(フタル酸無水物)(以下6FDAとする、ダイキン工業(株)製)22.2g(50ミリモル)、末端封止剤として無水ナジック酸(以下NAとする、東京化成工業(株)製)16.4g(100ミリモル)を加え、60℃で1時間攪拌した。その後、温度を160 ℃にして6時間、出てくる水を留去しながら、適宜、シクロヘキサノンを追加しながら反応させた。
 その後冷却し、溶液のイミド構造を有する化合物Dの含量が30重量%になるようにシクロヘキサノンを追加した。
 合成例5:イミド構造を有する化合物Eの合成(実施例5)
 窒素導入管、攪拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ジアミン成分としてビス(3-アミノ-4-ヒドロキシフェニル)エーテル(ADPE、AZマテリアルズ(株)製) 23.2g(100ミリモル)をシクロヘキサノン 150gに溶解させた。ここに酸成分として6FDA 22.2g(50ミリモル)、末端封止剤としてMA 9.8g(100ミリモル)を加え、60℃で1時間攪拌した。その後、温度を160℃にして6時間、出てくる水を留去しながら、適宜、シクロヘキサノンを追加しながら反応させた。
 その後冷却し、溶液のイミド構造を有する化合物Eの含量が30重量%になるようにシクロヘキサノンを追加した。
 合成例6:イミド構造を有する化合物Fの合成(実施例6)
 窒素導入管、攪拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ジアミン成分として6FAP 36.6g(100ミリモル)をシクロヘキサノン160gに溶解させた。ここに酸成分としてPMDA 10.9g(50ミリモル) 、末端封止剤としてNA 16.4g(100ミリモル)を加え、60℃で1時間攪拌した。その後、温度を160℃にして6時間、出てくる水を留去しながら、適宜、シクロヘキサノンを追加しながら反応させた。
 その後冷却し、溶液のイミド構造を有する化合物Fの含量が30重量%になるようにシクロヘキサノンを追加した。
 合成例7:イミド構造を有する化合物Gの合成(実施例7)
 窒素導入管、攪拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ジアミン成分として9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン(以下BAHF(FL)とする、JFEケミカル(株)製)、38.0g(100ミリモル)をシクロヘキサノン160gに溶解させた。ここに酸成分としてPMDA 10.9g(50ミリモル)、末端封止剤としてMA 9.8g(100ミリモル)を加え、60℃で1時間攪拌した。その後、温度を160℃にして6時間、出てくる水を留去しながら、適宜、シクロヘキサノンを追加しながら反応させた。
 その後冷却し、溶液のイミド構造を有する化合物Gの含量が30重量%になるようにシクロヘキサノンを追加した。
 合成例8:イミド構造を有する化合物Hの合成(実施例8)
 窒素導入管、攪拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ジアミン成分として、BAHF(FL)38.0g(100ミリモル)をシクロヘキサノン160gに溶解させた。ここに酸成分として(イソプロピリデンジフェノキシ)ビス(フタール酸無水物)(以下BSAAとする、SABICイノベーティブプラスチックスジャパン(株)製)26.0g(50ミリモル)、末端封止剤としてMA 9.8g(100ミリモル)を加え、60℃で1時間攪拌した。その後、温度を160℃にして6時間、出てくる水を留去しながら、適宜、シクロヘキサノンを追加しながら反応させた。
 その後冷却し、溶液のイミド構造を有する化合物Hの含量が30重量%になるようにシクロヘキサノンを追加した。
 合成例9:イミド構造を有する化合物Iの合成(実施例9)
 窒素導入管、攪拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ジアミン成分として4,4-ジアミノジフェニルエーテル(DAE、東京化成工業(株)製) 10.0g(50ミリモル)、BAHF(FL)76.0g(200ミリモル)をシクロヘキサノン160gに溶解させた。ここに酸成分としてBSAA 104.1g(200ミリモル)、末端封止剤としてMA 9.8g(100ミリモル)を加え、60℃で1時間攪拌した。その後、温度を160℃にして6時間、出てくる水を留去しながら、適宜、シクロヘキサノンを追加しながら反応させた。
 その後冷却し、溶液のイミド構造を有する化合物Iの含量が30重量%になるようにシクロヘキサノンを追加した。
 合成例10:イミド構造を有する化合物Jの合成(比較例1)
 窒素導入管、攪拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ジアミン成分として6FAP 36.6g(100ミリモル)をシクロヘキサノン 100gに溶解させた。ここに末端封止剤としてMA 19.6g(200ミリモル)をシクロヘキサノン35gとともに加え、60℃で1時間攪拌後、温度を160℃にして6時間、出てくる水を留去しながら、適宜、シクロヘキサノンを追加しながら反応させた。
 その後冷却し、溶液のイミド構造を有する化合物Jの含量が30重量%になるようにシクロヘキサノンを追加した。
 合成例11:イミド構造を有する化合物Kの合成(比較例2)
 窒素導入管、攪拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ジアミン成分として6FAP 36.6g(100ミリモル)、酸成分としてPMDA 19.6g(90ミリモル)をシクロヘキサノン 130g中で混合し、60℃で1時間攪拌した。ここに末端封止剤としてMA 1.96g(20ミリモル)を加え、60℃で1時間攪拌後、温度を160℃になりしばらくすると、沈殿が析出してきた。そのため、N-メチルピロリドン(三菱化学(株)製)121gを加えて、180℃で溶媒と水を除去しながら、適宜、シクロヘキサノンを加え4時間攪拌した。
 その後冷却し、溶液のイミド基を有する化合物Kの含量が20重量%になるようにシクロヘキサノンを追加した。
 合成例12:イミド構造を有する化合物Lの合成(比較例3)
 冷却管及び撹拌装置付きの1Lセパラブルフラスコに、酸成分としてビス(3,4-ジカルボキシフェニル)エーテル二無水物(ODPA、マナック(株)製)31.0g(100ミリモル)、ジアミン成分として6FAP 32.9g(90ミリモル)をシクロヘキサノン 150g中に混合し、温度60℃で1時間撹拌し、その後末端封止剤として3-アミノフェノール(AMP、東京化成工業(株)製)2.2g(20ミリモル)をシクロヘキサノン10gとともに加え、温度を160℃に上昇し、出てくる水をシクロヘキサノンとともに除去しながら、適宜、シクロヘキサノンを加えて、6時間攪拌してポリイミド溶液を得た。
 その後冷却し、溶液のイミド基を有する化合物Lの含量が30重量%になるようにシクロヘキサノンを追加した。
 合成例13:イミド構造を有する化合物Mの合成(比較例4)
 窒素導入管、攪拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ジアミン成分として3,3’-ジアミノジフェニルスルホン(3,3’-DDS、東京化成工業(株)製) 24.8g(100ミリモル)をシクロヘキサノン 100gに溶解させた。ここに末端封止剤としてMA 19.6g(200ミリモル)を加え、60℃で1時間攪拌後、温度を160℃にして6時間、出てくる水を留去しながら、適宜、シクロヘキサノンを追加しながら反応させた。
 その後冷却し、溶液のイミド基を有する化合物Mの含量が30重量%になるようにシクロヘキサノンを追加した。
 合成例14:イミド構造を有する化合物Nの合成(比較例7、8、特開2009-161605合成例2)
 攪拌機、冷却コンデンサー、温度計、滴下ロートを備えた、2Lのガラス製四つ口フラスコにMA98.06g(1.0モル)、N-メチルピロリドン 600g、トルエン200gを仕込み、完全に溶解させた。その中に2,2’―メチレンビス{4-メチル-6-(3,5-ジメチル-4-アミノベンジル)フェノール}247g(0.5モル)を反応温度に注意しながら、添加し、さらに40℃で30分間熟成した。その後、130℃に昇温、130~135℃で4時間脱水還流を行い、閉環反応させた。反応終了後、冷却し3Lのメタノール中に投入し、析出物をろ過した。さらにこの結晶を冷水1Lでよく洗い、乾燥した。乾燥後の重量は325gであった。この化合物30gをN-メチルピロリドン70gに溶解した。
 実施例1
 合成例1で得られたイミド構造を有する化合物Aの溶液50g、ビスフェノールA型エポキシ化合物  “jER”828(商品名 以下jER828とする、三菱化学(株)製、エポキシ当量 185g/eq)10.9gを遊星式撹拌脱泡機(マゼルスター(クラボウ(株)製))を用いて25℃で60分間撹拌して混合させ、エポキシ樹脂組成物1を得た。得られたエポキシ樹脂組成物1のシクロヘキサノン溶解性、ガラス転移温度、熱膨張率、粘度を前記方法により評価した。
 実施例2
 イミド構造を有する化合物Aの溶液50gに代えてイミド構造を有する化合物Bの溶液50gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物2を得、実施例1と同様に評価した。
 実施例3
 イミド構造を有する化合物Aの溶液30gに代えてイミド構造を有する化合物Cの溶液53gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物3を得、実施例1と同様に評価した。
 実施例4
 イミド構造を有する化合物Aの溶液50gに代えてイミド構造を有する化合物Dの溶液52gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物4を得、実施例1と同様に評価した。
 実施例5
 イミド構造を有する化合物Aの溶液50gに代えてイミド構造を有する化合物Eの溶液48gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物5を得、実施例1と同様に評価した。
 実施例6
 イミド構造を有する化合物Aの溶液50gに代えてイミド構造を有する化合物Fの溶液56gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物6を得、実施例1と同様に評価した。
 実施例7
 イミド構造を有する化合物Aの溶液50gに代えてイミド構造を有する化合物Gの溶液52.6gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物7を得、実施例1と同様に評価した。
 実施例8
 イミド構造を有する化合物Aの溶液50gに代えてイミド構造を有する化合物Hの溶液66gを用いた以外は実施例1と同様にして、エポキシ組樹脂成物8を得、実施例1と同様に評価した。
 実施例9
 イミド構造を有する化合物Aの溶液50gに代えてイミド構造を有する化合物Iの溶液91.4gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物9を得、実施例1と同様に評価した。
 比較例1
 イミド構造を有する化合物Aの溶液50gに代えてイミド構造を有する化合物Jの溶液49gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物10を得、実施例1と同様に評価した。
 比較例2
 イミド構造を有する化合物Aの溶液50gに代えてイミド構造を有する化合物Kの溶液76gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物11を得、実施例1と同様に評価したが、硬化反応を進めている間に、エポキシとポリイミドとの層分離が発生した。
 比較例3
 イミド構造を有する化合物Aの溶液50gに代えてイミド構造を有する化合物Lの溶液64.5gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物12を得、実施例1と同様に評価した。
 比較例4
 イミド構造を有する化合物Aの溶液50gに代えてイミド構造を有する化合物Mの溶液(ビスマレイミド化合物溶液)50gを用い、硬化剤としてN-メチルイミダゾール1gを加えた以外は実施例1と同様にして、エポキシ樹脂組成物13を得、実施例1と同様に評価した。
 比較例5
 イミド構造を有する化合物Aの溶液50gに代えて、ポリエーテルスルホン樹脂(住友化学(株)製、商品名、スミカエクセル5003P、重量平均分子量67250、末端フェノール性水酸基含有率46モル%、ガラス転移温度230℃)15g、4,4’-ジアミノジフェニルスルホン(以下4,4’-DDSとする、和光純薬工業(株)製)10gをN-メチルピロリドン35gに溶解した溶液を用いた以外は実施例1と同様にして、エポキシ樹脂組成物14を得、実施例1と同様に評価した。
 比較例6
 イミド構造を有する化合物Aの溶液50gに代えて、6FAP15gをシクロヘキサノン 35gに溶解した溶液を用いた以外は実施例1と同様にしたが、混合中にゲル化が進み、評価することができなかった。
 実施例10
 jER828に代えて、クレゾールノボラック型エポキシ化合物 “エピクロン”N660(商品名、以下N660とする、DIC(株)製、エポキシ当量 207g/eq)を用いた以外は実施例1と同様にして、エポキシ樹脂組成物15を得、実施例1と同様に評価した。
 実施例11
 エピコート828に代えて、p-アミノフェノール型エポキシ化合物“jER”630(商品名、jER630、三菱化学(株)製、エポキシ当量 96g/eq)5.4gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物16を得、実施例1と同様に評価した。
 実施例12
 jER828に代えて、テトラグリシジルジアミノジフェニルスルホン(商品名、TGDAS、小西化学工業(株)製、エポキシ当量 138g/eq)7.7gと、ビスフェノールF型エポキシ化合物 “jER”807(商品名、以下jER807 三菱化学(株)製、エポキシ当量 171g/eq) 5.0g、4,4’-DDS 1.8gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物17を得、実施例1と同様に評価した。
 実施例13
 jER828に代えて、ナフタレン型エポキシ化合物”エピクロン“ HP4710(商品名、DIC(株)製、エポキシ当量 171g/eq)17gとjER807 2.5g、4,4’-DDS 3.6gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物18を得、実施例1と同様に評価した。
 比較例7
 イミド構造を有する化合物Aの溶液50gに代えてヒドロキシル基含有マレイミドNの溶液50gを用い、 “jER”828に代えてクレゾールノボラック型エポキシ化合物N660を用いた以外は実施例1と同様にして、エポキシ樹脂組成物19を得、実施例1と同様に評価した。
 比較例8
 イミド構造を有する化合物Aの溶液50gに代えてヒドロキシル基含有マレイミドNの溶液50gを用いた以外は実施例1と同様にして、エポキシ樹脂組成物20を得、実施例1と同様に評価した。
 各実施例および比較例の組成、評価結果を表1、表2に示す。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 本発明によれば、エポキシ樹脂組成物では極めて高いガラス転移温度を有し、熱膨張率が低く、かつメチルエチルケトン、シクロヘキサノンのようなケトン系の溶媒に可溶な加工性の優れたエポキシ樹脂組成物を提供することができる。

Claims (5)

  1. (a)一般式(1)で表されるイミド構造を有する化合物および(b)少なくとも2つのエポキシ基を有する化合物を含有し、(a)一般式(1)で表されるイミド構造を有する化合物の数平均分子量が1000~5000であるエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Rは、一般式(2)で表される構造を示すものを50%以上有する;Rは下式(4)から選ばれるいずれかであって異なるものが混在していても良い;また下式(4)から選ばれるいずれかの構造におけるベンゼン環は、水酸基、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシル基、炭素数1~4のフルオロアルコキシル基、炭素数2~5のエステル基、カルボキシル基、シアノ基およびニトロ基から選ばれる1以上の基により置換されていても良い;vは1~8の整数を表す;Gは下式(5)から選ばれるいずれかであって異なるものが混在していても良い)。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、R,Rは、互いに独立して、それぞれ単一のものであっても異なるものが混在していても良く、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシル基、炭素数1~4のフルオロアルコキシル基、炭素数2~5のエステル基、カルボキシル基、シアノ基、ニトロ基から選ばれる基を表す;Xは直接結合、-CH-、-C(CH-、-C(CF-、-C(C-、-O-、-SO-、フルオレン、-CO-、-COO-、-CONH-、-CF-、および下式(3)~(5)から選ばれるいずれかであって異なるものが混在していても良い;p、qは0~3の整数を表し、s、tは0~4の整数を表し、s+t>0である;wは0~8の整数を表す。)
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
  2.  前記(b)少なくとも2つのエポキシ基を有する化合物が、下記一般式(6)~(9)から選ばれた1以上の化合物である請求項1記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(6)~(9)中、R~R37は、互いに独立して、それぞれ単一のものであっても異なるものが混在していても良く、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6アルコキシ基、炭素数1~6フルオロアルキル基、シクロアルキル基およびアリール基から選ばれる基を表す。Y~Yは、互いに独立して、それぞれ単一のものであっても異なるものが混在していても良く、直接結合、メチレン基、エーテル基、チオエーテル基、SO基、イソプロピレン基および下記一般式(10)で表される基から選ばれる基を表す。)
    Figure JPOXMLDOC01-appb-C000007
    (一般式(10)中、R38、R39は、互いに独立して、それぞれ単一のものであっても異なるものが混在していても良く、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のフルオロアルキル基、シクロアルキル基およびアリール基から選ばれる基を表す。)
  3.  シクロヘキサノンに30重量%以上の濃度で溶解する請求項1または2記載のエポキシ樹脂組成物。
  4.  下記一般式(2)’で表される構造を示すものを50モル%以上有するジアミン、下式(4)’から選ばれる1以上のテトラカルボン酸無水物および下式(5)’から選ばれる1以上の化合物を(c)’ケトン基を有した溶剤中で50~80℃の条件下0.5~2時間混合して(a)一般式(1)で表されるイミド構造を有する化合物を得て、さらに(b)少なくとも2つのエポキシ基を有する化合物を混合するエポキシ樹脂組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(2)’中、R,Rは、互いに独立して、それぞれ単一のものであっても異なるものが混在していても良く、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシル基、炭素数1~4のフルオロアルコキシル基、炭素数2~5のエステル基、カルボキシル基、シアノ基、ニトロ基から選ばれる基を表す;Xは直接結合、-CH-、-C(CH-、-C(CF-、-C(C-、-O-、-SO-、フルオレン、-CO-、-COO-、-CONH-、-CF-、および下式(3)から選ばれるいずれかであって異なるものが混在していても良い;p、qは0~3の整数を表し、s、tは0~4の整数を表し、s+t>0である;wは0~8の整数を表す。)
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    (一般式(1)中、Rは、一般式(2)で表される構造を示すものを50%以上有する。Rは下式(4)から選ばれるいずれかであって異なるものが混在していても良い。また下式(4)から選ばれるいずれかの構造におけるベンゼン環は、水酸基、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシル基、炭素数1~4のフルオロアルコキシル基、炭素数2~5のエステル基、カルボキシル基、シアノ基およびニトロ基から選ばれる1以上の基により置換されていても良い;vは1~8の整数を表す;Gは下式(5)から選ばれるいずれかであって異なるものが混在していても良い。)
    Figure JPOXMLDOC01-appb-C000013
    (一般式(2)中、R,Rは、互いに独立して、それぞれ単一のものであっても異なるものが混在していても良く、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシル基、炭素数1~4のフルオロアルコキシル基、炭素数2~5のエステル基、カルボキシル基、シアノ基及びニトロ基から選ばれる基を表す;Xは直接結合、-CH-、-C(CH-、-C(CF-、-C(C-、-O-、-SO-、フルオレン、-CO-、-COO-、-CONH-、-CF-、および下式(3)から選ばれるいずれかであって異なるものが混在していても良い;p、qは0~3の整数を表し、s、tは0~4の整数を表し、s+t>0である。wは0~8の整数を表す。)
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
  5.  請求項1~3のいずれかに記載のエポキシ樹脂組成物を含む半導体装置。
PCT/JP2012/056762 2011-03-16 2012-03-15 エポキシ樹脂組成物およびその製造方法ならびにそれを用いた半導体装置 WO2012124780A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/004,841 US9123689B2 (en) 2011-03-16 2012-03-15 Epoxy resin composition, method for producing same, and semiconductor device using same
JP2013504774A JP5811172B2 (ja) 2011-03-16 2012-03-15 エポキシ樹脂組成物およびその製造方法ならびにそれを用いた半導体装置
CN201280008508.5A CN103370354B (zh) 2011-03-16 2012-03-15 环氧树脂组合物及其制造方法以及使用其的半导体装置
KR1020137023998A KR101868190B1 (ko) 2011-03-16 2012-03-15 에폭시 수지 조성물 및 그의 제조 방법 및 그것을 사용한 반도체 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-057711 2011-03-16
JP2011057711 2011-03-16

Publications (1)

Publication Number Publication Date
WO2012124780A1 true WO2012124780A1 (ja) 2012-09-20

Family

ID=46830844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056762 WO2012124780A1 (ja) 2011-03-16 2012-03-15 エポキシ樹脂組成物およびその製造方法ならびにそれを用いた半導体装置

Country Status (6)

Country Link
US (1) US9123689B2 (ja)
JP (1) JP5811172B2 (ja)
KR (1) KR101868190B1 (ja)
CN (1) CN103370354B (ja)
TW (1) TWI542639B (ja)
WO (1) WO2012124780A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101538A1 (zh) * 2014-12-26 2016-06-30 广东生益科技股份有限公司 一种环氧树脂组合物以及使用它的预浸料和层压板
JPWO2014196515A1 (ja) * 2013-06-03 2017-02-23 株式会社ダイセル 硬化性エポキシ樹脂組成物
US9873789B2 (en) 2014-12-26 2018-01-23 Shengyi Technology Co., Ltd. Halogen-free epoxy resin composition, prepreg and laminate using same
JP2018070668A (ja) * 2016-10-24 2018-05-10 信越化学工業株式会社 液状エポキシ樹脂組成物
CN109721947A (zh) * 2017-10-27 2019-05-07 财团法人工业技术研究院 环氧树脂组合物
US10544255B2 (en) 2015-12-28 2020-01-28 Shengyi Technology Co., Ltd. Epoxy resin composition, prepreg and laminate prepared therefrom
JP2020070359A (ja) * 2018-10-31 2020-05-07 ユニチカ株式会社 低誘電率ポリイミド
JP2020517778A (ja) * 2017-04-18 2020-06-18 ハンツマン・アドバンスド・マテリアルズ・アメリカズ・エルエルシー 硬化性樹脂系
US10696844B2 (en) 2014-02-25 2020-06-30 Shengyi Technology Co., Ltd. Halogen-free flame retardant type resin composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104829844B (zh) * 2015-05-12 2017-06-06 东华大学 一种碳纤维电缆芯用mhfpi型耐高温环氧基体树脂及其制备方法
CN114437509A (zh) * 2020-10-30 2022-05-06 臻鼎科技股份有限公司 导电树脂组合物及应用导电树脂组合物的导电层及电路板
CN114656750B (zh) * 2021-12-31 2023-05-26 华侨大学 户外用环氧树脂基抗紫外老化绝缘材料、制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203252A (ja) * 2008-02-26 2009-09-10 Ist Corp バルクモールディングコンパウンド及びその成形品
JP2010132793A (ja) * 2008-12-05 2010-06-17 Toray Ind Inc 熱硬化性樹脂組成物、それを用いたアンダーフィル剤および半導体装置
JP2011046928A (ja) * 2009-07-30 2011-03-10 Toray Ind Inc 組成物およびそれからなる組成物シート

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389504A (en) * 1981-10-02 1983-06-21 The United States Of America As Represented By The United States National Aeronautics And Space Administration Office Of General Counsel-Code Gp Elastomer toughened polyimide adhesives
JPH07268077A (ja) 1994-04-01 1995-10-17 Sumitomo Bakelite Co Ltd 熱硬化性樹脂組成物
JP2001072833A (ja) 1998-10-07 2001-03-21 Sumitomo Chem Co Ltd ビルドアップ工法用の樹脂組成物、ビルドアップ工法用の絶縁材料、およびビルドアッププリント配線板
KR100377861B1 (ko) * 2000-07-07 2003-03-29 한학수 전자소자 또는 칩용 절연성 박막 또는 박막형 패키지를 위한 조성물
US6777525B2 (en) * 2001-07-03 2004-08-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat, moisture, and chemical resistant polyimide compositions and methods for making and using them
JP2003155325A (ja) * 2001-11-21 2003-05-27 Toto Kagaku Kogyo Kk 耐熱性樹脂組成物
JP4587631B2 (ja) * 2002-01-30 2010-11-24 Dic株式会社 熱硬化性樹脂組成物
JP4174248B2 (ja) * 2002-07-01 2008-10-29 群栄化学工業株式会社 ポリイミド樹脂、これを含有する樹脂組成物、電子部品用被覆材料及び電子部品用接着剤
JP2009041019A (ja) 2003-01-07 2009-02-26 Sekisui Chem Co Ltd 硬化性樹脂組成物、接着性エポキシ樹脂ペースト、接着性エポキシ樹脂シート、導電接続ペースト、導電接続シート及び電子部品接合体
JP2006028294A (ja) 2004-07-14 2006-02-02 Hitachi Chem Co Ltd 無溶剤1液型の穴埋め用熱硬化性エポキシ樹脂組成物
JP4986256B2 (ja) * 2005-12-21 2012-07-25 味の素株式会社 変性ポリイミド樹脂を含有するプリプレグ
JP2009155354A (ja) 2006-03-30 2009-07-16 Ajinomoto Co Inc 絶縁層用樹脂組成物
US7691475B2 (en) * 2006-07-21 2010-04-06 3M Innovative Properties Company Anisotropic conductive adhesives
CN100412111C (zh) * 2006-09-05 2008-08-20 东华大学 一种含酚羟基聚酰亚胺粉末的制备方法
JP2008081686A (ja) 2006-09-28 2008-04-10 Sumitomo Bakelite Co Ltd 液状エポキシ樹脂組成物およびそれを用いた半導体装置
JP4968044B2 (ja) * 2007-12-19 2012-07-04 日立化成工業株式会社 ポリイミド化合物の製造方法、熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP5214235B2 (ja) 2007-12-28 2013-06-19 群栄化学工業株式会社 フェノール性水酸基を有する新規ビスマレイミド類及びこれを必須成分とする熱硬化性樹脂組成物、及びその硬化物
JP2010090237A (ja) 2008-10-07 2010-04-22 Ajinomoto Co Inc エポキシ樹脂組成物
JP2010095646A (ja) 2008-10-17 2010-04-30 Hitachi Chem Co Ltd 低熱膨張率エポキシ樹脂組成物
JP2010095645A (ja) 2008-10-17 2010-04-30 Hitachi Chem Co Ltd 低熱膨張率エポキシ樹脂組成物
EP2452964A4 (en) * 2009-07-10 2014-06-11 Toray Industries LAYER COMPOSITION, ADHESIVE, PCB AND SEMICONDUCTOR DEVICE THEREFORE MADE AND MANUFACTURING METHOD THEREFOR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203252A (ja) * 2008-02-26 2009-09-10 Ist Corp バルクモールディングコンパウンド及びその成形品
JP2010132793A (ja) * 2008-12-05 2010-06-17 Toray Ind Inc 熱硬化性樹脂組成物、それを用いたアンダーフィル剤および半導体装置
JP2011046928A (ja) * 2009-07-30 2011-03-10 Toray Ind Inc 組成物およびそれからなる組成物シート

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014196515A1 (ja) * 2013-06-03 2017-02-23 株式会社ダイセル 硬化性エポキシ樹脂組成物
US10696844B2 (en) 2014-02-25 2020-06-30 Shengyi Technology Co., Ltd. Halogen-free flame retardant type resin composition
WO2016101538A1 (zh) * 2014-12-26 2016-06-30 广东生益科技股份有限公司 一种环氧树脂组合物以及使用它的预浸料和层压板
US9873789B2 (en) 2014-12-26 2018-01-23 Shengyi Technology Co., Ltd. Halogen-free epoxy resin composition, prepreg and laminate using same
US10208156B2 (en) 2014-12-26 2019-02-19 Shengyi Technology Co., Ltd. Epoxy resin composition, prepreg and laminate using same
US10544255B2 (en) 2015-12-28 2020-01-28 Shengyi Technology Co., Ltd. Epoxy resin composition, prepreg and laminate prepared therefrom
JP2018070668A (ja) * 2016-10-24 2018-05-10 信越化学工業株式会社 液状エポキシ樹脂組成物
JP2020517778A (ja) * 2017-04-18 2020-06-18 ハンツマン・アドバンスド・マテリアルズ・アメリカズ・エルエルシー 硬化性樹脂系
JP7107966B2 (ja) 2017-04-18 2022-07-27 ハンツマン・アドバンスド・マテリアルズ・アメリカズ・エルエルシー 硬化性樹脂系
CN109721947A (zh) * 2017-10-27 2019-05-07 财团法人工业技术研究院 环氧树脂组合物
JP2020070359A (ja) * 2018-10-31 2020-05-07 ユニチカ株式会社 低誘電率ポリイミド
JP7267567B2 (ja) 2018-10-31 2023-05-02 ユニチカ株式会社 低誘電率ポリイミド

Also Published As

Publication number Publication date
JP5811172B2 (ja) 2015-11-11
KR20140020905A (ko) 2014-02-19
CN103370354A (zh) 2013-10-23
TWI542639B (zh) 2016-07-21
KR101868190B1 (ko) 2018-06-15
TW201242999A (en) 2012-11-01
JPWO2012124780A1 (ja) 2014-07-24
US9123689B2 (en) 2015-09-01
CN103370354B (zh) 2016-01-20
US20140005318A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
JP5811172B2 (ja) エポキシ樹脂組成物およびその製造方法ならびにそれを用いた半導体装置
JP5471423B2 (ja) アンダーフィル剤およびそれを用いた半導体装置
JP6528404B2 (ja) 半導体用樹脂組成物および半導体用樹脂フィルムならびにこれらを用いた半導体装置
TWI606109B (zh) 接著劑組成物、接著劑片及使用它們的硬化物及半導體裝置
JP2010132793A (ja) 熱硬化性樹脂組成物、それを用いたアンダーフィル剤および半導体装置
TWI417311B (zh) 熱硬化性樹脂組成物及其用途
JP5521853B2 (ja) アンダーフィル剤およびそれを用いた半導体装置
JP6947032B2 (ja) 樹脂組成物、それを用いたシート、積層体、パワー半導体装置、プラズマ処理装置および半導体の製造方法
JP2019035087A (ja) エポキシ樹脂、エポキシ樹脂組成物及び硬化物
US20160194542A1 (en) Polyimide resin composition, and heat-conductive adhesive film produced using same
TW201033250A (en) Siloxane-containing polyimide resin
TW200911522A (en) Composite material
TWI424004B (zh) Polyimide silicone resin and thermosetting composition containing the same
JP2013143440A (ja) 金属ベース基板
JP2008277768A (ja) 絶縁性熱伝導シート
TWI797117B (zh) 醯亞胺寡聚物、硬化劑、接著劑、及醯亞胺寡聚物之製造方法
JP7144182B2 (ja) 硬化性樹脂組成物、硬化物、接着剤、及び、接着フィルム
JP6146999B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及び硬化物
JP6420171B2 (ja) ポリアミドイミド樹脂および当該ポリアミドイミド樹脂の製造方法、ならびに熱硬化性樹脂組成物および当該熱硬化性樹脂組成物の硬化物
WO2022138160A1 (ja) 樹脂組成物、シート状組成物、シート硬化物、積層体、積層部材、ウエハ保持体および半導体製造装置
KR20200013649A (ko) 경화성 수지 조성물, 경화물, 접착제, 접착 필름, 커버레이 필름, 및, 프린트 배선판

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280008508.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504774

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137023998

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14004841

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757993

Country of ref document: EP

Kind code of ref document: A1