WO2012124687A1 - 非水電解質二次電池及びその製造方法 - Google Patents

非水電解質二次電池及びその製造方法 Download PDF

Info

Publication number
WO2012124687A1
WO2012124687A1 PCT/JP2012/056405 JP2012056405W WO2012124687A1 WO 2012124687 A1 WO2012124687 A1 WO 2012124687A1 JP 2012056405 W JP2012056405 W JP 2012056405W WO 2012124687 A1 WO2012124687 A1 WO 2012124687A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
secondary battery
electrode active
electrolyte secondary
Prior art date
Application number
PCT/JP2012/056405
Other languages
English (en)
French (fr)
Inventor
学 滝尻
正信 竹内
喜田 佳典
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2013504737A priority Critical patent/JP5968870B2/ja
Priority to CN201280013768.1A priority patent/CN103430358B/zh
Priority to US14/002,262 priority patent/US9640800B2/en
Publication of WO2012124687A1 publication Critical patent/WO2012124687A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery capable of improving high-rate discharge characteristics and a method for manufacturing the same.
  • Nonaqueous electrolyte secondary batteries are widely used as power sources for portable devices as small, lightweight, and high energy density batteries. Furthermore, recently, it has attracted attention as a power source for power for electric tools, electric vehicles, HEV vehicles, and the like. Such a power source for power is required to have a high rate discharge characteristic that releases a large current in a relatively short time.
  • Patent Document 1 shows that the adhesion between the active material layer and the aluminum foil is improved by using an aluminum foil whose surface on the positive electrode layer side is roughened. However, further improvement has been a problem in improving the high-rate discharge characteristics of the nonaqueous electrolyte secondary battery.
  • Patent Document 2 an electrical resistance between the current collector and the active material is increased by forming a carbon intermediate film on the current collector made of aluminum foil and coating the active material layer thereon. It is disclosed that it is advantageous to suppress the above. However, in this prior art document, further improvement has been a problem in improving the high rate discharge characteristics of the nonaqueous electrolyte secondary battery. In addition, such a method requires a process of forming a carbon intermediate film and a process of coating an active material layer thereon, which complicates the manufacturing process.
  • the present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte solution in which a solute is dissolved in a non-aqueous solvent. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery capable of achieving the above.
  • the present invention includes a positive electrode including a positive electrode active material layer formed on a metal foil, a negative electrode including a negative electrode active material, and a nonaqueous electrolytic solution in which a solute is dissolved in a nonaqueous solvent.
  • a positive electrode including a positive electrode active material layer formed on a metal foil, a negative electrode including a negative electrode active material, and a nonaqueous electrolytic solution in which a solute is dissolved in a nonaqueous solvent.
  • the metal foil of the positive electrode an aluminum foil having a roughened at least part of the surface in contact with the positive electrode active material layer is used, and the roughened aluminum foil is used.
  • a conductive layer comprising a conductive agent and a binder is provided in at least some of the recesses, and a positive electrode active material, a positive electrode active material layer having a conductive agent and a binder are provided on the conductive layer.
  • the aluminum foil having a roughened surface refers to a state in which irregularities are formed on the surface of the aluminum foil by a roughening method of the surface of the metal foil.
  • Examples of the method for roughening the surface of the metal foil used in the present invention include a plating method, a vapor phase growth method, an etching method, and a polishing method.
  • Examples of the plating method include an electrolytic plating method and an electroless plating method.
  • Examples of the vapor phase growth method include a sputtering method, a CVD method, and a vapor deposition method.
  • Examples of the polishing method include sandpaper polishing and blasting.
  • the average roughening interval R sm obtained by the method defined as the average length of the contour curve element in JIS B0601-2001 of the roughened aluminum foil is 0.05 ⁇ m or more and 3.0 ⁇ m or less. preferable. This is because, if the average roughening interval R sm is less than 0.05 ⁇ m, bubbles accumulate in the concave portions of the roughened aluminum foil and it becomes difficult for the conductive agent particles to enter. On the other hand, when the average roughening interval R sm is 3.0 ⁇ m or more, a part of the active material is buried in the roughened recess, so that the conductive layer cannot be formed in the recess and does not function efficiently. In addition, the effect of the present invention may not be exhibited.
  • the positive electrode By providing the positive electrode as described above, high adhesiveness can be secured between the active material layer and the aluminum foil, and a good conductive path can be formed. Therefore, a rapid change in volume of the active material during high-rate discharge, a collapse of the conductive path between the aluminum foil and the active material layer due to a swelling of the binder due to a sudden rise in battery temperature, or an active material layer and aluminum An increase in resistance due to a decrease in adhesion to the foil can be suppressed. For this reason, the high-rate discharge characteristics of this type of nonaqueous electrolyte secondary battery are improved.
  • the average roughening interval of the surface of the aluminum foil whose surface is roughened is R sm , 10% cumulative, 50% cumulative, and cumulative from the fine particle side of the volume-based cumulative particle size distribution determined by laser diffraction method or electron microscope observation
  • the particle size (D 10 ) of the positive electrode active material is R AM
  • the particle size (D 50 ) of the conductive agent is R G1 , R AM > It is characterized by satisfying the relationship of R sm > R G1 .
  • the positive electrode slurry when the positive electrode slurry is applied, the conductive agent and the binder enter the concave portion of the aluminum foil, and the conductive layer filled with the conductive agent and the binder is self-formed. Furthermore, since the positive electrode active material layer can be simultaneously formed thereon, the continuity of the binding structure of the positive electrode active material layer and the conductive layer can be maintained. Furthermore, since two layers of the conductive layer and the positive electrode active material layer can be formed simultaneously by a single application, the manufacturing process can be simplified.
  • the method for measuring the particle size of the active material and the binder is preferably a laser diffraction method, and the method for measuring the particle size of the carbon conductive agent is preferably observation with an electron microscope.
  • the average roughening interval R sm on the surface of the aluminum foil can be obtained by a method defined as the average length of the contour curve element in JIS B0601-2001. Specifically, it can be measured with an instrument such as a laser microscope or a surface roughness meter.
  • the particle size of the binder is preferably smaller than the roughening interval R sm .
  • the conductive agent used for the positive electrode is not limited to one type, and it is more desirable to combine two or more types of conductive agents having different particle diameters.
  • the conductive agent having the smallest particle size is G1
  • the particle size (D 50 ) is R G1
  • the conductive agent having a particle size larger than the conductive agent G1 is G2
  • the particle size (D 50 ) is R
  • G2 it is preferable that the relationship of R AM > R G2 > R sm > R G1 is satisfied.
  • the conductive agent G1 having a particle size smaller than the average roughening interval R sm is filled in the concave portion of the roughened aluminum foil, and the particle size larger than the average roughening interval R sm is obtained. Since the conductive agent G2 is present in the positive electrode active material layer, the high-rate discharge characteristics of the nonaqueous electrolyte secondary battery are further improved.
  • the binder which is advantageous for the high rate discharge characteristics of the nonaqueous electrolyte secondary battery. This is because, when only a conductive agent having a small particle size is used, the specific surface area of the conductive agent increases, and the binder adsorbed on the surface of the conductive agent increases without involving the adhesion of the electrode plate. For this reason, in order to ensure adhesiveness, it is necessary to increase the amount of the binder, but since the binder usually does not have conductivity, the conductivity of the electrode plate is lowered.
  • the specific surface area of the conductive agent that affects the amount of the binder is suppressed, and the use of an aluminum foil with a roughened surface further increases the activity. Since the adhesion between the material layer and the aluminum foil can be secured and the amount of the binder can be reduced, the high rate discharge characteristics are further improved.
  • the volume ratio of the conductive agent G2 having a particle size larger than the average roughening interval R sm and the conductive agent G1 having a small particle size is more preferably in the range of 1: 1 to 0.25: 1. If the ratio exceeds 1: 1, the ratio of large particles that fill the gaps between the active material particles becomes too high, so that the conductivity cannot be sufficiently ensured by the conductive layer filled in the aluminum foil. On the other hand, when the ratio is less than 0.25: 1, the ratio of large particles becomes too low, and the effect of reducing the amount of the binder as described above cannot be expected.
  • the volume ratio of the conductive agent and the binder having a particle size smaller than the average roughening interval R sm is preferably in the range of 1: 0.5 to 1: 1.
  • the ratio of the binder to the conductive agent having a particle size smaller than the average roughening interval R sm becomes too high, the conductivity of the conductive layer filled in the concave portion of the roughened aluminum foil is lowered, and the high rate The battery temperature rises during discharge.
  • the ratio of the binder is low, the adhesion between the aluminum foil and the conductive layer is lowered and it is difficult to obtain a sufficient effect.
  • the material used for the conductive agent used in the present invention is not particularly limited as long as it can form a conductive path within the electrode plate, and for example, a carbon material or a metal powder can be used.
  • a carbon material from a viewpoint of cost.
  • the carbon material include furnace black, acetylene black, ketjen black, graphite, and mixtures thereof.
  • Examples of the positive electrode active material include lithium-containing transition metal composite oxides containing transition metals such as cobalt, nickel, and manganese. Specifically, lithium cobalt oxide, lithium composite oxide of Ni—Co—Mn, lithium composite oxide of Ni—Mn—Al, and lithium composite oxide of Ni—Co—Al can be given. Moreover, lithium manganese complex oxide which has a spinel structure, lithium iron phosphate which has an olivine structure, etc. are mentioned. These positive electrode active materials may be used alone or in combination.
  • the negative electrode active material is not particularly limited as long as it is used as a negative electrode active material for a non-aqueous electrolyte secondary battery.
  • the negative electrode active material include carbon materials such as graphite and coke, metals that can be alloyed with lithium such as tin oxide, metallic lithium, and silicon, and alloys thereof. From the viewpoint of cost, it is preferable to use a carbon material. For example, natural graphite, artificial graphite, menphase pitch-based carbon fiber, mesocarbon microbead, coke, hard carbon, fullerene, carbon nanotube, or the like is used. it can.
  • the non-aqueous electrolyte is not particularly limited as long as it can be used for a non-aqueous electrolyte secondary battery. Generally, those containing a supporting salt and a solvent are included.
  • the concentration of the supporting salt is not particularly limited, but is preferably in the range of 0.8 to 2.0 mol / liter.
  • the solvent examples include carbonate solvents such as ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, diethylene carbonate, ethylmethyl carbonate, and dimethyl carbonate, and carbonate solvents in which part of hydrogen in these solvents is substituted with F.
  • carbonate solvents such as ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, diethylene carbonate, ethylmethyl carbonate, and dimethyl carbonate
  • F ethylene carbonate
  • dimethyl carbonate Preferably used.
  • F a mixed solvent of a cyclic carbonate and a chain carbonate.
  • the volume ratio of cyclic carbonate to chain carbonate in this mixed solvent is preferably in the range of 2: 8 to 5: 5.
  • a non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte solution in which a solute is dissolved in a non-aqueous solvent, high rate discharge characteristics It is possible to provide a non-aqueous electrolyte secondary battery that can improve the above.
  • FIG. 1 is a diagram schematically showing a cross-sectional structure of a battery according to the present invention.
  • FIG. 2 is an SEM photograph showing a cross section of the positive electrode used in the battery of the present invention.
  • FIG. 3 is a diagram schematically showing a cross-sectional structure of the electrode according to the present invention.
  • Example 1 Preparation of positive electrode> 94.5 parts by mass of a lithium nickel cobalt manganese composite oxide having a particle size (D 10 ) of 9 ⁇ m as a positive electrode active material, and 2.5% of a carbon conductive agent G1 having a particle size (D 50 ) of 0.05 ⁇ m as a conductive agent.
  • 1 part by mass of carbon conductive agent G2 having a mass part and particle size (D 50 ) of 6.0 ⁇ m, 2 parts by mass of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone are added to form a slurry.
  • This slurry was applied on an aluminum foil having an average roughening interval R sm of 1.9 ⁇ m and dried. This was cut into a predetermined electrode size, rolled using a roller, a positive electrode lead was attached, and used as a positive electrode.
  • FIG. 2 shows a cross-sectional SEM photograph of the produced electrode plate. It was confirmed that the conductive layer 11 filled with the conductive agent and the binder was formed in the concave portion of the roughened aluminum foil 10.
  • FIG. 3 schematically shows a cross-sectional structure of the electrode according to the present invention.
  • the roughened surface of the aluminum foil 14 has irregularities formed on the surface.
  • a conductive layer 13 made of carbon conductive agent G1 and a binder is formed in the recess, and an active material layer 12 is formed thereon.
  • the average value of the distance of the convex part tip adjacent to the aluminum foil 14 whose surface is roughened and the convex part tip is a value close to R sm .
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 as a lithium salt at a ratio of 1.5 mol / liter in a solvent in which EC (ethylene carbonate) and DMC (dimethyl carbonate) were mixed at a volume ratio of 25:75. .
  • the positive electrode and the negative electrode were opposed to each other via a separator made of a polyethylene microporous membrane, and then wound in a spiral shape using a winding core.
  • a spirally wound electrode body is prepared by pulling out the winding core, inserted into a metal outer can, sealed by injecting the non-aqueous electrolyte, and having a battery size of 18 mm in diameter and 65 mm in height.
  • a non-aqueous electrolyte secondary battery A1 was prepared.
  • FIG. 1 is a schematic cross-sectional view of a non-aqueous electrolyte secondary battery produced as described above.
  • Reference numeral 1 is a positive electrode
  • 2 is a negative electrode
  • 3 is a separator
  • 4 is a sealing body that also serves as a positive electrode terminal
  • 5 is a negative electrode.
  • a can, 6 is a positive electrode current collector
  • 7 is a negative electrode current collector
  • 8 is an insulating packing.
  • Comparative Example 1 A nonaqueous electrolyte secondary battery X1 of Comparative Example was produced in the same manner as in Example 1 except that an aluminum foil that had not been subjected to surface roughening treatment was used.
  • Example 2 A nonaqueous electrolyte secondary battery X2 of a comparative example was produced in the same manner as in Example 1 except that an aluminum foil coated with carbon on an aluminum foil not subjected to surface roughening was used in Example 1. did.
  • 1 kHz resistance increase rate (%) (1 kHz resistance value after 1.0-20 A discharge / 1 kHz resistance value before 20 A discharge) ⁇ 100
  • the battery A1 of Example 1 using an aluminum foil with a roughened surface was the same as the battery X1 of Comparative Example 1 using an aluminum foil with a roughened surface, and the surface was carbon coated.
  • the increase in resistance before and after the 20A discharge is suppressed, and the high rate discharge characteristics are improved.
  • the present invention can be expected to be developed especially for high output that requires high-rate discharge, such as power supplies for EV and HEV automobiles and power supplies for electric tools.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 ハイレート放電特性を向上させることができる非水電解液二次電池を提供することを目的としている。 金属箔上に形成した正極活物質層を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えた非水電解質二次電池において、前記正極の金属箔として、前記正極活物質層と接する面の少なくとも一部の表面が粗化されたアルミニウム箔を用いると共に、前記表面が粗化されたアルミニウム箔の少なくとも一部の凹部内に導電剤及び結着剤とからなる導電層を備えると共に、前記導電層上に正極活物質、導電剤及び結着剤を有する正極活物質層を備えたことを特徴とする。

Description

非水電解質二次電池及びその製造方法
 本発明は、ハイレート放電特性の向上を図ることができる非水電解質二次電池及びその製造方法に関するものである。
 非水電解質二次電池は、小型、軽量、高エネルギー密度の電池として、携帯機器の電源などに広く利用されている。更に、最近では電動工具や電気自動車、HEV自動車等の動力用電源としても注目されている。このような動力用電源では、比較的短時間に大電流を放出するハイレート放電特性が求められている。
 特許文献1では、正極層側の面が粗化されたアルミニウム箔を用いることにより、活物質層とアルミニウム箔間の密着性が改善されることが示されている。しかしながら、非水電解質二次電池のハイレート放電特性の向上には更なる改良が課題であった。
 一方で、特許文献2では、アルミニウム箔からなる集電体にカーボンの中間膜を形成し、その上に活物質層を被覆することで、集電体と活物質との間における電気抵抗の増大を抑制するのに有利となることが開示されている。しかしながら、この先行技術文献においても、非水電解質二次電池のハイレート放電特性の向上には更なる改良が課題であった。また、このような方法では、カーボンの中間膜を形成する工程と、その上に活物質層を被覆する工程が必要であり、製造工程が複雑化するという問題があった。
特開平9-22699号公報 特開2000-164466号公報
 本発明は、正極活物質を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えた非水電解質二次電池において、ハイレート放電特性の向上を図ることができる非水電解質二次電池を提供することを課題とするものである。
 前記目的を達成するために本発明は、金属箔上に形成した正極活物質層を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えた非水電解質二次電池において、前記正極の金属箔として、前記正極活物質層と接する面の少なくとも一部の表面が粗化されたアルミニウム箔を用いると共に、前記表面が粗化されたアルミニウム箔の少なくとも一部の凹部内に導電剤及び結着剤とからなる導電層を備えると共に、前記導電層上に正極活物質、導電剤及び結着剤を有する正極活物質層を備えたことを特徴とする。
 ここで、表面が粗化されたアルミニウム箔とは、金属箔の表面の粗化処理方法により、アルミニウム箔の表面に凹凸部が形成された状態を云う。
 本発明に使用する金属箔の表面の粗化処理方法は、例えば、めっき法、気相成長法、エッチング法及び研磨法などが挙げられる。めっき法としては、電解めっき法及び無電解めっき法が挙げられる。気相成長法としては、スパッタリング法、CVD法、蒸着法などが挙げられる。また、研磨法としては、サンドペーパーによる研磨やブラスト法による研磨などが挙げられる。
 前記表面が粗化されたアルミニウム箔のJIS B0601-2001で輪郭曲線要素の平均長さとして規定されている方法により求められる平均粗化間隔Rsmが0.05μm以上3.0μm以下であることが好ましい。平均粗化間隔Rsmが0.05μm未満であると、粗化されたアルミニウム箔の凹部内に気泡が溜まり導電剤粒子が入り込むことが困難となるためである。  一方、平均粗化間隔Rsmが3.0μm以上の場合、活物質の一部が粗化された凹部に埋まるため、導電層が凹部内に形成することができず、効率的に機能せずに、本発明の効果が発揮されないことがあるためである。
 前記のような正極を備えることで、活物質層とアルミニウム箔の間で高い密着性を確保できるとともに、良好な導電パスを形成することができる。従って、ハイレート放電時の活物質の急激な体積変化や、急激な電池温度の上昇による結着剤の膨潤による、アルミニウム箔と活物質層との間の導電パスの崩壊や、活物質層とアルミニウム箔との密着性の低下による抵抗の上昇を抑制できる。このため、この種の非水電解質二次電池のハイレート放電特性が向上する。
 前記表面が粗化されたアルミニウム箔表面の平均粗化間隔をRsm、レーザー回折法もしくは、電子顕微鏡の観察によって求められる、体積基準累積粒度分布の微粒側から累積10%、累積50%および累積90%の粒径をそれぞれD10、D50およびD90とし、正極活物質の粒径(D10)をRAM、導電剤の粒径(D50)をRG1とするとき、RAM>Rsm>RG1の関係を満たすことを特徴とする。
 このような関係を満たすことで、正極スラリーの塗布時に、導電剤と結着剤がアルミニウム箔の凹部に入り込み、導電剤及び結着剤が充填された導電層が自己形成される。さらに、その上に正極活物質層を同時に形成することができることから、正極活物質層と導電層との結着構造は連続性を維持することができる。さらに、一度の塗布で導電層と正極活物質層の2層を同時に作製できるため、製造工程を簡略化することができる。
 他の極板作製方法としては、粗化されたアルミニウム箔の表面に、平均粗化間隔Rsmよりも小さい導電剤を充填した導電層を予め作製した後に、正極活物質層を塗り重ねる方法も挙げられる。しかし、この場合は正極活物質層と導電層との間の結着構造に連続性がないため、これらの二層間の密着性が弱くその界面で抵抗が上昇する。さらに、製造工程が複雑化するという問題を有するため、前記の方がより好ましい。
 ここで、活物質及び結着剤の粒径の測定法はレーザー回折法が好ましく、炭素導電剤の粒径の測定法は電子顕微鏡の観察が好ましい。また、アルミニウム箔表面の平均粗化間隔Rsmは、JIS B0601-2001で輪郭曲線要素の平均長さとして規定されている方法により求めることができる。具体的には、レーザー顕微鏡や表面粗さ計などの器具で測定することができる。
 尚、結着剤は溶媒に溶解するものを用いることが望ましいが、エマルジョン粒子を分散させたものを用いる場合、結着剤の粒径は粗化間隔Rsmよりも小さいことが好ましい。
 本発明の非水電解質二次電池において、正極に用いる導電剤は1種類に限定されずに、粒径の異なる2種類以上の導電剤を組み合わせることが更に望ましい。この場合、最も粒径の小さい導電剤をG1とし、その粒径(D50)をRG1、前記導電剤G1よりも粒径の大きい導電剤をG2とし、その粒径(D50)をRG2としたときRAM>RG2>Rsm>RG1の関係を満たすことが好ましい。
 前記の関係を満たすことにより、平均粗化間隔Rsmよりも小さい粒径を有する導電剤G1は粗化されたアルミニウム箔の凹部内に充填され、平均粗化間隔Rsmよりも大きい粒径を有する導電剤G2は、正極活物質層中に存在するため、非水電解質二次電池のハイレート放電特性が更に向上する。
 また、粒径の異なる2種類以上の導電剤を組み合わせることにより、結着剤の削減をすることが可能となるため、非水電解質二次電池のハイレート放電特性に有利である。これは、粒径の小さな導電剤のみを用いた場合、導電剤の比表面積が増大し、極板の密着性に関与せず導電剤の表面に吸着される結着剤が増える。このため、密着性を確保するためには、結着剤の量を増やす必要があるが結着剤は通常導電性を有さないため、極板の導電性が低下する。
 以上のことから粒径が異なる2種類以上の導電剤を用いることで、結着剤量に影響を及ぼす導電剤の比表面積が抑制され、さらに表面が粗化されたアルミニウム箔を用いることで活物質層とアルミニウム箔との密着性を確保でき、結着剤量を減らすことができるため、ハイレート放電特性が更に向上する。
 平均粗化間隔Rsmよりも大きい粒径を有する導電剤G2と、小さい粒径を有する導電剤G1の体積比率は、1:1~0.25:1の範囲がより望ましい。1:1を超えると、活物質粒子間の隙間を埋める大粒子の比率が高くなりすぎるため、アルミニウム箔に充填される導電層で十分に導電性を確保することができない。 一方、0.25:1未満であると、大粒子の比率が低くなりすぎて、前記のような結着剤量を減らす効果が期待できないためである。
 また、平均粗化間隔Rsmよりも小さな粒径を有する導電剤と結着剤の体積比率は、1:0.5~1:1の範囲が好ましい。平均粗化間隔Rsmよりも小さな粒径を有する導電剤に対する結着剤の割合が高くなり過ぎると、粗化されたアルミニウム箔の凹部内に充填される導電層の導電性が低下し、ハイレート放電時に電池温度の上昇が生じる。一方、結着剤の割合が低いと、アルミニウム箔と導電層との密着性が低下し十分な効果を得ることが困難となる。
 [その他の事項]
 (1)本発明に使用する導電剤に用いる材料は、極板内で導電パスを形成できるものであれば、特に限定されず、例えば炭素材料や金属粉末などを用いることが可能である。なお、コストの観点から炭素材料を用いることが好ましい。炭素材料の例としては、ファーネスブラック、アセチレンブラック、ケッチェンブラック、グラファイト及びこれらの混合物が挙げられる。
 (2)正極活物質としては、コバルト、ニッケル、マンガン等の遷移金属を含むリチウム含有遷移金属複合酸化物が挙げられる。具体的には、コバルト酸リチウム、Ni-Co-Mnのリチウム複合酸化物、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物が挙げられる。また、スピネル構造を有するリチウムマンガン複合酸化物や、オリビン構造を有するリン酸鉄リチウム等も挙げられる。これらの正極活物質は単独で用いても良いし、混合して用いても良い。
 (3)負極活物質としては、非水電解液二次電池の負極活物質として用いるものであれば特に限定されるものではない。負極活物質としては、例えば、グラファイト、コークス等の炭素材料、酸化スズ、金属リチウム、珪素等のリチウムと合金化し得る金属及びそれらの合金等が挙げられる。なお、コストの観点からは、炭素材料を用いることが好ましく、例えば、天然黒鉛、人造黒鉛、メンフェーズピッチ系炭素繊維、メソカーボンマイクロビーズ、コークス、ハードカーボン、フラーレン、カーボンナノチューブなどを用いることができる。
 特に、ハイレート放電特性を更に向上させる観点からは、負極活物質に黒鉛材料を低結晶性炭素で被覆した炭素材料を用いることがより好ましい。 非水電解液としては、非水電解液二次電池に用いることができるものであれば特に限定されるものではない。一般に、支持塩及び溶媒を含むものが挙げられる。
 上記支持塩としては、例えば、LiBF,LiPF,LiN(SOCF,LiN(SO,LiPF6-x(C2n+1[但し、1<x<6,n=1または2]等が挙げられる。これらは単独でまたは2種以上を混合して使用することができる。尚、支持塩の濃度は特に限定されないが、0.8~2.0モル/リットルの範囲であることが好ましい。
 上記溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン、ジエチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネート等のカーボネート系溶媒や、これらの溶媒の水素の一部がFにより置換されているカーボネート系溶媒が好ましく用いられる。溶媒としては、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが特に望ましい。この混合溶媒における環状カーボネートと鎖状カーボネートとの体積比を2:8~5:5の範囲にすることが好ましい。
 本発明によれば、正極活物質を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えた非水電解質二次電池において、ハイレート放電特性の向上を図ることができる非水電解質二次電池を提供することができる。
図1は、本発明に係る電池の断面構造を模式的に示した図である。 図2は、本発明電池に用いられる正極の断面を示すSEM写真である。 図3は、本発明に係る電極の断面構造を模式的に示した図である。
 以下、本発明を下記形態に基づいてさらに詳細に説明するが、本発明は以下の形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
 (実施例1)
 <正極の作製>
 正極活物質として、粒径(D10)が9μmのリチウムニッケルコバルトマンガン複合酸化物を94.5質量部、導電剤として粒径(D50)が0.05μmの炭素導電剤G1を2.5質量部、粒径(D50)が6.0μmの炭素導電剤G2を1質量部、結着剤としてポリフッ化ビニリデンを2質量部混合して、N-メチル-2-ピロリドンを適量加え、スラリーを作製した。このスラリーを、平均粗化間隔Rsmが1.9μmのアルミニウム箔上に塗布して乾燥した。これを所定の電極サイズに切り取り、ローラーを用いて圧延し、正極リードを取り付け、正極として用いた。
 図2に作製した極板の断面SEM写真を示す。粗化されたアルミニウム箔10の凹部内に導電剤と結着剤が充填された導電層11が形成されていることが確認された。
 尚、アルミニウム箔の平均粗化間隔Rsmは、共焦点レーザー顕微鏡を用いて測定した。
 また、図3に本発明に係る電極の断面構造を模式的に示す。ここで、表面が粗化されたアルミニウム箔14は、その表面に凹凸が形成されている。この凹部内に炭素導電剤G1及び結着剤とからなる導電層13が形成されており、その上に活物質層12が形成されている。尚、表面が粗化されたアルミニウム箔14の隣あう凸部先端と凸部先端の距離の平均値がRsmに近い値である。
 <負極の作製>
 負極活物質に人造黒鉛を97.5質量部、増粘剤にカルボキシメチルセルロースを1質量部、結着剤にスチレンブタジエンゴム1.5質量部混合して、純水を適量加えてスラリーを作製した。このスラリーを銅箔上に塗布して乾燥した。これを所定の電極サイズに切り取り、ローラーを用いて圧延し、負極リードを取り付け、負極として用いた。
 <非水電解液の調製>
 EC(エチレンカーボネート)とDMC(ジメチルカーボネート)とを25:75の体積比で混合した溶媒に、リチウム塩としてのLiPFを1.5モル/リットルの割合で溶解させ非水電解液を調製した。
 <電池の作製>
 前記正極及び負極をポリエチレン製微多孔膜から成るセパレータを用いて、正極と負極とをセパレータを介して対向させた後、巻き芯を用いて渦巻状に巻回した。次に、巻き芯を引き抜いて渦巻状の電極体を作製し、金属製外装缶に挿入し、上記非水電解液を注入して封口して、電池サイズが直径18mm、高さ65mmの18650型の非水電解質二次電池A1を作製した。
 図1は、前記のように作製した非水電解質二次電池の模式的断面図であり、符号の1は正極、2は負極、3はセパレータ、4は正極端子を兼ねる封口体、5は負極缶、6は正極集電体、7は負極集電体及び8は絶縁パッキングを示している。
 (比較例1)
 前記実施例1において、表面の粗化処理が施されていないアルミニウム箔を用いる以外は前記実施例1と同様にして比較例の非水電解質二次電池X1を作製した。
 (比較例2)
 前記実施例1において、表面の粗化処理が施されていないアルミニウム箔上に炭素をコートしたアルミニウム箔を用いる以外は前記実施例1と同様にして比較例の非水電解質二次電池X2を作製した。
 (試験条件)
 前記のように作製した各非水電解質二次電池A1、X1及びX2について、交流法で1kHzの抵抗値を測定した後、0.2Itで4.2Vまで充電した定電流充電したのち、4.2Vで0.05Itまで定電圧充電をした。その後、放電終止電圧を2.5Vに設定して、20Aで放電を行った。その後、各非水電解質二次電池A1、X1及びX2について交流法で1kHzの抵抗値を測定し、以下の計算式を用いて20A放電前後での抵抗値の上昇率を算出し、その結果を以下表1に示した。
 1kHzの抵抗上昇率(%)=(1.0-20A放電後の1kHzの抵抗値/20A放電前の1kHzの抵抗値)×100
Figure JPOXMLDOC01-appb-T000001
 前記表1の結果より、表面が粗化されたアルミニウム箔を用いた実施例1の電池A1は、表面が粗化されていないアルミニウム箔を用いた比較例1の電池X1や、表面を炭素コートしたアルミニウム箔を用いた比較例2の電池X2の電池と比較して、20A放電前後の抵抗の上昇が抑制されており、ハイレート放電特性が向上された結果となっている。
 本発明は、特に、EV及びHEV自動車用電源や電動工具用電源といったハイレート放電が必要な高出力向けに展開が期待できる。
 1  正極
 2  負極
 3  セパレータ
 9  正極活物質
 10 表面が粗化されたアルミニウム箔
 11 導電層
 12 活物質層
 13 導電層
 14 表面が粗化されたアルミニウム箔
 15 粒径の小さい炭素導電剤 

Claims (6)

  1.  金属箔上に形成した正極活物質層を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えた非水電解質二次電池において、前記正極の金属箔として、前記正極活物質層と接する面の少なくとも一部が粗化されたアルミニウム箔を用いると共に、前記表面が粗化されたアルミニウム箔の少なくとも一部の凹部内に導電剤及び結着剤からなる導電層を備えると共に、前記導電層上に正極活物質、前記導電剤及び前記結着剤を有する前記正極活物質層を備えたことを特徴とする非水電解質二次電池。
  2.  請求項1に記載された非水電解質二次電池において、前記表面が粗化されたアルミニウム箔のJIS B0601-2001で輪郭曲線要素の平均長さとして規定されている方法により求められる平均粗化間隔Rsmが0.05μm以上3.0μm以下であることを特徴とする非水電解質二次電池。
  3.  請求項1または請求項2に記載された非水電解質二次電池において、JIS B0601-2001で輪郭曲線要素の平均長さとして規定されている方法により求められる平均粗化間隔をRsmとし、体積基準累積粒度分布の微粒側から累積10%、累積50%の粒径をそれぞれD10、D50とし、前記正極活物質の粒径(D10)をRAM、前記正極活物質層中に含有される導電剤G1の粒径(D50)をRG1とするとき、RAM>Rsm>RG1の関係を満たすことを特徴とする非水電解質二次電池。
  4.  請求項1~3の何れか一項に記載された非水電解質二次電池において、前記正極が粒径の異なる少なくとも2種類の前記導電剤を含有し、粒径の小さい前記導電剤をG1とし、その粒径(D50)をRG1、前記導電剤G1よりも粒径の大きい前記導電剤をG2とし、その粒径(D50)をRG2とし、前記正極活物質の粒径(D10)をRAMとし、JIS B0601-2001で輪郭曲線要素の平均長さとして規定されている方法により求められる表面が粗化されたアルミニウム箔の平均粗化間隔をRsmとしたとき、RAM>RG2>Rsm>RG1の関係が満たされることを特徴とする非水電解質二次電池。
  5.  請求項1に記載された非水電解質二次電池を製造する方法において、前記正極活物質、前記結着剤及び前記導電剤を混合して正極スラリーを作製する工程と、前記正極スラリーを前記表面が粗化されたアルミニウム箔の表面に塗布した後乾燥する工程とを備え、前記表面が粗化されたアルミニウム箔のJIS B0601-2001で輪郭曲線要素の平均長さとして規定されている方法により求められる平均粗化間隔をRsmとし、前記正極活物質の粒径(D10)をRAM、前記導電剤G1の粒径(D50)をRG1とするとき、RAM>Rsm>RG1の関係を満たす、前記正極活物質及び前記導電剤を前記正極スラリー中に含むことを特徴とする非水電解質二次電池の製造方法。
  6.  請求項4に記載された非水電解質二次電池の製造方法において、前記正極活物質、前記結着剤及び前記導電剤を混合して正極スラリーを作製する工程と、前記正極スラリーを前記表面が粗化されたアルミニウム箔の表面に塗布した後乾燥する工程とを備え、RAM>RG2>Rsm>RG1の関係を満たす、前記正極活物質及び前記導電剤を前記正極スラリー中に含むことを特徴とする非水電解質二次電池の製造方法。
PCT/JP2012/056405 2011-03-17 2012-03-13 非水電解質二次電池及びその製造方法 WO2012124687A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013504737A JP5968870B2 (ja) 2011-03-17 2012-03-13 非水電解質二次電池及びその製造方法
CN201280013768.1A CN103430358B (zh) 2011-03-17 2012-03-13 非水电解质二次电池及其制造方法
US14/002,262 US9640800B2 (en) 2011-03-17 2012-03-13 Nonaqueous electrolyte secondary battery having a positive electrode including an aluminum foil and a positive electrode active material layer formed thereon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-059023 2011-03-17
JP2011059023 2011-03-17

Publications (1)

Publication Number Publication Date
WO2012124687A1 true WO2012124687A1 (ja) 2012-09-20

Family

ID=46830754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056405 WO2012124687A1 (ja) 2011-03-17 2012-03-13 非水電解質二次電池及びその製造方法

Country Status (4)

Country Link
US (1) US9640800B2 (ja)
JP (1) JP5968870B2 (ja)
CN (1) CN103430358B (ja)
WO (1) WO2012124687A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212030A (ja) * 2013-04-18 2014-11-13 Jsr株式会社 蓄電デバイス用電極およびその製造方法、ならびに蓄電デバイス
US10511027B2 (en) * 2013-04-26 2019-12-17 Fractal Antenna Systems, Inc. Batteries and related structures having fractal or self-complementary structures

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6851711B2 (ja) * 2015-03-26 2021-03-31 株式会社Gsユアサ 蓄電素子
CN111276668B (zh) * 2018-12-05 2023-03-10 丰田自动车株式会社 全固体电池用电极层叠体及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269095A (ja) * 1999-03-19 2000-09-29 Toyota Motor Corp 電気二重層キャパシタ用電極
JP2000294251A (ja) * 1999-04-06 2000-10-20 Hitachi Cable Ltd Liイオン電池の負極集電体用銅材およびその製造方法
JP2003059493A (ja) * 2001-08-22 2003-02-28 Shin Kobe Electric Mach Co Ltd リチウム二次電池
JP2004014247A (ja) * 2002-06-05 2004-01-15 Itochu Corp 集電構造、電極構造、及び、それらの製造方法
JP2004288520A (ja) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2005251554A (ja) * 2004-03-04 2005-09-15 Sanyo Electric Co Ltd 非水電解質電池用正極及びこの正極を用いた電池
JP2006179367A (ja) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd 電池用電極の製造方法
JP2007317583A (ja) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2010033768A (ja) * 2008-07-25 2010-02-12 Nisshin Steel Co Ltd バイポーラ型リチウムイオン二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922699A (ja) 1995-07-06 1997-01-21 Toshiba Battery Co Ltd ポリマー電解質二次電池
JP2000164466A (ja) 1998-11-26 2000-06-16 Toyota Motor Corp キャパシタまたは電池に使用される電極の製造方法
JP2002025615A (ja) * 2000-07-10 2002-01-25 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2002151056A (ja) * 2000-11-14 2002-05-24 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
US20050221186A1 (en) * 2002-06-04 2005-10-06 Itochu Corporation Lithium rechargeable battery
KR100542213B1 (ko) 2003-10-31 2006-01-10 삼성에스디아이 주식회사 리튬 금속 전지용 음극 및 이를 포함하는 리튬 금속 전지
CN100486003C (zh) * 2004-03-03 2009-05-06 三洋电机株式会社 非水电解质电池
US8802289B2 (en) * 2004-10-06 2014-08-12 Zeon Corporation Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
CN105098223A (zh) * 2006-11-16 2015-11-25 松下电器产业株式会社 蓄电装置
JP2008235090A (ja) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池
CN101672757B (zh) * 2009-09-30 2011-04-13 彩虹集团电子股份有限公司 一种磷酸亚铁锂涂布特性的评判方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269095A (ja) * 1999-03-19 2000-09-29 Toyota Motor Corp 電気二重層キャパシタ用電極
JP2000294251A (ja) * 1999-04-06 2000-10-20 Hitachi Cable Ltd Liイオン電池の負極集電体用銅材およびその製造方法
JP2003059493A (ja) * 2001-08-22 2003-02-28 Shin Kobe Electric Mach Co Ltd リチウム二次電池
JP2004014247A (ja) * 2002-06-05 2004-01-15 Itochu Corp 集電構造、電極構造、及び、それらの製造方法
JP2004288520A (ja) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2005251554A (ja) * 2004-03-04 2005-09-15 Sanyo Electric Co Ltd 非水電解質電池用正極及びこの正極を用いた電池
JP2006179367A (ja) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd 電池用電極の製造方法
JP2007317583A (ja) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2010033768A (ja) * 2008-07-25 2010-02-12 Nisshin Steel Co Ltd バイポーラ型リチウムイオン二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212030A (ja) * 2013-04-18 2014-11-13 Jsr株式会社 蓄電デバイス用電極およびその製造方法、ならびに蓄電デバイス
US10511027B2 (en) * 2013-04-26 2019-12-17 Fractal Antenna Systems, Inc. Batteries and related structures having fractal or self-complementary structures

Also Published As

Publication number Publication date
JPWO2012124687A1 (ja) 2014-07-24
CN103430358B (zh) 2016-06-22
JP5968870B2 (ja) 2016-08-10
US9640800B2 (en) 2017-05-02
CN103430358A (zh) 2013-12-04
US20130337322A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
TWI654790B (zh) 非水電解質二次電池用負極材料及非水電解質二次電池以及負極活性物質粒子之製造方法
JP6531652B2 (ja) 非水電解質二次電池用負極
KR101723186B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2014119256A1 (ja) 非水電解質二次電池用負極活物質、当該負極活物質を用いた非水電解質二次電池用負極、及び当該負極を用いた非水電解質二次電池
KR20180114061A (ko) 비수 전해질 이차 전지용 부극 활물질, 비수 전해질 이차 전지 및 비수 전해질 이차 전지용 부극재의 제조 방법
JP2009224307A (ja) 非水電解質二次電池及びその製造方法
WO2008018207A1 (en) Nonaqueous electrolyte secondary battery
WO2014148043A1 (ja) 非水電解質二次電池
JP6965991B2 (ja) リチウムイオン電池用炭素導電性添加剤
JP2018125077A (ja) リチウムイオン二次電池用負極
JP6683265B2 (ja) ナノカーボン被覆アノード材料およびイミドアニオン系リチウム塩電解質を有する高速充電可能なリチウムイオン電池
KR20180088283A (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
JP2019067543A (ja) 非水電解質二次電池及びその製造方法
JP5968870B2 (ja) 非水電解質二次電池及びその製造方法
Wang et al. Local confinement and alloy/dealloy activation of Sn–Cu nanoarrays for high-performance lithium-ion battery
WO2008018204A1 (en) Non-aqueous electrolyte secondary battery
WO2015056412A1 (ja) リチウムイオン二次電池
JP6484503B2 (ja) 非水電解質二次電池の製造方法
WO2012128274A1 (ja) 非水電解質二次電池用電極及びその製造方法
JP2008047306A (ja) 非水電解液二次電池
JP6567289B2 (ja) リチウムイオン二次電池
JP2015511374A (ja) リチウム二次電池用負極材、その製造方法及びこれを含むリチウム二次電池
JP2008016193A (ja) 非水電解液二次電池の製造方法
WO2009084329A1 (ja) 非水電解液二次電池用正極
JP2014029789A (ja) 非水電解質二次電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504737

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14002262

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758124

Country of ref document: EP

Kind code of ref document: A1