WO2008018207A1 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2008018207A1
WO2008018207A1 PCT/JP2007/058083 JP2007058083W WO2008018207A1 WO 2008018207 A1 WO2008018207 A1 WO 2008018207A1 JP 2007058083 W JP2007058083 W JP 2007058083W WO 2008018207 A1 WO2008018207 A1 WO 2008018207A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
secondary battery
particles
electrolyte secondary
Prior art date
Application number
PCT/JP2007/058083
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Modeki
Yanko Marinov Todorov
Yoshiki Sakaguchi
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2008018207A1 publication Critical patent/WO2008018207A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery such as a lithium secondary battery.
  • Patent Document 1 discloses that a positive electrode, a separator, and a negative electrode are integrally wound using a core material to produce a cylindrical electrode body, and the electrode is removed after the core material is removed.
  • Patent Document 1 US2006—111625A1
  • an object of the present invention is to provide a non-aqueous solution that can eliminate the various disadvantages of the above-described conventional technology.
  • the object is to provide an electrolyte secondary battery.
  • the present invention includes a winding body in which a positive electrode, a negative electrode, and a separator interposed therebetween are wound, and has a flat cross section, and a plate is provided at the center of the winding body.
  • the present invention provides a non-aqueous electrolyte secondary battery characterized in that a shaped core material is arranged.
  • FIG. 1 (a) is a perspective view showing a wound body in one embodiment of the battery of the present invention
  • FIG. 1 (b) is a cross-sectional view taken along the line bb in FIG. 1 (a). It is.
  • FIG. 2 is a schematic diagram in a planar state where the wound state of the central portion of the wound body shown in FIG. 1 is solved.
  • FIG. 3 (a) is a schematic diagram (corresponding to FIG. 1 (b)) showing the cross-sectional structure of the wound body in the second embodiment of the present invention
  • FIG. FIG. 6 is a schematic diagram (corresponding to FIG. 2) in a flat state where the winding state of the central portion of the winding body shown in FIG. 3 (a) is solved.
  • FIG. 4 (a) is a schematic diagram (corresponding to FIG. 1 (b)) showing the cross-sectional structure of the wound body in the third embodiment of the present invention
  • FIG. FIG. 5 is a schematic diagram (corresponding to FIG. 2) in a flat state where the winding state of the central portion of the winding body shown in FIG. 4 (a) is solved.
  • FIGS. 5 (a) and 5 (e) are process diagrams sequentially showing a method of manufacturing the wound body shown in FIGS. 3 (a) and 3 (b).
  • FIGS. 6 (a) and 6 (b) are process diagrams showing a method for producing the wound body shown in FIGS. 4 (a) and 4 (b), and are shown in FIGS. 5 (c) and 5 (d). It is a figure corresponding to a process.
  • FIG. 7 is a schematic diagram showing a cross-sectional structure of an embodiment of a negative electrode used in the present invention.
  • FIG. 8 is a process chart showing a method for producing the negative electrode shown in FIG.
  • FIG. 9 is a CT scan image of the cross section of the battery obtained in Example 1.
  • FIG. 10 is a CT scan image of the cross section of the battery obtained in Comparative Example 1.
  • FIG. 11 is a CT scan image of the cross section of the battery obtained in Example 2.
  • FIG. 12 is a CT scan image of the cross section of the battery obtained in Comparative Example 2.
  • FIG. 13 (a) is a schematic diagram showing a cross-sectional structure of an electrode winding body in a conventional prismatic battery.
  • FIG. 13 (b) is a schematic diagram showing a state after charging and discharging of the electrode winding body shown in FIG. 13 (a).
  • the non-aqueous electrolyte secondary battery of the present invention (hereinafter also simply referred to as a secondary battery or a battery) has a positive electrode, a negative electrode, and a separator disposed between them as its basic constituent members.
  • the battery includes a winding body formed by integrally winding a positive electrode, a negative electrode, and a separator interposed therebetween.
  • the wound body has a flat shape such as an oval or elliptical cross section.
  • the battery of the present invention can be in a form in which a strong winding body is accommodated in a rectangular outer can or in a form in which it is accommodated in a laminate outer body.
  • the effect of the present invention becomes remarkable when a wound body having an AZB of 3 or more is used.
  • the upper limit of AZB is not critical in the present invention, but is empirically about 20.
  • FIGS. 1 (a) and 1 (b) show an embodiment of a wound body 1 in a battery of the present invention.
  • the wound body 1 has a flat shape in which a positive electrode, a negative electrode, and a separator interposed therebetween are wound around a core material 3.
  • the positive electrode, the negative electrode, and the separator are not drawn individually, but are drawn as a single line combining them for convenience.
  • the positive electrode, separator, and negative electrode in the wound body 1 are all long.
  • the widths of the positive and negative electrodes are the same.
  • the width of the separator is slightly larger than the positive and negative electrodes.
  • tabs 2 and 2 for collecting current of the positive electrode and the negative electrode are drawn out.
  • Tab 2 is electrically connected to a current collector in each electrode.
  • Tab 2 is a conductive material, for example It is made up of nickel power.
  • FIG. 2 schematically shows a plan view of the winding state of the central portion of the wound body 1 shown in FIG.
  • the core 3 has a rectangular shape having a pair of first sides X extending in the width direction of the positive electrode C (and the negative electrode A) and a pair of second sides Y extending in the length direction of the positive electrode C (and the negative electrode A). belongs to.
  • the core material 3 has a hollow or solid plate shape.
  • the length of the first side X in the core material 3 is substantially the same as the width of the positive electrode C (and the negative electrode A).
  • the length of the second side Y of the core material 3 is the same as the length of the first side X, or shorter or longer than that of the first side X, depending on the dimensions of the target battery.
  • the length of the second side Y is preferably 70 to 99% with respect to the width W (see FIG. 1 (b)) of the inner part of the winding body at the innermost peripheral portion of the winding body 1. More preferably, the length is 80 to 95%. If this ratio is less than 70%, the effects of the present invention may not be sufficiently achieved. If it exceeds 99%, stress generated when the battery is charged is applied to the edge portion of the core material 3, and the wound body may be damaged.
  • the thickness of the core material 3 a thickness that does not deform against the expansion of the negative electrode is required. It is sufficient that such a thickness is about 0.03 to 1 mm, particularly about 0.1 to 0.5 mm, depending on the material of the core material 3 described later.
  • the core material 3 preferably has a thickness of 1 mm or less in order to ensure sufficient length of the negative electrode and the like.
  • the core material 3 is preferably made of a high-strength material from the viewpoint of preventing buckling of the negative electrode, which will be described later.
  • the core material 3 is also preferably lightweight from the viewpoint of increasing the weight energy density of the battery. From these viewpoints, the core material 3 is also configured with an insulating material strength such as polyolefin resin such as polyethylene and polypropylene. In that case, it is also preferable to add glass fiber to improve the strength.
  • the core material 3 is made of a conductive material such as nickel.
  • the positive electrode used in the battery of the present invention has, for example, a positive electrode active material layer formed on at least one surface of a current collector.
  • the positive electrode active material layer contains an active material.
  • an active material for example, a lithium transition metal composite oxide is used.
  • Lithium transition metal complex oxides include LiCoO, LiNiO, LiMn O, LiMnO, LiCo Ni O, LiNi C o Mn 0, LiNi Co Mn O, etc. are used. But what is limited to these
  • These positive electrode active materials can be used singly or in combination of two or more.
  • the positive electrode active material is suspended in a suitable solvent together with a conductive agent such as acetylene black and a binder such as polyvinylidene fluoride to prepare a positive electrode mixture, It can be obtained by applying and drying on at least one surface of a current collector such as an aluminum foil, followed by roll rolling and pressing.
  • a conductive agent such as acetylene black
  • a binder such as polyvinylidene fluoride
  • the lithium transition metal composite oxide has an average primary particle diameter of 5 ⁇ m or more and 10 ⁇ m or less. I like it from the balance.
  • Polyvinylidene fluoride used as a binder is preferred because its weight average molecular weight is not less than 350,000 and not more than 2,000,000 because it can improve discharge characteristics in a low temperature environment.
  • the negative electrode used in the battery of the present invention has, for example, a negative electrode active material layer formed on at least one surface of a current collector.
  • the negative electrode active material layer contains an active material.
  • an active material a material capable of occluding and releasing lithium ions is used. Examples of such a material include a material containing Si, a material containing Sn, a material containing A1, and a material containing Ge.
  • the material containing Sn for example, an alloy containing tin, cobalt, carbon, and at least one of nickel and chromium is preferably used.
  • a material containing Si or a material containing Sn is particularly preferable.
  • the material containing Si a material capable of occluding lithium and containing silicon, for example, silicon alone, an alloy of silicon and metal, silicon oxide, or the like can be used. These materials can be used alone or in combination.
  • the metal include one or more elements selected from the group consisting of Cu, Ni, Co, Cr, Fe, Ti, Pt, W, Mo, and Au. Of these metals, Cu, Ni, and Co are preferred, and Cu and Ni are preferably used because of their excellent electronic conductivity and low ability to form lithium compounds.
  • lithium may be occluded in the active material having a material strength including Si.
  • the material containing Si has a high point of absorption of lithium, silicon or silicon oxide. It is.
  • the negative electrode active material layer is, for example, a continuous thin film layer comprising the negative electrode active material, a coating layer containing particles of the negative electrode active material, and a sintered body layer containing particles of the negative electrode active material. Etc. Further, it may be a layer having a structure shown in FIG.
  • a synthetic resin nonwoven fabric a polyolefin such as polyethylene-polypropylene, a porous film of polytetrafluoroethylene, or the like is preferably used.
  • a separator in which a polyolefin film is formed on one or both surfaces of the polyolefin microporous membrane.
  • the separator preferably has a piercing strength of 0.2 NZ m or more and 0.49 NZw m or less, and a tensile strength in the winding axis direction of OMPa or more and 150 MPa or less. Even when a negative electrode active material that expands and contracts greatly with charge and discharge is used, damage to the separator can be suppressed and the occurrence of an internal short circuit can be suppressed.
  • the nonaqueous electrolytic solution is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
  • CF SO Li, (CF SO) NLi, (C F SO) NLi are used because of their excellent water decomposition resistance.
  • 3 3 3 3 2 2 5 2 2 is preferably used.
  • the organic solvent include ethylene carbonate, jetyl carbonate, dimethyl carbonate, propylene carbonate, butylene carbonate, and the like.
  • Including sulfonate is preferable from the viewpoint of further improving the charge / discharge cycle characteristics.
  • non-aqueous electrolytes 4 fluoro-1,3 dioxolan-2-one, 4 black mouth 1,3 dixolan 1 2-one or 4 trifluoromethyl 1,1,3 dioxola
  • a high dielectric constant solvent having a relative dielectric constant of 30 or more, such as a cyclic carbonate derivative having a halogen atom such as n-2-one. This is because it has high resistance to reduction and is difficult to be decomposed.
  • an electrolytic solution obtained by mixing the high dielectric constant solvent and a low viscosity solvent having a viscosity of ImPa ⁇ s or less, such as dimethyl carbonate, jetyl carbonate, or methyl ethyl carbonate is also preferable. This is because higher ionic conductivity can be obtained.
  • the content of fluorine ions in the electrolytic solution is in the range of 14 mass ppm to 1290 mass ppm.
  • At least one additive selected from the group consisting of acid anhydrides and derivatives thereof is contained. This is because a film is formed on the surface of the negative electrode, and the decomposition reaction of the electrolytic solution can be suppressed.
  • the core material 3 is disposed at the center of the winding body 1, and the winding body 1 and the core material 3 are interposed between them. Since the voids are not substantially present, even if a stress caused by the expansion of the negative electrode active material is locally applied to the center of the wound body 1, the core material 3 can receive the stress. As a result, the negative electrode buckling is suppressed by the core material 3. Therefore, the battery of this embodiment has improved cycle characteristics. It becomes. If a large gap exists in the center of the wound body 1, the negative electrode is deformed toward the gap due to expansion of the negative electrode active material, and buckling occurs.
  • FIG. 3 (a) and 3 (b) show another structure of the wound body 1.
  • FIG. In the wound body 1 of the present embodiment, two core members 3 are used, and each core member 3 also serves as a current collecting tab for the positive electrode and the negative electrode.
  • the core material 3 includes a main body portion 3A and a tab portion 3B that extends upward from the upper end edge of the main body portion 3A and extends beyond the longitudinal edge portion of the positive electrode C (negative electrode A).
  • the dimensions of the main body 3A are the same as those of the core shown in FIG.
  • the tab portion 3B has a rectangular shape and is smaller than the main body portion 3A.
  • Each core member 3 is electrically connected to the positive electrode and the negative electrode in the main body 3A.
  • the force depicted so that the two cores 3 and 3 are in contact with each other is actually an insulating material such as a separator between the two cores 3 and 3.
  • the core materials 3 and 3 are electrically insulated.
  • the use of the core material 3 does not cause a decrease in energy density due to a slight increase in volume.
  • two core members 3 are used. Instead, only one core member is used, and the core member also serves as a positive or negative current collecting tab. Also good. In this case, the core material can also serve as the current collecting tab! If the normal current collecting tab is electrically connected to the other electrode.
  • FIGS. 4 (a) and 4 (b) show still another structure of the wound body 1.
  • the core material also serves as a current collecting tab for the positive electrode and the negative electrode.
  • This is the same as the embodiment shown in FIGS. 3 (a) and 3 (b).
  • the difference between this embodiment and the embodiment shown in FIGS. 3 (a) and 3 (b) is that, in addition to the core material that also serves as a current collecting tab, a core material that is also used as a tab is further used. Is a point.
  • One of the three core members 31 includes a main body 31A and a tab portion 31B that extends upward from the upper side of the main body 31A and extends beyond the longitudinal edge of the positive electrode C. It is configured.
  • the core material 31 having the tab portion 31B is electrically connected to the positive electrode C.
  • the remaining two tabs may be electrically connected to the positive electrode C or may be insulated and fixed to the positive electrode C!
  • One of the two core members 32 is configured to include a main body portion 32A and a tab portion 32B that extends upwardly from the upper side force of the main body portion 32A and extends beyond the longitudinal edge of the negative electrode A.
  • the core member 32 having the tab portion 32B is electrically connected to the negative electrode A.
  • the other tab 32 may be electrically connected to the negative electrode A or may be fixed to the negative electrode A in an insulated state.
  • the core material 31 for the positive electrode and the core material 32 for the negative electrode are formed as shown in FIG. 4 (a) when the positive electrode, the negative electrode, and the like are wound to form the wound body 1. They are arranged in a straight line at the center of the rotating body 1.
  • the wound body 1 can realize a state similar to a state in which a single core material having a wide force is used.
  • the volume and weight occupied by the core materials 31 and 32 in the wound body 1 can be reduced as compared with the embodiment shown in FIGS. 3 (a) and 3 (b). This is advantageous in that it can improve the energy density per unit volume and unit weight of the battery.
  • the same effect as that of the embodiment shown in FIGS. 3 (a) and 3 (b) can be obtained.
  • the core material 31 and the core material 32 are electrically insulated through an insulating material such as a separator.
  • the distance between the core materials 31 in the positive electrode C and the distance between the core materials 32 in the negative electrode A are preferably 0 to 2 mm, particularly preferably 0.5 to lmm.
  • this distance By setting this distance to 0.5 mm or more, the energy density per weight can be improved while maintaining the effects of the invention.
  • FIG. 5 taking the method for manufacturing a wound body shown in FIGS. 3 (a) and 3 (b) as an example.
  • This manufacturing method produces a wound body using a positive electrode in which a positive electrode active material layer is formed on each surface of a current collector, and a negative electrode in which a negative electrode active material layer is formed on each surface of the current collector. It is related to.
  • the first separator S1 and the second separator S2 each having a long strip shape are fed out from the raw fabrics SI 'and S2' wound in the shape of a tool, respectively. Attach the tip to the plate-shaped take-up jig 20.
  • the winding jig 20 is rotatable around its center line. Next, as shown in FIG. 5 (b), the winding jig 20 is rotated in the direction of the arrow to wind the separators SI and S2 around the jig 20.
  • the long strip-shaped positive electrode C and negative electrode A are respectively fed out from the rolls of the raw material C 'and A', and the tips of the positive electrode C and the negative electrode A are already drawn. Attach to the take-up jig 20 to which the separators SI and S2 are attached. In this case, the tips of these electrodes are attached to the winding jig 20 so that the negative electrode A is positioned between the two separators SI and S2 and the positive electrode C is positioned on the outer surface side of the first separator S1.
  • Each of the negative electrode A and the positive electrode C is pre-attached with core materials 3 and 3 on one surface thereof.
  • Each of the core members 3 and 3 has a shape shown in FIG. 3 (b) and includes a tab portion. Each of the core materials 3 and 3 is attached to these electrodes while being electrically connected to the negative electrode A and the positive electrode C, respectively.
  • Each core material 3 and 3 is shown in FIG. 5 (d) when the winding jig 20 is rotated and the positive electrode C and the negative electrode A are wound around the jig 20 together with the separators S1 and S2. As described above, the core members 3 and 3 are positioned on the winding jig 20 and are aligned so that the core members 3 and 3 face each other.
  • the positive electrode C and negative electrode A, to which the core materials 3 and 3 thus aligned are attached, are wound around the winding jig 20 together with the separators SI and S2 as shown in Fig. 5 (d). And Winding body 1 is obtained by winding the desired number of times.
  • adjacent members are in contact with each other only by overlapping, and are not joined by a joining means such as an adhesive. In other words, each member simply touches and peels mechanically!
  • the positive electrode C and the negative electrode A are separated from the separators SI and S2, and the raw materials thereof. Also cut the roll force and fix the cut end to the side of the wound body 1. For example, an adhesive tape or an adhesive is used for fixing.
  • the winding body 1 shown in FIGS. 3 (a) and 3 (b) is obtained by pulling out the winding jig 20 from the center of the winding body as shown in FIG. 5 (e).
  • the wound body 1 from which the winding jig 20 has been pulled out is accommodated in a rectangular outer can or an aluminum laminate outer body.
  • the wound body 1 shown in Figs. 4 (a) and (b) is manufactured, in the step shown in Fig. 6 (a) corresponding to the above-described Fig. 5 (c), the positive electrode C Further, the core materials 31 and 32 made of strips may be attached to the negative electrode A and wound.
  • each of the core members 31, 32 is rotated when the winding jig 20 is rotated and the positive electrode C and the negative electrode A together with the separators SI and S2 are wound around the jig 20.
  • the core members 31, 32 are positioned on the take-up jig 20, and are aligned so that the core members 31, 32 do not face each other.
  • FIG. 7 shows a schematic diagram of a cross-sectional structure of a preferred embodiment of the negative electrode used in the present invention.
  • the negative electrode 10 of this embodiment includes a current collector 11 and an active material layer 12 formed on at least one surface thereof. Note that FIG. 7 shows a state where the active material layer 12 is formed only on one side of the current collector 11 for the sake of convenience! / The active material layer is formed on both sides of the current collector. Have you been?
  • the active material layer 12 at least a part of the surface of the active material particles 12 a containing Si is covered with a metal material having a low lithium compound forming ability.
  • This metal material 13 is a material different from the constituent material of the particles 12a. Voids are formed between the particles 12a coated with the metal material. That is, the metal material covers the surfaces of the particles 12a in a state where a gap is secured so that the non-aqueous electrolyte containing lithium ions can reach the particles 12a.
  • the metal material 13 is conveniently represented as a thick line surrounding the periphery of the particle 12a.
  • This figure is a schematic diagram of the active material layer 12 viewed two-dimensionally. In actuality, each particle is in direct contact with other particles via the metal material 13. “Lithium compound forming ability is low” means that lithium does not form an intermetallic compound or solid solution, or even if lithium is formed, the force is very small or very unstable.
  • the metal material 13 has conductivity, and examples thereof include copper, nickel, iron, cobalt, and alloys of these metals.
  • the metal material 13 is composed of active material particles 12 It is preferable that the material of the surface of the particle 12a is not easily broken even if a expands and contracts. It is preferable to use copper as such a material.
  • the metal material 13 is preferably present on the surface of the active material particles 12a over the entire thickness direction of the active material layer 12.
  • the active material particles 12 a are preferably present in the matrix of the metal material 13. As a result, even if the particles 12a expand and contract due to charge and discharge, even if they become fine powder, they are less likely to fall off. In addition, since the electronic conductivity of the entire active material layer 12 is ensured through the metal material 13, the electrically isolated active material particles 12 a are generated, particularly in the deep part of the active material layer 12. The formation of the active material particles 12a is effectively prevented. The presence of the metal material 13 on the surface of the active material particles 12a over the entire thickness direction of the active material layer 12 can be confirmed by electron microscope mapping using the material 13 as a measurement target.
  • the metal material 13 covers the surfaces of the particles 12a continuously or discontinuously.
  • the metal material 13 continuously covers the surfaces of the particles 12a it is preferable to form fine voids in the coating of the metal material 13 so that a nonaqueous electrolytic solution can flow.
  • the metal material 13 discontinuously covers the surface of the particle 12a the non-aqueous electrolyte is supplied to the particle 12a through a portion of the surface of the particle 12a that is not covered with the metal material 13. .
  • the metal material 13 may be deposited on the surfaces of the particles 12a by, for example, electrolytic plating according to the conditions described later.
  • the average thickness of the metal material 13 covering the surface of the active material particles 12a is preferably 0.05 to 2 / ⁇ ⁇ , more preferably 0.1 to 0.25 / zm. / !, thin! /. That is, the metal material 13 covers the surface of the active material particles 12a with a minimum thickness. This prevents the dropout due to the particles 12a from expanding and contracting due to charge and discharge to be pulverized while increasing the energy density.
  • the “average thickness” is a value calculated based on a portion of the surface of the active material particle 12 a that is actually covered with the metal material 13. Accordingly, the portion of the surface of the active material particles 12a not covered with the metal material 13 is not used as the basis for calculating the average value.
  • the voids formed between the particles 12a coated with the metal material 13 serve as a flow path for the non-aqueous electrolyte containing lithium ions. Non-water due to the presence of this void Since the electrolytic solution smoothly flows in the thickness direction of the active material layer 12, cycle characteristics can be improved. Further, the voids formed between the particles 12a also serve as a space for relieving the stress caused by the volume change of the active material particles 12a due to charge and discharge. The increase in the volume of the active material particles 12a whose volume has been increased by charging is absorbed in the voids. As a result, the fine particles of the particles 12a are less likely to occur, and significant deformation of the negative electrode 10 is effectively prevented.
  • the active material layer 12 preferably has a predetermined plating bath applied to a coating film obtained by applying a slurry containing particles 12a and a binder onto a current collector and drying the slurry. It is formed by performing the electrolytic plating used and depositing the metal material 13 between the particles 12a.
  • the plating solution is sufficiently permeated into the coating film.
  • the conditions for depositing the metal material 13 by electrolytic plating using the plating solution are appropriate.
  • the plating conditions include the composition of the mating bath, the pH of the plating bath, and the current density of the electrolysis.
  • the pH of the plating bath it is preferable to adjust it to 7.1 to L 1.
  • the metal material 13 for plating it is preferable to use a copper pyrophosphate bath.
  • nickel for example, an alkaline nickel bath is preferably used.
  • a copper pyrophosphate bath because the voids can be easily formed over the entire thickness direction of the layer even when the active material layer 12 is thickened.
  • the metal material 13 is deposited on the surface of the active material particles 12a, and the metal material 13 is less likely to be deposited between the particles 12a, so that the voids between the particles 12a are successfully formed. This is also preferable.
  • the bath composition, electrolysis conditions and pH are preferably as follows.
  • the metal material 13 covering the active material particles 12a tends to be thick, and it may be difficult to form desired voids between the particles 12a.
  • the current efficiency is deteriorated and gas generation is likely to occur, which may reduce the production stability.
  • a copper pyrophosphate bath having a P ratio of 6.5 to 10.5 is used, the size and number of voids formed between the active material particles 12a and the non-aqueous water in the active material layer 12 are more preferable. This is very advantageous for the flow of the electrolyte.
  • the bath composition, electrolysis conditions, and pH are preferably as follows.
  • the properties of the metal material 13 can be adjusted as appropriate by adding various additives used in electrolyte solutions for producing copper foil such as proteins, active sulfur compounds, and cellulose to the various baths. It is.
  • the ratio of voids in the entire active material layer formed by the various methods described above that is, the void ratio is 15 to 45% by volume, particularly 20 to 40% by volume is preferable.
  • the void volume of the active material layer 12 is measured by a mercury intrusion method (CFIS R 1655).
  • the mercury intrusion method is a method for obtaining information on the physical shape of a solid by measuring the size and volume of pores in the solid.
  • the principle of the mercury intrusion method is to measure the relationship between the pressure of the mercury being measured and the volume of the mercury that has been intruded (intruded) by injecting pressure into the pores of the object to be measured. is there.
  • mercury is infiltrated by the large void force existing in the active material layer 12 in order.
  • the void amount measured at a pressure of 90 MPa is regarded as the total void amount.
  • the porosity (%) of the active material layer 12 is obtained by dividing the void amount per unit area measured by the above method by the apparent volume of the active material layer 12 per unit area and multiplying it by 100. Ask.
  • the porosity can also be controlled by appropriately selecting the particle size of the active material particles 12a.
  • the maximum particle size of the particles 12a is preferably 30 m or less, more preferably 10 m or less.
  • D value it is 0.
  • the particle size of the particles is measured by laser diffraction / scattering particle size distribution measurement and electron microscope observation (SEM observation).
  • the thickness of the active material layer is 10 to 40 111, preferably 15 to 30 m, and more preferably 18 to 25 ⁇ m.
  • a thin surface layer (not shown) may be formed on the surface of the active material layer 12. Further, the negative electrode 10 may not have such a surface layer.
  • the thickness of the surface layer is as thin as 0.25 ⁇ m or less, preferably 0.1 ⁇ m or less. There is no limit to the lower limit of the thickness of the surface layer.
  • the negative electrode 10 has the above-mentioned thin thickness, has a surface layer, or has the surface layer.
  • the secondary battery can be assembled using the negative electrode 10 to reduce the overvoltage when the battery is initially charged. This means that lithium can be prevented from being reduced on the surface of the negative electrode 10 when the secondary battery is charged. The reduction of lithium leads to the generation of dendrites that cause short circuits between the two electrodes.
  • the surface layer covers the surface of the active material layer 12 continuously or discontinuously.
  • the surface layer has a large number of fine voids (not shown) that are open to the surface and communicate with the active material layer 12.
  • the fine voids exist in the surface layer so as to extend in the thickness direction of the surface layer.
  • the fine voids allow the non-aqueous electrolyte to flow.
  • the role of the fine voids is to supply a non-aqueous electrolyte into the active material layer 12.
  • the fine voids are the ratio of the area covered with the metal material 13, that is, the coverage is 95% or less, particularly 80% or less, particularly 60% or less. Such a size is preferable. If the coverage exceeds 95%, it is difficult for the high-viscosity non-aqueous electrolyte to penetrate, and the range of selection of the non-aqueous electrolyte may be narrowed.
  • the surface layer is composed of a metal compound having a low lithium compound forming ability.
  • This metal material may be the same as or different from the metal material 13 present in the active material layer 12.
  • the surface layer may have a structure of two or more layers having two or more different metal material forces. Considering the ease of production of the negative electrode 10, the metal material 13 present in the active material layer 12 and the metal material constituting the surface layer are preferably the same type.
  • the resistance of the negative electrode 10 to bending is increased.
  • the MIT folding resistance measured according to JIS C 6471 is preferably 30 times or more, more preferably 50 times or more.
  • the high folding resistance is extremely advantageous since the negative electrode 10 is folded when the negative electrode 10 is folded or wound and accommodated in the battery container.
  • a film folding fatigue tester with a tank manufactured by Toyo Seiki Seisakusho (Part No. 549) is used. be able to.
  • the current collector 11 in the negative electrode 10 as the current collector of the negative electrode for the non-aqueous electrolyte secondary battery
  • the current collector 11 is composed of a metal material having a low lithium compound forming ability as described above. Examples of such metal materials are as already described. In particular, it is preferably made of copper, nickel, stainless steel or the like. Also, it is possible to use a copper alloy foil represented by Corson alloy foil. Further, as the current collector, a metal foil having a normal tensile strength (JIS C 2318) of preferably 500 MPa or more, for example, a copper film layer formed on at least one surface of the aforementioned Corson alloy foil can be used.
  • JIS C 2318 normal tensile strength
  • a current collector having a normal elongation CFIS C 2318) of 4% or more is also preferable to use. This is because, when the tensile strength is low, stress is generated due to the stress when the active material expands, and when the elongation is low, the current collector may crack.
  • the thickness of the current collector 11 is preferably 9 to 35 / ⁇ ⁇ in consideration of the balance between maintaining the strength of the negative electrode 10 and improving the energy density.
  • copper foil is used as the current collector 11, it is preferable to perform a chromate treatment or an antifungal treatment using an organic compound such as a triazole compound or an imidazole compound.
  • a coating film is formed on the current collector 11 using a slurry containing active material particles and a binder, and then the coating is electrolyzed.
  • a current collector 11 is prepared as shown in FIG. 8 (a). Then, a slurry containing active material particles 12 a is applied onto the current collector 11 to form a coating film 15.
  • the surface roughness of the coating film forming surface of the current collector 11 is preferably 0.5 to 4 / ⁇ ⁇ at the maximum height of the contour curve. When the maximum height exceeds 4 m, the accuracy of forming the coating film 15 is reduced, and current concentration tends to occur at the protrusions. When the maximum height is less than 0, the adhesion of the active material layer 12 tends to decrease.
  • the active material particles 12a those having the above-described particle size distribution and average particle size are preferably used.
  • the slurry contains a binder and a diluting solvent.
  • the slurry may also contain a small amount of conductive carbon material particles such as acetylene black and graphite.
  • the conductive carbon material is contained in an amount of 1 to 3% by weight with respect to the weight of the active material particles 12a.
  • the content of the conductive carbon material is less than 1% by weight, the viscosity of the slurry is lowered and the sedimentation of the active material particles 12a is promoted, so that it is difficult to form a good coating film 15 and a uniform void. Become.
  • the content of the conductive carbon material exceeds 3% by weight, plating nuclei concentrate on the surface of the conductive carbon material, and a good coating is formed.
  • binder styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polyethylene (PE), ethylene propylene diene monomer (EPDM) and the like are used.
  • a diluting solvent N-methylpyrrolidone, cyclohexane or the like is used.
  • the amount of the active material particles 12a in the slurry is preferably about 30 to 70% by weight.
  • the amount of the binder is preferably about 0.4 to 4% by weight.
  • a dilute solvent is added to these to form a slurry.
  • the formed coating film 15 has a large number of minute spaces between the particles 12a.
  • the current collector 11 on which the coating film 15 is formed is immersed in a plating bath containing a metal material having a low ability to form a lithium compound. By dipping in the plating bath, the plating solution enters the minute space in the coating film 15 and reaches the interface between the coating film 15 and the current collector 11. Under this condition, electrolytic plating is performed to deposit metal species on the surface of the particles 12a (hereinafter, this plating is also referred to as penetration plating). The penetration is performed by using the current collector 11 as a force sword, immersing the counter electrode as the anode in the plating bath, and connecting both electrodes to the power source.
  • the deposition of the metal material by the penetration adhesion proceeds by applying one side force of the coating film 15 to the other side. Specifically, as shown in FIGS. 8 (b) to (d), the interfacial force between the coating film 15 and the current collector 11 is also electrolyzed so that the deposition of the metal material 13 proceeds toward the coating film surface. Make a mess. By precipitating the metal material 13 in this way, the surface of the active material particles 12a can be successfully coated with the metal material 13, and a void is successfully formed between the particles 12a coated with the metal material 13. can do.
  • the conditions of penetration for depositing the metal material 13 include the composition of the plating bath, the pH of the plating bath, and the current density of electrolysis. Such conditions are as described above.
  • the deposition of the metal material 13 proceeds from the interface between the coating film 15 and the current collector 11 toward the surface of the coating film. Foreground is the forefront of the precipitation reaction In the portion, fine particles 13a having a substantially constant thickness and also having the core force of the metal material 13 are present in layers. As the precipitation of the metal material 13 proceeds, the adjacent fine particles 13a are combined to form larger particles, and when the deposition proceeds further, the particles are combined to continuously cover the surface of the active material particles 12a. It becomes like this.
  • the penetration staking is terminated when the metal material 13 is deposited in the entire thickness direction of the coating film 15.
  • a surface layer (not shown) can be formed on the upper surface of the active material layer 12. In this way, the target negative electrode is obtained as shown in FIG. 8 (d).
  • the negative electrode 10 be subjected to anti-fouling treatment after the penetration.
  • anti-bacterial treatment include organic anti-bacterials using triazole compounds such as benzotriazole, carboxybenzotriazole, tolyltriazole and imidazole, and inorganic anti-bacterials using cobalt, nickel, chromate and the like.
  • the present invention has been described based on the preferred embodiments thereof, the present invention is not limited to the above embodiments.
  • the winding body may be manufactured according to the description in Patent Document 1 described above so that sagging occurs at the corner of the winding body.
  • the winding jig 20 can be used as a core material without being pulled out after winding.
  • a current collector having an electrolytic copper foil strength of 18 m in thickness was acid-washed at room temperature for 30 seconds. After the treatment, it was washed with pure water for 15 seconds.
  • a coating film was formed by applying a slurry containing particles of key particles on both sides of the current collector to a thickness of 15 ⁇ m.
  • the average particle diameter D of the particles was 2 m.
  • the average particle size D is the particle size of Microtrack manufactured by Nikkiso Co., Ltd.
  • Measurement was performed using a distribution measuring device (No. 9320—X100).
  • the current collector on which the coating film was formed was immersed in a copper pyrophosphate bath having the following bath composition. By the solution, copper penetration was applied to the coating film to form an active material layer.
  • the electrolysis conditions were as follows. DSE was used for the anode. A DC power source was used as the power source.
  • LiCo Ni Mn O was used as the positive electrode active material. This is acetylene black and
  • Polyvinylidene fluoride was suspended in polyvinylpyrrolidone as a solvent to obtain a positive electrode mixture.
  • This positive electrode mixture was applied to a current collector made of aluminum foil and dried, followed by roll rolling and pressing to obtain a positive electrode.
  • Polypropylene porous films having a thickness of 20 ⁇ m were used as the first and second separators.
  • the negative electrode, the positive electrode, and the first and second separators were formed in a long band shape having a width of 60 mm.
  • the first and second separators SI and S2 are wound around the winding jig 20, and then, as shown in Fig. 6 (a), the positive electrode C and the negative electrode A was further wrapped around jig 20.
  • a single core material 31 made of A1 which was a strip piece, was attached.
  • the core material 31 had a tab part.
  • the negative electrode A five Ni cores 3 2 made of strips were attached.
  • One of the five core members 32 had a tab portion.
  • Each of the core materials 31 and 32 had a length of 42 mm, a width of 4 mm, and a thickness of 100 m (excluding the tab portion).
  • the core materials 31 and 32 are aligned and attached to these electrodes when the positive electrode C and the negative electrode A are wound around the winding jig 20 so as to be in the arrangement state shown in FIG. It was.
  • the wound body is obtained by winding the desired number of times, from the raw roll
  • the positive electrode C, the negative electrode A, and the separators SI and S2 were cut, and the cut ends were fixed to the side surface of the wound body with an adhesive tape. Finally, the winding force 20 was pulled out to obtain the wound body 1.
  • the distance between the cores in the obtained wound body was about 0.5 mm.
  • the obtained wound body was accommodated in a rectangular outer can. Further, an electrolyte solution was filled in the outer can.
  • the attached one was used. After filling the electrolyte, the outer can was sealed to obtain a prismatic lithium secondary battery.
  • the battery was 6mm thick, 34mm wide and 48mm high (063448).
  • Example 1 In the same manner as in Example 1, except that the A1 tab for current collection is attached to the positive electrode, the Ni tab for current collection is attached to the negative electrode, and the core materials 31, 32 used in Example 1 are not used. A type lithium secondary battery was obtained.
  • Example 1 and Comparative Example 1 The batteries obtained in Example 1 and Comparative Example 1 were charged and discharged for 100 cycles. Charging conditions were 0.5C, final voltage 4.2V, constant current and constant voltage (CCCV). The discharge conditions were 0.5C, final voltage 2.7V, and constant current (CC). However, charge / discharge at the first cycle is 0.05 C, charge / discharge at the second to fourth cycles is 0.1 C, charge / discharge at the fifth to seventh cycles is 0.5 C, and charge / discharge at the eighth to tenth cycles is 1C.
  • the battery after 100 cycles of charge and discharge was subjected to a CT scan of the cross section, and the state of the wound body was observed nondestructively. The results are shown in FIG. 9 (Example 1) and FIG. 10 (Comparative Example 1). 9 and 10 also show the CT scan image of the battery before charging and discharging.
  • Example 2 A casing having the structure shown in FIGS. 3 (a) and (b) was produced according to Example 1.
  • a Ni plate 42 mm long, 25 mm wide and 100 m thick was used as the core material 3 to be attached to the negative electrode (excluding the tab).
  • As the core material 3 attached to the positive electrode an A1 plate having a length of 40 mm, a width of 25 mm, and a thickness of 40 / zm was used (excluding the tab portion). Except for these, a prismatic lithium secondary battery was obtained in the same manner as in Example 1.
  • Example 2 a prismatic lithium secondary battery was obtained in the same manner as in Example 2 except that the core material 3 having nickel plate strength was not used.
  • Example 2 The batteries obtained in Example 2 and Comparative Example 2 were subjected to 100 cycles of charge and discharge in the same manner as in Example 1, and then their transverse cross sections were subjected to CT scanning to observe the state of the wound body in a nondestructive manner. The results are shown in FIG. 11 (Example 2) and FIG. 12 (Comparative Example 1).
  • Example 2 is less deformed by the electrode at the center of the wound body than the battery of Comparative Example 2.
  • Example 2 has a greater degree of overall deformation. This is because the strength of the negative electrode current collector used in Example 2 is lower than the strength of the negative electrode current collector used in Example 1. Note that the A1 core material used in Example 2 appears in the CT scan image in FIG.
  • the plate-like core material is arranged at the center of the flat wound body, and the positive electrode and the negative electrode are wound around the core material without any gaps. Even if stress generated due to expansion is locally applied to the center of the wound body, the core material can receive the stress. As a result, electrode deformation including buckling is suppressed by the core material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A nonaqueous electrolyte secondary battery comprising a winding body (1) having a flat transverse section and formed by winding a positive electrode, a negative electrode and a separator interposed between them, characterized in that a planar core material (3) is arranged in the center of the winding body (1). Preferably, the core material (3) also serves as the current collection tab of the positive or negative electrode. Furthermore, a plurality of strip pieces extending in the height direction of the winding body (1) are preferably arranged linearly in one row in the width direction of the winding body (1). The nonaqueous electrolyte secondary battery may be a rectangular battery or a laminate battery.

Description

明 細 書  Specification
非水電解液二次電池  Non-aqueous electrolyte secondary battery
技術分野  Technical field
[0001] 本発明は、リチウム二次電池などの非水電解液二次電池に関する。  [0001] The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium secondary battery.
背景技術  Background art
[0002] リチウム二次電池の形態として、正極、セパレータ及び負極をこの順で重ねて一体 的に捲回してなる捲回体を備えてなる円筒型や角型のものが知られている。更に、ァ ルミ-ゥムラミネート外装体内に該捲回体を封入したラミネート型のものも知られてい る。この種の電池の一例として、特許文献 1には、芯材を用いて正極、セパレータ及 び負極を一体に捲回して円筒型の電極体を作製し、該芯材を取り除いた後に該電 極体を捲回軸に対して垂直方向から押圧して断面略楕円形状に変形させつつ、変 形した電極体を捲回方向と同一方向に回転させて巻き取り状態を緩め、次 、で該電 極体をプレスして扁平渦巻電極体となしたリチウム二次電池が提案されて!ヽる。特許 文献 1の記載によれば、この電池では、扁平渦巻電極体のコーナー部近傍にゆるみ ができるので、電極が膨張した場合に、電極がこのゆるみを埋める方向に変形して、 そのたわみが防止されるとされている。  [0002] As a form of the lithium secondary battery, a cylindrical type or a rectangular type including a winding body obtained by integrally winding a positive electrode, a separator, and a negative electrode in this order are known. Furthermore, a laminate type in which the wound body is enclosed in an aluminum laminate exterior body is also known. As an example of this type of battery, Patent Document 1 discloses that a positive electrode, a separator, and a negative electrode are integrally wound using a core material to produce a cylindrical electrode body, and the electrode is removed after the core material is removed. While the body is pressed from the direction perpendicular to the winding axis to deform into a substantially elliptical cross section, the deformed electrode body is rotated in the same direction as the winding direction to loosen the winding state. A lithium secondary battery that has been pressed into a flat spiral electrode body by pressing the polar body has been proposed! According to the description in Patent Document 1, since this battery can loosen in the vicinity of the corner of the flat spiral electrode body, when the electrode expands, the electrode is deformed in a direction to fill the looseness, and the deflection is prevented. It is supposed to be done.
[0003] 特許文献 1に記載の扁平渦巻電極体を採用すれば、そのコーナー部における電 極の膨張を吸収することが可能力もしれないが、その中心部における電極の変形を 防止することはできない。一般に扁平渦巻電極体の中心部には、その製造上の理由 により図 13 (a)に示すように空隙 Kが存在するので、中心部付近の電極が膨張すると 、その膨張は空隙が存在している中心部に向力ぃ、図 13 (b)に示すように座屈等の 変形が生じるからである。また、電極体の中心部には、図 13 (a)に示すように集電用 のタブ Tが取り付けられており、厚みが不均一になっていることから、電極の膨張の程 度力 タブが存在する部分とそうでない部分とで異なり、それによつても図 13 (b)に示 すように電極の座屈が起こりやすくなる。  [0003] If the flat spiral electrode body described in Patent Document 1 is adopted, it may not be possible to absorb the expansion of the electrode at the corner portion, but the electrode deformation at the center portion cannot be prevented. . In general, there is a gap K at the center of the flat spiral electrode body as shown in FIG. 13 (a) for the reason of manufacturing, so when the electrode near the center expands, the expansion is caused by a gap. This is because deformation such as buckling occurs as shown in Fig. 13 (b). Also, as shown in FIG. 13 (a), a current collecting tab T is attached to the center of the electrode body, and since the thickness is not uniform, the degree of expansion of the electrode is reduced. This is different between the part where the metal exists and the part where it does not, which also causes the electrode to buckle easily as shown in Fig. 13 (b).
[0004] 特許文献 1 :US2006— 111625A1  [0004] Patent Document 1: US2006—111625A1
[0005] 従って本発明の目的は、前述した従来技術が有する種々の欠点を解消し得る非水 電解液二次電池を提供することにある。 Accordingly, an object of the present invention is to provide a non-aqueous solution that can eliminate the various disadvantages of the above-described conventional technology. The object is to provide an electrolyte secondary battery.
発明の開示  Disclosure of the invention
[0006] 本発明は、正極、負極及びこれらの間に介在配置されたセパレータが捲回されて なり、横断面が扁平な形状を有する捲回体を備え、該捲回体の中心部に板状の芯 材が配されていることを特徴とする非水電解液二次電池を提供するものである。 図面の簡単な説明  [0006] The present invention includes a winding body in which a positive electrode, a negative electrode, and a separator interposed therebetween are wound, and has a flat cross section, and a plate is provided at the center of the winding body. The present invention provides a non-aqueous electrolyte secondary battery characterized in that a shaped core material is arranged. Brief Description of Drawings
[0007] [図 1]図 1 (a)は本発明の電池の一実施形態における捲回体を示す斜視図であり、図 1 (b)は図 1 (a)における b—b線断面図である。  FIG. 1 (a) is a perspective view showing a wound body in one embodiment of the battery of the present invention, and FIG. 1 (b) is a cross-sectional view taken along the line bb in FIG. 1 (a). It is.
[図 2]図 2は、図 1に示す捲回体における中心部の捲回状態を解 、た平面状態での 模式図である。  [FIG. 2] FIG. 2 is a schematic diagram in a planar state where the wound state of the central portion of the wound body shown in FIG. 1 is solved.
[図 3]図 3 (a)は本発明の第 2の実施形態における捲回体の横断面の構造を示す模 式図(図 1 (b)相当図)であり、図 3 (b)は図 3 (a)に示す捲回体における中心部の捲 回状態を解!、た平面状態での模式図(図 2相当図)である。  FIG. 3 (a) is a schematic diagram (corresponding to FIG. 1 (b)) showing the cross-sectional structure of the wound body in the second embodiment of the present invention, and FIG. FIG. 6 is a schematic diagram (corresponding to FIG. 2) in a flat state where the winding state of the central portion of the winding body shown in FIG. 3 (a) is solved.
[図 4]図 4 (a)は本発明の第 3の実施形態における捲回体の横断面の構造を示す模 式図(図 1 (b)相当図)であり、図 4 (b)は図 4 (a)に示す捲回体における中心部の捲 回状態を解!、た平面状態での模式図(図 2相当図)である。  [FIG. 4] FIG. 4 (a) is a schematic diagram (corresponding to FIG. 1 (b)) showing the cross-sectional structure of the wound body in the third embodiment of the present invention, and FIG. FIG. 5 is a schematic diagram (corresponding to FIG. 2) in a flat state where the winding state of the central portion of the winding body shown in FIG. 4 (a) is solved.
[図 5]図 5 (a)な 、し (e)は、図 3 (a)及び (b)に示す捲回体の製造方法を順次示すェ 程図である。  [FIG. 5] FIGS. 5 (a) and 5 (e) are process diagrams sequentially showing a method of manufacturing the wound body shown in FIGS. 3 (a) and 3 (b).
[図 6]図 6 (a)及び (b)は、図 4 (a)及び (b)に示す捲回体の製造方法を示す工程図で あり、図 5 (c)及び (d)に示す工程に対応する図である。  [FIG. 6] FIGS. 6 (a) and 6 (b) are process diagrams showing a method for producing the wound body shown in FIGS. 4 (a) and 4 (b), and are shown in FIGS. 5 (c) and 5 (d). It is a figure corresponding to a process.
[図 7]図 7は、本発明に用いられる負極の一実施形態の断面構造を示す模式図であ る。  FIG. 7 is a schematic diagram showing a cross-sectional structure of an embodiment of a negative electrode used in the present invention.
[図 8]図 8は、図 7に示す負極の製造方法を示す工程図である。  8 is a process chart showing a method for producing the negative electrode shown in FIG.
[図 9]図 9は、実施例 1で得られた電池の横断面の CTスキャン像である。  FIG. 9 is a CT scan image of the cross section of the battery obtained in Example 1.
[図 10]図 10は、比較例 1で得られた電池の横断面の CTスキャン像である。  FIG. 10 is a CT scan image of the cross section of the battery obtained in Comparative Example 1.
[図 11]図 11は、実施例 2で得られた電池の横断面の CTスキャン像である。  FIG. 11 is a CT scan image of the cross section of the battery obtained in Example 2.
[図 12]図 12は、比較例 2で得られた電池の横断面の CTスキャン像である。  FIG. 12 is a CT scan image of the cross section of the battery obtained in Comparative Example 2.
[図 13]図 13 (a)は、従来の角型電池における電極捲回体の横断面の構造を示す模 式図であり、図 13 (b)は、図 13 (a)に示す電極捲回体の充放電後の状態を示す模 式図である。 FIG. 13 (a) is a schematic diagram showing a cross-sectional structure of an electrode winding body in a conventional prismatic battery. FIG. 13 (b) is a schematic diagram showing a state after charging and discharging of the electrode winding body shown in FIG. 13 (a).
発明の詳細な説明  Detailed Description of the Invention
[0008] 以下、本発明をその好ましい実施形態に基づき説明する。本発明の非水電解液二 次電池(以下、単に二次電池又は電池ともいう)は、その基本構成部材として、正極、 負極及びこれらの間に配されたセパレータを有している。電池は、正極、負極及びこ れらの間に介在配置されたセパレータを一体に捲回してなる捲回体を備えている。 捲回体は、その横断面が長円形や楕円形などの扁平形状になっている。正極及び 負極の集電体の一方の面にのみ正極活物質層及び負極活物質層が形成されてい る場合には、これら活物質層を対向させた状態下に、両者間にセパレータを介在配 置させ、これら三者を捲回する。正極及び負極の集電体の両面に正極活物質層及 び負極活物質層が形成されている場合には、正極と負極を対向させた状態下に、両 者間にセパレータを介在配置させ、更に正極の外面又は負極の外面に第 2のセパレ ータを配置させ、これら四者を捲回する。正極と負極との間はセパレータを介して非 水電解液で満たされている。本発明の電池は、力かる捲回体が角型外装缶内に収 容されてなる形態や、ラミネート外装体内に収容されてなる形態であり得る。特に、捲 回体における横断面の長径を A、短径を Bとしたとき、 AZBが 3以上である捲回体を 用いた場合に、本発明の効果が顕著なものとなる。 AZBの上限値は本発明におい て臨界的ではないが、経験的には 20程度である。  [0008] Hereinafter, the present invention will be described based on preferred embodiments thereof. The non-aqueous electrolyte secondary battery of the present invention (hereinafter also simply referred to as a secondary battery or a battery) has a positive electrode, a negative electrode, and a separator disposed between them as its basic constituent members. The battery includes a winding body formed by integrally winding a positive electrode, a negative electrode, and a separator interposed therebetween. The wound body has a flat shape such as an oval or elliptical cross section. When the positive electrode active material layer and the negative electrode active material layer are formed only on one surface of the current collector of the positive electrode and the negative electrode, a separator is interposed between the active material layers facing each other. Put these three together. When the positive electrode active material layer and the negative electrode active material layer are formed on both surfaces of the current collector of the positive electrode and the negative electrode, a separator is interposed between the two with the positive electrode and the negative electrode facing each other. Furthermore, a second separator is arranged on the outer surface of the positive electrode or the outer surface of the negative electrode, and these four members are wound. The space between the positive electrode and the negative electrode is filled with a non-aqueous electrolyte via a separator. The battery of the present invention can be in a form in which a strong winding body is accommodated in a rectangular outer can or in a form in which it is accommodated in a laminate outer body. In particular, when the major axis of the cross section of the wound body is A and the minor axis is B, the effect of the present invention becomes remarkable when a wound body having an AZB of 3 or more is used. The upper limit of AZB is not critical in the present invention, but is empirically about 20.
[0009] 図 1 (a)及び (b)には、本発明の電池における捲回体 1の一実施形態が示されてい る。捲回体 1は、正極、負極及びこれらの間に介在配置されたセパレータが芯材 3を 中心にして捲回されてなる扁平形状をしている。なお図 1においては、正極、負極及 びセパレータは個別には描かれておらず、簡便のため、これらが組み合わされた一 本の線として描かれている。捲回体 1における正極、セパレータ及び負極は何れも長 尺状である。正極及び負極の幅は同寸である。セパレータの幅は正極及び負極より も若干大きくなつている。  [0009] FIGS. 1 (a) and 1 (b) show an embodiment of a wound body 1 in a battery of the present invention. The wound body 1 has a flat shape in which a positive electrode, a negative electrode, and a separator interposed therebetween are wound around a core material 3. In FIG. 1, the positive electrode, the negative electrode, and the separator are not drawn individually, but are drawn as a single line combining them for convenience. The positive electrode, separator, and negative electrode in the wound body 1 are all long. The widths of the positive and negative electrodes are the same. The width of the separator is slightly larger than the positive and negative electrodes.
[0010] 捲回体 1の中心からは、正極及び負極の集電用のタブ 2, 2が引き出されている。タ ブ 2は、各電極における集電体に電気的に接続している。タブ 2は導電性材料、例え ばニッケル力 構成されて 、る。 [0010] From the center of the wound body 1, tabs 2 and 2 for collecting current of the positive electrode and the negative electrode are drawn out. Tab 2 is electrically connected to a current collector in each electrode. Tab 2 is a conductive material, for example It is made up of nickel power.
[0011] 図 2には、図 1に示す捲回体 1における中心部の捲回状態を解いた平面図が模式 的に示されている。芯材 3は、正極 C (及び負極 A)の幅方向に延びる一対の第 1の 辺 X、及び正極 C (及び負極 A)の長さ方向に延びる一対の第 2の辺 Yを有する矩形 状のものである。芯材 3は中空又は中実の板状をしている。芯材 3における第 1の辺 X の長さは、正極 C (及び負極 A)の幅と略同寸になっている。芯材 3における第 2の辺 Yの長さは、目的とする電池の寸法との関係で、第 1の辺 Xの長さと同じである力 又 はそれによりも短いか若しくはそれよりも長くなつている。また第 2の辺 Yの長さは、捲 回体 1の最内周部における該捲回体の内側部分の幅 W (図 1 (b)参照)に対して好ま しくは 70〜99%、更に好ましくは 80〜95%の長さになっている。この割合が 70%未 満の場合は、本発明の効果が十分に奏されないことがある。 99%超の場合は、電池 の充電時に生じる応力が芯材 3のエッジ部分に加わり、捲回体が破損するおそれが ある。 [0011] FIG. 2 schematically shows a plan view of the winding state of the central portion of the wound body 1 shown in FIG. The core 3 has a rectangular shape having a pair of first sides X extending in the width direction of the positive electrode C (and the negative electrode A) and a pair of second sides Y extending in the length direction of the positive electrode C (and the negative electrode A). belongs to. The core material 3 has a hollow or solid plate shape. The length of the first side X in the core material 3 is substantially the same as the width of the positive electrode C (and the negative electrode A). The length of the second side Y of the core material 3 is the same as the length of the first side X, or shorter or longer than that of the first side X, depending on the dimensions of the target battery. ing. The length of the second side Y is preferably 70 to 99% with respect to the width W (see FIG. 1 (b)) of the inner part of the winding body at the innermost peripheral portion of the winding body 1. More preferably, the length is 80 to 95%. If this ratio is less than 70%, the effects of the present invention may not be sufficiently achieved. If it exceeds 99%, stress generated when the battery is charged is applied to the edge portion of the core material 3, and the wound body may be damaged.
[0012] 芯材 3の厚みに関しては、負極の膨張に抗して変形しない程度の厚みが必要とさ れる。そのような厚みは、後述する芯材 3の材質にもよる力 0. 03〜lmm、特に 0. 1 〜0. 5mm程度であれば十分である。例えば 063448型等の規定サイズの電池に収 容する捲回体において、負極等の長さを十分に確保するためには、芯材 3の厚みは lmm以下とすることが好まし 、。  [0012] Regarding the thickness of the core material 3, a thickness that does not deform against the expansion of the negative electrode is required. It is sufficient that such a thickness is about 0.03 to 1 mm, particularly about 0.1 to 0.5 mm, depending on the material of the core material 3 described later. For example, in a wound body that can be accommodated in a specified size battery such as the 063448 type, the core material 3 preferably has a thickness of 1 mm or less in order to ensure sufficient length of the negative electrode and the like.
[0013] 芯材 3は、後述する負極の座屈を防止する観点から、高強度の材料から構成され ていることが好ましい。また芯材 3は、電池の重量エネルギー密度を高める観点から 軽量であることも好ましい。これらの観点から、芯材 3は、例えばポリエチレンやポリプ ロピレン等のポリオレフイン系榭脂を始めとする絶縁性材料力も構成されて 、る。その 場合、強度向上のためにガラス繊維を添加することも好ましい。或いは後述するよう に、芯材 3はニッケル等の導電性材料力 構成されて 、る。  [0013] The core material 3 is preferably made of a high-strength material from the viewpoint of preventing buckling of the negative electrode, which will be described later. The core material 3 is also preferably lightweight from the viewpoint of increasing the weight energy density of the battery. From these viewpoints, the core material 3 is also configured with an insulating material strength such as polyolefin resin such as polyethylene and polypropylene. In that case, it is also preferable to add glass fiber to improve the strength. Alternatively, as will be described later, the core material 3 is made of a conductive material such as nickel.
[0014] 本発明の電池に用いられる正極は、例えば集電体の少なくとも一面に正極活物質 層が形成されてなるものである。正極活物質層には活物質が含まれている。この活物 質としては、例えばリチウム遷移金属複合酸ィ匕物が用いられる。リチウム遷移金属複 合酸化物としては LiCoO、 LiNiO、 LiMn O、 LiMnO、 LiCo Ni O、 LiNi C o Mn 0、LiNi Co Mn Oなどが用いられる。しかしこれらに制限されるもの[0014] The positive electrode used in the battery of the present invention has, for example, a positive electrode active material layer formed on at least one surface of a current collector. The positive electrode active material layer contains an active material. As this active material, for example, a lithium transition metal composite oxide is used. Lithium transition metal complex oxides include LiCoO, LiNiO, LiMn O, LiMnO, LiCo Ni O, LiNi C o Mn 0, LiNi Co Mn O, etc. are used. But what is limited to these
0.2 0.1 2 1/3 1/3 1/3 2 0.2 0.1 2 1/3 1/3 1/3 2
ではな 、。これら正極活物質は一種又は二種以上を組み合わせて用いることができ る。  Well then. These positive electrode active materials can be used singly or in combination of two or more.
[0015] 本発明に用いられる正極は、前記の正極活物質を、アセチレンブラック等の導電剤 及びポリフッ化ビニリデン等の結着剤とともに適当な溶媒に懸濁し、正極合剤を作製 し、これをアルミニウム箔等の集電体の少なくとも一面に塗布、乾燥した後、ロール圧 延、プレスすることにより得られる。  In the positive electrode used in the present invention, the positive electrode active material is suspended in a suitable solvent together with a conductive agent such as acetylene black and a binder such as polyvinylidene fluoride to prepare a positive electrode mixture, It can be obtained by applying and drying on at least one surface of a current collector such as an aluminum foil, followed by roll rolling and pressing.
[0016] 前記の方法で正極を製造する場合、前記のリチウム遷移金属複合酸化物はその一 次粒子径の平均値は 5 μ m以上 10 μ m以下であることが、充填密度と反応面積との 兼ね合 、から好ま 、。また結着剤として用いられるポリフッ化ビ-リデンはその重量 平均分子量が 350, 000以上 2, 000, 000以下であること力 低温環境での放電特 性を向上させ得る点から好ま ヽ。  When the positive electrode is produced by the above method, the lithium transition metal composite oxide has an average primary particle diameter of 5 μm or more and 10 μm or less. I like it from the balance. Polyvinylidene fluoride used as a binder is preferred because its weight average molecular weight is not less than 350,000 and not more than 2,000,000 because it can improve discharge characteristics in a low temperature environment.
[0017] 本発明の電池に用いられる負極は、例えば集電体の少なくとも一面に負極活物質 層が形成されてなるものである。負極活物質層には活物質が含まれている。この活物 質としては、リチウムイオンの吸蔵放出が可能な材料が用いられる。そのような材料と しては、例えば Siを含む材料や Snを含む材料、 A1を含む材料、 Geを含む材料が挙 げられる。 Snを含む材料としては、例えばスズと、コバルトと、炭素と、ニッケル及びク ロムのうちの少なくとも一方とを含む合金が好ましく用いられる。負極重量あたりの容 量密度を向上させる上では、特に Siを含む材料又は Snを含む材料が好ま ヽ。  [0017] The negative electrode used in the battery of the present invention has, for example, a negative electrode active material layer formed on at least one surface of a current collector. The negative electrode active material layer contains an active material. As this active material, a material capable of occluding and releasing lithium ions is used. Examples of such a material include a material containing Si, a material containing Sn, a material containing A1, and a material containing Ge. As the material containing Sn, for example, an alloy containing tin, cobalt, carbon, and at least one of nickel and chromium is preferably used. In order to improve the capacity density per weight of the negative electrode, a material containing Si or a material containing Sn is particularly preferable.
[0018] Siを含む材料としては、リチウムの吸蔵が可能で且つシリコンを含有する材料、例 えばシリコン単体、シリコンと金属との合金、シリコン酸ィ匕物などを用いることができる 。これらの材料はそれぞれ単独で、或いはこれらを混合して用いることができる。前記 の金属としては、例えば Cu、 Ni、 Co、 Cr、 Fe、 Ti、 Pt、 W、 Mo及び Auからなる群か ら選択される 1種類以上の元素が挙げられる。これらの金属のうち、 Cu、 Ni、 Coが好 ましぐ特に電子伝導性に優れる点、及びリチウム化合物の形成能の低さの点から、 Cu、 Niを用いることが望ましい。また、負極を電池に組み込む前に、又は組み込ん だ後に、 Siを含む材料力もなる活物質に対してリチウムを吸蔵させてもよい。特に好 まし 、Siを含む材料は、リチウムの吸蔵量の高さの点力 シリコン又はシリコン酸ィ匕物 である。 [0018] As the material containing Si, a material capable of occluding lithium and containing silicon, for example, silicon alone, an alloy of silicon and metal, silicon oxide, or the like can be used. These materials can be used alone or in combination. Examples of the metal include one or more elements selected from the group consisting of Cu, Ni, Co, Cr, Fe, Ti, Pt, W, Mo, and Au. Of these metals, Cu, Ni, and Co are preferred, and Cu and Ni are preferably used because of their excellent electronic conductivity and low ability to form lithium compounds. Further, before or after incorporating the negative electrode into the battery, lithium may be occluded in the active material having a material strength including Si. Particularly preferably, the material containing Si has a high point of absorption of lithium, silicon or silicon oxide. It is.
[0019] 負極活物質層は、例えば、前記の負極活物質カゝらなる連続薄膜層、前記の負極活 物質の粒子を含む塗膜層、前記の負極活物質の粒子を含む焼結体層等であり得る 。また、後述する図 7に示す構造の層であり得る。  [0019] The negative electrode active material layer is, for example, a continuous thin film layer comprising the negative electrode active material, a coating layer containing particles of the negative electrode active material, and a sintered body layer containing particles of the negative electrode active material. Etc. Further, it may be a layer having a structure shown in FIG.
[0020] 本発明の電池におけるセパレータとしては、合成樹脂製不織布、ポリエチレンゃポ リプロピレン等のポリオレフイン、又はポリテトラフルォロエチレンの多孔質フィルム等 が好ましく用いられる。電池の過充電時に生じる電極の発熱を抑制する観点からは、 ポリオレフイン微多孔膜の片面又は両面にフエ口セン誘導体の薄膜が形成されてな るセパレータを用いることが好ましい。セパレータは、突刺強度が 0. 2NZ m厚以 上 0. 49NZw m厚以下であり、捲回軸方向の引張強度力 OMPa以上 150MPa以 下であることが好ま 、。充放電に伴 、大きく膨張 ·収縮する負極活物質を用いても 、セパレータの損傷を抑制することができ、内部短絡の発生を抑制することができる 力 である。  [0020] As the separator in the battery of the present invention, a synthetic resin nonwoven fabric, a polyolefin such as polyethylene-polypropylene, a porous film of polytetrafluoroethylene, or the like is preferably used. From the viewpoint of suppressing the heat generation of the electrode that occurs when the battery is overcharged, it is preferable to use a separator in which a polyolefin film is formed on one or both surfaces of the polyolefin microporous membrane. The separator preferably has a piercing strength of 0.2 NZ m or more and 0.49 NZw m or less, and a tensile strength in the winding axis direction of OMPa or more and 150 MPa or less. Even when a negative electrode active material that expands and contracts greatly with charge and discharge is used, damage to the separator can be suppressed and the occurrence of an internal short circuit can be suppressed.
[0021] 非水電解液は、支持電解質であるリチウム塩を有機溶媒に溶解した溶液からなる。  [0021] The nonaqueous electrolytic solution is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
リチウム塩としては、 CF SO Liゝ (CF SO ) NLiゝ (C F SO ) NLiゝ LiCIO 、 LiAl  As the lithium salt, CF SO Li ゝ (CF SO) NLi ゝ (C F SO) NLi ゝ LiCIO, LiAl
3 3 3 2 2 5 2 2 4  3 3 3 2 2 5 2 2 4
CI 、 LiPF 、 LiAsF 、 LiSbF 、 LiCl、 LiBr、 Lil、 LiC F SO等が例示される。これら CI, LiPF, LiAsF, LiSbF, LiCl, LiBr, Lil, LiC F SO and the like are exemplified. these
4 6 6 6 4 9 3 4 6 6 6 4 9 3
は単独で又は 2種以上を組み合わせて用いることができる。これらのリチウム塩のうち 、耐水分解性が優れている点から、 CF SO Li、 (CF SO ) NLi、 (C F SO ) NLiを  May be used alone or in combination of two or more. Among these lithium salts, CF SO Li, (CF SO) NLi, (C F SO) NLi are used because of their excellent water decomposition resistance.
3 3 3 2 2 5 2 2 用いることが好ましい。有機溶媒としては、例えばエチレンカーボネート、ジェチルカ ーボネート、ジメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート等 が挙げられる。特に、非水電解液全体に対し 0. 5〜5重量%のビ-レンカーボネート 及び 0. 1〜1重量%のジビ-ルスルホン、 0. 1〜1. 5重量%の 1, 4 ブタンジォー ルジメタンスルホネートを含有させることが充放電サイクル特性を更に向上する観点 力 好ましい。その理由について詳細は明らかでないが、 1, 4 ブタンジオールジメ タンスルホネートとジビニルスルホンが段階的に分解して、正極上に被膜を形成する ことにより、硫黄を含有する被膜がより緻密なものになるためであると考えられる。  3 3 3 2 2 5 2 2 is preferably used. Examples of the organic solvent include ethylene carbonate, jetyl carbonate, dimethyl carbonate, propylene carbonate, butylene carbonate, and the like. In particular, 0.5 to 5% by weight of beylene carbonate and 0.1 to 1% by weight of dibutyl sulfone, 0.1 to 1.5% by weight of 1,4 butanediol dimethane, based on the total amount of the non-aqueous electrolyte. Including sulfonate is preferable from the viewpoint of further improving the charge / discharge cycle characteristics. The details are not clear, but 1,4 butanediol dimethyl sulfonate and divinyl sulfone are decomposed stepwise to form a film on the positive electrode, so that the film containing sulfur becomes denser. This is probably because of this.
[0022] 特に非水電解液としては、 4 フルオロー 1, 3 ジォキソランー2 オン , 4 クロ 口一 1, 3 ジォキソラン一 2—オン或いは 4 トリフルォロメチル一 1, 3 ジォキソラ ンー 2—オンなどのハロゲン原子を有する環状の炭酸エステル誘導体のような比誘 電率が 30以上の高誘電率溶媒を用いることも好ましい。耐還元性が高ぐ分解され にくいからである。また、上記高誘電率溶媒と、ジメチルカーボネート、ジェチルカ一 ボネート、或いはメチルェチルカーボネートなどの粘度が ImPa · s以下である低粘度 溶媒を混合した電解液も好ましい。より高いイオン伝導性を得ることができるからであ る。更に、電解液中のフッ素イオンの含有量が 14質量 ppm以上 1290質量 ppm以下 の範囲内であることも好ましい。電解液に適量なフッ素イオンが含まれていると、フッ 素イオンに由来するフッ化リチウムなどの被膜が負極に形成され、負極における電解 液の分解反応を抑制することができると考えられる力もである。更に、酸無水物及び その誘導体からなる群のうちの少なくとも 1種の添加物が 0. 001重量%〜10重量% 含まれていることが好ましい。これにより負極の表面に被膜が形成され、電解液の分 解反応を抑制することができるからである。この添加物としては、環に一 c( = o)— O c( = o)—基を含む環式化合物が好ましぐ例えば無水コハク酸、無水ダルタル 酸、無水マレイン酸、無水フタル酸、無水 2—スルホ安息香酸、無水シトラコン酸、無 水ィタコン酸、無水ジグリコール酸、無水へキサフルォログルタル酸、無水 3—フルォ ロフタル酸、無水 4 フルオロフタル酸などの無水フタル酸誘導体、又は無水 3, 6— エポキシ 1, 2, 3, 6—テトラヒドロフタル酸、無水 1, 8 ナフタル酸、無水 2, 3 ナ フタレンカルボン酸、無水 1, 2—シクロペンタンジカルボン酸、 1, 2—シクロへキサン ジカルボン酸などの無水 1, 2 シクロアルカンジカルボン酸、又はシス 1, 2, 3, 6 ーテトラヒドロフタル酸無水物或いは 3, 4, 5, 6—テトラヒドロフタル酸無水物などの テトラヒドロフタル酸無水物、又はへキサヒドロフタル酸無水物(シス異性体、トランス 異性体)、 3, 4, 5, 6—テトラクロロフタル酸無水物、 1, 2, 4 ベンゼントリカルボン 酸無水物、二無水ピロメリット酸、又はこれらの誘導体などが挙げられる。 [0022] In particular, as non-aqueous electrolytes, 4 fluoro-1,3 dioxolan-2-one, 4 black mouth 1,3 dixolan 1 2-one or 4 trifluoromethyl 1,1,3 dioxola It is also preferable to use a high dielectric constant solvent having a relative dielectric constant of 30 or more, such as a cyclic carbonate derivative having a halogen atom such as n-2-one. This is because it has high resistance to reduction and is difficult to be decomposed. In addition, an electrolytic solution obtained by mixing the high dielectric constant solvent and a low viscosity solvent having a viscosity of ImPa · s or less, such as dimethyl carbonate, jetyl carbonate, or methyl ethyl carbonate is also preferable. This is because higher ionic conductivity can be obtained. Furthermore, it is also preferable that the content of fluorine ions in the electrolytic solution is in the range of 14 mass ppm to 1290 mass ppm. When the electrolyte solution contains an appropriate amount of fluorine ions, a coating film such as lithium fluoride derived from fluorine ions is formed on the negative electrode, and it is possible to suppress the decomposition reaction of the electrolyte solution in the negative electrode. is there. Further, it is preferable that 0.001% by weight to 10% by weight of at least one additive selected from the group consisting of acid anhydrides and derivatives thereof is contained. This is because a film is formed on the surface of the negative electrode, and the decomposition reaction of the electrolytic solution can be suppressed. As this additive, a cyclic compound containing one c (= o) —Oc (= o) — group in the ring is preferred, for example, succinic anhydride, darthal anhydride, maleic anhydride, phthalic anhydride, anhydrous 2-sulfobenzoic acid, anhydrous citraconic acid, anhydrous itaconic acid, anhydrous diglycolic acid, anhydrous hexafluoroglutaric acid, anhydrous 3-fluorophthalic acid, anhydrous 4-phthalic anhydride derivatives such as fluorophthalic acid, or anhydrous 3, 6—Epoxy 1, 2, 3, 6—Tetrahydrophthalic acid, 1,8 naphthalic anhydride, 2,3 naphthalene carboxylic acid anhydride, 1,2-cyclopentanedicarboxylic acid anhydride, 1,2-cycloto Anhydrous 1,2 cycloalkanedicarboxylic acid such as xane dicarboxylic acid, or tetrahydrophthalic anhydride such as cis 1, 2, 3, 6-tetrahydrophthalic anhydride or 3, 4, 5, 6-tetrahydrophthalic anhydride Or hexahi Lophthalic anhydride (cis isomer, trans isomer), 3, 4, 5, 6-tetrachlorophthalic anhydride, 1, 2, 4 benzenetricarboxylic anhydride, dianhydropyromellitic acid, or their derivatives Etc.
以上の構成を有する捲回体 1を備えた本実施形態の電池によれば、捲回体 1の中 心部に芯材 3が配置されており、捲回体と芯材 3との間に空隙が実質的に存在してい ないので、負極活物質の膨張に起因して生ずる応力が捲回体 1の中心に局所的に 加わっても、その応力を芯材 3が受け止めることができる。その結果、負極の座屈が 芯材 3によって抑制される。従って本実施形態の電池は、サイクル特性が向上したも のとなる。捲回体 1の中心部に大きな空隙が存在していると、負極活物質の膨張に起 因して、その空隙に向けて負極が変形し、座屈が起こってしまう。 According to the battery of the present embodiment including the winding body 1 having the above-described configuration, the core material 3 is disposed at the center of the winding body 1, and the winding body 1 and the core material 3 are interposed between them. Since the voids are not substantially present, even if a stress caused by the expansion of the negative electrode active material is locally applied to the center of the wound body 1, the core material 3 can receive the stress. As a result, the negative electrode buckling is suppressed by the core material 3. Therefore, the battery of this embodiment has improved cycle characteristics. It becomes. If a large gap exists in the center of the wound body 1, the negative electrode is deformed toward the gap due to expansion of the negative electrode active material, and buckling occurs.
[0024] 図 3 (a)及び (b)には捲回体 1の別の構造が示されている。本実施形態の捲回体 1 においては芯材 3を 2個用い、それぞれの芯材 3が正極及び負極の集電用タブを兼 用している。詳細には、芯材 3は、本体部 3Aと該本体部 3Aの上端縁から上方に延 出し、正極 C (負極 A)の長手方向縁部を超えて延びるタブ部 3Bとから構成されて ヽ る。本体部 3Aの寸法は、図 2に示す芯材と同様になつている。タブ部 3Bは矩形をし ており、その大きさは本体部 3Aよりも小さくなつている。各芯材 3は、その本体部 3A において正極及び負極に電気的にそれぞれ接続されている。図 3 (a)においては、 2 つの芯材 3, 3が対向して接触しているように描かれている力 実際には 2つの芯材 3 , 3の間にはセパレータ等の絶縁性材料が介在配置されており、両芯材 3, 3は電気 的に絶縁されている。 3 (a) and 3 (b) show another structure of the wound body 1. FIG. In the wound body 1 of the present embodiment, two core members 3 are used, and each core member 3 also serves as a current collecting tab for the positive electrode and the negative electrode. Specifically, the core material 3 includes a main body portion 3A and a tab portion 3B that extends upward from the upper end edge of the main body portion 3A and extends beyond the longitudinal edge portion of the positive electrode C (negative electrode A). The The dimensions of the main body 3A are the same as those of the core shown in FIG. The tab portion 3B has a rectangular shape and is smaller than the main body portion 3A. Each core member 3 is electrically connected to the positive electrode and the negative electrode in the main body 3A. In Fig. 3 (a), the force depicted so that the two cores 3 and 3 are in contact with each other is actually an insulating material such as a separator between the two cores 3 and 3. The core materials 3 and 3 are electrically insulated.
[0025] 本実施形態によれば、集電用タブを電極に別途取り付けることに起因して捲回体 内に生ずる段差がなくなる。その結果、負極の膨張に起因する座屈の発生を一層効 果的に防止することができる。また、芯材 3を用いることによる若干の体積増加に起因 するエネルギー密度の低下を生じさせない。なお、本実施形態においては芯材 3を 2 個用いているが、これに代えて、 1個の芯材のみを用い、該芯材が正極又は負極の 集電用タブを兼用するようにしてもよい。この場合には、芯材が集電用タブを兼用し て!ヽな 、方の電極に、通常の集電用タブを電気的に接続させればょ 、。  [0025] According to this embodiment, there is no step generated in the wound body due to the separate attachment of the current collecting tab to the electrode. As a result, the occurrence of buckling due to the expansion of the negative electrode can be more effectively prevented. Further, the use of the core material 3 does not cause a decrease in energy density due to a slight increase in volume. In this embodiment, two core members 3 are used. Instead, only one core member is used, and the core member also serves as a positive or negative current collecting tab. Also good. In this case, the core material can also serve as the current collecting tab! If the normal current collecting tab is electrically connected to the other electrode.
[0026] 図 4 (a)及び (b)には捲回体 1の更に別の構造が示されて 、る。本実施形態の捲回 体 1にお ヽても芯材が正極及び負極の集電用タブを兼用して 、る。この点に関して は、図 3 (a)及び (b)に示す実施形態と同様である。本実施形態が図 3 (a)及び (b)に 示す実施形態と異なる点は、集電用タブを兼用している芯材に加えて、タブを兼用し てな ヽ芯材を更に用いた点である。  FIGS. 4 (a) and 4 (b) show still another structure of the wound body 1. FIG. Even in the winding body 1 of the present embodiment, the core material also serves as a current collecting tab for the positive electrode and the negative electrode. This is the same as the embodiment shown in FIGS. 3 (a) and 3 (b). The difference between this embodiment and the embodiment shown in FIGS. 3 (a) and 3 (b) is that, in addition to the core material that also serves as a current collecting tab, a core material that is also used as a tab is further used. Is a point.
[0027] 詳細には、正極 Cに関しては、該正極 Cの幅方向(=捲回体の高さ方向)に延びる 矩形の短冊片カもなる芯材 31が、正極 Cの長手方向(=捲回体の幅方向)に 3個並 列配置されている。 3個の芯材 31のうちの一つは、本体部 31 A及び該本体部 31 Aの 上辺から上方に延出し、正極 Cの長手方向縁部を超えて延びるタブ部 31Bを備えて 構成されている。タブ部 31Bを有する芯材 31は、正極 Cに電気的に接続されている 。残りの 2つのタブは、正極 Cに電気的に接続されていてもよぐ或いは絶縁状態で 正極 Cに固定されて!、てもよ!/、。 In detail, with respect to the positive electrode C, a core material 31 that is also a rectangular strip extending in the width direction of the positive electrode C (= the height direction of the wound body) is formed in the longitudinal direction of the positive electrode C (= 捲Three are arranged in parallel in the width direction of the rotator. One of the three core members 31 includes a main body 31A and a tab portion 31B that extends upward from the upper side of the main body 31A and extends beyond the longitudinal edge of the positive electrode C. It is configured. The core material 31 having the tab portion 31B is electrically connected to the positive electrode C. The remaining two tabs may be electrically connected to the positive electrode C or may be insulated and fixed to the positive electrode C!
[0028] 一方、負極 Aについては、該負極 Aの幅方向(=捲回体の高さ方向)に延びる矩形 の短冊片カもなる芯材 32が、負極 Aの長手方向(=捲回体の幅方向)に 2個並列配 置されている。 2個の芯材 32のうちの一方は、本体部 32A及び該本体部 32Aの上辺 力も上方に延出し、負極 Aの長手方向縁部を超えて延びるタブ部 32Bを備えて構成 されている。タブ部 32Bを有する芯材 32は、負極 Aに電気的に接続されている。他 方のタブ 32は、負極 Aに電気的に接続されていてもよぐ或いは絶縁状態で負極 A に固定されていてもよい。  [0028] On the other hand, for the negative electrode A, the core 32, which is also a rectangular strip extending in the width direction of the negative electrode A (= the height direction of the wound body), is the longitudinal direction of the negative electrode A (= the wound body). In the width direction). One of the two core members 32 is configured to include a main body portion 32A and a tab portion 32B that extends upwardly from the upper side force of the main body portion 32A and extends beyond the longitudinal edge of the negative electrode A. The core member 32 having the tab portion 32B is electrically connected to the negative electrode A. The other tab 32 may be electrically connected to the negative electrode A or may be fixed to the negative electrode A in an insulated state.
[0029] 正極用の芯材 31と負極用の芯材 32とは、これら正極及び負極等が捲回されて捲 回体 1となったときに、図 4 (a)に示すように、捲回体 1の中心部において直線状に一 列に並ぶように配置される。芯材 31, 32をこのように配置することによって、捲回体 1 においては、あた力も幅広の一枚の芯材を用いた状態と同様の状態を実現すること ができる。その結果、捲回体 1において芯材 31, 32が占める体積及び重量を、図 3 ( a)及び (b)に示す実施形態よりも少なくすることができる。このことは電池の単位体積 当たり及び単位重量当たりのエネルギー密度を向上させ得る点力 有利である。これ に加えて、本実施形態によれば、図 3 (a)及び (b)に示す実施形態の奏する効果と同 様の効果も奏される。なお、図示していないが、芯材 31と芯材 32とは、セパレータ等 の絶縁材料を介して電気的に絶縁されて 、る。  [0029] The core material 31 for the positive electrode and the core material 32 for the negative electrode are formed as shown in FIG. 4 (a) when the positive electrode, the negative electrode, and the like are wound to form the wound body 1. They are arranged in a straight line at the center of the rotating body 1. By arranging the core materials 31 and 32 in this way, the wound body 1 can realize a state similar to a state in which a single core material having a wide force is used. As a result, the volume and weight occupied by the core materials 31 and 32 in the wound body 1 can be reduced as compared with the embodiment shown in FIGS. 3 (a) and 3 (b). This is advantageous in that it can improve the energy density per unit volume and unit weight of the battery. In addition to this, according to the present embodiment, the same effect as that of the embodiment shown in FIGS. 3 (a) and 3 (b) can be obtained. Although not shown, the core material 31 and the core material 32 are electrically insulated through an insulating material such as a separator.
[0030] 正極 Cにおける芯材 31間の距離、及び負極 Aにおける芯材 32間の距離は、 0〜2 mm、特に 0. 5〜 lmmであることが好ましい。この距離を 0. 5mm以上とすることによ つて、発明の効果を維持しつつ、重量当たりのエネルギー密度の向上が図れる。ま た、 2mm以下とすることで、芯材 31間のくぼみ部分に座屈が生じることを防止できる  [0030] The distance between the core materials 31 in the positive electrode C and the distance between the core materials 32 in the negative electrode A are preferably 0 to 2 mm, particularly preferably 0.5 to lmm. By setting this distance to 0.5 mm or more, the energy density per weight can be improved while maintaining the effects of the invention. In addition, by setting it to 2 mm or less, it is possible to prevent buckling from occurring in the recessed portion between the core materials 31.
[0031] なお図 4 (a)及び (b)に示す実施形態においては、複数の芯材 31, 32のうちの一 部に、タブ部 32を有するものが含まれていた力 これに代えて、各芯材 31, 32の何 れもがタブ部 32を有していなくてもよい。この場合には、通常の集電用タブを正極 C 及び負極 Aに電気的に接続させればよい。 [0031] In the embodiment shown in Figs. 4 (a) and (b), the force in which one of the plurality of core materials 31, 32 includes the tab portion 32 was included. None of the core members 31 and 32 may have the tab portion 32. In this case, connect the normal current collecting tab to the positive electrode C. And the negative electrode A may be electrically connected.
[0032] 次に、本発明に用いられる捲回体の製造方法を、図 3 (a)及び (b)に示す捲回体の 製造方法を例にとり図 5を参照しながら説明する。本製造方法は、集電体の各面に 正極活物質層が形成されてなる正極、及び集電体の各面に負極活物質層が形成さ れてなる負極を用いた捲回体の製造に係るものである。先ず図 5 (a)に示すように、口 ール状に捲回されている原反 SI ' , S2'から、長尺帯状の第 1のセパレータ S1及び 第 2のセパレータ S2をそれぞれ繰り出し、その先端を板状の巻き取り治具 20に取り 付ける。巻き取り治具 20は、その中心線のまわりに回転可能になっている。次に図 5 ( b)に示すように、巻き取り治具 20を矢印方向に回転させて該治具 20の周囲にセパ レータ SI, S2を巻き付ける。  Next, a method for manufacturing a wound body used in the present invention will be described with reference to FIG. 5, taking the method for manufacturing a wound body shown in FIGS. 3 (a) and 3 (b) as an example. This manufacturing method produces a wound body using a positive electrode in which a positive electrode active material layer is formed on each surface of a current collector, and a negative electrode in which a negative electrode active material layer is formed on each surface of the current collector. It is related to. First, as shown in FIG. 5 (a), the first separator S1 and the second separator S2 each having a long strip shape are fed out from the raw fabrics SI 'and S2' wound in the shape of a tool, respectively. Attach the tip to the plate-shaped take-up jig 20. The winding jig 20 is rotatable around its center line. Next, as shown in FIG. 5 (b), the winding jig 20 is rotated in the direction of the arrow to wind the separators SI and S2 around the jig 20.
[0033] 次に図 5 (c)に示すように、ロール状に捲回されている原反 C', A'から、長尺帯状 の正極 C及び負極 Aをそれぞれ繰り出し、その先端を、既にセパレータ SI, S2が卷 き付けられている巻き取り治具 20に取り付ける。この場合、負極 Aが二つのセパレー タ SI, S2間に位置し、且つ正極 Cが第 1のセパレータ S1の外面側に位置するように 、これらの電極の先端を巻き取り治具 20に取り付ける。  [0033] Next, as shown in Fig. 5 (c), the long strip-shaped positive electrode C and negative electrode A are respectively fed out from the rolls of the raw material C 'and A', and the tips of the positive electrode C and the negative electrode A are already drawn. Attach to the take-up jig 20 to which the separators SI and S2 are attached. In this case, the tips of these electrodes are attached to the winding jig 20 so that the negative electrode A is positioned between the two separators SI and S2 and the positive electrode C is positioned on the outer surface side of the first separator S1.
[0034] 負極 A及び正極 Cのそれぞれには、それらの一面に予め芯材 3, 3が取り付けられ ている。各芯材 3, 3は図 3 (b)に示す形状のものであり、タブ部を備えている。各芯材 3, 3は、負極 A及び正極 Cに電気的に接続された状態で、これらの電極にそれぞれ 取り付けられている。各芯材 3, 3は、巻き取り治具 20を回転させて、セパレータ S1, S2と共に正極 C及び負極 Aを該治具 20の周囲に巻き付けていったときに、図 5 (d) に示すように、各芯材 3, 3が巻き取り治具 20上に位置し、且つ芯材 3, 3どうしが対 向するように位置合わせされている。そのように位置合わせされた芯材 3, 3が取り付 けられた正極 C及び負極 Aを、セパレータ SI, S2と共に巻き取り治具 20の周囲に卷 き付けて図 5 (d)に示す状態とする。所望の回数の巻き付けによって捲回体 1が得ら れる。各部材の巻き付けにおいては、隣り合う部材間は、重ね合わせのみによって接 しており、接着剤などの接合手段によっては接合されていない。つまり、各部材は、 機械的に剥離可能なように接して!/、るだけである。  [0034] Each of the negative electrode A and the positive electrode C is pre-attached with core materials 3 and 3 on one surface thereof. Each of the core members 3 and 3 has a shape shown in FIG. 3 (b) and includes a tab portion. Each of the core materials 3 and 3 is attached to these electrodes while being electrically connected to the negative electrode A and the positive electrode C, respectively. Each core material 3 and 3 is shown in FIG. 5 (d) when the winding jig 20 is rotated and the positive electrode C and the negative electrode A are wound around the jig 20 together with the separators S1 and S2. As described above, the core members 3 and 3 are positioned on the winding jig 20 and are aligned so that the core members 3 and 3 face each other. The positive electrode C and negative electrode A, to which the core materials 3 and 3 thus aligned are attached, are wound around the winding jig 20 together with the separators SI and S2 as shown in Fig. 5 (d). And Winding body 1 is obtained by winding the desired number of times. In wrapping each member, adjacent members are in contact with each other only by overlapping, and are not joined by a joining means such as an adhesive. In other words, each member simply touches and peels mechanically!
[0035] 巻き付けが完了したら、正極 C及び負極 Aを、セパレータ SI, S2を、それらの原反 ロール力も切断し、切断された端部を捲回体 1の側面に固定する。固定には例えば 粘着テープや接着剤が用いられる。最後に、図 5 (e)に示すように捲回体の中心から 巻き取り治具 20を引き抜くことで、図 3 (a)及び (b)に示す捲回体 1が得られる。巻き 取り治具 20が引き抜かれた捲回体 1は、角型外装缶やアルミニウムラミネート外装体 に収容される。 [0035] When the winding is completed, the positive electrode C and the negative electrode A are separated from the separators SI and S2, and the raw materials thereof. Also cut the roll force and fix the cut end to the side of the wound body 1. For example, an adhesive tape or an adhesive is used for fixing. Finally, the winding body 1 shown in FIGS. 3 (a) and 3 (b) is obtained by pulling out the winding jig 20 from the center of the winding body as shown in FIG. 5 (e). The wound body 1 from which the winding jig 20 has been pulled out is accommodated in a rectangular outer can or an aluminum laminate outer body.
[0036] 図 4 (a)及び (b)に示す捲回体 1を製造する場合には、上述の図 5 (c)に対応する 工程である図 6 (a)に示す工程において、正極 C及び負極 Aに、短冊片からなる芯材 31 , 32を取り付けて捲回を行えばよい。この場合、各芯材 31, 32は、巻き取り治具 2 0を回転させて、セパレータ S I, S2と共に正極 C及び負極 Aを該治具 20の周囲に卷 き付けていったときに、図 6 (b)に示すように、各芯材 31, 32が巻き取り治具 20上に 位置し、且つ芯材 31, 32どうしが対向しないように位置合わせされている。  [0036] When the wound body 1 shown in Figs. 4 (a) and (b) is manufactured, in the step shown in Fig. 6 (a) corresponding to the above-described Fig. 5 (c), the positive electrode C Further, the core materials 31 and 32 made of strips may be attached to the negative electrode A and wound. In this case, each of the core members 31, 32 is rotated when the winding jig 20 is rotated and the positive electrode C and the negative electrode A together with the separators SI and S2 are wound around the jig 20. As shown in FIG. 6 (b), the core members 31, 32 are positioned on the take-up jig 20, and are aligned so that the core members 31, 32 do not face each other.
[0037] 図 7には本発明において用いられる負極の好適な一実施形態の断面構造の模式 図が示されている。本実施形態の負極 10は、集電体 11と、その少なくとも一面に形 成された活物質層 12を備えている。なお図 7においては、便宜的に集電体 11の片 面にのみ活物質層 12が形成されて ヽる状態が示されて!/ヽるが、活物質層は集電体 の両面に形成されて 、てもよ 、。  FIG. 7 shows a schematic diagram of a cross-sectional structure of a preferred embodiment of the negative electrode used in the present invention. The negative electrode 10 of this embodiment includes a current collector 11 and an active material layer 12 formed on at least one surface thereof. Note that FIG. 7 shows a state where the active material layer 12 is formed only on one side of the current collector 11 for the sake of convenience! / The active material layer is formed on both sides of the current collector. Have you been?
[0038] 活物質層 12においては、 Siを含む活物質の粒子 12aの表面の少なくとも一部が、 リチウム化合物の形成能の低い金属材料で被覆されている。この金属材料 13は、粒 子 12aの構成材料と異なる材料である。該金属材料で被覆された該粒子 12aの間に は空隙が形成されている。つまり該金属材料は、リチウムイオンを含む非水電解液が 粒子 12aへ到達可能なような隙間を確保した状態で該粒子 12aの表面を被覆してい る。図 7中、金属材料 13は、粒子 12aの周囲を取り囲む太線として便宜的に表されて いる。なお同図は活物質層 12を二次元的にみた模式図であり、実際は各粒子は他 の粒子と直接な ヽし金属材料 13を介して接触して ヽる。「リチウム化合物の形成能の 低い」とは、リチウムと金属間化合物若しくは固溶体を形成しないか、又は形成したと してもリチウムが微量である力若しくは非常に不安定であることを意味する。  In the active material layer 12, at least a part of the surface of the active material particles 12 a containing Si is covered with a metal material having a low lithium compound forming ability. This metal material 13 is a material different from the constituent material of the particles 12a. Voids are formed between the particles 12a coated with the metal material. That is, the metal material covers the surfaces of the particles 12a in a state where a gap is secured so that the non-aqueous electrolyte containing lithium ions can reach the particles 12a. In FIG. 7, the metal material 13 is conveniently represented as a thick line surrounding the periphery of the particle 12a. This figure is a schematic diagram of the active material layer 12 viewed two-dimensionally. In actuality, each particle is in direct contact with other particles via the metal material 13. “Lithium compound forming ability is low” means that lithium does not form an intermetallic compound or solid solution, or even if lithium is formed, the force is very small or very unstable.
[0039] 金属材料 13は導電性を有するものであり、その例としては銅、ニッケル、鉄、コバル ト又はこれらの金属の合金などが挙げられる。特に金属材料 13は、活物質の粒子 12 aが膨張収縮しても該粒子 12aの表面の被覆が破壊されにくい延性の高い材料であ ることが好ま U、。そのような材料としては銅を用いることが好ま 、。 [0039] The metal material 13 has conductivity, and examples thereof include copper, nickel, iron, cobalt, and alloys of these metals. In particular, the metal material 13 is composed of active material particles 12 It is preferable that the material of the surface of the particle 12a is not easily broken even if a expands and contracts. It is preferable to use copper as such a material.
[0040] 金属材料 13は、活物質層 12の厚み方向全域にわたって活物質の粒子 12aの表 面に存在して 、ることが好ま 、。そして金属材料 13のマトリックス中に活物質の粒 子 12aが存在していることが好ましい。これによつて、充放電によって該粒子 12aが膨 張収縮することに起因して微粉ィ匕しても、その脱落が起こりづらくなる。また、金属材 料 13を通じて活物質層 12全体の電子伝導性が確保されるので、電気的に孤立した 活物質の粒子 12aが生成すること、特に活物質層 12の深部に電気的に孤立した活 物質の粒子 12aが生成することが効果的に防止される。金属材料 13が活物質層 12 の厚み方向全域にわたって活物質の粒子 12aの表面に存在していることは、該材料 13を測定対象とした電子顕微鏡マッピングによって確認できる。  [0040] The metal material 13 is preferably present on the surface of the active material particles 12a over the entire thickness direction of the active material layer 12. The active material particles 12 a are preferably present in the matrix of the metal material 13. As a result, even if the particles 12a expand and contract due to charge and discharge, even if they become fine powder, they are less likely to fall off. In addition, since the electronic conductivity of the entire active material layer 12 is ensured through the metal material 13, the electrically isolated active material particles 12 a are generated, particularly in the deep part of the active material layer 12. The formation of the active material particles 12a is effectively prevented. The presence of the metal material 13 on the surface of the active material particles 12a over the entire thickness direction of the active material layer 12 can be confirmed by electron microscope mapping using the material 13 as a measurement target.
[0041] 金属材料 13は、粒子 12aの表面を連続に又は不連続に被覆している。金属材料 1 3が粒子 12aの表面を連続に被覆している場合には、金属材料 13の被覆に、非水電 解液の流通が可能な微細な空隙を形成することが好ましい。金属材料 13が粒子 12a の表面を不連続に被覆している場合には、粒子 12aの表面のうち、金属材料 13で被 覆されていない部位を通じて該粒子 12aへ非水電解液が供給される。このような構造 の金属材料 13の被覆を形成するためには、例えば後述する条件に従う電解めつき によって金属材料 13を粒子 12aの表面に析出させればよい。  [0041] The metal material 13 covers the surfaces of the particles 12a continuously or discontinuously. When the metal material 13 continuously covers the surfaces of the particles 12a, it is preferable to form fine voids in the coating of the metal material 13 so that a nonaqueous electrolytic solution can flow. When the metal material 13 discontinuously covers the surface of the particle 12a, the non-aqueous electrolyte is supplied to the particle 12a through a portion of the surface of the particle 12a that is not covered with the metal material 13. . In order to form the coating of the metal material 13 having such a structure, the metal material 13 may be deposited on the surfaces of the particles 12a by, for example, electrolytic plating according to the conditions described later.
[0042] 活物質の粒子 12aの表面を被覆している金属材料 13は、その厚みの平均が好まし くは 0. 05〜2 /ζ πι、更に好ましくは 0. 1〜0. 25 /z mと! /、う薄!/、ものである。つまり金 属材料 13は最低限の厚みで以て活物質の粒子 12aの表面を被覆して 、る。これに よって、エネルギー密度を高めつつ、充放電によって粒子 12aが膨張収縮して微粉 化することに起因する脱落を防止している。ここでいう「厚みの平均」とは、活物質の 粒子 12aの表面のうち、実際に金属材料 13が被覆している部分に基づき計算された 値である。従って活物質の粒子 12aの表面のうち金属材料 13で被覆されていない部 分は、平均値の算出の基礎にはされない。  [0042] The average thickness of the metal material 13 covering the surface of the active material particles 12a is preferably 0.05 to 2 / ζ πι, more preferably 0.1 to 0.25 / zm. / !, thin! /. That is, the metal material 13 covers the surface of the active material particles 12a with a minimum thickness. This prevents the dropout due to the particles 12a from expanding and contracting due to charge and discharge to be pulverized while increasing the energy density. Here, the “average thickness” is a value calculated based on a portion of the surface of the active material particle 12 a that is actually covered with the metal material 13. Accordingly, the portion of the surface of the active material particles 12a not covered with the metal material 13 is not used as the basis for calculating the average value.
[0043] 金属材料 13で被覆された粒子 12a間に形成された空隙は、リチウムイオンを含む 非水電解液の流通の経路としての働きを有して 、る。この空隙の存在によって非水 電解液が活物質層 12の厚み方向へ円滑に流通するので、サイクル特性を向上させ ることができる。更に、粒子 12a間に形成されている空隙は、充放電で活物質の粒子 12aが体積変化することに起因する応力を緩和するための空間としての働きも有する 。充電によって体積が増加した活物質の粒子 12aの体積の増加分は、この空隙に吸 収される。その結果、該粒子 12aの微粉ィ匕が起こりづらくなり、また負極 10の著しい 変形が効果的に防止される。 [0043] The voids formed between the particles 12a coated with the metal material 13 serve as a flow path for the non-aqueous electrolyte containing lithium ions. Non-water due to the presence of this void Since the electrolytic solution smoothly flows in the thickness direction of the active material layer 12, cycle characteristics can be improved. Further, the voids formed between the particles 12a also serve as a space for relieving the stress caused by the volume change of the active material particles 12a due to charge and discharge. The increase in the volume of the active material particles 12a whose volume has been increased by charging is absorbed in the voids. As a result, the fine particles of the particles 12a are less likely to occur, and significant deformation of the negative electrode 10 is effectively prevented.
[0044] 活物質層 12は、後述するように、好適には粒子 12a及び結着剤を含むスラリーを集 電体上に塗布し乾燥させて得られた塗膜に対し、所定のめっき浴を用いた電解めつ きを行い、粒子 12a間に金属材料 13を析出させることで形成される。  [0044] As described later, the active material layer 12 preferably has a predetermined plating bath applied to a coating film obtained by applying a slurry containing particles 12a and a binder onto a current collector and drying the slurry. It is formed by performing the electrolytic plating used and depositing the metal material 13 between the particles 12a.
[0045] 非水電解液の流通が可能な空隙を活物質層 12内に必要且つ十分に形成するた めには、前記の塗膜内にめっき液を十分浸透させることが好ましい。これに加えて、 該めっき液を用いた電解めつきによって金属材料 13を析出させるための条件を適切 なものとすることが好ましい。めっきの条件にはめつき浴の組成、めっき浴の pH、電 解の電流密度などがある。めっき浴の pHに関しては、これを 7. 1〜: L 1に調整するこ とが好ましい。 pHをこの範囲内とすることで、活物質の粒子 12aの溶解が抑制されつ つ、該粒子 12aの表面が清浄ィ匕されて、粒子表面へのめっきが促進され、同時に粒 子 12a間に適度な空隙が形成される。 pHの値は、めっき時の温度において測定され たものである。  [0045] In order to form necessary and sufficient voids in the active material layer 12 where the non-aqueous electrolyte can flow, it is preferable that the plating solution is sufficiently permeated into the coating film. In addition to this, it is preferable that the conditions for depositing the metal material 13 by electrolytic plating using the plating solution are appropriate. The plating conditions include the composition of the mating bath, the pH of the plating bath, and the current density of the electrolysis. Regarding the pH of the plating bath, it is preferable to adjust it to 7.1 to L 1. By setting the pH within this range, the dissolution of the active material particles 12a is suppressed, the surface of the particles 12a is cleaned, and the plating on the particle surfaces is promoted. Appropriate voids are formed. The pH value was measured at the plating temperature.
[0046] めっきの金属材料 13として銅を用いる場合には、ピロリン酸銅浴を用いることが好ま しい。また該金属材料としてニッケルを用いる場合には、例えばアルカリ性のニッケル 浴を用いることが好ましい。特に、ピロリン酸銅浴を用いると、活物質層 12を厚くした 場合であっても、該層の厚み方向全域にわたって、前記の空隙を容易に形成し得る ので好ましい。また、活物質の粒子 12aの表面には金属材料 13が析出し、且つ該粒 子 12a間では金属材料 13の析出が起こりづらくなるので、該粒子 12a間の空隙が首 尾良く形成されるという点でも好ましい。ピロリン酸銅浴を用いる場合、その浴組成、 電解条件及び pHは次の通りであることが好まし 、。  [0046] When copper is used as the metal material 13 for plating, it is preferable to use a copper pyrophosphate bath. When nickel is used as the metal material, for example, an alkaline nickel bath is preferably used. In particular, it is preferable to use a copper pyrophosphate bath because the voids can be easily formed over the entire thickness direction of the layer even when the active material layer 12 is thickened. In addition, the metal material 13 is deposited on the surface of the active material particles 12a, and the metal material 13 is less likely to be deposited between the particles 12a, so that the voids between the particles 12a are successfully formed. This is also preferable. When using a copper pyrophosphate bath, the bath composition, electrolysis conditions and pH are preferably as follows.
'ピロリン酸銅三水和物: 85〜120gZl  'Copper pyrophosphate trihydrate: 85-120gZl
-ピ13ジン カジクム: 300〜600g/l '硝酸カリウム: 15〜65gZl -Pig 13 gin Kazikum: 300-600g / l 'Potassium nitrate: 15-65gZl
'浴温度: 45〜60°C  'Bath temperature: 45-60 ° C
'電流密度: l〜7AZdm2 'Current density: l ~ 7AZdm 2
•pH:アンモニア水とポリリン酸を添カ卩して pH7. 1〜9. 5になるように調整する。  • pH: Add ammonia water and polyphosphoric acid to adjust the pH to 7.1 to 9.5.
[0047] ピロリン酸銅浴を用いる場合には特に、 P Oの重量と Cuの重量との比(P O ZCu [0047] Especially when using a copper pyrophosphate bath, the ratio of the weight of P O to the weight of Cu (P O ZCu
2 7 2 7 2 7 2 7
)で定義される P比が 5〜12であるものを用いることが好ましい。 P比が 5未満のものを 用いると、活物質の粒子 12aを被覆する金属材料 13が厚くなる傾向となり、粒子 12a 間に所望の空隙を形成させづらい場合がある。また、 P比が 12を超えるものを用いる と、電流効率が悪くなり、ガス発生などが生じやすくなることから生産安定性が低下す る場合がある。更に好ましいピロリン酸銅浴として、 P比が 6. 5〜10. 5であるものを 用いると、活物質の粒子 12a間に形成される空隙のサイズ及び数力 活物質層 12内 での非水電解液の流通に非常に有利になる。 It is preferable to use one having a P ratio defined by When the P ratio is less than 5, the metal material 13 covering the active material particles 12a tends to be thick, and it may be difficult to form desired voids between the particles 12a. In addition, if a P ratio exceeding 12 is used, the current efficiency is deteriorated and gas generation is likely to occur, which may reduce the production stability. When a copper pyrophosphate bath having a P ratio of 6.5 to 10.5 is used, the size and number of voids formed between the active material particles 12a and the non-aqueous water in the active material layer 12 are more preferable. This is very advantageous for the flow of the electrolyte.
[0048] アルカリ性のニッケル浴を用いる場合には、その浴組成、電解条件及び pHは次の 通りであることが好ましい。 [0048] When an alkaline nickel bath is used, the bath composition, electrolysis conditions, and pH are preferably as follows.
'硫酸ニッケル: 100〜250gZl  'Nickel sulfate: 100-250gZl
'塩化アンモ-ゥム: 15〜30gZl  'Ammonium chloride: 15-30gZl
'ホウ酸: 15〜45gZl  'Boric acid: 15-45gZl
'浴温度: 45〜60°C  'Bath temperature: 45-60 ° C
'電流密度: l〜7AZdm2 'Current density: l ~ 7AZdm 2
• pH: 25重量0 /0アンモニア水: 100〜300gZlの範囲で ρΗ8〜 11となるように調整 する。 • pH: 25 weight 0/0 aqueous ammonia: 100~300GZl adjusted to be Roita8~ 11 in the range of.
このアルカリ性のニッケル浴と前述のピロリン酸銅浴とを比べると、ピロリン酸銅浴を 用いた場合の方が活物質層 12内に適度な空隙が形成される傾向があり、負極の長 寿命化を図りやす 、ので好ま 、。  When this alkaline nickel bath is compared with the copper pyrophosphate bath described above, the use of the copper pyrophosphate bath tends to form appropriate voids in the active material layer 12, thereby extending the life of the negative electrode. I like it, so I like it.
[0049] 前記の各種めつき浴に、タンパク質、活性硫黄化合物、セルロース等の銅箔製造 用電解液に用いられる各種添加剤を加えることにより、金属材料 13の特性を適宜調 整することも可能である。 [0049] The properties of the metal material 13 can be adjusted as appropriate by adding various additives used in electrolyte solutions for producing copper foil such as proteins, active sulfur compounds, and cellulose to the various baths. It is.
[0050] 上述の各種方法によって形成される活物質層全体の空隙の割合、つまり空隙率は 、 15〜45体積%程度、特に 20〜40体積%程度であることが好ましい。空隙率をこ の範囲内とすることで、非水電解液の流通が可能な空隙を活物質層 12内に必要且 つ十分に形成することが可能となる。活物質層 12の空隙量は、水銀圧入法 CFIS R 1655)で測定される。水銀圧入法は、固体中の細孔の大きさやその容積を測定す ることによって、その固体の物理的形状の情報を得るための手法である。水銀圧入法 の原理は、水銀に圧力をカ卩えて測定対象物の細孔中へ圧入し、その時にカ卩えた圧 力と、押し込まれた (浸入した)水銀体積の関係を測定することにある。この場合、水 銀は活物質層 12内に存在する大きな空隙力も順に浸入して 、く。本発明にお 、て は、圧力 90MPaで測定した空隙量を全体の空隙量とみなしている。活物質層 12の 空隙率 (%)は、前記の方法で測定された単位面積当たりの空隙量を、単位面積当 たりの活物質層 12の見かけの体積で除し、それに 100を乗じることにより求める。 [0050] The ratio of voids in the entire active material layer formed by the various methods described above, that is, the void ratio is 15 to 45% by volume, particularly 20 to 40% by volume is preferable. By setting the porosity within this range, it is possible to form necessary and sufficient voids in the active material layer 12 through which the non-aqueous electrolyte can flow. The void volume of the active material layer 12 is measured by a mercury intrusion method (CFIS R 1655). The mercury intrusion method is a method for obtaining information on the physical shape of a solid by measuring the size and volume of pores in the solid. The principle of the mercury intrusion method is to measure the relationship between the pressure of the mercury being measured and the volume of the mercury that has been intruded (intruded) by injecting pressure into the pores of the object to be measured. is there. In this case, mercury is infiltrated by the large void force existing in the active material layer 12 in order. In the present invention, the void amount measured at a pressure of 90 MPa is regarded as the total void amount. The porosity (%) of the active material layer 12 is obtained by dividing the void amount per unit area measured by the above method by the apparent volume of the active material layer 12 per unit area and multiplying it by 100. Ask.
[0051] 活物質の粒子 12aの粒径を適切に選択することによつても、前記の空隙率をコント ロールすることができる。この観点から、粒子 12aはその最大粒径が好ましくは 30 m以下であり、更に好ましくは 10 m以下である。また粒子の粒径を D 値で表すと 0 [0051] The porosity can also be controlled by appropriately selecting the particle size of the active material particles 12a. From this viewpoint, the maximum particle size of the particles 12a is preferably 30 m or less, more preferably 10 m or less. In addition, when the particle size is expressed by D value, it is 0.
50  50
. 1〜8 μ m、特に 0. 3〜4 μ mであることが好ましい。粒子の粒径は、レーザー回折 散乱式粒度分布測定、電子顕微鏡観察 (SEM観察)によって測定される。  1 to 8 μm, particularly 0.3 to 4 μm is preferable. The particle size of the particles is measured by laser diffraction / scattering particle size distribution measurement and electron microscope observation (SEM observation).
[0052] 負極全体に対する活物質の量が少なすぎると電池のエネルギー密度を十分に向 上させにくぐ逆に多すぎると強度が低下し活物質の脱落が起こりやすくなる傾向に ある。これらを勘案すると、活物質層の厚みは10〜40 111、好ましくは 15〜30 m 、更に好ましくは 18〜25 μ mである。  [0052] If the amount of the active material relative to the whole negative electrode is too small, it is difficult to sufficiently increase the energy density of the battery. Considering these, the thickness of the active material layer is 10 to 40 111, preferably 15 to 30 m, and more preferably 18 to 25 μm.
[0053] 本実施形態の負極 10においては、活物質層 12の表面に薄い表面層(図示せず) が形成されていてもよい。また負極 10はそのような表面層を有していなくてもよい。表 面層の厚みは、 0. 25 μ m以下、好ましくは 0. 1 μ m以下という薄いものである。表面 層の厚みの下限値に制限はない。表面層を形成することで、微粉化した活物質の粒 子 12aの脱落を一層防止することができる。尤も、本実施形態においては、活物質層 12の空隙率を上述した範囲内に設定することによって、表面層を用いなくても微粉 化した活物質の粒子 12aの脱落を十分に防止することが可能である。  [0053] In the negative electrode 10 of the present embodiment, a thin surface layer (not shown) may be formed on the surface of the active material layer 12. Further, the negative electrode 10 may not have such a surface layer. The thickness of the surface layer is as thin as 0.25 μm or less, preferably 0.1 μm or less. There is no limit to the lower limit of the thickness of the surface layer. By forming the surface layer, the pulverized active material particles 12a can be further prevented from falling off. However, in this embodiment, by setting the porosity of the active material layer 12 within the above-described range, it is possible to sufficiently prevent the pulverized active material particles 12a from dropping without using a surface layer. Is possible.
[0054] 負極 10が前記の厚みの薄 、表面層を有するか又は該表面層を有して ヽな 、こと によって、負極 10を用いて二次電池を組み立て、当該電池の初期充電を行うときの 過電圧を低くすることができる。このことは、二次電池の充電時に負極 10の表面でリ チウムが還元することを防止できることを意味する。リチウムの還元は、両極の短絡の 原因となるデンドライトの発生につながる。 [0054] The negative electrode 10 has the above-mentioned thin thickness, has a surface layer, or has the surface layer. As a result, the secondary battery can be assembled using the negative electrode 10 to reduce the overvoltage when the battery is initially charged. This means that lithium can be prevented from being reduced on the surface of the negative electrode 10 when the secondary battery is charged. The reduction of lithium leads to the generation of dendrites that cause short circuits between the two electrodes.
[0055] 負極 10が表面層を有している場合、該表面層は活物質層 12の表面を連続又は不 連続に被覆している。表面層が活物質層 12の表面を連続に被覆している場合、該 表面層は、その表面にお!、て開孔し且つ活物質層 12と通ずる多数の微細空隙(図 示せず)を有して 、ることが好ま 、。微細空隙は表面層の厚さ方向へ延びるように 表面層中に存在して 、ることが好ま 、。微細空隙は非水電解液の流通が可能なも のである。微細空隙の役割は、活物質層 12内に非水電解液を供給することにある。 微細空隙は、負極 10の表面を電子顕微鏡観察により平面視したとき、金属材料 13 で被覆されている面積の割合、即ち被覆率が 95%以下、特に 80%以下、とりわけ 6 0%以下となるような大きさであることが好ましい。被覆率が 95%を超えると、高粘度 な非水電解液が浸入しづらくなり、非水電解液の選択の幅が狭くなるおそれがある。  [0055] When the negative electrode 10 has a surface layer, the surface layer covers the surface of the active material layer 12 continuously or discontinuously. When the surface layer continuously covers the surface of the active material layer 12, the surface layer has a large number of fine voids (not shown) that are open to the surface and communicate with the active material layer 12. Have, prefer to have. It is preferable that the fine voids exist in the surface layer so as to extend in the thickness direction of the surface layer. The fine voids allow the non-aqueous electrolyte to flow. The role of the fine voids is to supply a non-aqueous electrolyte into the active material layer 12. When the surface of the negative electrode 10 is viewed in plan by an electron microscope, the fine voids are the ratio of the area covered with the metal material 13, that is, the coverage is 95% or less, particularly 80% or less, particularly 60% or less. Such a size is preferable. If the coverage exceeds 95%, it is difficult for the high-viscosity non-aqueous electrolyte to penetrate, and the range of selection of the non-aqueous electrolyte may be narrowed.
[0056] 表面層は、リチウム化合物の形成能の低!、金属材料力 構成されて 、る。この金属 材料は、活物質層 12中に存在している金属材料 13と同種でもよぐ或いは異種でも よい。また表面層は、異なる 2種以上の金属材料力 なる 2層以上の構造であっても よい。負極 10の製造の容易さを考慮すると、活物質層 12中に存在している金属材料 13と、表面層を構成する金属材料とは同種であることが好ましい。  [0056] The surface layer is composed of a metal compound having a low lithium compound forming ability. This metal material may be the same as or different from the metal material 13 present in the active material layer 12. The surface layer may have a structure of two or more layers having two or more different metal material forces. Considering the ease of production of the negative electrode 10, the metal material 13 present in the active material layer 12 and the metal material constituting the surface layer are preferably the same type.
[0057] 本実施形態の負極 10において、活物質層 12中の空隙率が前述の値になっている 場合には、折り曲げに対する負極 10の耐性が高くなる。具体的には、 JIS C 6471 に従い測定された MIT耐折性が好ましくは 30回以上、更に好ましくは 50回以上とい う高耐折性を有するようになる。耐折性が高いことは、負極 10を折り畳んだり捲回した りして電池容器内に収容する場合に、負極 10に折れが生じに《なることから極めて 有利である。 MIT耐折装置としては、例えば東洋精機製作所製の槽付フィルム耐折 疲労試験機(品番 549)が用いられ、屈曲半径 0. 8mm、荷重 0. 5kgf、サンプルサ ィズ 15 X 150mmで測定することができる。  [0057] In the negative electrode 10 of the present embodiment, when the porosity in the active material layer 12 is the above value, the resistance of the negative electrode 10 to bending is increased. Specifically, the MIT folding resistance measured according to JIS C 6471 is preferably 30 times or more, more preferably 50 times or more. The high folding resistance is extremely advantageous since the negative electrode 10 is folded when the negative electrode 10 is folded or wound and accommodated in the battery container. As the MIT folding endurance apparatus, for example, a film folding fatigue tester with a tank manufactured by Toyo Seiki Seisakusho (Part No. 549) is used. be able to.
[0058] 負極 10における集電体 11としては、非水電解液二次電池用負極の集電体として 従来用いられているものと同様のものを用いることができる。集電体 11は、先に述べ たリチウム化合物の形成能の低 、金属材料力 構成されて 、ることが好まし 、。その ような金属材料の例は既に述べた通りである。特に、銅、ニッケル、ステンレス等から なることが好ましい。また、コルソン合金箔に代表されるような銅合金箔の使用も可能 である。更に集電体として、常態抗張力 (JIS C 2318)が好ましくは 500MPa以上 である金属箔、例えば前記のコルソン合金箔の少なくとも一方の面に銅被膜層を形 成したものを用いることもできる。更に集電体として常態伸度 CFIS C 2318)が 4% 以上のものを用いることも好ま 、。抗張力が低 、と活物質が膨張した際の応力によ りシヮが生じ、伸び率が低いと該応力により集電体に亀裂が入ることがあるからである 。これらの集電体を用いることで、上述した負極 10の耐折性を一層高めることが可能 となる。集電体 11の厚みは、負極 10の強度維持と、エネルギー密度向上とのバラン スを考慮すると、 9〜35 /ζ πιであることが好ましい。なお、集電体 11として銅箔を使用 する場合には、クロメート処理や、トリァゾール系化合物及びイミダゾール系化合物な どの有機化合物を用いた防鲭処理を施しておくことが好まし 、。 [0058] As the current collector 11 in the negative electrode 10, as the current collector of the negative electrode for the non-aqueous electrolyte secondary battery The thing conventionally used can be used. It is preferable that the current collector 11 is composed of a metal material having a low lithium compound forming ability as described above. Examples of such metal materials are as already described. In particular, it is preferably made of copper, nickel, stainless steel or the like. Also, it is possible to use a copper alloy foil represented by Corson alloy foil. Further, as the current collector, a metal foil having a normal tensile strength (JIS C 2318) of preferably 500 MPa or more, for example, a copper film layer formed on at least one surface of the aforementioned Corson alloy foil can be used. Furthermore, it is also preferable to use a current collector having a normal elongation CFIS C 2318) of 4% or more. This is because, when the tensile strength is low, stress is generated due to the stress when the active material expands, and when the elongation is low, the current collector may crack. By using these current collectors, it is possible to further improve the folding resistance of the negative electrode 10 described above. The thickness of the current collector 11 is preferably 9 to 35 / ζ πι in consideration of the balance between maintaining the strength of the negative electrode 10 and improving the energy density. When copper foil is used as the current collector 11, it is preferable to perform a chromate treatment or an antifungal treatment using an organic compound such as a triazole compound or an imidazole compound.
[0059] 次に、本実施形態の負極 10の好ましい製造方法について、図 8を参照しながら説 明する。本製造方法では、活物質の粒子及び結着剤を含むスラリーを用いて集電体 11上に塗膜を形成し、次いでその塗膜に対して電解めつきを行う。  Next, a preferred method for producing the negative electrode 10 of the present embodiment will be described with reference to FIG. In this production method, a coating film is formed on the current collector 11 using a slurry containing active material particles and a binder, and then the coating is electrolyzed.
[0060] 先ず図 8 (a)に示すように集電体 11を用意する。そして集電体 11上に、活物質の 粒子 12aを含むスラリーを塗布して塗膜 15を形成する。集電体 11における塗膜形成 面の表面粗さは、輪郭曲線の最大高さで 0. 5〜4 /ζ πιであることが好ましい。最大高 さが 4 mを超えると塗膜 15の形成精度が低下する上、凸部に浸透めつきの電流集 中が起こりやすい。最大高さが 0. を下回ると、活物質層 12の密着性が低下し やすい。活物質の粒子 12aとしては、好適に上述した粒度分布及び平均粒径を有す るものを用いる。  First, a current collector 11 is prepared as shown in FIG. 8 (a). Then, a slurry containing active material particles 12 a is applied onto the current collector 11 to form a coating film 15. The surface roughness of the coating film forming surface of the current collector 11 is preferably 0.5 to 4 / ζ πι at the maximum height of the contour curve. When the maximum height exceeds 4 m, the accuracy of forming the coating film 15 is reduced, and current concentration tends to occur at the protrusions. When the maximum height is less than 0, the adhesion of the active material layer 12 tends to decrease. As the active material particles 12a, those having the above-described particle size distribution and average particle size are preferably used.
[0061] スラリーは、活物質の粒子の他に、結着剤及び希釈溶媒などを含んで!/、る。またス ラリーはアセチレンブラックやグラフアイトなどの導電性炭素材料の粒子を少量含ん でいてもよい。特に、活物質の粒子 12aがシリコン系材料力も構成されている場合に は、該活物質の粒子 12aの重量に対して導電性炭素材料を 1〜3重量%含有するこ とが好ましい。導電性炭素材料の含有量が 1重量%未満であると、スラリーの粘度が 低下して活物質の粒子 12aの沈降が促進されるため、良好な塗膜 15及び均一な空 隙を形成しにくくなる。また導電性炭素材料の含有量が 3重量%を超えると、該導電 性炭素材料の表面にめっき核が集中し、良好な被覆を形成しに《なる。 [0061] In addition to the particles of the active material, the slurry contains a binder and a diluting solvent. The slurry may also contain a small amount of conductive carbon material particles such as acetylene black and graphite. In particular, when the active material particles 12a also have a silicon-based material force, the conductive carbon material is contained in an amount of 1 to 3% by weight with respect to the weight of the active material particles 12a. Are preferred. When the content of the conductive carbon material is less than 1% by weight, the viscosity of the slurry is lowered and the sedimentation of the active material particles 12a is promoted, so that it is difficult to form a good coating film 15 and a uniform void. Become. On the other hand, if the content of the conductive carbon material exceeds 3% by weight, plating nuclei concentrate on the surface of the conductive carbon material, and a good coating is formed.
[0062] 結着剤としてはスチレンブタジエンラバー(SBR)、ポリフッ化ビ-リデン(PVDF)、 ポリエチレン(PE)、エチレンプロピレンジェンモノマー(EPDM)などが用いられる。 希釈溶媒としては N—メチルピロリドン、シクロへキサンなどが用いられる。スラリー中 における活物質の粒子 12aの量は 30〜70重量%程度とすることが好ましい。結着剤 の量は 0. 4〜4重量%程度とすることが好ましい。これらに希釈溶媒をカ卩えてスラリー とする。 [0062] As the binder, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polyethylene (PE), ethylene propylene diene monomer (EPDM) and the like are used. As a diluting solvent, N-methylpyrrolidone, cyclohexane or the like is used. The amount of the active material particles 12a in the slurry is preferably about 30 to 70% by weight. The amount of the binder is preferably about 0.4 to 4% by weight. A dilute solvent is added to these to form a slurry.
[0063] 形成された塗膜 15は、粒子 12a間に多数の微小空間を有する。塗膜 15が形成さ れた集電体 11を、リチウム化合物の形成能の低 ヽ金属材料を含むめっき浴中に浸 漬する。めっき浴への浸漬によって、めっき液が塗膜 15内の前記微小空間に浸入し て、塗膜 15と集電体 11との界面にまで達する。その状態下に電解めつきを行い、め つき金属種を粒子 12aの表面に析出させる(以下、このめつきを浸透めつきともいう)。 浸透めつきは、集電体 11を力ソードとして用い、めっき浴中にアノードとしての対極を 浸漬し、両極を電源に接続して行う。  [0063] The formed coating film 15 has a large number of minute spaces between the particles 12a. The current collector 11 on which the coating film 15 is formed is immersed in a plating bath containing a metal material having a low ability to form a lithium compound. By dipping in the plating bath, the plating solution enters the minute space in the coating film 15 and reaches the interface between the coating film 15 and the current collector 11. Under this condition, electrolytic plating is performed to deposit metal species on the surface of the particles 12a (hereinafter, this plating is also referred to as penetration plating). The penetration is performed by using the current collector 11 as a force sword, immersing the counter electrode as the anode in the plating bath, and connecting both electrodes to the power source.
[0064] 浸透めつきによる金属材料の析出は、塗膜 15の一方の側力 他方の側に向力つて 進行させることが好ましい。具体的には、図 8 (b)ないし (d)に示すように、塗膜 15と 集電体 11との界面力も塗膜の表面に向けて金属材料 13の析出が進行するように電 解めつきを行う。金属材料 13をこのように析出させることで、活物質の粒子 12aの表 面を金属材料 13で首尾よく被覆することができると共に、金属材料 13で被覆された 粒子 12a間に空隙を首尾よく形成することができる。  [0064] It is preferable that the deposition of the metal material by the penetration adhesion proceeds by applying one side force of the coating film 15 to the other side. Specifically, as shown in FIGS. 8 (b) to (d), the interfacial force between the coating film 15 and the current collector 11 is also electrolyzed so that the deposition of the metal material 13 proceeds toward the coating film surface. Make a mess. By precipitating the metal material 13 in this way, the surface of the active material particles 12a can be successfully coated with the metal material 13, and a void is successfully formed between the particles 12a coated with the metal material 13. can do.
[0065] 前述のように金属材料 13を析出させるための浸透めつきの条件には、めっき浴の 組成、めっき浴の pH、電解の電流密度などがある。このような条件については既に 述べた通りである。  [0065] As described above, the conditions of penetration for depositing the metal material 13 include the composition of the plating bath, the pH of the plating bath, and the current density of electrolysis. Such conditions are as described above.
[0066] 図 8 (b)ないし (d)に示されているように、塗膜 15と集電体 11との界面から塗膜の表 面に向けて金属材料 13の析出が進行するようにめつきを行うと、析出反応の最前面 部においては、ほぼ一定の厚みで金属材料 13のめつき核力もなる微小粒子 13aが 層状に存在している。金属材料 13の析出が進行すると、隣り合う微小粒子 13aどうし が結合して更に大きな粒子となり、更に析出が進行すると、該粒子どうしが結合して 活物質の粒子 12aの表面を連続的に被覆するようになる。 [0066] As shown in Figs. 8 (b) to (d), the deposition of the metal material 13 proceeds from the interface between the coating film 15 and the current collector 11 toward the surface of the coating film. Foreground is the forefront of the precipitation reaction In the portion, fine particles 13a having a substantially constant thickness and also having the core force of the metal material 13 are present in layers. As the precipitation of the metal material 13 proceeds, the adjacent fine particles 13a are combined to form larger particles, and when the deposition proceeds further, the particles are combined to continuously cover the surface of the active material particles 12a. It becomes like this.
[0067] 浸透めつきは、塗膜 15の厚み方向全域に金属材料 13が析出した時点で終了させ る。めっきの終了時点を調節することで、活物質層 12の上面に表面層(図示せず)を 形成することができる。このようにして、図 8 (d)に示すように、目的とする負極が得ら れる。 [0067] The penetration staking is terminated when the metal material 13 is deposited in the entire thickness direction of the coating film 15. By adjusting the end point of plating, a surface layer (not shown) can be formed on the upper surface of the active material layer 12. In this way, the target negative electrode is obtained as shown in FIG. 8 (d).
[0068] 浸透めつき後、負極 10を防鲭処理することも好ましい。防鲭処理としては、例えば ベンゾトリァゾール、カルボキシベンゾトリァゾール、トリルトリァゾール等のトリァゾー ル系化合物及びイミダゾール等を用いる有機防鲭や、コバルト、ニッケル、クロメート 等を用いる無機防鲭を採用できる。  [0068] It is also preferable that the negative electrode 10 be subjected to anti-fouling treatment after the penetration. Examples of the anti-bacterial treatment include organic anti-bacterials using triazole compounds such as benzotriazole, carboxybenzotriazole, tolyltriazole and imidazole, and inorganic anti-bacterials using cobalt, nickel, chromate and the like.
[0069] 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形 態に制限されない。例えば捲回体を、前述の特許文献 1の記載に従い製造して、該 捲回体のコーナー部にたるみが生じるようにしてもよ 、。  [0069] While the present invention has been described based on the preferred embodiments thereof, the present invention is not limited to the above embodiments. For example, the winding body may be manufactured according to the description in Patent Document 1 described above so that sagging occurs at the corner of the winding body.
[0070] また前記の製造方法においては、巻き取り治具 20を捲回後に引き抜かず、そのま ま芯材として使用することもできる。  [0070] In the manufacturing method, the winding jig 20 can be used as a core material without being pulled out after winding.
実施例  Example
[0071] 以下、実施例により本発明を更に詳細に説明する。し力しながら本発明の範囲はか 力る実施例に制限されるものではな 、。  [0071] Hereinafter, the present invention will be described in more detail by way of examples. However, the scope of the present invention is not limited to such embodiments.
[0072] 〔実施例 1〕  [Example 1]
厚さ 18 mの電解銅箔力もなる集電体を室温で 30秒間酸洗浄した。処理後、 15 秒間純水洗浄した。集電体の両面上にケィ素カゝらなる粒子を含むスラリーを膜厚 15 μ mになるように塗布し塗膜を形成した。スラリーの組成は、粒子:スチレンブタジェ ンラバー(結着剤):アセチレンブラック = 100 : 1. 7 : 2 (重量比)であった。粒子の平 均粒径 D は 2 mであった。平均粒径 D は、日機装 (株)製のマイクロトラック粒度  A current collector having an electrolytic copper foil strength of 18 m in thickness was acid-washed at room temperature for 30 seconds. After the treatment, it was washed with pure water for 15 seconds. A coating film was formed by applying a slurry containing particles of key particles on both sides of the current collector to a thickness of 15 μm. The composition of the slurry was particle: styrene butadiene rubber (binder): acetylene black = 100: 1.7: 2 (weight ratio). The average particle diameter D of the particles was 2 m. The average particle size D is the particle size of Microtrack manufactured by Nikkiso Co., Ltd.
50 50  50 50
分布測定装置 (No. 9320— X100)を使用して測定した。  Measurement was performed using a distribution measuring device (No. 9320—X100).
[0073] 塗膜が形成された集電体を、以下の浴組成を有するピロリン酸銅浴に浸漬させ、電 解により、塗膜に対して銅の浸透めつきを行い、活物質層を形成した。電解の条件は 以下の通りとした。陽極には DSEを用いた。電源は直流電源を用いた。 [0073] The current collector on which the coating film was formed was immersed in a copper pyrophosphate bath having the following bath composition. By the solution, copper penetration was applied to the coating film to form an active material layer. The electrolysis conditions were as follows. DSE was used for the anode. A DC power source was used as the power source.
'ピロリン酸銅三水和物: 105gZl  'Copper pyrophosphate trihydrate: 105gZl
•ピロリン酸カリウム: 450g/l  • Potassium pyrophosphate: 450g / l
'硝酸カリウム: 30gZl  'Potassium nitrate: 30gZl
•P比: 7. 7  • P ratio: 7.7
'浴温度: 50°C  'Bath temperature: 50 ° C
•電流密度: 3AZdm2 • Current density: 3AZdm 2
•pH:アンモニア水とポリリン酸を添カ卩して pH8. 2になるように調整した。  • pH: Ammonia water and polyphosphoric acid were added to adjust to pH 8.2.
[0074] 浸透めつきは、塗膜の厚み方向全域にわたって銅が析出した時点で終了させた。 [0074] The penetration staking was terminated when copper was deposited over the entire thickness direction of the coating film.
このようにして目的とする負極を得た。活物質層の縦断面の SEM観察によって該活 物質層においては、活物質の粒子は、平均厚み 240nmの銅の被膜で被覆されてい ることを確認した。また、活物質層の空隙率は 30%であった。  In this way, a target negative electrode was obtained. SEM observation of the vertical cross section of the active material layer confirmed that the active material particles were covered with a copper film having an average thickness of 240 nm in the active material layer. The porosity of the active material layer was 30%.
[0075] 正極活物質として LiCo Ni Mn Oを用いた。これを、アセチレンブラック及び [0075] LiCo Ni Mn O was used as the positive electrode active material. This is acetylene black and
1/3 1/3 1/3 2  1/3 1/3 1/3 2
ポリフッ化ビ-リデンともに、溶媒であるポリビニルピロリドンに懸濁させ正極合剤を得 た。この正極合剤をアルミニウム箔カゝらなる集電体に塗布、乾燥した後、ロール圧延 及びプレスを行い正極を得た。第 1及び第 2のセパレータとして厚み 20 μ mのポリプ ロピレン製多孔質フィルムを用いた。  Polyvinylidene fluoride was suspended in polyvinylpyrrolidone as a solvent to obtain a positive electrode mixture. This positive electrode mixture was applied to a current collector made of aluminum foil and dried, followed by roll rolling and pressing to obtain a positive electrode. Polypropylene porous films having a thickness of 20 μm were used as the first and second separators.
[0076] 負極、正極並びに第 1及び第 2のセパレータは、幅 60mmの長尺帯状に形成した。 [0076] The negative electrode, the positive electrode, and the first and second separators were formed in a long band shape having a width of 60 mm.
図 5 (a)及び (b)に示すように第 1及び第 2のセパレータ SI, S2を巻き取り治具 20の 周りに巻き付け、次に、図 6 (a)に示すように正極 C及び負極 Aを更に治具 20の周り に巻き付けた。正極 Cには、短冊片カもなる A1製の芯材 31が 1個取り付けられていた 。芯材 31はタブ部を有するものであった。負極 Aには、短冊片からなる Ni製の芯材 3 2が 5個取り付けられていた。 5個の芯材 32のうちの一の芯材はタブ部を有するもの であった。芯材 31, 32は何れも長さ 42mm、幅 4mm、厚さ 100 mであった(タブ部 を除く寸法)。芯材 31, 32は、正極 C及び負極 Aが巻き取り治具 20の巻き付けられた ときに、図 6 (b)に示す配置状態になるように位置合わせされてこれらの電極に取り付 けられていた。所望の回数の巻き付けによって捲回体が得られたら、原反ロールから 正極 C、負極 A及びセパレータ SI及び S2を切断し、切断された端部を捲回体の側 面に粘着テープで固定した。最後に、捲回体の中心力 巻き取り治具 20を引き抜き 、捲回体 1を得た。得られた捲回体における芯材間の距離は約 0. 5mmであった。 As shown in Fig. 5 (a) and (b), the first and second separators SI and S2 are wound around the winding jig 20, and then, as shown in Fig. 6 (a), the positive electrode C and the negative electrode A was further wrapped around jig 20. On the positive electrode C, a single core material 31 made of A1, which was a strip piece, was attached. The core material 31 had a tab part. On the negative electrode A, five Ni cores 3 2 made of strips were attached. One of the five core members 32 had a tab portion. Each of the core materials 31 and 32 had a length of 42 mm, a width of 4 mm, and a thickness of 100 m (excluding the tab portion). The core materials 31 and 32 are aligned and attached to these electrodes when the positive electrode C and the negative electrode A are wound around the winding jig 20 so as to be in the arrangement state shown in FIG. It was. When the wound body is obtained by winding the desired number of times, from the raw roll The positive electrode C, the negative electrode A, and the separators SI and S2 were cut, and the cut ends were fixed to the side surface of the wound body with an adhesive tape. Finally, the winding force 20 was pulled out to obtain the wound body 1. The distance between the cores in the obtained wound body was about 0.5 mm.
[0077] 得られた捲回体を角型外装缶に収容した。更に、外装缶内に電解液を充填した。 [0077] The obtained wound body was accommodated in a rectangular outer can. Further, an electrolyte solution was filled in the outer can.
電解液としては、エチレンカーボネートとジェチノレカーボネートの 1: 1体積0 /0混合溶 媒に ImolZlの LiPFを溶解した溶液に対して、ビ-レンカーボネートを 2体積0 /0As an electrolytic solution, 1 of ethylene carbonate and Jefferies Chino Les carbonate: with respect to 1 volume 0/0 mixture Solvent To a solution of LiPF of ImolZl, bi - Ren carbonate 2 vol 0/0 outside
6  6
添したものを用いた。電解液を充填した後に外装缶を密閉して、角型リチウム二次電 池を得た。電池の厚みは 6mm、幅は 34mm、高さは 48mmであった(063448型)。  The attached one was used. After filling the electrolyte, the outer can was sealed to obtain a prismatic lithium secondary battery. The battery was 6mm thick, 34mm wide and 48mm high (063448).
[0078] 〔比較例 1〕 [Comparative Example 1]
正極に集電用の A1製タブを取り付けると共に負極に集電用の Ni製タブを取り付け て、且つ実施例 1で用いた芯材 31, 32を用いない以外は実施例 1と同様にして角型 リチウム二次電池を得た。  In the same manner as in Example 1, except that the A1 tab for current collection is attached to the positive electrode, the Ni tab for current collection is attached to the negative electrode, and the core materials 31, 32 used in Example 1 are not used. A type lithium secondary battery was obtained.
[0079] 〔評価〕 [0079] [Evaluation]
実施例 1及び比較例 1で得られた電池にっ 、て 100サイクルの充放電を行った。充 電条件は 0. 5C、終止電圧 4. 2Vで、定電流 '定電圧(CCCV)とした。放電条件は 0 . 5C、終止電圧 2. 7Vで、定電流(CC)とした。但し、 1サイクル目の充放電は 0. 05 Cとし、 2〜4サイクル目の充放電は 0. 1C、 5〜7サイクル目の充放電は 0. 5C、 8〜 10サイクル目の充放電は 1Cとした。 100サイクルの充放電後の電池について、その 横断面を CTスキャンして捲回体の状態を非破壊観察した。その結果を図 9 (実施例 1)及び図 10 (比較例 1)に示す。なお、図 9及び図 10には、充放電前の電池の CTス キャン像も併せて示されて 、る。  The batteries obtained in Example 1 and Comparative Example 1 were charged and discharged for 100 cycles. Charging conditions were 0.5C, final voltage 4.2V, constant current and constant voltage (CCCV). The discharge conditions were 0.5C, final voltage 2.7V, and constant current (CC). However, charge / discharge at the first cycle is 0.05 C, charge / discharge at the second to fourth cycles is 0.1 C, charge / discharge at the fifth to seventh cycles is 0.5 C, and charge / discharge at the eighth to tenth cycles is 1C. The battery after 100 cycles of charge and discharge was subjected to a CT scan of the cross section, and the state of the wound body was observed nondestructively. The results are shown in FIG. 9 (Example 1) and FIG. 10 (Comparative Example 1). 9 and 10 also show the CT scan image of the battery before charging and discharging.
[0080] 図 9及び図 10に示す結果から明らかなように、実施例 1の電池においては、 100サ イタルの充放電後において負極等に変形が殆ど生じていないのに対し、比較例 1の 電池にお 、ては、 100サイクルの充放電後にお 、て負極等に甚だし 、座屈が生じて いることが判る。なお、実施例 1で用いた芯材 31及び比較例 1で用いた正極の集電 用タブは何れも A1製であることから、その CTスキャン像である図 9及び図 10におい てはこれらは現れて!/ヽな ヽ。  As is clear from the results shown in FIGS. 9 and 10, in the battery of Example 1, the negative electrode and the like were hardly deformed after 100 liters of charge / discharge. In the case of a battery, it can be seen that after 100 cycles of charging / discharging, the battery started to buckle due to the negative electrode. Since the core 31 used in Example 1 and the current collecting tab of the positive electrode used in Comparative Example 1 are both made of A1, these are shown in the CT scan images of FIG. 9 and FIG. Appear!!
[0081] 〔実施例 2〕 図 3 (a)及び (b)に示す構造の捲卷体を、実施例 1に準じて製造した。負極に取り 付ける芯材 3として、長さ 42mm、幅 25mm、厚さ 100 mの Ni板を用いた(タブ部を 除く寸法)。また正極に取り付ける芯材 3として、長さ 40mm、幅 25mm、厚さ 40 /z m の A1板を用いた (タブ部を除く寸法)。これら以外は実施例 1と同様にして角型リチウ ムニ次電池を得た。 [Example 2] A casing having the structure shown in FIGS. 3 (a) and (b) was produced according to Example 1. A Ni plate 42 mm long, 25 mm wide and 100 m thick was used as the core material 3 to be attached to the negative electrode (excluding the tab). As the core material 3 attached to the positive electrode, an A1 plate having a length of 40 mm, a width of 25 mm, and a thickness of 40 / zm was used (excluding the tab portion). Except for these, a prismatic lithium secondary battery was obtained in the same manner as in Example 1.
[0082] 〔比較例 2〕 [Comparative Example 2]
実施例 2において、ニッケル板力もなる芯材 3を用いない以外は実施例 2と同様に して角型リチウム二次電池を得た。  In Example 2, a prismatic lithium secondary battery was obtained in the same manner as in Example 2 except that the core material 3 having nickel plate strength was not used.
[0083] 〔評価〕 [0083] [Evaluation]
実施例 2及び比較例 2で得られた電池について、実施例 1と同様にして 100サイク ルの充放電後に、それらの横断面を CTスキャンして捲回体の状態を非破壊観察し た。その結果を図 11 (実施例 2)及び図 12 (比較例 1)に示す。  The batteries obtained in Example 2 and Comparative Example 2 were subjected to 100 cycles of charge and discharge in the same manner as in Example 1, and then their transverse cross sections were subjected to CT scanning to observe the state of the wound body in a nondestructive manner. The results are shown in FIG. 11 (Example 2) and FIG. 12 (Comparative Example 1).
[0084] 図 11及び図 12に示す結果から明らかなように、実施例 2の電池は、比較例 2の電 池に比べ、捲回体の中心部における電極の変形が抑制されていることが判る。なお、 実施例 2と、先に述べた実施例 1を対比すると、実施例 2の方が全体的な変形の程度 が大きい。この理由は、実施例 2で用いた負極の集電体の強度力 実施例 1で用い た負極の集電体の強度よりも低いことに起因している。なお、実施例 2で用いた A1製 の芯材は、図 11における CTスキャン像には現れて!/ヽな!、。 As is clear from the results shown in FIG. 11 and FIG. 12, the battery of Example 2 is less deformed by the electrode at the center of the wound body than the battery of Comparative Example 2. I understand. When Example 2 is compared with Example 1 described above, Example 2 has a greater degree of overall deformation. This is because the strength of the negative electrode current collector used in Example 2 is lower than the strength of the negative electrode current collector used in Example 1. Note that the A1 core material used in Example 2 appears in the CT scan image in FIG.
産業上の利用可能性  Industrial applicability
[0085] 本発明によれば、扁平捲回体における中心部に板状の芯材が配されており、正極 及び負極等は該芯材の周りに隙間なく捲回されているので、電極の膨張に起因して 生ずる応力が該捲回体の中心に局所的に加わっても、その応力を芯材が受け止め ることができる。その結果、座屈を始めとする電極の変形が該芯材によって抑制され る。 [0085] According to the present invention, the plate-like core material is arranged at the center of the flat wound body, and the positive electrode and the negative electrode are wound around the core material without any gaps. Even if stress generated due to expansion is locally applied to the center of the wound body, the core material can receive the stress. As a result, electrode deformation including buckling is suppressed by the core material.

Claims

請求の範囲 The scope of the claims
[1] 正極、負極及びこれらの間に介在配置されたセパレータが捲回されてなり、横断面 が扁平な形状を有する捲回体を備え、該捲回体の中心部に板状の芯材が配されて Vヽることを特徴とする非水電解液二次電池。  [1] A positive electrode, a negative electrode, and a separator interposed between them are wound, and a winding body having a flat cross section is provided, and a plate-like core material is provided at the center of the winding body A non-aqueous electrolyte secondary battery characterized in that V is disposed.
[2] 前記芯材が、正極又は負極の集電用タブを兼用している請求の範囲第 1項記載の 非水電解液二次電池。  [2] The non-aqueous electrolyte secondary battery according to claim 1, wherein the core material also serves as a current collecting tab for a positive electrode or a negative electrode.
[3] 前記芯材が、前記捲回体の高さ方向に延びる複数の短冊片が、該捲回体の幅方 向に直線状に一列に配置されたものからなる請求の範囲第 1項又は第 2項記載の非 水電解液二次電池。  [3] The first aspect of the invention, wherein the core material is composed of a plurality of strips extending in the height direction of the wound body, arranged in a straight line in the width direction of the wound body. Or a non-aqueous electrolyte secondary battery according to item 2.
[4] 前記捲回体が角型外装缶内に収容されてなる請求の範囲第 1項記載の非水電解 液二次電池。  [4] The non-aqueous electrolyte secondary battery according to claim 1, wherein the wound body is housed in a rectangular outer can.
[5] 前記捲回体がラミネート外装体内に収容されてなる請求の範囲第 1項記載の非水 電解液二次電池。  5. The nonaqueous electrolyte secondary battery according to claim 1, wherein the wound body is housed in a laminate outer package.
[6] 前記負極が、 Siを含む材料又は Snを含む材料カゝらなる活物質を含む負極活物質 層を有する請求の範囲第 1項記載の非水電解液二次電池。  6. The nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode has a negative electrode active material layer containing an active material such as a material containing Si or a material containing Sn.
[7] 前記負極活物質層が Si又は Snを含む活物質の粒子を含有し、該粒子の表面の少 なくとも一部がリチウム化合物の形成能の低い金属材料で被覆されていると共に、該 金属材料で被覆された該粒子どうしの間に空隙が形成されている請求の範囲第 6項 記載の非水電解液二次電池。 [7] The negative electrode active material layer contains particles of an active material containing Si or Sn, and at least a part of the surface of the particles is coated with a metal material having a low ability to form a lithium compound. 7. The nonaqueous electrolyte secondary battery according to claim 6, wherein voids are formed between the particles coated with a metal material.
[8] 前記金属材料が、前記負極活物質層の厚み方向全域にわたって前記粒子の表面 に存在している請求の範囲第 7項記載の非水電解液二次電池。 8. The nonaqueous electrolyte secondary battery according to claim 7, wherein the metal material is present on the surface of the particles over the entire thickness direction of the negative electrode active material layer.
[9] 前記負極活物質層の空隙率が 15〜45体積%である請求の範囲第 7項又は第 8項 記載の非水電解液二次電池。 [9] The nonaqueous electrolyte secondary battery according to [7] or [8], wherein the negative electrode active material layer has a porosity of 15 to 45% by volume.
PCT/JP2007/058083 2006-08-10 2007-04-12 Nonaqueous electrolyte secondary battery WO2008018207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-219037 2006-08-10
JP2006219037A JP2008047304A (en) 2006-08-10 2006-08-10 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2008018207A1 true WO2008018207A1 (en) 2008-02-14

Family

ID=39032745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058083 WO2008018207A1 (en) 2006-08-10 2007-04-12 Nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP2008047304A (en)
WO (1) WO2008018207A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126720A1 (en) * 2010-04-07 2011-10-13 Medtronic, Inc. Coil seal to secure the electrode windings of an electrochemical cell
EP2610954A2 (en) * 2010-08-23 2013-07-03 LG Chem, Ltd. Improved jelly-roll structure, and secondary battery having same
US8685557B2 (en) 2010-04-07 2014-04-01 Medtronic, Inc. Electrode assembly including mandrel having a removable portion
US8832914B2 (en) 2010-10-06 2014-09-16 Medtronic, Inc Coiling device for making an electrode assembly and methods of use
US9005802B2 (en) 2011-12-21 2015-04-14 Medtronic, Inc. Electrode assembly with hybrid weld
US9054387B2 (en) 2010-04-07 2015-06-09 Medtronic, Inc. Electrode assembly including mandrel having removable portion
US9083053B2 (en) 2011-12-21 2015-07-14 Medtronic, Inc. Through weld interconnect joint
US9299971B2 (en) 2010-10-06 2016-03-29 Medtronic, Inc. Common carrier for the integrated mandrel battery assembly

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409338B2 (en) * 2009-12-25 2014-02-05 日立ビークルエナジー株式会社 Winding type square battery
JP5406733B2 (en) * 2010-01-13 2014-02-05 日立ビークルエナジー株式会社 Flat rechargeable secondary battery
JP2012190542A (en) * 2011-02-21 2012-10-04 Denso Corp Wound-around battery and method and device for manufacturing the same
JP2013145715A (en) * 2012-01-16 2013-07-25 Toyota Industries Corp Power storage device and vehicle
JP5987460B2 (en) * 2012-05-08 2016-09-07 株式会社Gsユアサ Electricity storage element
DE102014214619A1 (en) 2014-07-25 2016-01-28 Robert Bosch Gmbh Method for producing a prismatic battery cell
JP2021057136A (en) * 2019-09-27 2021-04-08 株式会社Gsユアサ Electric storage element
EP4040563A1 (en) * 2019-09-30 2022-08-10 SANYO Electric Co., Ltd. Method for producing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696801A (en) * 1992-09-11 1994-04-08 Matsushita Electric Ind Co Ltd Thin non-aqueous electrolyte battery
JPH06203870A (en) * 1992-12-28 1994-07-22 Sanyo Electric Co Ltd Battery
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2000357536A (en) * 1999-06-15 2000-12-26 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2006080072A (en) * 2004-09-06 2006-03-23 Samsung Sdi Co Ltd Winding electrode assembly and lithium secondary battery equipped with this, and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696801A (en) * 1992-09-11 1994-04-08 Matsushita Electric Ind Co Ltd Thin non-aqueous electrolyte battery
JPH06203870A (en) * 1992-12-28 1994-07-22 Sanyo Electric Co Ltd Battery
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2000357536A (en) * 1999-06-15 2000-12-26 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2006080072A (en) * 2004-09-06 2006-03-23 Samsung Sdi Co Ltd Winding electrode assembly and lithium secondary battery equipped with this, and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126720A1 (en) * 2010-04-07 2011-10-13 Medtronic, Inc. Coil seal to secure the electrode windings of an electrochemical cell
US8685557B2 (en) 2010-04-07 2014-04-01 Medtronic, Inc. Electrode assembly including mandrel having a removable portion
US9054387B2 (en) 2010-04-07 2015-06-09 Medtronic, Inc. Electrode assembly including mandrel having removable portion
EP2610954A2 (en) * 2010-08-23 2013-07-03 LG Chem, Ltd. Improved jelly-roll structure, and secondary battery having same
EP2610954A4 (en) * 2010-08-23 2014-09-17 Lg Chemical Ltd Improved jelly-roll structure, and secondary battery having same
US8832914B2 (en) 2010-10-06 2014-09-16 Medtronic, Inc Coiling device for making an electrode assembly and methods of use
US9299971B2 (en) 2010-10-06 2016-03-29 Medtronic, Inc. Common carrier for the integrated mandrel battery assembly
US9005802B2 (en) 2011-12-21 2015-04-14 Medtronic, Inc. Electrode assembly with hybrid weld
US9083053B2 (en) 2011-12-21 2015-07-14 Medtronic, Inc. Through weld interconnect joint

Also Published As

Publication number Publication date
JP2008047304A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
WO2008018207A1 (en) Nonaqueous electrolyte secondary battery
US8197966B2 (en) Negative electrode for nonaqueous secondary battery
JP4219391B2 (en) Non-aqueous electrolyte secondary battery
JP6193285B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack and car
JP4944648B2 (en) Anode for non-aqueous electrolyte secondary battery
WO2008018204A1 (en) Non-aqueous electrolyte secondary battery
JP2008047308A (en) Nonaqueous electrolyte secondary battery
JP5192664B2 (en) Anode for non-aqueous electrolyte secondary battery
JP6179404B2 (en) Manufacturing method of secondary battery
WO2008001536A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2008047306A (en) Nonaqueous electrolyte secondary battery
JP5782869B2 (en) Nonaqueous electrolyte secondary battery and current collector for nonaqueous electrolyte secondary battery
WO2008001541A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2008016193A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2008016194A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2008016192A (en) Anode for nonaqueous electrolyte secondary battery
JP2008047307A (en) Nonaqueous electrolyte secondary battery
JP2009104901A (en) Negative electrode for nonaqueous electrolyte secondary battery
WO2008018208A1 (en) Non-aqueous electrolyte secondary battery
WO2023153393A1 (en) Positive electrode material for secondary batteries
JP2009021055A (en) Manufacturing method of nonaqueous electrolyte secondary battery
WO2008001535A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2008251255A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2009277509A (en) Anode for non-aqueous electrolyte secondary battery
WO2008001568A1 (en) Rechargeable battery with nonaqueous electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07741519

Country of ref document: EP

Kind code of ref document: A1