WO2008001541A1 - Negative electrode for non-aqueous electrolyte secondary battery - Google Patents

Negative electrode for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2008001541A1
WO2008001541A1 PCT/JP2007/058416 JP2007058416W WO2008001541A1 WO 2008001541 A1 WO2008001541 A1 WO 2008001541A1 JP 2007058416 W JP2007058416 W JP 2007058416W WO 2008001541 A1 WO2008001541 A1 WO 2008001541A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
negative electrode
active material
particles
metal material
Prior art date
Application number
PCT/JP2007/058416
Other languages
French (fr)
Japanese (ja)
Inventor
Kayoko Shinzawa
Yoshiki Sakaguchi
Kiyotaka Yasuda
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2008001541A1 publication Critical patent/WO2008001541A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery such as a lithium secondary battery.
  • the applicant of the present invention first includes a pair of front and back surfaces that are in contact with an electrolytic solution and have conductivity, and an active material layer including active material particles between the surfaces, for a non-aqueous electrolyte secondary battery.
  • a negative electrode was proposed (see Patent Document 1).
  • the active material layer of the negative electrode is infiltrated with a metal material having a low ability to form a lithium compound, and active material particles are present in the infiltrated metal material. Since the active material layer has such a structure, in this negative electrode, even if fine particles are generated due to the expansion and contraction of the particles due to charge and discharge, it is difficult for the particles to fall off. As a result, the use of this negative electrode has the advantage of extending the cycle life of the battery.
  • the metal material may be oxidized and a large amount of oxygen may be taken into the negative electrode.
  • the tendency is remarkable when copper, which is a metal, is easily oxidized as the metal material.
  • the overvoltage of the first charge becomes high.
  • An increase in overvoltage causes generation of lithium dendrites on the negative electrode surface and decomposition of the non-aqueous electrolyte.
  • the cycle characteristics are liable to deteriorate.
  • Patent Document 1 discloses that the surface layer covering the surface of the active material layer may have a multilayer structure of two or more layers. However, even if the surface layer has such a multilayer structure, it is not easy to reliably prevent the oxidation of the metal material existing inside the active material layer. That is, in the manufacturing method specifically disclosed in the example of Patent Document 1, there may be too few voids in the active material layer, and the plating solution cannot sufficiently penetrate into the active material layer. It may not be possible to reliably prevent the oxidation of the metal material existing inside the layer.
  • Patent Document 1 US2006— 0121345A1
  • an object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery, whose performance is further improved as compared with the above-described conventional negative electrode. Disclosure of the invention
  • the present invention includes an active material layer including particles of an active material, and at least a part of the surface of the particles is covered with a metal material layer, and the metal material layer covers the active material layer.
  • the layer provides a negative electrode for a non-aqueous electrolyte secondary battery in which two or more different metal material forces are also configured.
  • FIG. 1 is a schematic diagram showing a cross-sectional structure of an embodiment of a negative electrode for a non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 2 is a schematic diagram showing an enlarged main part of the active material layer in the negative electrode shown in FIG.
  • FIG. 3 (a) to FIG. 3 (d) are process diagrams showing a method for manufacturing the negative electrode shown in FIG.
  • FIGS. 4 (a) and 4 (b) show the SEM image of the longitudinal section of the negative electrode active material layer obtained in Example 3 and the results of measuring the presence of Ni in the longitudinal section by EPMA.
  • FIG. 4 (a) and 4 (b) show the SEM image of the longitudinal section of the negative electrode active material layer obtained in Example 3 and the results of measuring the presence of Ni in the longitudinal section by EPMA.
  • FIG. 5 is a diagram showing the results of GDS measurement of the presence of each element in the longitudinal section of the negative electrode active material layer obtained in Example 3.
  • FIG. 1 shows a schematic diagram of a cross-sectional structure of an embodiment of a negative electrode for a non-aqueous electrolyte secondary battery of the present invention.
  • the negative electrode 10 of the present embodiment includes a current collector 11 and an active material layer 12 formed on at least one surface thereof. Note that FIG. 1 shows a state where the active material layer 12 is formed only on one surface of the current collector 11 for the sake of convenience! Although the active material layer is formed on both surfaces of the current collector, the active material layer 12 is formed on both surfaces of the current collector. It may be.
  • the active material layer 12 includes active material particles 12a.
  • the active material layer 12 is formed, for example, by applying a slurry containing active material particles 12a.
  • the active material include silicon materials, tin materials, aluminum materials, and germanium materials.
  • soot-based materials include tin, conoret, carbon, nickel, and chromium.
  • An alloy containing at least one is preferably used.
  • a silicon-based material is particularly preferable.
  • the silicon-based material a material capable of occluding lithium and containing silicon, for example, silicon alone, an alloy of silicon and metal, silicon oxide, or the like can be used. These materials can be used alone or in combination.
  • the metal include one or more elements selected from the group consisting of Cu, Ni, Co, Cr, Fe, Ti, Pt, W, Mo, and Au. Of these metals, Cu, Ni, and Co are preferred, and Cu and Ni are preferably used because of their excellent electronic conductivity and low ability to form lithium compounds.
  • lithium may be occluded in an active material having a silicon-based material force before or after the negative electrode is incorporated in the battery.
  • a particularly preferable silicon-based material is silicon or silicon oxide having a high lithium storage capacity.
  • the layer of the metal material 13 is a material different from the constituent material of the particles 12a. Voids are formed between the particles 12 a covered with the layer of the metal material 13. That is, the layer of the metal material 13 covers the surface of the particle 12a in a state in which a gap is secured so that the non-aqueous electrolyte containing lithium ions can reach the particle 12a.
  • the layer of the metal material 13 is conveniently represented as a thick line surrounding the periphery of the particle 12a.
  • This figure is a schematic view of the active material layer 12 viewed two-dimensionally. In actuality, each particle is in direct contact with other particles or through the metal material 13.
  • the metal material 13 is preferably present on the surface of the active material particles 12a over the entire thickness direction of the active material layer 12.
  • the active material particles 12 a are preferably present in the matrix of the metal material 13. As a result, even if the particles 12a expand and contract due to charge and discharge, even if they become fine powder, they are less likely to fall off.
  • the electrically isolated active material particles 12 a are generated, particularly in the deep part of the active material layer 12. The formation of the active material particles 12a is effectively prevented. This is particularly true when a semiconductor is used as an active material and electron conductivity is poor, and a material such as a silicon-based material is used. It is profit.
  • the presence of the metal material 13 on the surface of the active material particles 12a over the entire thickness direction of the active material layer 12 can be confirmed by electron microscope mapping using the material 13 as a measurement object.
  • the layer of the metal material 13 covers the surface of the particle 12a continuously or discontinuously.
  • the layer of the metal material 13 continuously covers the surfaces of the particles 12a it is preferable to form a fine void in the layer of the metal material 13 that allows the non-aqueous electrolyte to flow.
  • the layer of the metal material 13 covers the surface of the particle 12a discontinuously it is covered with the layer of the metal material 13 out of the surface of the particle 12a, and the particle 12a is non-watered through the site. Electrolyte is supplied.
  • the metal material 13 may be deposited on the surfaces of the particles 12a by, for example, electroplating according to the conditions described later.
  • a gap is formed between the particles 12 a covered with the layer of the metal material 13.
  • This void serves as a distribution path for the non-aqueous electrolyte containing lithium ions.
  • the non-aqueous electrolyte easily reaches the active material particles 12a due to the presence of the voids, and thus the overvoltage of the initial charge can be lowered.
  • lithium dendrite is prevented from being generated on the negative electrode surface.
  • the generation of dendrite causes a short circuit between the two poles.
  • the ability to reduce the overvoltage is also advantageous in terms of preventing decomposition of the non-aqueous electrolyte. This is because the irreversible capacity increases when the non-aqueous electrolyte is decomposed.
  • the ability to reduce the overvoltage is advantageous in that the positive electrode is damaged.
  • the voids formed between the particles 12a also serve as a space for relieving the stress caused by the volume change of the active material particles 12a due to charge and discharge.
  • the increase in the volume of the active material particles 12a whose volume has been increased by charging is absorbed by the voids. As a result, it is difficult for the fine particles of the particles 12a to be generated, and significant deformation of the negative electrode 10 is effectively prevented.
  • the negative electrode 10 of the present embodiment has a multilayer structure in which the layers of the metal material 13 are configured with different metal material forces.
  • Each layer may be composed of a single metal, or may be composed of an alloying force of two or more metals.
  • the layer of the metal material 13 has a two-layer structure including an inner layer 13a covering the surface of the active material particles 12a and an outer layer 13b formed on the inner layer 13a.
  • the inner layer 13a is easily oxidized as a constituent material, and even when a material is used, it is not easily oxidized and the outer layer 13b configured by the material cover is used.
  • a multilayer structure composed of different metal materials means that a multilayer structure is formed by different types of metal materials constituting adjacent layers. Therefore, when the layer of the metal material 13 also has, for example, a Sn layer, a Ni layer, and a Sn layer force, the layer has a three-layer structure composed of different metal materials.
  • Two or more different metal materials constituting the metal material layer 13 preferably include at least copper. This is because copper is excellent in electrical conductivity and also excellent in relaxation of stress generated due to expansion and contraction of the active material due to high ductility. Copper is known to be a metal that is easily oxidized. Therefore, in the present embodiment, while taking advantage of the above-described advantages of copper, the drawback of copper that is easily oxidized is compensated by using other metal materials.
  • the outer layer 13b which is a layer exposed on the surface, preferably has a metal force that is not easily oxidized. It is also preferable that the outer layer 13b has a metal force with a low lithium compound forming ability. From these viewpoints, it is preferable that the metal composing the outer layer 13b is composed of nickel, conoretole, chromium, gold, or an alloy thereof, which is a material that has a low ability to form a lithium compound and is hardly oxidized. “Lithium compound forming ability is low” means that lithium does not form an intermetallic compound or solid solution, or even if lithium is formed, lithium is in a very small force or very unstable.
  • the constituent material of the inner layer 13a it is preferable to use a metal material having a high lithium compound forming ability or a metal material having a low lithium compound forming ability.
  • Lithiation Examples of the metal material having high compound forming ability include zinc, tin, silver, and alloys thereof.
  • An example of a metal material having a low ability to form a lithium compound is copper. From the viewpoint of maintaining the strength of the negative electrode after charge and discharge, it is preferable to use a metal material having a low lithium compound forming ability.
  • the constituent material of the inner layer 13a is preferably a highly ductile material in which the surface coating of the particles 12a is not easily broken even when the active material particles 12a expand and contract. From this point of view, it is preferable to use copper, which is a highly ductile material, as the constituent material of the inner layer 13a.
  • the inner layer 13a has a thickness force of S40 to 1500 nm, particularly 100 to 240 nm. A force that can reliably hold the active material particles 12a in the active material layer 12 is preferable.
  • the thickness of the outer layer 13b is preferably 10 to 500 nm, particularly 10 to 100 nm, from the viewpoint of reliably preventing the oxidation of the inner layer 13a. In each of the inner layer 13a and the outer layer 13b having a thickness in this range, fine voids that allow the non-aqueous electrolyte to flow are formed. If these layers are too thick, fine voids are formed.
  • the layer of the metal material 13 including the inner layer 13a and the outer layer 13b preferably has an average thickness of 0.05 to 2 / ⁇ ⁇ , particularly 0.1 to 0.25 m.
  • the metal material 13 preferably covers the surface of the active material particles 12a with a minimum thickness.
  • the layer of the metal material 13 has a multilayer structure, and the thickness of each layer can be confirmed and measured by, for example, a glow discharge emission spectrometer (GDS). When each layer is formed by electrolytic plating, it can be confirmed and measured by the amount of current applied when each layer is formed.
  • GDS glow discharge emission spectrometer
  • the “average thickness” is a value calculated based on a portion of the surface of the active material particle 12a that is actually covered with the metal material 13. Therefore, the surface of the active material particle 12a is covered with the metal material 13, and the portion is not a basis for calculating the average value!
  • the active material layer 12 preferably has a predetermined plating bath applied to the coating film obtained by applying a slurry containing particles 12a and a binder onto a current collector and drying the slurry. It is formed by performing the electrolytic plating used and depositing the metal material 13 between the particles 12a.
  • the conditions for depositing the metal material 13 by electrolytic plating using the plating solution are appropriate.
  • the plating conditions include the composition of the fitting bath, the pH of the plating bath, and the current density of electrolysis.
  • the pH of the plating bath is preferably adjusted to 7.1 to L 1 particularly when the inner layer 13a is formed. By keeping the pH within this range, the dissolution of the active material particles 12a is suppressed, the surface of the particles 12a is cleaned, and the adhesion to the particle surfaces is promoted. Moderate gaps are formed.
  • the pH value was measured with respect to the temperature at the time of plating.
  • the inner layer 13a When copper is used as the constituent metal of the inner layer 13a, it is preferable to form the inner layer 13a by electrolytic plating using a copper pyrophosphate bath. It is preferable to use a copper pyrophosphate bath, even if the active material layer 12 is thick, because the voids can be easily formed over the entire thickness direction of the layer. Also, copper is deposited on the surface of the active material particles 12a, and it is difficult for copper to precipitate between the particles 12a, which is preferable in that the voids between the particles 12a are formed successfully.
  • the bath composition, electrolysis conditions and pH are preferably as follows.
  • the copper covering the active material particles 12a tends to be thick, and it may be difficult to form desired voids between the particles 12a. If a P ratio exceeding 12 is used, the current efficiency will be poor and gas generation will be likely to occur, which may reduce production stability.
  • a copper pyrophosphate bath having a P ratio of 6.5 to 10.5 is used as a more preferable copper pyrophosphate bath, the size and number of voids formed between the active material particles 12a are reduced in the active material layer 12. This is very advantageous for the flow of the water electrolyte.
  • the inner layer 13a is an alloy of two or more metals
  • the inner layer 13a can be formed by alloy bonding.
  • electrolytic plating may be performed using a copper nickel alloy plating bath described below.
  • the ratio of the voids in the active material layer 12 when the inner layer 13a is formed is 20% by volume or more.
  • a method of increasing the void ratio in the active material layer 12 by reducing the thickness of the inner layer 13a a method of pressing the coating film 15 after forming the coating film 15 and before forming the inner layer 13a can be mentioned.
  • the pressure for the pressing process is preferably 50 to 500 MPa, particularly 100 to 500 MPa.
  • the coating film 15 By subjecting the coating film 15 to a press treatment before the penetration plating, the progress of plating can be accelerated, and a thin and uniform coating of the metal material 13 is formed on the surface of the active material particles 12a.
  • a press treatment before the penetration plating, the progress of plating can be accelerated, and a thin and uniform coating of the metal material 13 is formed on the surface of the active material particles 12a.
  • the degree of contact between the particles 12a is increased by the press treatment, whereby the electron conductivity in the coating film 15 is improved, and the region where plating nuclei are generated is in the thickness direction of the coating film 15. This is thought to be due to the increase.
  • the pressure of the press treatment is preferably 50 to 500 MPa, particularly 100 to 5 OOMPa! /.
  • the bath composition and electrolysis conditions are preferably as follows. NiSO 6 ⁇ O 150 ⁇ 300gZl
  • the porosity is measured by the following procedures (1) to (7).
  • the weight per unit area of the coating film formed by applying the slurry is measured, and the weight of the particles 12a and the weight of the binder are calculated from the blending ratio of the slurry.
  • the thickness of the active material layer 12 is obtained by SEM observation of the cross section of the negative electrode
  • the volume of the active material layer 12 per unit area is calculated from the thickness of the active material layer 12.
  • the respective volumes are calculated from the weight of the particles 12a, the weight of the binder, the weight of the plating metal species, and the respective mixing ratios.
  • the void volume is calculated by subtracting the volume of the particles 12a, the volume of the binder, and the volume of the metal species from the volume of the active material layer 12 per unit area.
  • the porosity can also be controlled by appropriately selecting the particle size of the active material particles 12a.
  • the maximum particle size of the particles 12a is preferably 30 m or less, more preferably 10 m or less.
  • the particle size is expressed in terms of D value, 0 1 to 8 ⁇ m, particularly 0.3 to 4 ⁇ m is preferable.
  • the particle size of the particles is measured by laser diffraction / scattering particle size distribution measurement and electron microscope observation (SEM observation).
  • the thickness of the active material layer 12 is preferably 10 to 40 / ⁇ ⁇ , more preferably 15 to 30 ⁇ m, and still more preferably 18 to 25 ⁇ m.
  • a thin surface layer (not shown) may be formed on the surface of the active material layer 12. Further, the negative electrode 10 may not have such a surface layer.
  • the thickness of the surface layer is as thin as 0.25 ⁇ m or less, preferably 0.1 ⁇ m or less. There is no limit to the lower limit of the thickness of the surface layer.
  • the negative electrode 10 When the negative electrode 10 is thin and has a surface layer or has the surface layer, a secondary battery is assembled using the negative electrode 10, and the battery is initially charged. The overvoltage can be reduced. This means that lithium can be prevented from being reduced on the surface of the negative electrode 10 when the secondary battery is charged. The reduction of lithium leads to the generation of dendrites that cause short circuits between the two electrodes.
  • the surface layer covers the surface of the active material layer 12 continuously or discontinuously.
  • the surface layer has a large number of fine voids (not shown) that are open to the surface and communicate with the active material layer 12. Have, prefer to have. It is preferable that the fine voids exist in the surface layer so as to extend in the thickness direction of the surface layer. The fine voids allow the non-aqueous electrolyte to flow. The role of the fine voids is to supply a non-aqueous electrolyte into the active material layer 12.
  • the fine voids are the ratio of the area covered with the metal material 13, that is, the coverage is 95% or less, particularly 80% or less, particularly 60% or less. Such a size is preferable.
  • the surface layer is composed of a metal compound having a low lithium compound forming ability.
  • This metal material can be the same as the constituent material of the outer layer 13b described above. Alternatively, it may be different from the constituent material 13 of the outer layer 13b.
  • the surface layer is a constituent material of the inner layer 13a. It may be formed of a material. In this case, the metal material constituting the surface layer and the constituent material of the outer layer 13b are different. Considering the ease of manufacturing the negative electrode 10, it is preferable that the constituent material of the outer layer 13b and the metal material constituting the surface layer are the same type.
  • the current collector 11 in the negative electrode 10 may be the same as that conventionally used as the current collector of the negative electrode for a non-aqueous electrolyte secondary battery. It is preferable that the current collector 11 is composed of a metal material having a low lithium compound forming ability as described above. Examples of such metal materials are as already described. In particular, it is preferably made of copper, nickel, stainless steel or the like. Also, it is possible to use a copper alloy foil represented by Corson alloy foil. Further, as the current collector, a metal foil having a normal tensile strength (JIS C 2318) of preferably 500 MPa or more, for example, a copper film layer formed on at least one surface of the aforementioned Corson alloy foil can be used.
  • JIS C 2318 normal tensile strength
  • a current collector having a normal elongation CFIS C 2318) of 4% or more is also preferable to use. This is because, when the tensile strength is low, stress is generated due to the stress when the active material expands, and when the elongation is low, the current collector may crack.
  • the thickness of the current collector 11 is not critical in this embodiment. Considering the balance between maintaining the strength of the negative electrode 10 and improving the energy density, it is preferably 9 to 35 / ⁇ ⁇ .
  • a coating film is formed on the current collector 11 using a slurry containing active material particles and a binder, and then electrolytic plating is repeatedly performed on the coating film using different types of plating baths. Do.
  • a current collector 11 is prepared as shown in FIG.
  • a slurry containing active material particles 12 a is applied onto the current collector 11 to form a coating film 15.
  • the slurry contains a binder and a diluent solvent.
  • the slurry may contain a small amount of conductive carbon material particles such as acetylene black graphite.
  • the active material particles 12a also have a silicon-based material force, it is preferable that the conductive carbon material is contained in an amount of 1 to 3% by weight with respect to the weight of the active material particles 12a.
  • Conductive carbon material When the content of is less than 1% by weight, the viscosity of the slurry decreases and the settling of the active material particles 12a is promoted, so that it is difficult to form a good coating film 15 and uniform voids. If the content of the conductive carbon material exceeds 3% by weight, plating nuclei concentrate on the surface of the conductive carbon material, and it becomes difficult to form a good coating.
  • binder styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polyethylene (PE), ethylene propylene monomer (EPDM), or the like is used.
  • a diluting solvent N-methylpyrrolidone, cyclohexane or the like is used.
  • the amount of the active material particles 12a in the slurry is preferably about 30 to 70% by weight.
  • the amount of the binder is preferably about 0.4 to 4% by weight.
  • a dilute solvent is added to these to form a slurry.
  • the formed coating film 15 has a large number of minute spaces between the particles 12a.
  • the current collector 11 on which the coating film 15 is formed is immersed in the first plating bath.
  • the first bath is low in the ability to form a lithium compound, contains a metal material, or contains a metal material that has a high ability to form a lithium compound.
  • the plating solution enters the minute space in the coating film 15 and reaches the interface between the coating film 15 and the current collector 11. Under this condition, electrolytic plating is performed to deposit plated metal species on the surface of the particles 12a (hereinafter, this plating is also referred to as penetration plating).
  • the penetration is performed by using the current collector 11 as a force sword, immersing the counter electrode as the anode in the plating bath, and connecting both electrodes to the power source.
  • the deposition of the metal material by the penetration adhesion proceeds by applying one side force of the coating film 15 to the other side.
  • the interfacial force between the coating film 15 and the current collector 11 is electrolysis so that the deposition of the plating metal species proceeds toward the surface of the coating film. Make a mess.
  • the surface of the active material particles 12a can be successfully coated with the metal species, and voids can be successfully formed between the particles 12a coated with the plating metal species. Can be formed.
  • the void ratio of the voids can be easily set to the preferred range described above.
  • the conditions of the penetration plating for depositing the plating metal species include the composition of the plating bath, the pH of the plating bath, and the current density of electrolysis. Such conditions are as described above.
  • the deposition of the plating metal species proceeds from the interface between the coating film 15 and the current collector 11 toward the surface of the coating film.
  • fine particles 14 having a substantially constant thickness and serving as a plating nucleus of the plating metal species are present in layers.
  • adjacent fine particles 14 combine to form larger particles, and when the deposition proceeds further, the particles combine to continuously coat the surface of the active material particles 12a. Will come to do.
  • Electrolytic plating using the first plating bath is terminated when the plating metal species is deposited in the entire thickness direction of the coating film 15. In this manner, a negative electrode precursor is obtained as shown in FIG.
  • a second bathing bath instead of this bathing bath, use a second bathing bath, and perform electrolytic bathing according to the same procedure as described above.
  • the second bath has a low ability to form lithium compounds and contains a metal material.
  • the negative electrode 10 thus obtained is suitably used as a negative electrode for a non-aqueous electrolyte secondary battery such as a lithium secondary battery.
  • the positive electrode of the battery is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in an appropriate solvent to produce a positive electrode mixture, applying this to a current collector, drying it, and then rolling it. It is obtained by pressing, cutting and punching.
  • the positive electrode active material conventionally known positive electrode active materials such as lithium-containing metal composite oxides such as lithium nickel composite oxide, lithium manganese composite oxide, and lithium cobalt composite oxide are used.
  • a positive electrode active material at least LiCoO
  • Lithium transition metal composite oxide containing both Zr and Mg and a mixture of lithium transition metal composite oxide having a layered structure and containing at least both Mn and Ni are also preferably used. Can do.
  • the use of a positive active material can be expected to increase the end-of-charge voltage without deteriorating charge / discharge cycle characteristics and thermal stability.
  • Cathode active material The average primary particle size is 5 ⁇ m or more and 10 ⁇ m or less, and the weight average molecular weight of the binder used for the positive electrode is preferably 350,000 or more because of the balance between packing density and reaction area. , 000, 000 or less of polyvinylidene fluoride is preferable. This is because it can be expected to improve the discharge characteristics in a low temperature environment.
  • a synthetic resin nonwoven fabric a polyolefin such as polyethylene or polypropylene, or a porous film of polytetrafluoroethylene is preferably used.
  • a separator in which a polyolefin film is formed on one or both surfaces of the polyolefin microporous membrane.
  • the separator preferably has a puncture strength of 0.2 NZ w m or more and 0.49 N / ⁇ m or less and a tensile strength in the winding axis direction of 40 MPa or more and 150 MPa or less. This is because even when a negative electrode active material that expands and contracts greatly with charge and discharge is used, damage to the separator can be suppressed, and occurrence of internal short circuits can be suppressed.
  • the nonaqueous electrolytic solution is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
  • Lithium salts include LiCIO, LiAlCl, LiPF, LiAsF, LiSbF, LiBF, LiSCN,
  • Examples include LiCl, LiBr, Lil, LiCF SO, LiC F SO and the like.
  • Examples of organic solvents include
  • Examples include ethylene carbonate, jetino carbonate, dimethylol carbonate, propylene carbonate, butylene carbonate, and the like. Especially for the whole non-aqueous electrolyte
  • a high dielectric constant solvent with a relative dielectric constant of 30 or more such as cyclic carbonic acid ester derivatives having a halogen atom such as 1,3 dioxolan-2-one or 4-trifluoromethyl-1,3-dioxolan-2-one. It is also preferable. This is because it is difficult to be decomposed due to its high resistance to reduction.
  • the above-mentioned high dielectric constant solvent, dimethyl carbonate, jetyl carbon Also preferred is an electrolyte mixed with a low-viscosity solvent having a viscosity of 1 mPa ⁇ s or less, such as a sodium salt or methylethyl carbonate.
  • the content of fluorine ions in the electrolytic solution is within the range of 14 mass ppm or more and 1290 mass ppm or less.
  • the electrolyte solution contains an appropriate amount of fluorine ions, a coating film such as lithium fluoride derived from the fluorine ions is formed on the negative electrode, which can suppress the decomposition reaction of the electrolyte solution in the negative electrode.
  • the layer of the metal material 13 in the above embodiment has a high lithium compound forming ability, a low metal material or lithium compound forming ability, an inner layer composed of the metal material, and a low lithium compound forming ability.
  • another layer of one or more layers is provided between the inner layer and the outer layer, or a layer of a multilayer structure of three or more layers may be used.
  • Another layer of one or more layers may be further provided outside the layer, and a layer having a multilayer structure of three or more layers may be provided.
  • the layer of the metal material 13 has a multilayer structure.
  • the layer of the metal material 13 is a layer having an alloying force of two or more kinds of metals.
  • the combination of two or more metals include a combination of one or more metals that are easily oxidized and have a low or high lithium forming ability and one or more metals that are not easily oxidized and have a low lithium forming ability. It is done.
  • An example of a metal that is easily oxidized and has a low lithium forming ability is copper.
  • Examples of the metal that is oxidized and has a low lithium forming ability include nickel, conoretole, chromium, and gold.
  • the penetration plating shown in Fig. 3 may be performed by the alloy plating method.
  • the ratio (molar ratio) of the metal layer 13 to the metal layer 13 that is easily oxidized and has a low or high lithium forming ability, and a metal that is not easily oxidized and has a low lithium forming ability (molar ratio). It is preferable that it is 3-9: 1.
  • a current collector having an electrolytic copper foil strength of 18 m in thickness was acid-washed at room temperature for 30 seconds. After the treatment, it was washed with pure water for 15 seconds.
  • a slurry containing Si particles was applied on the current collector to a thickness of 15 m to form a coating film.
  • the average particle size D of Si particles is 2
  • the average particle size D is measured by the Nikkiso Co., Ltd.
  • the current collector on which the coating film was formed was passed through a roll press, and the coating film was pressed.
  • the press pressure was 300 MPa.
  • a current collector having a coating film subjected to press working is immersed in a copper pyrophosphate bath having the following bath composition, and copper is infiltrated into the coating film by electrolysis. An inner layer having copper strength was formed.
  • the electrolysis conditions were as follows. DSE was used for the anode.
  • a DC power source was used as the power source.
  • the thickness of the formed inner layer was 200 nm as a result of cross-sectional SEM observation of a sample product produced in the same manner. 'Copper pyrophosphate trihydrate: 105gZl
  • a second osmotic plating was performed using a Watt bath having the following composition.
  • an outer layer made of nickel was formed on the inner layer made of copper.
  • the electrolysis conditions were as follows. A nickel electrode was used as the anode. A DC power source was used as the power source. The intended negative electrode was obtained by the above operation.
  • the average thickness of the inner layer and the outer layer was determined by the following method. Determine the ratio of the amount of electricity when copper penetration is applied to the amount of electricity when nickel penetration is applied. Separately from this, it is confirmed by GDS that copper and nickel are present uniformly in the thickness direction of the active material layer. When copper and nickel are present uniformly, the thickness ratio of the inner layer made of copper and the outer layer made of nickel is determined by the amount of current that is applied when copper penetrates and the nickel penetrates. It can be regarded as equivalent to the ratio of the energization amount at the time.
  • the thicknesses of the inner layer and the outer layer can be calculated from the total value of the thicknesses of the inner layer and the outer layer obtained by cross-sectional SEM observation of the active material layer and the ratio of the energization amount.
  • Energization amount when subjected to copper infiltration plated that put the present embodiment 2321CZdm 2 energization amount of time was one row penetration plated nickel was 18CZdm 2.
  • the inner layer thickness thus determined is 20 Onm, the thickness of the outer layer was 5 nm.
  • a negative electrode was obtained in the same manner as in Example 1 except that the amount of current with which nickel penetrated was 183 CZdm 2 .
  • the thickness of the outer layer obtained in the same manner as in Example 1 was 50 nm.
  • the film thickness of the slurry containing the active material was 20 m.
  • the amount of electricity when copper penetration was applied was 2321 CZdm 2 , and the amount of electricity when nickel penetration was found was 73 CZdm 2 .
  • a negative electrode was obtained in the same manner as Example 1 except for these.
  • the thickness of the inner layer obtained in the same manner as in Example 1 was 200 nm, and the thickness of the outer layer was 20 nm.
  • Example 2 In place of the Watt bath, a second bathing penetration was performed using a cobalt bath having the following composition. At this time, the energization amount was 73 CZdm 2 . A negative electrode was obtained in the same manner as Example 1 except for these. The outer layer thickness determined in the same manner as in Example 1 was 20 nm.
  • a second bathing penetration was performed using a chromium bath having the following composition. Current amount at this time was 62CZdm 2. Except for these, a negative electrode was obtained in the same manner as in Example 1. The thickness of the outer layer obtained in the same manner as in Example 1 was 15 nm.
  • the negative electrodes obtained in Examples and Comparative Examples were left in the atmosphere for 3 weeks, and then a lithium secondary battery was produced using the negative electrode.
  • LiCo Ni Mn O was used as the positive electrode.
  • electrolyte ethylene carbonate
  • the capacity retention rate is a value calculated by measuring the discharge capacity after 100 cycles, dividing that value by the discharge capacity at the 13th cycle, and multiplying by 100.
  • the discharge cut-off voltage was 2.7V.
  • Charging conditions were 0.5C and 4.2V, constant current and constant voltage.
  • the discharge conditions were 0.5C and 2.7V, and a constant current.
  • charge / discharge in the first cycle is 0.05C
  • charge / discharge in the second to fourth cycles is 0.1C
  • charge / discharge in the fifth to seventh cycles is 0.5C
  • charge / discharge in the eighth to tenth cycles is 1C.
  • Example 1 Cu (200 nm) Ni (5 nm) 2. 80 82 Example 2 Cu (200 nm) i "(50 nm) 2. 75 87 Example 3 Cu (200 nm) i (20 nm) 2. 73 91 Example 4 Cu (200nm) Co (20nm) 2. 60 89 Example 5 Cu (200nm) Cr (15mn) 2. 70 87 Comparative Example 1 Cu (200nm) None 3. 10 77
  • the battery using the negative electrode of each example had a lower voltage at the first charge than the battery using the negative electrode of Comparative Example 1, that is, the overvoltage was low. It turns out that it is low. It can also be seen that the battery using the negative electrode of each example has better cycle characteristics than the battery using the negative electrode of Comparative Example 1.
  • the negative electrode of Comparative Example 1 has been confirmed to have good characteristics if it is used immediately after fabrication. For this evaluation, the characteristics deteriorated due to the influence of acid. It is presumed that
  • the inner layer copper and the outer layer nickel covering the surface of the Si particles are uniformly present in the thickness direction of the active material layer. This was confirmed.
  • the surface of the active material particles is covered with a layer composed of two or more different metal materials, a metal that is easily oxidized as one of the constituent metals of the layer. Even if is used, the amount of the metal exposed on the surface of the layer is less than when the metal is used alone. Therefore, it becomes difficult to cause acid soot.
  • the two or more metal material forces different from each other are formed, oxidation of the innermost layer covering the surface of the particle is prevented by the layer located above the layer. As a result, the overvoltage of the initial charge can be lowered. As a result, lithium dendrite is prevented from being generated on the negative electrode surface.
  • the non-aqueous electrolyte is not easily decomposed, and an increase in irreversible capacity is prevented. Furthermore, the positive electrode is damaged. Also, the site characteristics are improved. In addition, the particles are expanded and contracted by charging and discharging. Even if it is fine, it is difficult for the dropout to occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A negative electrode (10) for use in a non-aqueous electrolyte secondary battery comprises an active material layer (12) containing a particle (12a) of an active material. At least a part of the surface of the particle (12a) is coated with a layer of a metal material (13). A void is formed between the particles (12a) that are coated with the metal material (13). The layer is composed of two or more different metal materials. Preferably, the layer has a multi-layered structure composed of different metal materials. Also preferably, each of the two or more different metal materials (13) contains at least copper.

Description

明 細 書  Specification
非水電解液二次電池用負極  Anode for non-aqueous electrolyte secondary battery
技術分野  Technical field
[0001] 本発明は、リチウム二次電池などの非水電解液二次電池用の負極に関する。  The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery such as a lithium secondary battery.
背景技術  Background art
[0002] 本出願人は先に、電解液と接し且つ導電性を有する表裏一対の面を含み、該面間 に活物質の粒子を含む活物質層を備えた非水電解液二次電池用負極を提案した( 特許文献 1参照)。この負極の活物質層には、リチウム化合物の形成能の低い金属 材料が浸透しており、浸透した該金属材料中に活物質の粒子が存在している。活物 質層がこのような構造になっているので、この負極においては、充放電によって該粒 子が膨張収縮することに起因して微粉ィ匕しても、その脱落が起こりづらくなる。その結 果、この負極を用いると、電池のサイクル寿命が長くなるという利点がある。  [0002] The applicant of the present invention first includes a pair of front and back surfaces that are in contact with an electrolytic solution and have conductivity, and an active material layer including active material particles between the surfaces, for a non-aqueous electrolyte secondary battery. A negative electrode was proposed (see Patent Document 1). The active material layer of the negative electrode is infiltrated with a metal material having a low ability to form a lithium compound, and active material particles are present in the infiltrated metal material. Since the active material layer has such a structure, in this negative electrode, even if fine particles are generated due to the expansion and contraction of the particles due to charge and discharge, it is difficult for the particles to fall off. As a result, the use of this negative electrode has the advantage of extending the cycle life of the battery.
[0003] し力 前記の負極を長期間大気中に放置しておくと、前記の金属材料が酸化され て、負極内に多量の酸素が取り込まれてしまう場合がある。特に、前記の金属材料と して酸化されやす 、金属である銅を用いた場合にはその傾向が著し 、。前記の金属 材料が酸化されると初回充電の過電圧が高くなつてしまう。過電圧が高くなることは、 負極の表面でリチウムのデンドライトの発生や、非水電解液の分解の原因となる。ま た、前記の金属材料が酸化されると、サイクル特性が低下しやすくなる。  [0003] If the negative electrode is left in the atmosphere for a long period of time, the metal material may be oxidized and a large amount of oxygen may be taken into the negative electrode. In particular, the tendency is remarkable when copper, which is a metal, is easily oxidized as the metal material. When the metal material is oxidized, the overvoltage of the first charge becomes high. An increase in overvoltage causes generation of lithium dendrites on the negative electrode surface and decomposition of the non-aqueous electrolyte. Further, when the metal material is oxidized, the cycle characteristics are liable to deteriorate.
[0004] 前記の特許文献 1には、活物質層の表面を被覆する表面層を 2層以上の多層構造 にしてもよいことが記載されている。しかし、表面層をこのような多層構造にしても、活 物質層の内部に存在する金属材料の酸ィ匕を確実に防止することは容易でない。即 ち、特許文献 1の実施例に具体的に開示された製造方法では、活物質層内の空隙 が少なすぎる場合があり、めっき液が活物質層内にまで十分に浸入できず、活物質 層の内部に存在する金属材料の酸ィ匕を確実に防止できないことがある。  [0004] Patent Document 1 discloses that the surface layer covering the surface of the active material layer may have a multilayer structure of two or more layers. However, even if the surface layer has such a multilayer structure, it is not easy to reliably prevent the oxidation of the metal material existing inside the active material layer. That is, in the manufacturing method specifically disclosed in the example of Patent Document 1, there may be too few voids in the active material layer, and the plating solution cannot sufficiently penetrate into the active material layer. It may not be possible to reliably prevent the oxidation of the metal material existing inside the layer.
[0005] 特許文献 1 :US2006— 0121345A1  [0005] Patent Document 1: US2006— 0121345A1
[0006] 従って本発明の目的は、前述した従来技術の負極よりも性能が一層向上した非水 電解液二次電池用負極を提供することにある。 発明の開示 [0006] Accordingly, an object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery, whose performance is further improved as compared with the above-described conventional negative electrode. Disclosure of the invention
[0007] 本発明は、活物質の粒子を含む活物質層を備え、該粒子の表面の少なくとも一部 が金属材料の層で被覆されて ヽると共に、該金属材料の層で被覆された該粒子どう しの間に空隙が形成されている非水電解液二次電池用負極であって、  [0007] The present invention includes an active material layer including particles of an active material, and at least a part of the surface of the particles is covered with a metal material layer, and the metal material layer covers the active material layer. A negative electrode for a non-aqueous electrolyte secondary battery in which voids are formed between particles,
前記層が、互いに異なる 2種以上の金属材料力も構成されている非水電解液二次 電池用負極を提供するものである。  The layer provides a negative electrode for a non-aqueous electrolyte secondary battery in which two or more different metal material forces are also configured.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]図 1は、本発明の非水電解液二次電池用負極の一実施形態の断面構造を示 す模式図である。  FIG. 1 is a schematic diagram showing a cross-sectional structure of an embodiment of a negative electrode for a non-aqueous electrolyte secondary battery of the present invention.
[図 2]図 2は、図 1に示す負極における活物質層の要部を拡大して示す模式図である  FIG. 2 is a schematic diagram showing an enlarged main part of the active material layer in the negative electrode shown in FIG.
[図 3]図 3 (a)ないし図 3 (d)は、図 1に示す負極の製造方法を示す工程図である。 FIG. 3 (a) to FIG. 3 (d) are process diagrams showing a method for manufacturing the negative electrode shown in FIG.
[図 4]図 4 (a)及び図 4 (b)は、実施例 3で得られた負極の活物質層の縦断面の SEM 像及び縦断面における Niの存在状態を EPMAによって測定した結果を示す図であ る。  [FIG. 4] FIGS. 4 (a) and 4 (b) show the SEM image of the longitudinal section of the negative electrode active material layer obtained in Example 3 and the results of measuring the presence of Ni in the longitudinal section by EPMA. FIG.
[図 5]図 5は、実施例 3で得られた負極の活物質層の縦断面における各元素の存在 状態を GDSによって測定した結果を示す図である。  FIG. 5 is a diagram showing the results of GDS measurement of the presence of each element in the longitudinal section of the negative electrode active material layer obtained in Example 3.
発明の詳細な説明  Detailed Description of the Invention
[0009] 以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図 1 には本発明の非水電解液二次電池用負極の一実施形態の断面構造の模式図が示 されている。本実施形態の負極 10は、集電体 11と、その少なくとも一面に形成された 活物質層 12を備えている。なお図 1においては、便宜的に集電体 11の片面にのみ 活物質層 12が形成されて ヽる状態が示されて!/ヽるが、活物質層は集電体の両面に 形成されていてもよい。  Hereinafter, the present invention will be described based on its preferred embodiments with reference to the drawings. FIG. 1 shows a schematic diagram of a cross-sectional structure of an embodiment of a negative electrode for a non-aqueous electrolyte secondary battery of the present invention. The negative electrode 10 of the present embodiment includes a current collector 11 and an active material layer 12 formed on at least one surface thereof. Note that FIG. 1 shows a state where the active material layer 12 is formed only on one surface of the current collector 11 for the sake of convenience! Although the active material layer is formed on both surfaces of the current collector, the active material layer 12 is formed on both surfaces of the current collector. It may be.
[0010] 活物質層 12は、活物質の粒子 12aを含んでいる。活物質層 12は例えば、活物質 の粒子 12aを含むスラリーを塗布して形成されている。活物質としては、例えばシリコ ン系材料やスズ系材料、アルミニウム系材料、ゲルマニウム系材料が挙げられる。ス ズ系材料としては、例えばスズと、コノ レトと、炭素と、ニッケル及びクロムのうちの少 なくとも一方とを含む合金が好ましく用いられる。負極重量あたりの容量密度を向上さ せる上では、特にシリコン系材料が好ましい。 [0010] The active material layer 12 includes active material particles 12a. The active material layer 12 is formed, for example, by applying a slurry containing active material particles 12a. Examples of the active material include silicon materials, tin materials, aluminum materials, and germanium materials. Examples of soot-based materials include tin, conoret, carbon, nickel, and chromium. An alloy containing at least one is preferably used. In order to improve the capacity density per weight of the negative electrode, a silicon-based material is particularly preferable.
[0011] シリコン系材料としては、リチウムの吸蔵が可能で且つシリコンを含有する材料、例 えばシリコン単体、シリコンと金属との合金、シリコン酸ィ匕物などを用いることができる 。これらの材料はそれぞれ単独で、或いはこれらを混合して用いることができる。前記 の金属としては、例えば Cu、 Ni、 Co、 Cr、 Fe、 Ti、 Pt、 W、 Mo及び Auからなる群か ら選択される 1種類以上の元素が挙げられる。これらの金属のうち、 Cu、 Ni、 Coが好 ましぐ特に電子伝導性に優れる点、及びリチウム化合物の形成能の低さの点から、 Cu、 Niを用いることが望ましい。また、負極を電池に組み込む前に、又は組み込ん だ後に、シリコン系材料力もなる活物質に対してリチウムを吸蔵させてもよい。特に好 ましいシリコン系材料は、リチウムの吸蔵量の高さの点力 シリコン又はシリコン酸ィ匕 物である。  [0011] As the silicon-based material, a material capable of occluding lithium and containing silicon, for example, silicon alone, an alloy of silicon and metal, silicon oxide, or the like can be used. These materials can be used alone or in combination. Examples of the metal include one or more elements selected from the group consisting of Cu, Ni, Co, Cr, Fe, Ti, Pt, W, Mo, and Au. Of these metals, Cu, Ni, and Co are preferred, and Cu and Ni are preferably used because of their excellent electronic conductivity and low ability to form lithium compounds. In addition, lithium may be occluded in an active material having a silicon-based material force before or after the negative electrode is incorporated in the battery. A particularly preferable silicon-based material is silicon or silicon oxide having a high lithium storage capacity.
[0012] 活物質層 12においては、粒子 12aの表面の少なくとも一部が金属材料 13の層で 被覆されている。この金属材料 13は、粒子 12aの構成材料と異なる材料である。該 金属材料 13の層で被覆された該粒子 12aの間には空隙が形成されている。つまり該 金属材料 13の層は、リチウムイオンを含む非水電解液が粒子 12aへ到達可能なよう な隙間を確保した状態で該粒子 12aの表面を被覆している。図 1中、金属材料 13の 層は、粒子 12aの周囲を取り囲む太線として便宜的に表されている。なお同図は活 物質層 12を二次元的にみた模式図であり、実際は各粒子は他の粒子と直接ないし 金属材料 13を介して接触して 、る。  In the active material layer 12, at least a part of the surface of the particle 12 a is covered with the layer of the metal material 13. The metal material 13 is a material different from the constituent material of the particles 12a. Voids are formed between the particles 12 a covered with the layer of the metal material 13. That is, the layer of the metal material 13 covers the surface of the particle 12a in a state in which a gap is secured so that the non-aqueous electrolyte containing lithium ions can reach the particle 12a. In FIG. 1, the layer of the metal material 13 is conveniently represented as a thick line surrounding the periphery of the particle 12a. This figure is a schematic view of the active material layer 12 viewed two-dimensionally. In actuality, each particle is in direct contact with other particles or through the metal material 13.
[0013] 金属材料 13は、活物質層 12の厚み方向全域にわたって活物質の粒子 12aの表 面に存在して 、ることが好ま 、。そして金属材料 13のマトリックス中に活物質の粒 子 12aが存在していることが好ましい。これによつて、充放電によって該粒子 12aが膨 張収縮することに起因して微粉ィ匕しても、その脱落が起こりづらくなる。また、金属材 料 13を通じて活物質層 12全体の電子伝導性が確保されるので、電気的に孤立した 活物質の粒子 12aが生成すること、特に活物質層 12の深部に電気的に孤立した活 物質の粒子 12aが生成することが効果的に防止される。このことは、活物質として半 導体であり電子伝導性の乏 、材料、例えばシリコン系材料を用いる場合に特に有 利である。金属材料 13が活物質層 12の厚み方向全域にわたって活物質の粒子 12a の表面に存在していることは、該材料 13を測定対象とした電子顕微鏡マッピングによ つて確認でさる。 [0013] The metal material 13 is preferably present on the surface of the active material particles 12a over the entire thickness direction of the active material layer 12. The active material particles 12 a are preferably present in the matrix of the metal material 13. As a result, even if the particles 12a expand and contract due to charge and discharge, even if they become fine powder, they are less likely to fall off. In addition, since the electronic conductivity of the entire active material layer 12 is ensured through the metal material 13, the electrically isolated active material particles 12 a are generated, particularly in the deep part of the active material layer 12. The formation of the active material particles 12a is effectively prevented. This is particularly true when a semiconductor is used as an active material and electron conductivity is poor, and a material such as a silicon-based material is used. It is profit. The presence of the metal material 13 on the surface of the active material particles 12a over the entire thickness direction of the active material layer 12 can be confirmed by electron microscope mapping using the material 13 as a measurement object.
[0014] 金属材料 13の層は、粒子 12aの表面を連続に又は不連続に被覆している。金属 材料 13の層が粒子 12aの表面を連続に被覆している場合には、金属材料 13の層に 、非水電解液の流通が可能な微細な空隙を形成することが好ましい。金属材料 13の 層が粒子 12aの表面を不連続に被覆している場合には、粒子 12aの表面のうち、金 属材料 13の層で被覆されて ヽな 、部位を通じて該粒子 12aへ非水電解液が供給さ れる。このような構造の金属材料 13の層を形成するためには、例えば後述する条件 に従う電解めつきによって金属材料 13を粒子 12aの表面に析出させればよい。  [0014] The layer of the metal material 13 covers the surface of the particle 12a continuously or discontinuously. When the layer of the metal material 13 continuously covers the surfaces of the particles 12a, it is preferable to form a fine void in the layer of the metal material 13 that allows the non-aqueous electrolyte to flow. When the layer of the metal material 13 covers the surface of the particle 12a discontinuously, it is covered with the layer of the metal material 13 out of the surface of the particle 12a, and the particle 12a is non-watered through the site. Electrolyte is supplied. In order to form the layer of the metal material 13 having such a structure, the metal material 13 may be deposited on the surfaces of the particles 12a by, for example, electroplating according to the conditions described later.
[0015] 金属材料 13の層で被覆された粒子 12aどうしの間には空隙が形成されている。こ の空隙は、リチウムイオンを含む非水電解液の流通の経路としての働きを有して 、る 。この空隙の存在によって非水電解液が活物質の粒子 12aへ容易に到達するので、 初期充電の過電圧を低くすることができる。その結果、負極の表面でリチウムのデン ドライトが発生することが防止される。デンドライトの発生は両極の短絡の原因となる。 過電圧を低くできることは、非水電解液の分解防止の点カゝらも有利である。非水電解 液が分解すると不可逆容量が増大するからである。更に、過電圧を低くできることは、 正極がダメージを受けに《なる点からも有利である。  A gap is formed between the particles 12 a covered with the layer of the metal material 13. This void serves as a distribution path for the non-aqueous electrolyte containing lithium ions. The non-aqueous electrolyte easily reaches the active material particles 12a due to the presence of the voids, and thus the overvoltage of the initial charge can be lowered. As a result, lithium dendrite is prevented from being generated on the negative electrode surface. The generation of dendrite causes a short circuit between the two poles. The ability to reduce the overvoltage is also advantageous in terms of preventing decomposition of the non-aqueous electrolyte. This is because the irreversible capacity increases when the non-aqueous electrolyte is decomposed. Furthermore, the ability to reduce the overvoltage is advantageous in that the positive electrode is damaged.
[0016] 更に、粒子 12a間に形成されている空隙は、充放電で活物質の粒子 12aが体積変 化することに起因する応力を緩和するための空間としての働きも有する。充電によつ て体積が増加した活物質の粒子 12aの体積の増加分は、この空隙に吸収される。そ の結果、該粒子 12aの微粉ィ匕が起こりづらくなり、また負極 10の著しい変形が効果的 に防止される。  [0016] Furthermore, the voids formed between the particles 12a also serve as a space for relieving the stress caused by the volume change of the active material particles 12a due to charge and discharge. The increase in the volume of the active material particles 12a whose volume has been increased by charging is absorbed by the voids. As a result, it is difficult for the fine particles of the particles 12a to be generated, and significant deformation of the negative electrode 10 is effectively prevented.
[0017] 本実施形態の負極 10においては、図 2に模式的に示すように、金属材料 13の層 が互いに異なる金属材料力 構成された多層構造になっている。各層は、単一の金 属から構成されて 、てもよく、或いは 2種以上の金属の合金力も構成されて 、てもよ い。詳細には、金属材料 13の層が、活物質の粒子 12aの表面を被覆する内層 13aと 、該内層 13a上に形成された外層 13bとからなる 2層構造になっている。このような多 層構造になって ヽることで、例えば内層 13aの構成材料として酸ィ匕されやす 、材料 を用いた場合であっても、酸ィ匕されにく 、材料カゝら構成された外層 13bで該内層 13a を被覆することで、該内層 13aの酸ィ匕を効果的に防止できる。これによつて、負極 10 を長期間大気中に放置した場合であっても、該負極中に酸素が取り込まれにくくなり 、初期充電の過電圧を低くすることができる。またサイクル特性の低下を防止すること ができる。なお後述するように、外層 13bは、その好ましい厚さが極めて薄いものであ るため、実際には外層 13bは内層 13aの表面を均一に被覆するものではなぐまだら に、即ち不連続に存在するものと考えられる。なお本明細書において「互いに異なる 金属材料から構成された多層構造」とは、隣り合う層を構成する金属材料の種類が 異なることで多層の構造が形成されていることをいう。従って金属材料 13の層が例え ば Snの層、 Niの層及び Snの層力もなる場合、当該層は互いに異なる金属材料から 構成された 3層構造である。 As schematically shown in FIG. 2, the negative electrode 10 of the present embodiment has a multilayer structure in which the layers of the metal material 13 are configured with different metal material forces. Each layer may be composed of a single metal, or may be composed of an alloying force of two or more metals. Specifically, the layer of the metal material 13 has a two-layer structure including an inner layer 13a covering the surface of the active material particles 12a and an outer layer 13b formed on the inner layer 13a. Such a lot Due to the layer structure, for example, the inner layer 13a is easily oxidized as a constituent material, and even when a material is used, it is not easily oxidized and the outer layer 13b configured by the material cover is used. By covering the inner layer 13a, it is possible to effectively prevent acidification of the inner layer 13a. As a result, even when the negative electrode 10 is left in the atmosphere for a long period of time, oxygen is hardly taken into the negative electrode, and the overvoltage of the initial charge can be lowered. In addition, deterioration of cycle characteristics can be prevented. As will be described later, since the preferred thickness of the outer layer 13b is extremely thin, the outer layer 13b actually does not cover the surface of the inner layer 13a evenly, that is, it exists discontinuously. It is considered a thing. In this specification, “a multilayer structure composed of different metal materials” means that a multilayer structure is formed by different types of metal materials constituting adjacent layers. Therefore, when the layer of the metal material 13 also has, for example, a Sn layer, a Ni layer, and a Sn layer force, the layer has a three-layer structure composed of different metal materials.
[0018] 金属材料の層 13を構成する互いに異なる 2種以上の金属材料は、少なくとも銅を 含むことが好ましい。銅は導電性に優れ、また延性の高さに起因して活物質の膨張 収縮に起因して発生する応力の緩和にも優れるからである。なお、銅は酸化されや すい金属であることが知られている。そこで本実施形態においては、上述の銅の有 する長所を活かしつつ、酸化されやすいという銅の欠点を、他の金属材料を用いるこ とで補っている。 [0018] Two or more different metal materials constituting the metal material layer 13 preferably include at least copper. This is because copper is excellent in electrical conductivity and also excellent in relaxation of stress generated due to expansion and contraction of the active material due to high ductility. Copper is known to be a metal that is easily oxidized. Therefore, in the present embodiment, while taking advantage of the above-described advantages of copper, the drawback of copper that is easily oxidized is compensated by using other metal materials.
[0019] 酸ィ匕を一層効果的に防止する観点から、表面に露出している層である外層 13bは 、酸ィ匕されにくい金属力も構成されていることが好ましい。また外層 13bはリチウム化 合物の形成能の低い金属力 構成されていることも好ましい。これらの観点から、外 層 13bを構成する金属としては、リチウム化合物の形成能が低く且つ酸化されにくい 材料であるニッケル、コノ レト、クロム若しくは金又はそれらの合金力も構成されてい ることが好ましい。「リチウム化合物の形成能の低い」とは、リチウムと金属間化合物若 しくは固溶体を形成しないか、又は形成したとしてもリチウムが微量である力若しくは 非常に不安定であることを意味する。  [0019] From the viewpoint of more effectively preventing oxidation, the outer layer 13b, which is a layer exposed on the surface, preferably has a metal force that is not easily oxidized. It is also preferable that the outer layer 13b has a metal force with a low lithium compound forming ability. From these viewpoints, it is preferable that the metal composing the outer layer 13b is composed of nickel, conoretole, chromium, gold, or an alloy thereof, which is a material that has a low ability to form a lithium compound and is hardly oxidized. “Lithium compound forming ability is low” means that lithium does not form an intermetallic compound or solid solution, or even if lithium is formed, lithium is in a very small force or very unstable.
[0020] 一方、内層 13aの構成材料としては、リチウム化合物の形成能の高い金属材料又 はリチウム化合物の形成能の低 、金属材料が用いられることが好ま 、。リチウム化 合物の形成能の高 、金属材料としては例えば亜鉛、スズ若しくは銀又はこれらの合 金が挙げられる。リチウム化合物の形成能の低い金属材料としては例えば銅が挙げ られる。充放電後における負極の強度維持という観点からは、リチウム化合物の形成 能の低い金属材料を使用することが好ましい。特に、内層 13aの構成材料は、活物 質の粒子 12aが膨張収縮しても該粒子 12aの表面の被覆が破壊されにくい延性の高 い材料であることが好ましい。この観点から、内層 13aの構成材料として、延性の高い 材料である銅を用いることが好ま 、。 [0020] On the other hand, as a constituent material of the inner layer 13a, it is preferable to use a metal material having a high lithium compound forming ability or a metal material having a low lithium compound forming ability. Lithiation Examples of the metal material having high compound forming ability include zinc, tin, silver, and alloys thereof. An example of a metal material having a low ability to form a lithium compound is copper. From the viewpoint of maintaining the strength of the negative electrode after charge and discharge, it is preferable to use a metal material having a low lithium compound forming ability. In particular, the constituent material of the inner layer 13a is preferably a highly ductile material in which the surface coating of the particles 12a is not easily broken even when the active material particles 12a expand and contract. From this point of view, it is preferable to use copper, which is a highly ductile material, as the constituent material of the inner layer 13a.
[0021] 内層 13aはその厚み力 S40〜1500nm、特に 100〜240nmであること力 活物質層 12内において活物質の粒子 12aを確実に保持し得る点力 好ましい。一方、外層 1 3bはその厚みが 10〜500nm、特に 10〜100nmであることが、内層 13aの酸化を 確実に防止し得る点から好ま 、。この範囲の厚みを有する内層 13a及び外層 13b の何れの層にも、非水電解液の流通が可能な微細な空隙が形成されている。これら の層の厚みが厚すぎると微細な空隙が形成されに《なる。また、内層 13a及び外層 13bを含む金属材料 13の層は、その全体の厚みが平均して 0. 05〜2 /ζ πι、特に 0. 1〜0. 25 mであることが好ましい。つまり金属材料 13は最低限の厚みで以て活物 質の粒子 12aの表面を被覆していることが好ましい。これによつて、エネルギー密度 を高めつつ、充放電によって粒子 12aが膨張収縮して微粉ィ匕することに起因する脱 落が防止される。金属材料 13の層が多層構造になっていることや、各層の厚みは、 例えばグロ一放電発光分光分析装置 (GDS)によって確認 '測定することができる。 各層を電解めつきによって形成する場合には、各層を形成するときの通電量などによ つて確認 ·測定することができる。具体的な測定方法は、実施例において詳述する。 ここでいう「厚みの平均」とは、活物質の粒子 12aの表面のうち、実際に金属材料 13 が被覆して 、る部分に基づき計算された値である。従って活物質の粒子 12aの表面 のうち金属材料 13で被覆されて 、な 、部分は、平均値の算出の基礎にはされな!、。  [0021] The inner layer 13a has a thickness force of S40 to 1500 nm, particularly 100 to 240 nm. A force that can reliably hold the active material particles 12a in the active material layer 12 is preferable. On the other hand, the thickness of the outer layer 13b is preferably 10 to 500 nm, particularly 10 to 100 nm, from the viewpoint of reliably preventing the oxidation of the inner layer 13a. In each of the inner layer 13a and the outer layer 13b having a thickness in this range, fine voids that allow the non-aqueous electrolyte to flow are formed. If these layers are too thick, fine voids are formed. In addition, the layer of the metal material 13 including the inner layer 13a and the outer layer 13b preferably has an average thickness of 0.05 to 2 / ζ πι, particularly 0.1 to 0.25 m. In other words, the metal material 13 preferably covers the surface of the active material particles 12a with a minimum thickness. As a result, while the energy density is increased, the particles 12a are prevented from falling off due to expansion and contraction due to charge / discharge and fine particles. The layer of the metal material 13 has a multilayer structure, and the thickness of each layer can be confirmed and measured by, for example, a glow discharge emission spectrometer (GDS). When each layer is formed by electrolytic plating, it can be confirmed and measured by the amount of current applied when each layer is formed. Specific measurement methods will be described in detail in Examples. Here, the “average thickness” is a value calculated based on a portion of the surface of the active material particle 12a that is actually covered with the metal material 13. Therefore, the surface of the active material particle 12a is covered with the metal material 13, and the portion is not a basis for calculating the average value!
[0022] 活物質層 12は、後述するように、好適には粒子 12a及び結着剤を含むスラリーを集 電体上に塗布し乾燥させて得られた塗膜に対し、所定のめっき浴を用いた電解めつ きを行い、粒子 12a間に金属材料 13を析出させることで形成される。  [0022] As described later, the active material layer 12 preferably has a predetermined plating bath applied to the coating film obtained by applying a slurry containing particles 12a and a binder onto a current collector and drying the slurry. It is formed by performing the electrolytic plating used and depositing the metal material 13 between the particles 12a.
[0023] 非水電解液の流通が可能な空隙を活物質層内に必要且つ十分に形成するために は、前記の塗膜内にめっき液を十分浸透させることが好ましい。これに加えて、該め つき液を用いた電解めつきによって金属材料 13を析出させるための条件を適切なも のとすることが好ましい。めっきの条件にはめつき浴の組成、めっき浴の pH、電解の 電流密度などがある。めっき浴の pHに関しては、特に内層 13aを形成する場合には 7. 1〜: L 1に調整することが好ましい。 pHをこの範囲内とすることで、活物質の粒子 1 2aの溶解が抑制されつつ、該粒子 12aの表面が清浄ィ匕されて、粒子表面へのめつ きが促進され、同時に粒子 12a間に適度な空隙が形成される。 pHの値は、めっき時 の温度にぉ 、て測定されたものである。 [0023] In order to form necessary and sufficient voids in the active material layer through which the non-aqueous electrolyte can flow It is preferable to sufficiently penetrate the plating solution into the coating film. In addition to this, it is preferable that the conditions for depositing the metal material 13 by electrolytic plating using the plating solution are appropriate. The plating conditions include the composition of the fitting bath, the pH of the plating bath, and the current density of electrolysis. The pH of the plating bath is preferably adjusted to 7.1 to L 1 particularly when the inner layer 13a is formed. By keeping the pH within this range, the dissolution of the active material particles 12a is suppressed, the surface of the particles 12a is cleaned, and the adhesion to the particle surfaces is promoted. Moderate gaps are formed. The pH value was measured with respect to the temperature at the time of plating.
[0024] 内層 13aの構成金属として銅を用いる場合には、ピロリン酸銅浴を用いた電解めつ きによって該内層 13aを形成することが好ましい。ピロリン酸銅浴を用いると、活物質 層 12を厚くした場合であっても、該層の厚み方向全域にわたって、前記の空隙を容 易に形成し得るので好ましい。また、活物質の粒子 12aの表面には銅が析出し、且 っ該粒子 12a間では銅の析出が起こりづらくなるので、該粒子 12a間の空隙が首尾 良く形成されるという点でも好ましい。ピロリン酸銅浴を用いる場合、その浴組成、電 解条件及び pHは次の通りであることが好まし 、。 [0024] When copper is used as the constituent metal of the inner layer 13a, it is preferable to form the inner layer 13a by electrolytic plating using a copper pyrophosphate bath. It is preferable to use a copper pyrophosphate bath, even if the active material layer 12 is thick, because the voids can be easily formed over the entire thickness direction of the layer. Also, copper is deposited on the surface of the active material particles 12a, and it is difficult for copper to precipitate between the particles 12a, which is preferable in that the voids between the particles 12a are formed successfully. When using a copper pyrophosphate bath, the bath composition, electrolysis conditions and pH are preferably as follows.
'ピロリン酸銅三水和物: 85〜120gZl  'Copper pyrophosphate trihydrate: 85-120gZl
-ピ13ジン カジクム: 300〜600g/l  -Pig 13 gin Kazikum: 300-600g / l
'硝酸カリウム: 15〜65gZl  'Potassium nitrate: 15-65gZl
'浴温度: 45〜60°C  'Bath temperature: 45-60 ° C
'電流密度: l〜7AZdm2 'Current density: l ~ 7AZdm 2
•pH :アンモニア水とポリリン酸を添カ卩して pH7. 1〜9. 5になるように調整する。  • pH: Add ammonia water and polyphosphoric acid to adjust the pH to 7.1 to 9.5.
[0025] ピロリン酸銅浴を用いる場合には特に、 P Oの重量と Cuの重量との比(P O ZCu [0025] Especially when using a copper pyrophosphate bath, the ratio of the weight of PO to Cu (P O ZCu
2 7 2 7 2 7 2 7
)で定義される P比が 5〜12であるものを用いることが好ましい。 P比が 5未満のものを 用いると、活物質の粒子 12aを被覆する銅が厚くなる傾向となり、粒子 12a間に所望 の空隙を形成させづらい場合がある。また、 P比が 12を超えるものを用いると、電流 効率が悪くなり、ガス発生などが生じやすくなることから生産安定性が低下する場合 がある。更に好ましいピロリン酸銅浴として、 P比が 6. 5-10. 5であるものを用いると 、活物質の粒子 12a間に形成される空隙のサイズ及び数が、活物質層 12内での非 水電解液の流通に非常に有利になる。 It is preferable to use one having a P ratio defined by If the P ratio is less than 5, the copper covering the active material particles 12a tends to be thick, and it may be difficult to form desired voids between the particles 12a. If a P ratio exceeding 12 is used, the current efficiency will be poor and gas generation will be likely to occur, which may reduce production stability. When a copper pyrophosphate bath having a P ratio of 6.5 to 10.5 is used as a more preferable copper pyrophosphate bath, the size and number of voids formed between the active material particles 12a are reduced in the active material layer 12. This is very advantageous for the flow of the water electrolyte.
[0026] 内層 13aが 2種以上の金属の合金である場合には、合金めつきによって該内層 13 aを形成することができる。例えば内層 13aとして銅ニッケル合金を用いる場合には、 以下に示す銅ニッケル合金めつき浴を用いて電解めつきを行えばよい。  [0026] When the inner layer 13a is an alloy of two or more metals, the inner layer 13a can be formed by alloy bonding. For example, when a copper nickel alloy is used as the inner layer 13a, electrolytic plating may be performed using a copper nickel alloy plating bath described below.
'硫酸ニッケル六水和物 45gZl  'Nickel sulfate hexahydrate 45gZl
'ピロリン酸銅三水和物 36gZl  'Copper pyrophosphate trihydrate 36gZl
•ピロリン酸カリウム 30gZl  • Potassium pyrophosphate 30gZl
•pH 8. 2  PH 8.2
'浴温度 55°C  'Bath temperature 55 ° C
'電流密度 3AZdm2 'Current density 3AZdm 2
以上の条件で電解めつきを行うことで、銅とニッケルの比率 (重量比)が概ね 8: 2で ある合金が形成される。  By performing electrolytic plating under the above conditions, an alloy with a copper to nickel ratio (weight ratio) of approximately 8: 2 is formed.
[0027] 次の工程において行われる外層 13bのめつき浴の浸入を考慮すると、内層 13aが 形成された時点での活物質層 12における空隙の割合は 20体積%以上とすることが 好まし 、。内層 13aの厚さを薄くして活物質層 12における空隙の割合を高める方法 として、塗膜 15を形成後、内層 13aの形成前に塗膜 15をプレス処理する方法が挙げ られる。プレス処理の圧力は 50〜500MPa、特に 100〜500MPaであることが好ま しい。  [0027] In consideration of the penetration of the bath of the outer layer 13b performed in the next step, it is preferable that the ratio of the voids in the active material layer 12 when the inner layer 13a is formed is 20% by volume or more. . As a method of increasing the void ratio in the active material layer 12 by reducing the thickness of the inner layer 13a, a method of pressing the coating film 15 after forming the coating film 15 and before forming the inner layer 13a can be mentioned. The pressure for the pressing process is preferably 50 to 500 MPa, particularly 100 to 500 MPa.
[0028] 浸透めつきを行う前に塗膜 15をプレス処理に付すことで、めっきの進行を早めるこ とができ、活物質の粒子 12aの表面に薄く且つ均一な金属材料 13の被覆を形成し 得ることが本発明者らの検討の結果判明した。この理由は、プレス処理によって粒子 12aどうしの接触の程度が高まり、それによつて塗膜 15内での電子伝導性が良好に なって、めっき核が生成する領域が、塗膜 15の厚み方向で増大することに起因する ものと考えられる。この観点から、プレス処理の圧力は 50〜500MPa、特に 100〜5 OOMPaであることが好まし!/、。  [0028] By subjecting the coating film 15 to a press treatment before the penetration plating, the progress of plating can be accelerated, and a thin and uniform coating of the metal material 13 is formed on the surface of the active material particles 12a. As a result of the study by the present inventors, it has been found that this is possible. The reason for this is that the degree of contact between the particles 12a is increased by the press treatment, whereby the electron conductivity in the coating film 15 is improved, and the region where plating nuclei are generated is in the thickness direction of the coating film 15. This is thought to be due to the increase. From this point of view, the pressure of the press treatment is preferably 50 to 500 MPa, particularly 100 to 5 OOMPa! /.
[0029] 一方、外層 13bの構成金属として例えばニッケルを用いる場合には、ワット浴を用 V、た電解めつきによって該外層 13bを形成することが好ま ヽ。ワット浴を用いる場合 には、その浴組成及び電解条件は次の通りであることが好ま 、。 •NiSO · 6Η O 150〜300gZl [0029] On the other hand, when nickel is used as the constituent metal of the outer layer 13b, it is preferable to form the outer layer 13b by electrolytic plating using a watt bath. When using a Watt bath, the bath composition and electrolysis conditions are preferably as follows. NiSO 6Η O 150 ~ 300gZl
4 2  4 2
•NiCl - 6H O 30〜60gZl  NiCl-6H O 30-60gZl
•H • H
Figure imgf000011_0001
Figure imgf000011_0001
'浴温度: 40〜70°C  'Bath temperature: 40 ~ 70 ° C
'電流密度: 0. 5〜20AZdm2 'Current density: 0.5-20AZdm 2
[0030] 前記の各種めつき浴に、タンパク質、活性硫黄化合物、セルロース等の銅箔製造 用電解液に用いられる各種添加剤を加えることにより、内層 13a及び外層 13bを構成 する金属材料の特性を適宜調整することも可能である。 [0030] By adding various additives used in the electrolytic solution for producing copper foil such as protein, active sulfur compound, cellulose, etc. to the various baths described above, the characteristics of the metal materials constituting the inner layer 13a and the outer layer 13b are improved. It is also possible to adjust appropriately.
[0031] 上述の方法によって形成される活物質層 12における空隙の割合、つまり空隙率は[0031] The ratio of voids in the active material layer 12 formed by the above method, that is, the void ratio is
、 15〜45体積%程度、特に 20〜40体積%程度であることが好ましい。空隙率をこ の範囲内とすることで、非水電解液の流通が可能な空隙を活物質層 12内に必要且 つ十分に形成することが可能となる。空隙率は次の(1)〜(7)の手順で測定される。15 to 45% by volume, particularly 20 to 40% by volume is preferable. By setting the porosity within this range, it is possible to form necessary and sufficient voids in the active material layer 12 through which the non-aqueous electrolyte can flow. The porosity is measured by the following procedures (1) to (7).
(1)前記のスラリーの塗布によって形成された塗膜の単位面積当たりの重量を測定し 、粒子 12aの重量及び結着剤の重量を、スラリーの配合比から算出する。 (1) The weight per unit area of the coating film formed by applying the slurry is measured, and the weight of the particles 12a and the weight of the binder are calculated from the blending ratio of the slurry.
(2)電解めつき後の単位面積当たりの重量変化から、析出しためっき金属種の重量 を算出する。この操作は、内層 13a及び外層 13bのそれぞれについて別個に行う。 (2) From the weight change per unit area after electroplating, calculate the weight of the plated metal species. This operation is performed separately for each of the inner layer 13a and the outer layer 13b.
(3)電解めつき後、負極の断面を SEM観察することで、活物質層 12の厚さを求める (3) After electrolytic plating, the thickness of the active material layer 12 is obtained by SEM observation of the cross section of the negative electrode
(4)活物質層 12の厚さから、単位面積当たりの活物質層 12の体積を算出する。(4) The volume of the active material layer 12 per unit area is calculated from the thickness of the active material layer 12.
(5)粒子 12aの重量、結着剤の重量、めっき金属種の重量と、それぞれの配合比か ら、それぞれの体積を算出する。 (5) The respective volumes are calculated from the weight of the particles 12a, the weight of the binder, the weight of the plating metal species, and the respective mixing ratios.
(6)単位面積当たりの活物質層 12の体積から、粒子 12aの体積、結着剤の体積、め つき金属種の体積を減じて、空隙の体積を算出する。  (6) The void volume is calculated by subtracting the volume of the particles 12a, the volume of the binder, and the volume of the metal species from the volume of the active material layer 12 per unit area.
(7)このようにして算出された空隙の体積を、単位面積当たりの活物質層 12の体積 で除し、それに 100を乗じた値を空隙率 (%)とする。  (7) Divide the void volume calculated in this way by the volume of the active material layer 12 per unit area, and multiply the result by 100 to obtain the void ratio (%).
[0032] 活物質の粒子 12aの粒径を適切に選択することによつても、前記の空隙率をコント ロールすることができる。この観点から、粒子 12aはその最大粒径が好ましくは 30 m以下であり、更に好ましくは 10 m以下である。また粒子の粒径を D 値で表すと 0 . 1〜8 μ m、特に 0. 3〜4 μ mであることが好ましい。粒子の粒径は、レーザー回折 散乱式粒度分布測定、電子顕微鏡観察 (SEM観察)によって測定される。 [0032] The porosity can also be controlled by appropriately selecting the particle size of the active material particles 12a. From this viewpoint, the maximum particle size of the particles 12a is preferably 30 m or less, more preferably 10 m or less. In addition, when the particle size is expressed in terms of D value, 0 1 to 8 μm, particularly 0.3 to 4 μm is preferable. The particle size of the particles is measured by laser diffraction / scattering particle size distribution measurement and electron microscope observation (SEM observation).
[0033] 負極全体に対する活物質の量が少なすぎると電池のエネルギー密度を十分に向 上させにくぐ逆に多すぎると強度が低下し活物質の脱落が起こりやすくなる傾向に ある。これらを勘案すると、活物質層 12の厚みは、好ましくは 10〜40 /ζ πι、更に好ま しくは 15〜30 μ m、一層好ましくは 18〜25 μ mである。  [0033] If the amount of the active material relative to the whole negative electrode is too small, it is difficult to sufficiently increase the energy density of the battery. On the other hand, if the amount is too large, the strength decreases and the active material tends to fall off. Considering these, the thickness of the active material layer 12 is preferably 10 to 40 / ζ πι, more preferably 15 to 30 μm, and still more preferably 18 to 25 μm.
[0034] 本実施形態の負極 10においては、活物質層 12の表面に薄い表面層(図示せず) が形成されていてもよい。また負極 10はそのような表面層を有していなくてもよい。表 面層の厚みは、 0. 25 μ m以下、好ましくは 0. 1 μ m以下という薄いものである。表面 層の厚みの下限値に制限はない。  In the negative electrode 10 of the present embodiment, a thin surface layer (not shown) may be formed on the surface of the active material layer 12. Further, the negative electrode 10 may not have such a surface layer. The thickness of the surface layer is as thin as 0.25 μm or less, preferably 0.1 μm or less. There is no limit to the lower limit of the thickness of the surface layer.
[0035] 負極 10が前記の厚みの薄 、表面層を有するか又は該表面層を有して ヽな 、こと によって、負極 10を用いて二次電池を組み立て、当該電池の初期充電を行うときの 過電圧を低くすることができる。このことは、二次電池の充電時に負極 10の表面でリ チウムが還元することを防止できることを意味する。リチウムの還元は、両極の短絡の 原因となるデンドライトの発生につながる。  [0035] When the negative electrode 10 is thin and has a surface layer or has the surface layer, a secondary battery is assembled using the negative electrode 10, and the battery is initially charged. The overvoltage can be reduced. This means that lithium can be prevented from being reduced on the surface of the negative electrode 10 when the secondary battery is charged. The reduction of lithium leads to the generation of dendrites that cause short circuits between the two electrodes.
[0036] 負極 10が表面層を有している場合、該表面層は活物質層 12の表面を連続又は不 連続に被覆している。表面層が活物質層 12の表面を連続に被覆している場合、該 表面層は、その表面にお!、て開孔し且つ活物質層 12と通ずる多数の微細空隙(図 示せず)を有して 、ることが好ま 、。微細空隙は表面層の厚さ方向へ延びるように 表面層中に存在して 、ることが好ま 、。微細空隙は非水電解液の流通が可能なも のである。微細空隙の役割は、活物質層 12内に非水電解液を供給することにある。 微細空隙は、負極 10の表面を電子顕微鏡観察により平面視したとき、金属材料 13 で被覆されている面積の割合、即ち被覆率が 95%以下、特に 80%以下、とりわけ 6 0%以下となるような大きさであることが好ましい。  When the negative electrode 10 has a surface layer, the surface layer covers the surface of the active material layer 12 continuously or discontinuously. When the surface layer continuously covers the surface of the active material layer 12, the surface layer has a large number of fine voids (not shown) that are open to the surface and communicate with the active material layer 12. Have, prefer to have. It is preferable that the fine voids exist in the surface layer so as to extend in the thickness direction of the surface layer. The fine voids allow the non-aqueous electrolyte to flow. The role of the fine voids is to supply a non-aqueous electrolyte into the active material layer 12. When the surface of the negative electrode 10 is viewed in plan by an electron microscope, the fine voids are the ratio of the area covered with the metal material 13, that is, the coverage is 95% or less, particularly 80% or less, particularly 60% or less. Such a size is preferable.
[0037] 表面層は、リチウム化合物の形成能の低!、金属材料力 構成されて 、る。この金属 材料は、上述した外層 13bの構成材料と同種とすることができる。或いは、外層 13b の構成材料 13と異種のものとすることもできる。例えば、内層 13aがリチウム化合物の 形成能の低 、金属材料カゝら構成されて ヽる場合には、表面層は内層 13aの構成材 料で形成されていてもよい。この場合には、表面層を構成する金属材料と外層 13b の構成材料とは異種のものとなる。負極 10の製造の容易さを考慮すると、外層 13b の構成材料と、表面層を構成する金属材料とは同種であることが好まし 、。 [0037] The surface layer is composed of a metal compound having a low lithium compound forming ability. This metal material can be the same as the constituent material of the outer layer 13b described above. Alternatively, it may be different from the constituent material 13 of the outer layer 13b. For example, when the inner layer 13a is composed of a metal material having a low lithium compound forming ability, the surface layer is a constituent material of the inner layer 13a. It may be formed of a material. In this case, the metal material constituting the surface layer and the constituent material of the outer layer 13b are different. Considering the ease of manufacturing the negative electrode 10, it is preferable that the constituent material of the outer layer 13b and the metal material constituting the surface layer are the same type.
[0038] 負極 10における集電体 11としては、非水電解液二次電池用負極の集電体として 従来用いられているものと同様のものを用いることができる。集電体 11は、先に述べ たリチウム化合物の形成能の低 、金属材料力 構成されて 、ることが好ま 、。その ような金属材料の例は既に述べた通りである。特に、銅、ニッケル、ステンレス等から なることが好ましい。また、コルソン合金箔に代表されるような銅合金箔の使用も可能 である。更に集電体として、常態抗張力 (JIS C 2318)が好ましくは 500MPa以上 である金属箔、例えば前記のコルソン合金箔の少なくとも一方の面に銅被膜層を形 成したものを用いることもできる。更に集電体として常態伸度 CFIS C 2318)が 4% 以上のものを用いることも好ま 、。抗張力が低 、と活物質が膨張した際の応力によ りシヮが生じ、伸び率が低いと該応力により集電体に亀裂が入ることがあるからである 。集電体 11の厚みは本実施形態において臨界的ではない。負極 10の強度維持と、 エネルギー密度向上とのバランスを考慮すると、 9〜35 /ζ πιであることが好ましい。な お、集電体 11として銅箔を使用する場合には、クロメート処理や、トリァゾール系化合 物及びイミダゾール系化合物などの有機化合物を用いた防鲭処理を施しておくこと が好ましい。 [0038] The current collector 11 in the negative electrode 10 may be the same as that conventionally used as the current collector of the negative electrode for a non-aqueous electrolyte secondary battery. It is preferable that the current collector 11 is composed of a metal material having a low lithium compound forming ability as described above. Examples of such metal materials are as already described. In particular, it is preferably made of copper, nickel, stainless steel or the like. Also, it is possible to use a copper alloy foil represented by Corson alloy foil. Further, as the current collector, a metal foil having a normal tensile strength (JIS C 2318) of preferably 500 MPa or more, for example, a copper film layer formed on at least one surface of the aforementioned Corson alloy foil can be used. Furthermore, it is also preferable to use a current collector having a normal elongation CFIS C 2318) of 4% or more. This is because, when the tensile strength is low, stress is generated due to the stress when the active material expands, and when the elongation is low, the current collector may crack. The thickness of the current collector 11 is not critical in this embodiment. Considering the balance between maintaining the strength of the negative electrode 10 and improving the energy density, it is preferably 9 to 35 / ζ πι. In addition, when using a copper foil as the current collector 11, it is preferable to perform a chromate treatment or an antifungal treatment using an organic compound such as a triazole compound and an imidazole compound.
[0039] 次に、本実施形態の負極 10の好ましい製造方法について、図 3を参照しながら説 明する。本製造方法では、活物質の粒子及び結着剤を含むスラリーを用いて集電体 11上に塗膜を形成し、次いでその塗膜に対し、異なる種類のめっき浴を用いて電解 めっきを繰り返し行う。  Next, a preferred method for producing the negative electrode 10 of the present embodiment will be described with reference to FIG. In this manufacturing method, a coating film is formed on the current collector 11 using a slurry containing active material particles and a binder, and then electrolytic plating is repeatedly performed on the coating film using different types of plating baths. Do.
[0040] 先ず図 3 (a)に示すように集電体 11を用意する。そして集電体 11上に、活物質の 粒子 12aを含むスラリーを塗布して塗膜 15を形成する。スラリーは、活物質の粒子の 他に、結着剤及び希釈溶媒などを含んでいる。またスラリーはアセチレンブラックゃグ ラフアイトなどの導電性炭素材料の粒子を少量含んでいてもよい。特に、活物質の粒 子 12aがシリコン系材料力も構成されている場合には、該活物質の粒子 12aの重量 に対して導電性炭素材料を 1〜3重量%含有することが好ま ヽ。導電性炭素材料 の含有量が 1重量%未満であると、スラリーの粘度が低下して活物質の粒子 12aの沈 降が促進されるため、良好な塗膜 15及び均一な空隙を形成しにくくなる。また導電 性炭素材料の含有量が 3重量%を超えると、該導電性炭素材料の表面にめっき核が 集中し、良好な被覆を形成しにくくなる。 First, a current collector 11 is prepared as shown in FIG. Then, a slurry containing active material particles 12 a is applied onto the current collector 11 to form a coating film 15. In addition to the active material particles, the slurry contains a binder and a diluent solvent. The slurry may contain a small amount of conductive carbon material particles such as acetylene black graphite. In particular, when the active material particles 12a also have a silicon-based material force, it is preferable that the conductive carbon material is contained in an amount of 1 to 3% by weight with respect to the weight of the active material particles 12a. Conductive carbon material When the content of is less than 1% by weight, the viscosity of the slurry decreases and the settling of the active material particles 12a is promoted, so that it is difficult to form a good coating film 15 and uniform voids. If the content of the conductive carbon material exceeds 3% by weight, plating nuclei concentrate on the surface of the conductive carbon material, and it becomes difficult to form a good coating.
[0041] 結着剤としてはスチレンブタジエンラバー(SBR)、ポリフッ化ビ-リデン(PVDF)、 ポリエチレン(PE)、エチレンプロピレンジェンモノマー(EPDM)などが用いられる。 希釈溶媒としては N—メチルピロリドン、シクロへキサンなどが用いられる。スラリー中 における活物質の粒子 12aの量は 30〜70重量%程度とすることが好ましい。結着剤 の量は 0. 4〜4重量%程度とすることが好ましい。これらに希釈溶媒をカ卩えてスラリー とする。 [0041] As the binder, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polyethylene (PE), ethylene propylene monomer (EPDM), or the like is used. As a diluting solvent, N-methylpyrrolidone, cyclohexane or the like is used. The amount of the active material particles 12a in the slurry is preferably about 30 to 70% by weight. The amount of the binder is preferably about 0.4 to 4% by weight. A dilute solvent is added to these to form a slurry.
[0042] 形成された塗膜 15は、粒子 12a間に多数の微小空間を有する。塗膜 15が形成さ れた集電体 11を、第 1のめつき浴中に浸漬する。第 1のめつき浴は、リチウム化合物 の形成能の低!、金属材料を含むか、又はリチウム化合物の形成能の高 、金属材料 を含む。第 1のめつき浴への浸漬によって、めっき液が塗膜 15内の前記微小空間に 浸入して、塗膜 15と集電体 11との界面にまで達する。その状態下に電解めつきを行 い、めっき金属種を粒子 12aの表面に析出させる(以下、このめつきを浸透めつきとも いう)。浸透めつきは、集電体 11を力ソードとして用い、めっき浴中にアノードとしての 対極を浸漬し、両極を電源に接続して行う。  [0042] The formed coating film 15 has a large number of minute spaces between the particles 12a. The current collector 11 on which the coating film 15 is formed is immersed in the first plating bath. The first bath is low in the ability to form a lithium compound, contains a metal material, or contains a metal material that has a high ability to form a lithium compound. By immersing in the first plating bath, the plating solution enters the minute space in the coating film 15 and reaches the interface between the coating film 15 and the current collector 11. Under this condition, electrolytic plating is performed to deposit plated metal species on the surface of the particles 12a (hereinafter, this plating is also referred to as penetration plating). The penetration is performed by using the current collector 11 as a force sword, immersing the counter electrode as the anode in the plating bath, and connecting both electrodes to the power source.
[0043] 浸透めつきによる金属材料の析出は、塗膜 15の一方の側力 他方の側に向力つて 進行させることが好ましい。具体的には、図 3 (b)ないし (d)に示すように、塗膜 15と 集電体 11との界面力 塗膜の表面に向けてめっき金属種の析出が進行するように電 解めつきを行う。めっき金属種をこのように析出させることで、活物質の粒子 12aの表 面をめつき金属種で首尾よく被覆することができると共に、めっき金属種で被覆され た粒子 12a間に空隙を首尾よく形成することができる。しかも、該空隙の空隙率を前 述した好ま 、範囲にすることが容易となる。  [0043] It is preferable that the deposition of the metal material by the penetration adhesion proceeds by applying one side force of the coating film 15 to the other side. Specifically, as shown in FIGS. 3 (b) to (d), the interfacial force between the coating film 15 and the current collector 11 is electrolysis so that the deposition of the plating metal species proceeds toward the surface of the coating film. Make a mess. By precipitating the plating metal species in this way, the surface of the active material particles 12a can be successfully coated with the metal species, and voids can be successfully formed between the particles 12a coated with the plating metal species. Can be formed. In addition, the void ratio of the voids can be easily set to the preferred range described above.
[0044] 前述のようにめつき金属種を析出させるための浸透めつきの条件には、めっき浴の 組成、めっき浴の pH、電解の電流密度などがある。このような条件については既に 述べた通りである。 [0045] 図 3 (b)ないし (d)に示されているように、塗膜 15と集電体 11との界面から塗膜の表 面に向けてめっき金属種の析出が進行するように電解めつきを行うと、析出反応の最 前面部においては、ほぼ一定の厚みでめっき金属種のめっき核力 なる微小粒子 1 4が層状に存在している。めっき金属種の析出が進行すると、隣り合う微小粒子 14ど うしが結合して更に大きな粒子となり、更に析出が進行すると、該粒子どうしが結合し て活物質の粒子 12aの表面を連続的に被覆するようになる。 [0044] As described above, the conditions of the penetration plating for depositing the plating metal species include the composition of the plating bath, the pH of the plating bath, and the current density of electrolysis. Such conditions are as described above. [0045] As shown in FIGS. 3 (b) to (d), the deposition of the plating metal species proceeds from the interface between the coating film 15 and the current collector 11 toward the surface of the coating film. When electrolytic plating is performed, in the forefront portion of the precipitation reaction, fine particles 14 having a substantially constant thickness and serving as a plating nucleus of the plating metal species are present in layers. As the precipitation of the plated metal species proceeds, adjacent fine particles 14 combine to form larger particles, and when the deposition proceeds further, the particles combine to continuously coat the surface of the active material particles 12a. Will come to do.
[0046] 第 1のめつき浴を用いた電解めつきは、塗膜 15の厚み方向全域にめっき金属種が 析出した時点で終了させる。このようにして、図 3 (d)に示すように、負極の前駆体が 得られる。次に、このめつき浴に代えて第 2のめつき浴を用い、上述の手順と同様の 手順によって電解めつきを行う。第 2のめつき浴はリチウム化合物の形成能の低 、金 属材料を含む。  [0046] Electrolytic plating using the first plating bath is terminated when the plating metal species is deposited in the entire thickness direction of the coating film 15. In this manner, a negative electrode precursor is obtained as shown in FIG. Next, instead of this bathing bath, use a second bathing bath, and perform electrolytic bathing according to the same procedure as described above. The second bath has a low ability to form lithium compounds and contains a metal material.
[0047] 第 1のめつき浴を用いた電解めつきと同様の手順によって第 2のめつき浴による電 解めつきを行うことで、先に析出しためっき金属種力もなる内層上に、この金属種とは 異なる種類のめっき金属種力もなる外層が形成される。第 2のめつき浴による電解め つきは、塗膜 15の厚み方向全域にめっき金属種が析出した時点で終了させる。この 場合、電解めつきの終了時点を調節することで、活物質層 12の上面に表面層(図示 せず)を形成することができる。  [0047] By performing electroplating with the second plating bath in the same procedure as the electrolytic plating with the first plating bath, this is deposited on the inner layer that also has the plating metal seed strength. An outer layer is formed which also has a different kind of plating metal species than the metal species. The electrolytic plating with the second plating bath is terminated when the plating metal species is deposited in the entire thickness direction of the coating film 15. In this case, a surface layer (not shown) can be formed on the upper surface of the active material layer 12 by adjusting the end point of electroplating.
[0048] このようにして得られた負極 10は、例えばリチウム二次電池等の非水電解液二次 電池用の負極として好適に用いられる。この場合、電池の正極は、正極活物質並び に必要により導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤を作製し、これを 集電体に塗布、乾燥した後、ロール圧延、プレスし、更に裁断、打ち抜きすることによ り得られる。正極活物質としては、リチウムニッケル複合酸ィ匕物、リチウムマンガン複 合酸化物、リチウムコバルト複合酸化物等の含リチウム金属複合酸化物を始めとする 従来公知の正極活物質が用いられる。また、正極活物質として、 LiCoOに少なくとも  [0048] The negative electrode 10 thus obtained is suitably used as a negative electrode for a non-aqueous electrolyte secondary battery such as a lithium secondary battery. In this case, the positive electrode of the battery is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in an appropriate solvent to produce a positive electrode mixture, applying this to a current collector, drying it, and then rolling it. It is obtained by pressing, cutting and punching. As the positive electrode active material, conventionally known positive electrode active materials such as lithium-containing metal composite oxides such as lithium nickel composite oxide, lithium manganese composite oxide, and lithium cobalt composite oxide are used. In addition, as a positive electrode active material, at least LiCoO
2  2
Zrと Mgの両方を含有させたリチウム遷移金属複合酸化物と、層状構造を有し、少な くとも Mnと Niの両方を含有するリチウム遷移金属複合酸化物と混合したものも好まし く用いることができる。力かる正極活物質を用いることで充放電サイクル特性及び熱 安定性の低下を伴うことなぐ充電終止電圧を高めることが期待できる。正極活物質 の一次粒子径の平均値は 5 μ m以上 10 μ m以下であることが、充填密度と反応面積 との兼ね合いから好ましぐ正極に使用する結着剤の重量平均分子量は 350, 000 以上 2, 000, 000以下のポリフッ化ビ-リデンであることが好ましい。低温環境での 放電特性を向上させることが期待できるからである。 Lithium transition metal composite oxide containing both Zr and Mg and a mixture of lithium transition metal composite oxide having a layered structure and containing at least both Mn and Ni are also preferably used. Can do. The use of a positive active material can be expected to increase the end-of-charge voltage without deteriorating charge / discharge cycle characteristics and thermal stability. Cathode active material The average primary particle size is 5 μm or more and 10 μm or less, and the weight average molecular weight of the binder used for the positive electrode is preferably 350,000 or more because of the balance between packing density and reaction area. , 000, 000 or less of polyvinylidene fluoride is preferable. This is because it can be expected to improve the discharge characteristics in a low temperature environment.
[0049] 電池のセパレータとしては、合成樹脂製不織布、ポリエチレンやポリプロピレン等の ポリオレフイン、又はポリテトラフルォロエチレンの多孔質フィルム等が好ましく用いら れる。電池の過充電時に生じる電極の発熱を抑制する観点からは、ポリオレフイン微 多孔膜の片面又は両面にフエ口セン誘導体の薄膜が形成されてなるセパレータを用 いることが好ましい。セパレータは、突刺強度が 0. 2NZ w m厚以上 0. 49N/ μ m 厚以下であり、卷回軸方向の引張強度が 40MPa以上 150MPa以下であることが好 ましい。充放電に伴い大きく膨張'収縮する負極活物質を用いても、セパレータの損 傷を抑制することができ、内部短絡の発生を抑制することができるからである。  [0049] As the battery separator, a synthetic resin nonwoven fabric, a polyolefin such as polyethylene or polypropylene, or a porous film of polytetrafluoroethylene is preferably used. From the viewpoint of suppressing the heat generation of the electrode that occurs when the battery is overcharged, it is preferable to use a separator in which a polyolefin film is formed on one or both surfaces of the polyolefin microporous membrane. The separator preferably has a puncture strength of 0.2 NZ w m or more and 0.49 N / μm or less and a tensile strength in the winding axis direction of 40 MPa or more and 150 MPa or less. This is because even when a negative electrode active material that expands and contracts greatly with charge and discharge is used, damage to the separator can be suppressed, and occurrence of internal short circuits can be suppressed.
[0050] 非水電解液は、支持電解質であるリチウム塩を有機溶媒に溶解した溶液からなる。  [0050] The nonaqueous electrolytic solution is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
リチウム塩としては、 LiCIO、 LiAlCl、 LiPF、 LiAsF、 LiSbF、 LiBF、 LiSCN、  Lithium salts include LiCIO, LiAlCl, LiPF, LiAsF, LiSbF, LiBF, LiSCN,
4 4 6 6 6 4  4 4 6 6 6 4
LiCl、 LiBr、 Lil、 LiCF SO、 LiC F SO等が例示される。有機溶媒としては、例え  Examples include LiCl, LiBr, Lil, LiCF SO, LiC F SO and the like. Examples of organic solvents include
3 3 4 9 3  3 3 4 9 3
ばエチレンカーボネート、ジェチノレカーボネート、ジメチノレカーボネート、プロピレン カーボネート、ブチレンカーボネート等が挙げられる。特に、非水電解液全体に対し Examples include ethylene carbonate, jetino carbonate, dimethylol carbonate, propylene carbonate, butylene carbonate, and the like. Especially for the whole non-aqueous electrolyte
0. 5〜5重量%のビ-レンカーボネート及び 0. 1〜1重量%のジビニルスルホン、 0 . 1〜1. 5重量0 /0の 1, 4 ブタンジオールジメタンスルホネートを含有させることが充 放電サイクル特性を更に向上する観点力 好ましい。その理由について詳細は明ら かでないが、 1, 4 ブタンジオールジメタンスルホネートとジビニルスルホンが段階的 に分解して、正極上に被膜を形成することにより、硫黄を含有する被膜がより緻密な ものになるためであると考えられる。 0.5 to 5% by weight of bi -.. Ren carbonate and 0.1 to 1 wt% of divinyl sulfone, 0 1 to 1 5 weight 0/0 1, 4 also contain a butanedioldimethanesulfonate is charged The viewpoint power for further improving the discharge cycle characteristics is preferable. The reason for this is not clear, but the 1,4-butanediol dimethanesulfonate and divinylsulfone gradually decompose to form a film on the positive electrode, resulting in a denser film containing sulfur. It is thought that it is to become.
[0051] 特に非水電解液としては、 4 フルォロ一 1, 3 ジォキソラン一 2—オン, 4 クロ口 [0051] Especially for non-aqueous electrolytes, 4 fluoro 1,3 dioxolane 1 2-on, 4 black mouth
- 1, 3 ジォキソラン一 2—オン或いは 4 トリフルォロメチル一 1, 3 ジォキソラン 2—オンなどのハロゲン原子を有する環状の炭酸エステル誘導体のような比誘電 率が 30以上の高誘電率溶媒を用いることも好ましい。耐還元性が高ぐ分解されにく いからである。また、上記高誘電率溶媒と、ジメチルカーボネート、ジェチルカーボネ ート、或いはメチルェチルカーボネートなどの粘度が 1 mPa · s以下である低粘度溶媒 を混合した電解液も好ま 、。より高 、イオン伝導性を得ることができるからである。 更に、電解液中のフッ素イオンの含有量が 14質量 ppm以上 1290質量 ppm以下の 範囲内であることも好ましい。電解液に適量なフッ素イオンが含まれていると、フッ素 イオンに由来するフッ化リチウムなどの被膜が負極に形成され、負極における電解液 の分解反応を抑制することができると考えられる力もである。更に、酸無水物及びそ の誘導体力 なる群のうちの少なくとも 1種の添加物が 0. 001質量%〜10質量%含 まれていることが好ましい。これにより負極の表面に被膜が形成され、電解液の分解 反応を抑制することができる力もである。この添加物としては、環に一 c( = o) -0 - c(=o)一基を含む環式化合物が好ましぐ例えば無水コハク酸、無水ダルタル酸、 無水マレイン酸、無水フタル酸、無水 2—スルホ安息香酸、無水シトラコン酸、無水ィ タコン酸、無水ジグリコール酸、無水へキサフルォログルタル酸、無水 3—フルオロフ タル酸、無水 4 フルオロフタル酸などの無水フタル酸誘導体、又は無水 3, 6—ェポ キシ 1, 2, 3, 6—テトラヒドロフタル酸、無水 1, 8 ナフタル酸、無水 2, 3 ナフタ レンカルボン酸、無水 1, 2—シクロペンタンジカルボン酸、 1, 2—シクロへキサンジカ ルボン酸などの無水 1 , 2 シクロアルカンジカルボン酸、又はシス 1, 2, 3, 6—テ トラヒドロフタル酸無水物或いは 3, 4, 5, 6—テトラヒドロフタル酸無水物などのテトラ ヒドロフタル酸無水物、又はへキサヒドロフタル酸無水物(シス異性体、トランス異性体 )、 3, 4, 5, 6—テトラクロロフタル酸無水物、 1, 2, 4 ベンゼントリカルボン酸無水 物、二無水ピロメリット酸、又はこれらの誘導体などが挙げられる。 -Use a high dielectric constant solvent with a relative dielectric constant of 30 or more, such as cyclic carbonic acid ester derivatives having a halogen atom such as 1,3 dioxolan-2-one or 4-trifluoromethyl-1,3-dioxolan-2-one. It is also preferable. This is because it is difficult to be decomposed due to its high resistance to reduction. In addition, the above-mentioned high dielectric constant solvent, dimethyl carbonate, jetyl carbon Also preferred is an electrolyte mixed with a low-viscosity solvent having a viscosity of 1 mPa · s or less, such as a sodium salt or methylethyl carbonate. This is because higher ion conductivity can be obtained. Furthermore, it is also preferable that the content of fluorine ions in the electrolytic solution is within the range of 14 mass ppm or more and 1290 mass ppm or less. When the electrolyte solution contains an appropriate amount of fluorine ions, a coating film such as lithium fluoride derived from the fluorine ions is formed on the negative electrode, which can suppress the decomposition reaction of the electrolyte solution in the negative electrode. . Furthermore, it is preferable that 0.001% by mass to 10% by mass of an acid anhydride and at least one additive in the group consisting of derivatives thereof are contained. As a result, a film is formed on the surface of the negative electrode, which can suppress the decomposition reaction of the electrolytic solution. As this additive, a cyclic compound containing one c (= o) -0-c (= o) group in the ring is preferred, for example, succinic anhydride, dartaric anhydride, maleic anhydride, phthalic anhydride, Phthalic anhydride derivatives such as 2-sulfobenzoic anhydride, citraconic anhydride, itaconic anhydride, diglycolic anhydride, hexafluoroglutaric anhydride, 3-fluorophthalic anhydride, 4-fluorophthalic anhydride, or 3,6-epoxy anhydride 1,2,3,6-tetrahydrophthalic acid, 1,8 naphthalic anhydride, 2,3 naphthalene carboxylic anhydride, 1,2-cyclopentanedicarboxylic anhydride, 1,2-cyclo 1,2-cycloalkanedicarboxylic anhydrides such as hexanedicarboxylic acid, or tetrahydrophthalates such as cis 1,2,3,6-tetrahydrophthalic anhydride or 3,4,5,6-tetrahydrophthalic anhydride Acid anhydride or hexahi Lophthalic anhydride (cis isomer, trans isomer), 3, 4, 5, 6-tetrachlorophthalic anhydride, 1, 2, 4 benzenetricarboxylic anhydride, dianhydropyromellitic acid, or their derivatives Etc.
以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記の実施 形態に制限されない。例えば前記実施形態における金属材料 13の層は、リチウム化 合物の形成能の高 、金属材料又はリチウム化合物の形成能の低 、金属材料から構 成された内層と、リチウム化合物の形成能の低い金属材料から構成された外層の 2 層構造であった力 これに代えて内層と外層との間に更に 1層以上の別の層を設け 3 層以上の多層構造の層としてもよぐ或いは外層の外側に更に 1層以上の別の層を 設け 3層以上の多層構造の層としてもよい。更に、内層と外層との間に更に 1層以上 の別の層を設けると共に外層の外側に更に 1層以上の別の層を設けてもよい。 [0053] また前記実施形態は、金属材料 13の層が多層構造である場合の例であるが、該層 力^種以上の金属材料力も構成されている限り、該層は単層のものであってもよい。 この場合、金属材料 13の層は、 2種以上の金属の合金力もなる層になっている。 2種 以上の金属の組み合わせとしては、酸化されやすく且つリチウム形成能が低 、か又 は高い 1種以上の金属と、酸化されにくく且つリチウム形成能が低い 1種以上の金属 との組み合わせが挙げられる。酸化されやすく且つリチウム形成能が低い金属として は例えば銅が挙げられる。酸化されに《且つリチウム形成能が低い金属としては例 えばニッケル、コノ レト、クロム、金などが挙げられる。このような合金力 なる層を形 成するには、図 3に示す浸透めつきを、合金めつき法で行えばよい。金属材料 13の 層における酸化されやすく且つリチウム形成能が低!ヽか又は高!ヽ金属と、酸化され にくく且つリチウム形成能が低 、金属との割合 (モル比)は、前者:後者 = 7: 3〜9: 1 であることが好ましい。 As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, the layer of the metal material 13 in the above embodiment has a high lithium compound forming ability, a low metal material or lithium compound forming ability, an inner layer composed of the metal material, and a low lithium compound forming ability. Force that was a two-layer structure of an outer layer made of a metal material. Alternatively, another layer of one or more layers is provided between the inner layer and the outer layer, or a layer of a multilayer structure of three or more layers may be used. Another layer of one or more layers may be further provided outside the layer, and a layer having a multilayer structure of three or more layers may be provided. Furthermore, one or more other layers may be provided between the inner layer and the outer layer, and one or more other layers may be further provided outside the outer layer. [0053] The above embodiment is an example in which the layer of the metal material 13 has a multilayer structure. However, as long as the metal material force of more than one kind is also configured, the layer is a single layer. There may be. In this case, the layer of the metal material 13 is a layer having an alloying force of two or more kinds of metals. Examples of the combination of two or more metals include a combination of one or more metals that are easily oxidized and have a low or high lithium forming ability and one or more metals that are not easily oxidized and have a low lithium forming ability. It is done. An example of a metal that is easily oxidized and has a low lithium forming ability is copper. Examples of the metal that is oxidized and has a low lithium forming ability include nickel, conoretole, chromium, and gold. In order to form such a layer having alloy strength, the penetration plating shown in Fig. 3 may be performed by the alloy plating method. The ratio (molar ratio) of the metal layer 13 to the metal layer 13 that is easily oxidized and has a low or high lithium forming ability, and a metal that is not easily oxidized and has a low lithium forming ability (molar ratio). : It is preferable that it is 3-9: 1.
実施例  Example
[0054] 以下、実施例により本発明を更に詳細に説明する。し力しながら本発明の範囲はか 力る実施例に制限されるものではな 、。  [0054] Hereinafter, the present invention will be described in more detail by way of examples. However, the scope of the present invention is not limited to such embodiments.
[0055] 〔実施例 1〕  [Example 1]
厚さ 18 mの電解銅箔力もなる集電体を室温で 30秒間酸洗浄した。処理後、 15 秒間純水洗浄した。集電体上に Siの粒子を含むスラリーを膜厚 15 mになるように 塗布し塗膜を形成した。スラリーの組成は、粒子:スチレンブタジエンラバー (結着剤) :アセチレンブラック = 100 : 1. 7 : 2 (重量比)であった。 Siの粒子の平均粒径 D は 2  A current collector having an electrolytic copper foil strength of 18 m in thickness was acid-washed at room temperature for 30 seconds. After the treatment, it was washed with pure water for 15 seconds. A slurry containing Si particles was applied on the current collector to a thickness of 15 m to form a coating film. The composition of the slurry was particles: styrene butadiene rubber (binder): acetylene black = 100: 1.7: 2 (weight ratio). The average particle size D of Si particles is 2
50 mであった。平均粒径 D は、日機装 (株)製のマイクロトラック粒度分布測定装置(  50 m. The average particle size D is measured by the Nikkiso Co., Ltd.
50  50
No. 9320— X100)を使用して測定した。  No. 9320—X100).
[0056] 塗膜が形成された集電体をロールプレス機に通し、該塗膜にプレス加工を施した。 [0056] The current collector on which the coating film was formed was passed through a roll press, and the coating film was pressed.
プレス圧は 300MPaであった。プレス加工が施された塗膜を有する集電体を、以下 の浴組成を有するピロリン酸銅浴に浸漬させ、電解により塗膜に対して銅の浸透めつ きを行い、 Siの粒子の表面に銅力もなる内層を形成した。電解の条件は以下の通りと した。陽極には DSEを用いた。電源は直流電源を用いた。形成された内層の厚みは 、同様にして作製したサンプル品の断面 SEM観察の結果 200nmであった。 'ピロリン酸銅三水和物: 105gZl The press pressure was 300 MPa. A current collector having a coating film subjected to press working is immersed in a copper pyrophosphate bath having the following bath composition, and copper is infiltrated into the coating film by electrolysis. An inner layer having copper strength was formed. The electrolysis conditions were as follows. DSE was used for the anode. A DC power source was used as the power source. The thickness of the formed inner layer was 200 nm as a result of cross-sectional SEM observation of a sample product produced in the same manner. 'Copper pyrophosphate trihydrate: 105gZl
•ピロリン酸カリウム: 450g/l  • Potassium pyrophosphate: 450g / l
'硝酸カリウム: 30gZl  'Potassium nitrate: 30gZl
•P比: 7. 7  • P ratio: 7.7
'浴温度: 50°C  'Bath temperature: 50 ° C
•電流密度: 3AZdm2 • Current density: 3AZdm 2
•pH:アンモニア水とポリリン酸を添カ卩して pH8. 2になるように調整した。  • pH: Ammonia water and polyphosphoric acid were added to adjust to pH 8.2.
[0057] 浸透めつきは、塗膜の厚み方向全域にわたって銅が析出した時点で終了させた。 [0057] The penetration staking was terminated when copper was deposited over the entire thickness direction of the coating film.
次に、ピロリン酸銅浴に代えて、以下の組成を有するワット浴を用い第 2回目の浸透 めっきを行った。これによつて銅カゝらなる内層上にニッケルカゝらなる外層を形成した。 電解の条件は以下の通りとした。陽極にはニッケル電極を用いた。電源は直流電源 を用いた。以上の操作によって目的とする負極を得た。  Next, instead of the copper pyrophosphate bath, a second osmotic plating was performed using a Watt bath having the following composition. As a result, an outer layer made of nickel was formed on the inner layer made of copper. The electrolysis conditions were as follows. A nickel electrode was used as the anode. A DC power source was used as the power source. The intended negative electrode was obtained by the above operation.
Figure imgf000019_0001
Figure imgf000019_0001
'浴温度 50°C  'Bath temperature 50 ° C
'電流密度 0. 5A/dm2 'Current density 0.5 A / dm 2
•pH : 5  • pH: 5
[0058] 内層及び外層の平均厚みは次の方法で求めた。銅の浸透めつきを行ったときの通 電量と、ニッケルの浸透めつきを行ったときの通電量の比を求める。これとは別に、 G DSにより、活物質層の厚さ方向にわたつて銅及びニッケルが均一に存在して 、るこ とを確認する。銅及びニッケルが均一に存在している場合には、銅からなる内層と- ッケルからなる外層の厚み比は、銅の浸透めつきを行ったときの通電量と、ニッケル の浸透めつきを行ったときの通電量の比と同等とみなすことができる。従って、活物質 層の断面 SEM観察により求められた内層及び外層の厚さの合計値と前記の通電量 の比から、内層及び外層の厚みをそれぞれ算出することができる。本実施例におけ る銅の浸透めつきを行ったときの通電量は 2321CZdm2、ニッケルの浸透めつきを行 つたときの通電量は 18CZdm2であった。このようにして求められた内層の厚みは 20 Onm、外層の厚みは 5nmであった。 [0058] The average thickness of the inner layer and the outer layer was determined by the following method. Determine the ratio of the amount of electricity when copper penetration is applied to the amount of electricity when nickel penetration is applied. Separately from this, it is confirmed by GDS that copper and nickel are present uniformly in the thickness direction of the active material layer. When copper and nickel are present uniformly, the thickness ratio of the inner layer made of copper and the outer layer made of nickel is determined by the amount of current that is applied when copper penetrates and the nickel penetrates. It can be regarded as equivalent to the ratio of the energization amount at the time. Therefore, the thicknesses of the inner layer and the outer layer can be calculated from the total value of the thicknesses of the inner layer and the outer layer obtained by cross-sectional SEM observation of the active material layer and the ratio of the energization amount. Energization amount when subjected to copper infiltration plated that put the present embodiment 2321CZdm 2, energization amount of time was one row penetration plated nickel was 18CZdm 2. The inner layer thickness thus determined is 20 Onm, the thickness of the outer layer was 5 nm.
[0059] 〔実施例 2〕 [Example 2]
ニッケルの浸透めつきの通電量を 183CZdm2とする以外は実施例 1と同様にして 負極を得た。実施例 1と同様にして求められた外層の厚みは 50nmであった。 A negative electrode was obtained in the same manner as in Example 1 except that the amount of current with which nickel penetrated was 183 CZdm 2 . The thickness of the outer layer obtained in the same manner as in Example 1 was 50 nm.
[0060] 〔実施例 3〕 [Example 3]
活物質を含むスラリーの膜厚を 20 mとした。また銅の浸透めつきを行ったときの 通電量を 2321CZdm2、ニッケルの浸透めつきを行ったときの通電量を 73CZdm2 であった。これら以外は実施例 1と同様にして負極を得た。実施例 1と同様にして求 められた内層の厚みは 200nm、外層の厚みは 20nmであつた。 The film thickness of the slurry containing the active material was 20 m. The amount of electricity when copper penetration was applied was 2321 CZdm 2 , and the amount of electricity when nickel penetration was found was 73 CZdm 2 . A negative electrode was obtained in the same manner as Example 1 except for these. The thickness of the inner layer obtained in the same manner as in Example 1 was 200 nm, and the thickness of the outer layer was 20 nm.
[0061] 〔実施例 4〕 [Example 4]
ワット浴に代えて、以下の組成を有するコバルト浴を用い第 2回目の浸透めつきを 行った。このときの通電量は 73CZdm2であった。これら以外は実施例 1と同様にして 負極を得た。実施例 1と同様にして求められた外層の厚みは 20nmであった。
Figure imgf000020_0001
In place of the Watt bath, a second bathing penetration was performed using a cobalt bath having the following composition. At this time, the energization amount was 73 CZdm 2 . A negative electrode was obtained in the same manner as Example 1 except for these. The outer layer thickness determined in the same manner as in Example 1 was 20 nm.
Figure imgf000020_0001
'浴温度 40°C  'Bath temperature 40 ° C
'電流密度 0. 5A/dm2 'Current density 0.5 A / dm 2
•pH: 5  PH: 5
[0062] 〔実施例 5〕  [Example 5]
ワット浴に代えて、以下の組成を有するクロム浴を用い第 2回目の浸透めつきを行つ た。このときの通電量は 62CZdm2であった。これら以外は実施例 1と同様にして負 極を得た。実施例 1と同様にして求められた外層の厚みは 15nmであった。
Figure imgf000020_0002
Instead of the Watt bath, a second bathing penetration was performed using a chromium bath having the following composition. Current amount at this time was 62CZdm 2. Except for these, a negative electrode was obtained in the same manner as in Example 1. The thickness of the outer layer obtained in the same manner as in Example 1 was 15 nm.
Figure imgf000020_0002
'浴温度 40°C  'Bath temperature 40 ° C
'電流密度 0. 5A/dm2 'Current density 0.5 A / dm 2
[0063] 〔比較例 1〕 [0063] [Comparative Example 1]
ワット浴を用いた第 2回目の浸透めつきを行わない以外は実施例 1と同様にして負 極を得た。 Negative in the same manner as in Example 1 except that the 2nd penetration with a watt bath is not performed. Got the pole.
[0064] 〔評価〕  [0064] [Evaluation]
本発明の効果の理解を一層容易にすることを目的として、実施例及び比較例で得 られた負極を大気中に 3週間放置後、この負極用いてリチウム二次電池を製造した。 正極としては LiCo Ni Mn Oを用いた。電解液としては、エチレンカーボネート  In order to make it easier to understand the effects of the present invention, the negative electrodes obtained in Examples and Comparative Examples were left in the atmosphere for 3 weeks, and then a lithium secondary battery was produced using the negative electrode. LiCo Ni Mn O was used as the positive electrode. As electrolyte, ethylene carbonate
1/3 1/3 1/3 2  1/3 1/3 1/3 2
とジェチルカーボネートの 1: 1体積0 /0混合溶媒に lmol/1の LiPFを溶解した溶液 And the geminal chill carbonate 1: solution obtained by dissolving LiPF of I mol / 1 to 1 volume 0/0 mixed solvent
6  6
に対して、ビ-レンカーボネートを 2体積%外添したものを用いた。セパレータとして は、 20 m厚のポリプロピレン製多孔質フィルムを用いた。得られた二次電池につい て初回の充電を行い、容量が 0. ImAhのときの電圧を測定した。充電は、定電流' 定電圧モードで行った。  In contrast, 2% by volume of behylene carbonate was externally added. As the separator, a 20 m thick polypropylene porous film was used. The obtained secondary battery was charged for the first time, and the voltage when the capacity was 0. ImAh was measured. Charging was performed in a constant current / constant voltage mode.
[0065] この測定とは別に、 100サイクル容量維持率を測定した。容量維持率は、 100サイ クル後の放電容量を測定し、その値を 13サイクル目の放電容量で除し、 100を乗じ て算出した値である。放電のカット'オフ電圧は 2. 7Vとした。充電条件は 0. 5C、 4. 2Vで、定電流'定電圧とした。放電条件は 0. 5C、 2. 7Vで、定電流とした。但し、 1 サイクル目の充放電は 0. 05Cとし、 2〜4サイクル目の充放電は 0. 1C、 5〜7サイク ル目の充放電は 0. 5C、 8〜 10サイクル目の充放電は 1Cとした。これらの結果を表 1 に示す。 [0065] Separately from this measurement, a 100-cycle capacity retention rate was measured. The capacity retention rate is a value calculated by measuring the discharge capacity after 100 cycles, dividing that value by the discharge capacity at the 13th cycle, and multiplying by 100. The discharge cut-off voltage was 2.7V. Charging conditions were 0.5C and 4.2V, constant current and constant voltage. The discharge conditions were 0.5C and 2.7V, and a constant current. However, charge / discharge in the first cycle is 0.05C, charge / discharge in the second to fourth cycles is 0.1C, charge / discharge in the fifth to seventh cycles is 0.5C, and charge / discharge in the eighth to tenth cycles is 1C. These results are shown in Table 1.
[0066] 更に、実施例 3で得られた負極の活物質層の縦断面を走査型電子顕微鏡 (SEM) で観察すると共に、縦断面ついて、 Niの存在状態を EPMAによって測定した。それ らの結果を図 4 (a)及び (b)に示す。また活物質層の縦断面ついて、各元素の存在 状態を GDSによって測定した。その結果を図 5に示す。なお図 5中、縦軸の感度は、 元素の種類に応じてレンジを変更しているので、元素どうしでの相対比較はできない  [0066] Further, the longitudinal section of the active material layer of the negative electrode obtained in Example 3 was observed with a scanning electron microscope (SEM), and the presence of Ni in the longitudinal section was measured by EPMA. The results are shown in Figs. 4 (a) and (b). The presence of each element was measured by GDS for the longitudinal section of the active material layer. The results are shown in Fig. 5. In Fig. 5, the sensitivity of the vertical axis is changed depending on the type of element, so relative comparison between elements is not possible.
[0067] [表 1] 内層 外層 初回充電時 100サイクル後の [0067] [Table 1] Inner layer Outer layer First charge 100 cycles after
の電圧 容量維持率(%)  Voltage capacity maintenance rate (%)
(@0. imAh, V)  (@ 0.imAh, V)
実施例 1 Cu (200nm) Ni (5nm) 2. 80 82 実施例 2 Cu (200nm) i" (50nm) 2. 75 87 実施例 3 Cu (200nm) i (20nm) 2. 73 91 実施例 4 Cu (200nm) Co (20nm) 2. 60 89 実施例 5 Cu (200nm) Cr ( 15mn) 2. 70 87 比較例 1 Cu (200nm) なし 3. 10 77  Example 1 Cu (200 nm) Ni (5 nm) 2. 80 82 Example 2 Cu (200 nm) i "(50 nm) 2. 75 87 Example 3 Cu (200 nm) i (20 nm) 2. 73 91 Example 4 Cu (200nm) Co (20nm) 2. 60 89 Example 5 Cu (200nm) Cr (15mn) 2. 70 87 Comparative Example 1 Cu (200nm) None 3. 10 77
[0068] 表 1に示す結果から明らかなように、各実施例の負極を用いた電池は、比較例 1の 負極を用いた電池に比べて初回充電時の電圧が低 、こと、即ち過電圧が低 、ことが 判る。また各実施例の負極を用いた電池は、比較例 1の負極を用いた電池に比べて サイクル特性が良好であることが判る。比較例 1の負極は、作製後速やかに使用す れば良好な特性が得られるものであることは確認済みである力 本評価にお!ヽては 酸ィ匕の影響を受けて特性が劣化したものと推察される。 [0068] As is apparent from the results shown in Table 1, the battery using the negative electrode of each example had a lower voltage at the first charge than the battery using the negative electrode of Comparative Example 1, that is, the overvoltage was low. It turns out that it is low. It can also be seen that the battery using the negative electrode of each example has better cycle characteristics than the battery using the negative electrode of Comparative Example 1. The negative electrode of Comparative Example 1 has been confirmed to have good characteristics if it is used immediately after fabrication. For this evaluation, the characteristics deteriorated due to the influence of acid. It is presumed that
[0069] また、図 4及び図 5に示す結果から明らかなように、 Siの粒子の表面を被覆する内 層の銅及び外層のニッケルは、活物質層の厚み方向にわたり均一に存在しているこ とが確認された。  Further, as is apparent from the results shown in FIGS. 4 and 5, the inner layer copper and the outer layer nickel covering the surface of the Si particles are uniformly present in the thickness direction of the active material layer. This was confirmed.
産業上の利用可能性  Industrial applicability
[0070] 本発明によれば、活物質の粒子の表面が、互いに異なる 2種以上の金属材料から 構成された層によって被覆されているので、該層の構成金属の一つとして酸化され やすい金属を用いたとしても、その金属が層の表面に露出している量は、その金属 を単独で用いた場合よりも少なくなる。したがって酸ィ匕が起こりにくくなる。特に該層 が互いに異なる 2種以上の金属材料力も構成されている場合には、該粒子の表面を 被覆する最内層の酸化が、それよりも上側に位置する層によって防止される。これに よって初期充電の過電圧を低くすることができる。その結果、負極の表面でリチウム のデンドライトが発生することが防止される。また、非水電解液の分解が起こりにくくな り、不可逆容量の増大が防止される。更に正極がダメージを受けに《なる。また、サ イタル特性が向上する。その上、充放電によって該粒子が膨張収縮することに起因し て微粉ィ匕しても、その脱落が起こりづらくなる。 [0070] According to the present invention, since the surface of the active material particles is covered with a layer composed of two or more different metal materials, a metal that is easily oxidized as one of the constituent metals of the layer. Even if is used, the amount of the metal exposed on the surface of the layer is less than when the metal is used alone. Therefore, it becomes difficult to cause acid soot. In particular, when the two or more metal material forces different from each other are formed, oxidation of the innermost layer covering the surface of the particle is prevented by the layer located above the layer. As a result, the overvoltage of the initial charge can be lowered. As a result, lithium dendrite is prevented from being generated on the negative electrode surface. In addition, the non-aqueous electrolyte is not easily decomposed, and an increase in irreversible capacity is prevented. Furthermore, the positive electrode is damaged. Also, the site characteristics are improved. In addition, the particles are expanded and contracted by charging and discharging. Even if it is fine, it is difficult for the dropout to occur.

Claims

請求の範囲 The scope of the claims
[1] 活物質の粒子を含む活物質層を備え、該粒子の表面の少なくとも一部が金属材料 の層で被覆されて ヽると共に、該金属材料の層で被覆された該粒子どうしの間に空 隙が形成されている非水電解液二次電池用負極であって、  [1] An active material layer including particles of an active material is provided, and at least a part of the surface of the particles is covered with a layer of a metal material, and between the particles covered with the layer of the metal material A negative electrode for a non-aqueous electrolyte secondary battery in which a gap is formed,
前記層が、互いに異なる 2種以上の金属材料力も構成されている非水電解液二次 電池用負極。  A negative electrode for a non-aqueous electrolyte secondary battery in which the layers are also composed of two or more different metal material forces.
[2] 前記層が、互いに異なる金属材料力も構成された 2層以上の多層構造になってい る請求の範囲第 1項記載の非水電解液二次電池用負極。  2. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the layer has a multilayer structure of two or more layers in which different metal material forces are also configured.
[3] 互いに異なる 2種以上の前記金属材料は、少なくとも銅を含むものである請求の範 囲第 1項又は第 2項記載の非水電解液二次電池用負極。 [3] The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the two or more kinds of metal materials different from each other contain at least copper.
[4] 前記層が、前記粒子の表面を被覆する内層と、該内層上に形成された外層を少な くとも含む 2層以上の構造になっており、 [4] The layer has a structure of two or more layers including at least an inner layer covering the surface of the particles and an outer layer formed on the inner layer,
前記内層がリチウム化合物の形成能の高い金属材料又はリチウム化合物の形成能 の低い金属材料から構成されており、  The inner layer is made of a metal material having a high lithium compound forming ability or a metal material having a low lithium compound forming ability;
前記外層がリチウム化合物の形成能の低い金属材料力 構成されている請求の範 囲第 2項記載の非水電解液二次電池用負極。  3. The negative electrode for a nonaqueous electrolyte secondary battery according to claim 2, wherein the outer layer is composed of a metal material having a low lithium compound forming ability.
[5] 前記内層がリチウム化合物の形成能の高い金属材料である亜鉛、スズ若しくは銀 から形成されて 、る力 又はリチウム化合物の形成能の低 、金属材料である銅から 形成されており、 [5] The inner layer is formed from zinc, tin or silver which is a metal material having a high lithium compound forming ability, and is formed from copper which is a metal material having a low strength or a lithium compound forming ability.
前記外層がリチウム化合物の形成能の低い金属材料であるニッケル、コバルト、ク ロム又は金力 構成されている請求の範囲第 4項記載の非水電解液二次電池用負 極。  5. The negative electrode for a nonaqueous electrolyte secondary battery according to claim 4, wherein the outer layer is composed of nickel, cobalt, chromium, or gold, which is a metal material having a low ability to form a lithium compound.
[6] 前記内層が前記活物質層の厚み方向全域にわたって前記活物質の粒子の表面 に存在している請求の範囲第 4項又は第 5項記載の非水電解液二次電池用負極。  6. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 4 or 5, wherein the inner layer is present on the surface of the active material particles over the entire thickness direction of the active material layer.
[7] 前記層はその全体の厚みが平均して 0. 05〜2 μ mである請求の範囲第 1項記載 の非水電解液二次電池用負極。  [7] The negative electrode for a nonaqueous electrolyte secondary battery according to [1], wherein the average thickness of the layer is 0.05 to 2 μm on average.
[8] 請求の範囲第 1項記載の非水電解液二次電池用負極を備えた非水電解液二次電 池。  [8] A nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery according to claim 1.
PCT/JP2007/058416 2006-06-30 2007-04-18 Negative electrode for non-aqueous electrolyte secondary battery WO2008001541A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-182830 2006-06-30
JP2006182830 2006-06-30
JP2006219051 2006-08-10
JP2006-219051 2006-08-10
JP2007-094790 2007-03-30
JP2007094790A JP2008066279A (en) 2006-06-30 2007-03-30 Negative electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2008001541A1 true WO2008001541A1 (en) 2008-01-03

Family

ID=38845313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058416 WO2008001541A1 (en) 2006-06-30 2007-04-18 Negative electrode for non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP2008066279A (en)
WO (1) WO2008001541A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104892A (en) * 2007-10-23 2009-05-14 Panasonic Corp Lithium secondary battery
WO2017135323A1 (en) 2016-02-01 2017-08-10 株式会社 東芝 Secondary battery, assembled battery, battery pack, and vehicle
US10727540B2 (en) 2016-02-01 2020-07-28 Kabushiki Kaisha Toshiba Secondary battery, battery module, battery pack and vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229334A (en) 2010-11-29 2013-07-31 株式会社新王材料 Secondary battery negative electrode material, secondary battery negative electrode, process for production of secondary battery negative electrode material, and process for production of secondary battery negative electrode
JP5958930B2 (en) * 2012-03-14 2016-08-02 セイコーインスツル株式会社 Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2004241329A (en) * 2003-02-07 2004-08-26 Mitsui Mining & Smelting Co Ltd Negative electrode for secondary battery of nonaqueous electrolyte liquid
JP2004296412A (en) * 2003-02-07 2004-10-21 Mitsui Mining & Smelting Co Ltd Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2004241329A (en) * 2003-02-07 2004-08-26 Mitsui Mining & Smelting Co Ltd Negative electrode for secondary battery of nonaqueous electrolyte liquid
JP2004296412A (en) * 2003-02-07 2004-10-21 Mitsui Mining & Smelting Co Ltd Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104892A (en) * 2007-10-23 2009-05-14 Panasonic Corp Lithium secondary battery
WO2017135323A1 (en) 2016-02-01 2017-08-10 株式会社 東芝 Secondary battery, assembled battery, battery pack, and vehicle
KR20180101701A (en) 2016-02-01 2018-09-13 가부시끼가이샤 도시바 Secondary battery, battery module, battery pack and vehicle
EP3667805A1 (en) 2016-02-01 2020-06-17 Kabushiki Kaisha Toshiba Secondary battery, battery module, battery pack and vehicle
US10727540B2 (en) 2016-02-01 2020-07-28 Kabushiki Kaisha Toshiba Secondary battery, battery module, battery pack and vehicle

Also Published As

Publication number Publication date
JP2008066279A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP5192710B2 (en) Anode for non-aqueous electrolyte secondary battery
JP4219391B2 (en) Non-aqueous electrolyte secondary battery
JP4944648B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2008047304A (en) Nonaqueous electrolyte secondary battery
JP2008277156A (en) Negative electrode for nonaqueous electrolyte secondary battery
WO2009087791A1 (en) Negative electrode for rechargeable battery with nonaqueous electrolyte
JP5192664B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2008047308A (en) Nonaqueous electrolyte secondary battery
WO2008001536A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2008047303A (en) Nonaqueous electrolyte secondary battery
JP2008047306A (en) Nonaqueous electrolyte secondary battery
WO2008001541A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2008016196A (en) Negative electrode for polymer electrolyte secondary battery
JP2008016193A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2008016192A (en) Anode for nonaqueous electrolyte secondary battery
JP2008016191A (en) Anode for nonaqueous electrolyte secondary battery
JP2008016194A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2008047307A (en) Nonaqueous electrolyte secondary battery
JP2008251255A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2008047305A (en) Nonaqueous electrolyte secondary battery
JP4954902B2 (en) Non-aqueous electrolyte secondary battery
JP2009277509A (en) Anode for non-aqueous electrolyte secondary battery
WO2008001535A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2008066272A (en) Anode for nonaqueous electrolyte secondary battery
JP2008034359A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07741852

Country of ref document: EP

Kind code of ref document: A1