WO2008018208A1 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2008018208A1
WO2008018208A1 PCT/JP2007/058084 JP2007058084W WO2008018208A1 WO 2008018208 A1 WO2008018208 A1 WO 2008018208A1 JP 2007058084 W JP2007058084 W JP 2007058084W WO 2008018208 A1 WO2008018208 A1 WO 2008018208A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
particles
positive electrode
material layer
Prior art date
Application number
PCT/JP2007/058084
Other languages
French (fr)
Japanese (ja)
Inventor
Hitohiko Ide
Yanko Marinov Todorov
Yoshiki Sakaguchi
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2008018208A1 publication Critical patent/WO2008018208A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to non-aqueous electrolyte secondary batteries such as lithium secondary batteries.
  • a lithium transition metal composite oxide is generally used as a positive electrode active material in a lithium secondary battery.
  • carbon-based materials such as graphite are generally used as the negative electrode active material.
  • silicon-based materials and tin-based materials which are materials having larger capacities than carbon-based materials, has been attempted as an active material of the next generation.
  • These positive electrode active materials and negative electrode active materials are known to expand and contract when lithium is absorbed and released by charge and discharge of the battery. The stress caused by the volume change due to the expansion and contraction contributes to the damage to the positive electrode and the negative electrode, which tends to deteriorate the cycle characteristics of the battery.
  • a positive electrode active material an active material whose crystal structure expands at the time of discharge and whose crystal structure shrinks at the time of charge; It has been proposed to mix and use an active material which shrinks and the crystal structure expands at the time of charge (see Patent Document 1).
  • the active material layer of the positive electrode is composed of two or more mixture layers, and as the active material contained in one of the adjacent mixture layers, a lithium-containing transition metal oxide which expands during discharge and condenses during charge is used. It has been proposed to use a lithium-containing transition metal oxide that contracts during discharge and expands during charge as the active material contained in one of the mixture layers (see Patent Document 2).
  • the negative electrode active material as the active material disposed on one side of the negative electrode current collector, a material having a larger change in expansion and contraction during charge and discharge than the active material disposed on the other side is used. It has been proposed to use (see Patent Document 3).
  • an active material which expands in the charging process and contracts in the discharging process is arranged on one side of the positive electrode current collector, and an active material which contracts in the charging process and expands in the discharging process is arranged on the other side. It is also suggested to do!
  • Patent Document 4 separately from each of the documents described above Uses a spinel-type lithium manganese composite oxide, which is a material that has a large crystal lattice contraction during lithium release (that is, during battery charging) as a positive electrode active material, and expansion when lithium is stored as a positive electrode active material. It is pointed out that the use of a carbon material, which is a material to be used, has the disadvantage that the carbon material on the negative electrode side is easily loosened during charging. Therefore, in the document, it has been proposed to suppress the above-mentioned loosening on the negative electrode side during charging by suppressing the contraction of the positive electrode active material at the time of releasing lithium.
  • the negative electrode active material used is a carbon-based material, but the material expands when lithium is absorbed, but the degree of the expansion is In comparison with silicon-based materials and tin-based materials that are considered as next-generation negative electrode active materials, they are not so large. Therefore, in the systems described in the above-mentioned respective documents, the same applies to the case where a material having a larger degree of expansion at the time of lithium storage is used as the negative electrode active material instead of the material based on carbon. It is unclear whether the effect will be achieved or not.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-82131
  • Patent Document 2 US Patent No. 5677083
  • Patent Document 3 Japanese Patent Application Laid-Open No. 10-064515
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2002-75361
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery in which the degree of expansion and contraction of the entire battery due to charge and discharge is reduced as compared with the above-described battery of the prior art.
  • the present invention comprises a negative electrode having a negative electrode active material layer containing Si, and a positive electrode having a positive electrode active material layer containing a lithium transition metal composite oxide containing Li and Co as constituent elements, A weight ratio (CoZSi) of Co in the positive electrode to Si in the positive electrode is in the range of 0.3 to 5.5, to provide a non-aqueous electrolyte secondary battery.
  • FIG. 1 is a schematic view showing a cross-sectional structure of an embodiment of a negative electrode used in the non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 2 It is process drawing which shows the manufacturing method of the negative electrode shown in FIG. Detailed Description of the Invention
  • the non-aqueous electrolyte secondary battery (hereinafter, also simply referred to as a secondary battery or battery) of the present invention has a positive electrode, a negative electrode, and a separator disposed therebetween as basic components.
  • the space between the positive electrode and the negative electrode is filled with a non-aqueous electrolyte via a separator.
  • the battery of the present invention may be in the form of a cylinder, a square, a coin or the like provided with these basic components. It is not limited to these forms.
  • the positive electrode used in the battery of the present invention is, for example, one obtained by forming a positive electrode active material layer on at least one surface of a current collector.
  • the positive electrode active material layer contains an active material.
  • What is used in the present invention as this active material is a lithium transition metal complex oxide containing Li and Co as constituent elements. Since this composite oxide contains Co as one of its constituent elements, it has the property of contracting when storing lithium and expanding when releasing lithium.
  • the lithium-transition metal complex oxide used as a positive electrode active material of lithium secondary batteries includes, in addition to a material containing Co as one of its constituent elements, for example, Ni as a constituent element such as LiNiO.
  • these materials have an expansion force at the time of lithium storage or a degree of contraction at the time of lithium storage that is smaller than that of the lithium-transition metal complex oxide containing Li and Co used in the present invention as constituent elements. It is a thing.
  • Examples of the metal element represented by M in the above formula include transition metal elements other than Co and typical metal elements other than Li.
  • transition metal elements include Ni, Mn, Fe, V, Zr, Ti, Mo, W, Nb and the like. In particular, it is preferable to use Ni and Z or Mn as a transition metal element.
  • examples of typical metal elements include Mg, Al and Ga.
  • X in the complex acid product is a positive number less than 1, preferably 0.1 to 0.4, more preferably 0.1 to 0.30.
  • the amount of Co contained in the above complex oxide is the transition metal contained in the complex oxide.
  • the amount is preferably 10 to 40% by weight, more preferably 10 to 30% by weight, based on the total amount of the group elements.
  • complex acids may be used alone or in combination of two or more.
  • a material having a large volume change due to the absorbed and released lithium is preferable to use a material having a large volume change due to the absorbed and released lithium.
  • the material containing Si which is a negative electrode active material used in combination with the composite acid oxide, is a material having a large volume change due to lithium absorption and release, and thus contains the composite acid oxide and Si. This is because the volume change of the entire battery is easily offset by the material.
  • Preferred materials from this viewpoint are, for example, LiMn Co Ni O, LiMn Co Ni O, LiMn Co Ni O, LiMn Co Ni
  • the positive electrode used in the present invention is prepared by suspending the above composite oxide in a suitable solvent together with a conductive agent such as acetylene black and a binder such as polyvinylidene fluoride to prepare a positive electrode mixture, After applying and drying on at least one surface of a current collector such as an aluminum foil, it can be obtained by roll rolling and pressing.
  • a conductive agent such as acetylene black
  • a binder such as polyvinylidene fluoride
  • the negative electrode used in the battery of the present invention is, for example, one obtained by forming a negative electrode active material layer on at least one surface of a current collector.
  • the negative electrode active material layer contains an active material.
  • What is used in the present invention as this active substance is a substance containing Si.
  • the negative electrode active material containing Si has a property of expanding when occluding lithium and contracting when releasing. The degree of expansion and contraction is extremely large as compared with the carbon-based material conventionally used as the negative electrode active material of lithium secondary batteries.
  • the negative electrode active material containing Si is capable of absorbing and releasing lithium ions.
  • silicon alone, an alloy of silicon and metal, silicon oxide, etc. can be used. Ru. These materials can be used alone or in combination of two or more.
  • the metal include one or more elements selected from the group consisting of Cu, Ni, Co, Cr, Fe, Ti, Pt, W, Mo and Au.
  • Cu and Ni it is desirable to use Cu and Ni from the viewpoint that Cu, Ni and Co are preferred, in particular, the excellent electron conductivity and the low ability to form a lithium compound.
  • lithium may be absorbed into the active material which is also a silicon-based material.
  • Particularly preferable silicon-based materials are point force silicon or silicon dioxide having a high lithium storage capacity.
  • the negative electrode active material layer may be, for example, a continuous thin film layer made of the above-mentioned negative electrode active material, a coating layer containing particles of the above-mentioned negative electrode active material, or a sintered layer containing particles of the above-mentioned negative electrode active material. possible . Also, it may be a layer having a structure shown in FIG. 1 described later.
  • a synthetic resin non-woven fabric a polyolefin such as polyethylene or polypropylene, or a porous film of polytetrafluoroethylene is preferably used.
  • a separator in which a thin film of a phenate derivative is formed on one side or both sides of the microporous polyolefin membrane.
  • the separator preferably has a piercing strength of not less than 0.2 NZ m and not more than 0.49 wm, and preferably has a tensile strength in the winding axial direction of not less than 0 MPa and not more than 150 MPa. Even with the use of a negative electrode active material that greatly expands and contracts with charging and discharging, damage to the separator can be suppressed, and the occurrence of internal short circuit can be suppressed.
  • the non-aqueous electrolytic solution is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
  • Examples thereof include CI, LiPF, LiAsF, LiSbF, LiCl, LiBr, Lil, LiC 3 F 2 SO 4 and the like.
  • CF SO Li, (CF 2 SO 4) NLi, and (C 4 F 2 SO 4) NLi are preferred because of their excellent resistance to water degradation.
  • 3 3 3 2 2 5 2 It is preferable to use 3 3 3 2 2 5 2 2.
  • the organic solvent include ethylene carbonate, jetyl carbonate, dimethyl carbonate, propylene carbonate, butylene carbonate and the like.
  • 0.1 wt% to 1 wt% of dibiylsulfone and 0.1 wt% to 1.5 wt% of 1,4-butanediol dimethanesulfonate are preferred from the viewpoint of further improving charge-discharge cycle characteristics.
  • halogen atoms such as 4-fluoro-1, 3-dioxolan-2, 4-chloro-1, 3-dioxolan-1, 4-trifluoromethyl-1, 3-dioxolane 2-, etc.
  • a high dielectric constant solvent having a dielectric constant of 30 or more, such as a cyclic carbonate derivative having It is because reduction resistance is high and decomposition is difficult.
  • an electrolyte prepared by mixing the above-mentioned high dielectric constant solvent with a low viscosity solvent having a viscosity of 1 mPa ⁇ s or less such as dimethyl carbonate, jetyl carbonate, or methyl ethyl carbonate. It is because higher ion conductivity can be obtained. Furthermore, it is also preferable that the content of fluorine ions in the electrolytic solution is in the range of 14 mass ppm or more and 1290 mass ppm or less.
  • the electrolytic solution contains an appropriate amount of fluorine ions
  • a film such as lithium fluoride derived from the fluorine ions is formed on the negative electrode, which is also considered to be capable of suppressing the decomposition reaction of the electrolytic solution on the negative electrode.
  • at least one additive in the acid anhydride and its derivative group be contained in an amount of 0.001% by weight to 10% by weight.
  • a film is formed on the surface of the negative electrode, which is also a force capable of suppressing the decomposition reaction of the electrolytic solution.
  • succinic anhydride, dartalic anhydride, maleic anhydride, phthalic anhydride, Phthalic anhydride derivatives such as 2-sulfobenzoic acid anhydride, citraconic acid anhydride, itaconic acid anhydride, diglycolic acid anhydride, hexafluoroglutaric acid anhydride, 3-fluorophthalic acid anhydride, 4-fluorophthalic acid anhydride, or Anhydrous 3, 6-Epoxide 1, 2, 3, 6-Tetrahydrophthalic Acid, Anhydrous 1, 8 Naphthalic Acid, Anhydrous 2, 3 Naphthalene Carboxylic Acid, Anhydrous 1, 2-Cyclopentanedicarboxylic Acid, 1, 2- Cyclo Tetrahydrophthalic acid such as anhydrous 1,2 cycloalkanedicarboxylic acid such as hexanedicarboxylic acid or cis 1,2,3,6 tetrahydrophthalic anhydride or 3,4,5,6-tetrahydro
  • the present invention is characterized in that the weight ratio (CoZSi) of Co in the positive electrode to Si in the negative electrode is set in the range of 0.3 to 5.5.
  • the positive electrode active material used in the present invention has the property of expanding when storing lithium and shrinking when releasing lithium, while the negative electrode active material expands when storing lithium and is released. It has the property of shrinking from time to time. That is, the positive electrode active material and the negative electrode active material used in the present invention exhibit opposite behavior of volume change with respect to lithium absorption and release. Therefore, when the battery of the present invention is charged, the negative electrode active material expands and the positive electrode active material contracts. Conversely, during discharge, the positive electrode active material expands and the negative electrode active material contracts.
  • the volume of the expansion of the negative electrode active material is absorbed by the volume of the contraction of the positive electrode active material during charging, and conversely, the volume of the expansion of the positive electrode active material during discharge is the negative electrode active. It is absorbed by the volume of material contraction. This makes it possible to suppress the occurrence of stress due to the volume change of the entire battery during charging and discharging, and it is effective to damage the positive electrode, the negative electrode, the separator, etc. Is prevented. As a result, the cycle characteristics of the battery are improved.
  • the ratio of the positive electrode active material and the negative electrode active material, which exhibit the opposite behavior of the volume change is not simply used, specifically the weight ratio of CoZSi. Is set within the above range, it is possible to more effectively suppress the occurrence of stress due to the volume change of the entire battery. Specifically, by setting the weight ratio of CoZSi to 0.3 or more, the deterioration of the rate characteristic caused by the positive electrode due to the reduction of the amount of Co is avoided, and the Si negative electrode has a high energy density (or high energy density) (or Capacity) will be obtained.
  • the weight ratio of CoZSi is 5.5 or less, the balance between the contraction of the positive electrode active material and the expansion of the negative electrode active material at the time of charge becomes good, and the stress is sufficiently relieved. From the viewpoint of making these advantageous effects more remarkable, it is particularly preferable to set the weight ratio of CoZSi to 0.4 to 2.5, particularly 0.4 to 1.
  • FIG. 1 is a schematic view of the cross-sectional structure of a preferred embodiment of the negative electrode used in the present invention.
  • the negative electrode 10 of the present embodiment has a current collector 11 and at least one surface thereof.
  • the formed active material layer 12 is provided.
  • FIG. 1 although the state in which the active material layer 12 is formed only on one side of the current collector 11 is shown for convenience! / They, the active material layer is formed on both sides of the current collector. It is done.
  • the active material layer 12 at least a part of the surface of the particle 12a of the active material containing Si is coated with a metal material having a low ability to form a lithium compound.
  • the metal material 13 is a material different from the material of the particles 12a.
  • An air gap is formed between the particles 12a coated with the metal material. That is, the metal material covers the surface of the particles 12 a in a state where a clearance is reached so that the non-aqueous electrolyte containing lithium ions can reach the particles 12 a.
  • the metal material 13 is conveniently represented as a thick line surrounding the periphery of the particle 12a.
  • the figure is a schematic view of the active material layer 12 two-dimensionally.
  • lithium compound means that it does not form an intermetallic compound or a solid solution with lithium, or if it is formed, lithium has a slight amount of force or is very unstable.
  • the metal material 13 has conductivity, and examples thereof include copper, nickel, iron, cobalt, alloys of these metals, and the like.
  • the metal material 13 is preferably a highly ductile material in which the coating on the surface of the particles 12a is not easily broken even if the particles 12a of the active material expand and contract. It is preferable to use copper as such a material.
  • the metal material 13 is present on the surface of the particles 12 a of the active material over the entire thickness of the active material layer 12.
  • particles 12 a of the active material are present in the matrix of the metal material 13.
  • the electron conductivity of the entire active material layer 12 is ensured through the metal material 13, electrically isolated active material particles 12 a are formed, particularly in the deep part of the active material layer 12. The formation of particles 12a of the active material is effectively prevented.
  • the presence of the metal material 13 on the surface of the particles 12a of the active material over the entire thickness of the active material layer 12 can be confirmed by electron microscopic mapping using the material 13 as a measurement target.
  • the metal material 13 covers the surface of the particles 12 a continuously or discontinuously. In the case where the metallic material 13 continuously coats the surface of the particle 12a, the coating of the metallic material 13 It is preferable to form a minute gap which allows the solution to flow.
  • the non-aqueous electrolytic solution is supplied to the particle 12a through the portion not covered with the metallic material 13 in the surface of the particle 12a.
  • the metal material 13 may be deposited on the surface of the particle 12a by electrolytic plating according to the conditions described later, for example.
  • the metal material 13 covering the surface of the particles 12 a of the active material preferably has an average thickness of 0.5 to 2 / ⁇ , and more preferably 0.1 to 0.25 / zm. And, it's too thin! That is, the metal material 13 covers the surface of the particles 12 a of the active material with a minimum thickness. As a result, while the energy density is increased, the particles 12 a are prevented from coming off due to expansion and contraction and pulverization due to charge and discharge.
  • the “average thickness” is a value calculated based on the portion of the surface of the particles 12 a of the active material that is actually covered by the metal material 13. Therefore, the part of the surface of the particles 12a of the active material which is not coated with the metal material 13 can not be used as a basis for calculating the average value.
  • the voids formed between the particles 12 a coated with the metal material 13 serve as a flow path of the non-aqueous electrolyte containing lithium ions. Since the non-aqueous electrolyte flows smoothly in the thickness direction of the active material layer 12 due to the presence of the voids, the cycle characteristics can be improved. Furthermore, the voids formed between the particles 12a also function as spaces for relieving stress caused by volume change of the particles 12a of the active material during charge and discharge. An increase in the volume of the particles of the active material 12a whose volume has been increased by charging is absorbed in this space. As a result, fine particles of the particles 12 a are less likely to occur, and significant deformation of the negative electrode 10 is effectively prevented.
  • the active material layer 12 is preferably prepared by applying a slurry containing the particles 12 a and a binder onto a current collector and drying it, as described later. It is formed by performing the electrolytic plating used and depositing the metal material 13 between the particles 12a.
  • Plating conditions include plating bath composition, plating bath pH, There is the current density of the solution. With regard to the pH of the plating bath, it is preferable to adjust it to 7. 1 to: L 1. By setting the pH to this range, the dissolution of the particles 12a of the active material is suppressed, the surface of the particles 12a is cleaned, and the plating on the particle surface is promoted, and at the same time, between the particles 12a. An adequate void is formed. The pH value is measured at the temperature at plating.
  • the metal material 13 for plating it is preferable to use a copper pyrophosphate bath.
  • nickel it is preferable to use, for example, an alkaline nickel bath.
  • a copper pyrophosphate bath even if the active material layer 12 is thickened, since the above-mentioned voids can be easily formed over the entire thickness of the layer.
  • the metal material 13 is deposited on the surface of the particles 12a of the active material, and the precipitation of the metal material 13 is less likely to occur between the particles 12a, so that the gaps between the particles 12a are well formed. The point is also preferable.
  • a copper pyrophosphate bath its bath composition, electrolytic conditions and pH are preferably as follows.
  • the metal material 13 covering the particles 12a of the active material tends to be thick, and it may be difficult to form desired voids between the particles 12a.
  • the P ratio exceeds 12
  • the current efficiency may be deteriorated, and gas generation may easily occur, which may lower the production stability.
  • a bath having a P ratio of 6.5 to 50.5 as a preferable pyrophosphate copper bath, the size and number of the void formed between the particles 12a of the active material non-aqueous in the active material layer 12 It becomes very advantageous to the distribution of electrolyte solution.
  • the bath composition, electrolytic conditions and pH are as follows: It is preferable that
  • the properties of the metal material 13 can be appropriately adjusted by adding various additives used in an electrolytic solution for producing a copper foil, such as protein, active sulfur compound, and cellulose, to the various plating baths described above. It is.
  • the proportion of voids in the entire active material layer formed by the various methods described above, that is, the void ratio is preferably about 15 to 45% by volume, and particularly preferably about 20 to 40% by volume.
  • the void volume of the active material layer 12 is measured by mercury intrusion method CFIS R 1655).
  • Mercury porosimetry is a method for obtaining information on the physical shape of a solid by measuring the size and volume of pores in the solid.
  • the principle of the mercury intrusion method is to apply pressure to mercury and inject it into the pores of the object to be measured, and to measure the relationship between the pressure at that time and the volume of mercury that has been pressed (entered). is there.
  • the water silver also intrudes into the large air gap forces present in the active material layer 12 in sequence.
  • the void volume measured at a pressure of 90 MPa is regarded as the total void volume.
  • the porosity (%) of the active material layer 12 is obtained by dividing the amount of voids per unit area measured by the above method by the apparent volume of the active material layer 12 per unit area and multiplying it by 100. Ask.
  • the porosity can be controlled by appropriately selecting the particle size of the particles 12 a of the active material.
  • the particles 12a preferably have a maximum particle size of 30. It is m or less, more preferably 10 / z m or less.
  • the particle diameter of the particles is preferably 0.1 to 8 ⁇ m, particularly preferably 0.3 to 4 ⁇ m, in terms of D50 value.
  • the particle size of the particles is measured by laser diffraction / scattering particle size distribution measurement, electron microscopic observation (SEM observation).
  • the thickness of the active material layer is 10 to 40 111, preferably 15 to 30 m, and more preferably 18 to 25 m.
  • a thin surface layer (not shown) may be formed on the surface of the active material layer 12.
  • the negative electrode 10 may not have such a surface layer.
  • the thickness of the surface layer is as thin as 0.25 ⁇ m or less, preferably 0.1 ⁇ m or less. There is no limit to the lower limit of the thickness of the surface layer.
  • dropping of the particles 12a of the micronized active material can be further prevented.
  • the porosity of the active material layer 12 within the above-described range, it is possible to sufficiently prevent the particles 12 a of the finely divided active material from falling off without using the surface layer. It is possible.
  • the secondary battery is assembled using the negative electrode 10, and the battery is initially charged.
  • the over-voltage can be reduced. This means that reduction of lithium on the surface of the negative electrode 10 can be prevented during charging of the secondary battery.
  • the reduction of lithium leads to the generation of dendrite which causes a short circuit between the two poles.
  • the surface layer covers the surface of the active material layer 12 continuously or discontinuously.
  • the surface layer covers the surface of the active material layer 12 continuously, the surface layer has a large number of microvoids (not shown) open on its surface and communicating with the active material layer 12. It is preferable to have it.
  • the microvoids are preferably present in the surface layer so as to extend in the thickness direction of the surface layer. The microvoids allow the non-aqueous electrolyte to flow. The role of the microvoids is to supply the non-aqueous electrolyte into the active material layer 12.
  • the percentage of the area covered with the metal material 13, that is, the coverage is 95% or less, particularly 80% or less, and particularly 60% or less It is preferable that it is such a magnitude
  • the coverage exceeds 95%, high viscosity
  • the non-aqueous electrolyte may not easily enter, and the range of choices of the non-aqueous electrolyte may be narrowed.
  • the surface layer has a low ability to form a lithium compound, and the metal material force is configured.
  • This metal material may be the same as or different from the metal material 13 present in the active material layer 12.
  • the surface layer may have a structure of two or more layers composed of two or more different metal materials. In consideration of the ease of manufacture of the negative electrode 10, the metal material 13 present in the active material layer 12 and the metal material constituting the surface layer are preferably the same type.
  • the porosity in the active material layer 12 is a high value, so that the resistance to bending is high.
  • the MIT folding resistance measured in accordance with JIS C 6471 preferably has a high folding resistance of 30 times or more, more preferably 50 times or more.
  • the high folding resistance is extremely advantageous because the negative electrode 10 is broken when the negative electrode 10 is folded or wound and housed in the battery case.
  • a MIT folding apparatus for example, a film-clad film bending fatigue tester (No. 549) manufactured by Toyo Seiki Seisaku-sho, Ltd. is used, and a bending radius of 0.8 mm, a load of 0.5 kgf, and a sample size of 15 X 150 mm can do.
  • the current collector 11 of the negative electrode 10 the same one as conventionally used as a current collector of a negative electrode for a non-aqueous electrolyte secondary battery can be used.
  • the current collector 11 is preferably composed of a metal material having a low ability to form a lithium compound as described above. Examples of such metal materials are as described above. In particular, it is preferably made of copper, nickel, stainless steel or the like. In addition, copper alloy foils represented by Corson alloy foils can also be used. Furthermore, as the current collector, a metal foil having a normal tensile strength (JIS C 2318) of preferably 500 MPa or more, for example, one obtained by forming a copper coating layer on at least one surface of the aforementioned Corson alloy foil can be used.
  • JIS C 2318 normal tensile strength
  • the current collector 11 is preferably 9 to 35 / ⁇ in consideration of the balance between maintaining the strength of the negative electrode 10 and improving the energy density.
  • chromate treatment, triazole type compound and imidazole type compound it is preferable to use any organic compound to protect against mildew.
  • a coating film is formed on the current collector 11 using a slurry containing particles of an active material and a binder, and then electrolytic plating is performed on the coating film.
  • the current collector 11 is prepared. Then, a slurry containing particles 12 a of the active material is applied onto the current collector 11 to form a coating film 15.
  • the surface roughness of the coating film-forming surface of the current collector 11 is preferably 0.5 to 4 / ⁇ at the maximum height of the contour curve. When the maximum height is more than 4 m, the formation accuracy of the coating film 15 is lowered, and the current concentration with the penetration of the projections is likely to occur. If the maximum height is less than 0, the adhesion of the active material layer 12 is likely to be reduced.
  • the particles 12a of the active material those having the above-mentioned particle size distribution and average particle diameter are preferably used.
  • the slurry contains, in addition to the particles of the active material, a binder, a dilution solvent, etc.
  • the slurry may also contain a small amount of particles of conductive carbon material such as acetylene black or graphite.
  • the conductive carbon material is preferably contained in an amount of 1 to 3% by weight based on the weight of the particles 12a of the active material. If the content of the conductive carbon material is less than 1% by weight, the viscosity of the slurry decreases and the sedimentation of the particles 12a of the active material is promoted, so that a good coating 15 and uniform voids can be formed. "Become. When the content of the conductive carbon material exceeds 3% by weight, plating nuclei are concentrated on the surface of the conductive carbon material, and it becomes difficult to form a good coating.
  • styrene butadiene rubber SBR
  • polybiphenyl difluoride PVDF
  • polyethylene PE
  • ethylene propylene diene monomer EPDM
  • a dilution solvent N-methyl pyrrolidone, cyclohexane or the like is used.
  • the amount of particles 12a of the active material in the slurry is preferably about 30 to 70% by weight.
  • the amount of the binder is preferably about 0.4 to 4% by weight. Add a dilution solvent to these to make a slurry.
  • the formed coating film 15 has a large number of microspaces between the particles 12a.
  • the current collector 11 on which the coating film 15 is formed is immersed in a plating bath containing a base metal material having a low lithium compound-forming ability. By immersion in the plating bath, the plating solution intrudes into the minute space in the coating film 15. To reach the interface between the coating 15 and the current collector 11. In this state, electrolytic plating is performed to deposit a plated metal species on the surface of the particles 12a (hereinafter, this plating is also called penetration plating).
  • the penetration plating is performed by using the current collector 11 as a force sword, immersing a counter electrode as an anode in a plating bath, and connecting both electrodes to a power supply.
  • the deposition of the metallic material by penetration plating proceeds toward one side of the coating film 15 and the other side.
  • the interfacial force between the coating 15 and the current collector 11 is also such that the deposition of the metal material 13 proceeds toward the surface of the coating. Do the game.
  • conditions of penetration for depositing the metal material 13 include the composition of the plating bath, the pH of the plating bath, the current density of electrolysis, and the like. Such conditions are as described above.
  • the deposition of the metallic material 13 proceeds from the interface between the coating 15 and the current collector 11 toward the surface of the coating.
  • fine particles 13a having a substantially constant thickness and also having a plating nuclear force of the metal material 13 are present in layers.
  • adjacent fine particles 13a combine to form larger particles, and when precipitation proceeds further, the particles combine to cover the surface of the particles 12a of the active material continuously. It will be.
  • the penetration plating is terminated when the metallic material 13 is deposited over the entire area of the coating film 15 in the thickness direction.
  • a surface layer (not shown) can be formed on the upper surface of the active material layer 12.
  • the target negative electrode is obtained.
  • the negative electrode 10 After penetration, it is also preferable to treat the negative electrode 10 for protection.
  • the protection treatment for example, organic protection using triazole compounds such as benzotriazole, carboxybenzotriazole, tolyltriazole and the like or imidazole and the like, and inorganic protection using cobalt, nickel, chromate and the like can be adopted.
  • the current collector which is also an electrolytic copper foil having a thickness of 18 m, was acid washed at room temperature for 30 seconds. After treatment, it was washed with pure water for 15 seconds. A slurry containing Si particles was applied onto the current collector to a film thickness of 15 m to form a coating film.
  • the average particle diameter D is determined by Microtrac particle size distribution measurement equipment manufactured by Nikkiso Co., Ltd.
  • Measurement was carried out using a measuring instrument (No. 9320-X100).
  • a current collector on which a coating is formed is immersed in a copper pyrophosphate bath having the following bath composition, and electrolytic penetration causes copper to penetrate the coating, thereby forming an active material layer.
  • the conditions of electrolysis were as follows. DSE was used for the anode.
  • the power supply used DC power supply.
  • the penetration plating was terminated when copper was deposited all over the thickness direction of the coating film, washed with water, and treated with benzotriazole (BTA) to give a target negative electrode.
  • BTA benzotriazole
  • the amount of Si in the negative electrode was as shown in Table 1.
  • a positive electrode was manufactured separately from the manufacturing of the negative electrode. What was shown in Table 1 was used as a positive electrode active material.
  • a 1: 1 volume% mixture of ethylene carbonate and jetyl carbonate is used as an electrolytic solution. 2 volumes of vinylene carbonate to a solution of ImolZl LiPF in a solvent
  • a lithium secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material shown in Table 1 was used and the amount of Co was set to the values shown in the same table to produce a positive electrode.
  • the weight ratio of CoZSi in the obtained battery was as shown in Table 1.
  • the capacity retention of the 50th cycle was measured for the lithium secondary batteries obtained in Examples and Comparative Examples.
  • the capacity retention rate was calculated by measuring the discharge capacity at the 50th cycle, dividing the value by the discharge capacity at the 13th eye and multiplying by 100. The results are shown in Table 1.
  • the charge condition was 0.5 C, 4.2 V, and the constant current was constant voltage.
  • Discharge conditions were 0.5 C and 2.7 V, and constant current was applied.
  • charge and discharge in the first cycle is set to 0.05 C
  • charge and discharge in the second to fourth cycles is 0.1 C
  • charge and discharge in the fifth to seventh cycles is 0.5 C
  • charge and discharge in the eighth to tenth cycles is 1 C
  • charge and discharge in the first cycle is set to 0.05 C
  • charge and discharge in the second to fourth cycles is 0.1 C
  • charge and discharge in the fifth to seventh cycles is 0.5 C
  • charge and discharge in the eighth to tenth cycles is 1 C
  • charge and discharge in the first cycle is set to 0.05 C
  • the secondary battery of each example has a low degree of expansion due to charging due to the weight ratio of CoZSi being set within a specific range. It can be seen that the capacity retention rate is increased by this. On the other hand, in the secondary battery of the comparative example, it can be seen that the capacity retention rate is lowered due to the fact that the degree of expansion due to charging increases.
  • the present invention by setting the amount of Si in the negative electrode active material and the amount of Co in the positive electrode active material in the battery within a specific range, the expansion and contraction of the entire battery due to charge and discharge. The degree of contraction is reduced, thereby reducing the stress generated by the expansion and contraction and reducing the damage to the positive electrode and the negative electrode. As a result, the cycle characteristics of the battery are improved.

Abstract

A non-aqueous electrolyte secondary battery comprises a negative electrode having a negative electrode active material layer and a positive electrode having a positive electrode active material layer, wherein the negative electrode active material layer contains Si and the positive electrode active material layer contains a lithium-transition metal composite oxide containing Li and Co as constituent elements. The weight-based ratio of the amount of Co in the positive electrode to the amount of Si in the negative electrode (i.e., a Co/Si ratio) falls within the range from 0.3 to 5.5. Preferably, the content of Co in the lithium-transition metal composite oxide in the positive electrode active material layer is 10 to 40% by weight relative to the total amount of the transition metal contained in the composite oxide.

Description

明 細 書  Specification
非水電解液二次電池  Nonaqueous electrolyte secondary battery
技術分野  Technical field
[0001] 本発明は、リチウム二次電池などの非水電解液二次電池に関する。  The present invention relates to non-aqueous electrolyte secondary batteries such as lithium secondary batteries.
背景技術  Background art
[0002] リチウム二次電池における正極活物質としては、リチウム遷移金属複合酸化物が一 般に用いられている。一方、負極活物質としてはグラフアイト等の炭素系材料が一般 に用いられている。また、次世代の活物質として、炭素系材料よりも容量の大きな材 料であるシリコン系材料ゃスズ系材料の使用も試みられて 、る。これら正極活物質や 負極活物質は、電池の充放電によってリチウムを吸蔵放出するときに膨張収縮するこ とが知られている。この膨張収縮による体積変化に起因して生ずる応力は、正極や 負極にダメージを与える一因となり、それによつて電池のサイクル特性が劣化しやす くなる。  A lithium transition metal composite oxide is generally used as a positive electrode active material in a lithium secondary battery. On the other hand, carbon-based materials such as graphite are generally used as the negative electrode active material. In addition, use of silicon-based materials and tin-based materials, which are materials having larger capacities than carbon-based materials, has been attempted as an active material of the next generation. These positive electrode active materials and negative electrode active materials are known to expand and contract when lithium is absorbed and released by charge and discharge of the battery. The stress caused by the volume change due to the expansion and contraction contributes to the damage to the positive electrode and the negative electrode, which tends to deteriorate the cycle characteristics of the battery.
[0003] 充放電に起因して体積変化が生じることを防止することを目的として、正極活物質 として、放電時に結晶構造が膨張し、充電時に結晶構造が収縮する活物質と、放電 時に結晶構造が収縮し、充電時に結晶構造が膨張する活物質を混合して用いること が提案されている (特許文献 1参照)。また正極の活物質層が二つ以上の合剤層から なり、隣接する合剤層の一方に含有される活物質として放電時に膨張し充電時に収 縮するリチウム含有遷移金属酸化物を用い、もう一方の合剤層に含有される活物質 として放電時に収縮し充電時に膨張するリチウム含有遷移金属酸化物を用いること が提案されて ヽる (特許文献 2参照)。  [0003] For the purpose of preventing volume change due to charge and discharge, as a positive electrode active material, an active material whose crystal structure expands at the time of discharge and whose crystal structure shrinks at the time of charge; It has been proposed to mix and use an active material which shrinks and the crystal structure expands at the time of charge (see Patent Document 1). The active material layer of the positive electrode is composed of two or more mixture layers, and as the active material contained in one of the adjacent mixture layers, a lithium-containing transition metal oxide which expands during discharge and condenses during charge is used. It has been proposed to use a lithium-containing transition metal oxide that contracts during discharge and expands during charge as the active material contained in one of the mixture layers (see Patent Document 2).
[0004] 一方、負極活物質に関しては、負極集電体の一方の面に配する活物質として、他 方の面に配する活物質よりも充放電過程における膨張収縮の変化量が大きいものを 用いることが提案されている (特許文献 3参照)。同文献には、正極集電体の一方の 面に充電過程で膨張し、放電過程で収縮する活物質を配し、他方の面に充電過程 で収縮し、放電過程で膨張する活物質を配することも提案されて!、る。  On the other hand, with regard to the negative electrode active material, as the active material disposed on one side of the negative electrode current collector, a material having a larger change in expansion and contraction during charge and discharge than the active material disposed on the other side is used. It has been proposed to use (see Patent Document 3). In this document, an active material which expands in the charging process and contracts in the discharging process is arranged on one side of the positive electrode current collector, and an active material which contracts in the charging process and expands in the discharging process is arranged on the other side. It is also suggested to do!
[0005] 充放電に起因する体積変化に関し、前記の各文献とは別に、特許文献 4において は、正極活物質としてリチウムの放出時 (即ち電池の充電時)に結晶格子が大きく収 縮する材料であるスピネル型リチウムマンガン複合酸ィ匕物を用い、且つ正極活物質 としてリチウムの吸蔵時に膨張する材料である炭素材料を用いると、充電時に負極側 の炭素材料にゆるみが生じやすいという欠点があることが指摘されている。そこで、同 文献においては、リチウムの放出時における正極活物質の収縮を抑制することで、充 電時における負極側の前記のゆるみを抑制することが提案されている。 [0005] With respect to the volume change caused by charge and discharge, Patent Document 4 separately from each of the documents described above Uses a spinel-type lithium manganese composite oxide, which is a material that has a large crystal lattice contraction during lithium release (that is, during battery charging) as a positive electrode active material, and expansion when lithium is stored as a positive electrode active material. It is pointed out that the use of a carbon material, which is a material to be used, has the disadvantage that the carbon material on the negative electrode side is easily loosened during charging. Therefore, in the document, it has been proposed to suppress the above-mentioned loosening on the negative electrode side during charging by suppressing the contraction of the positive electrode active material at the time of releasing lithium.
[0006] 前記の各文献にお!、て用いられて 、る負極活物質は何れも炭素をベースとした材 料であるところ、該材料はリチウムの吸蔵時に膨張はするものの、その膨張の程度は 、次世代の負極活物質として目されているシリコン系材料ゃスズ系材料に比較すると 、それほど大きいなものではない。従って、前記の各文献に記載されている系におい て、負極活物質として炭素をベースとした材料に代えて、それよりもリチウム吸蔵時の 膨張の程度の大きな材料を用いた場合にも同様の効果が奏される力否かは不明で ある。  In each of the above documents, the negative electrode active material used is a carbon-based material, but the material expands when lithium is absorbed, but the degree of the expansion is In comparison with silicon-based materials and tin-based materials that are considered as next-generation negative electrode active materials, they are not so large. Therefore, in the systems described in the above-mentioned respective documents, the same applies to the case where a material having a larger degree of expansion at the time of lithium storage is used as the negative electrode active material instead of the material based on carbon. It is unclear whether the effect will be achieved or not.
[0007] 特許文献 1 :特開平 5— 82131号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 5-82131
特許文献 2 :米国特許第 5677083号明細書  Patent Document 2: US Patent No. 5677083
特許文献 3 :特開平 10— 064515号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 10-064515
特許文献 4:特開 2002— 75361号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2002-75361
[0008] 本発明の目的は、前述した従来技術の電池よりも、充放電に起因する電池全体の 膨張収縮の程度が軽減された非水電解液二次電池を提供することにある。 An object of the present invention is to provide a non-aqueous electrolyte secondary battery in which the degree of expansion and contraction of the entire battery due to charge and discharge is reduced as compared with the above-described battery of the prior art.
発明の開示  Disclosure of the invention
[0009] 本発明は、 Siを含む負極活物質層を有する負極と、 Li及び Coを構成元素として含 有するリチウム遷移金属複合酸化物を含む正極活物質層を有する正極とを備え、負 極における Siに対する、正極における Coの重量比(CoZSi)が 0. 3〜5. 5の範囲 内であることを特徴とする非水電解液二次電池を提供するものである。  The present invention comprises a negative electrode having a negative electrode active material layer containing Si, and a positive electrode having a positive electrode active material layer containing a lithium transition metal composite oxide containing Li and Co as constituent elements, A weight ratio (CoZSi) of Co in the positive electrode to Si in the positive electrode is in the range of 0.3 to 5.5, to provide a non-aqueous electrolyte secondary battery.
図面の簡単な説明  Brief description of the drawings
[0010] [図 1]本発明の非水電解液二次電池に用いられる負極の一実施形態の断面構造を 示す模式図である。  FIG. 1 is a schematic view showing a cross-sectional structure of an embodiment of a negative electrode used in the non-aqueous electrolyte secondary battery of the present invention.
[図 2]図 1に示す負極の製造方法を示す工程図である。 発明の詳細な説明 [FIG. 2] It is process drawing which shows the manufacturing method of the negative electrode shown in FIG. Detailed Description of the Invention
[0011] 以下、本発明をその好ましい実施形態に基づき説明する。本発明の非水電解液二 次電池(以下、単に二次電池又は電池ともいう)は、その基本構成部材として、正極、 負極及びこれらの間に配されたセパレータを有している。正極と負極との間はセパレ ータを介して非水電解液で満たされている。本発明の電池は、これら基本構成部材 を備えた円筒型、角型、コイン型等の形態であり得る。し力しこれらの形態に制限され るものではない。  The present invention will be described below based on its preferred embodiments. The non-aqueous electrolyte secondary battery (hereinafter, also simply referred to as a secondary battery or battery) of the present invention has a positive electrode, a negative electrode, and a separator disposed therebetween as basic components. The space between the positive electrode and the negative electrode is filled with a non-aqueous electrolyte via a separator. The battery of the present invention may be in the form of a cylinder, a square, a coin or the like provided with these basic components. It is not limited to these forms.
[0012] 本発明の電池に用いられる正極は、例えば集電体の少なくとも一面に正極活物質 層が形成されてなるものである。正極活物質層には活物質が含まれている。この活物 質として本発明にお!ヽて用いられるものは、 Li及び Coを構成元素として含有するリチ ゥム遷移金属複合酸化物である。この複合酸化物は、 Coを構成元素の一つとして含 有しているので、リチウムの吸蔵時に収縮し、放出時に膨張する性質を有している。リ チウムニ次電池の正極活物質して用いられるリチウム遷移金属複合酸ィ匕物には、 Co を構成元素の一つとして含有する材料の他に、例えば LiNiOのように Niを構成元素  The positive electrode used in the battery of the present invention is, for example, one obtained by forming a positive electrode active material layer on at least one surface of a current collector. The positive electrode active material layer contains an active material. What is used in the present invention as this active material is a lithium transition metal complex oxide containing Li and Co as constituent elements. Since this composite oxide contains Co as one of its constituent elements, it has the property of contracting when storing lithium and expanding when releasing lithium. The lithium-transition metal complex oxide used as a positive electrode active material of lithium secondary batteries includes, in addition to a material containing Co as one of its constituent elements, for example, Ni as a constituent element such as LiNiO.
2  2
として含有するものや、 LiMn Oのように Mnを構成元素として含有するものが知られ  And those containing Mn as a constituent element such as LiMn O are known.
2 4  twenty four
ているが、これらの材料は、リチウムの吸蔵時に膨張する力 又はリチウム吸蔵時の 収縮の程度が、本発明で用いられる Li及び Coを構成元素として含有するリチウム遷 移金属複合酸化物よりも小さ 、ものである。  However, these materials have an expansion force at the time of lithium storage or a degree of contraction at the time of lithium storage that is smaller than that of the lithium-transition metal complex oxide containing Li and Co used in the present invention as constituent elements. It is a thing.
[0013] 前記の複合酸ィ匕物としては、例えば以下の式(1)で表されるものが用いられる。 As the above-mentioned complex acid product, for example, one represented by the following formula (1) is used.
LiCo M O (1)  LiCo M O (1)
X 1-X 2  X 1-X 2
(式中、 Xは 1未満の正数を示し、 Mは金属元素を示す。 )  (Wherein, X represents a positive number less than 1 and M represents a metal element).
[0014] 前記の式中、 Mで表される金属元素としては、例えば Co以外の遷移金属元素及び Li以外の典型金属元素が挙げられる。遷移金属元素としては、例えば Ni、 Mn、 Fe、 V、 Zr、 Ti、 Mo、 W、 Nb等が挙げられる。特に、遷移金属元素として Ni及び Z又は Mnを用いることが好ましい。一方、典型金属元素としては、例えば Mg、 Al、 Gaが挙 げられる。前記の複合酸ィ匕物における Xは前述の通り 1未満の正数であり、好ましくは 0. 1〜0. 4、更に好ましく ίま 0. 11〜0. 30である。  Examples of the metal element represented by M in the above formula include transition metal elements other than Co and typical metal elements other than Li. Examples of transition metal elements include Ni, Mn, Fe, V, Zr, Ti, Mo, W, Nb and the like. In particular, it is preferable to use Ni and Z or Mn as a transition metal element. On the other hand, examples of typical metal elements include Mg, Al and Ga. As described above, X in the complex acid product is a positive number less than 1, preferably 0.1 to 0.4, more preferably 0.1 to 0.30.
[0015] また、前記の複合酸化物に含まれる Coの量は、該複合酸化物に含まれる遷移金 属元素の総量に対して好ましくは 10〜40重量%、更に好ましくは 10〜30重量%で ある。前記の複合酸ィ匕物における Coの量をこの範囲内に設定することにより、該複 合酸ィ匕物がリチウムを吸蔵したときの収縮の程度を適切な範囲内にすることが可能と なる。 [0015] Further, the amount of Co contained in the above complex oxide is the transition metal contained in the complex oxide. The amount is preferably 10 to 40% by weight, more preferably 10 to 30% by weight, based on the total amount of the group elements. By setting the amount of Co in the above-mentioned complex acid product within this range, it is possible to make the degree of contraction when the complex acid occludes lithium within an appropriate range. .
[0016] 前記の複合酸ィ匕物の具体例としては、例えば Li (Co Mn Ni ) 0 (式中、 a+b + c a b c 2  As a specific example of the above-mentioned complex acid product, for example, Li (Co Mn Ni) 0 (wherein, a + b + c a b c 2
= 1、 0< a< l、 0≤b< l、 0≤c< l、但し bと cは同時に 0にはならない)、 Li (Co Fe a b = 1, 0 <a <l, 0 ≤ b <l, 0 ≤ c <l, but b and c do not simultaneously become 0), Li (Co Fe a b
) 0 (式中、 a+b = l、 0< a< l、 0<b< l)、 Li (Co V ) 0 (式中、 a+b = 1、 0く a0 (wherein, a + b = l, 0 <a <l, 0 <b <l), Li (Co V) 0 (where in formula a + b = 1, 0 times a
2 a b 2 2 a b 2
く 1、 0<b< l)などが挙げられる。これらの複合酸ィ匕物は単独で用いてもよぐ或い は二種以上を組み合わせて用いてもよい。これらの複合酸ィ匕物のうち、リチウムの吸 蔵放出に起因する体積変化が大きな材料を用いることが好ましい。その理由は、該 複合酸ィ匕物と組み合わせて用いられる負極活物質である Siを含む材料は、リチウム の吸蔵放出に起因する体積変化が大きい材料なので、該複合酸ィ匕物と Siを含む材 料とで、電池全体の体積変化が相殺されやすいからである。この観点からの好ましい 材料としては、例えば LiMn Co Ni O、 LiMn Co Ni O、 LiMn Co Ni  1, 0 <b <l), etc. These complex acids may be used alone or in combination of two or more. Among these complex acid products, it is preferable to use a material having a large volume change due to the absorbed and released lithium. The reason is that the material containing Si, which is a negative electrode active material used in combination with the composite acid oxide, is a material having a large volume change due to lithium absorption and release, and thus contains the composite acid oxide and Si. This is because the volume change of the entire battery is easily offset by the material. Preferred materials from this viewpoint are, for example, LiMn Co Ni O, LiMn Co Ni O, LiMn Co Ni
0.3 0.4 0.3 2 0.45 0.10 0.45 2 1/3 1/3 o等が挙げられる。これらの材料は、公知の方法、例えば炭酸リチウムと遷移金属 0.3 0.4 0.3 2 0.45 0.10 0.45 2 1/3 1/3 o etc. are mentioned. These materials are known methods such as lithium carbonate and transition metals
1/3 2 1/3 2
酸化物とを大気中で焼成することによって製造される。  It is produced by firing the oxide with the atmosphere.
[0017] 本発明に用いられる正極は、前記の複合酸化物を、アセチレンブラック等の導電剤 及びポリフッ化ビニリデン等の結着剤とともに適当な溶媒に懸濁し、正極合剤を作製 し、これをアルミニウム箔等の集電体の少なくとも一面に塗布、乾燥した後、ロール圧 延、プレスすることにより得られる。  The positive electrode used in the present invention is prepared by suspending the above composite oxide in a suitable solvent together with a conductive agent such as acetylene black and a binder such as polyvinylidene fluoride to prepare a positive electrode mixture, After applying and drying on at least one surface of a current collector such as an aluminum foil, it can be obtained by roll rolling and pressing.
[0018] 本発明の電池に用いられる負極は、例えば集電体の少なくとも一面に負極活物質 層が形成されてなるものである。負極活物質層には活物質が含まれている。この活物 質として本発明において用いられるものは、 Siを含む物質である。 Siを含む負極活 物質は、リチウムの吸蔵時に膨張し、放出時に収縮する性質を有している。この膨張 収縮の程度は、従来リチウム二次電池の負極活物質として用いられてきた炭素系材 料に比較して極めて大き 、ものである。  The negative electrode used in the battery of the present invention is, for example, one obtained by forming a negative electrode active material layer on at least one surface of a current collector. The negative electrode active material layer contains an active material. What is used in the present invention as this active substance is a substance containing Si. The negative electrode active material containing Si has a property of expanding when occluding lithium and contracting when releasing. The degree of expansion and contraction is extremely large as compared with the carbon-based material conventionally used as the negative electrode active material of lithium secondary batteries.
[0019] Siを含む負極活物質はリチウムイオンの吸蔵放出が可能なものである。その例とし ては、シリコン単体、シリコンと金属との合金、シリコン酸ィ匕物などを用いることができ る。これらの材料はそれぞれ単独で、或いはこれらを混合して用いることができる。前 記の金属としては、例えば Cu、 Ni、 Co、 Cr、 Fe、 Ti、 Pt、 W、 Mo及び Auからなる群 力 選択される 1種類以上の元素が挙げられる。これらの金属のうち、 Cu、 Ni、 Coが 好ましぐ特に電子伝導性に優れる点、及びリチウム化合物の形成能の低さの点から 、 Cu、 Niを用いることが望ましい。また、負極を電池に組み込む前に、又は組み込ん だ後に、シリコン系材料力もなる活物質に対してリチウムを吸蔵させてもよい。特に好 ましいシリコン系材料は、リチウムの吸蔵量の高さの点力 シリコン又はシリコン酸ィ匕 物である。 The negative electrode active material containing Si is capable of absorbing and releasing lithium ions. For example, silicon alone, an alloy of silicon and metal, silicon oxide, etc. can be used. Ru. These materials can be used alone or in combination of two or more. Examples of the metal include one or more elements selected from the group consisting of Cu, Ni, Co, Cr, Fe, Ti, Pt, W, Mo and Au. Among these metals, it is desirable to use Cu and Ni from the viewpoint that Cu, Ni and Co are preferred, in particular, the excellent electron conductivity and the low ability to form a lithium compound. In addition, before or after the negative electrode is incorporated into the battery, lithium may be absorbed into the active material which is also a silicon-based material. Particularly preferable silicon-based materials are point force silicon or silicon dioxide having a high lithium storage capacity.
[0020] 負極活物質層は、例えば、前記の負極活物質からなる連続薄膜層、前記の負極活 物質の粒子を含む塗膜層、前記の負極活物質の粒子を含む焼結体層等であり得る 。また、後述する図 1に示す構造の層であり得る。  The negative electrode active material layer may be, for example, a continuous thin film layer made of the above-mentioned negative electrode active material, a coating layer containing particles of the above-mentioned negative electrode active material, or a sintered layer containing particles of the above-mentioned negative electrode active material. possible . Also, it may be a layer having a structure shown in FIG. 1 described later.
[0021] 本発明の電池におけるセパレータとしては、合成樹脂製不織布、ポリエチレンゃポ リプロピレン等のポリオレフイン、又はポリテトラフルォロエチレンの多孔質フィルム等 が好ましく用いられる。電池の過充電時に生じる電極の発熱を抑制する観点からは、 ポリオレフイン微多孔膜の片面又は両面にフエ口セン誘導体の薄膜が形成されてな るセパレータを用いることが好ましい。セパレータは、突刺強度が 0. 2NZ m厚以 上 0. 49NZ w m厚以下であり、卷回軸方向の引張強度力 0MPa以上 150MPa以 下であることが好ま 、。充放電に伴 、大きく膨張 ·収縮する負極活物質を用いても 、セパレータの損傷を抑制することができ、内部短絡の発生を抑制することができる 力 である。  As the separator in the battery of the present invention, a synthetic resin non-woven fabric, a polyolefin such as polyethylene or polypropylene, or a porous film of polytetrafluoroethylene is preferably used. From the viewpoint of suppressing the heat generation of the electrode generated at the time of overcharging of the battery, it is preferable to use a separator in which a thin film of a phenate derivative is formed on one side or both sides of the microporous polyolefin membrane. The separator preferably has a piercing strength of not less than 0.2 NZ m and not more than 0.49 wm, and preferably has a tensile strength in the winding axial direction of not less than 0 MPa and not more than 150 MPa. Even with the use of a negative electrode active material that greatly expands and contracts with charging and discharging, damage to the separator can be suppressed, and the occurrence of internal short circuit can be suppressed.
[0022] 非水電解液は、支持電解質であるリチウム塩を有機溶媒に溶解した溶液からなる。  The non-aqueous electrolytic solution is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
リチウム塩としては、 CF SO Liゝ (CF SO ) NLiゝ (C F SO ) NLiゝ LiCIO、 LiAl  As a lithium salt, CF 2 SO 4 Li (CF 2 SO 4) NLi (C 4 F 2 SO 4) NLi ゝ LiCIO, LiAl
3 3 3 2 2 5 2 2 4 3 3 3 2 2 5 2 2 4
CI、 LiPF、 LiAsF、 LiSbF、 LiCl、 LiBr、 Lil、 LiC F SO等が例示される。これらExamples thereof include CI, LiPF, LiAsF, LiSbF, LiCl, LiBr, Lil, LiC 3 F 2 SO 4 and the like. these
4 6 6 6 4 9 3 4 6 6 6 4 9 3
は単独で又は 2種以上を組み合わせて用いることができる。これらのリチウム塩のうち 、耐水分解性が優れている点から、 CF SO Li、 (CF SO ) NLi、 (C F SO ) NLiを  These can be used alone or in combination of two or more. Among these lithium salts, CF SO Li, (CF 2 SO 4) NLi, and (C 4 F 2 SO 4) NLi are preferred because of their excellent resistance to water degradation.
3 3 3 2 2 5 2 2 用いることが好ましい。有機溶媒としては、例えばエチレンカーボネート、ジェチルカ ーボネート、ジメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート等 が挙げられる。特に、非水電解液全体に対し 0. 5〜5重量%のビ-レンカーボネート 及び 0. 1〜1重量%のジビ-ルスルホン、 0. 1〜1. 5重量%の 1, 4 ブタンジォー ルジメタンスルホネートを含有させることが充放電サイクル特性を更に向上する観点 力 好ましい。その理由について詳細は明らかでないが、 1, 4 ブタンジオールジメ タンスルホネートとジビニルスルホンが段階的に分解して、正極上に被膜を形成する ことにより、硫黄を含有する被膜がより緻密なものになるためであると考えられる。 特に非水電解液としては、 4 フルォロ一 1 , 3 ジォキソラン一 2—オン, 4 クロ口 - 1, 3 ジォキソラン一 2—オン或いは 4 トリフルォロメチル一 1, 3 ジォキソラン 2—オンなどのハロゲン原子を有する環状の炭酸エステル誘導体のような比誘電 率が 30以上の高誘電率溶媒を用いることも好ましい。耐還元性が高ぐ分解されにく いからである。また、上記高誘電率溶媒と、ジメチルカーボネート、ジェチルカーボネ ート、或いはメチルェチルカーボネートなどの粘度が 1 mPa · s以下である低粘度溶媒 を混合した電解液も好ま 、。より高 、イオン伝導性を得ることができるからである。 更に、電解液中のフッ素イオンの含有量が 14質量 ppm以上 1290質量 ppm以下の 範囲内であることも好ましい。電解液に適量なフッ素イオンが含まれていると、フッ素 イオンに由来するフッ化リチウムなどの被膜が負極に形成され、負極における電解液 の分解反応を抑制することができると考えられる力もである。更に、酸無水物及びそ の誘導体力 なる群のうちの少なくとも 1種の添加物が 0. 001重量%〜10重量%含 まれていることが好ましい。これにより負極の表面に被膜が形成され、電解液の分解 反応を抑制することができる力もである。この添加物としては、環に一 c( = o) -0 - c(=o)一基を含む環式化合物が好ましぐ例えば無水コハク酸、無水ダルタル酸、 無水マレイン酸、無水フタル酸、無水 2—スルホ安息香酸、無水シトラコン酸、無水ィ タコン酸、無水ジグリコール酸、無水へキサフルォログルタル酸、無水 3—フルオロフ タル酸、無水 4 フルオロフタル酸などの無水フタル酸誘導体、又は無水 3, 6—ェポ キシ 1, 2, 3, 6—テトラヒドロフタル酸、無水 1, 8 ナフタル酸、無水 2, 3 ナフタ レンカルボン酸、無水 1, 2—シクロペンタンジカルボン酸、 1, 2—シクロへキサンジカ ルボン酸などの無水 1 , 2 シクロアルカンジカルボン酸、又はシス 1, 2, 3, 6—テ トラヒドロフタル酸無水物或いは 3, 4, 5, 6—テトラヒドロフタル酸無水物などのテトラ ヒドロフタル酸無水物、又はへキサヒドロフタル酸無水物(シス異性体、トランス異性体 )、 3, 4, 5, 6—テトラクロロフタル酸無水物、 1, 2, 4—ベンゼントリカルボン酸無水 物、二無水ピロメリット酸、又はこれらの誘導体などが挙げられる。 It is preferable to use 3 3 3 2 2 5 2 2. Examples of the organic solvent include ethylene carbonate, jetyl carbonate, dimethyl carbonate, propylene carbonate, butylene carbonate and the like. In particular, 0.5 to 5% by weight of vinylene carbonate with respect to the whole non-aqueous electrolyte And 0.1 wt% to 1 wt% of dibiylsulfone and 0.1 wt% to 1.5 wt% of 1,4-butanediol dimethanesulfonate are preferred from the viewpoint of further improving charge-discharge cycle characteristics. Although the details are not clear about the reason, the formation of a film on the positive electrode by step decomposition of 1,4 butanediol dimethan sulfonate and divinyl sulfone makes the film containing sulfur more dense. It is considered to be for. In particular, as non-aqueous electrolytes, halogen atoms such as 4-fluoro-1, 3-dioxolan-2, 4-chloro-1, 3-dioxolan-1, 4-trifluoromethyl-1, 3-dioxolane 2-, etc. It is also preferable to use a high dielectric constant solvent having a dielectric constant of 30 or more, such as a cyclic carbonate derivative having It is because reduction resistance is high and decomposition is difficult. In addition, it is also preferable to use an electrolyte prepared by mixing the above-mentioned high dielectric constant solvent with a low viscosity solvent having a viscosity of 1 mPa · s or less such as dimethyl carbonate, jetyl carbonate, or methyl ethyl carbonate. It is because higher ion conductivity can be obtained. Furthermore, it is also preferable that the content of fluorine ions in the electrolytic solution is in the range of 14 mass ppm or more and 1290 mass ppm or less. If the electrolytic solution contains an appropriate amount of fluorine ions, a film such as lithium fluoride derived from the fluorine ions is formed on the negative electrode, which is also considered to be capable of suppressing the decomposition reaction of the electrolytic solution on the negative electrode. . Furthermore, it is preferable that at least one additive in the acid anhydride and its derivative group be contained in an amount of 0.001% by weight to 10% by weight. As a result, a film is formed on the surface of the negative electrode, which is also a force capable of suppressing the decomposition reaction of the electrolytic solution. As this additive, a cyclic compound containing one c (= o) -0-c (= o) group in the ring is preferable. For example, succinic anhydride, dartalic anhydride, maleic anhydride, phthalic anhydride, Phthalic anhydride derivatives such as 2-sulfobenzoic acid anhydride, citraconic acid anhydride, itaconic acid anhydride, diglycolic acid anhydride, hexafluoroglutaric acid anhydride, 3-fluorophthalic acid anhydride, 4-fluorophthalic acid anhydride, or Anhydrous 3, 6-Epoxide 1, 2, 3, 6-Tetrahydrophthalic Acid, Anhydrous 1, 8 Naphthalic Acid, Anhydrous 2, 3 Naphthalene Carboxylic Acid, Anhydrous 1, 2-Cyclopentanedicarboxylic Acid, 1, 2- Cyclo Tetrahydrophthalic acid such as anhydrous 1,2 cycloalkanedicarboxylic acid such as hexanedicarboxylic acid or cis 1,2,3,6 tetrahydrophthalic anhydride or 3,4,5,6-tetrahydrophthalic anhydride Anhydride, or Hexahi Rofutaru anhydride (cis isomer, trans isomer And 3,4,5,6-tetrachlorophthalic anhydride, 1,2,4-benzenetricarboxylic anhydride, pyromellitic dianhydride, or derivatives thereof.
[0024] 本発明にお 、ては、負極における Siに対する、正極における Coの重量比(CoZSi )を 0. 3〜5. 5の範囲内に設定した点に特徴の一つを有する。先に述べた通り、本 発明において用いられる正極活物質は、リチウムの吸蔵時に膨張し、放出時に収縮 する性質を有するものであり、一方、負極活物質は、リチウムの吸蔵時に膨張し、放 出時に収縮する性質を有するものである。つまり、本発明で用いられる正極活物質と 負極活物質は、リチウムの吸蔵放出に関し、その体積変化が正反対の挙動を示す。 従って、本発明の電池の充電時には負極活物質が膨張し、正極活物質が収縮する 。逆に、放電時には正極活物質が膨張し、負極活物質が収縮する。このように、充電 時にお 、ては、負極活物質の膨張分の体積が正極活物質の収縮分の体積によって 吸収され、逆に放電時においては、正極活物質の膨張分の体積が負極活物質の収 縮分の体積によって吸収される。これによつて、充電時及び放電時の何れの場合に おいても、電池全体の体積変化に起因する応力の発生を抑えることができ、正極及 び負極並びにセパレータ等が損傷を受けることが効果的に防止される。その結果、 電池のサイクル特性が向上する。  The present invention is characterized in that the weight ratio (CoZSi) of Co in the positive electrode to Si in the negative electrode is set in the range of 0.3 to 5.5. As described above, the positive electrode active material used in the present invention has the property of expanding when storing lithium and shrinking when releasing lithium, while the negative electrode active material expands when storing lithium and is released. It has the property of shrinking from time to time. That is, the positive electrode active material and the negative electrode active material used in the present invention exhibit opposite behavior of volume change with respect to lithium absorption and release. Therefore, when the battery of the present invention is charged, the negative electrode active material expands and the positive electrode active material contracts. Conversely, during discharge, the positive electrode active material expands and the negative electrode active material contracts. Thus, the volume of the expansion of the negative electrode active material is absorbed by the volume of the contraction of the positive electrode active material during charging, and conversely, the volume of the expansion of the positive electrode active material during discharge is the negative electrode active. It is absorbed by the volume of material contraction. This makes it possible to suppress the occurrence of stress due to the volume change of the entire battery during charging and discharging, and it is effective to damage the positive electrode, the negative electrode, the separator, etc. Is prevented. As a result, the cycle characteristics of the battery are improved.
[0025] 特に本発明においては、リチウムの吸蔵放出に関し、その体積変化が正反対の挙 動を示す正極活物質と負極活物質を単に用いただけではなぐ両者の比率、具体的 には CoZSiの重量比を前記の範囲内に設定しているので、電池全体の体積変化に 起因する応力の発生を一層効果的に抑えることができる。具体的には、 CoZSiの重 量比を 0. 3以上に設定することで、 Co量の減少による正極起因のレート特性の低下 を回避し、 Si負極にっ 、ても高 、エネルギー密度 (又は容量)力得られることとなる。 また CoZSiの重量比を 5. 5以下に設定することで、充電時における正極活物質の 収縮と負極活物質の膨張とのバランスが良好になり、十分に応力緩和されることとな る。これらの有利な効果を一層顕著なものとする観点から、 CoZSiの重量比を 0. 4 〜2. 5、特に 0. 4〜1に設定することが特に好ましい。  Particularly, in the present invention, with regard to lithium absorption and release, the ratio of the positive electrode active material and the negative electrode active material, which exhibit the opposite behavior of the volume change, is not simply used, specifically the weight ratio of CoZSi. Is set within the above range, it is possible to more effectively suppress the occurrence of stress due to the volume change of the entire battery. Specifically, by setting the weight ratio of CoZSi to 0.3 or more, the deterioration of the rate characteristic caused by the positive electrode due to the reduction of the amount of Co is avoided, and the Si negative electrode has a high energy density (or high energy density) (or Capacity) will be obtained. Further, by setting the weight ratio of CoZSi to 5.5 or less, the balance between the contraction of the positive electrode active material and the expansion of the negative electrode active material at the time of charge becomes good, and the stress is sufficiently relieved. From the viewpoint of making these advantageous effects more remarkable, it is particularly preferable to set the weight ratio of CoZSi to 0.4 to 2.5, particularly 0.4 to 1.
[0026] 図 1には本発明にお 、て用いられる負極の好適な一実施形態の断面構造の模式 図が示されている。本実施形態の負極 10は、集電体 11と、その少なくとも一面に形 成された活物質層 12を備えている。なお図 1においては、便宜的に集電体 11の片 面にのみ活物質層 12が形成されて ヽる状態が示されて!/ヽるが、活物質層は集電体 の両面に形成されて 、てもよ 、。 FIG. 1 is a schematic view of the cross-sectional structure of a preferred embodiment of the negative electrode used in the present invention. The negative electrode 10 of the present embodiment has a current collector 11 and at least one surface thereof. The formed active material layer 12 is provided. In FIG. 1, although the state in which the active material layer 12 is formed only on one side of the current collector 11 is shown for convenience! / They, the active material layer is formed on both sides of the current collector. It is done.
[0027] 活物質層 12においては、 Siを含む活物質の粒子 12aの表面の少なくとも一部が、 リチウム化合物の形成能の低い金属材料で被覆されている。この金属材料 13は、粒 子 12aの構成材料と異なる材料である。該金属材料で被覆された該粒子 12aの間に は空隙が形成されている。つまり該金属材料は、リチウムイオンを含む非水電解液が 粒子 12aへ到達可能なような隙間を確保した状態で該粒子 12aの表面を被覆してい る。図 1中、金属材料 13は、粒子 12aの周囲を取り囲む太線として便宜的に表されて いる。なお同図は活物質層 12を二次元的にみた模式図であり、実際は各粒子は他 の粒子と直接な ヽし金属材料 13を介して接触して ヽる。「リチウム化合物の形成能の 低い」とは、リチウムと金属間化合物若しくは固溶体を形成しないか、又は形成したと してもリチウムが微量である力若しくは非常に不安定であることを意味する。  In the active material layer 12, at least a part of the surface of the particle 12a of the active material containing Si is coated with a metal material having a low ability to form a lithium compound. The metal material 13 is a material different from the material of the particles 12a. An air gap is formed between the particles 12a coated with the metal material. That is, the metal material covers the surface of the particles 12 a in a state where a clearance is reached so that the non-aqueous electrolyte containing lithium ions can reach the particles 12 a. In FIG. 1, the metal material 13 is conveniently represented as a thick line surrounding the periphery of the particle 12a. The figure is a schematic view of the active material layer 12 two-dimensionally. In actuality, each particle is brought into contact with other particles directly through the metallic material 13. “Low ability to form lithium compound” means that it does not form an intermetallic compound or a solid solution with lithium, or if it is formed, lithium has a slight amount of force or is very unstable.
[0028] 金属材料 13は導電性を有するものであり、その例としては銅、ニッケル、鉄、コバル ト又はこれらの金属の合金などが挙げられる。特に金属材料 13は、活物質の粒子 12 aが膨張収縮しても該粒子 12aの表面の被覆が破壊されにくい延性の高い材料であ ることが好ま U、。そのような材料としては銅を用いることが好ま 、。  The metal material 13 has conductivity, and examples thereof include copper, nickel, iron, cobalt, alloys of these metals, and the like. In particular, the metal material 13 is preferably a highly ductile material in which the coating on the surface of the particles 12a is not easily broken even if the particles 12a of the active material expand and contract. It is preferable to use copper as such a material.
[0029] 金属材料 13は、活物質層 12の厚み方向全域にわたって活物質の粒子 12aの表 面に存在して 、ることが好ま 、。そして金属材料 13のマトリックス中に活物質の粒 子 12aが存在していることが好ましい。これによつて、充放電によって該粒子 12aが膨 張収縮することに起因して微粉ィ匕しても、その脱落が起こりづらくなる。また、金属材 料 13を通じて活物質層 12全体の電子伝導性が確保されるので、電気的に孤立した 活物質の粒子 12aが生成すること、特に活物質層 12の深部に電気的に孤立した活 物質の粒子 12aが生成することが効果的に防止される。金属材料 13が活物質層 12 の厚み方向全域にわたって活物質の粒子 12aの表面に存在していることは、該材料 13を測定対象とした電子顕微鏡マッピングによって確認できる。  Preferably, the metal material 13 is present on the surface of the particles 12 a of the active material over the entire thickness of the active material layer 12. Preferably, particles 12 a of the active material are present in the matrix of the metal material 13. As a result, even if the fine particles are shredded due to expansion and contraction of the particles 12a due to charge and discharge, it is difficult for the particles to come off. In addition, since the electron conductivity of the entire active material layer 12 is ensured through the metal material 13, electrically isolated active material particles 12 a are formed, particularly in the deep part of the active material layer 12. The formation of particles 12a of the active material is effectively prevented. The presence of the metal material 13 on the surface of the particles 12a of the active material over the entire thickness of the active material layer 12 can be confirmed by electron microscopic mapping using the material 13 as a measurement target.
[0030] 金属材料 13は、粒子 12aの表面を連続に又は不連続に被覆している。金属材料 1 3が粒子 12aの表面を連続に被覆している場合には、金属材料 13の被覆に、非水電 解液の流通が可能な微細な空隙を形成することが好ましい。金属材料 13が粒子 12a の表面を不連続に被覆している場合には、粒子 12aの表面のうち、金属材料 13で被 覆されていない部位を通じて該粒子 12aへ非水電解液が供給される。このような構造 の金属材料 13の被覆を形成するためには、例えば後述する条件に従う電解めつき によって金属材料 13を粒子 12aの表面に析出させればよい。 The metal material 13 covers the surface of the particles 12 a continuously or discontinuously. In the case where the metallic material 13 continuously coats the surface of the particle 12a, the coating of the metallic material 13 It is preferable to form a minute gap which allows the solution to flow. When the metallic material 13 covers the surface of the particle 12a discontinuously, the non-aqueous electrolytic solution is supplied to the particle 12a through the portion not covered with the metallic material 13 in the surface of the particle 12a. . In order to form a coating of the metal material 13 of such a structure, the metal material 13 may be deposited on the surface of the particle 12a by electrolytic plating according to the conditions described later, for example.
[0031] 活物質の粒子 12aの表面を被覆している金属材料 13は、その厚みの平均が好まし くは 0. 05〜2 /ζ πι、更に好ましくは 0. 1〜0. 25 /z mと! /、う薄!/、ものである。つまり金 属材料 13は最低限の厚みで以て活物質の粒子 12aの表面を被覆して 、る。これに よって、エネルギー密度を高めつつ、充放電によって粒子 12aが膨張収縮して微粉 化することに起因する脱落を防止している。ここでいう「厚みの平均」とは、活物質の 粒子 12aの表面のうち、実際に金属材料 13が被覆している部分に基づき計算された 値である。従って活物質の粒子 12aの表面のうち金属材料 13で被覆されていない部 分は、平均値の算出の基礎にはされない。  The metal material 13 covering the surface of the particles 12 a of the active material preferably has an average thickness of 0.5 to 2 / ζπι, and more preferably 0.1 to 0.25 / zm. And, it's too thin! That is, the metal material 13 covers the surface of the particles 12 a of the active material with a minimum thickness. As a result, while the energy density is increased, the particles 12 a are prevented from coming off due to expansion and contraction and pulverization due to charge and discharge. Here, the “average thickness” is a value calculated based on the portion of the surface of the particles 12 a of the active material that is actually covered by the metal material 13. Therefore, the part of the surface of the particles 12a of the active material which is not coated with the metal material 13 can not be used as a basis for calculating the average value.
[0032] 金属材料 13で被覆された粒子 12a間に形成された空隙は、リチウムイオンを含む 非水電解液の流通の経路としての働きを有して 、る。この空隙の存在によって非水 電解液が活物質層 12の厚み方向へ円滑に流通するので、サイクル特性を向上させ ることができる。更に、粒子 12a間に形成されている空隙は、充放電で活物質の粒子 12aが体積変化することに起因する応力を緩和するための空間としての働きも有する 。充電によって体積が増加した活物質の粒子 12aの体積の増加分は、この空隙に吸 収される。その結果、該粒子 12aの微粉ィ匕が起こりづらくなり、また負極 10の著しい 変形が効果的に防止される。  The voids formed between the particles 12 a coated with the metal material 13 serve as a flow path of the non-aqueous electrolyte containing lithium ions. Since the non-aqueous electrolyte flows smoothly in the thickness direction of the active material layer 12 due to the presence of the voids, the cycle characteristics can be improved. Furthermore, the voids formed between the particles 12a also function as spaces for relieving stress caused by volume change of the particles 12a of the active material during charge and discharge. An increase in the volume of the particles of the active material 12a whose volume has been increased by charging is absorbed in this space. As a result, fine particles of the particles 12 a are less likely to occur, and significant deformation of the negative electrode 10 is effectively prevented.
[0033] 活物質層 12は、後述するように、好適には粒子 12a及び結着剤を含むスラリーを集 電体上に塗布し乾燥させて得られた塗膜に対し、所定のめっき浴を用いた電解めつ きを行い、粒子 12a間に金属材料 13を析出させることで形成される。  The active material layer 12 is preferably prepared by applying a slurry containing the particles 12 a and a binder onto a current collector and drying it, as described later. It is formed by performing the electrolytic plating used and depositing the metal material 13 between the particles 12a.
[0034] 非水電解液の流通が可能な空隙を活物質層 12内に必要且つ十分に形成するた めには、前記の塗膜内にめっき液を十分浸透させることが好ましい。これに加えて、 該めっき液を用いた電解めつきによって金属材料 13を析出させるための条件を適切 なものとすることが好ましい。めっきの条件にはめつき浴の組成、めっき浴の pH、電 解の電流密度などがある。めっき浴の pHに関しては、これを 7. 1〜: L 1に調整するこ とが好ましい。 pHをこの範囲内とすることで、活物質の粒子 12aの溶解が抑制されつ つ、該粒子 12aの表面が清浄ィ匕されて、粒子表面へのめっきが促進され、同時に粒 子 12a間に適度な空隙が形成される。 pHの値は、めっき時の温度において測定され たものである。 In order to form necessary and sufficient voids in the active material layer 12 in which the non-aqueous electrolytic solution can flow, it is preferable to allow the plating solution to sufficiently penetrate into the coating film. In addition to this, it is preferable to set appropriate conditions for depositing the metal material 13 by electrolytic plating using the plating solution. Plating conditions include plating bath composition, plating bath pH, There is the current density of the solution. With regard to the pH of the plating bath, it is preferable to adjust it to 7. 1 to: L 1. By setting the pH to this range, the dissolution of the particles 12a of the active material is suppressed, the surface of the particles 12a is cleaned, and the plating on the particle surface is promoted, and at the same time, between the particles 12a. An adequate void is formed. The pH value is measured at the temperature at plating.
[0035] めっきの金属材料 13として銅を用いる場合には、ピロリン酸銅浴を用いることが好ま しい。また該金属材料としてニッケルを用いる場合には、例えばアルカリ性のニッケル 浴を用いることが好ましい。特に、ピロリン酸銅浴を用いると、活物質層 12を厚くした 場合であっても、該層の厚み方向全域にわたって、前記の空隙を容易に形成し得る ので好ましい。また、活物質の粒子 12aの表面には金属材料 13が析出し、且つ該粒 子 12a間では金属材料 13の析出が起こりづらくなるので、該粒子 12a間の空隙が首 尾良く形成されるという点でも好ましい。ピロリン酸銅浴を用いる場合、その浴組成、 電解条件及び pHは次の通りであることが好まし 、。  When copper is used as the metal material 13 for plating, it is preferable to use a copper pyrophosphate bath. When nickel is used as the metal material, it is preferable to use, for example, an alkaline nickel bath. In particular, it is preferable to use a copper pyrophosphate bath, even if the active material layer 12 is thickened, since the above-mentioned voids can be easily formed over the entire thickness of the layer. In addition, the metal material 13 is deposited on the surface of the particles 12a of the active material, and the precipitation of the metal material 13 is less likely to occur between the particles 12a, so that the gaps between the particles 12a are well formed. The point is also preferable. When a copper pyrophosphate bath is used, its bath composition, electrolytic conditions and pH are preferably as follows.
'ピロリン酸銅三水和物: 85〜120gZl  'Pyrophosphate copper trihydrate: 85-120 g Zl
-ピ13ジン カジクム: 300〜600g/l  -Pi 13 Jin Kajikumu: 300-600 g / l
'硝酸カリウム: 15〜65gZl  'Potassium nitrate: 15-65g Zl
'浴温度: 45〜60°C  'Bath temperature: 45-60 ° C
'電流密度: l〜7AZdm2 'Current density: 1 to 7 AZdm 2
•pH :アンモニア水とポリリン酸を添カ卩して pH7. 1〜9. 5になるように調整する。  • pH: Add ammonia water and polyphosphoric acid and adjust to pH 7. 9-9. 5.
[0036] ピロリン酸銅浴を用いる場合には特に、 P Oの重量と Cuの重量との比(P O ZCu [0036] In particular, when a copper pyrophosphate bath is used, the ratio of the weight of P 2 O to the weight of Cu (P 0 ZCu
2 7 2 7 2 7 2 7
)で定義される P比が 5〜12であるものを用いることが好ましい。 P比が 5未満のものを 用いると、活物質の粒子 12aを被覆する金属材料 13が厚くなる傾向となり、粒子 12a 間に所望の空隙を形成させづらい場合がある。また、 P比が 12を超えるものを用いる と、電流効率が悪くなり、ガス発生などが生じやすくなることから生産安定性が低下す る場合がある。更に好ましいピロリン酸銅浴として、 P比が 6. 5〜10. 5であるものを 用いると、活物質の粒子 12a間に形成される空隙のサイズ及び数力 活物質層 12内 での非水電解液の流通に非常に有利になる。 It is preferable to use one having a P ratio of 5 to 12 as defined in the above. When the P ratio is less than 5, the metal material 13 covering the particles 12a of the active material tends to be thick, and it may be difficult to form desired voids between the particles 12a. In addition, when the P ratio exceeds 12, the current efficiency may be deteriorated, and gas generation may easily occur, which may lower the production stability. Furthermore, using a bath having a P ratio of 6.5 to 50.5 as a preferable pyrophosphate copper bath, the size and number of the void formed between the particles 12a of the active material non-aqueous in the active material layer 12 It becomes very advantageous to the distribution of electrolyte solution.
[0037] アルカリ性のニッケル浴を用いる場合には、その浴組成、電解条件及び pHは次の 通りであることが好ましい。 When an alkaline nickel bath is used, the bath composition, electrolytic conditions and pH are as follows: It is preferable that
'硫酸ニッケル: 100〜250gZl  'Nickel sulfate: 100 to 250 g Zl
'塩化アンモ-ゥム: 15〜30gZl  Ammonium chloride: 15 to 30 g Zl
'ホウ酸: 15〜45gZl  'Boric acid: 15-45 g Zl
'浴温度: 45〜60°C  'Bath temperature: 45-60 ° C
'電流密度: l〜7AZdm2 'Current density: 1 to 7 AZdm 2
• pH: 25重量0 /0アンモニア水: 100〜300gZlの範囲で ρΗ8〜 11となるように調整 する。 • pH: 25 weight 0/0 aqueous ammonia: 100~300GZl adjusted to be Roita8~ 11 in the range of.
このアルカリ性のニッケル浴と前述のピロリン酸銅浴とを比べると、ピロリン酸銅浴を 用いた場合の方が活物質層 12内に適度な空隙が形成される傾向があり、負極の長 寿命化を図りやす 、ので好ま 、。  When this alkaline nickel bath is compared with the above-mentioned copper pyrophosphate bath, an appropriate gap tends to be formed in the active material layer 12 when the copper pyrophosphate bath is used, and the life of the negative electrode is increased. Easy to plan, so preferred.
[0038] 前記の各種めつき浴に、タンパク質、活性硫黄化合物、セルロース等の銅箔製造 用電解液に用いられる各種添加剤を加えることにより、金属材料 13の特性を適宜調 整することも可能である。  The properties of the metal material 13 can be appropriately adjusted by adding various additives used in an electrolytic solution for producing a copper foil, such as protein, active sulfur compound, and cellulose, to the various plating baths described above. It is.
[0039] 上述の各種方法によって形成される活物質層全体の空隙の割合、つまり空隙率は 、 15〜45体積%程度、特に 20〜40体積%程度であることが好ましい。空隙率をこ の範囲内とすることで、非水電解液の流通が可能な空隙を活物質層 12内に必要且 つ十分に形成することが可能となる。活物質層 12の空隙量は、水銀圧入法 CFIS R 1655)で測定される。水銀圧入法は、固体中の細孔の大きさやその容積を測定す ることによって、その固体の物理的形状の情報を得るための手法である。水銀圧入法 の原理は、水銀に圧力をカ卩えて測定対象物の細孔中へ圧入し、その時にカ卩えた圧 力と、押し込まれた (浸入した)水銀体積の関係を測定することにある。この場合、水 銀は活物質層 12内に存在する大きな空隙力も順に浸入して 、く。本発明にお 、て は、圧力 90MPaで測定した空隙量を全体の空隙量とみなしている。活物質層 12の 空隙率 (%)は、前記の方法で測定された単位面積当たりの空隙量を、単位面積当 たりの活物質層 12の見かけの体積で除し、それに 100を乗じることにより求める。  The proportion of voids in the entire active material layer formed by the various methods described above, that is, the void ratio is preferably about 15 to 45% by volume, and particularly preferably about 20 to 40% by volume. By setting the porosity within this range, it is possible to form a void capable of circulating the non-aqueous electrolyte in the active material layer 12 as necessary and sufficiently. The void volume of the active material layer 12 is measured by mercury intrusion method CFIS R 1655). Mercury porosimetry is a method for obtaining information on the physical shape of a solid by measuring the size and volume of pores in the solid. The principle of the mercury intrusion method is to apply pressure to mercury and inject it into the pores of the object to be measured, and to measure the relationship between the pressure at that time and the volume of mercury that has been pressed (entered). is there. In this case, the water silver also intrudes into the large air gap forces present in the active material layer 12 in sequence. In the present invention, the void volume measured at a pressure of 90 MPa is regarded as the total void volume. The porosity (%) of the active material layer 12 is obtained by dividing the amount of voids per unit area measured by the above method by the apparent volume of the active material layer 12 per unit area and multiplying it by 100. Ask.
[0040] 活物質の粒子 12aの粒径を適切に選択することによつても、前記の空隙率をコント ロールすることができる。この観点から、粒子 12aはその最大粒径が好ましくは 30 m以下であり、更に好ましくは 10 /z m以下である。また粒子の粒径を D50値で表すと 0. 1〜8 μ m、特に 0. 3〜4 μ mであることが好ましい。粒子の粒径は、レーザー回 折散乱式粒度分布測定、電子顕微鏡観察 (SEM観察)によって測定される。 The porosity can be controlled by appropriately selecting the particle size of the particles 12 a of the active material. In this respect, the particles 12a preferably have a maximum particle size of 30. It is m or less, more preferably 10 / z m or less. The particle diameter of the particles is preferably 0.1 to 8 μm, particularly preferably 0.3 to 4 μm, in terms of D50 value. The particle size of the particles is measured by laser diffraction / scattering particle size distribution measurement, electron microscopic observation (SEM observation).
[0041] 負極全体に対する活物質の量が少なすぎると電池のエネルギー密度を十分に向 上させにくぐ逆に多すぎると強度が低下し活物質の脱落が起こりやすくなる傾向に ある。これらを勘案すると、活物質層の厚みは10〜40 111、好ましくは 15〜30 m 、更に好ましくは 18〜25 μ mである。  If the amount of the active material relative to the entire negative electrode is too small to sufficiently improve the energy density of the battery, on the other hand, if the amount is too large, the strength tends to decrease and the active material tends to fall off easily. Taking these into consideration, the thickness of the active material layer is 10 to 40 111, preferably 15 to 30 m, and more preferably 18 to 25 m.
[0042] 本実施形態の負極 10においては、活物質層 12の表面に薄い表面層(図示せず) が形成されていてもよい。また負極 10はそのような表面層を有していなくてもよい。表 面層の厚みは、 0. 25 μ m以下、好ましくは 0. 1 μ m以下という薄いものである。表面 層の厚みの下限値に制限はない。表面層を形成することで、微粉化した活物質の粒 子 12aの脱落を一層防止することができる。尤も、本実施形態においては、活物質層 12の空隙率を上述した範囲内に設定することによって、表面層を用いなくても微粉 化した活物質の粒子 12aの脱落を十分に防止することが可能である。  In the negative electrode 10 of the present embodiment, a thin surface layer (not shown) may be formed on the surface of the active material layer 12. The negative electrode 10 may not have such a surface layer. The thickness of the surface layer is as thin as 0.25 μm or less, preferably 0.1 μm or less. There is no limit to the lower limit of the thickness of the surface layer. By forming the surface layer, dropping of the particles 12a of the micronized active material can be further prevented. However, in the present embodiment, by setting the porosity of the active material layer 12 within the above-described range, it is possible to sufficiently prevent the particles 12 a of the finely divided active material from falling off without using the surface layer. It is possible.
[0043] 負極 10が前記の厚みの薄 、表面層を有するか又は該表面層を有して ヽな 、こと によって、負極 10を用いて二次電池を組み立て、当該電池の初期充電を行うときの 過電圧を低くすることができる。このことは、二次電池の充電時に負極 10の表面でリ チウムが還元することを防止できることを意味する。リチウムの還元は、両極の短絡の 原因となるデンドライトの発生につながる。  [0043] When the negative electrode 10 has a thickness as described above, has a surface layer, or has a surface layer, the secondary battery is assembled using the negative electrode 10, and the battery is initially charged. The over-voltage can be reduced. This means that reduction of lithium on the surface of the negative electrode 10 can be prevented during charging of the secondary battery. The reduction of lithium leads to the generation of dendrite which causes a short circuit between the two poles.
[0044] 負極 10が表面層を有している場合、該表面層は活物質層 12の表面を連続又は不 連続に被覆している。表面層が活物質層 12の表面を連続に被覆している場合、該 表面層は、その表面にお!、て開孔し且つ活物質層 12と通ずる多数の微細空隙(図 示せず)を有して 、ることが好ま 、。微細空隙は表面層の厚さ方向へ延びるように 表面層中に存在して 、ることが好ま 、。微細空隙は非水電解液の流通が可能なも のである。微細空隙の役割は、活物質層 12内に非水電解液を供給することにある。 微細空隙は、負極 10の表面を電子顕微鏡観察により平面視したとき、金属材料 13 で被覆されている面積の割合、即ち被覆率が 95%以下、特に 80%以下、とりわけ 6 0%以下となるような大きさであることが好ましい。被覆率が 95%を超えると、高粘度 な非水電解液が浸入しづらくなり、非水電解液の選択の幅が狭くなるおそれがある。 When the negative electrode 10 has a surface layer, the surface layer covers the surface of the active material layer 12 continuously or discontinuously. When the surface layer covers the surface of the active material layer 12 continuously, the surface layer has a large number of microvoids (not shown) open on its surface and communicating with the active material layer 12. It is preferable to have it. The microvoids are preferably present in the surface layer so as to extend in the thickness direction of the surface layer. The microvoids allow the non-aqueous electrolyte to flow. The role of the microvoids is to supply the non-aqueous electrolyte into the active material layer 12. When the surface of the negative electrode 10 is viewed in plan by electron microscope observation, the percentage of the area covered with the metal material 13, that is, the coverage is 95% or less, particularly 80% or less, and particularly 60% or less It is preferable that it is such a magnitude | size. When the coverage exceeds 95%, high viscosity The non-aqueous electrolyte may not easily enter, and the range of choices of the non-aqueous electrolyte may be narrowed.
[0045] 表面層は、リチウム化合物の形成能の低!、金属材料力 構成されて 、る。この金属 材料は、活物質層 12中に存在している金属材料 13と同種でもよぐ或いは異種でも よい。また表面層は、異なる 2種以上の金属材料力 なる 2層以上の構造であっても よい。負極 10の製造の容易さを考慮すると、活物質層 12中に存在している金属材料 13と、表面層を構成する金属材料とは同種であることが好ましい。  [0045] The surface layer has a low ability to form a lithium compound, and the metal material force is configured. This metal material may be the same as or different from the metal material 13 present in the active material layer 12. The surface layer may have a structure of two or more layers composed of two or more different metal materials. In consideration of the ease of manufacture of the negative electrode 10, the metal material 13 present in the active material layer 12 and the metal material constituting the surface layer are preferably the same type.
[0046] 本実施形態の負極 10は、活物質層 12中の空隙率が高い値になっているので、折 り曲げに対する耐性が高いものである。具体的には、 JIS C 6471に従い測定され た MIT耐折性が好ましくは 30回以上、更に好ましくは 50回以上という高耐折性を有 している。耐折性が高いことは、負極 10を折り畳んだり卷回したりして電池容器内に 収容する場合に、負極 10に折れが生じに《なることから極めて有利である。 MIT耐 折装置としては、例えば東洋精機製作所製の槽付フィルム耐折疲労試験機 (品番 54 9)が用いられ、屈曲半径 0. 8mm、荷重 0. 5kgf、サンプルサイズ 15 X 150mmで 柳』定することができる。  In the negative electrode 10 of the present embodiment, the porosity in the active material layer 12 is a high value, so that the resistance to bending is high. Specifically, the MIT folding resistance measured in accordance with JIS C 6471 preferably has a high folding resistance of 30 times or more, more preferably 50 times or more. The high folding resistance is extremely advantageous because the negative electrode 10 is broken when the negative electrode 10 is folded or wound and housed in the battery case. As a MIT folding apparatus, for example, a film-clad film bending fatigue tester (No. 549) manufactured by Toyo Seiki Seisaku-sho, Ltd. is used, and a bending radius of 0.8 mm, a load of 0.5 kgf, and a sample size of 15 X 150 mm can do.
[0047] 負極 10における集電体 11としては、非水電解液二次電池用負極の集電体として 従来用いられているものと同様のものを用いることができる。集電体 11は、先に述べ たリチウム化合物の形成能の低 、金属材料力 構成されて 、ることが好ま 、。その ような金属材料の例は既に述べた通りである。特に、銅、ニッケル、ステンレス等から なることが好ましい。また、コルソン合金箔に代表されるような銅合金箔の使用も可能 である。更に集電体として、常態抗張力 (JIS C 2318)が好ましくは 500MPa以上 である金属箔、例えば前記のコルソン合金箔の少なくとも一方の面に銅被膜層を形 成したものを用いることもできる。更に集電体として常態伸度 CFIS C 2318)が 4% 以上のものを用いることも好ま 、。抗張力が低 、と活物質が膨張した際の応力によ りシヮが生じ、伸び率が低いと該応力により集電体に亀裂が入ることがあるからである 。これらの集電体を用いることで、上述した負極 10の耐折性を一層高めることが可能 となる。集電体 11の厚みは、負極 10の強度維持と、エネルギー密度向上とのバラン スを考慮すると、 9〜35 /ζ πιであることが好ましい。なお、集電体 11として銅箔を使用 する場合には、クロメート処理や、トリァゾール系化合物及びイミダゾール系化合物な どの有機化合物を用いた防鲭処理を施しておくことが好ま 、。 As the current collector 11 of the negative electrode 10, the same one as conventionally used as a current collector of a negative electrode for a non-aqueous electrolyte secondary battery can be used. The current collector 11 is preferably composed of a metal material having a low ability to form a lithium compound as described above. Examples of such metal materials are as described above. In particular, it is preferably made of copper, nickel, stainless steel or the like. In addition, copper alloy foils represented by Corson alloy foils can also be used. Furthermore, as the current collector, a metal foil having a normal tensile strength (JIS C 2318) of preferably 500 MPa or more, for example, one obtained by forming a copper coating layer on at least one surface of the aforementioned Corson alloy foil can be used. Furthermore, it is also preferable to use one having a normal elongation of CFIS C 2318) of 4% or more as a current collector. If the tensile strength is low and the stress is generated when the active material expands, a crack may occur in the current collector due to the stress if the elongation is low. By using these current collectors, it is possible to further improve the bending resistance of the negative electrode 10 described above. The thickness of the current collector 11 is preferably 9 to 35 / ζπι in consideration of the balance between maintaining the strength of the negative electrode 10 and improving the energy density. When copper foil is used as the current collector 11, chromate treatment, triazole type compound and imidazole type compound It is preferable to use any organic compound to protect against mildew.
[0048] 次に、本実施形態の負極 10の好ましい製造方法について、図 2を参照しながら説 明する。本製造方法では、活物質の粒子及び結着剤を含むスラリーを用いて集電体 11上に塗膜を形成し、次いでその塗膜に対して電解めつきを行う。 Next, a preferred method of manufacturing the negative electrode 10 of the present embodiment will be described with reference to FIG. In this manufacturing method, a coating film is formed on the current collector 11 using a slurry containing particles of an active material and a binder, and then electrolytic plating is performed on the coating film.
[0049] 先ず図 2 (a)に示すように集電体 11を用意する。そして集電体 11上に、活物質の 粒子 12aを含むスラリーを塗布して塗膜 15を形成する。集電体 11における塗膜形成 面の表面粗さは、輪郭曲線の最大高さで 0. 5〜4 /ζ πιであることが好ましい。最大高 さが 4 mを超えると塗膜 15の形成精度が低下する上、凸部に浸透めつきの電流集 中が起こりやすい。最大高さが 0. を下回ると、活物質層 12の密着性が低下し やすい。活物質の粒子 12aとしては、好適に上述した粒度分布及び平均粒径を有す るものを用いる。 First, as shown in FIG. 2 (a), the current collector 11 is prepared. Then, a slurry containing particles 12 a of the active material is applied onto the current collector 11 to form a coating film 15. The surface roughness of the coating film-forming surface of the current collector 11 is preferably 0.5 to 4 / ζπι at the maximum height of the contour curve. When the maximum height is more than 4 m, the formation accuracy of the coating film 15 is lowered, and the current concentration with the penetration of the projections is likely to occur. If the maximum height is less than 0, the adhesion of the active material layer 12 is likely to be reduced. As the particles 12a of the active material, those having the above-mentioned particle size distribution and average particle diameter are preferably used.
[0050] スラリーは、活物質の粒子の他に、結着剤及び希釈溶媒などを含んで!/、る。またス ラリーはアセチレンブラックやグラフアイトなどの導電性炭素材料の粒子を少量含ん でいてもよい。特に、活物質の粒子 12aの重量に対して導電性炭素材料を 1〜3重 量%含有することが好ましい。導電性炭素材料の含有量が 1重量%未満であると、ス ラリーの粘度が低下して活物質の粒子 12aの沈降が促進されるため、良好な塗膜 15 及び均一な空隙を形成しに《なる。また導電性炭素材料の含有量が 3重量%を超 えると、該導電性炭素材料の表面にめっき核が集中し、良好な被覆を形成しにくくな る。  The slurry contains, in addition to the particles of the active material, a binder, a dilution solvent, etc. The slurry may also contain a small amount of particles of conductive carbon material such as acetylene black or graphite. In particular, the conductive carbon material is preferably contained in an amount of 1 to 3% by weight based on the weight of the particles 12a of the active material. If the content of the conductive carbon material is less than 1% by weight, the viscosity of the slurry decreases and the sedimentation of the particles 12a of the active material is promoted, so that a good coating 15 and uniform voids can be formed. "Become. When the content of the conductive carbon material exceeds 3% by weight, plating nuclei are concentrated on the surface of the conductive carbon material, and it becomes difficult to form a good coating.
[0051] 結着剤としてはスチレンブタジエンラバー(SBR)、ポリフッ化ビ-リデン(PVDF)、 ポリエチレン(PE)、エチレンプロピレンジェンモノマー(EPDM)などが用いられる。 希釈溶媒としては N—メチルピロリドン、シクロへキサンなどが用いられる。スラリー中 における活物質の粒子 12aの量は 30〜70重量%程度とすることが好ましい。結着剤 の量は 0. 4〜4重量%程度とすることが好ましい。これらに希釈溶媒をカ卩えてスラリー とする。  As the binder, styrene butadiene rubber (SBR), polybiphenyl difluoride (PVDF), polyethylene (PE), ethylene propylene diene monomer (EPDM), etc. are used. As a dilution solvent, N-methyl pyrrolidone, cyclohexane or the like is used. The amount of particles 12a of the active material in the slurry is preferably about 30 to 70% by weight. The amount of the binder is preferably about 0.4 to 4% by weight. Add a dilution solvent to these to make a slurry.
[0052] 形成された塗膜 15は、粒子 12a間に多数の微小空間を有する。塗膜 15が形成さ れた集電体 11を、リチウム化合物の形成能の低 ヽ金属材料を含むめっき浴中に浸 漬する。めっき浴への浸漬によって、めっき液が塗膜 15内の前記微小空間に浸入し て、塗膜 15と集電体 11との界面にまで達する。その状態下に電解めつきを行い、め つき金属種を粒子 12aの表面に析出させる(以下、このめつきを浸透めつきともいう)。 浸透めつきは、集電体 11を力ソードとして用い、めっき浴中にアノードとしての対極を 浸漬し、両極を電源に接続して行う。 The formed coating film 15 has a large number of microspaces between the particles 12a. The current collector 11 on which the coating film 15 is formed is immersed in a plating bath containing a base metal material having a low lithium compound-forming ability. By immersion in the plating bath, the plating solution intrudes into the minute space in the coating film 15. To reach the interface between the coating 15 and the current collector 11. In this state, electrolytic plating is performed to deposit a plated metal species on the surface of the particles 12a (hereinafter, this plating is also called penetration plating). The penetration plating is performed by using the current collector 11 as a force sword, immersing a counter electrode as an anode in a plating bath, and connecting both electrodes to a power supply.
[0053] 浸透めつきによる金属材料の析出は、塗膜 15の一方の側力 他方の側に向力つて 進行させることが好ましい。具体的には、図 2 (b)ないし (d)に示すように、塗膜 15と 集電体 11との界面力も塗膜の表面に向けて金属材料 13の析出が進行するように電 解めつきを行う。金属材料 13をこのように析出させることで、活物質の粒子 12aの表 面を金属材料 13で首尾よく被覆することができると共に、金属材料 13で被覆された 粒子 12a間に空隙を首尾よく形成することができる。  It is preferable that the deposition of the metallic material by penetration plating proceeds toward one side of the coating film 15 and the other side. Specifically, as shown in FIGS. 2 (b) to 2 (d), the interfacial force between the coating 15 and the current collector 11 is also such that the deposition of the metal material 13 proceeds toward the surface of the coating. Do the game. By depositing the metallic material 13 in this manner, the surface of the particles 12a of the active material can be successfully coated with the metallic material 13, and a void is successfully formed between the particles 12a coated with the metallic material 13. can do.
[0054] 前述のように金属材料 13を析出させるための浸透めつきの条件には、めっき浴の 組成、めっき浴の pH、電解の電流密度などがある。このような条件については既に 述べた通りである。  As described above, conditions of penetration for depositing the metal material 13 include the composition of the plating bath, the pH of the plating bath, the current density of electrolysis, and the like. Such conditions are as described above.
[0055] 図 2 (b)ないし (d)に示されているように、塗膜 15と集電体 11との界面から塗膜の表 面に向けて金属材料 13の析出が進行するようにめつきを行うと、析出反応の最前面 部においては、ほぼ一定の厚みで金属材料 13のめつき核力もなる微小粒子 13aが 層状に存在している。金属材料 13の析出が進行すると、隣り合う微小粒子 13aどうし が結合して更に大きな粒子となり、更に析出が進行すると、該粒子どうしが結合して 活物質の粒子 12aの表面を連続的に被覆するようになる。  As shown in FIG. 2 (b) to (d), the deposition of the metallic material 13 proceeds from the interface between the coating 15 and the current collector 11 toward the surface of the coating. When plating is performed, in the foremost part of the precipitation reaction, fine particles 13a having a substantially constant thickness and also having a plating nuclear force of the metal material 13 are present in layers. When precipitation of the metal material 13 proceeds, adjacent fine particles 13a combine to form larger particles, and when precipitation proceeds further, the particles combine to cover the surface of the particles 12a of the active material continuously. It will be.
[0056] 浸透めつきは、塗膜 15の厚み方向全域に金属材料 13が析出した時点で終了させ る。めっきの終了時点を調節することで、活物質層 12の上面に表面層(図示せず)を 形成することができる。このようにして、図 2 (d)に示すように、目的とする負極が得ら れる。  The penetration plating is terminated when the metallic material 13 is deposited over the entire area of the coating film 15 in the thickness direction. By adjusting the end point of plating, a surface layer (not shown) can be formed on the upper surface of the active material layer 12. Thus, as shown in FIG. 2 (d), the target negative electrode is obtained.
[0057] 浸透めつき後、負極 10を防鲭処理することも好ましい。防鲭処理としては、例えば ベンゾトリァゾール、カルボキシベンゾトリァゾール、トリルトリァゾール等のトリァゾー ル系化合物及びイミダゾール等を用いる有機防鲭や、コバルト、ニッケル、クロメート 等を用いる無機防鲭を採用できる。  After penetration, it is also preferable to treat the negative electrode 10 for protection. As the protection treatment, for example, organic protection using triazole compounds such as benzotriazole, carboxybenzotriazole, tolyltriazole and the like or imidazole and the like, and inorganic protection using cobalt, nickel, chromate and the like can be adopted.
実施例 [0058] 以下、実施例により本発明を更に詳細に説明する。し力しながら本発明の範囲はか 力る実施例に制限されるものではな 、。 Example Hereinafter, the present invention will be described in more detail by way of examples. However, the scope of the present invention is not limited to the example embodiment.
[0059] 〔実施例 1〕  Example 1
厚さ 18 mの電解銅箔力もなる集電体を室温で 30秒間酸洗浄した。処理後、 15 秒間純水洗浄した。集電体上に Siの粒子を含むスラリーを膜厚 15 mになるように 塗布し塗膜を形成した。スラリーの組成は、粒子:スチレンブタジエンラバー (結着剤) :アセチレンブラック = 100 : 1. 7 : 2 (重量比)であった。 Siの粒子の平均粒径 D は 2  The current collector, which is also an electrolytic copper foil having a thickness of 18 m, was acid washed at room temperature for 30 seconds. After treatment, it was washed with pure water for 15 seconds. A slurry containing Si particles was applied onto the current collector to a film thickness of 15 m to form a coating film. The composition of the slurry was particles: styrene butadiene rubber (binder): acetylene black = 100: 1. 7: 2 (weight ratio). Average particle diameter D of Si particles is 2
50 50
. 5 mであった。平均粒径 D は、日機装 (株)製のマイクロトラック粒度分布測定装 It was 5 m. The average particle diameter D is determined by Microtrac particle size distribution measurement equipment manufactured by Nikkiso Co., Ltd.
50  50
置 (No. 9320— X100)を使用して測定した。  Measurement was carried out using a measuring instrument (No. 9320-X100).
[0060] 塗膜が形成された集電体を、以下の浴組成を有するピロリン酸銅浴に浸漬させ、電 解により、塗膜に対して銅の浸透めつきを行い、活物質層を形成した。電解の条件は 以下の通りとした。陽極には DSEを用いた。電源は直流電源を用いた。 A current collector on which a coating is formed is immersed in a copper pyrophosphate bath having the following bath composition, and electrolytic penetration causes copper to penetrate the coating, thereby forming an active material layer. did. The conditions of electrolysis were as follows. DSE was used for the anode. The power supply used DC power supply.
'ピロリン酸銅三水和物: 105gZl  'Cyrophosphoric acid trihydrate: 105 g Zl
•ピロリン酸カリウム: 450g/l  • Potassium pyrophosphate: 450 g / l
'硝酸カリウム: 30gZl  'Potassium nitrate: 30g Zl
•P比: 7. 7  • P ratio: 7.7
'浴温度: 50°C  'Bath temperature: 50 ° C
•電流密度: 3AZdm2 • Current density: 3AZdm 2
•pH:アンモニア水とポリリン酸を添カ卩して pH8. 2になるように調整した。  • pH: Adjusted to pH 8.2 by adding ammonia water and polyphosphoric acid.
[0061] 浸透めつきは、塗膜の厚み方向全域にわたって銅が析出した時点で終了させ、水 洗、ベンゾトリアゾール (BTA)による防鲭処理を施して目的とする負極を得た。負極 における Siの量は表 1に示す通りであった。 The penetration plating was terminated when copper was deposited all over the thickness direction of the coating film, washed with water, and treated with benzotriazole (BTA) to give a target negative electrode. The amount of Si in the negative electrode was as shown in Table 1.
[0062] 負極の製造とは別に正極を製造した。正極活物質として表 1に示すものを用いた。 A positive electrode was manufactured separately from the manufacturing of the negative electrode. What was shown in Table 1 was used as a positive electrode active material.
これを、アセチレンブラック及びポリフッ化ビ-リデンともに、溶媒であるポリビニルピロ リドンに懸濁させ正極合剤を得た。この正極合剤をアルミニウム箔カゝらなる集電体に 塗布、乾燥した後、ロール圧延及びプレスを行い正極を得た。正極における Coの量 は表 1に示す通りであった。  This was suspended in polyvinyl pyrrolidone which is a solvent for both acetylene black and poly (fluorinated fluoride) to obtain a positive electrode mixture. The positive electrode mixture was applied to a current collector made of an aluminum foil and dried, and then rolled and pressed to obtain a positive electrode. The amount of Co at the positive electrode is as shown in Table 1.
[0063] 電解液としては、エチレンカーボネートとジェチルカーボネートの 1: 1体積%混合 溶媒に ImolZlの LiPFを溶解した溶液に対して、ビ-レンカーボネートを 2体積 As an electrolytic solution, a 1: 1 volume% mixture of ethylene carbonate and jetyl carbonate is used. 2 volumes of vinylene carbonate to a solution of ImolZl LiPF in a solvent
6  6
%外添したものを用いた。セパレータとしては厚み 20 μ mのポリプロピレン製多孔質 フィルムを用いた。これらの部材を用いて、リチウム二次電池を作製した。この電池に おける CoZSiの重量比は表 1に示す通りであった。  % Externally added was used. As a separator, a polypropylene porous film with a thickness of 20 μm was used. The lithium secondary battery was produced using these members. The weight ratio of CoZSi in this battery is as shown in Table 1.
[0064] 〔実施例 2な 、し 4及び比較例 1〕 [Example 2 to 4 and Comparative Example 1]
正極活物質として表 1に示すものを用い且つ Coの量を同表に示す値に設定して正 極を製造する以外は実施例 1と同様にしてリチウム二次電池を作製した。得られた電 池における CoZSiの重量比は表 1に示す通りであった。  A lithium secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material shown in Table 1 was used and the amount of Co was set to the values shown in the same table to produce a positive electrode. The weight ratio of CoZSi in the obtained battery was as shown in Table 1.
[0065] 〔評価 1〕 [Evaluation 1]
実施例及び比較例で得られた正極及び負極、並びに前記のセパレータを用い、初 回目の充電に伴うこれらの部材全体の膨張率を測定した。測定には宝泉株式会社 製 HS変位セルを用いた。この変位セルでは、負極 +セパレーター +正極の全体の 厚みの膨張率が測定される。膨張率は次式力 算出する。初回充電条件は、 0. 05 C、終止電圧 4. 2Vで、定電流 '定電圧とした。結果を表 1に示す。  Using the positive electrode and the negative electrode obtained in Examples and Comparative Examples, and the above-mentioned separator, the expansion coefficients of the entire members during the first charge were measured. For the measurement, an HS displacement cell manufactured by Takasen Co., Ltd. was used. In this displacement cell, the expansion coefficient of the total thickness of the negative electrode + separator + positive electrode is measured. The expansion rate is calculated by the following equation. Initial charge conditions were: 0. 05 C, final voltage 4.2 V, and constant current 'constant voltage'. The results are shown in Table 1.
膨張率 (%) = [ (初回充電後の厚み) (充電前の厚み) ] Z充電前の厚み X 100 [0066] 〔評価 2〕  Expansion coefficient (%) = [(Thickness after first charge) (Thickness before charge)] Z thickness before charge X 100 [0066] [Evaluation 2]
実施例及び比較例で得られたリチウム二次電池について、 50サイクル目の容量維 持率を測定した。容量維持率は、 50サイクル目の放電容量を測定し、その値を 13サ イタル目の放電容量で除し、 100を乗じて算出した。結果を表 1に示す。充電条件は 0. 5C、 4. 2Vで、定電流 '定電圧とした。放電条件は 0. 5C、 2. 7Vで、定電流とし た。但し、 1サイクル目の充放電は 0. 05Cとし、 2〜4サイクル目の充放電は 0. 1C、 5〜7サイクル目の充放電は 0. 5C、 8〜 10サイクル目の充放電は 1Cとした。  The capacity retention of the 50th cycle was measured for the lithium secondary batteries obtained in Examples and Comparative Examples. The capacity retention rate was calculated by measuring the discharge capacity at the 50th cycle, dividing the value by the discharge capacity at the 13th eye and multiplying by 100. The results are shown in Table 1. The charge condition was 0.5 C, 4.2 V, and the constant current was constant voltage. Discharge conditions were 0.5 C and 2.7 V, and constant current was applied. However, charge and discharge in the first cycle is set to 0.05 C, charge and discharge in the second to fourth cycles is 0.1 C, charge and discharge in the fifth to seventh cycles is 0.5 C, and charge and discharge in the eighth to tenth cycles is 1 C And
[0067] [表 1]
Figure imgf000020_0001
[0067] [Table 1]
Figure imgf000020_0001
[0068] 表 1に示す結果から明らかなように、各実施例の二次電池は、 CoZSiの重量比が 特定の範囲内に設定されていることに起因して、充電による膨張の程度が低ぐそれ によって容量維持率が高くなることが判る。これに対して比較例の二次電池では、充 電による膨張の程度が大きぐそれによつて容量維持率が低下することが判る。 産業上の利用可能性 As is clear from the results shown in Table 1, the secondary battery of each example has a low degree of expansion due to charging due to the weight ratio of CoZSi being set within a specific range. It can be seen that the capacity retention rate is increased by this. On the other hand, in the secondary battery of the comparative example, it can be seen that the capacity retention rate is lowered due to the fact that the degree of expansion due to charging increases. Industrial applicability
[0069] 本発明によれば、電池における負極活物質中の Siの量と、正極活物質中の Coの 量とを特定の範囲内に設定することで、充放電に起因する電池全体の膨張収縮の程 度が軽減され、それによつて膨張収縮によって発生する応力が軽減して正極及び負 極が受けるダメージが少なくなる。その結果、電池のサイクル特性が向上する。 According to the present invention, by setting the amount of Si in the negative electrode active material and the amount of Co in the positive electrode active material in the battery within a specific range, the expansion and contraction of the entire battery due to charge and discharge. The degree of contraction is reduced, thereby reducing the stress generated by the expansion and contraction and reducing the damage to the positive electrode and the negative electrode. As a result, the cycle characteristics of the battery are improved.

Claims

請求の範囲 The scope of the claims
[1] Siを含む負極活物質層を有する負極と、 Li及び Coを構成元素として含有するリチ ゥム遷移金属複合酸化物を含む正極活物質層を有する正極とを備え、負極における [1] A negative electrode having a negative electrode active material layer containing Si, and a positive electrode having a positive electrode active material layer containing a lithium transition metal composite oxide containing Li and Co as constituent elements,
Siに対する、正極における Coの重量比(CoZSi)が 0. 3〜5. 5の範囲内であること を特徴とする非水電解液二次電池。 The weight ratio (CoZSi) of Co in a positive electrode with respect to Si is in the range of 0.3-5. The non-aqueous-electrolyte secondary battery characterized by these.
[2] 前記正極活物質層におけるリチウム遷移金属複合酸ィ匕物に含まれる Coの量が、 該複合酸ィ匕物に含まれる遷移金属の総量に対して 10〜40重量%である請求の範 囲第 1項記載の非水電解液二次電池。 [2] The amount of Co contained in the lithium transition metal complex oxide in the positive electrode active material layer is 10 to 40% by weight based on the total amount of transition metals contained in the complex oxide. The non-aqueous electrolyte secondary battery according to claim 1.
[3] 前記正極活物質層におけるリチウム遷移金属複合酸化物に含まれる Co以外の遷 移金属が、 Mn及び Z又は Niである請求の範囲第 1項又は第 2項記載の非水電解 液二次電池。 [3] The non-aqueous electrolyte solution according to claim 1 or 2, wherein the transition metal other than Co contained in the lithium transition metal complex oxide in the positive electrode active material layer is Mn and Z or Ni. Next battery.
[4] 前記負極が、 Si系材料からなる活物質の粒子を含む負極活物質層を有し、該負極 活物質層においては、該粒子の表面の少なくとも一部がリチウム化合物の形成能の 低 ヽ金属材料で被覆されて ヽると共に、該金属材料で被覆された該粒子どうしの間 に空隙が形成されている請求の範囲第 1項記載の非水電解液二次電池。  [4] The negative electrode has a negative electrode active material layer containing particles of an active material made of a Si-based material, and in the negative electrode, in the active material layer, at least a part of the surface of the particles has low ability to form a lithium compound. The non-aqueous electrolyte secondary battery according to claim 1, wherein a base metal material is coated and a void is formed between the particles coated with the metal material.
[5] 前記金属材料が、前記負極活物質層の厚み方向全域にわたって前記粒子の表面 に存在している請求の範囲第 4項記載の非水電解液二次電池。  [5] The non-aqueous electrolyte secondary battery according to Claim 4, wherein the metal material is present on the surface of the particles over the entire area in the thickness direction of the negative electrode active material layer.
PCT/JP2007/058084 2006-08-10 2007-04-12 Non-aqueous electrolyte secondary battery WO2008018208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006219041A JP2008047305A (en) 2006-08-10 2006-08-10 Nonaqueous electrolyte secondary battery
JP2006-219041 2006-08-10

Publications (1)

Publication Number Publication Date
WO2008018208A1 true WO2008018208A1 (en) 2008-02-14

Family

ID=39032746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058084 WO2008018208A1 (en) 2006-08-10 2007-04-12 Non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP2008047305A (en)
WO (1) WO2008018208A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998960B (en) * 2017-07-25 2023-07-07 株式会社村田制作所 Lithium ion secondary battery
WO2019021941A1 (en) * 2017-07-25 2019-01-31 株式会社村田製作所 Lithium ion secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2004139886A (en) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004241329A (en) * 2003-02-07 2004-08-26 Mitsui Mining & Smelting Co Ltd Negative electrode for secondary battery of nonaqueous electrolyte liquid
JP2004296412A (en) * 2003-02-07 2004-10-21 Mitsui Mining & Smelting Co Ltd Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery
JP2005135603A (en) * 2003-10-28 2005-05-26 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2005285581A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Cathode for lithium secondary battery and lithium secondary battery
JP2006120612A (en) * 2004-09-24 2006-05-11 Sanyo Electric Co Ltd Lithium secondary battery
JP2006173099A (en) * 2004-11-19 2006-06-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2004139886A (en) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004241329A (en) * 2003-02-07 2004-08-26 Mitsui Mining & Smelting Co Ltd Negative electrode for secondary battery of nonaqueous electrolyte liquid
JP2004296412A (en) * 2003-02-07 2004-10-21 Mitsui Mining & Smelting Co Ltd Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery
JP2005135603A (en) * 2003-10-28 2005-05-26 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2005285581A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Cathode for lithium secondary battery and lithium secondary battery
JP2006120612A (en) * 2004-09-24 2006-05-11 Sanyo Electric Co Ltd Lithium secondary battery
JP2006173099A (en) * 2004-11-19 2006-06-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2008047305A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
KR101113480B1 (en) Non-aqueous electrolyte secondary battery
US8197966B2 (en) Negative electrode for nonaqueous secondary battery
WO2009084330A1 (en) Positive electrode active material for rechargeable battery with nonaqueous electrolyte and rechargeable battery with nonaqueous electrolyte comprising the positive electrode active material
JP2008277156A (en) Negative electrode for nonaqueous electrolyte secondary battery
WO2008018207A1 (en) Nonaqueous electrolyte secondary battery
JP4944648B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2008047308A (en) Nonaqueous electrolyte secondary battery
JP5192664B2 (en) Anode for non-aqueous electrolyte secondary battery
WO2008001536A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
WO2008018204A1 (en) Non-aqueous electrolyte secondary battery
JP2008047306A (en) Nonaqueous electrolyte secondary battery
JP2008016196A (en) Negative electrode for polymer electrolyte secondary battery
WO2008001541A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2009272243A (en) Nonaqueous electrolyte secondary battery
JP2008016194A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2008047307A (en) Nonaqueous electrolyte secondary battery
JP2008016193A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2008016192A (en) Anode for nonaqueous electrolyte secondary battery
JP2008016191A (en) Anode for nonaqueous electrolyte secondary battery
WO2008018208A1 (en) Non-aqueous electrolyte secondary battery
WO2009084329A1 (en) Positive electrode for nonaqueous electrolyte secondary battery
JP4954902B2 (en) Non-aqueous electrolyte secondary battery
JP2008251255A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2009277509A (en) Anode for non-aqueous electrolyte secondary battery
WO2008001535A1 (en) Negative electrode for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07741520

Country of ref document: EP

Kind code of ref document: A1