WO2012124617A1 - 車両用液圧発生装置および車両用制動力発生装置 - Google Patents

車両用液圧発生装置および車両用制動力発生装置 Download PDF

Info

Publication number
WO2012124617A1
WO2012124617A1 PCT/JP2012/056058 JP2012056058W WO2012124617A1 WO 2012124617 A1 WO2012124617 A1 WO 2012124617A1 JP 2012056058 W JP2012056058 W JP 2012056058W WO 2012124617 A1 WO2012124617 A1 WO 2012124617A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pressure
pressure generator
vehicle
elastic
spring
Prior art date
Application number
PCT/JP2012/056058
Other languages
English (en)
French (fr)
Inventor
一昭 村山
井上 亜良太
孝明 大西
伸威 兵藤
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011053662A external-priority patent/JP5427197B2/ja
Priority claimed from JP2011053663A external-priority patent/JP5421946B2/ja
Priority claimed from JP2012025134A external-priority patent/JP5352687B2/ja
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to MX2013010458A priority Critical patent/MX345980B/es
Priority to US14/003,897 priority patent/US8850810B2/en
Priority to CN201280012929.5A priority patent/CN103415423B/zh
Priority to EP12758183.3A priority patent/EP2684751B1/en
Priority to AU2012227493A priority patent/AU2012227493B2/en
Priority to BR112013023168-8A priority patent/BR112013023168B1/pt
Priority to CA2829745A priority patent/CA2829745C/en
Publication of WO2012124617A1 publication Critical patent/WO2012124617A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • B60T8/409Systems with stroke simulating devices for driver input characterised by details of the stroke simulating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/3732Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape having an annular or the like shape, e.g. grommet-type resilient mountings

Definitions

  • the present invention relates to a vehicular hydraulic pressure generating device that artificially creates a reaction force according to an operation amount of a brake, and a vehicular braking force generating device including the vehicular hydraulic pressure generating device.
  • a hybrid vehicle employs a By-Wire type brake system that operates a brake through an electric signal instead of a conventional brake system that operates a brake through hydraulic pressure.
  • a stroke simulator that artificially creates a reaction force according to the amount of operation of the brake pedal is provided so that the operation feeling of the brake pedal does not differ from the conventional brake system ( For example, see Patent Document 1).
  • the applicant of the present application includes a first elastic member having a first elastic coefficient and a second elastic member having a second elastic coefficient that is larger than the first elastic coefficient.
  • a stroke simulator arranged in series with each other has been proposed (see, for example, Patent Document 2).
  • the brake operation amount is created so as to create a small reaction force when the operation amount is small and a large reaction force when the operation amount is large. Appropriate reaction force according to each can be created.
  • the first elastic member having the first elastic coefficient and the second elastic member having the second elastic coefficient are arranged in series with each other,
  • the elastic modulus of 2 is set larger than the first elastic modulus. Since these first and second elastic coefficients are different from each other, a portion where the linear reaction force characteristic related to the first elastic coefficient and the linear reaction force characteristic related to the second elastic coefficient are switched (hereinafter, “ A singular point in the shape of a letter is generated at the switching point). There is a concern that the existence of a singular point generated at the switching point may cause a feeling of strangeness when the brake is operated.
  • the present invention has been made in view of the above circumstances, and in the reaction force characteristic with respect to the brake operation amount, a dogleg shape generated at a switching point at which the linear reaction force characteristics related to the first and second elastic coefficients are switched. It is an object of the present invention to provide a vehicular hydraulic pressure generator and a vehicular braking force generator that can alleviate a sense of incongruity during a brake operation caused by a singular point.
  • the invention according to claim 1 is characterized in that a hydraulic pressure generating unit that generates a hydraulic pressure corresponding to an operation amount of a brake operating member by a driver is communicated with the hydraulic pressure generating unit, A reaction force generation unit that generates a reaction force according to an operation amount of the brake operation member, wherein the reaction force generation unit corresponds to the hydraulic pressure generated by the hydraulic pressure generation unit.
  • a simulator piston operated in an advance direction or a retracting direction; and an elastic portion provided on the advance side of the simulator piston, wherein the elastic portion has a first elastic coefficient.
  • the linear reaction force characteristics related to the first and second elastic coefficients different from each other are switched.
  • the uncomfortable feeling at the time of the brake operation caused by the singular point of the character shape that occurs at the switching point can be alleviated.
  • FIG. 1 is a schematic configuration diagram of a vehicle brake system. It is a longitudinal cross-sectional view of a 1st stroke simulator. 4 (a) is a plan view of the first bush installed in the first stroke simulator, and FIG. 4 (b) is a cross-section of the first bush viewed from the BB line in FIG. 4 (a) in the direction of the arrow. FIG. 4 (c) is an external view of the first bush viewed from the direction C of FIG. 4 (a). It is a disassembled perspective view which shows the attachment state of a 1st bush. It is explanatory drawing which represents the effect
  • FIG. 1 is a diagram showing an arrangement configuration in a vehicle of a vehicle brake system to which an electric brake device is applied. Note that the front-rear and left-right directions of the vehicle V are indicated by arrows in FIG.
  • a vehicle brake system (corresponding to the “vehicle braking force generator” of the present invention) 10 is a by-wire type brake system that transmits an electrical signal to operate a brake for normal use.
  • it is configured to include both a conventional hydraulic brake system that transmits a hydraulic pressure and operates a brake for fail-safe operation.
  • the vehicle brake system 10 is a vehicle fluid in which an operator (driver) brake operation is input via a brake pedal (corresponding to a “brake operation member” of the present invention) 12.
  • a pressure generating device hereinafter also referred to as “hydraulic pressure generating device” 14
  • a motor cylinder device that generates brake hydraulic pressure based on at least an electric signal corresponding to a brake operation (“electric hydraulic pressure” of the present invention).
  • a vehicle stability assist device 18 hereinafter referred to as a VSA device 18 that assists in stabilizing the behavior of the vehicle based on the brake fluid pressure generated by the motor cylinder device 16.
  • VSA is a registered trademark).
  • the motor cylinder device 16 generates the brake fluid pressure based on an electrical signal corresponding to another physical quantity instead of the configuration that generates the brake fluid pressure based on the electrical signal corresponding to the driver's brake operation. May be adopted.
  • an electrical signal according to another physical quantity is obtained by an ECU (Electronic Control Unit) that acquires the situation around the vehicle V via a CCD camera or a sensor.
  • a control signal for making a determination and issuing a braking command for the vehicle V according to the determination result can be given.
  • the hydraulic pressure generator 14 is applied to a right-hand drive vehicle here, and is fixed to the right side of the dashboard 2 in the vehicle width direction via a bolt or the like.
  • the hydraulic pressure generator 14 may be applied to a left-hand drive vehicle.
  • the motor cylinder device 16 is disposed, for example, on the left side in the vehicle width direction opposite to the hydraulic pressure generation device 14, and is attached to the vehicle body 1 such as the left side frame via a mounting bracket (not shown). .
  • the VSA device 18 suppresses, for example, an ABS (anti-lock braking system) function for preventing wheel lock during braking, a TCS (traction control system) function for preventing wheel slipping during acceleration, and a side slip during turning. For example, it is attached to the vehicle body via a bracket at the right front end in the vehicle width direction. Instead of the VSA device 18, an ABS device having an ABS function may be connected.
  • ABS anti-lock braking system
  • TCS traction control system
  • the hydraulic pressure generator 14, the motor cylinder device 16, and the VSA device 18 are disposed in a structure mounting chamber R in which a structure 3 such as an engine and a traveling motor provided in front of the dashboard 2 of the vehicle V is mounted.
  • the pipes 22a to 22f are arranged separately from each other. Detailed configurations of the hydraulic pressure generator 14, the motor cylinder device 16, and the VSA device 18 will be described later.
  • the vehicle brake system 10 can be applied to any of front-wheel drive vehicles, rear-wheel drive vehicles, and four-wheel drive vehicles.
  • the hydraulic pressure generator 14 and the motor cylinder device 16 are electrically connected to a control unit such as an ECU through a harness (not shown).
  • FIG. 2 is a schematic configuration diagram of the vehicle brake system.
  • the connection port 20a of the hydraulic pressure generator 14 and the connection point A1 are connected by the first piping tube 22a.
  • the output port 24a of the motor cylinder device 16 and the connection point A1 are connected by the second piping tube 22b.
  • the introduction port 26a of the VSA device 18 and the connection point A1 are connected by the third piping tube 22c.
  • connection port 20b of the hydraulic pressure generator 14 and the connection point A2 are connected by the fourth piping tube 22d.
  • the other output port 24b of the motor cylinder device 16 and the connection point A2 are connected by the fifth piping tube 22e.
  • the other introduction port 26b of the VSA device 18 and the connection point A2 are connected by the sixth piping tube 22f.
  • the VSA device 18 is provided with a plurality of outlet ports 28a to 28d.
  • the first outlet port 28a is connected to the wheel cylinder 32FR of the disc brake mechanism 30a provided on the right front wheel by the seventh piping tube 22g.
  • the second outlet port 28b is connected to the wheel cylinder 32RL of the disc brake mechanism 30b provided on the left rear wheel by the eighth piping tube 22h.
  • the third outlet port 28c is connected to the wheel cylinder 32RR of the disc brake mechanism 30c provided on the right rear wheel by the ninth piping tube 22i.
  • the fourth outlet port 28d is connected to the wheel cylinder 32FL of the disc brake mechanism 30d provided on the left front wheel by the tenth piping tube 22j.
  • brake fluid (brake fluid) is supplied to the wheel cylinders 32FR, 32RL, 32RR, 32FL of the disc brake mechanisms 30a-30d by the piping tubes 22g-22j connected to the outlet ports 28a-28d, As the hydraulic pressure in the wheel cylinders 32FR, 32RL, 32RR, and 32FL increases, the wheel cylinders 32FR, 32RL, 32RR, and 32FL operate, and the corresponding wheels (right front wheel, left rear wheel, right rear wheel, left front wheel). ) Is applied with braking force.
  • vehicle brake system 10 can be applied to various vehicles including, for example, an automobile driven by a reciprocating engine (internal combustion engine) only, a hybrid automobile, an electric automobile, a fuel cell automobile, and the like.
  • a reciprocating engine internal combustion engine
  • hybrid automobile an electric automobile
  • electric cell automobile a fuel cell automobile, and the like.
  • the hydraulic pressure generator 14 is attached to the master cylinder 34 and a tandem master cylinder (corresponding to the “hydraulic pressure generating portion” of the present invention) 34 that generates hydraulic pressure in accordance with the operation of the brake pedal 12 by the driver.
  • First reservoir 36 In the cylinder portion 38 of the master cylinder 34, a first piston 40a and a second piston 40b are slidably provided in a state of being spaced apart by a predetermined distance along the axial direction of the cylinder portion 38.
  • the first piston 40 a is disposed close to the brake pedal 12 and is connected to the brake pedal 12 via the push rod 42. Further, the second piston 40b is arranged away from the brake pedal 12 as compared with the first piston 40a.
  • a pair of piston packings 44a and 44b are respectively attached to the outer peripheral surfaces of the first piston 40a and the second piston 40b via annular step portions.
  • Back chambers 48a and 48b communicating with supply ports 46a and 46b described later are formed between the pair of piston packings 44a and 44b, respectively.
  • the 1st spring member 50a which connects between the 1st piston 40a and the 2nd piston 40b is provided.
  • a second spring member 50 b is provided between the second piston 40 b and the inner wall portion of the cylinder portion 38 to connect the second piston 40 b and the inner wall portion of the cylinder portion 38.
  • packings 44a and 44b may be provided on the inner peripheral surface of the cylinder portion 38, respectively.
  • the cylinder portion 38 of the master cylinder 34 is provided with two supply ports 46a and 46b, two relief ports 52a and 52b, and two output ports 54a and 54b.
  • the supply ports 46a and 46b and the relief ports 52a and 52b are joined to communicate with a reservoir chamber (not shown) in the first reservoir 36.
  • a first hydraulic pressure chamber 56a and a second hydraulic pressure chamber 56b that generate brake hydraulic pressure corresponding to the depression force of the driver depressing the brake pedal 12 are provided.
  • the first hydraulic pressure chamber 56a communicates with the connection port 20a via the first hydraulic pressure path 58a.
  • the second hydraulic pressure chamber 56b communicates with the other connection port 20b via the second hydraulic pressure path 58b.
  • a pressure sensor Pm is provided between the master cylinder 34 and the connection port 20a and upstream of the first hydraulic pressure path 58a.
  • a first shut-off valve 60a composed of a normally open type (normally open type) solenoid valve is provided downstream of the first hydraulic pressure path 58a.
  • the pressure sensor Pm has a function of detecting a hydraulic pressure upstream of the first shutoff valve 60a on the master cylinder 34 side on the first hydraulic pressure path 58a.
  • the first shut-off valve 60a corresponds to the “shut-off valve” of the present invention.
  • the pressure sensor Pm corresponds to the “hydraulic pressure detector” of the present invention.
  • a second shut-off valve 60b composed of a normally open type (normally open type) solenoid valve is provided. Yes. Further, a pressure sensor Pp is provided on the downstream side of the second hydraulic pressure path 58b. The pressure sensor Pp has a function of detecting the hydraulic pressure downstream of the wheel cylinders 32FR, 32RL, 32RR, and 32FL from the second shutoff valve 60b on the second hydraulic pressure path 58b.
  • the normal open in the first shut-off valve 60a and the second shut-off valve 60b is a valve configured such that the normal position (the position of the valve body at the time of demagnetization (non-energization)) is in the open position (normally open).
  • a first shut-off valve 60a and a second shut-off valve 60b show states during excitation (the same applies to a third shut-off valve 62 described later).
  • a branch hydraulic pressure path 58c branched from the second hydraulic pressure path 58b is provided in the second hydraulic pressure path 58b between the master cylinder 34 and the second shutoff valve 60b.
  • the branch hydraulic pressure path 58c includes a third shut-off valve 62 composed of a normally closed type (normally closed type) solenoid valve, and a first stroke simulator (corresponding to the “reaction force generating portion” of the present invention) 64.
  • the normal close in the third shut-off valve 62 refers to a valve configured such that the normal position (the position of the valve body at the time of demagnetization (non-energization)) is in the closed position (normally closed).
  • the first stroke simulator 64 is drawn with a simplified detailed structure. As shown in FIG. 2, the first stroke simulator 64 is disposed on the second hydraulic pressure path 58b and closer to the master cylinder 34 than the second shutoff valve 60b. The first stroke simulator 64 is provided with a reaction force hydraulic chamber 65 communicating with the branch hydraulic pressure path 58c. The brake fluid pressure generated in the second fluid pressure chamber 56 b of the master cylinder 34 is applied to the reaction force fluid pressure chamber 65.
  • the first stroke simulator 64 includes a simulator piston 67, a first return spring 68a, and a second return spring 68b in the housing 64a (see FIG. 3). The detailed structure inside the first stroke simulator 64 will be described in detail later.
  • the hydraulic pressure path is roughly divided into a first hydraulic pressure system 70a that connects the first hydraulic pressure chamber 56a of the master cylinder 34 and the plurality of wheel cylinders 32FR and 32RL, and a second hydraulic pressure chamber 56b of the master cylinder 34.
  • the second hydraulic system 70b connects the plurality of wheel cylinders 32RR and 32FL.
  • the first hydraulic system 70 a includes a first hydraulic path 58 a that connects the output port 54 a of the master cylinder 34 (cylinder portion 38) and the connection port 20 a in the hydraulic pressure generator 14, and a connection port of the hydraulic pressure generator 14.
  • 20a and the first and second piping tubes 22a and 22b that connect the output port 24a of the motor cylinder device 16 and the second and second ports that connect the output port 24a of the motor cylinder device 16 and the introduction port 26a of the VSA device 18.
  • the three piping tubes 22b and 22c, and the seventh and eighth piping tubes 22g and 22h that connect the first and second outlet ports 28a and 28b of the VSA device 18 and the wheel cylinders 32FR and 32RL, respectively.
  • the second hydraulic pressure system 70 b includes a second hydraulic pressure path 58 b that connects the output port 54 b of the master cylinder 34 (cylinder portion 38) in the hydraulic pressure generator 14 and the other connection port 20 b, and the hydraulic pressure generator 14.
  • the fourth and fifth piping tubes 22d and 22e that connect the other connection port 20b and the output port 24b of the motor cylinder device 16 are connected to the output port 24b of the motor cylinder device 16 and the introduction port 26b of the VSA device 18.
  • Fifth and sixth piping tubes 22e, 22f, ninth and tenth piping tubes 22i, 22j connecting the third and fourth outlet ports 28c, 28d of the VSA device 18 and the wheel cylinders 32RR, 32FL, respectively;
  • the motor cylinder device 16 is an electric brake device that drives the first slave piston 88a and the second slave piston 88b in the axial direction by the driving force of the electric motor 72 and generates a brake fluid pressure with this.
  • the side toward the first slave piston 88a in the moving direction of the first slave piston 88a and the second slave piston 88b when the brake fluid pressure is generated (raised) is shown in FIG.
  • the X1 direction (forward direction) indicated by the arrow in the middle is defined as the X2 direction (rear direction) indicated by the arrow in FIG. 2 and the opposite side to the second slave piston 88b.
  • the motor cylinder device 16 includes a cylinder portion 76 including a first slave piston 88a and a second slave piston 88b, an electric motor 72 for driving the first slave piston 88a and the second slave piston 88b, and a driving force of the electric motor 72. Is provided to the first slave piston 88a and the second slave piston 88b.
  • the driving force transmission unit 73 converts a gear mechanism (deceleration mechanism) 78 that transmits the rotational driving force of the electric motor 72 and converts the rotational driving force into a linear driving force along the axial direction of the ball screw shaft (screw) 80a. And a driving force transmission mechanism 74 including a ball screw structure 80.
  • the cylinder portion 76 includes a substantially cylindrical cylinder body 82 and a second reservoir 84 attached to the cylinder body 82.
  • the second reservoir 84 is connected to the first reservoir 36 attached to the master cylinder 34 of the hydraulic pressure generating device 14 by a piping tube 86, and the brake fluid stored in the first reservoir 36 is connected to the first reservoir 36 via the piping tube 86. 2 is configured to be supplied into the reservoir 84.
  • a first slave piston 88a and a second slave piston 88b are slidably provided along the axial direction in a state of being spaced apart by a predetermined distance in the axial direction of the cylinder body 82.
  • the first slave piston 88a is disposed close to the ball screw structure 80, contacts the front end of the ball screw shaft 80a, and is displaced in the direction of the arrow X1 or X2 integrally with the ball screw shaft 80a.
  • the second slave piston 88b is arranged farther from the ball screw structure 80 side than the first slave piston 88a.
  • annular guide piston 230 is provided so as to face the outer peripheral surface of the first slave piston 88a.
  • the annular guide piston 230 seals between the outer peripheral surface of the first slave piston 88a and the driving force transmission mechanism 74 in a liquid-tight state, and guides the first slave piston 88a so as to be movable in the axial direction. It has a function.
  • a slave piston packing 90 c is attached to the inner peripheral surface of the guide piston 230.
  • a slave piston packing 90b is mounted on the outer peripheral surface on the front end side of the first slave piston 88a via an annular step.
  • a first back chamber 94a communicating with a reservoir port 92a described later is formed between the slave piston packing 90c and the slave piston packing 90b.
  • a first return spring 96a is provided between the first slave piston 88a and the second slave piston 88b.
  • a pair of slave piston packings 90a and 90b are mounted on the outer peripheral surface of the second slave piston 88b via an annular stepped portion.
  • a second back chamber 94b communicating with a reservoir port 92b described later is formed between the pair of slave piston packings 90a and 90b.
  • a second return spring 96 b is provided between the second slave piston 88 b and the front end portion of the cylinder body 82.
  • the cylinder body 82 of the cylinder portion 76 is provided with two reservoir ports 92a and 92b and two output ports 24a and 24b.
  • the reservoir ports 92 a and 92 b communicate with the reservoir chamber in the second reservoir 84.
  • a first hydraulic pressure chamber 98a that generates a brake hydraulic pressure output from the output port 24a to the wheel cylinders 32FR and 32RL side, and the other output port 24b to the wheel cylinders 32RR and 32FL side.
  • a second hydraulic pressure chamber 98b for generating the output brake hydraulic pressure is provided.
  • a regulating means 100 that regulates the maximum separation section and the minimum separation section between the 88a and 88b.
  • the second slave piston 88b is provided with a stopper pin 102 that restricts the sliding range of the second slave piston 88b and prevents overreturn to the first slave piston 88a.
  • the VSA device 18 controls the first hydraulic system 70a connected to the disc brake mechanisms 30a and 30b (the wheel cylinder 32FR and the wheel cylinder 32RL) of the right front wheel and the left rear wheel.
  • the VSA device 18 controls the first hydraulic system 70a connected to the disc brake mechanisms 30a and 30b (the wheel cylinder 32FR and the wheel cylinder 32RL) of the right front wheel and the left rear wheel.
  • a brake system 110a and a second brake system 110b for controlling a second hydraulic system 70b connected to the disc brake mechanisms 30c, 30d (wheel cylinder 32RR, wheel cylinder 32FL) of the right rear wheel and the left front wheel.
  • the first brake system 110a includes a hydraulic system connected to a disc brake mechanism provided on the left front wheel and the right front wheel
  • the second brake system 110b includes the left rear wheel and the right rear wheel.
  • the first brake system 110a includes a hydraulic system connected to a disc brake mechanism provided on the right front wheel and the right rear wheel on one side of the vehicle body
  • first brake system 110a and the second brake system 110b have the same structure, the corresponding parts in the first brake system 110a and the second brake system 110b are assigned the same reference numerals, and the first brake system
  • the description of the second brake system 110b will be added in parentheses as appropriate, with a focus on the description of the system 110a.
  • the first brake system 110a (second brake system 110b) has a first common hydraulic pressure path 112 and a second common hydraulic pressure path 114 that are common to the wheel cylinders 32FR, 32RL (32RR, 32FL).
  • the VSA device 18 includes a regulator valve 116 formed of a normally open type solenoid valve disposed between the introduction port 26a and the first common hydraulic pressure path 112, and arranged in parallel with the regulator valve 116 from the introduction port 26a side.
  • a first check valve 118 that permits the flow of brake fluid to the first common hydraulic pressure passage 112 side (blocks the flow of brake fluid from the first common hydraulic pressure passage 112 side to the introduction port 26a side);
  • a first in-valve 120 composed of a normally open type solenoid valve disposed between the common hydraulic pressure path 112 and the first outlet port 28a, and a first inlet valve 120 disposed in parallel with the first inlet valve 120 from the first outlet port 28a side.
  • a second in-valve comprising a second check valve 122 (which prevents the flow of brake fluid to the 8a side) and a normally open type solenoid valve disposed between the first common hydraulic pressure passage 112 and the second outlet port 28b.
  • 124 and the second inlet valve 124 are arranged in parallel to allow the brake fluid to flow from the second lead-out port 28b side to the first common hydraulic pressure path 112 side (second lead-out from the first common hydraulic pressure path 112 side).
  • a third check valve 126 that prevents the flow of brake fluid to the port 28b side.
  • the VSA device 18 includes a first out valve 128 including a normally closed solenoid valve disposed between the first outlet port 28a and the second common hydraulic pressure path 114, a second outlet port 28b, and a second outlet port 28b.
  • a second out valve 130 composed of a normally closed solenoid valve disposed between the common hydraulic pressure path 114, a reservoir 132 connected to the second common hydraulic pressure path 114, and a first common hydraulic pressure path 112; It is arranged between the second common hydraulic pressure path 114 and allows the brake fluid to flow from the second common hydraulic pressure path 114 side to the first common hydraulic pressure path 112 side (from the first common hydraulic pressure path 112 side).
  • the fourth check valve 134 (which prevents the flow of brake fluid to the second common hydraulic pressure path 114 side) is disposed between the fourth check valve 134 and the first common hydraulic pressure path 112, and the second common hydraulic pressure path 112 is disposed.
  • a pump 136 that supplies brake fluid from the hydraulic pressure path 114 side to the first common hydraulic pressure path 112 side, an intake valve 138 and a discharge valve 140 provided before and after the pump 136, and a motor M that drives the pump 136, And a suction valve 142 formed of a normally closed solenoid valve disposed between the second common hydraulic pressure path 114 and the introduction port 26a.
  • the first out valve 128 and the second out valve 130 correspond to the “pressure reducing valve” of the present invention.
  • the brake hydraulic pressure generated in the first hydraulic pressure chamber 98a of the motor cylinder device 16 is output from the output port 24a of the motor cylinder device 16 on the hydraulic pressure path close to the introduction port 26a.
  • a pressure sensor Ph for detection is provided. Detection signals detected by the pressure sensors Pm, Pp, and Ph are introduced into a control unit (not shown).
  • a control unit (not shown) drives the electric motor 72 of the motor cylinder device 16 and detects the driving force of the electric motor 72 via the driving force transmission mechanism 74 when detecting the depression of the brake pedal 12 by the driver.
  • the first slave piston 88a and the second slave piston 88b are displaced in the direction of arrow X2 in FIG. 2 against the spring force of the first return spring 96a and the second return spring 96b. Due to the displacement of the first slave piston 88a and the second slave piston 88b, the brake fluid in the first fluid pressure chamber 98a and the second fluid pressure chamber 98b is pressurized so as to be balanced to generate a desired brake fluid pressure.
  • the brake hydraulic pressure in the first hydraulic pressure chamber 98a and the second hydraulic pressure chamber 98b in the motor cylinder device 16 is supplied to the disc brake mechanism 30a via the first and second inlet valves 120 and 124 in the valve open state of the VSA device 18.
  • wheel cylinders 32FR, 32RL, 32RR, 32FL, and the wheel cylinders 32FR, 32RL, 32RR, 32FL are actuated to apply a desired braking force to each wheel.
  • the vehicle brake system 10 when the driver steps on the brake pedal 12 during normal operation of the control unit such as the motor cylinder device 16 or an ECU (not shown) that performs by-wire control, a so-called brake-by-wire operation is performed.
  • the brake system of the method becomes active.
  • the first shut-off valve 60a and the second shut-off valve 60b are disc brakes that brake the master cylinder 34 and each wheel.
  • the disc brake mechanisms 30a to 30d are operated using the brake hydraulic pressure generated by the motor cylinder device 16 in a state where the communication with the mechanisms 30a to 30d (wheel cylinders 32FR, 32RL, 32RR, 32FL) is cut off.
  • an electric vehicle including a fuel cell vehicle
  • a hybrid vehicle or the like, a vehicle that generates little negative pressure in the internal combustion engine or has no negative pressure generated by the internal combustion engine, Or it can apply suitably for the vehicle without an internal combustion engine itself.
  • a so-called conventional hydraulic brake system is activated.
  • the first cutoff valve 60a and the second cutoff valve 60b are opened, and the third cutoff valve 62 is provided. Is closed, the brake fluid pressure generated in the master cylinder 34 is transmitted to the disc brake mechanisms 30a to 30d (wheel cylinders 32FR, 32RL, 32RR, 32FL), and the disc brake mechanisms 30a to 30d (wheel cylinders 32FR, 32FR, 32RL, 32RR, 32FL) are activated.
  • FIG. 3 is a longitudinal sectional view of the first stroke simulator.
  • FIG. 4 is an explanatory diagram of the first bushing built in the first stroke simulator
  • FIG. 4 (a) is a plan view of the first bushing built in the first stroke simulator
  • FIG. 4A is a cross-sectional view of the first bush viewed in the direction of the arrow along the line BB in FIG. 4A
  • FIG. 4C is an external view of the first bush viewed from the direction C in FIG.
  • FIG. 5 is an exploded perspective view showing a mounting state around the first bush.
  • the first stroke simulator 64 provided in the vehicle hydraulic pressure generator 14 defines a liquid guiding port 64 b and a substantially cylindrical reaction force hydraulic chamber 65.
  • 68b the first stroke simulator 64 provided in the vehicle hydraulic pressure generator 14 according to the first embodiment of the present invention defines a liquid guiding port 64 b and a substantially cylindrical reaction force hydraulic chamber 65.
  • the valve body of the third shut-off valve (normally closed) 62 is opened in the reaction force hydraulic chamber 65 that communicates with the second hydraulic chamber 56b (see FIG. 2) via the liquid guiding port 64b and the branch hydraulic path 58c.
  • the brake fluid is guided to enter and exit through the fluid introduction port 64b.
  • the cylinder portion 66 includes a first cylinder 66 a provided on the side of the retraction direction of the simulator piston 67 (left direction in FIG. 3, hereinafter this direction is defined as “rear”), and the advance direction of the simulator piston 67.
  • a second cylinder 66b provided on the side of the right side in FIG. 3 (hereinafter, this direction is defined as “front”) is coaxially connected.
  • the circumferential inner diameter of the first cylinder 66a is formed smaller than the circumferential inner diameter of the second cylinder 66b.
  • An annular groove 66a1 is formed on the front side of the inner wall of the first cylinder 66a.
  • a silicone rubber seal ring 66a2 is fitted in the annular groove 66a1. Accordingly, the brake fluid filled in the reaction force hydraulic chamber 65 does not leak to the front side of the seal ring 66a2 due to the liquid tightness exhibited by the seal ring 66a2.
  • the simulator piston 67 is formed with a substantially cylindrical thinned portion 67a that opens toward the rear side (retracting direction) thereof.
  • the lightening portion 67a has a function of increasing the capacity of the reaction force hydraulic chamber 65 and increasing the amount of the stock of brake fluid.
  • a first spring seat member 69 is fixed to the front end wall 67b of the simulator piston 67 by appropriate joining means such as welding.
  • the longitudinal section of the first spring seat member 69 is formed in a substantially hat shape.
  • the first spring seat member 69 includes a disk-shaped flange portion 69a with a hollow center portion, a substantially cylindrical peripheral wall portion 69b extending from the inner peripheral portion of the flange portion 69a toward the front side, A top wall portion 69c covering the top portion of the peripheral wall portion 69b.
  • the peripheral wall portion 69b is formed in a tapered shape whose outer diameter gradually decreases from the inner peripheral portion of the flange portion 69a toward the top wall portion 69c.
  • the front end wall 69a1 of the flange portion 69a of the first spring seat member 69 has a function of receiving the rear end side of the first return spring 68a.
  • a second spring seat member 71 whose longitudinal section is formed in a substantially hat shape is provided on the front side facing the first spring seat member 69.
  • the second spring seat member 71 includes a disc-shaped flange portion 71a with a hollowed central portion, a cylindrical peripheral wall portion 71b extending from the inner peripheral portion of the flange portion 71a toward the front side, and the peripheral wall. A top wall portion 71c covering the top portion of the portion 71b.
  • the peripheral wall portion 71b is formed in a tapered shape whose outer diameter gradually decreases from the inner peripheral portion of the flange portion 71a toward the top wall portion 71c.
  • the front end side 71a2 of the flange portion 71a of the second spring seat member 71 has a function of receiving the rear end side of the second return spring 68b.
  • the size of the second spring seat member 71 is larger than the size of the first spring seat member 69 as a whole.
  • the outer diameter size of the hat portion 69d formed by the peripheral wall portion 69b and the top wall portion 69c of the first spring seat member 69 is set to be the peripheral wall portion 71b and the top wall portion 71c of the second spring seat member 71.
  • the inner diameter size of the hat portion 71d formed by the above is sufficiently large.
  • the rear end wall 71c1 of the top wall portion 71c of the second spring seat member 71 has a function of receiving the front end side of the first return spring 68a.
  • a first bush 75 corresponding to an “elastic portion” and a “third elastic portion” is provided inward of the first return spring 68a. It is provided so that it may be accommodated. Accordingly, it is possible to effectively use limited space resources and to provide the first bush 75 in parallel with the first return spring 68a.
  • the first section l 1 is provided between the front end wall 69a1 of the flange portion 69a of the first spring seat member 69 and the rear end wall 71a1 of the flange portion 71a of the second spring seat member 71. Is placed. On the other hand, a front top portion 75a of the first bushing 75, between the rear end wall 71c1 of the top wall portion 71c of the second spring seat member 71, the third section l 3 is placed. The first section l 1 is set to be larger than the third section l 3 .
  • the first bush 75 is crushed and compressed and deformed in addition to the compressive deformation of the first return spring 68a. It is configured as follows. On the premise of such setting of the first to third sections, the first bush 75 has an important function of creating a non-linear reaction force characteristic with respect to the operation amount of the brake pedal 12. The detailed configuration and operation around the first bush 75 will be described later.
  • a third spring seat member 77 whose longitudinal section is formed in a substantially hat shape is provided on the front side facing the second spring seat member 71. It has been.
  • the third spring seat member 77 includes a disc-shaped flange portion 77a with a hollow center portion, a cylindrical peripheral wall portion 77b extending from the inner peripheral portion of the flange portion 77a toward the rear side, A top wall portion 77c covering the top portion of the peripheral wall portion 77b.
  • the peripheral wall portion 77b is formed in a tapered shape whose outer diameter gradually decreases from the inner peripheral portion of the flange portion 77a toward the top wall portion 77c except for the base portion 77b1.
  • the rear end side 77a1 of the flange portion 77a of the third spring seat member 77 has a function of receiving the front end side of the second return spring 68b.
  • the first bush 75 is substantially formed by a cylindrical main body portion 75c having a substantially cylindrical hollow portion 75b. Compared to the inner diameters of the through holes 69e, 71e, 77e and the hollow part 75b of the first bush 75 so as to pass through the through holes 69e, 71e, 77e and the hollow part 75b of the first bush 75, respectively.
  • a first rod member 79 having a slightly smaller outer diameter is provided.
  • the rear end side 79a of the first rod member 79 is locked by a locking member 87 described later on the rear end side of the top wall portion 69c of the first spring seat member 69.
  • a locking member 87 described later on the rear end side of the top wall portion 69c of the first spring seat member 69.
  • an enlarged portion 79b1 having a larger diameter than the through hole 77e formed in the top wall portion 77c of the third spring seat member 77 is formed.
  • the coupling relationship between the front end side 79b of the first rod member 79 and the through hole 77e formed in the top wall 77c of the third spring seat member 77 is not easily disengaged.
  • a substantially disc-shaped lid 81 made of, for example, metal is provided on the front end side of the housing 64a of the first stroke simulator 64.
  • the lid 81 has an annular groove 81a1 formed in the outer peripheral wall 81a.
  • a silicone rubber seal ring 81a2 is fitted in the annular groove 81a1.
  • the rear end side 81 b of the lid portion 81 is fixed to the front end side 77 a 2 of the flange portion 77 a of the third spring seat member 77.
  • the front-end-side peripheral side portion 81c of the lid portion 81 is abutted and supported by a rear peripheral side wall of a locking ring 83 formed in a disk shape having an opening at the center portion.
  • the locking ring 83 is provided so as to engage with an annular groove 85 formed on the inner wall of the second cylinder 66b. Accordingly, the front end side of the second return spring 68b is securely fixed to the housing 64a of the first stroke simulator 64.
  • the front end side of the second return spring 68b is in contact with and supported by the housing 64a of the first stroke simulator 64, while the rear end side thereof is in contact with the flange portion 71a of the second spring seat member 71. Supported. Further, the front end side of the first return spring 68a is abutted and supported against the front end side top wall portion 71c1 of the second spring seat member 71, while the rear end side thereof is the flange portion of the first spring seat member 69. It abuts and supports 69a. Then, the first spring seat member 69 is fixed to the front end wall 67 b of the simulator piston 67. As a result, the simulator piston 67 is urged rearward (withdrawal direction) by the first and second return springs 68a and 68b.
  • the first and second return springs 68a and 68b are mechanically arranged in series with each other.
  • the first and second elastic coefficients k1 and k2 are set so that the increase gradient of the pedal reaction force is lowered when the brake pedal 12 is depressed and the pedal reaction force is increased when the brake pedal 12 is depressed later. This is because the reaction force characteristic with respect to the stroke amount of the brake pedal 12 is equivalent to that of the conventional type, so that the conventional type brake system is mounted, or the by-wire type brake system is mounted. This is based on a design philosophy aimed at concentrating on driving without making the driver aware of this.
  • the first bush 75 which plays an extremely important role of creating a reaction force characteristic with respect to the operation amount of the brake pedal 12 as a non-linear one, has a substantially cylindrical hollow portion 75b. It is substantially formed by the cylindrical main-body part 75c which has.
  • the first bush 75 is made of, for example, an elastic body made of synthetic resin.
  • the first bush 75 has a third elastic coefficient k3 (where k3 takes a variable value) that is smaller than the second elastic coefficient k2.
  • the first bush 75 is mechanically provided in parallel with the first return spring 68a.
  • the reason why the third elastic coefficient k3 is set to a value in a small range compared to the second elastic coefficient k2 is that the third elastic coefficient k3 is large compared to the second elastic coefficient k2.
  • the third elastic coefficient k3 may be set to a value in a smaller range than the first elastic coefficient k1.
  • the 1st bush 75 is provided in order to relieve the uncomfortable feeling concerning the reaction force characteristic with respect to the operation amount of the brake pedal 12. Considering the achievement of this object, the creation of the non-linear reaction force characteristic by the first bush 75 may be sufficient even in a slight amount.
  • a first easily deformable portion 75d1 is integrally formed on one side of the first bush 75 in the axial direction (corresponding to "the opposite side of the simulator piston").
  • the first easily deformable portion 75d1 is configured by alternately providing convex portions 75d1a and concave portions 75d1b at equal intervals.
  • the protrusion 75d1a is formed so that the cross-sectional area of the protrusion 75d1a itself in a direction orthogonal to the direction of compression deformation gradually decreases along the direction of compression deformation (the direction of X3 indicated by the arrow in FIG. 4B). Has been.
  • the cross-sectional area of the space created by the recess 75d1b in the direction orthogonal to the direction of compression deformation is formed so as to gradually increase along the direction of compression deformation (direction X3).
  • the first easily deformable portion 75d1 is formed such that the cross-sectional area in the direction orthogonal to the direction of compressive deformation gradually decreases or gradually increases along the direction of compressive deformation.
  • the first easily deformable portion 75d1 of the first bush 75 has the cross-sectional area in the direction orthogonal to the direction of the compressive deformation as the compressive deformation progresses (that is, the portion having the smaller elastic modulus) in order. Acts like crushed.
  • the compression deformation of the first bush 75 due to the crushing creates a reaction force corresponding to the compression deformation force. This means that a non-linear reaction force characteristic is created by the first bush 75.
  • the first easily deformable portion 75d1 of the first bush 75 has a frictional force between the inner peripheral wall of the hollow portion 75b of the first bush 75 and the outer peripheral wall of the rod 79.
  • the increase in the frictional force is based on the fact that the expansion of the outer peripheral wall of the first bush 75 is restricted by the inner diameter of the first return spring 68a. This increase in the frictional force functions to improve the non-linearity of the reaction force characteristic created by the first bush 75.
  • annular step portion 75e and an annular receiving portion 75f are provided at a predetermined interval in the direction of compression deformation (direction X3).
  • the former annular stepped portion 75e is formed by an inclined surface 75e1 that continues in an annular shape along the inner peripheral side surface of the hollow portion 75b.
  • the significance of the presence of the annular stepped portion 75e is that the second easily deformable portion has a function of making the reaction force characteristic non-linear when a compressive deformation force is applied to the first bush 75, and the first bush 75 among the first bush 75.
  • the rear end side 79a of the first rod member 79 hits the annular inclined surface 75e1. Then, based on the function of guiding the first rod member 79 into the hollow portion 75b. Therefore, according to the annular step portion 75e, the first rod member 79 can be smoothly inserted into the hollow portion 75b.
  • the annular receiving portion 75f present in the hollow portion 75b of the first bush 75 is formed by an inclined surface 75f1 that is continuous in an annular shape along the inner peripheral side surface of the hollow portion 75b.
  • an annular step portion 79c having a small outer diameter is formed on the opposite side (front side) of the first piston member 79 to the simulator piston, as shown in FIG. 5, on the opposite side (front side) of the first piston member 79 to the simulator piston, as shown in FIG. 5, an annular step portion 79c having a small outer diameter is formed.
  • a circular annular groove 79d is provided on the outer peripheral side surface thereof.
  • the annular groove 79d is locked by a locking member 87 made of, for example, a C-shaped clip.
  • the significance of the existence of the annular receiving portion 75f is based on the function of reliably transmitting the nonlinear reaction force characteristic created by the first bush 75 to the first rod member 79.
  • the annular stepped portion 79c of the first rod member 79 is included in the first bush 75.
  • the first rod member 79 is prevented from being inserted into the hollow portion 75b because it hits a portion other than the annular receiving portion 79c. Therefore, according to the annular receiving portion 75f, the non-linear reaction force characteristic created by the first bush 75 is reliably transmitted to the first rod member 79, and the first bush 75 is opposite to the normal direction. Can be prevented from being assembled in advance.
  • the 1st taper part 75g which exists in the hollow part 75b of the 1st bush 75 is formed of the cyclic
  • the 2nd taper part 75h which exists in the outer peripheral side of the 1st bush 75 is formed of the cyclic
  • the significance of the existence of the first and second taper portions 75g and 75h is that, as the third easily deformable portion, the function of making the reaction force characteristic generated when the compressive deformation force is applied to the first bush 75 non-linearly appears. Based.
  • FIG. 6 is an explanatory diagram of the operation of the embodiment relating to the first bush 75.
  • a brake fluid pressure is generated, and this brake fluid pressure is transmitted to the simulator piston 67 in the cylinder portion 66.
  • the simulator piston 67 moves in the cylinder portion 66.
  • the first return spring 68a having a smaller elastic coefficient than the second return spring 68b is mainly compressed and deformed.
  • This section is the first section (see the section from point O to point Q 0 in FIG. 6) l 1 .
  • the front end wall of the flange portion 69a of the first spring seat member 69 is finally obtained.
  • 69 a 1 hits the rear end wall 71 a 1 of the flange portion 71 a of the second spring seat member 71.
  • the period from when the first spring seat member 69 starts to move forward until it abuts against the second spring seat member 71 corresponds to the first section l 1 described above.
  • the first section l 1 can be divided into a second section l 2 and a third section l 3 .
  • the second section l 2 refers to the fact that the front top portion 75 a of the first bush 75 is located behind the top wall portion 71 c of the second spring seat member 71 as the simulator piston 67 moves in the advance direction. This refers to the section after hitting the end wall 71c1.
  • the third section l 3 with the movement of the advancing direction of the simulator piston 67, the first spring seat member 69 starts to move to the front, the front top portion 75a of the first bushing 75 Is a section of the second spring seat member 71 up to the point just before it hits the rear end wall 71c1 of the top wall portion 71c.
  • the second section l 2 along with the movement of the advancing direction of the first middle point of the interval l 1 (simulator piston 67, the front top portion 75a of the first bushing 75, a second spring seat top wall point hits the rear end wall 71c1 of 71c of the member 71; while starting from the P reference) point in FIG. 6, different switching point (mutual first reaction force characteristic of the interval l 1 The point at which the linear reaction force characteristic relating to the first elastic coefficient k1 and the second elastic coefficient k2 switches, or the point at which the second return spring 68b is mainly compressed and deformed; Let point Q) be a common end point.
  • the compression deformation of the first bush 75 is the second interval l from the midpoint of the first interval l 1 (see point P in FIG. 6) to the switching point (see point Q in FIG. 6). 2 is performed in parallel with the compression deformation of the first return spring 68a.
  • the reaction force characteristic with respect to the operation amount of the brake pedal 12 is nonlinear to forged and the reaction force characteristic of the alignments are created by the compression deformation of the first return spring 68a, the compressive deformation of the first bushing 75 It is drawn by the sum of the reaction force characteristics.
  • the reaction force characteristic in the second interval l 2 (see the interval from point P to point Q 1 in FIG. 6) is corrected so as to gently connect the pair of linear reaction force characteristics. .
  • this correction is performed by using a nonlinear reaction force characteristic obtained by parallel insertion of the first bush 75 with respect to a linear reaction force characteristic created by compressive deformation of the first return spring 68 a. This is realized by adding the numbers so that they are stacked.
  • cross-sectional area a cross-sectional area that extends in a direction orthogonal to the direction of compressive deformation among the first to third easily deformable portions 75d1, 75e, and 75h. "Is abbreviated as” ".
  • first bush 75 only a small portion of the first bush 75 is accumulated by the compression deformation of the linear reaction force characteristic created by the compression deformation of the first return spring 68a.
  • the first to third easily deformable portions 75d1, 75e, 75h are crushed in order from a portion having a relatively small cross-sectional area.
  • the first easily deformable portion 75d1 only the portion having a relatively large cross-sectional area remains.
  • the portion of the first bush 75 that is stacked by the compressive deformation is subjected to the compressive deformation of the first bush 75. It grows with time.
  • the first easily deformable portion 75d1 of the first bush 75 includes an inner peripheral wall of the hollow portion 75b and an outer peripheral wall of the rod 79 in the first bush 75. It works to increase the friction force between.
  • the increase in the frictional force is based on the fact that the expansion of the outer peripheral wall of the first bush 75 is restricted by the inner diameter portion of the first return spring 68a. This increase in the frictional force functions to improve the non-linearity of the reaction force characteristic created by the first bush 75.
  • the first and second elastic coefficients k1 which are different from each other. can be alleviated discomfort during braking operation due to the reaction force characteristic to a cutting switched switching point to occur has want the shape singularities of linear (see Q 0 point in FIG. 6) according to the elastic coefficient k2.
  • the vehicle hydraulic pressure generator 14 includes a master cylinder (hydraulic pressure generator) 34 that generates hydraulic pressure in accordance with the amount of operation of the brake pedal (brake operating member) 12 by the driver, and a master cylinder.
  • a first stroke simulator (reaction force generation unit) 64 that communicates with the (hydraulic pressure generation unit) 34 and generates a reaction force corresponding to the operation amount of the brake pedal (brake operation member) 12.
  • the first stroke simulator (reaction force generation unit) 64 is operated in the advance direction or the retreat direction according to the hydraulic pressure generated in the master cylinder (hydraulic pressure generation unit) 34, and the advance direction of the simulator piston 67.
  • elastic portions 68a, 68b, 75 provided on the side of the head.
  • the elastic portions 68a, 68b, and 75 have a first return spring (first elastic portion) 68a having a first elastic coefficient k1 and a second elastic coefficient k2 that is larger than the first elastic coefficient k1.
  • 2 return springs (second elastic part) 68b and a first bush (third elastic part) 75 having a third elastic coefficient k3 smaller than the second elastic coefficient k2.
  • the first bush (third elastic portion) 75 having the third elastic coefficient k3 that is smaller than the second elastic coefficient k2 is provided.
  • switching is performed in which linear reaction force characteristics related to the first elastic coefficient k1 and the second elastic coefficient k2 which are different from each other are switched when no solution is adopted. it can be alleviated discomfort during braking operation due to have wanted a shaped singularity occurs at a point (see Q 0 point in FIG. 6).
  • the first return spring (first elastic portion) 68a and the second return spring (second elastic portion) 68b are connected in series to each other.
  • the first bush 75 (third elastic portion) is provided in parallel with the first return spring (first elastic portion) 68a.
  • the first bush (third elastic portion) 75 sets the contact area of the simulator piston 67 in the retracting direction to be different from the contact area of the simulator piston 67 in the advance direction.
  • the first bush 75 sets the contact area of the simulator piston 67 in the retracting direction side to be different from the contact area of the simulator piston 67 in the advance direction” means that the first bush 75 This means that the contact area with respect to the other member is different between the front side and the rear side.
  • the front end wall 69c1 of the top wall portion 69c of the first spring seat member 69 corresponds to a counterpart member to be contacted.
  • the rear end wall 71c1 of the top wall portion 71c of the second spring seat member 71 corresponds to a counterpart member to be contacted.
  • the contact area of the first bush 75 on the side of the retraction direction of the simulator piston 67 is set larger than the contact area of the simulator piston 67 on the side of the advancement direction.
  • the master cylinder 34 when the driver operates the brake pedal, the master cylinder 34 generates a hydraulic pressure corresponding to the operation amount.
  • the first stroke simulator 64 communicated with the master cylinder 34 generates a reaction force corresponding to the operation amount of the brake pedal 12 by cooperation between the simulator piston 67 and the elastic portions 68a, 68b, 75. That is, when the operation amount of the brake pedal 12 is small, compression deformation of the first return spring having a smaller elastic coefficient than that of the second return spring is mainly performed. On the other hand, when the operation amount of the brake pedal 12 is large, the second return spring is mainly compressed and deformed. When the operation amount of the brake pedal 12 is intermediate, the compression deformation of the first bush 75 is performed in parallel with the compression deformation of the first return spring.
  • the reaction force characteristics with respect to the operation amount of the brake pedal 12 are the reaction force characteristics created by the compression deformation of the first return spring (first elastic portion) 68a and the compression of the first bush (third elastic portion) 75. It is drawn by the sum of reaction force characteristics created by deformation. Thereby, in the range near the switching point Q, the reaction force characteristic with respect to the operation amount of the brake pedal 12 is corrected so as to gently connect the pair of linear reaction force characteristics as shown in FIG.
  • the vehicle hydraulic pressure generating device 14 According to the vehicle hydraulic pressure generating device 14 according to the first embodiment, the first elastic modulus which is different from each other when no solution is adopted in the reaction force characteristic with respect to the operation amount of the brake pedal 12. k1 and the second elastic coefficient linear reaction force characteristic off switched switching point have wanted a shaped singularities occur Q according to k2 discomfort during braking operation due to the (Q see 0 point in FIG. 6) Can be relaxed.
  • the first bush 75 is set so that the contact area on the side of the retraction direction of the simulator piston 67 is different from the contact area on the side of the advance direction of the simulator piston 67. While preventing the bush 75 itself from buckling, the reaction force characteristic with respect to the operation amount of the brake pedal 12 can be made non-linear on the side where the contact area is small.
  • the compression deformation of the first bush (third elastic portion) 75 is a switching point Q (FIG. 6) at which the linear reaction force characteristics relating to the first elastic coefficient k1 and the second elastic coefficient k2 which are different from each other are switched. You may employ
  • the “section including the switching point Q where the linear reaction force characteristics related to the first elastic coefficient k1 and the second elastic coefficient k2 that are different from each other are switched” means a section that causes a sense of incongruity during brake operation. .
  • the compression deformation of the first bush (third elastic portion) 75 is performed in parallel with the compression deformation of the first return spring (first elastic portion) 68a. Therefore, if the above-described configuration is adopted, the uncomfortable feeling during the brake operation can be alleviated accurately.
  • the compression deformation of the first bush (third elastic portion) 75 is the second section overlapping the first section l 1 where the compression deformation of the first return spring (first elastic section) 68a is mainly performed.
  • the first section l 1 is the switching point and end point (point reference Q in FIG. 6), the second section l 2, the first middle point of the interval l 1 (in FIG. 6 A configuration may be adopted in which the switching point Q is a common end point while the starting point is a point P).
  • the first middle point P of the interval l 1 to the start point, in the second section l 2 of the end point of the switching point Q, the first bush (third elastic portions) 75 compression The deformation is performed in parallel with the compressive deformation of the first return spring (first elastic portion) 68a.
  • the reaction force characteristic with respect to the operation amount of the brake pedal 12 has a reaction force characteristic forged by compression deformation of the first return spring (first elastic portions) 68a, first bushing (3rd elastic part) It draws by the sum with the reaction force characteristic created by the compression deformation of 75.
  • the reaction force characteristic with respect to the operation amount of the brake pedal 12 is corrected so as to connect loosely between the reaction force characteristic of the pair of linear. Therefore, if the above-described configuration is adopted, the uncomfortable feeling during the brake operation can be alleviated accurately.
  • the first bush 75 takes a variable value that gradually increases with the progress of the compression deformation of the first bush (third elastic portion) 75 as a third elastic coefficient, thereby creating a nonlinear reaction force characteristic.
  • a configuration may be adopted. If comprised in this way, in order to create the nonlinear reaction force characteristic, the 1st bush 75 will connect gently between a pair of linear reaction force characteristics with a nonlinear reaction force characteristic about the range of the said switching point Q. Can be corrected.
  • first and second elastic portions are constituted by the first and second return springs 68a and 68b, respectively, and the third elastic portion is constituted by the first bush 75 made of an elastic body such as synthetic resin, it is simple. With such a configuration, the first stroke simulator 64 having a high effect of reducing the sense of incongruity during brake operation can be realized.
  • the first bush (third elastic portion) 75 has a substantially cylindrical shape and is accommodated inside the first return spring 68a, and at least one of the axial end portions of the substantially cylindrical shape.
  • One of the first to third easily deformable portions 75d1, 75e, 75g, and 75h is provided on one side, and these first to third easily deformable portions 75d1, 75e, 75g, and 75h are arranged in a direction orthogonal to the direction of compressive deformation.
  • a configuration may be employed in which the cross-sectional area is formed so as to gradually decrease or gradually increase along the direction of compressive deformation, thereby creating a nonlinear reaction force characteristic of the first bush (third elastic portion) 75. If comprised in this way, the 1st bush (3rd elastic part) 75 will act so that a nonlinear reaction force characteristic may be created. Therefore, the first stroke simulator 64 having a simple reaction and good reaction force characteristics can be realized.
  • first and second easily deformable portions 75d1 and 75e may be configured to be provided on the opposite side of the simulator piston 67 in the first bush (third elastic portion) 75. If comprised in this way, when the 1st bush 75 starts a compressive deformation, it can be made to act so that the 1st and 2nd easily deformable part 75d1, 75e which exists in the front side may be crushed first.
  • the first bush (third elastic portion) 75 is formed in a cylindrical shape having a substantially cylindrical hollow portion 75b, and the hollow portion 75b of the first bush 75 moves in the axial direction of the first bush 75.
  • a configuration may be adopted in which a substantially columnar first rod member 79 that guides is inserted. If comprised in this way, the movement of the axial direction of the 1st bush 75 can be guided smoothly.
  • An annular step 79c having a small outer diameter is formed on the opposite side of the first piston member 79 to the simulator piston 67, while the first rod member is formed on the inner wall of the hollow portion 75b of the first bush 75.
  • a configuration in which an annular receiving portion 75f against which the 79 annular step 79c abuts may be formed. With this configuration, the nonlinear reaction force characteristic created by the first bush 75 can be reliably transmitted to the first rod member 79. Further, if it is attempted to assemble the first bush 75 in the direction opposite to the normal direction (inverted), the annular stepped portion 79c of the first rod member 79 is annularly received in the first bush 75. It strikes against a part other than the part 75f. In this case, the insertion of the first rod member 79 into the hollow portion 75b is prevented. Therefore, it is possible to prevent the first bush 75 from being assembled in the direction opposite to the normal direction.
  • a configuration in which the notch 75d2 is provided in at least a part of the first bush 75 may be adopted. If comprised in this way, when the structure which fills the 1st bush 75 with liquids, such as a brake fluid, is employ
  • a plurality of first easily deformable portions 75d1 are provided at intervals in the circumferential direction of a substantially cylindrical shape, and a gap between a plurality of first easily deformable portions 75d1 adjacent to each other is defined as a notch portion 75d2.
  • the configuration may be adopted. If comprised in this way, creation of a nonlinear reaction force characteristic and air bleeding can be made compatible with a simple structure.
  • the first easily deformable portion 75d1 may adopt a configuration formed by a dome-shaped concave portion or convex portion or a combination thereof. If comprised in this way, the stroke simulator which has a favorable reaction force characteristic with a simple structure can be embodied.
  • first bush 75 has tapered portions 75g1 and 75h1 formed at the end in the axial direction of the substantially cylindrical shape of the first bush 75, a stroke simulator having a simple structure and good reaction force characteristics is realized.
  • FIG. 7 is a longitudinal sectional view of the second stroke simulator.
  • a first stroke simulator 64 (see FIG. 3) having a characteristic configuration in the vehicle hydraulic pressure generation device 14 according to the first embodiment and a characteristic configuration in the vehicle hydraulic pressure generation device 14 according to the second embodiment.
  • the second stroke simulator 164 (see FIG. 7) including the basic components are common to both. Therefore, components that are substantially the same between the two are denoted by the same reference numerals, the description thereof is omitted, and the description will be focused on the difference between the two.
  • components corresponding to each other shall be coded according to the following rules so that the correspondence can be easily grasped at a glance. That is, the code
  • the first stroke simulator and the second stroke simulator correspond to components corresponding to each other, but the former is denoted by “64” and the latter by “164”. It is the point to do.
  • the first difference between the first stroke simulator 64 (see FIG. 3) and the second stroke simulator 164 (see FIG. 7) is the peripheral structure of the third spring seat member 177 and the lid 181. is there.
  • the lid 81 is configured separately from the third spring seat member 77
  • the lid 181 is the third spring seat member.
  • the third spring seat member 177 is configured to be part of the third spring seat member 177.
  • a substantially disc-shaped lid 181 made of metal is provided on the front end side of the housing 164a, as in the first stroke simulator 64.
  • the lid 181 is formed integrally with the third spring seat member 177 so as to form a part of the third spring seat member 177.
  • the lid 181 has a function of receiving the front end side of the second return spring 68b.
  • An annular groove 181a1 is engraved on the outer peripheral wall 181a of the lid 181.
  • a seal ring 181a2 made of, for example, silicone rubber is fitted into the annular groove 181a1.
  • the air tightness exhibited by the seal ring 181a2 prevents fluid such as air and brake fluid filling the second cylinder 166b from leaking to the front side of the seal ring 181a2. .
  • the third spring seat member 177 of the second stroke simulator 164 includes a disc-shaped flange portion 177a with a hollowed central portion, and a peripheral wall extending in a circular shape from the inner peripheral portion of the flange portion 177a toward the rear side. A portion 177b and a top wall portion 177c covering the top portion of the peripheral wall portion 177b.
  • the flange portion 177 a is provided integrally with the lid portion 181. That is, the flange portion 177a is also the lid portion 181.
  • the peripheral wall portion 177b includes a base portion 177b1 having an outer diameter slightly smaller than the inner diameter of the second return spring 68b and a small diameter portion 177b2 having an outer diameter slightly smaller than the base portion 177b1.
  • the front end side circumferential side portion 181c of the lid portion 181 is abutted and supported by the rear circumferential side wall of the locking ring 83, similarly to the lid portion 81 according to the first embodiment.
  • the locking ring 83 is provided so as to engage with an annular groove 85 formed on the inner wall of the second cylinder 166b.
  • the third spring seat member 177 is fixed to the housing 164a of the second stroke simulator 164 via the lid portion 181.
  • the front end side of the second return spring 68b is securely fixed to the housing 164a of the second stroke simulator 164.
  • the through-hole 77e is provided in the substantially central portion of the top wall portion 77c of the third spring seat member 77, whereas in the second stroke simulator 164, the third spring is provided.
  • the substantially central portion of the top wall portion 177c of the seat member 177 instead of the hole portion corresponding to the through hole 77e according to the first embodiment, a concave shape that accepts the advancement of the enlarged portion 179b1 of the second rod member 179.
  • a receiving portion 177 is formed. As described later, this is based on the fact that the second rod member 179 itself (the length of the second rod member 179 is shortened) and its peripheral structure are changed.
  • the basic functions and operations of the third spring seat member 177 and the lid 181 are the same as those of the first stroke simulator 64.
  • a second difference between the first stroke simulator 64 (see FIG. 3) and the second stroke simulator 164 (see FIG. 7) is the second rod member 179 itself and its peripheral structure.
  • the first rod member 79 of the first stroke simulator 64 has through-holes 69e, 71e, 77e provided at substantially central portions of the first to third spring seat members 69, 71, 77. And through the hollow portion 75b of the first bush 75, respectively.
  • the second rod member 179 of the second stroke simulator 164 has a substantially central portion of the top wall portions 69c, 71c of the first and second spring seat members 69, 71. Are formed so as to penetrate through the through holes 69e and 71e respectively formed in the first bush 75 and the hollow portion 75b of the first bush 75.
  • the length of the second rod member 179 is shortened.
  • the support mechanism for the second rod member 179 is the same as the support mechanism for the first rod member 79 according to the first embodiment. Specifically, the rear end side 179 a of the second rod member 179 is locked by the locking member 87 on the rear end side of the top wall portion 69 c of the first spring seat member 69.
  • an enlarged portion 179b1 having a larger diameter than the through hole 71e formed in the top wall portion 71c of the second spring seat member 71 is formed.
  • the coupling relationship between the front end side 179b of the second rod member 179 and the through hole 71e formed in the top wall portion 71c of the second spring seat member 71 is not easily removed.
  • the front end wall 69a1 of the flange portion 69a of the first spring seat member 69 is finally the rear end wall of the flange portion 71a of the second spring seat member 71. It reaches 71a1. Further, when the brake pedal 12 is operated more strongly by the driver, the second spring seat member 71 moves toward the third spring seat member 177 against the elastic force of the second return spring 68b. And move on. Along with this movement, the second rod member 179 extends so as to protrude from the top wall portion 71c of the second spring seat member 71 in the advance direction.
  • a concave receiving portion 177 is formed on the top wall portion 177 c of the third spring seat member 177. For this reason, even when the second rod member 179 extends in the advancing direction so as to protrude from the top wall portion 71c of the second spring seat member 71, the receiving portion 177 is an enlarged portion of the second rod member 179. Acts to accept the advance of 179b1. Therefore, according to the vehicle hydraulic pressure generator 14 according to the second embodiment, interference between the second rod member 179 and the top wall portion 71c of the second spring seat member 71 can be avoided in advance.
  • a second return spring (on the opposite side of the simulator piston 67 out of the cylinder portion 66 in which the simulator piston 67 is accommodated)
  • a lid 181 that receives a side of the second elastic portion (68b) that is different from the side connected to the first return spring (first elastic portion) 68a is provided. More specifically, the lid portion 181 is configured to form a part of the third spring seat member 177 integrally with the third spring seat member 177. Therefore, according to the vehicle hydraulic pressure generator 14 according to the second embodiment, the number of parts can be reduced and the weight can be reduced.
  • FIG. 8 is a longitudinal sectional view of the vehicle hydraulic pressure generator 14 according to the third embodiment including the third stroke simulator 364.
  • the third stroke simulator 364 corresponds to the “reaction force generation unit” of the present invention.
  • the 1st stroke simulator 64 (refer FIG. 3) provided with the characteristic structure in the vehicle hydraulic pressure generator 14 which concerns on 1st Embodiment, and the vehicle hydraulic pressure generator 14 which concerns on 3rd Embodiment, it is characteristic.
  • the third stroke simulator 364 (see FIG. 8) having such a configuration, basic components are common or correspond to each other. Therefore, common reference numerals are assigned to components common to the both.
  • the components corresponding to each other are coded according to the following rules so that the correspondence can be easily grasped at a glance.
  • subjected to the component which concerns on 3rd Embodiment make the last two digits common.
  • symbol "3" is attached
  • the first stroke simulator and the second stroke simulator correspond to components corresponding to each other, but the former is denoted by “64” and the latter by “364”. It is the point to do.
  • the vehicle hydraulic pressure generator 14 includes a master cylinder 34 (hydraulic pressure generator) and a third stroke simulator 364 (reaction force applying unit). ing.
  • the master cylinder 34 extends in the front-rear direction (front-rear direction shown in FIG. 1) of the vehicle V (see FIG. 1) and is arranged side by side so as to be integrated with the third stroke simulator 364.
  • the first and second pistons 40a and 40b, the first and second hydraulic pressure chambers 56a and 56b, and the first and second spring members 50a, 50b are provided.
  • the first and second pistons 40 a and 40 b are provided so as to be able to advance and retreat in the master cylinder 34 in conjunction with the brake pedal 12.
  • the first hydraulic chamber 56a is defined by the inner wall portion of the master cylinder 34 and the first and second pistons 40a and 40b.
  • the second hydraulic chamber 56b is defined by the inner wall of the master cylinder 34 and the second piston 40b.
  • the first spring member 50a is provided in the first hydraulic pressure chamber 56a and has a function of connecting the first piston 40a and the second piston 40b.
  • the second spring member 50 b is provided in the second hydraulic pressure chamber 56 b and has a function of connecting the second piston 40 b and the inner wall portion of the master cylinder 34.
  • the housing 34a of the master cylinder 34 is integrally formed with the housing 364a of the third stroke simulator 364, for example, by casting, and constitutes the housing 14a of the vehicle hydraulic pressure generator 14 according to the third embodiment.
  • the vehicle hydraulic pressure generator 14 is attached to the dashboard 2 by stud bolts 303 provided on the housing 14a.
  • a first reservoir 36 (see FIG. 2) is provided above the housing 14a (on the front side in FIG. 8) so as to extend in the axial direction between the master cylinder 34 and the third stroke simulator 364. It has been.
  • relief ports 52a and 52b and connection ports 20a and 20b shown in FIG. 2 are formed in the housing 14a.
  • a first hydraulic pressure path 58a, a second hydraulic pressure path 58b, and a branch hydraulic pressure path 58c shown in FIG. 2 are formed in the solid portion of the housing 14a by the drilled holes.
  • the master cylinder 34 is configured to receive the other end side of the push rod 42 in which the brake pedal 12 (see FIG. 2) is connected to one end side thereof.
  • the push rod 42 is covered with a boot 306 extending over the master cylinder 34 and the push rod 42.
  • the brake pedal 12 side of the master cylinder 34 extends through the dashboard 2 and into the passenger compartment C.
  • the sensor valve unit 300 shown in FIG. 8 includes a first cutoff valve 60a, a second cutoff valve 60b, a third cutoff valve 62, a pressure sensor Pp, a pressure sensor Pm, and these pressure sensors shown in FIG.
  • a circuit board (not shown) on which a pressure detection circuit for electrically processing detection signals from Pp and Pm and calculating the hydraulic pressure of the brake fluid is mounted.
  • the sensor valve unit 300 is provided with a vent hole 307 that faces the housing of the unit 300.
  • a waterproof ventilation member 307 c made of, for example, Gore-Tex (registered trademark) is provided at the opening of the ventilation hole 307.
  • the vehicle hydraulic pressure generator 14 includes a master cylinder 34, a third stroke simulator 364, and an air bleeding bleeder (not shown) for bleeding air remaining in the hydraulic pressure path. ) May be employed.
  • FIG. 9 is an enlarged longitudinal sectional view showing the main part of the third stroke simulator.
  • the retraction direction of the simulator piston 67 (the left direction in FIG. 9) is defined as “rear” in the same manner as the vehicle hydraulic pressure generator 14 according to the first embodiment.
  • the advancing direction (right direction in FIG. 9) of the simulator piston 67 is defined as “front”.
  • a reaction force hydraulic chamber 65 in which the simulator piston 67 is accommodated and a spring chamber 63 are provided.
  • the reaction force hydraulic chamber 65 communicates with the second hydraulic chamber 56 b of the master cylinder 34.
  • the reaction force hydraulic chamber 65 is formed in a substantially cylindrical shape.
  • the spring chamber 63 is formed in a substantially cylindrical shape having a larger diameter than the diameter of the reaction force hydraulic chamber 65.
  • the reaction force hydraulic chamber 65 and the spring chamber 63 are integrated to form a stepped substantially cylindrical shape.
  • the lid 81 is supported by the opening by a locking ring 83.
  • the spring chamber 63 includes a first spring seat member 369, a second spring seat member 371, a third spring seat member 377, and an unequal pitch spring 368, A second return spring 68b is provided.
  • the unequal pitch spring 368 corresponds to the “spring member” of the present invention.
  • the unequal pitch spring 368 corresponds to the “first elastic portion” and the “third elastic portion” of the present invention.
  • the first spring seat member 369, the second spring seat member 371, and the third spring seat member 377 are provided in this order from the rear side to the front side in the spring chamber 63. It has been.
  • Each of the first spring seat member 369, the second spring seat member 371, and the third spring seat member 377 is formed in a substantially hat shape in longitudinal section.
  • the first spring seat member 369 is fixed to the front end wall 67b of the simulator piston 67 by a joining means such as welding.
  • the first spring seat member 369 includes a disc-shaped bottom portion 369a provided so as to be orthogonal to the axial direction, and a peripheral wall portion 369b extending rearward from the periphery of the bottom portion 369a. And a flange portion 369c extending outward in the radial direction from the rear end edge of the peripheral wall portion 369b.
  • the second spring seat member 371 is a disc-shaped bottom portion 371a provided so as to be orthogonal to the axial direction, and extends unequally from the periphery of the bottom portion 371a.
  • a peripheral wall portion 371b that covers the outer periphery of the pitch spring 368 (which will be described in detail later) and a flange portion 371c that extends radially outward from the edge of the peripheral wall portion 371b are configured.
  • the bottom portion 371a of the second spring seat member 371 is provided so as to point in the same direction as the bottom portion 369a of the first spring seat member 369 (the opposite side of the simulator piston).
  • the third spring seat member 377 includes a disc-shaped bottom portion 377a provided so as to be orthogonal to the axial direction, a peripheral wall portion 377b extending from the periphery of the bottom portion 377a to the front side, and the peripheral wall. And a flange portion 377c extending outward in the radial direction from the edge of the portion 377b.
  • the second spring seat member 371 corresponds to the “spring seat member” of the present invention.
  • the bottom portion 371a of the second spring seat member 371 corresponds to the “bottom portion supporting the opposite side of the simulator piston in the spring member” of the present invention.
  • the peripheral wall portion 371b of the second spring seat member 371 corresponds to “a peripheral wall portion extending from the periphery of the bottom portion and covering the outer periphery of the spring member” in the present invention.
  • the second spring seat member 371 and the third spring seat member 377 are provided in the spring chamber 63 so that the bottom portions 371a and 377a face each other.
  • the flange portion 371 c of the second spring seat member 371 and the flange portion 377 c of the third spring seat member 377 have their front end portion and rear end portion sandwiching an unequal pitch spring 368. Each part is supported.
  • the peripheral wall portion 371b of the second spring seat member 371 and the peripheral wall portion 377b of the third spring seat member 377 are respectively provided on the inner peripheral side of the second return spring 68b.
  • the lid portion 81 supported by the housing 364a is provided on the opposite side of the simulator piston 67 in the third spring seat member 377.
  • a third spring seat member 377 is supported by the lid portion 81.
  • Each of the unequal pitch spring 368 and the second return spring 68b is formed by a compression coil spring.
  • the second return spring 68b is formed to have a larger wire diameter than the unequal pitch spring 368.
  • the spring constant of the second return spring 68b is set larger than the spring constant of the unequal pitch spring 368.
  • the second return spring 68b is sandwiched and supported between the second spring seat member 371 and the third spring seat member 377.
  • the unequal pitch spring 368 is sandwiched and supported between the first spring seat member 369 and the second spring seat member 371 on the inner peripheral side of the peripheral wall portion 371b of the second spring seat member 371.
  • the simulator piston 67 side of the unequal pitch spring 368 is in contact with the flange portion 369 c of the first spring seat member 369.
  • the opposite side of the unequal pitch spring 368 to the simulator piston 67 is in contact with the bottom 371 a of the second spring seat member 371.
  • the unequal pitch spring 368 and the second return spring 68b are provided in series between the first spring seat member 369 and the third spring seat member 377.
  • the eighth and 9 is a third rod member extending in the axial direction and penetrating through the centers of the bottom portions 371a and 377a of the second spring seat member 371 and the third spring seat member 377. is there.
  • the third rod member 379 is provided so as to be movable relative to the second spring seat member 371 and the third spring seat member 377 in the axial direction.
  • the simulator piston 67 side of the third rod member 379 is supported by a resin member 375 provided on the inner peripheral side of the unequal pitch spring 368.
  • the resin member 375 according to the third embodiment is formed of an elastic member such as synthetic rubber.
  • the resin member 375 is supported in contact with the bottom portion 369 a of the first spring seat member 369.
  • the resin member 375 has a function of relaxing the displacement of the simulator piston 67 with respect to the input load.
  • the peripheral wall portion 371b has a small diameter formed on the bottom portion 371a side. It is formed in a stepped shape having a portion 3711 and a large diameter portion 3712 formed on the flange portion 371c side and having a diameter larger than that of the small diameter portion 3711.
  • the unequal pitch spring 368 is provided such that its front portion SF is positioned on the inner peripheral side of the small diameter portion 3711 in the peripheral wall portion 371b, and its rear portion SR is positioned on the inner peripheral side of the large diameter portion 3712 in the peripheral wall portion 371b. It has been. In short, as shown in FIG.
  • the peripheral wall portion 371b of the second spring seat member (spring seat member) 371 has a cross-sectional area of a portion (rear portion SR) corresponding to the unequal pitch spring 368 having a large pitch.
  • S2 is set larger than the cross-sectional area S1 of the portion (front portion SF) corresponding to the unequal pitch spring 368 whose pitch is set smaller than the above.
  • the distinction between the front portion SF and the rear portion SR in the unequal pitch spring 368 according to the third embodiment is that the spring portion located on the simulator piston 67 side from the center of the spring length corresponds to the rear portion SR.
  • a spring portion located on the opposite side of the simulator piston 67 from the center corresponds to the front portion SF.
  • the unequal pitch springs (spring members) 368 are formed by connecting spring members having different pitches in series and integrally.
  • This unequal pitch spring 368 has, in the longitudinal direction of the spring, a front portion SF that is a region having a small spring constant and a rear portion SR that is a region having a larger spring constant than the front portion SF.
  • the unequal pitch spring 368 has a plurality of regions where the number of windings (effective number of windings) of the wire of unit length is different. More specifically, in the unequal pitch spring 368, the pitch P1 of the rear SR is set to be larger than the pitch P2 of the front SF (P1> P2).
  • the spring constant k4 of the rear SR is set larger (k4> k5) than the spring constant k5 of the front SF.
  • the mode in which the spring constant is adjusted by adjusting the pitch has been described as an example, but the present invention is not limited to this example.
  • G the transverse elastic modulus of the spring material.
  • d the wire diameter of the spring.
  • Na is the effective number of turns of the spring.
  • D is the average coil diameter.
  • the magnitude relation of the pitch in the unequal pitch spring (spring member) 368 means the magnitude relation in a state where the unequal pitch spring 368 is set in the third stroke simulator 364.
  • the magnitude relationship of the pitch in the unequal pitch spring 368 is substantially the same even in the state before being set in the third stroke simulator 364. This is because when the unequal pitch spring 368 in the stretched state before being set in the third stroke simulator 364 is contracted to the set length, the spring region (front portion SF) with a small spring constant and a small pitch is better. This is because the pitch is shortened first (preferentially) as compared with the spring region (rear portion SR) having a large spring constant and a large pitch.
  • FIG. 10 is an explanatory diagram illustrating the operation of the third stroke simulator in comparison with a comparative example (prior art according to Patent Document 1).
  • the horizontal axis represents the stroke amount of the spring member
  • the vertical axis represents the load of the spring member.
  • the spring member according to the comparative example is a compression coil spring used in the stroke simulator according to Patent Document 1, in which the wire diameter of the spring, the effective number of turns of the spring, and the average coil diameter are constant over the spring length. Is assumed.
  • the spring member according to the third embodiment of the present invention is an unequal pitch spring 368.
  • the unequal pitch spring 368 is set so that the pitch P2 of the front portion SF is substantially the same as that of the spring member according to the comparative example, and the pitch P1 of the rear portion SR is compared with the pitch P2 of the front portion SF.
  • the pitch is set to be unequal so as to increase.
  • the material, wire diameter, and average coil diameter of the spring are set substantially the same as those of the spring member according to the comparative example.
  • the spring member used in the stroke simulator according to the comparative example is incorporated into the stroke simulator according to the comparative example with a predetermined set length L1 to set the target set load N1.
  • L1 the spring member used in the stroke simulator according to the comparative example has a constant spring constant in the spring length direction, if the set length varies within the range of SA2 with respect to L1, the set load Causes a variation in the range of B2 with respect to the target N1.
  • the set load may become the lower limit value of the range of B2, and the return of the simulator piston may be worsened. Conversely, the set load becomes the upper limit value of the range of B2. There was a fear that a good pedal feel could not be realized.
  • the brake reaction force in cooperation with the unequal pitch spring 368 in the rear portion SR having substantially the same pitch as the spring member according to the comparative example. Is generated. That is, the rear portion SR is a portion that forms an original brake reaction force in the third stroke simulator 364.
  • the relationship of the load of the third stroke simulator 364 with respect to the stroke amount of the third stroke simulator 364 in the rear portion SR has the same gradient characteristics as the comparative example shown in FIG.
  • the front portion SF of the unequal pitch spring 368 has a smaller pitch and a smaller spring constant than the rear portion SR. Therefore, the load of the unequal pitch spring 368 relative to the stroke amount of the unequal pitch spring 368 in the front portion SF. As shown in FIG. 10, this relationship has a characteristic of a gentler slope than that of the comparative example. That is, when the unequal pitch spring 368 is contracted to be incorporated into the third stroke simulator 364, the front portion SF having a smaller pitch than the rear portion SR follows the characteristic shown in FIG. Thus, it will shrink first (preferentially).
  • the first elastic portion and the third elastic portion according to the present invention include unequal pitch springs (spring members) 368, and unequal pitch springs (spring members). 368 is formed by connecting spring members having different pitches in series and integrally. Therefore, according to the hydraulic pressure generator 14 according to the third embodiment, the variation in the set load of the unequal pitch spring 368 can be reduced, so that high accuracy control of the unequal pitch spring (spring member) 368 is realized. can do. Moreover, according to the hydraulic pressure generator 14 which concerns on 3rd Embodiment, since setting of a set load can be performed easily with high precision, the performance of the brake system 10 for vehicles which applies this is improved significantly. be able to. In addition, the manufacturing process can be simplified, and the manufacturing cost can be reduced.
  • the hydraulic pressure generating device 14 according to the third embodiment, after the unequal pitch spring 368 is set on the third stroke simulator 364, a portion with a small pitch (a front portion SF of the unequal pitch spring 368) is large. By using the repulsive force, the return of the simulator piston 67 can be improved.
  • the unequal pitch springs (spring members) 368 corresponding to the “first elastic portion” and the “third elastic portion” of the present invention are mutually connected. Since the spring members having different pitches are connected in series and integrally, the same effect as in the vehicle hydraulic pressure generator 14 according to the first embodiment can be expected to relieve the uncomfortable feeling during the brake operation.
  • a resin member 375 supported by the simulator piston 67 is provided on the inner peripheral side of the unequal pitch spring (spring member) 368, and the unequal pitch spring (spring member) is provided. ) 368, the pitch P1 on the side of the simulator piston 67 was set larger than the pitch P2 on the opposite side. Therefore, according to the hydraulic pressure generation device 14 according to the third embodiment, when the unequal pitch spring 368 is contracted by the simulator piston 67, the resin member 375 has a larger pitch of the unequal pitch spring 368 and a radial direction.
  • the unequal pitch spring 368 Since the inner SR of the unequal pitch spring 368 moves from the rear portion SR having a large dimensional variation toward the front portion SF having a small pitch and small dimensional variation, the unequal pitch spring 368 and Interference with the resin member 375 can be prevented in advance. Moreover, since the distance (gap) between the resin member 375 and the unequal pitch spring 368 on the inner peripheral side of the unequal pitch spring 368 can be reduced, the vehicle hydraulic pressure generator 14 can be made compact.
  • the peripheral wall portion 371b of the second spring seat member (spring seat member) 371 corresponds to the unequal pitch spring 368 having a large pitch (
  • the cross-sectional area S2 of the rear portion SR) is set to be larger than the cross-sectional area S1 of the portion (front portion SF) corresponding to the unequal pitch spring 368 whose pitch is set smaller than the above. Therefore, according to the hydraulic pressure generator 14 according to the third embodiment, the rear portion SR of the unequal pitch spring 368 and the second spring seat member 371 having a large pitch P1 and a large variation in radial dimension. Interference with the peripheral wall portion 371b can be prevented in advance.
  • the third rod that penetrates the bottom 371a of the second spring seat member (spring seat member) 371 in the expansion / contraction direction of the unequal pitch spring (spring member) 368.
  • the third rod member 379 is supported by a second spring seat member (spring seat member) 371 so as to be relatively movable along the expansion / contraction direction, and the simulator piston 67 in the third rod member 379 is provided. This side is supported by the resin member 375. Therefore, according to the hydraulic pressure generator 14 according to the third embodiment, when the unequal pitch spring 368 is contracted by the simulator piston 67 and then restored, the third rod member 379 is connected to the simulator piston 67 and the non-uniform piston spring 368. The movement of the equal pitch spring 368 can be guided in the axial direction. As a result, according to the hydraulic pressure generating device 14 according to the third embodiment, the moving operation of the simulator piston 67 and the unequal pitch spring 368 can be performed smoothly.
  • FIG. 11 is a longitudinal sectional view of the vehicle hydraulic pressure generator 14 according to the fourth embodiment including the first stroke simulator 64 shown in FIG.
  • the vehicle hydraulic pressure generator 14 (see FIG. 8) according to the third embodiment and the vehicle hydraulic pressure generator 14 (see FIG. 11) according to the fourth embodiment are basically the same.
  • the components are common or correspond. Therefore, components that are substantially common between the two will be denoted by common reference numerals and description thereof will be omitted, and description will be made focusing on differences between the two.
  • the first difference between the vehicle hydraulic pressure generator 14 according to the third embodiment (see FIG. 8) and the vehicle hydraulic pressure generator 14 according to the fourth embodiment (see FIG. 11) is the third embodiment.
  • the third stroke simulator 364 is provided, whereas in the fourth embodiment, the first stroke simulator 64 is provided.
  • the structure and the effect of the 1st stroke simulator 64 it is the same as the content demonstrated in 1st Embodiment.
  • the second difference between the vehicle hydraulic pressure generator 14 (see FIG. 8) according to the third embodiment and the vehicle hydraulic pressure generator 14 (see FIG. 11) according to the fourth embodiment is the same as the third embodiment.
  • the maximum value of the hydraulic pressure generated in the first hydraulic pressure chamber 56a is set substantially equal to the maximum value of the hydraulic pressure generated in the second hydraulic pressure chamber 56b, whereas the fourth value In the master cylinder 434 according to the embodiment, the maximum value of the hydraulic pressure generated in the second hydraulic pressure chamber 456b is set to be smaller than the maximum value of the hydraulic pressure generated in the first hydraulic pressure chamber 456a.
  • the first and second pistons 440a and 440b, the first and second hydraulic pressure chambers 456a and 456b, and First and second spring members 450a and 450b are provided, respectively.
  • the first and second pistons 440a and 440b are provided so as to be able to advance and retreat in the master cylinder 434 in conjunction with the brake pedal 12.
  • the first hydraulic chamber 456a is defined by the inner wall portion of the master cylinder 434, and the first piston 440a and the second piston 440b.
  • the second hydraulic chamber 456b is defined by the inner wall portion of the master cylinder 434 and the second piston 440b.
  • the first spring member 450a is provided in the first hydraulic chamber 456a and has a function of connecting the first piston 440a and the second piston 440b.
  • the second spring member 450 b is provided in the second hydraulic pressure chamber 456 b and has a function of connecting the second piston 440 b and the inner wall portion of the master cylinder 434.
  • the housing 434a of the master cylinder 434 is integrally formed with the housing 64a of the first stroke simulator 64, for example, by casting, and constitutes the housing 14a of the vehicle hydraulic pressure generator 14 according to the fourth embodiment.
  • the second hydraulic pressure chamber 456 b communicates with the reaction force hydraulic pressure chamber 65 via the hydraulic pressure path 464.
  • the important point in the vehicle hydraulic pressure generating device 14 according to the fourth embodiment is that the liquid generated in the second hydraulic pressure chamber 456b in the master cylinder 434 according to the fourth embodiment, as will be described in detail later.
  • the maximum value of the pressure is set to be smaller than the maximum value of the hydraulic pressure generated in the first hydraulic pressure chamber 456a.
  • the maximum capacity of the second hydraulic chamber 456 b is set to be smaller than the maximum capacity of the reaction force hydraulic chamber 65.
  • a region surrounded by a dotted line represented by reference sign “A” in FIG. 11 conceptually represents the capacity of the second hydraulic chamber 456b.
  • the capacity of the second hydraulic pressure chamber 456b is maximized in an unweighted state with respect to the master cylinder 434.
  • a region surrounded by a dotted line represented by reference sign “B” in FIG. 11 conceptually represents the capacity of the reaction force hydraulic chamber 65.
  • the capacity B of the reaction force hydraulic chamber 65 is maximized when the simulator piston 67 moves forward to the bottom position.
  • the second spring members 450b that connect the inner wall portions of 434 have substantially the same elastic coefficients.
  • the first piston 440a has a margin until it reaches the bottom of the second piston 40b on the push rod 42 side. Is set.
  • the distance between the opposite side of the push rod 42 in the second piston 440b and the inner wall portion of the master cylinder 434 is the side of the push rod 42 in the second piston 40b and the first piston 40a. Is set smaller than the distance on the opposite side of the push rod 42.
  • FIG. 12 shows the master cylinder hydraulic pressure with respect to the stroke amount (master cylinder stroke [mm 3 ]) in the first hydraulic pressure chamber 456a and the second hydraulic pressure chamber 456b in the vehicle hydraulic pressure generator 14 according to the fourth embodiment. It is explanatory drawing which compares and shows the characteristic diagram of Pa]. A characteristic diagram indicated by a thin solid line in FIG.
  • FIG. 12 represents the hydraulic pressure in the first hydraulic pressure chamber 56a with respect to the stroke amount of the first piston 40a.
  • a characteristic diagram shown by a thick solid line in FIG. 12 represents the hydraulic pressure in the second hydraulic pressure chamber 56b with respect to the stroke amount of the second piston 40b.
  • the master cylinder hydraulic pressure [Pa] on the vertical axis in FIG. 12 is represented by the pressure of the brake fluid (fluid) delivered from the first hydraulic chamber 56a or the second hydraulic chamber 56b.
  • the first shut-off valve 60a and the second shut-off valve 60b which are normally open solenoid valves, are excited regardless of whether or not the brake fluid pressure is generated in the master cylinder 34. Then, the valve is closed, and the third shut-off valve 62 composed of a normally closed solenoid valve is excited to open the valve (see FIG. 2). Therefore, since the first hydraulic pressure system 70a and the second hydraulic pressure system 70b are shut off by the first shutoff valve 60a and the second shutoff valve 60b, the master cylinder 434 of the vehicle hydraulic pressure generator 14 according to the fourth embodiment. Is not transmitted to the wheel cylinders 32FR, 32RL, 32RR, 32FL of the disc brake mechanisms 30a-30d.
  • the second hydraulic pressure chamber 456b communicates with the reaction force hydraulic pressure chamber 65, and the maximum value of the hydraulic pressure generated in the second hydraulic pressure chamber 456b is It is set smaller than the maximum value of the hydraulic pressure generated in the first hydraulic chamber 456a. Therefore, according to the vehicle braking force generator 10 including the vehicle hydraulic pressure generator 14 according to the fourth embodiment, the material for forming the first stroke simulator 64, the master cylinder 434 and the first stroke simulator 64 are provided. Special materials having high strength and high durability are used for the material for forming the branch hydraulic pressure path 58c to be connected and various components such as the third shut-off valve 62 arranged in the branch hydraulic pressure path 58c. There is no need, and the degree of freedom in selecting the forming material and components is expanded. As a result, the manufacturing cost of the vehicle braking force generator 10 can be further reduced.
  • the first stroke simulator 64 is used until immediately before the opposite side of the push rod 42 in the second piston 440b settles against the inner wall portion of the master cylinder 434. Operates normally. Therefore, according to the vehicle hydraulic pressure generation device 14 according to the fourth embodiment, it is possible to obtain an effect of mitigating the uncomfortable feeling during the brake operation, similar to the vehicle hydraulic pressure generation device 14 according to the first embodiment.
  • the maximum capacity A (see FIG. 11) of the second hydraulic chamber 456b of the master cylinder (hydraulic pressure generating unit) 434 is the reaction force hydraulic chamber 65. Is set smaller than the maximum capacity B (see FIG. 11). Therefore, according to the vehicle braking force generation device 10 including the vehicle hydraulic pressure generation device 14 according to the fourth embodiment, the simulator of the first stroke simulator 64 before the second piston 440b of the master cylinder 434 settles. The piston 67 does not bottom out. In other words, when the second piston 440b of the master cylinder 434 reaches the bottom, the simulator piston 67 of the first stroke simulator 64 has a margin until the bottom reaches the bottom.
  • the maximum capacity A of the second hydraulic chamber 456b of the master cylinder 434 is set larger than the maximum capacity B of the reaction force hydraulic chamber 65 as a comparative example. Then, in this comparative example, contrary to the vehicle hydraulic pressure generator 14 according to the fourth embodiment, after the simulator piston 67 of the first stroke simulator 64 has settled, the second piston 440b of the master cylinder 434 is bottomed. Will arrive.
  • the second piston 440b can move forward in the housing 434a of the master cylinder 434 even after the simulator piston 67 has settled.
  • the housing 64a of the first stroke simulator 64 itself, it is necessary to provide a corresponding strength.
  • the simulator piston 67 still bottoms out even when the second piston 440b bottoms out. Therefore, it is possible to prevent a large load from being applied to the housing 64a itself of the first stroke simulator 64.
  • the vehicle hydraulic pressure generator 14 according to the fourth embodiment and the first hydraulic valve 456a and the second hydraulic chamber 456b of the master cylinder (hydraulic pressure generator) 434 are provided with a first cutoff valve (shutoff valve) 60a.
  • a motor cylinder device (electrical fluid pressure generating unit) 16 that communicates with each other and is electrically operated, and includes a first hydraulic pressure chamber 456a and a first shut-off valve ( You may employ
  • first brake system 110a on the first common hydraulic pressure path (communication path) 112 and the second common hydraulic pressure path (communication path) 114 for communicating the wheel cylinders 32FR, 32RL and the brake fluid reservoir 132.
  • the first out valve 128 and the second out valve 130 are used as pressure reducing valves.
  • the first out valve (pressure reducing valve) 128 and the second out valve (pressure reducing valve) 130 are the first shutoff valve (shutoff valve) 60a.
  • the master cylinder 434 is operated in a state where the first shut-off valve 60a is open when the motor cylinder device 16 or the like is abnormal,
  • the fluid pressure in the first fluid pressure path 58a is detected and monitored by the pressure sensor Pm.
  • the control unit (not shown) of the vehicle braking force generator 10 causes the first out valve 128 and the second out valve By opening the valve 130, the brake fluid (fluid) can be guided to the reservoir 132 to reduce the fluid pressure.
  • the first in-valve 120 and the second in-valve 124 are closed by the control unit. Therefore, according to the vehicular braking force generator 10 including the vehicular hydraulic pressure generator 14 according to the fourth embodiment, the master cylinder 34 with the first shut-off valve 60a open when the motor cylinder device 16 or the like is abnormal.
  • the maximum hydraulic pressure generated in the second hydraulic pressure chamber 56b and the maximum hydraulic pressure generated in the first hydraulic pressure chamber 56a are reduced. It can be adjusted to fit or match.
  • FIG. 13 is a longitudinal sectional view of the vehicle hydraulic pressure generator 14 according to the fifth embodiment including the second stroke simulator 164 shown in FIG.
  • the vehicle hydraulic pressure generator 14 (see FIG. 11) according to the fourth embodiment and the vehicle hydraulic pressure generator 14 (see FIG. 13) according to the fifth embodiment are basically the same.
  • the components are common or correspond. Therefore, components that are substantially common between the two will be denoted by common reference numerals and description thereof will be omitted, and description will be made focusing on differences between the two.
  • the difference between the vehicle hydraulic pressure generator 14 according to the fourth embodiment (see FIG. 11) and the vehicle hydraulic pressure generator 14 according to the fifth embodiment (see FIG. 13) is that in the fourth embodiment, While the first stroke simulator 64 is provided, the fifth embodiment is provided with a second stroke simulator 164. About the structure of the 2nd stroke simulator 164, and its effect, it is the same as the content demonstrated in 2nd Embodiment.
  • the second hydraulic pressure chamber 456b communicates with the reaction force hydraulic pressure chamber 65 in the same manner as the vehicle hydraulic pressure generation device 14 according to the fourth embodiment.
  • the maximum value of the hydraulic pressure generated in the second hydraulic pressure chamber 456b is set to be smaller than the maximum value of the hydraulic pressure generated in the first hydraulic pressure chamber 456a. Therefore, according to the vehicle braking force generator 10 including the vehicle hydraulic pressure generator 14 according to the fifth embodiment, the forming material of the second stroke simulator 164, the master cylinder 434 and the second stroke simulator 164 are provided.
  • the second stroke simulator 164 is used until just before the opposite side of the push rod 42 of the second piston 440b settles against the inner wall of the master cylinder 434. Operates normally. Therefore, according to the vehicle hydraulic pressure generation device 14 according to the fifth embodiment, it is possible to obtain an effect of mitigating the uncomfortable feeling during the brake operation, similar to the vehicle hydraulic pressure generation device 14 according to the second embodiment.
  • FIG. 14 is a longitudinal sectional view of the vehicle hydraulic pressure generator 14 according to the sixth embodiment including the third stroke simulator 364 shown in FIGS. 8 and 9.
  • the vehicle hydraulic pressure generator 14 (see FIG. 11) according to the fourth embodiment and the vehicle hydraulic pressure generator 14 (see FIG. 14) according to the sixth embodiment are basically the same.
  • the components are common or correspond. Therefore, components that are substantially common between the two will be denoted by common reference numerals and description thereof will be omitted, and description will be made focusing on differences between the two.
  • the difference between the vehicle hydraulic pressure generator 14 according to the fourth embodiment (see FIG. 11) and the vehicle hydraulic pressure generator 14 according to the sixth embodiment (see FIG. 14) is that in the fourth embodiment, While the first stroke simulator 64 is provided, the sixth embodiment is provided with a third stroke simulator 364.
  • the configuration of the third stroke simulator 364 and the function and effect thereof are the same as those described in the third embodiment.
  • the second hydraulic pressure chamber 456b communicates with the reaction force hydraulic pressure chamber 65 in the same manner as the vehicle hydraulic pressure generation device 14 according to the fourth embodiment.
  • the maximum value of the hydraulic pressure generated in the second hydraulic pressure chamber 456b is set to be smaller than the maximum value of the hydraulic pressure generated in the first hydraulic pressure chamber 456a. Therefore, according to the vehicle braking force generation device 10 including the vehicle hydraulic pressure generation device 14 according to the sixth embodiment, the forming material of the third stroke simulator 364, the master cylinder 434, and the second stroke simulator 164 are provided.
  • the third stroke simulator 364 is used until just before the opposite side of the push rod 42 in the second piston 440b settles against the inner wall of the master cylinder 434. Operates normally. Therefore, according to the vehicle hydraulic pressure generation device 14 according to the sixth embodiment, it is possible to obtain an effect of mitigating the uncomfortable feeling during the brake operation, similar to the vehicle hydraulic pressure generation device 14 according to the third embodiment.
  • the present invention is not limited to this example.
  • FIG. although an example in which four easily deformable portions 75d1a are provided on one side in the axial direction of the first bush 75 has been described, the present invention is not limited to this example.
  • a configuration in which an arbitrary number of easily deformable portions 75d1a such as a single (continuous in the circumferential direction) or 2, 3, 5 or the like is provided on one side in the axial direction of the first bush 75 may be employed. .
  • the present invention is not limited to this example.
  • the first bush 75 has a linear reaction force characteristic, and the linear reaction force characteristic created by the compression deformation of the first return spring 68a within the range of the second section l 2 and the compression of the first bush 75 The linear reaction force characteristics created by deformation are added together. Thereby, the reaction force characteristic with respect to the operation amount of the brake pedal 12 which connected the linear characteristic of three steps can be obtained.
  • Such embodiments are also included in the scope of the technical scope of the present invention.
  • a section including a switching point (point Q) at which the linear reaction force characteristics related to the first elastic coefficient (k1) and the second elastic coefficient (k2) different from each other are switched according to claim 3; Is a concept that encompasses the second interval l 2 .
  • the present invention is not limited to this example.
  • the number of stages of the spring constant of the unequal pitch spring according to the present invention may be three or more.
  • the spring constant is increased in the order along the longitudinal direction of the spring.
  • regions having different spring constants may be set in order of increasing numbers, or regions having different spring constants may be randomly arranged.
  • the first and second out valves 128 and 130 as the pressure reducing valves constituting the VSA device 18 and the reservoir 132 are used to reduce the hydraulic pressure of the first brake system 110a.
  • the structure to reduce is illustrated and demonstrated, this invention is not limited to this example.
  • the present invention may employ, for example, a configuration in which both or one of the pressure reducing valve and the pressure reducing circuit is provided in the middle of the hydraulic pressure path between the connection port 20a and the wheel cylinders 32FR and 32RL.
  • Vehicle brake system vehicle braking force generator
  • Brake pedal Brake operating member
  • Vehicle hydraulic pressure generator 16
  • Motor cylinder device electric hydraulic pressure generator
  • Master cylinder hydraulic pressure generator
  • Master cylinder hydraulic pressure generator
  • First piston 40b
  • Second piston 56a
  • First hydraulic chamber 56b
  • Second hydraulic chamber 60a
  • First shut-off valve shut-off valve
  • First stroke simulator 64
  • Reaction force hydraulic chamber 66
  • Cylinder portion 67
  • Simulator piston 68a First return spring (elastic portion, first elastic portion)
  • Second return spring 69 1st spring seat member 71 2nd spring seat member 75 1st bush (elastic part, 3rd elastic part)
  • Hollow portion 75d1
  • First easily deformable portion 75e annular step: second easily deformable part (easy deformable part)
  • 75g taper part third easily deformable part (easy deformable part)
  • Tapered portion third easily deformable portion (easy deformable portion) 77
  • Third easily deformable portion 77

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)
  • Braking Elements And Transmission Devices (AREA)
  • Transmission Of Braking Force In Braking Systems (AREA)
  • External Artificial Organs (AREA)
  • Prostheses (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

ブレーキペダル(12)の操作により生じた液圧がシリンダ部(66)内に伝わると移動するシミュレータピストン(67)の押圧により第1ブッシュ(75)が圧縮変形することで、ブレーキペダル(12)の操作量に対する反力特性を擬似的に創り出す車両用液圧発生装置(14)である。第1ブッシュ(75)は、第2の弾性係数と比べて小さい第3の弾性係数を有して第1のリターンスプリング(68a)に対して並列に設けられている。第1ブッシュ(75)の圧縮変形は、第1のリターンスプリング(68a)の圧縮変形が主として行われる第1の区間(l )に重なる第2の区間(l )で行われる。ブレーキの操作量に対する反力特性において、第1および第2の弾性係数に係る線形の反力特性が切り換わる切換点に生じるくの字状の特異点に起因するブレーキ操作時の違和感を緩和させることができる。

Description

車両用液圧発生装置および車両用制動力発生装置
 本発明は、ブレーキの操作量に応じた反力を擬似的に創り出す車両用液圧発生装置、および、この車両用液圧発生装置を備える車両用制動力発生装置に関する。
 例えばハイブリッド車両では、油圧を媒介してブレーキを作動させる従来型のブレーキシステムに代えて、電気信号を媒介してブレーキを作動させるバイ・ワイヤ(By Wire)式のブレーキシステムが採用されている。かかるバイ・ワイヤ式のブレーキシステムでは、ブレーキペダルの操作感が従来型のブレーキシステムと異ならないように、ブレーキペダルの操作量に応じた反力を擬似的に創り出すストロークシミュレータが設けられている(例えば、特許文献1参照)。
 こうしたストロークシミュレータの一例として、本願出願人は、第1の弾性係数を有する第1の弾性部材と、第1の弾性係数と比べて大きい第2の弾性係数を有する第2の弾性部材とを、相互に直列に配置してなるストロークシミュレータを提案している(例えば、特許文献2参照)。
 特許文献2に係るストロークシミュレータによれば、ブレーキの操作量に対する反力特性において、操作量が小さい場合は小さい反力を、操作量が大きい場合は大きい反力を創り出すように、ブレーキの操作量に応じた適正な反力をそれぞれ創り出すことができる。
特開2007-210372号公報 特開2009-073478号公報
 しかしながら、特許文献2に係るストロークシミュレータでは、第1の弾性係数を有する第1の弾性部材と、第2の弾性係数を有する第2の弾性部材とを、相互に直列に配置してなり、第2の弾性係数は第1の弾性係数と比べて大に設定される。これら第1および第2の弾性係数は相互に異なるため、第1の弾性係数に係る線形の反力特性と、第2の弾性係数に係る線形の反力特性とが切り換わる部分(以下、“切換点”という)に、くの字状の特異点を生じる。この切換点に生じる特異点の存在が、ブレーキの操作時に違和感を生じさせる懸念があった。
 本発明は上記実情に鑑みてなされたものであり、ブレーキの操作量に対する反力特性において、第1および第2の弾性係数に係る線形の反力特性が切り換わる切換点に生じるくの字状の特異点に起因するブレーキ操作時の違和感を緩和させることが可能な車両用液圧発生装置および車両用制動力発生装置を提供することを目的とする。
 上記目的を達成するために、請求項1に係る発明は、運転者によるブレーキ操作部材の操作量に応じた液圧を発生させる液圧発生部と、前記液圧発生部に連通されて、前記ブレーキ操作部材の操作量に応じた反力を発生させる反力発生部と、を備える車両用液圧発生装置において、前記反力発生部は、前記液圧発生部で発生した液圧に応じて進出方向または退避方向に作動されるシミュレータピストンと、前記シミュレータピストンの前記進出方向の側に設けられた弾性部と、を有し、前記弾性部は、第1の弾性係数を有する第1の弾性部、前記第1の弾性係数と比べて大きい第2の弾性係数を有する第2の弾性部、および、前記第2の弾性係数と比べて小さい第3の弾性係数を有する第3の弾性部からなる、ことを要旨とする。
 本発明によれば、ブレーキ操作部材の操作量に対する反力特性において、何らの解決手段をも採用しない場合に、相互に異なる第1および第2の弾性係数に係る線形の反力特性が切り換わる切換点に生じていたくの字状の特異点に起因するブレーキ操作時の違和感を緩和させることができる。
電動ブレーキ装置が適用された車両用ブレーキシステムの車両における配置構成を示す図である。 車両用ブレーキシステムの概略構成図である。 第1ストロークシミュレータの縦断面図である。 図4(a)は、第1ストロークシミュレータに内装される第1ブッシュの平面図、図4(b)は、図4(a)のB-B線について矢印方向に観た第1ブッシュの断面図、図4(c)は、図4(a)のC方向から観た第1ブッシュの外観図である。 第1ブッシュの取り付け状態を示す分解斜視図である。 実施例の作用を比較例と対比して表す説明図である。 第2ストロークシミュレータの縦断面図である。 第3ストロークシミュレータを備える第3実施形態に係る車両用液圧発生装置の縦断面図である。 第3ストロークシミュレータの主要部を拡大して表す縦断面図である。 実施例の作用を比較例と対比して表す説明図である。 第1ストロークシミュレータを備える第4実施形態に係る車両用液圧発生装置の縦断面図である。 第1液圧室および第2液圧室におけるストローク量に対する液圧の特性線図を対比して表す説明図である。 第2ストロークシミュレータを備える第5実施形態に係る車両用液圧発生装置の縦断面図である。 第3ストロークシミュレータを備える第6実施形態に係る車両用液圧発生装置の縦断面図である。
 以下、本発明の複数の実施形態について、適宜図面を参照しながら詳細に説明する。
 なお、図面において、共通の参照符号を付した部材は、共通の機能を有する部材または相当する機能を有する部材を表すものとする。また、説明の便宜のため、部材のサイズおよび形状は、変形あるいは誇張して模式的に表す場合がある。
[車両用ブレーキシステム10における構成部材の配置構成]
 はじめに、車両用ブレーキシステム10における構成部材の配置構成について、図1を参照して説明する。図1は、電動ブレーキ装置が適用された車両用ブレーキシステムの車両における配置構成を示す図である。なお、車両Vの前後左右の方向を図1中の矢印で表している。
 車両用ブレーキシステム(本発明の“車両用制動力発生装置”に相当する。)10は、通常時用として、電気信号を伝達してブレーキを作動させるバイ・ワイヤ(By Wire)式のブレーキシステムと、フェイルセイフ時用として、油圧を伝達してブレーキを作動させる旧来の油圧式のブレーキシステムの双方を備えて構成される。
 図1に示すように、車両用ブレーキシステム10は、操作者(運転者)のブレーキ操作がブレーキペダル(本発明の“ブレーキ操作部材”に相当する。)12を介して入力される車両用液圧発生装置(以下、“液圧発生装置”という場合がある。)14と、少なくともブレーキ操作に応じた電気信号に基づいてブレーキ液圧を発生するモータシリンダ装置(本発明の“電気的液圧発生部”に相当する。)16と、モータシリンダ装置16で発生したブレーキ液圧に基づいて車両の挙動の安定化を支援するビークル・スタビリティ・アシスト装置18(以下、VSA装置18という。ただし、VSAは登録商標)と、を備えて構成されている。
 なお、モータシリンダ装置16は、運転者のブレーキ操作に応じた電気信号に基づいてブレーキ液圧を発生させる構成に代えて、他の物理量に応じた電気信号に基づいてブレーキ液圧を発生させる構成を採用してもよい。他の物理量に応じた電気信号とは、例えば、運転者のブレーキ操作によらない自動ブレーキシステムにおいて、CCDカメラやセンサなどを介してECU(Electronic Control Unit)が車両Vの周囲の状況を取得し判断を行い、この判断結果にしたがって車両Vの制動指令を行う制御信号をあげることができる。
 液圧発生装置14は、ここでは右ハンドル車に適用するものであり、ダッシュボード2の車幅方向の右側にボルト等を介して固定されている。液圧発生装置14は、左ハンドル車に適用されるものであってもよい。
 モータシリンダ装置16は、例えば、液圧発生装置14とは逆側の車幅方向の左側に配置され、左側のサイドフレーム等の車体1に取付ブラケット(図示せず)を介して取り付けられている。
 VSA装置18は、例えば、ブレーキ時の車輪ロックを防ぐABS(アンチロック・ブレーキ・システム)機能、加速時などの車輪空転を防ぐTCS(トラクション・コントロール・システム)機能、旋回時の横すべりを抑制する機能などを備えて構成されており、例えば、車幅方向の右側の前端に、ブラケットを介して車体に取り付けられている。
 なお、VSA装置18に代えて、ABS機能を有するABS装置を接続してもよい。
 液圧発生装置14、モータシリンダ装置16、およびVSA装置18は、車両Vのダッシュボード2の前方に設けられたエンジンや走行用モータ等の構造物3が搭載される構造物搭載室Rに、配管チューブ22a~22fを介して互いに分離して配置されている。液圧発生装置14、モータシリンダ装置16、およびVSA装置18の内部の詳細な構成については後記する。
 車両用ブレーキシステム10は、前輪駆動車、後輪駆動車、四輪駆動車のいずれにも適用可能である。また、バイ・ワイヤ式のブレーキシステムとして、液圧発生装置14とモータシリンダ装置16とは、図示しないハーネスによってECU等の制御部と電気的に接続されている。
[車両用ブレーキシステム10の概略構成]
 図2は、車両用ブレーキシステムの概略構成図である。
 はじめに、液圧路について説明する。図2中の連結点A1を基準として、液圧発生装置14の接続ポート20aと連結点A1とが第1配管チューブ22aによって接続されている。また、モータシリンダ装置16の出力ポート24aと連結点A1とが第2配管チューブ22bによって接続されている。さらに、VSA装置18の導入ポート26aと連結点A1とが第3配管チューブ22cによって接続されている。
 図2中の他の連結点A2を基準として、液圧発生装置14の他の接続ポート20bと連結点A2とが第4配管チューブ22dによって接続されている。また、モータシリンダ装置16の他の出力ポート24bと連結点A2とが第5配管チューブ22eによって接続されている。さらに、VSA装置18の他の導入ポート26bと連結点A2とが第6配管チューブ22fによって接続されている。
 VSA装置18には、複数の導出ポート28a~28dが設けられる。第1導出ポート28aは、第7配管チューブ22gによって右側前輪に設けられたディスクブレーキ機構30aのホイールシリンダ32FRと接続される。第2導出ポート28bは、第8配管チューブ22hによって左側後輪に設けられたディスクブレーキ機構30bのホイールシリンダ32RLと接続される。第3導出ポート28cは、第9配管チューブ22iによって右側後輪に設けられたディスクブレーキ機構30cのホイールシリンダ32RRと接続される。第4導出ポート28dは、第10配管チューブ22jによって左側前輪に設けられたディスクブレーキ機構30dのホイールシリンダ32FLと接続される。
 この場合、各導出ポート28a~28dに接続される配管チューブ22g~22jによってブレーキ液(ブレーキフルード)がディスクブレーキ機構30a~30dの各ホイールシリンダ32FR,32RL,32RR,32FLに対して供給され、各ホイールシリンダ32FR,32RL,32RR,32FL内の液圧が上昇することにより、各ホイールシリンダ32FR,32RL,32RR,32FLが作動し、対応する車輪(右側前輪、左側後輪、右側後輪、左側前輪)に対して制動力が付与される。
 なお、車両用ブレーキシステム10は、例えば、レシプロエンジン(内燃機関)のみによって駆動される自動車、ハイブリッド自動車、電気自動車、燃料電池自動車等を含む各種車両に対して適用することができる。
 液圧発生装置14は、運転者によるブレーキペダル12の操作に応じて液圧を発生させるタンデム式のマスタシリンダ(本発明の“液圧発生部”に相当する)34と、マスタシリンダ34に付設された第1リザーバ36とを有する。このマスタシリンダ34のシリンダ部38内には、第1ピストン40aおよび第2ピストン40bが、前記シリンダ部38の軸線方向に沿って所定間隔離間した状態で摺動自在に設けられている。第1ピストン40aは、ブレーキペダル12に近接して配置され、プッシュロッド42を介してブレーキペダル12と連結される。また、第2ピストン40bは、第1ピストン40aと比べてブレーキペダル12から離間して配置される。
 この第1ピストン40aおよび第2ピストン40bの外周面には、環状段部を介して一対のピストンパッキン44a,44bがそれぞれ装着されている。一対のピストンパッキン44a,44bの間には、それぞれ、後記するサプライポート46a,46bと連通する背室48a,48bが形成される。第1ピストン40aと第2ピストン40bとの間には、第1ピストン40aおよび第2ピストン40bの間を連結する第1ばね部材50aが設けられている。第2ピストン40bとシリンダ部38の内壁部との間には、第2ピストン40bおよびシリンダ部38の内壁部の間を連結する第2ばね部材50bが設けられている。
 第1ピストン40aおよび第2ピストン40bの外周面にピストンパッキン44a,44bをそれぞれ設ける代わりに、シリンダ部38の内周面にパッキンをそれぞれ設けてもよい。
 マスタシリンダ34のシリンダ部38には、2つのサプライポート46a,46bと、2つのリリーフポート52a,52bと、2つの出力ポート54a,54bと、がそれぞれ設けられている。各サプライポート46a,46bおよび各リリーフポート52a,52bは、それぞれ合流して第1リザーバ36内の図示しないリザーバ室と連通するようになっている。
 また、マスタシリンダ34のシリンダ部38内には、運転者がブレーキペダル12を踏み込む踏力に対応したブレーキ液圧を発生させる第1液圧室56aおよび第2液圧室56bがそれぞれ設けられている。第1液圧室56aは、第1液圧路58aを介して接続ポート20aと連通するようになっている。第2液圧室56bは、第2液圧路58bを介して他の接続ポート20bと連通するようになっている。
 マスタシリンダ34と接続ポート20aとの間であって、第1液圧路58aの上流側には、圧力センサPmが設けられている。また、第1液圧路58aの下流側には、ノーマルオープンタイプ(常開型)のソレノイドバルブからなる第1遮断弁60aが設けられている。この圧力センサPmは、第1液圧路58a上において、第1遮断弁60aよりもマスタシリンダ34側の上流の液圧を検知する機能を有する。第1遮断弁60aは、本発明の“遮断弁”に相当する。圧力センサPmは、本発明の“液圧検出部”に相当する。
 マスタシリンダ34と他の接続ポート20bとの間であって、第2液圧路58bの上流側には、ノーマルオープンタイプ(常開型)のソレノイドバルブからなる第2遮断弁60bが設けられている。また、第2液圧路58bの下流側には、圧力センサPpが設けられている。この圧力センサPpは、第2液圧路58b上において、第2遮断弁60bよりもホイールシリンダ32FR,32RL,32RR,32FL側の下流側の液圧を検知する機能を有する。
 この第1遮断弁60aおよび第2遮断弁60bにおけるノーマルオープンとは、ノーマル位置(消磁(非通電)時の弁体の位置)が開位置の状態(常時開)となるように構成されたバルブをいう。なお、図2において、第1遮断弁60aおよび第2遮断弁60bは、励磁時の状態を示す(後記する第3遮断弁62も同様)。
 マスタシリンダ34と第2遮断弁60bとの間の第2液圧路58bには、前記第2液圧路58bから分岐する分岐液圧路58cが設けられている。この分岐液圧路58cには、ノーマルクローズタイプ(常閉型)のソレノイドバルブからなる第3遮断弁62と、第1ストロークシミュレータ(本発明の“反力発生部”に相当する。)64と、が直列に接続されている。この第3遮断弁62におけるノーマルクローズとは、ノーマル位置(消磁(非通電)時の弁体の位置)が閉位置の状態(常時閉)となるように構成されたバルブをいう。
 この第1ストロークシミュレータ64の概要について、図2を参照して説明する。ただし、図2中の第1ストロークシミュレータ64は、細部の構造が簡略化して描かれている。
 図2に示すように、第1ストロークシミュレータ64は、第2液圧路58b上であって、第2遮断弁60bよりもマスタシリンダ34側に配置されている。前記第1ストロークシミュレータ64には、分岐液圧路58cに連通する反力液圧室65が設けられている。この反力液圧室65に対し、マスタシリンダ34の第2液圧室56bで生じたブレーキ液圧が印加されるようになっている。
 また、第1ストロークシミュレータ64は、そのハウジング64a(図3参照)に、シミュレータピストン67と、第1のリターンスプリング68aと、第2のリターンスプリング68bとを備える。第1ストロークシミュレータ64内部の詳細構造については後に詳述する。
 液圧路は、大別すると、マスタシリンダ34の第1液圧室56aと複数のホイールシリンダ32FR,32RLとを接続する第1液圧系統70aと、マスタシリンダ34の第2液圧室56bと複数のホイールシリンダ32RR,32FLとを接続する第2液圧系統70bとから構成される。
 第1液圧系統70aは、液圧発生装置14におけるマスタシリンダ34(シリンダ部38)の出力ポート54aと接続ポート20aとを接続する第1液圧路58aと、液圧発生装置14の接続ポート20aとモータシリンダ装置16の出力ポート24aとを接続する第1および第2配管チューブ22a,22bと、モータシリンダ装置16の出力ポート24aとVSA装置18の導入ポート26aとを接続する第2および第3配管チューブ22b,22cと、VSA装置18の第1および第2導出ポート28a,28bと各ホイールシリンダ32FR,32RLとをそれぞれ接続する第7および第8配管チューブ22g,22hとによって構成される。
 第2液圧系統70bは、液圧発生装置14におけるマスタシリンダ34(シリンダ部38)の出力ポート54bと他の接続ポート20bとを接続する第2液圧路58bと、液圧発生装置14の他の接続ポート20bとモータシリンダ装置16の出力ポート24bとを接続する第4および第5配管チューブ22d,22eと、モータシリンダ装置16の出力ポート24bとVSA装置18の導入ポート26bとを接続する第5および第6配管チューブ22e,22fと、VSA装置18の第3および第4導出ポート28c,28dと各ホイールシリンダ32RR,32FLとをそれぞれ接続する第9および第10配管チューブ22i,22jと、を有する。
 モータシリンダ装置16は、電動機72の駆動力によって第1スレーブピストン88aおよび第2スレーブピストン88bを軸方向に駆動し、これをもってブレーキ液圧を発生させる電動ブレーキ装置である。
 なお、モータシリンダ装置16において、ブレーキ液圧を発生させた(上昇させた)ときの第1スレーブピストン88aおよび第2スレーブピストン88bの移動方向のうち、第1スレーブピストン88aに向かう側を図2中の矢印で示すX1方向(前方向)とし、その反対側の第2スレーブピストン88bに向かう側を図2中の矢印で示すX2方向(後方向)とする。
 モータシリンダ装置16は、第1スレーブピストン88aおよび第2スレーブピストン88bを内蔵するシリンダ部76と、第1スレーブピストン88aおよび第2スレーブピストン88bを駆動するための電動機72と、電動機72の駆動力を第1スレーブピストン88aおよび第2スレーブピストン88bに伝達するための駆動力伝達部73と、を備えている。
 駆動力伝達部73は、電動機72の回転駆動力を伝達するギア機構(減速機構)78と、この回転駆動力をボールねじ軸(スクリュー)80aの軸方向に沿った直線方向駆動力に変換するボールねじ構造体80と、を含む駆動力伝達機構74を有している。
 シリンダ部76は、略円筒形状のシリンダ本体82と、前記シリンダ本体82に付設された第2リザーバ84とを有する。第2リザーバ84は、液圧発生装置14のマスタシリンダ34に付設された第1リザーバ36と配管チューブ86で接続され、第1リザーバ36内に貯留されたブレーキ液が配管チューブ86を介して第2リザーバ84内に供給されるように構成されている。
 シリンダ本体82内には、第1スレーブピストン88aおよび第2スレーブピストン88bが、シリンダ本体82の軸線方向に所定間隔離間した状態で、前記軸線方向に沿って摺動自在に設けられている。第1スレーブピストン88aは、ボールねじ構造体80側に近接して配置され、ボールねじ軸80aの前端に当接して前記ボールねじ軸80aと一体的に矢印X1またはX2方向に変位する。また、第2スレーブピストン88bは、第1スレーブピストン88aよりもボールねじ構造体80側から離間して配置される。
 シリンダ本体82内には、環状のガイドピストン230が、第1スレーブピストン88aの外周面に対向するように設けられている。環状のガイドピストン230は、第1スレーブピストン88aの外周面と駆動力伝達機構74との間を液密状態でシールすると共に、第1スレーブピストン88aをその軸方向に対して移動可能にガイドする機能を有する。ガイドピストン230の内周面には、スレーブピストンパッキン90cが装着される。また、第1スレーブピストン88aの前端側の外周面には、環状段部を介してスレーブピストンパッキン90bが装着される。スレーブピストンパッキン90cとスレーブピストンパッキン90bとの間には、後記するリザーバポート92aと連通する第1背室94aが形成される。そして、第1スレーブピストン88aおよび第2スレーブピストン88bの間には、第1のリターンスプリング96aが設けられている。
 一方、第2スレーブピストン88bの外周面には、環状段部を介して一対のスレーブピストンパッキン90a、90bがそれぞれ装着される。一対のスレーブピストンパッキン90a、90bの間には、後記するリザーバポート92bと連通する第2背室94bが形成される。そして、第2スレーブピストン88bとシリンダ本体82の前端部との間には、第2のリターンスプリング96bが設けられている。
 シリンダ部76のシリンダ本体82には、2つのリザーバポート92a、92bと、2つの出力ポート24a,24bと、がそれぞれ設けられている。リザーバポート92a,92bは、第2リザーバ84内のリザーバ室と連通するようになっている。
 また、シリンダ本体82内には、出力ポート24aからホイールシリンダ32FR,32RL側へ出力されるブレーキ液圧を発生させる第1液圧室98aと、他の出力ポート24bからホイールシリンダ32RR,32FL側へ出力されるブレーキ液圧を発生させる第2液圧室98bとが設けられている。
 第1スレーブピストン88aおよび第2スレーブピストン88bの間には、これら88a,88bの間の最大離間区間と最小離間区間とを規制する規制手段100が設けられている。また、第2スレーブピストン88bには、第2スレーブピストン88bの摺動範囲を規制して、第1スレーブピストン88a側へのオーバーリターンを阻止するストッパピン102が設けられている。これにより、例えばマスタシリンダ34で発生したブレーキ液圧で制動するときのバックアップ時において、仮にある系統で失陥が発生しても、他の系統にまでその影響を及ぼさないように構成されている。
 VSA装置18は、周知の構成のものを適宜採用することができる。具体的には、例えば、VSA装置18としては、右側前輪および左側後輪のディスクブレーキ機構30a、30b(ホイールシリンダ32FR、ホイールシリンダ32RL)に接続された第1液圧系統70aを制御する第1ブレーキ系110aと、右側後輪および左側前輪のディスクブレーキ機構30c、30d(ホイールシリンダ32RR、ホイールシリンダ32FL)に接続された第2液圧系統70bを制御する第2ブレーキ系110bとを有するものを用いることができる。
 前記の構成に代えて、第1ブレーキ系110aとしては、左側前輪および右側前輪に設けられたディスクブレーキ機構に接続された液圧系統からなり、第2ブレーキ系110bは、左側後輪および右側後輪に設けられたディスクブレーキ機構に接続された液圧系統からなる構成を採用してもよい。また、第1ブレーキ系110aとしては、車体片側の右側前輪および右側後輪に設けられたディスクブレーキ機構に接続された液圧系統からなり、第2ブレーキ系110bは、車体片側の左側前輪および左側後輪に設けられたディスクブレーキ機構に接続された液圧系統からなる構成を採用してもよい。
 この第1ブレーキ系110aおよび第2ブレーキ系110bは、それぞれ同一構造からなるため、第1ブレーキ系110aと第2ブレーキ系110bとで対応するものには同一の参照符号を付すと共に、第1ブレーキ系110aの説明を中心にして、第2ブレーキ系110bの説明を括弧書きで適宜付記する。
 第1ブレーキ系110a(第2ブレーキ系110b)は、ホイールシリンダ32FR,32RL(32RR,32FL)に対して、共通する第1共通液圧路112および第2共通液圧路114を有する。VSA装置18は、導入ポート26aと第1共通液圧路112との間に配置されたノーマルオープンタイプのソレノイドバルブからなるレギュレータバルブ116と、前記レギュレータバルブ116と並列に配置され導入ポート26a側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から導入ポート26a側へのブレーキ液の流通を阻止する)第1チェックバルブ118と、第1共通液圧路112と第1導出ポート28aとの間に配置されたノーマルオープンタイプのソレノイドバルブからなる第1インバルブ120と、前記第1インバルブ120と並列に配置され第1導出ポート28a側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から第1導出ポート28a側へのブレーキ液の流通を阻止する)第2チェックバルブ122と、第1共通液圧路112と第2導出ポート28bとの間に配置されたノーマルオープンタイプのソレノイドバルブからなる第2インバルブ124と、前記第2インバルブ124と並列に配置され第2導出ポート28b側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から第2導出ポート28b側へのブレーキ液の流通を阻止する)第3チェックバルブ126と、を備える。
 さらに、VSA装置18は、第1導出ポート28aと第2共通液圧路114との間に配置されたノーマルクローズタイプのソレノイドバルブからなる第1アウトバルブ128と、第2導出ポート28bと第2共通液圧路114との間に配置されたノーマルクローズタイプのソレノイドバルブからなる第2アウトバルブ130と、第2共通液圧路114に接続されたリザーバ132と、第1共通液圧路112と第2共通液圧路114との間に配置されて第2共通液圧路114側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から第2共通液圧路114側へのブレーキ液の流通を阻止する)第4チェックバルブ134と、前記第4チェックバルブ134と第1共通液圧路112との間に配置されて第2共通液圧路114側から第1共通液圧路112側へブレーキ液を供給するポンプ136と、前記ポンプ136の前後に設けられる吸入弁138および吐出弁140と、前記ポンプ136を駆動するモータMと、第2共通液圧路114と導入ポート26aとの間に配置されたノーマルクローズタイプのソレノイドバルブからなるサクションバルブ142とを備える。
 なお、第1アウトバルブ128および第2アウトバルブ130は、本発明の“減圧弁”に相当する。
 第1ブレーキ系110aにおいて、導入ポート26aに近接する液圧路上には、モータシリンダ装置16の出力ポート24aから出力され、前記モータシリンダ装置16の第1液圧室98aで発生したブレーキ液圧を検知する圧力センサPhが設けられる。各圧力センサPm、Pp、Phで検出された検出信号は、図示しない制御部に導入される。
[車両用ブレーキシステム10の動作]
 次に、車両用ブレーキシステム10の動作について説明する。
 車両用ブレーキシステム10の正常作動時には、マスタシリンダ34にブレーキ液圧が発生しているか否かにかかわらず、ノーマルオープンタイプのソレノイドバルブからなる第1遮断弁60aおよび第2遮断弁60bが励磁されて弁閉状態となり、ノーマルクローズタイプのソレノイドバルブからなる第3遮断弁62が励磁されて弁開状態となる(図2参照)。したがって、第1遮断弁60aおよび第2遮断弁60bによって第1液圧系統70aおよび第2液圧系統70bが遮断されるため、液圧発生装置14のマスタシリンダ34で発生したブレーキ液圧がディスクブレーキ機構30a~30dのホイールシリンダ32FR,32RL,32RR,32FLに伝達されない。車両用ブレーキシステム10の正常作動時には、後記するモータシリンダ装置16による電動式のブレーキシステムが実働するからである。
 このとき、マスタシリンダ34の第2液圧室56bにおいてブレーキ液圧が発生すると、発生したブレーキ液圧は、分岐液圧路58cおよび弁開状態にある第3遮断弁62を経由して第1ストロークシミュレータ64の反力液圧室65に伝達される。この反力液圧室65に供給されたブレーキ液圧によってシミュレータピストン67がリターンスプリング68a、68bのばね力に抗して変位することにより、ブレーキペダル12のストロークが許容されると共に、擬似的なペダル反力が創り出されてブレーキペダル12にフィードバックされる。この結果、運転者にとって違和感のないブレーキ操作感が得られる。
 このようなシステム状態において、図示しない制御部は、運転者によるブレーキペダル12の踏み込みを検出すると、モータシリンダ装置16の電動機72を駆動させ、電動機72の駆動力を、駆動力伝達機構74を介して伝達し、第1のリターンスプリング96aおよび第2のリターンスプリング96bのばね力に抗して第1スレーブピストン88aおよび第2スレーブピストン88bを図2中の矢印X2方向に向かって変位させる。この第1スレーブピストン88aおよび第2スレーブピストン88bの変位によって第1液圧室98aおよび第2液圧室98b内のブレーキ液がバランスするように加圧されて所望のブレーキ液圧が発生する。
 このモータシリンダ装置16における第1液圧室98aおよび第2液圧室98bのブレーキ液圧は、VSA装置18の弁開状態にある第1、第2インバルブ120,124を介してディスクブレーキ機構30a~30dのホイールシリンダ32FR,32RL,32RR,32FLに伝達され、前記ホイールシリンダ32FR,32RL,32RR,32FLが作動することにより各車輪に所望の制動力が付与される。
 換言すると、車両用ブレーキシステム10では、モータシリンダ装置16や、バイ・ワイヤ制御する図示しないECUなどの制御部の正常作動時において、運転者がブレーキペダル12を踏むと、いわゆるブレーキ・バイ・ワイヤ方式のブレーキシステムがアクティブになる。具体的には、正常作動時の車両用ブレーキシステム10では、運転者がブレーキペダル12を踏むと、第1遮断弁60aおよび第2遮断弁60bが、マスタシリンダ34と各車輪を制動するディスクブレーキ機構30a~30d(ホイールシリンダ32FR,32RL,32RR,32FL)との連通を遮断した状態で、モータシリンダ装置16が発生するブレーキ液圧を用いてディスクブレーキ機構30a~30dを作動させる。このため、車両用ブレーキシステム10では、例えば、電気自動車(燃料電池車を含む)やハイブリッド自動車等のように、内燃機関での負圧発生が少ないか、内燃機関による負圧が存在しない車両、または、内燃機関自体がない車両に好適に適用することができる。
 一方、車両用ブレーキシステム10では、モータシリンダ装置16や制御部が不作動の異常時において、運転者がブレーキペダル12を踏むと、いわゆる旧来の油圧式のブレーキシステムがアクティブになる。具体的には、異常時の車両用ブレーキシステム10では、運転者がブレーキペダル12を踏むと、第1遮断弁60aおよび第2遮断弁60bをそれぞれ弁開状態とし、かつ、第3遮断弁62を弁閉状態として、マスタシリンダ34で発生するブレーキ液圧をディスクブレーキ機構30a~30d(ホイールシリンダ32FR,32RL,32RR,32FL)に伝達して、前記ディスクブレーキ機構30a~30d(ホイールシリンダ32FR,32RL,32RR,32FL)を作動させる。
[本発明の第1実施形態に係る車両用液圧発生装置14の詳細構造]
 次に、本発明の第1実施形態に係る車両用液圧発生装置14において特徴的な構成を備える第1ストロークシミュレータ(本発明の“反力発生部”に相当する。)64について、図3~図5を参照して説明する。図3は、第1ストロークシミュレータの縦断面図である。図4は、第1ストロークシミュレータに内装される第1ブッシュの説明図であり、図4(a)は、第1ストロークシミュレータに内装される第1ブッシュの平面図、図4(b)は、図4(a)のB-B線について矢印方向に観た第1ブッシュの断面図、図4(c)は、図4(a)のC方向から観た第1ブッシュの外観図である。図5は、第1ブッシュ周辺の取り付け状態を示す分解斜視図である。
 本発明の第1実施形態に係る車両用液圧発生装置14が備える第1ストロークシミュレータ64は、図3に示すように、液導ポート64bと、略円筒形状の反力液圧室65を画成するシリンダ部66と、このシリンダ部66内を進退自在に移動可能なシミュレータピストン67と、第1の弾性係数k1を有するコイル状の第1のリターンスプリング(“弾性部”および“第1の弾性部”に相当する。)68aと、第1の弾性係数k1と比べて大きい第2の弾性係数k2を有するコイル状の第2のリターンスプリング(“弾性部”および“第2の弾性部”に相当する。)68bと、を備える。液導ポート64bおよび分岐液圧路58cを介して第2液圧室56b(図2参照)に連通する反力液圧室65には、第3遮断弁(常時閉)62の弁体が開位置に切り替えられた場合に、液導ポート64bを介してブレーキ液が出入りするように導かれる。
 シリンダ部66は、シミュレータピストン67の退避方向(図3中の左方向、以下、この方向を“後”と定義する。)の側に設けられる第1のシリンダ66aと、シミュレータピストン67の進出方向(図3中の右方向、以下、この方向を“前”と定義する)の側に設けられる第2のシリンダ66bとを、同軸上に連通させて構成されている。第1のシリンダ66aの円周状の内径は、第2のシリンダ66bの円周状の内径と比べて小さく形成されている。
 第1のシリンダ66aの内壁には、その前側に環状溝66a1が形成されている。この環状溝66a1には、例えばシリコーンゴム製のシールリング66a2が嵌装されている。これにより、シールリング66a2が発揮する液密性によって、反力液圧室65に充填されたブレーキ液が、シールリング66a2よりも前側にもれださないようになっている。
 シミュレータピストン67には、その後ろ側(退避方向)に向けて開口した略円筒形状の肉抜き部67aが形成されている。この肉抜き部67aは、反力液圧室65の容量を増やして、ブレーキ液の畜液量を増やす機能を有する。シミュレータピストン67の前端壁67bには、第1のばね座部材69が溶接等の適宜の接合手段によって固着されている。
 第1のばね座部材69は、その縦断面が略ハット状に形成されている。この第1のばね座部材69は、中央部分が肉抜きされた円板形状のフランジ部69aと、このフランジ部69aの内周部分から前側に向かって延びる略円筒形状の周壁部69bと、この周壁部69bの頂部を覆う頂壁部69cとを備える。周壁部69bは、フランジ部69aの内周部分から頂壁部69cに向かって徐々に外径が小さくなる先細り状に形成されている。第1のばね座部材69のうちフランジ部69aの前端壁69a1は、第1のリターンスプリング68aの後端側を受け止める機能を有する。
 第1のばね座部材69に対向する前側には、第1のばね座部材69と同様に、その縦断面が略ハット状に形成された第2のばね座部材71が設けられている。この第2のばね座部材71は、中央部分が肉抜きされた円板形状のフランジ部71aと、このフランジ部71aの内周部分から前側に向かって延びる円筒形状の周壁部71bと、この周壁部71bの頂部を覆う頂壁部71cとを備える。周壁部71bは、フランジ部71aの内周部分から頂壁部71cに向かって徐々に外径が小さくなる先細り状に形成されている。第2のばね座部材71のうちフランジ部71aの前端側71a2は、第2のリターンスプリング68bの後端側を受け止める機能を有する。
 第2のばね座部材71のサイズは、第1のばね座部材69のサイズと比べて全体的に大きく形成されている。具体的には、第1のばね座部材69の周壁部69bおよび頂壁部69cにより形成されるハット部69dの外径サイズは、第2のばね座部材71の周壁部71bおよび頂壁部71cにより形成されるハット部71dの内径サイズと比べてじゅうぶんに大きく形成されている。第2のばね座部材71のうち頂壁部71cの後端壁71c1は、第1のリターンスプリング68aの前端側を受け止める機能を有する。
 第1のばね座部材69のうち頂壁部69cの前端壁69c1には、“弾性部”および“第3の弾性部”に相当する第1ブッシュ75が、第1のリターンスプリング68aの内方に収容されるように設けられている。これにより、限りある空間資源を有効に活用すると共に、第1のリターンスプリング68aに対して第1ブッシュ75を並列に設けることができる。
 ここで、第1のばね座部材69のうちフランジ部69aの前端壁69a1と、第2のばね座部材71のうちフランジ部71aの後端壁71a1との間には、第1の区間l1 が置かれている。一方、第1ブッシュ75の前側頂部75aと、第2のばね座部材71のうち頂壁部71cの後端壁71c1との間には、第3の区間l3 が置かれている。第1の区間l1 は、第3の区間l3 と比べて大きく設定されている。これにより、第1の区間l1 から第3の区間l3 を差し引いた第2の区間l2 において、第1のリターンスプリング68aの圧縮変形に加えて、第1ブッシュ75が潰れて圧縮変形するように構成されている。このような第1~第3の区間の設定を前提として、第1ブッシュ75は、ブレーキペダル12の操作量に対する反力特性を非線形なものとして創り出す重要な機能を有する。なお、第1ブッシュ75周りの詳細構成および作用については後述する。
 第2のばね座部材71に対向する前側には、第1および第2のばね座部材69,71と同様に、その縦断面が略ハット状に形成された第3のばね座部材77が設けられている。この第3のばね座部材77は、中央部分が肉抜きされた円板形状のフランジ部77aと、このフランジ部77aの内周部分から後ろ側に向かって延びる円筒形状の周壁部77bと、この周壁部77bの頂部を覆う頂壁部77cとを備える。周壁部77bは、その基部77b1を除いて、フランジ部77aの内周部分から頂壁部77cに向かって徐々に外径が小さくなる先細り状に形成されている。第3のばね座部材77のうちフランジ部77aの後端側77a1は、第2のリターンスプリング68bの前端側を受け止める機能を有する。
 第1~第3のばね座部材69,71,77のうち頂壁部69c,71c,77cのそれぞれには、その中央部分に通孔69e,71e,77eが開設されている。また、第1ブッシュ75は、略円柱形状の中空部75bを有する筒状の本体部75cにより実質的に形成されている。通孔69e,71e,77e、および、第1ブッシュ75の中空部75bのそれぞれを貫通するように、これら通孔69e,71e,77e、および、第1ブッシュ75の中空部75bの内径と比べてわずかに小さい外径を有する第1ロッド部材79が設けられている。第1ロッド部材79の後端側79aは、第1のばね座部材69のうち頂壁部69cの後端側において、後記する係止部材87により係止されている。第1ロッド部材79の前端側79bには、第3のばね座部材77のうち頂壁部77cに開設された通孔77eと比べて大径の肥大部79b1が形成されている。これにより、第1ロッド部材79の前端側79bと、第3のばね座部材77の頂壁部77cに開設された通孔77eとの間の結合関係が容易に外れないようになっている。
 第3のばね座部材77を固定するために、第1ストロークシミュレータ64のハウジング64aのうち前端側には、例えば金属製の略円板形状の蓋部81が設けられている。この蓋部81には、その外周壁81aに環状溝部81a1が刻設されている。この環状溝部81a1には、例えばシリコーンゴム製のシールリング81a2が嵌装されている。これにより、シールリング81a2が発揮する気密性によって、第2のシリンダ66b内に充満している空気やブレーキ液等の流体が、シールリング81a2よりも前側にもれださないようになっている。
 蓋部81の後端側81bは、第3のばね座部材77のうちフランジ部77aの前端側77a2に固着されている。蓋部81の前端側周側部81cは、中央部分に開口部を有する円板状に形成された係止環83の後部周側壁に当接支持されている。この係止環83は、第2のシリンダ66bの内壁に刻設された環状溝85に係合するように設けられている。これにより、第2のリターンスプリング68bの前端側が、第1ストロークシミュレータ64のハウジング64aに対して確実に固定されるようになっている。
 要するに、第2のリターンスプリング68bの前端側が、第1ストロークシミュレータ64のハウジング64aに対して当接支持される一方、その後端側が、第2のばね座部材71のフランジ部71aに対して当接支持される。また、第1のリターンスプリング68aの前端側が、第2のばね座部材71の前端側頂壁部71c1に対して当接支持される一方、その後端側が、第1のばね座部材69のフランジ部69aに対して当接支持される。そして、第1のばね座部材69がシミュレータピストン67の前端壁67bに固着される。その結果、シミュレータピストン67は、第1および第2のリターンスプリング68a、68bによって後ろ側(退避方向)に付勢される。
 第1および第2のリターンスプリング68a、68bは、相互に力学的に直列に配置されている。第1および第2の弾性係数k1,k2は、ブレーキペダル12の踏み込み前期時にペダル反力の増加勾配を低くし、踏み込み後期時にペダル反力を高くするように設定してある。これは、ブレーキペダル12のストローク量に対する反力特性を従来型のそれと同等とすることにより、従来型のブレーキシステムが搭載されているのか、または、バイ・ワイヤ式のブレーキシステムが搭載されているのかを運転者に意識させることなく運転に集中させることを狙った設計思想に基づく。
 次に、第1ブッシュ75の周辺構成について、図4および図5を参照して説明する。ブレーキペダル12の操作量に対する反力特性を非線形なものとして創り出すといったきわめて重要な役割を担う第1ブッシュ75は、図4(a)~(c)に示すように、略円柱形状の中空部75bを有する筒状の本体部75cにより実質的に形成されている。第1ブッシュ75は、例えば、合成樹脂製の弾性体によりつくられる。第1ブッシュ75は、第2の弾性係数k2と比べて小さい第3の弾性係数k3(ただし、k3は可変の値をとる。)を有する。第1ブッシュ75は、第1のリターンスプリング68aに対して力学的に並列に設けられている。
 ここで、第3の弾性係数k3を、第2の弾性係数k2と比べて小さい範囲の値に設定したのは、仮に、第3の弾性係数k3を第2の弾性係数k2と比べて大きい範囲の値に設定した場合、第2のリターンスプリング68bと第1ブッシュ75との力関係から、第3の弾性係数k3を有する第1ブッシュ75が非線形の反力特性を創り出すように作動する場面は生じないからである。
 なお、第3の弾性係数k3は、第1の弾性係数k1と比べて小さい範囲の値に設定してもよい。第1ブッシュ75は、ブレーキペダル12の操作量に対する反力特性に係る違和感を緩和する目的で設けられる。この目的達成を考慮すると、第1ブッシュ75による非線形な反力特性の創出は、わずかでも足りる場合があるからである。
 第1ブッシュ75における軸方向の一側(“シミュレータピストンの反対側”に相当する。)には、第1の易変形部75d1が一体に形成されている。この第1の易変形部75d1は、相互に等しい間隔をおいて凸部75d1aおよび凹部75d1bを交互に設けて構成される。凸部75d1aでは、圧縮変形の方向に直交する方向の凸部75d1aそれ自体の断面積が、圧縮変形の方向(図4(b)中の矢印で示すX3の方向)に沿って漸減するよう形成されている。これに対し、凹部75d1bでは、圧縮変形の方向に直交する方向の凹部75d1bがつくりだす空間の断面積が、圧縮変形の方向(X3の方向)に沿って漸増するよう形成されている。
 要するに、第1の易変形部75d1は、圧縮変形の方向に直交する方向の断面積が、圧縮変形の方向に沿って漸減または漸増するよう形成されている。これにより、第1ブッシュ75の第1の易変形部75d1は、圧縮変形の進行に伴って、圧縮変形の方向に直交する方向の断面積が小さい部分(つまり、弾性係数の小さい部分)から順に潰れてゆくように作用する。この潰れによる第1ブッシュ75の圧縮変形は、その圧縮変形力に応じた反力を創り出す。これは、第1ブッシュ75によって、非線形な反力特性が創り出されることを意味する。
 また、この潰れが進行してゆく過程で、第1ブッシュ75の第1の易変形部75d1は、第1ブッシュ75における中空部75bの内周壁と、ロッド79の外周壁との間の摩擦力を増加させるようにはたらく。この摩擦力の増加は、第1ブッシュ75における外周壁の膨張が、第1のリターンスプリング68aの内径によって拘束されていることなどに基づく。この摩擦力の増加は、第1ブッシュ75により創り出される反力特性について、非線形性を向上させるように機能する。
 第1ブッシュ75の中空部75bには、環状段部75eおよび環状受け部75fが圧縮変形の方向(X3の方向)に所定の間隔を置いて設けられている。前者の環状段部75eは、中空部75bの内周側面に沿って環状に連なった傾斜面75e1により形成されている。この環状段部75eの存在意義は、第2の易変形部として、第1ブッシュ75に圧縮変形力が加えられた場合に生じる反力特性を非線形にする機能と、第1ブッシュ75のうち第1の易変形部75d1の存する側から、第1ロッド部材79を中空部75bに挿通させようと試みた場合に、第1ロッド部材79のうち後端側79aが環状の傾斜面75e1に突き当たった後、中空部75b内に第1ロッド部材79を導く機能とに基づく。したがって、環状段部75eによれば、中空部75b内への第1ロッド部材79の挿通を円滑に行わせることができる。
 第1ブッシュ75の中空部75bに存する環状受け部75fは、中空部75bの内周側面に沿って環状に連なった傾斜面75f1により形成されている。一方、第1ロッド部材79のうちシミュレータピストンの反対側(前側)には、図5に示すように、外径が小径となる環状段部79cが形成されている。第1ロッド部材79の後端側79aには、その外周側面に周回状の環状溝79dが設けられている。この環状溝79dには、例えばC字形状のクリップ等からなる係止部材87により係止されている。環状受け部75fの存在意義は、第1ブッシュ75によって創り出された非線形な反力特性を、第1ロッド部材79に確実に伝える機能の発揮に基づく。
 また、仮に、第1ブッシュ75を正規の方向とは逆向きに(倒立させて)組付けることを誤って試みた場合、第1ロッド部材79の環状段部79cが、第1ブッシュ75のうち環状受け部79c以外の部位に突き当たるため、かかる場合に、中空部75bへの第1ロッド部材79の挿通は阻止されることに基づく。したがって、環状受け部75fによれば、第1ブッシュ75によって創り出された非線形な反力特性を、第1ロッド部材79に確実に伝えること、および、第1ブッシュ75を正規の方向とは逆向きに組付けることを未然に防止することができる。
 第1ブッシュ75の中空部75bに存する第1のテーパー部75gは、図4(b)に示すように、中空部75bの内周側面に沿う環状の傾斜曲面75g1により形成されている。一方、第1ブッシュ75の外周側面に存する第2のテーパー部75hは、図4(b)に示すように、第1ブッシュ75の外周側面に沿う環状の傾斜曲面75h1により形成されている。第1および第2のテーパー部75g,75hの存在意義は、第3の易変形部として、第1ブッシュ75に圧縮変形力が加えられた場合に生じる反力特性を非線形にする機能の発揮に基づく。
 次に、第1ブッシュ75の作用について説明する。
[第1ブッシュ75の作用]
 図6は、第1ブッシュ75に係る実施例の作用の説明図である。
 まず、運転者によりブレーキペダル12が操作されるとブレーキ液圧を生じ、このブレーキ液圧がシリンダ部66内のシミュレータピストン67に伝わる。すると、シミュレータピストン67がシリンダ部66内を移動する。シミュレータピストン67の移動によって、第2のリターンスプリング68bに比べて小さい弾性係数を有する第1のリターンスプリング68aの圧縮変形が主として行われる。この区間が第1の区間(図6中の点Oから点Q0 に至る区間を参照)l1 である。
 言い換えると、シミュレータピストン67の進出方向への移動に伴って、第1のばね座部材69が前側へ移動してゆくと、ついには、第1のばね座部材69のうちフランジ部69aの前端壁69a1が、第2のばね座部材71のうちフランジ部71aの後端壁71a1に突き当たる。要するに、第1のばね座部材69が前側への移動を開始してから、第2のばね座部材71の側に突き当たるまでが、前記の第1の区間l1 に相当する。
 この第1の区間l1 は、第2の区間l2 および第3の区間l3 に分けることができる。このうち、第2の区間l2 とは、シミュレータピストン67の進出方向への移動に伴って、第1ブッシュ75の前側頂部75aが、第2のばね座部材71のうち頂壁部71cの後端壁71c1に突き当たった後の区間をいう。一方、第3の区間l3 とは、シミュレータピストン67の進出方向への移動に伴って、第1のばね座部材69が前側への移動を開始してから、第1ブッシュ75の前側頂部75aが、第2のばね座部材71のうち頂壁部71cの後端壁71c1に突き当たる直前までの区間をいう。
 換言すれば、第2の区間l2 は、第1の区間l1 の途中点(シミュレータピストン67の進出方向への移動に伴って、第1ブッシュ75の前側頂部75aが、第2のばね座部材71のうち頂壁部71cの後端壁71c1に突き当たった時点;図6中の点P参照)を始点とする一方、第1の区間l1 のうち反力特性の切換点(相互に異なる第1の弾性係数k1および第2の弾性係数k2に係る線形の反力特性が切り換わる点、または、第2のリターンスプリング68bの圧縮変形が主として行われるように切り換わる点;図6中の点Q参照)を共通の終点とする。したがって、第1ブッシュ75の圧縮変形は、第1の区間l1 の途中点(図6中の点P参照)から上記の切換点(図6中の点Q参照)に至る第2の区間l2 において、第1のリターンスプリング68aの圧縮変形と並列に遂行される。
 第2の区間l2 において、ブレーキペダル12の操作量に対する反力特性は、第1のリターンスプリング68aの圧縮変形により創り出される線形の反力特性と、第1ブッシュ75の圧縮変形により創り出される非線形の反力特性との和により描かれる。これにより、第2の区間l2 (図6中の点Pから点Q1 に至る区間を参照)における反力特性は、一対の線形の反力特性の間を緩やかにつなぐように補正される。この補正は、図6に示すように、第1のリターンスプリング68aの圧縮変形により創り出された線形の反力特性に対して、第1ブッシュ75の並列介挿により得られた非線形の反力特性を積み上げるように加算することで実現される。
 具体的には、第1ブッシュ75の圧縮変形初期では、第1~第3の易変形部75d1,75e,75hのうち、圧縮変形の方向に直交する方向に拡がる横断面積(以下、“横断面積”と省略する)が小さい部分(つまり、弾性係数の小さい部分)から順に潰れてゆく。この場合において、第1のリターンスプリング68aの圧縮変形により創り出された線形の反力特性に対して、第1ブッシュ75の圧縮変形により積み上げられる部分はわずかである。これに対し、第1ブッシュ75の圧縮変形の中期以降では、第1~第3の易変形部75d1,75e,75hのうち横断面積が比較的小さい部分から順に潰れてゆくのは同じであるが、第1の易変形部75d1のうち残っているのは、比較的横断面積の大きい部分ばかりとなる。この場合において、第1のリターンスプリング68aの圧縮変形により創り出された線形の反力特性に対して、第1ブッシュ75の圧縮変形により積み上げられる部分は、第1ブッシュ75の圧縮変形が進行してゆくにつれて大きくなる。
 また、第1ブッシュ75の圧縮変形が進行してゆく過程で、第1ブッシュ75の第1の易変形部75d1は、第1ブッシュ75における中空部75bの内周壁と、ロッド79の外周壁との間の摩擦力を増加させるようにはたらく。この摩擦力の増加は、第1ブッシュ75における外周壁の膨張が、第1のリターンスプリング68aの内径部分によって拘束されていることなどに基づく。この摩擦力の増加は、第1ブッシュ75により創り出される反力特性について、非線形性を向上させるように機能する。
 したがって、本第1実施形態に係る発明によれば、ブレーキペダル12の操作量に対する反力特性において、何らの解決手段をも採用しない場合に、相互に異なる第1および第2の弾性係数k1,弾性係数k2に係る線形の反力特性が切り換わる切換点に生じていたくの字状の特異点(図6中の点Q0 参照)に起因するブレーキ操作時の違和感を緩和させることができる。
[第1実施形態に係る車両用液圧発生装置14の作用効果]
 次に、第1ストロークシミュレータ64を備える第1実施形態に係る車両用液圧発生装置14の作用効果について説明する。
 第1実施形態に係る車両用液圧発生装置14は、運転者によるブレーキペダル(ブレーキ操作部材)12の操作量に応じた液圧を発生させるマスタシリンダ(液圧発生部)34と、マスタシリンダ(液圧発生部)34に連通されて、ブレーキペダル(ブレーキ操作部材)12の操作量に応じた反力を発生させる第1ストロークシミュレータ(反力発生部)64と、を備える。
 第1ストロークシミュレータ(反力発生部)64は、マスタシリンダ(液圧発生部)34で発生した液圧に応じて進出方向または退避方向に作動されるシミュレータピストン67と、シミュレータピストン67の進出方向の側に設けられた弾性部68a,68b,75と、を有する。弾性部68a,68b,75は、第1の弾性係数k1を有する第1のリターンスプリング(第1の弾性部)68a、第1の弾性係数k1と比べて大きい第2の弾性係数k2を有する第2のリターンスプリング(第2の弾性部)68b、および、第2の弾性係数k2と比べて小さい第3の弾性係数k3を有する第1ブッシュ(第3の弾性部)75からなる。
 第1実施形態に係る車両用液圧発生装置14によれば、第2の弾性係数k2と比べて小さい第3の弾性係数k3を有する第1ブッシュ(第3の弾性部)75を設けたため、ブレーキペダル12の操作量に対する反力特性において、何らの解決手段をも採用しない場合に、相互に異なる第1の弾性係数k1および第2の弾性係数k2に係る線形の反力特性が切り換わる切換点に生じていたくの字状の特異点(図6中の点Q0 参照)に起因するブレーキ操作時の違和感を緩和させることができる。
 また、第1実施形態に係る車両用液圧発生装置14では、第1のリターンスプリング(第1の弾性部)68aと第2のリターンスプリング(第2の弾性部)68bとを相互に直列に設け、第1ブッシュ75(第3の弾性部)を第1のリターンスプリング(第1の弾性部)68aに対して並列に設ける。第1ブッシュ(第3の弾性部)75は、シミュレータピストン67の退避方向の側の接触面積を、シミュレータピストン67の進出方向の側の接触面積と比べて異なるように設定する。
 ここで、“第1ブッシュ75は、シミュレータピストン67の退避方向の側の接触面積を、シミュレータピストン67の進出方向の側の接触面積と比べて異なるように設定する”とは、第1ブッシュ75の相手部材に対する接触面積を、前側と後側とで異ならせることを意味する。具体的には、図3に示すように、第1ブッシュ75の後端側では、第1のばね座部材69のうち頂壁部69cの前端壁69c1が接触対象となる相手部材に相当する。一方、第1ブッシュ75の前端側(前側頂部75a)では、第2のばね座部材71のうち頂壁部71cの後端壁71c1が接触対象となる相手部材に相当する。要するに、図3に示す例では、第1ブッシュ75におけるシミュレータピストン67の退避方向の側の接触面積は、シミュレータピストン67の進出方向の側の接触面積と比べて大きく設定されている。
 第1実施形態に係る車両用液圧発生装置14では、運転者がブレーキペダルを操作すると、マスタシリンダ34は、その操作量に応じた液圧を発生させる。マスタシリンダ34に連通された第1ストロークシミュレータ64は、ブレーキペダル12の操作量に応じた反力を、シミュレータピストン67と弾性部68a,68b,75との連携により発生させる。すなわち、ブレーキペダル12の操作量が小さい場合、第2のリターンスプリングに比べて小さい弾性係数を有する第1のリターンスプリングの圧縮変形が主として行われる。一方、ブレーキペダル12の操作量が大きい場合、第2のリターンスプリングの圧縮変形が主として行われる。そして、ブレーキペダル12の操作量が中ほどの場合、第1のリターンスプリングの圧縮変形と並列に、第1ブッシュ75の圧縮変形が遂行される。
 このため、第1の弾性係数k1に係る線形の反力特性と、第2の弾性係数k2に係る線形の反力特性とが切り換わる切換点(図6中の点Q参照)の近傍範囲において、ブレーキペダル12の操作量に対する反力特性は、第1のリターンスプリング(第1の弾性部)68aの圧縮変形により創り出される反力特性と、第1ブッシュ(第3の弾性部)75の圧縮変形により創り出される反力特性との和により描かれる。これにより、切換点Qの近傍範囲において、ブレーキペダル12の操作量に対する反力特性は、図6に示すように、一対の線形の反力特性の間を緩やかにつなぐように補正される。
 したがって、第1実施形態に係る車両用液圧発生装置14によれば、ブレーキペダル12の操作量に対する反力特性において、何らの解決手段をも採用しない場合に、相互に異なる第1の弾性係数k1および第2の弾性係数k2に係る線形の反力特性が切り換わる切換点Qに生じていたくの字状の特異点(図6中の点Q0 参照)に起因するブレーキ操作時の違和感を緩和させることができる。
 しかも、第1ブッシュ75は、シミュレータピストン67の退避方向の側の接触面積を、シミュレータピストン67の進出方向の側の接触面積と比べて異なるように設定したため、接触面積の大きい側では、第1ブッシュ75それ自体の座屈を防ぐと共に、接触面積の小さい側では、ブレーキペダル12の操作量に対する反力特性を非線形にすることができる。
 また、第1ブッシュ(第3の弾性部)75の圧縮変形は、相互に異なる第1の弾性係数k1および第2の弾性係数k2に係る線形の反力特性が切り換わる切換点Q(図6参照)を含む区間で行われる、構成を採用してもよい。
 ここで、“相互に異なる第1の弾性係数k1および第2の弾性係数k2に係る線形の反力特性が切り換わる切換点Qを含む区間”とは、ブレーキ操作時に違和感を生じる区間を意味する。要するに、ブレーキ操作時に違和感を生じる区間において、第1のリターンスプリング(第1の弾性部)68aの圧縮変形と並列に、第1ブッシュ(第3の弾性部)75の圧縮変形が遂行される。したがって、前記の構成を採用すれば、ブレーキ操作時における違和感を的確に緩和させることができる。
 また、第1ブッシュ(第3の弾性部)75の圧縮変形は、第1のリターンスプリング(第1の弾性部)68aの圧縮変形が主として行われる第1の区間l1 に重なる第2の区間l2 で行われ、第1の区間l1 は、切換点(図6中の点Q参照)を終点とし、第2の区間l2 は、第1の区間l1 の途中点(図6中の点P参照)を始点とする一方、前記切換点Qを共通の終点とする、構成を採用してもよい。
 このように構成すれば、第1の区間l1 の途中点Pを始点とし、上記切換点Qを終点とする第2の区間l2 において、第1ブッシュ(第3の弾性部)75の圧縮変形が、第1のリターンスプリング(第1の弾性部)68aの圧縮変形と並列に遂行される。
 このため、第2の区間l2 において、ブレーキペダル12の操作量に対する反力特性は、第1のリターンスプリング(第1の弾性部)68aの圧縮変形により創り出される反力特性と、第1ブッシュ(第3の弾性部)75の圧縮変形により創り出される反力特性との和により描かれる。これにより、第2の区間l2 において、ブレーキペダル12の操作量に対する反力特性は、一対の線形の反力特性の間を緩やかにつなぐように補正される。したがって、前記の構成を採用すれば、ブレーキ操作時における違和感を的確に緩和させることができる。
 また、第1ブッシュ75は、第3の弾性係数として第1ブッシュ(第3の弾性部)75の圧縮変形の進行に伴って漸増する可変値をとることにより、非線形な反力特性を創り出す、構成を採用してもよい。このように構成すれば、第1ブッシュ75は、非線形な反力特性を創り出すため、上記切換点Qの範囲について、一対の線形の反力特性の間を非線形な反力特性をもって緩やかにつなぐように補正することができる。
 また、第1および第2の弾性部を第1および第2のリターンスプリング68a,68bによりそれぞれ構成し、第3の弾性部を合成樹脂等の弾性体からなる第1ブッシュ75により構成したため、簡素な構成をもって、ブレーキ操作時における違和感の緩和効果の高い第1ストロークシミュレータ64を具現化することができる。
 また、第1ブッシュ(第3の弾性部)75は、略円柱形状を有して第1のリターンスプリング68aの内方に収容されると共に、略円柱形状の軸方向端部のうち少なくともいずれか一方に第1~第3の易変形部75d1,75e,75g,75hを有し、これら第1~第3の易変形部75d1,75e,75g,75hは、圧縮変形の方向に直交する方向の断面積が、圧縮変形の方向に沿って漸減または漸増するよう形成されることにより、第1ブッシュ(第3の弾性部)75の非線形な反力特性を創り出す、構成を採用してもよい。このように構成すれば、第1ブッシュ(第3の弾性部)75は、非線形な反力特性を創り出すように作用する。したがって、簡素な構成をもって良好な反力特性を有する第1ストロークシミュレータ64を具現化することができる。
 また、第1および第2の易変形部75d1,75eは、第1ブッシュ(第3の弾性部)75のうちシミュレータピストン67の反対側に設けられる、構成を採用してもよい。このように構成すれば、第1ブッシュ75が圧縮変形を開始するに際し、その前方側に存する第1および第2の易変形部75d1,75eが最初に潰れるように作用させることができる。
 また、第1ブッシュ(第3の弾性部)75は、略円柱形状の中空部75bを有する筒状に形成され、第1ブッシュ75の中空部75bには、第1ブッシュ75の軸方向の移動を案内する略円柱形状の第1ロッド部材79が挿通される、構成を採用してもよい。このように構成すれば、第1ブッシュ75の軸方向の移動を円滑に案内することができる。
 また、第1ロッド部材79のうちシミュレータピストン67の反対側には、外径が小径となる環状段部79cが形成される一方、第1ブッシュ75の中空部75b内壁には、第1ロッド部材79の環状段部79cが突き当たる環状受け部75fが形成される、構成を採用してもよい。このように構成すれば、第1ブッシュ75によって創り出された非線形な反力特性を、第1ロッド部材79に確実に伝えることができる。また、仮に、第1ブッシュ75を正規の方向とは逆向きに(倒立させて)組付けることを試みた場合、第1ロッド部材79の環状段部79cが、第1ブッシュ75のうち環状受け部75f以外の部位に突き当たる。この場合、中空部75bへの第1ロッド部材79の挿通は阻止される。したがって、第1ブッシュ75を正規の方向とは逆向きに組付けることを未然に防止することができる。
 また、第1ブッシュ75の少なくとも一部に切り欠き部75d2を設ける構成を採用してもよい。このように構成すれば、仮に、第1ブッシュ75をブレーキ液等の液体で満たす構成を採用した場合に、第1ブッシュ75それ自体に混入したエアを速やかに抜くことができる。
 また、第1の易変形部75d1は、略円柱形状の周方向に間隔をおいて複数設けられており、相互に隣接する複数の第1の易変形部75d1の間隙を切り欠き部75d2とする、構成を採用してもよい。このように構成すれば、簡素な構成をもって、非線形な反力特性の創出、および、エア抜きを両立させることができる。
 また、第1の易変形部75d1は、ドーム形状の凹部もしくは凸部またはこれらの組み合わせにより形成される、構成を採用してもよい。このように構成すれば、簡素な構成をもって良好な反力特性を有するストロークシミュレータを具現化することができる。
 また、第1ブッシュ75は、第1ブッシュ75の略円柱形状における軸方向の端縁に形成されたテーパー部75g1,75h1を有するため、簡素な構成をもって良好な反力特性を有するストロークシミュレータを具現化することができる。
[本発明の第2実施形態に係る車両用液圧発生装置14の詳細構造]
 次に、本発明の第2実施形態に係る車両用液圧発生装置14において特徴的な構成を備える第2ストロークシミュレータ(本発明の“反力発生部”に相当する。)164について、図面を参照して説明する。図7は、第2ストロークシミュレータの縦断面図である。
 第1実施形態に係る車両用液圧発生装置14において特徴的な構成を備える第1ストロークシミュレータ64(図3参照)と、第2実施形態に係る車両用液圧発生装置14において特徴的な構成を備える第2ストロークシミュレータ164(図7参照)とでは、両者間で基本的な構成要素が共通している。そこで、両者間で実質的に共通の構成要素には共通の符号を付してその説明を省略し、両者間の相違点に注目して説明を進めることとする。
 また、両者間で対応する構成要素については、その対応関係を一見して容易に把握できるように、次の規則にしたがって符号付けを行うこととする。すなわち、第1実施形態に係る構成要素に付された符号と、第2実施形態に係る構成要素に付された符号とでは、その下二桁を共通とする。そして、第2実施形態に係る構成要素に付された符号の先頭に、符号“1”を付する。具体的には、例えば、第1ストロークシミュレータと、第2ストロークシミュレータとは、両者間で対応する構成要素に相当するが、前者に符号“64”を付し、後者に符号“164”を付する要領である。
 さて、第1ストロークシミュレータ64(図3参照)と、第2ストロークシミュレータ164(図7参照)との間の第1の相違点は、第3のばね座部材177および蓋部181の周辺構造である。第1ストロークシミュレータ64では、蓋部81は、第3のばね座部材77とは別体に構成されていたのに対し、第2ストロークシミュレータ164では、蓋部181は、第3のばね座部材177と一体に、第3のばね座部材177の一部をなすように構成されている。
 詳しく述べると、第2ストロークシミュレータ164では、そのハウジング164aのうち前端側には、第1ストロークシミュレータ64と同様に、例えば金属製の略円板形状の蓋部181が設けられている。この蓋部181は、第3のばね座部材177と一体に、第3のばね座部材177の一部をなすように形成されている。蓋部181は、第2のリターンスプリング68bの前端側を受け止める機能を有する。
 蓋部181には、その外周壁181aに環状溝部181a1が刻設されている。環状溝部181a1には、例えばシリコーンゴム製のシールリング181a2が嵌装されている。これにより、シールリング181a2が発揮する気密性によって、第2のシリンダ166b内に充満している空気やブレーキ液等の流体が、シールリング181a2よりも前側にもれださないようになっている。
 第2ストロークシミュレータ164の第3のばね座部材177は、中央部分が肉抜きされた円板形状のフランジ部177aと、このフランジ部177aの内周部分から後ろ側に向かって周回状に延びる周壁部177bと、この周壁部177bの頂部を覆う頂壁部177cとを備える。第3のばね座部材177のうちフランジ部177aは、前記の蓋部181に連なって一体に設けられている。つまり、フランジ部177aは、蓋部181でもある。
 前記の周壁部177bは、第2のリターンスプリング68bの内径と比べてわずかに小さい外径を有する基部177b1と、基部177b1と比べてわずかに小さい外径を有する小径部177b2とを備えている。
 蓋部181の前端側周側部181cは、第1実施形態に係る蓋部81と同様に、係止環83の後部周側壁に当接支持されている。この係止環83は、第2のシリンダ166bの内壁に刻設された環状溝85に係合するように設けられている。これにより、第3のばね座部材177は、蓋部181を介して第2ストロークシミュレータ164のハウジング164aに固定されている。また、第2のリターンスプリング68bの前端側が、第2ストロークシミュレータ164のハウジング164aに対して確実に固定されるようになっている。
 また、第1ストロークシミュレータ64では、第3のばね座部材77の頂壁部77cのうち略中央部分に通孔77eが設けられていたのに対し、第2ストロークシミュレータ164では、第3のばね座部材177の頂壁部177cのうち略中央部分に、第1実施形態に係る通孔77eに相当する孔部に代えて、第2ロッド部材179のうち肥大部179b1の進出を受け入れる凹形状の受入部177が形成されている。これは、後記するように、第2ロッド部材179それ自体(第2ロッド部材179の長さが短縮化)およびその周辺構造が変更されたことに基づく。第3のばね座部材177および蓋部181が有する基本的な機能や動作は、第1ストロークシミュレータ64と共通である。
 第1ストロークシミュレータ64(図3参照)と、第2ストロークシミュレータ164(図7参照)との間の第2の相違点は、第2ロッド部材179それ自体、および、その周辺構造である。第1ストロークシミュレータ64の第1ロッド部材79は、図3に示すように、第1~第3の各ばね座部材69,71,77の略中央部分に開設された通孔69e,71e,77e、および、第1ブッシュ75の中空部75bをそれぞれ貫通するように設けられている。これに対し、第2ストロークシミュレータ164の第2ロッド部材179は、図7に示すように、第1および第2の各ばね座部材69,71の各頂壁部69c,71cのうち略中央部分にそれぞれ開設された通孔69e,71e、および、第1ブッシュ75の中空部75bをそれぞれ貫通するように設けられている。
 要するに、第2ロッド部材179は、その長さが短縮化されている。第2ロッド部材179の支持機構は、第1実施形態に係る第1ロッド部材79の支持機構と共通である。具体的には、第2ロッド部材179の後端側179aは、第1のばね座部材69のうち頂壁部69cの後端側において、係止部材87により係止されている。第2ロッド部材179の前端側179bには、第2のばね座部材71のうち頂壁部71cに開設された通孔71eと比べて大径の肥大部179b1が形成されている。これにより、第2ロッド部材179の前端側179bと、第2のばね座部材71の頂壁部71cに開設された通孔71eとの間の結合関係が容易に外れないようになっている。
[第2実施形態に係る車両用液圧発生装置14の作用効果]
 次に、第2ストロークシミュレータ164を備える第2実施形態に係る車両用液圧発生装置14の作用効果について、第1ストロークシミュレータ64を備える第1実施形態に係る車両用液圧発生装置14との相違部分に注目して説明する。第2実施形態に係る車両用液圧発生装置14の第2ストロークシミュレータ164では、第2ロッド部材179は、第1ストロークシミュレータ64が有する第1ロッド部材79と比べて、その長さが短縮化されている。そのため、第2ストロークシミュレータ164は、次のように作用する。
 すなわち、まず、運転者によりブレーキペダル12が操作されると液圧を生じ、この液圧がシリンダ部66内のシミュレータピストン67に伝わる。すると、シミュレータピストン67がシリンダ部66内を移動する。シミュレータピストン67の進出方向への移動に伴って、第1のばね座部材69が前側へ移動してゆくと、この移動に伴って、第2ロッド部材179は、進出方向へと、第2のばね座部材71の頂壁部71cから突き出すように伸びてゆく。
 運転者によりブレーキペダル12が強く操作されると、ついには、第1のばね座部材69のうちフランジ部69aの前端壁69a1が、第2のばね座部材71のうちフランジ部71aの後端壁71a1に突き当たるに到る。さらに、運転者によりブレーキペダル12が一層強く操作されると、第2のばね座部材71は、第2のリターンスプリング68bが有する弾性力に抗して、第3のばね座部材177の側へと移動してゆく。この移動に伴って、第2ロッド部材179は、進出方向へと、第2のばね座部材71の頂壁部71cから突き出すように伸びてゆく。
 ところが、第3のばね座部材177の頂壁部177cには、凹形状の受入部177が形成されている。このため、第2ロッド部材179が、進出方向へと、第2のばね座部材71の頂壁部71cから突き出すように伸びた場合でも、受入部177は、第2ロッド部材179のうち肥大部179b1の進出を受け入れるように作用する。したがって、第2実施形態に係る車両用液圧発生装置14によれば、第2ロッド部材179と、第2のばね座部材71の頂壁部71cとの干渉を未然に回避することができる。
 また、第2実施形態に係る車両用液圧発生装置14の第2ストロークシミュレータ164では、シミュレータピストン67が収容されるシリンダ部66のうちシミュレータピストン67の反対側には、第2のリターンスプリング(第2の弾性部)68bのうち第1のリターンスプリング(第1の弾性部)68aとの接続側とは異なる側を受け止める蓋部181が設けられる。詳しく述べると、蓋部181は、第3のばね座部材177と一体に、第3のばね座部材177の一部をなすように構成されている。したがって、第2実施形態に係る車両用液圧発生装置14によれば、部品点数を削減し、かつ、軽量化を実現することができる。
[本発明の第3実施形態に係る車両用液圧発生装置14の詳細構造]
 次に、本発明の第3実施形態に係る車両用液圧発生装置14について、図8を参照して詳細に説明する。図8は、第3ストロークシミュレータ364を備える第3実施形態に係る車両用液圧発生装置14の縦断面図である。第3ストロークシミュレータ364は、本発明の“反力発生部”に相当する。
 なお、第1実施形態に係る車両用液圧発生装置14において特徴的な構成を備える第1ストロークシミュレータ64(図3参照)と、第3実施形態に係る車両用液圧発生装置14において特徴的な構成を備える第3ストロークシミュレータ364(図8参照)とでは、前記両者間で基本的な構成要素が共通または対応している。そこで、前記両者間で共通の構成要素については、共通の符号を付するものとする。また、前記両者間で対応する構成要素については、その対応関係を一見して容易に把握できるように、次の規則にしたがって符号付けを行うこととする。すなわち、第1実施形態に係る構成要素に付された符号と、第3実施形態に係る構成要素に付された符号とでは、その下二桁を共通とする。そして、第3実施形態に係る構成要素に付された符号の先頭に、符号“3”を付する。具体的には、例えば、第1ストロークシミュレータと、第2ストロークシミュレータとは、両者間で対応する構成要素に相当するが、前者に符号“64”を付し、後者に符号“364”を付する要領である。
 本発明の第3実施形態に係る車両用液圧発生装置14は、図8に示すように、マスタシリンダ34(液圧発生部)、および、第3ストロークシミュレータ364(反力付与部)を備えている。マスタシリンダ34は、車両V(図1参照)の前後方向(図1に示す前後方向)に延在すると共に、第3ストロークシミュレータ364と一体となるように並設されている。
 マスタシリンダ34のハウジング34a内には、図8に示すように、第1および第2ピストン40a,40b、第1および第2液圧室56a,56b、並びに、第1および第2ばね部材50a,50bがそれぞれ設けられている。第1および第2ピストン40a,40bは、ブレーキペダル12に連係してマスタシリンダ34内を進退自在に設けられている。第1液圧室56aは、マスタシリンダ34の内壁部、並びに、第1および第2ピストン40a,40bにより画成されて形成されている。第2液圧室56bは、マスタシリンダ34の内壁部、および、第2ピストン40bにより画成されて形成されている。第1ばね部材50aは、第1液圧室56aに設けられて第1ピストン40aおよび第2ピストン40bの間を連結する機能を有する。第2ばね部材50bは、第2液圧室56bに設けられて第2ピストン40bおよびマスタシリンダ34の内壁部の間を連結する機能を有する。マスタシリンダ34のハウジング34aは、第3ストロークシミュレータ364のハウジング364aと例えば鋳造によって一体成形され、第3実施形態に係る車両用液圧発生装置14のハウジング14aを構成している。
 第3実施形態に係る車両用液圧発生装置14は、図8に示すように、ハウジング14aに設けられたスタッドボルト303によってダッシュボード2に取り付けられている。このハウジング14aの上方(図8の紙面の手前側)には、マスタシリンダ34と第3ストロークシミュレータ364との間で軸線方向に延在するように、第1リザーバ36(図2参照)が設けられている。また、ハウジング14aには、図2に示すリリーフポート52a、52bおよび接続ポート20a、20bが形成されている。ハウジング14aの中実部には、穿設孔によって、図2に示す第1液圧路58aおよび第2液圧路58b、並びに、分岐液圧路58cが形成されている。
 マスタシリンダ34は、図8に示すように、ブレーキペダル12(図2参照)をその一端側に連結したプッシュロッド42の他端側を受け入れる構成となっている。プッシュロッド42は、マスタシリンダ34とプッシュロッド42とに亘って延びるブーツ306によって覆われている。マスタシリンダ34のブレーキペダル12側は、ダッシュボード2を貫通して車室C内に延在している。
 また、図8に示すセンサバルブユニット300には、図2に示す第1遮断弁60a、第2遮断弁60b、第3遮断弁62、圧力センサPp、および、圧力センサPm、並びに、これら圧力センサPp,Pmからの検出信号を電気的に処理しブレーキ液の液圧を演算する圧力検出回路を搭載する回路基板(図示省略)などが収容されている。センサバルブユニット300には、同ユニット300の筐体内に臨む通気孔307が設けられている。通気孔307の開口部には、例えばゴアテックス(登録商標)よりなる防水通気部材307cが設けられている。
 なお、第3実施形態に係る車両用液圧発生装置14としては、マスタシリンダ34や、第3ストロークシミュレータ364や、液圧路などに残留する空気を抜くためのエア抜き用のブリーダ(図示省略)を有する構成を採用してもよい。
[第3ストロークシミュレータ364の詳細構造]
 次に、第3ストロークシミュレータ364について、図9を参照して詳細に説明する。図9は、第3ストロークシミュレータの主要部を拡大して表す縦断面図である。
 なお、第3ストロークシミュレータ364の説明において、第1実施形態に係る車両用液圧発生装置14と同様に、シミュレータピストン67の退避方向(図9中の左方向)を“後”と定義し、シミュレータピストン67の進出方向(図9中の右方向)を“前”と定義する。
第3ストロークシミュレータ364のハウジング364a内には、図8および図9に示すように、シミュレータピストン67が収容される反力液圧室65と、ばね室63と、が設けられている。反力液圧室65は、マスタシリンダ34の第2液圧室56bと連通している。
 反力液圧室65は、略円柱形状に形成されている。ばね室63は、反力液圧室65の径と比べて大径の略円柱形状に形成されている。反力液圧室65とばね室63とは、これらが一体となって段付きの略円柱形状を形成している。ハウジング364aにおけるシミュレータピストン67の反対側には、前記段付きの略円柱形状の空間を臨む開口が形成されている。この開口には、係止環83によって蓋部81が支持されている。
 ばね室63には、図8および図9に示すように、第1のばね座部材369、第2のばね座部材371、および、第3のばね座部材377、並びに、不等ピッチスプリング368、および、第2リターンスプリング68bがそれぞれ設けられている。不等ピッチスプリング368は、本発明の“ばね部材”に相当する。要するに、不等ピッチスプリング368は、本発明の“第1の弾性部”および“第3の弾性部”に相当する。
 第1のばね座部材369、第2のばね座部材371、および、第3のばね座部材377は、図8に示すように、ばね室63内の後側から前側に向かってこの順序で設けられている。第1のばね座部材369、第2のばね座部材371、および、第3のばね座部材377のそれぞれは、その縦断面が略ハット状に形成されている。
 第1のばね座部材369は、図9に示すように、シミュレータピストン67の前端壁67bに対し、溶接などの接合手段によって固着されている。第1のばね座部材369は、図8および図9に示すように、軸線方向に対して直交するように設けられる円盤状の底部369aと、この底部369aの周縁から後ろ側に延びる周壁部369bと、この周壁部369bの後端縁から径方向の外側に延出するフランジ部369cと、を有して構成されている。
 第2のばね座部材371は、図8および図9に示すように、軸線方向に対して直交するように設けられる円盤状の底部371aと、この底部371aの周縁から後ろ側に延びて不等ピッチスプリング368(後で詳しく説明する。)の外周を覆う周壁部371bと、この周壁部371bの端縁から径方向の外側に延出するフランジ部371cと、を有して構成されている。第2のばね座部材371の底部371aは、第1のばね座部材369の底部369aと共通の方向(シミュレータピストンの反対側)を指向するように設けられている。
 第3のばね座部材377は、図8に示すように、軸線方向に対して直交するように設けられる円盤状の底部377aと、この底部377aの周縁から前側に延びる周壁部377bと、この周壁部377bの端縁から径方向の外側に延出するフランジ部377cと、を有して構成されている。
 第2のばね座部材371は、本発明の“ばね座部材”に相当する。第2のばね座部材371の底部371aは、本発明の“ばね部材におけるシミュレータピストンの反対側を支持する底部”に相当する。第2のばね座部材371の周壁部371bは、本発明の“底部の周縁から延びて当該ばね部材の外周を覆う周壁部”に相当する。第2のばね座部材371および第3のばね座部材377は、その底部371a,377a同士が相互に対面するようにばね室63内に設けられている。
 第2のばね座部材371のフランジ部371c、および、第3のばね座部材377のフランジ部377cは、図8に示すように、不等ピッチスプリング368を挟むように、その前端部および後端部をそれぞれ支持している。第2のばね座部材371の周壁部371b、および、第3のばね座部材377の周壁部377bは、第2リターンスプリング68bの内周側にそれぞれ設けられている。第3のばね座部材377におけるシミュレータピストン67の反対側には、ハウジング364aに支持された前記蓋部81が設けられている。この蓋部81によって、第3のばね座部材377が支持されている。
 不等ピッチスプリング368および第2リターンスプリング68bのそれぞれは、圧縮コイルばねにより形成されている。本発明の第3実施形態に係る車両用液圧発生装置14では、第2リターンスプリング68bは、不等ピッチスプリング368と比べてその線径が太くなるように形成されている。要するに、第2リターンスプリング68bのばね定数は、不等ピッチスプリング368のばね定数と比べて大に設定されている。
 第2リターンスプリング68bは、前記したように、第2のばね座部材371および第3のばね座部材377の間に挟み込まれて支持されている。一方、不等ピッチスプリング368は、第2のばね座部材371における周壁部371bの内周側において、第1のばね座部材369および第2のばね座部材371の間に挟み込まれて支持されている。不等ピッチスプリング368におけるシミュレータピストン67の側は、第1のばね座部材369のフランジ部369cに当接している。不等ピッチスプリング368におけるシミュレータピストン67の反対側は、第2のばね座部材371の底部371aに当接している。
 要するに、不等ピッチスプリング368および第2リターンスプリング68bは、第1のばね座部材369および第3のばね座部材377の間に直列に設けられている。
 なお、図8および図9中の符号379は、軸線方向に延在して第2のばね座部材371および第3のばね座部材377の底部371a,377aの中心を貫通する第3ロッド部材である。この第3ロッド部材379は、これらの第2のばね座部材371および第3のばね座部材377に対して軸線方向に相対移動可能に設けられている。第3ロッド部材379におけるシミュレータピストン67の側は、不等ピッチスプリング368の内周側に設けられる樹脂部材375に支持されている。本第3実施形態に係る樹脂部材375は、合成ゴムなどの弾性部材により形成されている。樹脂部材375は、第1のばね座部材369の底部369aに当接して支持されている。樹脂部材375は、シミュレータピストン67の入力荷重に対する変位を緩和する機能を有する。
 第1のばね座部材369および第3のばね座部材377の間に位置する第2のばね座部材371では、図9に示すように、その周壁部371bが、底部371a側に形成される小径部3711と、フランジ部371c側に形成されてこの小径部3711と比べて拡径した大径部3712とを有する段付き形状に形成されている。不等ピッチスプリング368は、その前部SFが周壁部371bにおける小径部3711の内周側に位置する一方、その後部SRが周壁部371bにおける大径部3712の内周側に位置するように設けられている。要するに、第2のばね座部材(ばね座部材)371の周壁部371bは、図9に示すように、ピッチが大に設定された不等ピッチスプリング368に対応する部分(後部SR)の横断面積S2が、前記と比べてピッチが小に設定されている不等ピッチスプリング368に対応する部分(前部SF)の横断面積S1と比べて大に設定されている。
 ちなみに、本第3実施形態に係る不等ピッチスプリング368における前部SFおよび後部SRの区別は、概ねスプリング長の中央よりもシミュレータピストン67の側に位置するスプリング部分が後部SRに相当し、その中央よりもシミュレータピストン67の反対側に位置するスプリング部分が前部SFに相当する。
 前記第3実施形態に係る不等ピッチスプリング(ばね部材)368は、相互にピッチの異なるばね部材を直列かつ一体に接続してなる。この不等ピッチスプリング368は、そのスプリングの長手方向において、ばね定数の小さい領域である前部SFと、前部SFと比べてばね定数の大きい領域である後部SRと、を有する。換言すると、不等ピッチスプリング368は、単位長さの線材の巻き数(有効巻き数)が異なる領域を複数有している。詳しく述べると、不等ピッチスプリング368において、後部SRのピッチP1は、前部SFのピッチP2と比べて大に設定(P1>P2)されている。
 不等ピッチスプリング368において、後部SRのばね定数k4は、前部SFのばね定数k5と比べて大に設定(k4>k5)されている。ちなみに、第3実施形態では、ばね定数の調整をピッチの調節により行う態様を例示して説明したが、本発明はこの例に限定されない。ばね定数の調整をピッチの調節により行う態様に代えて、ばね定数kを表す下記式(1)のパラメータG、d、NaまたはDの群から選択される1または2以上を調節することで、そのばね定数kを調整する構成を採用してもよい。
 k=G・d/(8Na・D)    ・・・式(1)
 ただし、Gは、ばね材料の横弾性係数である。dは、ばねの線径である。Naは、ばねの有効巻き数である。Dは、平均コイル径である。
 なお、本発明に係る不等ピッチスプリング(ばね部材)368におけるピッチの大小関係は、不等ピッチスプリング368を第3ストロークシミュレータ364にセットした状態での大小関係を意味する。ただし、不等ピッチスプリング368におけるピッチの大小関係は、第3ストロークシミュレータ364にセットする前の状態でもほぼ同じである。これは、第3ストロークシミュレータ364にセットする前の伸張状態の不等ピッチスプリング368を、そのセット長にまで縮める場合には、ばね定数の小さいピッチ小のばね領域(前部SF)の方が、ばね定数の大きいピッチ大のばね領域(後部SR)と比べて、先に(優先的に)縮められるからである。
[第3実施形態に係る車両用液圧発生装置14の作用効果]
 次に、第3ストロークシミュレータ364を備える第3実施形態に係る車両用液圧発生装置14の作用効果について、図10を参照して、第1ストロークシミュレータ64を備える第1実施形態に係る車両用液圧発生装置14との相違部分に注目して説明する。図10は、第3ストロークシミュレータの作用を、比較例(特許文献1に係る従来技術)と対比して表す説明図である。図10において、横軸は、ばね部材のストローク量を表し、縦軸は、ばね部材の荷重を表している。
 ただし、比較例に係るばね部材は、特許文献1に係るストロークシミュレータに使用される、ばねの線径、ばねの有効巻き数、および平均コイル径がそのスプリング長に亘って一定である圧縮コイルばねを想定している。これに対して、本発明の第3実施形態に係るばね部材は、不等ピッチスプリング368である。この不等ピッチスプリング368は、その前部SFのピッチP2が比較例に係るばね部材と略同じに設定されると共に、その後部SRのピッチP1の方が、前部SFのピッチP2と比べて大きくなるように、不等ピッチに設定されている。ちなみに、第3実施形態に係る不等ピッチスプリング368では、そのばねの材料、線径、および、平均コイル径が、比較例に係るばね部材と略同じに設定されている。
 比較例に係るストロークシミュレータでは、シミュレータピストンの戻りを良好にすると共に良好なペダルフィールを実現するために、目標とするセット荷重を確実に発揮するために、ばね部材の高い精度管理が求められている。
 ここでは、図10に示すように、比較例に係るストロークシミュレータで使用されるばね部材を、所定のセット長L1で比較例に係るストロークシミュレータに組み込んで、目標とするセット荷重N1に設定しようとする場合を想定する。
 このような比較例に係るストロークシミュレータで使用されるばね部材は、そのばね定数がスプリング長方向に一定であることから、そのセット長がL1に対してSA2の範囲でバラツキを生じると、セット荷重は、目標のN1に対してB2の範囲でバラツキを生じることとなる。
 要するに、比較例に係るストロークシミュレータでは、そのセット荷重がB2の範囲の下限値となってシミュレータピストンの戻りが悪くなる場合があると共に、逆にそのセット荷重がB2の範囲の上限値となって、良好なペダルフィールを実現することができないおそれがあった。
 これに対し、第3実施形態に係る不等ピッチスプリング368(ばね部材)では、比較例に係るばね部材とピッチが略同じの後部SRにおいて、不等ピッチスプリング368と協働してブレーキ反力を発生する。つまり、この後部SRは、第3ストロークシミュレータ364において本来のブレーキ反力を形成する部分となる。この後部SRにおける第3ストロークシミュレータ364のストローク量に対する第3ストロークシミュレータ364の荷重の関係は、図10に示す比較例と同じ勾配の特性となる。
 一方、不等ピッチスプリング368における前部SFは、後部SRと比べてピッチが小さく、そのばね定数が小さいため、この前部SFにおける不等ピッチスプリング368のストローク量に対する不等ピッチスプリング368の荷重の関係は、図10に示すように、比較例と比べて緩い勾配の特性となる。つまり、この不等ピッチスプリング368を第3ストロークシミュレータ364に組み込むために縮めると、その後部SRと比べてピッチの小さい前部SFの方が、比較例よりも緩い勾配の図10に示す特性に従うように、先に(優先的に)縮むこととなる。
 したがって、本第3実施形態に係る不等ピッチスプリング368では、図10に示すように、所定のセット長L2で第3ストロークシミュレータ364に不等ピッチスプリング368を組み込んで、目標とするセット荷重N1に設定しようと試みる際に、そのセット長L2に対してSA1(ただし、SA1=SA2)の範囲でバラツキを生じたとしても、そのセット荷重を、目標のN1に対して、比較例のバラツキB2と比べて小さいバラツキB1に抑えることができる(B1<B2,図10参照)。
 第3実施形態に係る液圧発生装置14では、本発明に係る第1の弾性部および第3の弾性部は、不等ピッチスプリング(ばね部材)368からなり、不等ピッチスプリング(ばね部材)368は、相互にピッチの異なるばね部材を直列かつ一体に接続してなる。
 したがって、第3実施形態に係る液圧発生装置14によれば、不等ピッチスプリング368のセット荷重のバラツキを小さくすることができるので、不等ピッチスプリング(ばね部材)368の高い精度管理を実現することができる。
 また、第3実施形態に係る液圧発生装置14によれば、セット荷重の設定を高い精度でかつ簡易に行うことができるので、これを適用する車両用ブレーキシステム10の性能を格段に向上させることができる。また、その製造工程を簡略化でき、さらには、その製造コストを低減することができる。
 しかも、第3実施形態に係る液圧発生装置14によれば、不等ピッチスプリング368を第3ストロークシミュレータ364にセットした後に、ピッチの小さい部分(不等ピッチスプリング368の前部SF)の大きい反発力を利用することで、シミュレータピストン67の戻りを良好にすることができる。
 さらに、第3実施形態に係る液圧発生装置14によれば、本発明の“第1の弾性部”および“第3の弾性部”に相当する不等ピッチスプリング(ばね部材)368は、相互にピッチの異なるばね部材を直列かつ一体に接続してなるため、第1実施形態に係る車両用液圧発生装置14と同様の、ブレーキ操作時の違和感を緩和させる効果を期待することができる。
 また、第3実施形態に係る液圧発生装置14では、不等ピッチスプリング(ばね部材)368の内周側に、シミュレータピストン67に支持される樹脂部材375を設け、不等ピッチスプリング(ばね部材)368は、シミュレータピストン67の側のピッチP1を、これとは反対側のピッチP2と比べて大に設定した。
 したがって、第3実施形態に係る液圧発生装置14によれば、シミュレータピストン67によって不等ピッチスプリング368が縮められた際に、樹脂部材375は、不等ピッチスプリング368のピッチが大きくかつ径方向の寸法の変動が大きい後部SRから、そのピッチが小さくかつ径方向の寸法の変動が小さい前部SFに向かって、不等ピッチスプリング368の内周側を移動するので、不等ピッチスプリング368と樹脂部材375との干渉を未然に防止することができる。
 しかも、不等ピッチスプリング368の内周側での樹脂部材375と不等ピッチスプリング368との距離(隙間)を縮小できるので、車両用液圧発生装置14のコンパクト化を図ることができる。
 また、第3実施形態に係る液圧発生装置14では、第2のばね座部材(ばね座部材)371の周壁部371bは、ピッチが大に設定された不等ピッチスプリング368に対応する部分(後部SR)の横断面積S2が、前記と比べてピッチが小に設定されている不等ピッチスプリング368に対応する部分(前部SF)の横断面積S1と比べて大に設定される。
 したがって、第3実施形態に係る液圧発生装置14によれば、ピッチP1が大きく、かつ、径方向の寸法の変動が大きい不等ピッチスプリング368における後部SRと、第2のばね座部材371の周壁部371bとの間の干渉を未然に防止することができる。
 また、第3実施形態に係る液圧発生装置14では、第2のばね座部材(ばね座部材)371の底部371aを、不等ピッチスプリング(ばね部材)368の伸縮方向に貫通する第3ロッド部材379を備え、第3ロッド部材379は、第2のばね座部材(ばね座部材)371に対して伸縮方向に沿って相対移動自在に支持されると共に、第3ロッド部材379におけるシミュレータピストン67の側が、樹脂部材375に支持される。
 したがって、第3実施形態に係る液圧発生装置14によれば、シミュレータピストン67によって不等ピッチスプリング368が縮められ、またその後に復元する際に、第3ロッド部材379は、シミュレータピストン67および不等ピッチスプリング368の移動を軸線方向に案内することができる。その結果、第3実施形態に係る液圧発生装置14によれば、シミュレータピストン67および不等ピッチスプリング368の移動動作を円滑に行わせることができる。
[本発明の第4実施形態に係る車両用液圧発生装置14の詳細構造]
 次に、本発明の第4実施形態に係る車両用液圧発生装置14について、図11を参照して詳細に説明する。図11は、図3に示す第1ストロークシミュレータ64を備える第4実施形態に係る車両用液圧発生装置14の縦断面図である。
 なお、第3実施形態に係る車両用液圧発生装置14(図8参照)と、第4実施形態に係る車両用液圧発生装置14(図11参照)とでは、前記両者間で基本的な構成要素が共通または対応している。そこで、前記両者間で実質的に共通の構成要素には共通の符号を付してその説明を省略し、両者間の相違点に注目して説明を進めることとする。
 第3実施形態に係る車両用液圧発生装置14(図8参照)と、第4実施形態に係る車両用液圧発生装置14(図11参照)との第1の相違点は、第3実施形態では、第3ストロークシミュレータ364を備えているのに対し、第4実施形態では、第1ストロークシミュレータ64を備えている点である。第1ストロークシミュレータ64の構成およびその作用効果については、第1実施形態で説明した内容と同じである。
 第3実施形態に係る車両用液圧発生装置14(図8参照)と、第4実施形態に係る車両用液圧発生装置14(図11参照)との第2の相違点は、第3実施形態に係るマスタシリンダ34では、第1液圧室56aで生じる液圧の最大値は、第2液圧室56bで生じる液圧の最大値と略同等に設定されているのに対し、第4実施形態に係るマスタシリンダ434では、第2液圧室456bで生じる液圧の最大値は、第1液圧室456aで生じる液圧の最大値と比べて小に設定されている点である。
 詳しく述べると、第4実施形態に係るマスタシリンダ434のハウジング434a内には、図11に示すように、第1および第2ピストン440a,440b、第1および第2液圧室456a,456b、並びに、第1および第2ばね部材450a,450bがそれぞれ設けられている。
 第1および第2ピストン440a,440bは、ブレーキペダル12に連係してマスタシリンダ434内を進退自在に設けられている。第1液圧室456aは、マスタシリンダ434の内壁部、並びに、第1ピストン440aおよび第2ピストン440bにより画成されて形成されている。第2液圧室456bは、マスタシリンダ434の内壁部、および、第2ピストン440bにより画成されて形成されている。第1ばね部材450aは、第1液圧室456aに設けられて第1ピストン440aおよび第2ピストン440bの間を連結する機能を有する。第2ばね部材450bは、第2液圧室456bに設けられて第2ピストン440bおよびマスタシリンダ434の内壁部の間を連結する機能を有する。マスタシリンダ434のハウジング434aは、第1ストロークシミュレータ64のハウジング64aと例えば鋳造によって一体成形され、第4実施形態に係る車両用液圧発生装置14のハウジング14aを構成している。第2液圧室456bは、図11に示すように、液圧路464を介して反力液圧室65に連通している。
 ここで、第4実施形態に係る車両用液圧発生装置14において重要な点は、後で詳しく説明するように、第4実施形態に係るマスタシリンダ434では、第2液圧室456bで生じる液圧の最大値は、第1液圧室456aで生じる液圧の最大値と比べて小に設定されている点である。具体的には、例えば、第2液圧室456bの最大容量は、反力液圧室65の最大容量と比べて小に設定される。
 図11中の符号“A”で表す点線で囲った領域は、第2液圧室456bの容量を概念的に表している。この第2液圧室456bの容量は、マスタシリンダ434に対する無加重状態において最大となる。また、図11中の符号“B”で表す点線で囲った領域は、反力液圧室65の容量を概念的に表している。この反力液圧室65の容量Bは、シミュレータピストン67が底着き位置まで進出移動した際に最大となる。
 第4実施形態に係る車両用液圧発生装置14では、図11に示すように、第1ピストン440aおよび第2ピストン440bの間を連結する第1ばね部材450aと、第2ピストン440bおよびマスタシリンダ434の内壁部の間を連結する第2ばね部材450bとは、それぞれの弾性係数が略同等に設定されている。
 また、第2ピストン440bがマスタシリンダ434の内壁部に対して底着きしても、第1ピストン440aは、第2ピストン40bにおけるプッシュロッド42の側に対する底着きに到るまで余裕を有するように設定されている。換言すれば、マスタシリンダ434に対する無加重状態において、第2ピストン440bにおけるプッシュロッド42の反対側およびマスタシリンダ434の内壁部の間隔は、第2ピストン40bにおけるプッシュロッド42の側および第1ピストン40aにおけるプッシュロッド42の反対側の間隔と比べて小さく設定されている。
[第4実施形態に係る車両用液圧発生装置14の作用効果]
 次に、第1ストロークシミュレータ64を備える第4実施形態に係る車両用液圧発生装置14の作用効果について、図12を参照して、第1ストロークシミュレータ64を備える第1実施形態に係る車両用液圧発生装置14との相違部分に注目して説明する。図12は、第4実施形態に係る車両用液圧発生装置14において、第1液圧室456aおよび第2液圧室456bにおけるストローク量(マスタシリンダストローク[mm])に対するマスタシリンダ液圧[Pa]の特性線図を対比して表す説明図である。
 図12中の細い実線で示す特性線図は、第1ピストン40aのストローク量に対する第1液圧室56aの液圧を表す。図12中の太い実線で示す特性線図は、第2ピストン40bのストローク量に対する第2液圧室56bの液圧を表す。図12中の縦軸に係るマスタシリンダ液圧[Pa]は、第1液圧室56aまたは第2液圧室56bから送り出されるブレーキ液(フルード)の圧力で表している。
 車両用ブレーキシステム10の正常作動時には、マスタシリンダ34にブレーキ液圧が発生しているか否かにかかわらず、ノーマルオープンタイプのソレノイドバルブからなる第1遮断弁60aおよび第2遮断弁60bが励磁されて弁閉状態となり、ノーマルクローズタイプのソレノイドバルブからなる第3遮断弁62が励磁されて弁開状態となる(図2参照)。したがって、第1遮断弁60aおよび第2遮断弁60bによって第1液圧系統70aおよび第2液圧系統70bが遮断されるため、第4実施形態に係る車両用液圧発生装置14のマスタシリンダ434で発生したブレーキ液圧がディスクブレーキ機構30a~30dのホイールシリンダ32FR,32RL,32RR,32FLに伝達されない。
 このとき、マスタシリンダ34の第2液圧室56bにおいてブレーキ液圧が発生すると、発生したブレーキ液圧は、分岐液圧路58cおよび弁開状態にある第3遮断弁62を経由して第1ストロークシミュレータ64の反力液圧室65に伝達される。この反力液圧室65に供給されたブレーキ液圧によってシミュレータピストン67がリターンスプリング68a、68bのばね力に抗して変位することにより、ブレーキペダル12のストロークが許容されると共に、擬似的なペダル反力が創り出されてブレーキペダル12にフィードバックされる。この結果、運転者にとって違和感のないブレーキ操作感が得られる。
 運転者がブレーキペダル12を踏むことでマスタシリンダ434に入力される荷重が増加すると、図12に示すように、この増加に伴って、第1および第2ピストン440a,440bのストローク量(マスタシリンダストローク[mm])は共に増加していく。
 運転者がブレーキペダル12を強く踏み込むことでマスタシリンダ434に入力される荷重が増加し、第2ピストン440bにおけるプッシュロッド42の反対側がマスタシリンダ434の内壁部に対して底着きすると、図12に示すように、マスタシリンダストローク[mm]は、ほとんど増加しなくなる。
 第2ピストン440bにおけるプッシュロッド42の反対側がマスタシリンダ434の内壁部に対して底着きした後において、運転者がブレーキペダル12を強く踏み込むことでマスタシリンダ434に対してさらに荷重を加えると、第1液圧室56aの液圧は、図12に示すように、急激に増加する。
 第4実施形態に係る車両用液圧発生装置14では、第2液圧室456bは、反力液圧室65に連通されており、第2液圧室456bで生じる液圧の最大値は、第1液圧室456aで生じる液圧の最大値と比べて小に設定される。
 したがって、第4実施形態に係る車両用液圧発生装置14を備える車両用制動力発生装置10によれば、第1ストロークシミュレータ64の形成材料、および、マスタシリンダ434と第1ストロークシミュレータ64とをつなぐ分岐液圧路58cの形成材料、並びに、この分岐液圧路58cに配置される第3遮断弁62のような各種構成部品に、高強度や高耐久性を有する特別仕様のものを使用する必要がなく、その形成材料や構成部品の選択の自由度が広がる。その結果、車両用制動力発生装置10の製造コストを、より低く抑えることができる。
 なお、第4実施形態に係る車両用液圧発生装置14では、第2ピストン440bにおけるプッシュロッド42の反対側がマスタシリンダ434の内壁部に対して底着きする直前までは、第1ストロークシミュレータ64が通常動作する。したがって、第4実施形態に係る車両用液圧発生装置14によれば、第1実施形態に係る車両用液圧発生装置14と同様のブレーキ操作時における違和感の緩和効果を得ることができる。
 また、第4実施形態に係る車両用液圧発生装置14では、マスタシリンダ(液圧発生部)434の第2液圧室456bの最大容量A(図11参照)は、反力液圧室65の最大容量B(図11参照)と比べて小に設定される。
 したがって、第4実施形態に係る車両用液圧発生装置14を備える車両用制動力発生装置10によれば、マスタシリンダ434の第2ピストン440bが底着きする前に、第1ストロークシミュレータ64のシミュレータピストン67が底着きすることはない。換言すれば、マスタシリンダ434の第2ピストン440bが底着きした時点では、第1ストロークシミュレータ64のシミュレータピストン67は、底着きに到るまで余裕を有している。
 これに対し、仮に、マスタシリンダ434の第2液圧室456bの最大容量Aが、反力液圧室65の最大容量Bと比べて大に設定されたものを比較例として想定したとする。すると、この比較例では、第4実施形態に係る車両用液圧発生装置14とは逆に、第1ストロークシミュレータ64のシミュレータピストン67が底着きした後に、マスタシリンダ434の第2ピストン440bが底着きすることとなる。
 かかる比較例のケースでは、シミュレータピストン67が底着きした後であっても、第2ピストン440bは、マスタシリンダ434のハウジング434a内において進出移動が可能である。この場合、第1ストロークシミュレータ64のハウジング64aそれ自体に大きな負荷がかかってしまうため、相応の強度をもたせなければならない。
 この点、第4実施形態に係る車両用液圧発生装置14を備える車両用制動力発生装置10によれば、第2ピストン440bが底着きしてもなお、シミュレータピストン67が底着きすることはないため、第1ストロークシミュレータ64のハウジング64aそれ自体に大きな負荷がかかるのを未然に防止することができる。
 また、第4実施形態に係る車両用液圧発生装置14と、マスタシリンダ(液圧発生部)434の第1液圧室456aおよび第2液圧室456bに第1遮断弁(遮断弁)60aを介して連通すると共に電気的に作動するモータシリンダ装置(電気的液圧発生部)16と、を備える車両用制動力発生装置10であって、第1液圧室456aおよび第1遮断弁(遮断弁)60aの間を連通する第1液圧路(液圧路)58aの液圧を検出する圧力センサ(液圧検出部)Pmを設ける構成を採用してもよい。
 また、第1ブレーキ系110aにおいて、ホイールシリンダ32FR,32RLと、ブレーキ液のリザーバ132とを連通させる第1共通液圧路(連通路)112および第2共通液圧路(連通路)114上に、減圧弁としての第1アウトバルブ128および第2アウトバルブ130を有し、第1アウトバルブ(減圧弁)128および第2アウトバルブ(減圧弁)130は、第1遮断弁(遮断弁)60aが開いている状態でマスタシリンダ(液圧発生部)434を作動させる場合に、第1液圧室456aに連通するホイールシリンダ32FR,32RLに係る液圧を減圧させる、構成を採用してもよい。
 第4実施形態に係る車両用液圧発生装置14を備える車両用制動力発生装置10では、モータシリンダ装置16などの異常時に第1遮断弁60aが開いている状態でマスタシリンダ434を作動させ、圧力センサPmによって第1液圧路58aの液圧を検出・監視する。この際、検出・監視中の第1液圧路58aの液圧が所定の閾値を超えると、車両用制動力発生装置10の制御部(不図示)は、第1アウトバルブ128および第2アウトバルブ130を開くことで、ブレーキ液(フルード)をリザーバ132に導いて当該液圧を下げることができる。ちなみに、この際、第1インバルブ120および第2インバルブ124は、制御部によって閉じられることとなる。
 したがって、第4実施形態に係る車両用液圧発生装置14を備える車両用制動力発生装置10によれば、モータシリンダ装置16などの異常時に第1遮断弁60aが開いている状態でマスタシリンダ34を作動させる際に、第1液圧路58aの液圧を低下させることで、第2液圧室56bで生じる液圧の最大値と第1液圧室56aで生じる液圧の最大値とを合わせ込みまたは一致させるように調整することができる。
[本発明の第5実施形態に係る車両用液圧発生装置14の構成]
 次に、本発明の第5実施形態に係る車両用液圧発生装置14について、図13を参照して詳細に説明する。図13は、図7に示す第2ストロークシミュレータ164を備える第5実施形態に係る車両用液圧発生装置14の縦断面図である。
 なお、第4実施形態に係る車両用液圧発生装置14(図11参照)と、第5実施形態に係る車両用液圧発生装置14(図13参照)とでは、前記両者間で基本的な構成要素が共通または対応している。そこで、前記両者間で実質的に共通の構成要素には共通の符号を付してその説明を省略し、両者間の相違点に注目して説明を進めることとする。
 第4実施形態に係る車両用液圧発生装置14(図11参照)と、第5実施形態に係る車両用液圧発生装置14(図13参照)との相違点は、第4実施形態では、第1ストロークシミュレータ64を備えているのに対し、第5実施形態では、第2ストロークシミュレータ164を備えている点である。第2ストロークシミュレータ164の構成およびその作用効果については、第2実施形態で説明した内容と同じである。
[第5実施形態に係る車両用液圧発生装置14の作用効果]
 第5実施形態に係る車両用液圧発生装置14では、第4実施形態に係る車両用液圧発生装置14と同様に、第2液圧室456bは、反力液圧室65に連通されており、第2液圧室456bで生じる液圧の最大値は、第1液圧室456aで生じる液圧の最大値と比べて小に設定される。
 したがって、第5実施形態に係る車両用液圧発生装置14を備える車両用制動力発生装置10によれば、第2ストロークシミュレータ164の形成材料、および、マスタシリンダ434と第2ストロークシミュレータ164とをつなぐ分岐液圧路58cの形成材料、並びに、この分岐液圧路58cに配置される第3遮断弁62のような各種構成部品に、高強度や高耐久性を有する特別仕様のものを使用する必要がなく、その形成材料や構成部品の選択の自由度が広がる。その結果、車両用制動力発生装置10の製造コストを、より低く抑えることができる。
 なお、第5実施形態に係る車両用液圧発生装置14では、第2ピストン440bにおけるプッシュロッド42の反対側がマスタシリンダ434の内壁部に対して底着きする直前までは、第2ストロークシミュレータ164が通常動作する。したがって、第5実施形態に係る車両用液圧発生装置14によれば、第2実施形態に係る車両用液圧発生装置14と同様のブレーキ操作時における違和感の緩和効果を得ることができる。
[本発明の第6実施形態に係る車両用液圧発生装置14の構成]
 次に、本発明の第6実施形態に係る車両用液圧発生装置14について、図14を参照して詳細に説明する。図14は、図8および図9に示す第3ストロークシミュレータ364を備える第6実施形態に係る車両用液圧発生装置14の縦断面図である。
 なお、第4実施形態に係る車両用液圧発生装置14(図11参照)と、第6実施形態に係る車両用液圧発生装置14(図14参照)とでは、前記両者間で基本的な構成要素が共通または対応している。そこで、前記両者間で実質的に共通の構成要素には共通の符号を付してその説明を省略し、両者間の相違点に注目して説明を進めることとする。
 第4実施形態に係る車両用液圧発生装置14(図11参照)と、第6実施形態に係る車両用液圧発生装置14(図14参照)との相違点は、第4実施形態では、第1ストロークシミュレータ64を備えているのに対し、第6実施形態では、第3ストロークシミュレータ364を備えている点である。第3ストロークシミュレータ364の構成およびその作用効果については、第3実施形態で説明した内容と同じである。
[第6実施形態に係る車両用液圧発生装置14の作用効果]
 第6実施形態に係る車両用液圧発生装置14では、第4実施形態に係る車両用液圧発生装置14と同様に、第2液圧室456bは、反力液圧室65に連通されており、第2液圧室456bで生じる液圧の最大値は、第1液圧室456aで生じる液圧の最大値と比べて小に設定される。
 したがって、第6実施形態に係る車両用液圧発生装置14を備える車両用制動力発生装置10によれば、第3ストロークシミュレータ364の形成材料、および、マスタシリンダ434と第2ストロークシミュレータ164とをつなぐ分岐液圧路58cの形成材料、並びに、この分岐液圧路58cに配置される第3遮断弁62のような各種構成部品に、高強度や高耐久性を有する特別仕様のものを使用する必要がなく、その形成材料や構成部品の選択の自由度が広がる。その結果、車両用制動力発生装置10の製造コストを、より低く抑えることができる。
 なお、第6実施形態に係る車両用液圧発生装置14では、第2ピストン440bにおけるプッシュロッド42の反対側がマスタシリンダ434の内壁部に対して底着きする直前までは、第3ストロークシミュレータ364が通常動作する。したがって、第6実施形態に係る車両用液圧発生装置14によれば、第3実施形態に係る車両用液圧発生装置14と同様のブレーキ操作時における違和感の緩和効果を得ることができる。
[その他の実施形態]
 以上説明した複数の実施形態は、本発明の具現化の例を示したものである。したがって、これらによって本発明の技術的範囲が限定的に解釈されることがあってはならない。本発明はその要旨またはその主要な特徴から逸脱することなく、様々な形態で実施することができるからである。
 例えば、第1および第2実施形態において、第1ブッシュ75の軸方向のうち一側に易変形部75d1aを設ける例を挙げて説明したが、本発明はこの例に限定されない。第1ブッシュ75の軸方向のうち両側に易変形部75d1aを設ける構成を採用してもよい。また、第1ブッシュ75の軸方向のうち一側に4つの易変形部75d1aを設ける例を挙げて説明したが、本発明はこの例に限定されない。第1ブッシュ75の軸方向のうち一側に単一の(周方向に連なった)、または、2,3,5個等の任意の数の易変形部75d1aを設ける構成を採用してもよい。
 また、第1および第2実施形態において、第1ブッシュ75が非線形の反力特性を有する例を挙げて説明したが、本発明はこの例に限定されない。第1ブッシュ75に線形の反力特性をもたせて、第2の区間l2 の範囲内において、第1のリターンスプリング68aの圧縮変形により創り出される線形の反力特性と、第1ブッシュ75の圧縮変形により創り出される線形の反力特性とを相互に加算する。これにより、3段階の線形特性をつなぎ合わせたブレーキペダル12の操作量に対する反力特性を得ることができる。こうした実施例も、本発明の技術的範囲の射程に包含される。
 なお、請求項3に記載の“相互に異なる第1の弾性係数(k1)および第2の弾性係数(k2)に係る線形の反力特性が切り換わる切換点(点Q)を含む区間”とは、第2の区間l2 を包摂する概念である。
 また、第3実施形態に係る不等ピッチスプリング368において、前部SFと後部SRとで相互に異なるピッチP1,P2を設定することで、2段のばね定数を設定する例をあげて説明したが、本発明はこの例に限定されない。本発明に係る不等ピッチスプリングが有するばね定数の段数は、3以上の多段とする構成を採用してもよい。
 また、第3実施形態に係る不等ピッチスプリング368において、本発明に係る不等ピッチスプリングが有するばね定数の段数を多段に設定する際に、スプリングの長手方向に沿ってばね定数の大きい順番で、または、小さい順番で、相互にばね定数の異なる領域を設定してもよいし、相互にばね定数の異なる領域をランダムに配置してもよい。
 また、第4~第6実施形態において、VSA装置18を構成する減圧弁としての第1および第2アウトバルブ128,130、並びに、リザーバ132を利用して、第1ブレーキ系110aの液圧を減じる構成を例示して説明したが、本発明はこの例に限定されない。本発明は、例えば、接続ポート20aとホイールシリンダ32FR,32RLとの間の液圧路の途中に、減圧弁と減圧回路との両者またはいずれか一方を設ける構成を採用してもよい。
 10   車両用ブレーキシステム(車両用制動力発生装置)
 12   ブレーキペダル(ブレーキ操作部材)
 14   車両用液圧発生装置
 16   モータシリンダ装置(電気的液圧発生部)
 34   マスタシリンダ(液圧発生部)
 40a  第1ピストン
 40b  第2ピストン
 56a  第1液圧室
 56b  第2液圧室
 60a  第1遮断弁(遮断弁)
 64   第1ストロークシミュレータ(反力発生部)
 65   反力液圧室
 66   シリンダ部
 67   シミュレータピストン
 68a  第1のリターンスプリング(弾性部、第1の弾性部)
 68b  第2のリターンスプリング(弾性部、第2の弾性部)
 69   第1のばね座部材
 71   第2のばね座部材
 75   第1ブッシュ(弾性部、第3の弾性部)
 75b  中空部
 75d1 第1の易変形部(易変形部)
 75e  環状段部:第2の易変形部(易変形部)
 75g  テーパー部:第3の易変形部(易変形部)
 75h  テーパー部:第3の易変形部(易変形部)
 77   第3のばね座部材
 79   第1ロッド部材
 81   蓋部
 164  第2ストロークシミュレータ(反力発生部)
 177  第3のばね座部材
 179  第2ロッド部材
 364  第3ストロークシミュレータ(反力発生部)
 368  不等ピッチスプリング(ばね部材、第1の弾性部、第3の弾性部)
 369  第1のばね座部材
 371  第2のばね座部材(ばね座部材)
 375  樹脂部材
 377  第3のばね座部材
 379  第3ロッド部材
 440a 第1ピストン
 440b 第2ピストン
 434  マスタシリンダ(液圧発生部)
 456a 第1液圧室
 456b 第2液圧室
 l1    第1の区間
 l2    第2の区間
 Pm   圧力センサ(液圧検出部)

Claims (21)

  1.  運転者によるブレーキ操作部材の操作量に応じた液圧を発生させる液圧発生部と、
     前記液圧発生部に連通されて、前記ブレーキ操作部材の操作量に応じた反力を発生させる反力発生部と、を備える車両用液圧発生装置において、
     前記反力発生部は、前記液圧発生部で発生した液圧に応じて進出方向または退避方向に作動されるシミュレータピストンと、
     前記シミュレータピストンの前記進出方向の側に設けられた弾性部と、を有し、
     前記弾性部は、第1の弾性係数を有する第1の弾性部、前記第1の弾性係数と比べて大きい第2の弾性係数を有する第2の弾性部、および、前記第2の弾性係数と比べて小さい第3の弾性係数を有する第3の弾性部からなる、
     ことを特徴とする車両用液圧発生装置。
  2.  請求項1に記載の車両用液圧発生装置であって、
     前記第1の弾性部と前記第2の弾性部とを相互に直列に設け、前記第3の弾性部を前記第1の弾性部に対して並列に設け、
     前記第3の弾性部は、前記シミュレータピストンの前記退避方向の側の接触面積を、前記シミュレータピストンの前記進出方向の側の接触面積と比べて異なるように設定した、
     ことを特徴とする車両用液圧発生装置。
  3.  請求項1に記載の車両用液圧発生装置であって、
     前記第1の弾性部と前記第2の弾性部とを相互に直列に設け、前記第3の弾性部を前記第1の弾性部に対して並列に設け、
     前記第3の弾性部の圧縮変形は、相互に異なる前記第1の弾性係数および前記第2の弾性係数に係る線形の前記反力特性が切り換わる切換点を含む区間で行われる、
     ことを特徴とする車両用液圧発生装置。
  4.  請求項1に記載の車両用液圧発生装置であって、
     前記第1の弾性部および前記第3の弾性部は、ばね部材からなる、
     ことを特徴とする車両用液圧発生装置。
  5.  請求項1に記載の車両用液圧発生装置であって、
     前記第1の弾性部および前記第3の弾性部は、ばね部材からなり、
     前記ばね部材は、相互にピッチの異なるばね部材を直列かつ一体に接続してなる、
     ことを特徴とする車両用液圧発生装置。
  6.  請求項1に記載の車両用液圧発生装置であって、
     前記液圧発生部は、前記ブレーキ操作部材に連係してマスタシリンダ内を進退自在に設けられる第1ピストンおよび第2ピストンと、前記マスタシリンダの内壁部、並びに、前記第1ピストンおよび前記第2ピストンにより画成される第1液圧室と、前記マスタシリンダの内壁部および前記第2ピストンにより画成される第2液圧室と、前記第1液圧室に設けられて前記第1ピストンおよび前記第2ピストンの間を連結する第1ばね部材と、前記第2液圧室に設けられて前記第2ピストンおよび前記マスタシリンダの内壁部の間を連結する第2ばね部材と、を備え、
     前記第2液圧室は、前記反力発生部に連通されており、
     前記第2液圧室で生じる液圧の最大値は、前記第1液圧室で生じる液圧の最大値と比べて小に設定される、
     ことを特徴とする車両用液圧発生装置。
  7.  請求項6に記載の車両用液圧発生装置であって、
     前記反力発生部は、前記第2液圧室の液圧を受けて前記シミュレータピストンを作動させる反力液圧室を有し、
     前記第2液圧室の最大容量は、前記反力液圧室の最大容量と比べて小に設定される、
     ことを特徴とする車両用液圧発生装置。
  8.  請求項3に記載の車両用液圧発生装置であって、
     前記第3の弾性部の圧縮変形は、前記第1の弾性部の圧縮変形が主として行われる第1の区間に重なる第2の区間で行われ、
     前記第1の区間は、前記切換点を終点とし、前記第2の区間は、前記第1の区間の途中点を始点とする一方、前記切換点を共通の終点とする、
     ことを特徴とする車両用液圧発生装置。
  9.  請求項3に記載の車両用液圧発生装置であって、
     前記第3の弾性部は、前記第3の弾性係数として当該第3の弾性部の圧縮変形の進行に伴って漸増する可変値をとることにより、非線形な前記反力特性を創り出す、
     ことを特徴とする車両用液圧発生装置。
  10.  請求項9に記載の車両用液圧発生装置であって、
     前記第3の弾性部は、略円柱形状を有して前記第1の弾性部の内方に収容されると共に、前記略円柱形状の軸方向端部のうち少なくともいずれか一方に易変形部を有し、
     前記易変形部は、前記圧縮変形の方向に直交する方向の断面積が、前記圧縮変形の方向に沿って漸減または漸増するよう形成されることにより、前記第3の弾性部の非線形な前記反力特性を創り出す、
     ことを特徴とする車両用液圧発生装置。
  11.  請求項10に記載の車両用液圧発生装置であって、
     前記易変形部は、前記第3の弾性部のうち前記シミュレータピストンの反対側に設けられる、
     ことを特徴とする車両用液圧発生装置。
  12.  請求項1に記載の車両用液圧発生装置であって、
     前記第3の弾性部は、略円柱形状の中空部を有する筒状に形成され、
     前記中空部には、前記第3の弾性部の軸方向の移動を案内する略円柱形状のロッド部材が挿通される、
     ことを特徴とする車両用液圧発生装置。
  13.  請求項12に記載の車両用液圧発生装置であって、
     前記ロッド部材のうち前記シミュレータピストンの反対側には、外径が小径となる環状段部が形成される一方、前記第3の弾性部の中空部内壁には、前記ロッド部材の前記環状段部が突き当たる環状受け部が形成される、
     ことを特徴とする車両用液圧発生装置。
  14.  請求項10に記載の車両用液圧発生装置であって、
     前記第3の弾性部の少なくとも一部に切り欠き部を設けた、
     ことを特徴とする車両用液圧発生装置。
  15.  請求項9に記載の車両用液圧発生装置であって、
     前記易変形部は、前記略円柱形状の周方向に間隔をおいて複数設けられており、
     相互に隣接する前記複数の易変形部の間隙を前記切り欠き部とする、
     ことを特徴とする車両用液圧発生装置。
  16.  請求項1に記載の車両用液圧発生装置であって、
     前記シミュレータピストンが収容されるシリンダ部のうち当該シミュレータピストンの反対側には、前記第2の弾性部のうち前記第1の弾性部との接続側とは異なる側を受け止める蓋部が設けられる、
     ことを特徴とする車両用液圧発生装置。
  17.  請求項5に記載の車両用液圧発生装置であって、
     前記ばね部材の内周側に、前記シミュレータピストンに支持される樹脂部材を設け、
     前記ばね部材は、前記シミュレータピストンの側のピッチを、これとは反対側のピッチと比べて大に設定した、
     ことを特徴とする車両用液圧発生装置。
  18.  請求項17に記載の車両用液圧発生装置であって、
     前記ばね部材における前記シミュレータピストンの反対側を支持する底部、および、前記底部の周縁から延びて当該ばね部材の外周を覆う周壁部を有するばね座部材を備え、
     前記ばね座部材の前記周壁部は、ピッチが大に設定された前記ばね部材に対応する部分の横断面積が、前記と比べてピッチが小に設定されている前記ばね部材に対応する部分の横断面積と比べて大に設定される、
     ことを特徴とする車両用液圧発生装置。
  19.  請求項17に記載の車両用液圧発生装置であって、
     前記ばね座部材の前記底部を、前記ばね部材の伸縮方向に貫通するロッド部材を備え、
     前記ロッド部材は、前記ばね座部材に対して前記伸縮方向に沿って相対移動自在に支持されると共に、当該ロッド部材における前記シミュレータピストンの側が、前記樹脂部材に支持される、
     ことを特徴とする車両用液圧発生装置。
  20.  請求項6に記載の車両用液圧発生装置と、
     前記液圧発生部の前記第1液圧室および前記第2液圧室に遮断弁を介して連通すると共に電気的に作動する電気的液圧発生部と、を備える車両用制動力発生装置であって、
      前記第1液圧室および前記遮断弁の間を連通する液圧路の液圧を検出する液圧検出部を設けた、
     ことを特徴とする車両用制動力発生装置。
  21.  請求項20に記載の車両用制動力発生装置であって、
     ホイールシリンダとブレーキ液のリザーバとを連通させる連通路に減圧弁を有し、
     前記減圧弁は、前記遮断弁が開いている状態で前記液圧発生部を作動させる場合に、前記第1液圧室に連通するホイールシリンダに係る液圧を減圧させる、
     ことを特徴とする車両用制動力発生装置。
PCT/JP2012/056058 2011-03-11 2012-03-09 車両用液圧発生装置および車両用制動力発生装置 WO2012124617A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2013010458A MX345980B (es) 2011-03-11 2012-03-09 Dispositivo generador de presión hidráulica vehicular y dispositivo generador de fuerza de frenado vehicular.
US14/003,897 US8850810B2 (en) 2011-03-11 2012-03-09 Vehicular hydraulic-pressure-generation device and vehicular braking-force generation device
CN201280012929.5A CN103415423B (zh) 2011-03-11 2012-03-09 车辆用液压产生装置及车辆用制动力产生装置
EP12758183.3A EP2684751B1 (en) 2011-03-11 2012-03-09 Vehicular hydraulic-pressure-generation device and vehicular braking-force generation device
AU2012227493A AU2012227493B2 (en) 2011-03-11 2012-03-09 Vehicular hydraulic-pressure-generation device and vehicular braking-force generation device
BR112013023168-8A BR112013023168B1 (pt) 2011-03-11 2012-03-09 Dispositivo de geração de pressão hidráulica veicular e dispositivo de geração de força de frenagem veicular
CA2829745A CA2829745C (en) 2011-03-11 2012-03-09 Vehicular hydraulic-pressure-generation device and vehicular braking-force generation device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-053861 2011-03-11
JP2011053662A JP5427197B2 (ja) 2011-03-11 2011-03-11 車両用制動力発生装置
JP2011-053663 2011-03-11
JP2011-053662 2011-03-11
JP2011053861 2011-03-11
JP2011053663A JP5421946B2 (ja) 2011-03-11 2011-03-11 車両用液圧発生装置
JP2012-025134 2012-02-08
JP2012025134A JP5352687B2 (ja) 2011-03-11 2012-02-08 車両用反力発生装置、およびブレーキ装置のストロークシミュレータ

Publications (1)

Publication Number Publication Date
WO2012124617A1 true WO2012124617A1 (ja) 2012-09-20

Family

ID=49474814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056058 WO2012124617A1 (ja) 2011-03-11 2012-03-09 車両用液圧発生装置および車両用制動力発生装置

Country Status (8)

Country Link
US (1) US8850810B2 (ja)
EP (1) EP2684751B1 (ja)
CN (1) CN103415423B (ja)
AU (1) AU2012227493B2 (ja)
BR (1) BR112013023168B1 (ja)
CA (1) CA2829745C (ja)
MX (1) MX345980B (ja)
WO (1) WO2012124617A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103223931A (zh) * 2013-04-26 2013-07-31 吉林大学 应用于制动能量回收的制动踏板行程模拟器
KR20150055644A (ko) 2013-11-13 2015-05-22 현대모비스 주식회사 페달 시뮬레이터 및 이를 갖는 차량 제동 시스템
KR20200059196A (ko) 2020-05-15 2020-05-28 현대모비스 주식회사 페달 시뮬레이터 및 이를 갖는 차량 제동 시스템
WO2022239578A1 (ja) * 2021-05-14 2022-11-17 株式会社デンソー ペダル装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079570B2 (en) * 2009-01-15 2015-07-14 Continental Teves Ag & Co. Ohg “Brake-by-wire” type brake system
JP6049697B2 (ja) * 2012-03-30 2016-12-21 本田技研工業株式会社 ストロークシミュレータ
KR101402538B1 (ko) * 2012-11-19 2014-06-02 주식회사 만도 페달 시뮬레이터
JP6266933B2 (ja) 2013-09-25 2018-01-24 本田技研工業株式会社 制動装置のバルブシステム
DE102014213727A1 (de) * 2014-07-15 2016-01-21 Robert Bosch Gmbh Hauptbremszylinder und Bremssystem für ein Fahrzeug
DE102014224889A1 (de) * 2014-12-04 2016-06-09 Robert Bosch Gmbh Kolben und kolbenbestückte Baugruppe für ein Hydraulikaggregat oder eine Kolben-Zylinder-Vorrichtung eines Fahrzeugbremssystems
WO2017022544A1 (ja) 2015-07-31 2017-02-09 日立オートモティブシステムズ株式会社 マスタシリンダユニット
DE102015222931A1 (de) * 2015-11-20 2017-05-24 Continental Teves Ag & Co. Ohg Anordnung zur Messung eines durch Bremskraft erzeugten Verschiebeweges
FR3048927B1 (fr) * 2016-03-21 2018-03-09 Valeo Embrayages Dispositif de generation d'effort
DE102017104278A1 (de) * 2017-03-01 2018-09-06 HELLA GmbH & Co. KGaA Pedalemulator für ein Kraftfahrzeug
DE102017002770A1 (de) * 2017-03-22 2018-09-27 Lucas Automotive Gmbh Pedalsimulationsvorrichtung mit mehreren Rückstellelementen
JP6897529B2 (ja) 2017-12-06 2021-06-30 株式会社アドヴィックス ストロークシミュレータ
CN110027535B (zh) * 2018-01-12 2021-09-03 比亚迪股份有限公司 用于车辆的踏板感模拟器和具有其的车辆
CN110027533B (zh) * 2018-01-12 2022-08-09 比亚迪股份有限公司 用于车辆的踏板感模拟器和具有其的车辆
CN109733356B (zh) * 2018-12-28 2022-06-28 上海擎度汽车科技有限公司 力模拟器及其构成的电子液压制动系统
WO2020184925A1 (ko) * 2019-03-08 2020-09-17 주식회사 만도 마스터 실린더 및 이를 구비하는 전자식 브레이크 시스템
US11661046B2 (en) 2021-04-16 2023-05-30 Bwi (Shanghai) Co., Ltd Pedal feel emulator assembly and a brake system including the pedal feel emulator assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330966A (ja) * 2003-05-09 2004-11-25 Nissan Motor Co Ltd ブレーキ装置のストロークシミュレータ
JP2007022351A (ja) * 2005-07-19 2007-02-01 Hitachi Ltd ブレーキ制御装置
JP2007210372A (ja) 2006-02-07 2007-08-23 Toyota Motor Corp ブレーキ制御装置
JP2009073478A (ja) 2007-08-29 2009-04-09 Honda Motor Co Ltd ブレーキ装置のストロークシミュレータ
JP2009286290A (ja) * 2008-05-29 2009-12-10 Toyota Motor Corp マスタシリンダ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651153B4 (de) 1996-12-10 2008-02-21 Robert Bosch Gmbh Hydraulische Bremsanlage
JP2002293229A (ja) * 2001-03-29 2002-10-09 Aisin Seiki Co Ltd ストロークシミュレータ装置及び車両用液圧ブレーキ装置
FR2837455B1 (fr) * 2002-03-19 2004-07-02 Bosch Gmbh Robert Generateur de pression hydraulique dote d'un accumulateur perfectionne simulant un recepteur de frein
JP2004203189A (ja) * 2002-12-25 2004-07-22 Advics:Kk 液圧ブレーキ装置
JP2004276666A (ja) 2003-03-13 2004-10-07 Advics:Kk ストロークシミュレータ
JP2005104333A (ja) * 2003-09-30 2005-04-21 Hitachi Ltd マスタシリンダ装置
JP2005329872A (ja) 2004-05-21 2005-12-02 Advics:Kk 車両用ブレーキ液圧発生装置
JP4470601B2 (ja) 2004-06-16 2010-06-02 株式会社アドヴィックス 車両用液圧ブレーキ装置
JP2006248473A (ja) 2005-03-14 2006-09-21 Toyota Motor Corp ブレーキ操作装置および車両用ブレーキ装置
JP4503007B2 (ja) * 2006-12-12 2010-07-14 本田技研工業株式会社 ブレーキ装置
JP4792416B2 (ja) * 2007-03-12 2011-10-12 本田技研工業株式会社 ブレーキ装置
JP4998345B2 (ja) * 2008-03-24 2012-08-15 株式会社アドヴィックス ストロークシミュレータ
WO2011027386A1 (ja) 2009-09-01 2011-03-10 トヨタ自動車株式会社 ストロークシミュレータおよびブレーキ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330966A (ja) * 2003-05-09 2004-11-25 Nissan Motor Co Ltd ブレーキ装置のストロークシミュレータ
JP2007022351A (ja) * 2005-07-19 2007-02-01 Hitachi Ltd ブレーキ制御装置
JP2007210372A (ja) 2006-02-07 2007-08-23 Toyota Motor Corp ブレーキ制御装置
JP2009073478A (ja) 2007-08-29 2009-04-09 Honda Motor Co Ltd ブレーキ装置のストロークシミュレータ
JP2009286290A (ja) * 2008-05-29 2009-12-10 Toyota Motor Corp マスタシリンダ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2684751A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103223931A (zh) * 2013-04-26 2013-07-31 吉林大学 应用于制动能量回收的制动踏板行程模拟器
CN103223931B (zh) * 2013-04-26 2015-04-15 吉林大学 应用于制动能量回收的制动踏板行程模拟器
KR20150055644A (ko) 2013-11-13 2015-05-22 현대모비스 주식회사 페달 시뮬레이터 및 이를 갖는 차량 제동 시스템
KR20200059196A (ko) 2020-05-15 2020-05-28 현대모비스 주식회사 페달 시뮬레이터 및 이를 갖는 차량 제동 시스템
WO2022239578A1 (ja) * 2021-05-14 2022-11-17 株式会社デンソー ペダル装置

Also Published As

Publication number Publication date
EP2684751A4 (en) 2014-08-20
CA2829745C (en) 2016-02-02
CN103415423A (zh) 2013-11-27
MX345980B (es) 2017-02-28
CA2829745A1 (en) 2012-09-20
AU2012227493A1 (en) 2013-10-31
MX2013010458A (es) 2014-03-12
BR112013023168A2 (pt) 2016-12-13
US20140000254A1 (en) 2014-01-02
CN103415423B (zh) 2016-08-17
US8850810B2 (en) 2014-10-07
EP2684751B1 (en) 2016-08-17
AU2012227493B2 (en) 2015-10-29
BR112013023168B1 (pt) 2020-12-15
EP2684751A1 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
WO2012124617A1 (ja) 車両用液圧発生装置および車両用制動力発生装置
JP5352687B2 (ja) 車両用反力発生装置、およびブレーキ装置のストロークシミュレータ
US8061786B2 (en) Brake system for motor vehicles
WO2012133456A1 (ja) 電動ブレーキ装置
KR102027004B1 (ko) 브레이크 장치
EP2762371B1 (en) Electric brake device
US20100244549A1 (en) Vehicle braking system and master cylinder
JP4853282B2 (ja) 車両用制動装置
JP5537482B2 (ja) 電動ブレーキ装置
EP2749466B1 (en) Tandem Master cylinder
JP2012210837A (ja) 車両用液圧発生装置
EP2871105B1 (en) Pneumatic booster device and brake device
KR101629029B1 (ko) 전동부스터 방식 제동장치 및 압력진동제어방법
JP5421946B2 (ja) 車両用液圧発生装置
JP2012214090A (ja) 電動ブレーキ装置
JP5193270B2 (ja) 電動ブレーキアクチュエータの車体取付構造
JP5780822B2 (ja) 気圧式倍力装置
JP2012176735A (ja) 気圧式倍力装置
GB2344144A (en) A vacuum assisted braking system for a motor vehicle
US9016806B2 (en) Brake actuating unit for actuating a motor vehicle braking system of the “brake-by-wire” type, and method for operating a motor vehicle braking system by means of such a brake actuating unit
JP5466662B2 (ja) 電動ブレーキ装置
JP5427197B2 (ja) 車両用制動力発生装置
JP5466661B2 (ja) 電動ブレーキ装置
JP5276646B2 (ja) 車両用ブレーキシステムの入力装置
JP2012210831A (ja) 車両用液圧発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14003897

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2829745

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005059

Country of ref document: TH

Ref document number: MX/A/2013/010458

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2012758183

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012758183

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012227493

Country of ref document: AU

Date of ref document: 20120309

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013023168

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013023168

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130910