WO2012102304A1 - 導電性ペースト及びその製造方法 - Google Patents

導電性ペースト及びその製造方法 Download PDF

Info

Publication number
WO2012102304A1
WO2012102304A1 PCT/JP2012/051546 JP2012051546W WO2012102304A1 WO 2012102304 A1 WO2012102304 A1 WO 2012102304A1 JP 2012051546 W JP2012051546 W JP 2012051546W WO 2012102304 A1 WO2012102304 A1 WO 2012102304A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
acid
silver powder
fatty acid
resin
Prior art date
Application number
PCT/JP2012/051546
Other languages
English (en)
French (fr)
Inventor
孝史 坂本
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to KR1020137022331A priority Critical patent/KR102007046B1/ko
Priority to CN201280006651.0A priority patent/CN103339685B/zh
Priority to JP2012554817A priority patent/JP5916633B2/ja
Publication of WO2012102304A1 publication Critical patent/WO2012102304A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax, thiol

Definitions

  • the present invention relates to a conductive paste containing silver powder surface-treated with liquid fatty acid and a method for producing the same.
  • silver fine particles have been used as a raw material for conductive paste for forming electrodes and circuit patterns of electronic components. Since the conductive paste is easy to handle, it is used in various applications such as experimental applications and electronic industry applications.
  • a conductive paste containing silver fine particles is applied to a substrate by, for example, screen printing.
  • the conductive paste applied to the substrate is heated and baked. Thereby, for example, a circuit pattern having a wiring width of about 50 ⁇ m can be formed.
  • the conductive paste can be broadly classified into two types: “high temperature firing type” and “heat curing type”.
  • the high-temperature firing type conductive paste can be processed at a high temperature of about 550 to 900 ° C.
  • the thermosetting conductive paste can be processed at a relatively low temperature of about room temperature (about 20 ° C.) to 200 ° C.
  • heat-curable conductive pastes have attracted attention from the viewpoint of energy saving because they can form conductors at low temperatures.
  • the heat-curing type conductive paste can be cured at a low temperature, it can be applied to a material having poor heat resistance.
  • a material having poor heat resistance For example, in the field of mobile phones, polyimide flexible circuit boards are used. Alternatively, cheaper PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) films may be used. Since these substrates are inferior in heat resistance, it is preferable to apply a heat curing type conductive paste that can be cured at a low temperature of 200 ° C. or lower.
  • a metal oxide film is formed on a substrate. Since the substrate on which the metal oxide film is formed is inferior in heat resistance, it is preferable to apply a heat-curable conductive paste that can be cured at a low temperature of 200 ° C. or lower.
  • a conductive film obtained using a heat-curing type conductive paste has a higher electrical resistivity (that is, lower conductivity) than a conductive film obtained using a high-temperature firing type conductive paste.
  • a conductive film obtained by heating a high-temperature firing type conductive paste has a low electrical resistivity equivalent to that of a bulk metal because metal powders are bonded to each other by heating.
  • a conductive film obtained by heating a thermosetting type conductive paste has a relatively high electrical resistivity because a conductive path is formed by contact between metal powders.
  • the conductive films obtained by heating two types of conductive pastes differ in the mechanism for conducting electricity.
  • the conductive film obtained by heating the high-temperature fired type conductive paste has a specific resistance value of 1 ⁇ 10 ⁇ 4 ⁇ ⁇ m or less, whereas the heat-cured type conductive paste is heated.
  • the obtained conductive film has a specific resistance value of about 10 ⁇ 10 ⁇ 4 ⁇ ⁇ m, and it cannot be said that the specific resistance value is sufficiently low. Under such circumstances, there is a demand for a conductive paste that can be heat-treated at a low temperature of 200 ° C. or lower and can obtain a conductive film having a low electrical resistivity.
  • a method for obtaining a conductive film having a low electrical resistivity it is conceivable to increase the contact area between metal powders contained in the conductive paste.
  • the following factors can be considered as factors that inhibit efficient contact between metal powders contained in the conductive paste, for example.
  • (1) The resin ratio in the conductive paste is high.
  • (2) An oxide film is formed on the surface of the metal powder contained in the conductive paste, and this oxide film inhibits electrical conduction.
  • Dispersibility of the metal powder contained in the conductive paste is not good.
  • Patent Document 1 describes a technique for improving the oxidation resistance of the surface of the metal powder by forming an organic coat and an inorganic coat on the surface of the metal powder.
  • the organic coating contains an organic fatty acid such as oleic acid.
  • the technique described in Patent Document 1 needs to heat the metal powder at a high temperature of 350 ° C. or higher in order to promote the recrystallization of the central metal. For this reason, the technique described in Patent Document 1 cannot be applied to a material such as a PET film having poor heat resistance.
  • Patent Document 2 describes a silver paste having a low sheet resistance and capable of obtaining a silver thin film having a film thickness of 2.5 microns or less.
  • This silver paste contains organic acid silver such as silver oleate.
  • the silver paste described in Patent Document 2 needs to be baked at a high temperature of about 500 ° C. in order to decompose organic substances contained in the paste. For this reason, the silver paste disclosed in Patent Document 2 cannot be applied to a material such as a PET film having poor heat resistance.
  • An object of the present invention is to provide a conductive paste that can be heat-treated at a low temperature of 200 ° C. or lower and can obtain a conductive film having a sufficiently low electrical resistivity.
  • the present inventor has discovered that it is effective to use a silver paste containing silver powder surface-treated with a liquid fatty acid such as oleic acid in order to obtain a conductive film having a sufficiently low electrical resistivity.
  • the present invention has been completed based on such a novel discovery.
  • a conductive paste comprising (A) a silver powder surface-treated with a liquid fatty acid, (B) a thermosetting resin and / or a thermoplastic resin, and (C) a diluent.
  • a conductive paste comprising (A) a silver powder surface-treated with a liquid fatty acid and a solid fatty acid, (B) a thermosetting resin and / or a thermoplastic resin, and (C) a diluent.
  • the liquid fatty acid is selected from the group consisting of butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, pelargonic acid, myristoleic acid, palmitoleic acid, ricinoleic acid, oleic acid, linoleic acid, and linolenic acid.
  • the thermosetting resin is an epoxy resin and a phenol resin.
  • thermoplastic resin according to any one of [1] to [9], wherein the thermoplastic resin is at least one selected from the group consisting of a phenoxy resin, a butyral resin, a cellulose resin, an acrylic resin, and a polyester resin.
  • Conductive paste [11] The conductive paste according to any one of [1] to [10], wherein the diluent is a reactive diluent.
  • the reactive diluent is 1,2-epoxy-4- (2-methyloxiranyl) -1-methylcyclohexane or 4-tert-butylphenylglycidyl ether. Sex paste.
  • An electronic component comprising the conductive film according to [13].
  • a conductive film that can be heat-treated at a low temperature of 200 ° C. or lower and has a sufficiently low electrical resistivity (for example, 0.50 ⁇ 10 ⁇ 4 ⁇ ⁇ m or lower).
  • An electrically conductive paste can be provided.
  • FIG. It is an electron micrograph of the electrically conductive film obtained by heating the electrically conductive paste which concerns on the comparative example 1.
  • the conductive paste of the present invention contains (A) a silver powder surface-treated with a liquid fatty acid, (B) a thermosetting resin and / or a thermoplastic resin, and (C) a diluent.
  • the conductive paste of the present invention comprises (A) a silver powder surface-treated with a liquid fatty acid and a solid fatty acid, (B) a thermosetting resin and / or a thermoplastic resin, and (C) a diluent. including.
  • the shape of the silver powder contained in the conductive paste of the present invention is not particularly limited.
  • the silver powder may have any shape such as a spherical shape, a flake shape, a flake shape, and a needle shape.
  • a plurality of silver powders having different shapes can be mixed and used.
  • the average particle diameter of the silver powder is preferably 0.015 to 30 ⁇ m.
  • the average particle diameter of the silver powder is more preferably 0.2 to 5 ⁇ m.
  • the average particle diameter of the silver powder is more preferably 5 to 30 ⁇ m.
  • the definition of “average particle diameter” of silver powder is as follows.
  • the average particle diameter means an average value of the diameters of the particles.
  • the average particle diameter means the average value of the length of the longest part of the particles.
  • the average particle diameter means an average value of the length of the longest part of the particle.
  • An average particle diameter can be calculated
  • the average particle diameter of silver powder can be measured, for example, by observing silver powder particles with a scanning electron microscope (SEM). Or the average particle diameter of silver powder can also be measured by image analysis.
  • SEM scanning electron microscope
  • the electrically conductive paste of this invention contains the silver powder surface-treated with the liquid fatty acid.
  • the electrically conductive paste of this invention contains the silver powder surface-treated with the liquid fatty acid and the solid fatty acid.
  • a liquid fatty acid is a liquid fatty acid at room temperature (20 ° C.).
  • the liquid fatty acid is preferably a fatty acid having a melting point of ⁇ 20 ° C. or higher and + 20 ° C. or lower.
  • the solid fatty acid is a solid fatty acid at room temperature (20 ° C.).
  • the solid fatty acid is preferably a fatty acid having a melting point higher than + 20 ° C.
  • the fatty acid used for the surface treatment of the silver powder is preferably soluble in the diluent.
  • the conductive film obtained by heating the conductive paste of the present invention has a lower electrical resistivity than the conductive film obtained by heating the conventional conductive paste.
  • the reason is considered as follows.
  • the electrically conductive paste of this invention contains the silver powder surface-treated with the liquid fatty acid, and a diluent. Liquid fatty acids are readily soluble in the diluent. For this reason, when the conductive paste is heated, the fatty acid present on the surface of the silver powder easily evaporates together with the diluent.
  • the exposed area of the surface of the silver powder is large, and the contact area between the silver powders is large.
  • the conductive film obtained by heating the conductive paste of the present invention has a good contact state between silver powders, and at least a part of the silver powder may be fused and integrated.
  • silver powder that has not been surface-treated with fatty acid as the silver powder contained in the conductive paste.
  • silver powder is unsuitable as a raw material for the conductive paste because of its poor wettability with the resin.
  • liquid fatty acids examples include saturated fatty acids such as butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, and pelargonic acid, non-residues such as myristoleic acid, palmitoleic acid, ricinoleic acid, oleic acid, linoleic acid, and linolenic acid. Mention may be made of saturated fatty acids. These fatty acids may be used alone or in combination of two or more. Among these, it is preferable to use oleic acid, linoleic acid or a mixture thereof.
  • saturated fatty acids such as butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, and pelargonic acid
  • non-residues such as myristoleic acid, palmitoleic acid, ricinoleic acid, oleic acid, linoleic acid, and linolenic acid
  • the conductive paste of the present invention may include silver powder surface-treated with liquid fatty acid and solid fatty acid.
  • solid fatty acids include saturated fatty acids having 10 or more carbon atoms such as capric acid, palmitic acid and stearic acid, and unsaturated fatty acids such as crotonic acid and sorbic acid.
  • the solid fatty acid preferably has a boiling point of 200 ° C. or lower. This is because when a fatty acid having a boiling point of 200 ° C. or less is used, when the conductive paste is heated, the fatty acid on the surface of the silver powder evaporates, so that the area of the exposed portion of the surface of the silver powder becomes larger.
  • An example of such a fatty acid is crotonic acid.
  • the ratio of the liquid fatty acid to the total amount of the fatty acid is preferably 20% by mass or more.
  • the conductive paste of the present invention may include (A ′) silver powder surface-treated only with solid fatty acids.
  • the silver powder contained in the conductive paste of the present invention can be prepared, for example, by the following methods (1) to (3).
  • (1) The silver powder is treated with a liquid fatty acid.
  • (3) The silver powder is separately treated with a liquid fatty acid and a solid fatty acid.
  • the silver powder processed with the liquid fatty acid and the silver powder processed with the solid fatty acid are mixed.
  • the ratio of the silver powder processed with the liquid fatty acid with respect to the whole quantity of silver powder is 20 mass% or more.
  • the following methods (1) to (3) can be used.
  • (1) The silver powder is immersed in a liquid fatty acid.
  • the solvent for example, an organic solvent such as water or alcohol can be used.
  • ethanol can be used as the alcohol.
  • the silver powder may be flaked by a pot mill.
  • a fatty acid may be added to the pot mill.
  • the surface of silver powder can be processed with a fatty acid simultaneously with flaking silver powder. It is considered that at least a part of the fatty acid is physically adsorbed on the surface of the silver particles.
  • the amount of the fatty acid used in the silver powder surface treatment step is preferably 1 to 100 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the silver powder.
  • the conductive paste of the present invention contains silver powder surface-treated with fatty acid.
  • the amount of fatty acid contained in the conductive paste is preferably 0.1 to 5% by mass, more preferably 0.2 to 2% by mass, based on the total amount of silver powder and fatty acid. By adjusting the amount of the fatty acid within this range, a conductive film having a smaller electrical resistivity can be obtained.
  • the amount of silver powder contained in the conductive paste is preferably 75 to 98% by mass, more preferably 80 to 97% by mass.
  • the conductive paste of the present invention contains (B) a thermosetting resin and / or a thermoplastic resin as a binder.
  • thermosetting resin used for this invention is a thermosetting resin hardened
  • the thermosetting resin for example, an epoxy resin, a phenol resin, or a mixture thereof can be used.
  • thermosetting resins examples include amino resins such as urea resins, melamine resins, and guanamine resins; high molecular weight bisphenol A type epoxy resins, biphenyl type epoxy resins such as diglycidyl biphenyl, novolac type epoxy resins, and tetrabromobisphenol.
  • Epoxy resins such as A-type epoxy resins and tris (hydroxylphenyl) methane-type epoxy resins; oxetane resins; resol-type phenol resins, alkylresole-type phenol resins, novolac-type phenol resins, alkyl novolak-type phenol resins, aralkyl novolak-type phenol resins
  • Phenolic resins such as: silicone-modified resins such as silicone epoxy and silicone polyester; bismaleimide, polyimide resins and the like.
  • a bismaleimide triazine resin (BT resin) can also be used. These resins may be used alone or in combination of two or more.
  • thermosetting resin used in the present invention is preferably liquid at normal temperature.
  • “normal temperature” means a temperature of + 5 ° C. to + 35 ° C.
  • the thermosetting resin used in the present invention is preferably a liquid epoxy resin and / or a liquid phenol resin.
  • a resin that is solid at room temperature or a resin that is extremely viscous at room temperature may be added to the thermosetting resin.
  • the resin to be added is preferably compatible with the thermosetting resin.
  • examples of such resins include high molecular weight bisphenol A type epoxy resins, biphenyl type epoxy resins such as diglycidyl biphenyl, novolac type epoxy resins, tetrabromobisphenol A type epoxy resins, resol type phenol resins, aralkyl novolac type phenols. Resin.
  • thermoplastic resins include novolak-type phenolic resin, phenoxy resin, butyral resin, cellulose resin, acrylic resin, methacrylic resin, polyester resin, polyurethane resin, polyamide resin, thermoplastic xylene resin, hydroxystyrene polymer, cellulose derivative Or the mixture of 2 or more types of these is mentioned. In these, a phenoxy resin or a butyral resin is preferable.
  • the amount of the thermosetting resin and the thermoplastic resin contained in the conductive paste is preferably 1 to 12% by mass, more preferably 1.5 to 8% by mass.
  • the mass ratio of the thermosetting resin and the thermoplastic resin is preferably 1: 0.02 to 1: 0.42. More preferably, it is 1: 0.05 to 1: 0.25.
  • the conductive paste of the present invention contains (C) a diluent.
  • the diluent is used to adjust the viscosity of the conductive paste and dissolve fatty acids present on the surface of the silver powder.
  • the diluent is preferably one that evaporates when the conductive paste is heated. That is, the diluent is preferably removed from the conductive paste by heating.
  • a solvent can also be used as a diluent.
  • Diluent evaporates without reacting with other components when the conductive paste is heated. This can be confirmed by measuring the decrease in mass before and after heating the conductive paste.
  • solvents include aromatic hydrocarbons such as toluene, xylene, mesitylene and tetralin; ethers such as tetrahydrofuran; ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone; 2-pyrrolidone, 1-methyl-2-pyrrolidone Lactams such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether (butyl carbitol), and the corresponding propylene glycol derivatives, etc.
  • aromatic hydrocarbons such as toluene, xylene, mesitylene and tetralin
  • ethers such as tetrahydrofuran
  • ketones such as methyl ethyl ketone,
  • Ether alcohols corresponding esters such as acetates
  • dicarboxylic acids such as malonic acid and succinic acid
  • diesters such as methyl ester or ethyl ester. Of these, butyl carbitol is preferred.
  • a reactive diluent can also be used as the (C) diluent contained in the conductive paste.
  • the reactive diluent is a diluent having a functional group such as a glycidyl group in the molecule.
  • Examples of reactive diluents include 1,2-epoxy-4- (2-methyloxiranyl) -1-methylcyclohexane, 4-tert-butylphenyl glycidyl ether, 1,3-bis (3-glycidoxy Propyl) -1,1,3,3-tetramethyldisiloxane, neodecanoic acid glycidyl ester and the like. Of these, 1,2-epoxy-4- (2-methyloxiranyl) -1-methylcyclohexane or 4-tert-butylphenylglycidyl ether is preferred.
  • the amount of diluent contained in the conductive paste is preferably 1 to 25% by mass, and more preferably 1 to 15% by mass.
  • the amount of the diluent contained in the conductive paste is less than 1% by mass, a conductive film having a sufficiently low electrical resistivity may not be obtained.
  • the amount of the diluent contained in the conductive paste is larger than 25% by mass, the stability of the conductive paste may be deteriorated.
  • the reactive diluent has a higher viscosity than other diluents (for example, butyl carbitol and butyl carbitol acetate). For this reason, the conductive paste can be easily adjusted to a viscosity suitable for printing by adding a reactive diluent to the conductive paste. Moreover, the specific resistance of the electrically conductive film obtained by heating an electrically conductive paste can be made small by adding a reactive diluent to an electrically conductive paste.
  • the apparent viscosity of the conductive paste at room temperature is 10 to 500 Pa ⁇ s with a diluent.
  • a more preferable apparent viscosity of the conductive paste is 15 to 300 Pa ⁇ s.
  • the conductive paste of the present invention may contain a known additive.
  • the conductive paste may contain a dispersion aid.
  • dispersing aids include aluminum chelate compounds such as diisopropoxy (ethylacetoacetate) aluminum; titanates such as isopropyltriisostearoyl titanate; aliphatic polycarboxylic esters; unsaturated fatty acid amine salts; sorbitan mono Surfactants such as oleate; polymer compounds such as polyesteramine salts and polyamides can be used.
  • the conductive paste of the present invention may contain at least one selected from the group consisting of inorganic pigments, organic pigments, silane coupling agents, leveling agents, thixotropic agents, and antifoaming agents.
  • the method for producing the conductive paste of the present invention includes: (1) a step of surface-treating silver powder with liquid fatty acid; (2) The process which mixes the said silver powder, a thermosetting resin, and / or a thermoplastic resin, and a diluent is included.
  • the method for producing the conductive paste of the present invention includes: (1) a step of surface-treating silver powder with liquid fatty acid and solid fatty acid; (2) The process which mixes the said silver powder, a thermosetting resin, and / or a thermoplastic resin, and a diluent is included.
  • step (2) silver powder surface-treated only with solid fatty acids (A ′) may be further mixed.
  • the conductive paste of the present invention contains silver powder, a thermosetting resin and / or a thermoplastic resin, and a diluent. These components can be uniformly mixed by an apparatus such as a reika machine, a propeller stirrer, a kneader, a roll, or a pot mill.
  • the temperature at which these components are mixed is preferably 10 to 40 ° C.
  • the conductive paste of the present invention can be applied to a substrate by a known method such as screen printing. After the conductive paste is applied to the substrate, the conductive paste can be heated to form a conductive film.
  • the heating temperature of the conductive paste is preferably 60 to 200 ° C., more preferably 60 to 150 ° C.
  • the heating time of the conductive paste is preferably 1 to 60 minutes from the viewpoint of workability.
  • the conductive paste When the conductive paste contains a thermosetting resin as a binder, it may be dried before heating the conductive paste.
  • the thickness of the conductive paste applied to the substrate is preferably 10 to 200 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the conductive paste when the conductive paste contains a thermoplastic resin as a binder, the conductive paste can be heated at, for example, 80 to 160 ° C. to form a conductive film. Alternatively, the conductive film can be formed by drying the conductive paste at room temperature.
  • a conductive film can be formed by heating or drying the conductive paste of the present invention. With this conductive film, an electrode or a circuit pattern of an electronic component can be formed.
  • the conductive paste of the present invention can be applied not only to a ceramic substrate but also to a substrate made of a material having low heat resistance such as PET (polyethylene terephthalate).
  • the conductive paste of the present invention can also be applied to a substrate of a solar cell on which a metal oxide film having low heat resistance is formed.
  • conductive pastes were prepared according to the blending ratios shown in Tables 1 to 3 below. Therefore, six kinds of silver powders of silver powder a, silver powder b, silver powder c, silver powder d, silver powder e, and silver powder f were prepared as raw materials for the conductive paste.
  • the physical properties of the silver powders a to f shown above were measured by the following procedure.
  • the BET specific surface area was measured using a commercially available measuring instrument (Furosorb II manufactured by Shimadzu Corporation).
  • the tap density was measured using a tapping machine (manufactured by Kuramochi Scientific Instruments).
  • the Iglos value (loss on ignition) was calculated from the mass of the residue after baking silver powder at 800 ° C. for 30 minutes.
  • the gross value indicates the amount (% by mass) of fatty acid present on the surface of the silver powder.
  • the mass of oleic acid present on the surface of the silver powder is 0.56% with respect to the total amount of silver powder and oleic acid.
  • silver powder c the mass of oleic acid and palmitic acid present on the surface of the silver powder is 0.59% with respect to the total amount of silver powder, oleic acid, and palmitic acid.
  • Example 1 In a reaction vessel, 95 parts by mass of silver powder a, 1.58 parts by mass of phenol resin, 2.68 parts by mass of epoxy resin, 0.24 parts by mass of butyral resin, 0.40 of carboxy-terminated acrylonitrile / butadiene copolymer. Part by mass, 0.10 parts by mass of a curing accelerator, and 4.97 parts by mass of butyl carbitol as a diluent were added. Next, these mixtures were stirred at 25 ° C. with a hybrid mixer for 15 seconds. This prepared the electrically conductive paste which concerns on Example 1. FIG.
  • Example 2 A conductive paste according to Example 2 was prepared by the same procedure as Example 1 except that silver powder b was used instead of silver powder a.
  • Example 3 In a reaction vessel, 98 parts by mass of silver powder a, 0.63 parts by mass of phenol resin, 1.07 parts by mass of epoxy resin, 0.10 parts by mass of butyral resin, 0.16 parts of carboxy-terminated acrylonitrile-butadiene copolymer Part by mass, 0.04 part by mass of a curing accelerator, and 1.99 parts by mass of butyl carbitol as a diluent were added. Next, these mixtures were stirred at 25 ° C. with a hybrid mixer for 15 seconds. As a result, a conductive paste according to Example 3 was prepared.
  • Example 4 A conductive paste according to Example 4 was prepared by the same procedure as Example 3 except that silver powder b was used instead of silver powder a.
  • Example 5 In a reaction vessel, 24.25 parts by mass of silver powder a, 72.75 parts by mass of silver powder f, 0.95 parts by mass of phenol resin, 1.61 parts by mass of epoxy resin, 0.15 parts by mass of butyral resin, carboxy 0.23 parts by mass of terminal acrylonitrile-butadiene copolymer, 0.06 parts by mass of a curing accelerator, and 2.99 parts by mass of butyl carbitol as a diluent were added. Next, these mixtures were stirred at 25 ° C. with a hybrid mixer for 15 seconds. As a result, a conductive paste according to Example 5 was prepared.
  • Example 6 A conductive paste according to Example 6 was prepared by the same procedure as Example 5 except that silver powder e was used instead of silver powder f.
  • Example 7 In the reaction vessel, 94.00 parts by mass of silver powder a, 6.00 parts by mass of phenoxy resin (number average molecular weight 1,180), and 14.00 parts by mass of butyl carbitol as a diluent were charged. Next, these mixtures were stirred at 25 ° C. with a hybrid mixer for 15 seconds. As a result, a conductive paste according to Example 7 was prepared.
  • Example 8 In a reaction vessel, 95.00 parts by mass of silver powder c, 1.58 parts by mass of phenol resin, 2.68 parts by mass of epoxy resin, 0.24 parts by mass of butyral resin, 0 of carboxy-terminated acrylonitrile-butadiene copolymer .40 parts by mass, 0.10 parts by mass of a curing accelerator, and 4.97 parts by mass of butyl carbitol as a diluent were added. Next, these mixtures were stirred at 25 ° C. with a hybrid mixer for 15 seconds. Thus, a conductive paste according to Example 8 was prepared.
  • Example 9 In a reaction vessel, 95 parts by mass of silver powder a, 1.58 parts by mass of phenol resin, 2.68 parts by mass of epoxy resin, 0.24 parts by mass of butyral resin, 0.40 of carboxy-terminated acrylonitrile / butadiene copolymer. Part by mass, 0.10 parts by mass of a curing accelerator, and 5.33 parts by mass of 1,2-epoxy-4- (2-methyloxiranyl) -1-methylcyclohexane as a diluent were added. Next, these mixtures were stirred at 25 ° C. with a hybrid mixer for 15 seconds. Thereby, a conductive paste according to Example 9 was prepared.
  • Example 10 In a reaction vessel, 95 parts by mass of silver powder a, 1.58 parts by mass of phenol resin, 2.68 parts by mass of epoxy resin, 0.24 parts by mass of butyral resin, 0.40 of carboxy-terminated acrylonitrile / butadiene copolymer. Part by mass, 0.10 parts by mass of a curing accelerator, and 5.33 parts by mass of 4-tert-butylphenylglycidyl ether as a diluent were added. Next, these mixtures were stirred at 25 ° C. with a hybrid mixer for 15 seconds. Thus, a conductive paste according to Example 10 was prepared.
  • Example 11 In a reaction vessel, 95 parts by mass of silver powder a, 1.58 parts by mass of phenol resin, 2.68 parts by mass of epoxy resin, 0.24 parts by mass of butyral resin, 0.40 of carboxy-terminated acrylonitrile / butadiene copolymer. Parts by weight, 0.10 parts by weight of a curing accelerator, and 5.33 parts by weight of 1,3-bis (3-glycidoxypropyl) -1,1,3,3-tetramethyldisiloxane as a diluent. I put it in. Next, these mixtures were stirred at 25 ° C. with a hybrid mixer for 15 seconds. As a result, a conductive paste according to Example 11 was prepared.
  • Example 12 In a reaction vessel, 95 parts by mass of silver powder a, 1.58 parts by mass of phenol resin, 2.68 parts by mass of epoxy resin, 0.24 parts by mass of butyral resin, 0.40 of carboxy-terminated acrylonitrile / butadiene copolymer. 0.10 parts by mass of a mass accelerator, a curing accelerator, and 5.33 parts by mass of neodecanoic acid glycidyl ester as a diluent were added. Next, these mixtures were stirred at 25 ° C. with a hybrid mixer for 15 seconds. As a result, a conductive paste according to Example 12 was prepared.
  • Example 13 In a reaction vessel, 95 parts by mass of silver powder a, 1.58 parts by mass of phenol resin, 2.68 parts by mass of epoxy resin, 0.24 parts by mass of butyral resin, 0.40 of carboxy-terminated acrylonitrile / butadiene copolymer. Part by mass, 0.10 parts by mass of a curing accelerator, and 4.97 parts by mass of butyl carbitol acetate as a diluent were added. Next, these mixtures were stirred at 25 ° C. with a hybrid mixer for 15 seconds. As a result, a conductive paste according to Example 13 was prepared.
  • Comparative Example 1 A conductive paste according to Comparative Example 1 was prepared by the same procedure as in Example 1 except that silver powder d was used instead of silver powder a.
  • Comparative Example 2 A conductive paste according to Comparative Example 2 was prepared by the same procedure as Example 3 except that silver powder d was used instead of silver powder a.
  • Comparative Example 3 A conductive paste according to Comparative Example 3 was prepared by the same procedure as Example 7 except that silver powder d was used instead of silver powder a.
  • Comparative Example 4 The conductive paste according to Comparative Example 4 was prepared by adding 0.50 parts by mass of oleic acid to the conductive paste according to Comparative Example 1 later.
  • the specific resistance was measured by the following procedure.
  • a zigzag pattern having a length of 71 mm, a width of 1 mm, and a thickness of 20 ⁇ m was printed on an alumina substrate having a width of 20 mm, a length of 20 mm, and a thickness of 1 mm using a 250 mesh stainless steel screen.
  • the conductive pastes according to Examples 1 to 4, 7 to 13 and Comparative Examples 1 to 4 were heated at 150 ° C. for 30 minutes.
  • the conductive paste according to Examples 5 and 6 was heated at 200 ° C. for 30 minutes.
  • the thickness of the pattern was determined by averaging the measured values at six points intersecting the pattern using a surface roughness profile measuring instrument (product name: Surfcom 1400) manufactured by Tokyo Seimitsu Co., Ltd.
  • a surface roughness profile measuring instrument product name: Surfcom 1400 manufactured by Tokyo Seimitsu Co., Ltd.
  • Surfcom 1400 surface roughness profile measuring instrument manufactured by Tokyo Seimitsu Co., Ltd.
  • specific resistance was measured by the 4 terminal method using the LCR meter.
  • the measurement results of specific resistance are shown in Tables 1 to 3.
  • the numbers shown in Tables 1 to 3 are expressed in parts by mass unless otherwise specified.
  • Resin amount (%) is the ratio of the total amount of resin to the total amount of silver powder, resin (curing agent, thermosetting resin, thermoplastic resin and acrylonitrile-butadiene copolymer), and curing accelerator. . “Resin amount (%) in the entire system” is the resin content relative to the total amount of silver powder, resin (curing agent, thermosetting resin, thermoplastic resin and acrylonitrile-butadiene copolymer), curing accelerator and diluent. It is a percentage of the total amount.
  • “Amount of silver powder in the entire system (%)” is the amount of silver powder relative to the total amount of silver powder, resin (curing agent, thermosetting resin, thermoplastic resin and acrylonitrile-butadiene copolymer), curing accelerator and diluent. It is a percentage of the total amount. “Ratio of thermosetting resin (%)” is the total amount of curing agent and thermosetting resin relative to the total amount of resin (curing agent, thermosetting resin, thermoplastic resin and acrylonitrile-butadiene copolymer). It is a ratio.
  • the conductive pastes according to Examples 1 to 13 had excellent characteristics.
  • the conductive pastes according to Examples 1 to 13 include silver powder surface-treated with oleic acid, which is a fatty acid that is liquid at room temperature (about 20 ° C.).
  • the conductive pastes according to Comparative Examples 1 to 4 did not have excellent characteristics.
  • the conductive pastes according to Comparative Examples 1 to 4 include silver powder surface-treated with stearic acid, which is a solid fatty acid at room temperature (about 20 ° C.).
  • the conductive films obtained by heating the conductive pastes according to Examples 1 to 13 have significantly lower specific resistance than the conductive films obtained by heating the conductive pastes according to Comparative Examples 1 to 4. I understood.
  • the electrically conductive film obtained by heating the electrically conductive paste containing the silver powder surface-treated with oleic acid and the silver powder surface-treated with stearic acid has a sufficiently small specific resistance (Example 5).
  • Oleic acid is a liquid fatty acid and stearic acid is a solid fatty acid.
  • a conductive film obtained by heating a conductive paste containing silver powder surface-treated with a mixture of oleic acid and palmitic acid had a sufficiently small specific resistance (Example 8).
  • Oleic acid is a liquid fatty acid
  • palmitic acid is a solid fatty acid.
  • the specific resistance of the conductive film obtained by heating the conductive paste obtained by adding oleic acid to the conductive paste containing silver powder surface-treated with stearic acid was not reduced (Comparative Example) 4). This indicates that silver powder surface-treated with liquid fatty acid (oleic acid) must be used in order to obtain a conductive film having a low specific resistance. That is, even if liquid fatty acid (oleic acid) is added to the conductive paste later, the specific resistance of the conductive film does not decrease.
  • FIG. 1 is an electron micrograph of a conductive film obtained by heating a conductive paste according to Example 1.
  • FIG. 2 is an electron micrograph of a conductive film obtained by heating the conductive paste according to Comparative Example 1. As shown in FIG. 2, the conductive film obtained by heating the conductive paste according to Comparative Example 1 is not very good in contact state between silver powders. This is considered to increase the specific resistance of the conductive film.
  • a conductive film that can be heat-treated at a low temperature of 200 ° C. or lower and has a sufficiently low electrical resistivity (for example, 0.50 ⁇ 10 ⁇ 4 ⁇ ⁇ m or lower).
  • An electrically conductive paste can be provided.
  • an electrode and a circuit pattern can be formed even on a material having low heat resistance, it has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

 200℃以下の低温での熱処理が可能であり、かつ、十分に低い電気抵抗率を有する導電膜を得ることのできる導電性ペーストを提供する。 本発明の導電性ペーストは、(A)液状の脂肪酸によって表面処理された銀粉と、(B)熱硬化性樹脂及び/又は熱可塑性樹脂と、(C)希釈剤と、を含む。あるいは、本発明の導電性ペーストは、(A)液状の脂肪酸及び固形の脂肪酸によって表面処理された銀粉と、(B)熱硬化性樹脂及び/又は熱可塑性樹脂と、(C)希釈剤と、を含む。本発明の導電性ペーストは、さらに、(A')固形の脂肪酸のみによって表面処理された銀粉を含んでもよい。

Description

導電性ペースト及びその製造方法
 本発明は、液状の脂肪酸で表面処理された銀粉を含む導電性ペースト及びその製造方法に関する。
 近年、銀微粒子は、電子部品の電極や回路パターンを形成するための導電性ペーストの原料として使用されている。導電性ペーストは、その取り扱いが容易であることから、実験用途や電子産業用途など、様々な用途に使用されている。
 回路パターンを形成するためには、まず、銀微粒子を含有する導電性ペーストを例えばスクリーン印刷によって基板に塗布する。次に、基板に塗布した導電性ペーストを加熱して焼成する。これにより、例えば配線幅50μm程度の回路パターンを形成することができる。
 導電性ペーストは、「高温焼成タイプ」及び「加熱硬化タイプ」の2つのタイプに大別することができる。高温焼成タイプの導電性ペーストは、550~900℃程度の高温で処理することができる。一方、加熱硬化タイプの導電性ペーストは、室温(約20℃)~200℃程度の比較的低温で処理することができる。加熱硬化タイプの導電性ペーストは、低温で導体を形成できることから、省エネルギーの観点から近年注目されている。
 加熱硬化タイプの導電性ペーストは、低温で硬化させることができるため、耐熱性に劣る材料への適用が可能である。
 例えば、携帯電話の分野では、ポリイミド製フレキシブル回路基板が使用される。あるいは、より安価なPET(ポリエチレンテレフタラート)やPEN(ポリエチレンナフタレート)フィルム等が使用されることもある。これらの基板は耐熱性に劣るため、200℃以下の低温で硬化させることのできる加熱硬化タイプの導電性ペーストを適用することが好ましい。
 また、タッチパネルや薄膜系太陽電池の分野では、基板上に金属酸化膜が形成される。金属酸化膜が形成された基板は耐熱性に劣るため、200℃以下の低温で硬化させることのできる加熱硬化タイプの導電性ペーストを適用することが好ましい。
 しかしながら、一般に、加熱硬化タイプの導電性ペーストを用いて得られた導電膜は、高温焼成タイプの導電性ペーストを用いて得られた導電膜よりも電気抵抗率が大きい(つまり導電性が低い)という問題がある。
 すなわち、高温焼成タイプの導電性ペーストを加熱して得られた導電膜は、加熱によって金属粉同士が結合しているため、バルクの金属と同程度の低い電気抵抗率を有する。これに対して、加熱硬化タイプの導電性ペーストを加熱して得られた導電膜は、金属粉同士の接触によって導電路が形成されているため、比較的高い電気抵抗率を有する。
 このように、2つのタイプの導電性ペーストを加熱して得られた導電膜は、電気を導通させる機構が異なっている。
 また、高温焼成タイプの導電性ペーストを加熱して得られた導電膜は、比抵抗値が1×10-4Ω・m以下であるのに対し、加熱硬化タイプの導電性ペーストを加熱して得られた導電膜は、比抵抗値が10×10-4Ω・m程度であり、比抵抗値が十分に低いとはいえない。
 このような事情により、200℃以下の低温で熱処理が可能であり、かつ、低い電気抵抗率を有する導電膜を得ることのできる導電性ペーストが望まれている。
 低い電気抵抗率を有する導電膜を得るための方法として、導電性ペーストに含まれる金属粉同士の接触面積を大きくすることが考えられる。
 導電性ペーストに含まれる金属粉同士の効率的な接触を阻害する要因として、例えば、以下の要因が考えられる。
 (1)導電性ペースト中の樹脂比率が高い。
 (2)導電性ペーストに含まれる金属粉の表面に酸化被膜が形成されており、この酸化皮膜が電気の導通を阻害する。
 (3)導電性ペーストに含まれる金属粉の分散性が良好でない。
 特許文献1には、金属粉の表面に有機物のコート及び無機物のコートを形成することによって、金属粉の表面の耐酸化性を向上させる技術が記載されている。有機物のコートは、オレイン酸などの有機脂肪酸を含んでいる。しかしながら、特許文献1に記載された技術は、中心の金属の再結晶化を促進するために、350℃以上の高温で金属粉を加熱する必要がある。このため、特許文献1に記載された技術は、耐熱性に劣るPETフィルム等の材料に適用することはできない。
 特許文献2には、シート抵抗が低く、膜厚が2.5ミクロン以下の銀薄膜を得ることのできる銀ペーストが記載されている。この銀ペーストは、オレイン酸銀等の有機酸銀を含んでいる。しかしながら、特許文献2に記載された銀ペーストは、ペースト中に含まれる有機物を分解するために、500℃程度の高温で焼成する必要がある。このため、特許文献2に開示された銀ペーストは、耐熱性に劣るPETフィルム等の材料に適用することはできない。
特開2005-133119号公報 WO2006-035908号
 本発明は、200℃以下の低温での熱処理が可能であり、かつ、十分に低い電気抵抗率を有する導電膜を得ることのできる導電性ペーストを提供することを目的とする。
 本発明者は、十分に低い電気抵抗率を有する導電膜を得るために、オレイン酸等の液状の脂肪酸で表面処理した銀粉を含む銀ペーストを用いることが有効であることを発見した。本発明は、かかる新規な発見に基づいて完成されたものである。
 本発明は、以下の通りである。
 [1](A)液状の脂肪酸によって表面処理された銀粉と、(B)熱硬化性樹脂及び/又は熱可塑性樹脂と、(C)希釈剤と、を含む導電性ペースト。
 [2](A)液状の脂肪酸及び固形の脂肪酸によって表面処理された銀粉と、(B)熱硬化性樹脂及び/又は熱可塑性樹脂と、(C)希釈剤と、を含む導電性ペースト。
 [3]さらに、(A’)固形の脂肪酸のみによって表面処理された銀粉を含む、[1]または[2]に記載の導電性ペースト。
 [4]前記液状の脂肪酸は、融点が-20℃~+20℃の脂肪酸である、[1]から[3]のうちいずれに記載の導電性ペースト。
 [5]前記固形の脂肪酸は、融点が+20℃より大きい脂肪酸である、[2]から[4]のうちいずれかに記載の導電性ペースト。
 [6]前記脂肪酸の量が、前記銀粉と前記脂肪酸の合計量に対して0.1~5質量%である、[1]から[5]のうちいずれかに記載の導電性ペースト。
 [7]前記液状の脂肪酸が、酪酸、吉草酸、カプロン酸、ヘプタン酸、カプリル酸、ペラルゴン酸、ミリストレイン酸、パルミトレイン酸、リシノール酸、オレイン酸、リノール酸及びリノレン酸からなる群より選択される少なくとも1種である、[1]から[6]のうちいずれかに記載の導電性ペースト。
 [8]前記液状の脂肪酸が、オレイン酸及び/又はリノレン酸である、[7]に記載の導電性ペースト。
 [9]前記熱硬化性樹脂が、エポキシ樹脂及びフェノール樹脂である、[1]から[8]のうちいずれかに記載の導電性ペースト。
 [10]前記熱可塑性樹脂が、フェノキシ樹脂、ブチラール樹脂、セルロース樹脂、アクリル樹脂及びポリエステル樹脂からなる群より選択される少なくとも1種である、[1]から[9]のうちいずれかに記載の導電性ペースト。
 [11]前記希釈剤が、反応性希釈剤である、[1]から[10]のうちいずれかに記載の導電性ペースト。
 [12]前記反応性希釈剤が、1,2-エポキシ-4-(2-メチルオキシラニル)-1-メチルシクロヘキサンまたは4-tert-ブチルフェニルグリシジルエーテルである、[11]に記載の導電性ペースト。
 [13] [1]から[12]のうちいずれかに記載の導電性ペーストを加熱して得られる導電膜。
 [14] [13]に記載の導電膜を含む電子部品。
 [15]液状の脂肪酸によって銀粉を表面処理する工程と、
 前記銀粉、熱硬化性樹脂及び/又は熱可塑性樹脂、及び、希釈剤を混合する工程と、を含む、導電性ペーストの製造方法。
 本発明によれば、200℃以下の低温での熱処理が可能あり、かつ、十分に低い電気抵抗率(例えば、0.50×10-4Ω・m以下)を有する導電膜を得ることのできる導電性ペーストを提供することができる。
実施例1に係る導電性ペーストを加熱して得られた導電膜の電子顕微鏡写真である。 比較例1に係る導電性ペーストを加熱して得られた導電膜の電子顕微鏡写真である。
 本発明の導電性ペーストは、(A)液状の脂肪酸によって表面処理された銀粉と、(B)熱硬化性樹脂及び/又は熱可塑性樹脂と、(C)希釈剤と、を含む。
 あるいは、本発明の導電性ペーストは、(A)液状の脂肪酸及び固形の脂肪酸によって表面処理された銀粉と、(B)熱硬化性樹脂及び/又は熱可塑性樹脂と、(C)希釈剤と、を含む。
 本発明の導電性ペーストに含まれる銀粉の形状は、特に限定されない。銀粉は、例えば、球状、フレーク状、りん片状、針状等、どのような形状であってもよい。複数の異なる形状の銀粉を混合して用いることもできる。
 銀粉の平均粒子径は、0.015~30μmであることが好ましい。銀粉が球状である場合、銀粉の平均粒子径は0.2~5μmであることがより好ましい。銀粉がフレーク状である場合、銀粉の平均粒子径は5~30μmであることがより好ましい。
 銀粉の平均粒子径が上記の範囲にある場合、導電性ペーストを印刷又は塗布した後の膜の表面の状態が良好になる。また、導電性ペーストを加熱して得られた導電膜の導電性が向上する。
 本明細書において、銀粉の「平均粒子径」の定義は、以下の通りである。
 銀粉が球状の場合、平均粒子径とは、粒子の直径の平均値を意味する。
 銀粉がフレーク状またはりん片状の場合、平均粒子径とは、粒子の最長部の長さの平均値を意味する。
 銀粉が針状の場合、平均粒子径とは、粒子の最長部の長さの平均値を意味する。
 平均粒子径は、所定の数(例えば100個)の粒子の粒径を測定した結果の算出平均値として求めることができる。
 銀粉の平均粒子径は、例えば、銀粉の粒子を走査型電子顕微鏡(SEM)で観察することで測定することができる。あるいは、銀粉の平均粒子径は、画像解析によって測定することもできる。
 本発明の導電性ペーストは、液状の脂肪酸によって表面処理された銀粉を含む。
 あるいは、本発明の導電性ペーストは、液状の脂肪酸及び固形の脂肪酸によって表面処理された銀粉を含む。
 液状の脂肪酸とは、室温(20℃)において液状の脂肪酸のことである。
 液状の脂肪酸は、融点が-20℃以上+20℃以下の脂肪酸であることが好ましい。
 固形の脂肪酸とは、室温(20℃)において固形の脂肪酸のことである。
 固形の脂肪酸は、融点が+20℃よりも大きい脂肪酸であることが好ましい。
 銀粉の表面処理に用いられる脂肪酸は、希釈剤に対して可溶であることが好ましい。
 本発明の導電性ペーストを加熱して得られた導電膜は、従来の導電性ペーストを加熱して得られた導電膜よりも小さい電気抵抗率を有している。その理由は、以下の通りであると考えられる。
 本発明の導電性ペーストは、液状の脂肪酸によって表面処理された銀粉及び希釈剤を含む。液状の脂肪酸は、希釈剤に容易に溶解する。このため、導電性ペーストを加熱したときに、銀粉の表面に存在する脂肪酸は、希釈剤とともに容易に蒸発する。この結果、本発明の導電性ペーストを加熱して得られた導電膜は、銀粉の表面の露出している部分の面積が大きくなっており、銀粉同士の接触面積が大きくなっている。さらに、本発明の導電性ペーストを加熱して得られた導電膜は、銀粉同士の接触状態が良好であり、銀粉の少なくとも一部が融着して一体となっている場合もある。
 なお、導電性ペーストに含まれる銀粉として、脂肪酸によって表面処理していない銀粉を用いることも考えられる。しかし、このような銀粉は、樹脂との濡れ性が悪いために、導電性ペーストの原料として不適当である。
 液状の脂肪酸の例としては、酪酸、吉草酸、カプロン酸、ヘプタン酸、カプリル酸、ペラルゴン酸等の飽和脂肪酸、ミリストレイン酸、パルミトレイン酸、リシノール酸、オレイン酸、リノール酸、リノレン酸等の不飽和脂肪酸を挙げることができる。これらの脂肪酸は、1種を単独で使用してもよく、2種以上を併用してもよい。これらの中では、オレイン酸、リノール酸又はこれらの混合物を用いることが好ましい。
 本発明の導電性ペーストは、液状の脂肪酸及び固形の脂肪酸によって表面処理された銀粉を含んでもよい。
 固形の脂肪酸の例としては、カプリン酸、パルミチン酸、ステアリン酸等の炭素原子数10以上の飽和脂肪酸、クロトン酸、ソルビン酸等の不飽和脂肪酸を挙げることができる。
 固形の脂肪酸は、沸点が200℃以下であることが好ましい。沸点が200℃以下の脂肪酸を用いた場合、導電性ペーストを加熱したときに、銀粉の表面の脂肪酸が蒸発するため、銀粉の表面の露出している部分の面積がより大きくなるためである。このような脂肪酸の例として、クロトン酸を挙げることができる。
 液状の脂肪酸及び固形の脂肪酸を併用する場合には、脂肪酸の全量に対する液状の脂肪酸の割合を20質量%以上とすることが好ましい。
 本発明の導電性ペーストは、上記(A)、(B)、及び(C)成分に加えて、(A’)固形の脂肪酸のみによって表面処理された銀粉を含んでもよい。
 本発明の導電性ペーストに含まれる銀粉は、例えば、以下の(1)~(3)の方法によって調製することができる。
(1)液状の脂肪酸によって銀粉を処理する。
(2)液状の脂肪酸と固形の脂肪酸を混合した後、この混合物によって銀粉を処理する。
(3)液状の脂肪酸及び固形の脂肪酸によって銀粉を別々に処理する。次に、液状の脂肪酸によって処理された銀粉と、固形の脂肪酸によって処理された銀粉を混合する。
 上記(3)の場合、銀粉の全量に対する、液状の脂肪酸によって処理された銀粉の割合は、20質量%以上であることが好ましい。
 銀粉を脂肪酸によって処理するためには、例えば、以下の(1)~(3)の方法を用いることができる。
(1)液状の脂肪酸に、銀粉を浸漬させる。
(2)液状の脂肪酸と固形の脂肪酸と銀粉とを混合した後に、この混合物を溶媒中で攪拌する。
(3)固形の脂肪酸と溶媒とを混合した後に、銀粉をこの混合物中で攪拌する。
 前記溶媒としては、例えば、水、アルコール等の有機溶媒を用いることができる。アルコールとしては、例えばエタノールを用いることができる。
 銀粉は、ポットミルによってフレーク化したものを用いてもよい。
 ポットミルによって銀粉をフレーク化するときに、ポットミルに脂肪酸を投入してもよい。これにより、銀粉をフレーク化するのと同時に、銀粉の表面を脂肪酸によって処理することができる。脂肪酸の少なくとも一部は、銀粒子の表面に物理的に吸着していると考えられる。
 銀粉の表面処理工程に用いられる脂肪酸の量は、銀粉100質量部に対して、好ましくは1~100質量部であり、より好ましくは1~20質量部である。
 本発明の導電性ペーストは、脂肪酸によって表面処理された銀粉を含む。導電性ペーストに含まれる脂肪酸の量は、銀粉と脂肪酸の合計量に対して0.1~5質量%であることが好ましく、0.2~2質量%であることがより好ましい。脂肪酸の量をこの範囲に調整することによって、より小さい電気抵抗率を有する導電膜を得ることができる。
 導電性ペーストに含まれる銀粉の量は、好ましくは75~98質量%であり、より好ましくは80~97質量%である。
 本発明の導電性ペーストは、バインダーとして、(B)熱硬化性樹脂及び/又は熱可塑性樹脂を含む。
 本発明に用いられる熱硬化性樹脂は、200℃以下の温度で硬化する熱硬化性樹脂であることが好ましい。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、又はこれらの混合物を用いることができる。
 熱硬化性樹脂の例として、尿素樹脂、メラミン樹脂、グアナミン樹脂のようなアミノ樹脂;高分子量のビスフェノールA型エポキシ樹脂、ジグリシジルビフェニルのようなビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、トリス(ヒドロキシルフェニル)メタン型エポキシ樹脂のようなエポキシ樹脂;オキセタン樹脂;レゾール型フェノール樹脂、アルキルレゾール型フェノール樹脂、ノボラック型フェノール樹脂、アルキルノボラック型フェノール樹脂、アラルキルノボラック型フェノール樹脂のようなフェノール樹脂;シリコーンエポキシ、シリコーンポリエステルのようなシリコーン変性樹脂;ビスマレイミド、ポリイミド樹脂等が挙げられる。ビスマレイミドトリアジン樹脂(BTレジン)も使用することができる。これらの樹脂は、1種を単独で使用してもよく、2種類以上を併用してもよい。
 本発明に用いられる熱硬化性樹脂は、常温で液状であることが好ましい。ここでいう「常温」とは、+5℃~+35℃の温度を意味する。液状の熱硬化性樹脂を用いることによって、希釈剤の使用量を減らすことができる。
 本発明に用いられる熱硬化性樹脂は、液状のエポキシ樹脂及び/又は液状のフェノール樹脂であることが好ましい。
 熱硬化性樹脂に、常温で固体の樹脂、又は、常温で超高粘性の樹脂を添加してもよい。添加する樹脂は、熱硬化性樹脂に対して相溶性を有することが好ましい。また、混合後の樹脂が流動性を有する範囲内で、熱硬化性樹脂に樹脂を添加することが好ましい。そのような樹脂の例として、高分子量のビスフェノールA型エポキシ樹脂、ジグリシジルビフェニルのようなビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、レゾール型フェノール樹脂、アラルキルノボラック型フェノール樹脂が挙げられる。
 熱可塑性樹脂の例として、ノボラック型フェノール樹脂、フェノキシ樹脂、ブチラール樹脂、セルロース樹脂、アクリル樹脂、メタクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、熱可塑性のキシレン樹脂、ヒドロキシスチレン系重合体、セルロース誘導体、又は、これらのうち2種以上の混合物が挙げられる。これらの中では、フェノキシ樹脂またはブチラール樹脂が好ましい。
 導電性ペーストに含まれる熱硬化性樹脂及び熱可塑性樹脂の量は、好ましくは1~12質量%であり、より好ましくは1.5~8質量%である。
 導電性ペーストに熱硬化性樹脂及び熱可塑性樹脂の両方が含まれる場合、熱硬化性樹脂と熱可塑性樹脂の質量の比率は、1:0.02~1:0.42であることが好ましく、1:0.05~1:0.25であることがより好ましい。
 本発明の導電性ペーストは、(C)希釈剤を含む。
 希釈剤は、導電性ペーストの粘度を調整するとともに、銀粉の表面に存在する脂肪酸を溶解させるために用いられる。
 希釈剤は、導電性ペーストを加熱する際に蒸発するものであることが好ましい。つまり、希釈剤は、加熱によって導電性ペーストより除去されるものであることが好ましい。
 また、希釈剤として、溶剤を用いることもできる。
 希釈剤は、導電性ペーストを加熱したときに、他の成分と反応することなく蒸発する。このことは、導電性ペーストを加熱する前後での質量の減少量を測定することによって確認することができる。
 溶剤の例として、トルエン、キシレン、メシチレン、テトラリン等の芳香族炭化水素;テトラヒドロフラン等のエーテル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン等のケトン類;2-ピロリドン、1-メチル-2-ピロリドン等のラクタム類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル(ブチルカルビトール)、及び、これらに対応するプロピレングリコール誘導体等のエーテルアルコール類;それらに対応する酢酸エステル等のエステル類;マロン酸、コハク酸等のジカルボン酸のメチルエステルあるいはエチルエステル等のジエステル類を挙げることができる。この中では、ブチルカルビトールが好ましい。
 導電性ペーストに含まれる(C)希釈剤として、反応性希釈剤を用いることもできる。 反応性希釈剤とは、分子中に例えばグリシジル基等の官能基を有する希釈剤である。
 反応性希釈剤の例として、1,2-エポキシ-4-(2-メチルオキシラニル)-1-メチルシクロヘキサン、4-tert-ブチルフェニルグリシジルエーテル、1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン、ネオデカン酸グリシジルエステル等を挙げることができる。この中では、1,2-エポキシ-4-(2-メチルオキシラニル)-1-メチルシクロヘキサン、又は、4-tert-ブチルフェニルグリシジルエーテルが好ましい。
 導電性ペーストに含まれる希釈剤の量は、好ましくは1~25質量%であり、より好ましくは1~15質量%である。導電性ペーストに含まれる希釈剤の量が1質量%未満の場合、十分に低い電気抵抗率を有する導電膜を得ることができないことがある。導電性ペーストに含まれる希釈剤の量が25質量%よりも大きい場合、導電性ペーストの安定性が悪化することがある。
 反応性希釈剤は、その他の希釈剤(例えばブチルカルビトールやブチルカルビトールアセテート)よりも高い粘度を有している。このため、導電性ペーストに反応性希釈剤を加えることによって、導電性ペーストを印刷に適した粘度に容易に調整することができる。また、導電性ペーストに反応性希釈剤を加えることによって、導電性ペーストを加熱して得られる導電膜の比抵抗を小さくすることができる。
 導電性ペーストをスクリーン印刷によって基板に塗布する場合、希釈剤によって導電性ペーストの常温における見かけ粘度を10~500Pa・sに調整することが好ましい。導電性ペーストのより好ましい見かけ粘度は、15~300Pa・sである。
 本発明の導電性ペーストは、公知の添加剤を含んでもよい。
 例えば、導電性ペーストは、分散助剤を含んでもよい。
 分散助剤の例として、ジイソプロポキシ(エチルアセトアセタト)アルミニウム等のアルミニウムキレート化合物;イソプロピルトリイソステアロイルチタネート等のチタン酸エステル;脂肪族多価カルボン酸エステル;不飽和脂肪酸アミン塩;ソルビタンモノオレエート等の界面活性剤;ポリエステルアミン塩、ポリアミド等の高分子化合物等を挙げることができる。
 本発明の導電性ペーストは、無機顔料、有機顔料、シランカップリング剤、レベリング剤、チキソトロピック剤、及び消泡剤からなる群から選ばれる少なくとも1種を含んでもよい。
 本発明の導電性ペーストの製造方法は、
(1)液状の脂肪酸によって銀粉を表面処理する工程と、
(2)前記銀粉、熱硬化性樹脂及び/又は熱可塑性樹脂、及び、希釈剤を混合する工程と、を含む。
 本発明の導電性ペーストの製造方法は、
(1)液状の脂肪酸及び固形の脂肪酸によって銀粉を表面処理する工程と、
(2)前記銀粉、熱硬化性樹脂及び/又は熱可塑性樹脂、及び、希釈剤を混合する工程と、を含む。
 前記(2)の工程において、さらに、(A’)固形の脂肪酸のみによって表面処理された銀粉を混合してもよい。
 本発明の導電性ペーストは、銀粉、熱硬化性樹脂及び/又は熱可塑性樹脂、及び、希釈剤を含む。これらの成分は、ライカイ機、プロペラ撹拌機、ニーダー、ロール、ポットミル等の装置によって均一に混合することができる。これらの成分を混合する際の温度は、10~40℃であることが好ましい。
 本発明の導電性ペーストは、スクリーン印刷等の公知の手法によって基板に塗布することができる。導電性ペーストを基板に塗布した後、導電ペーストを加熱して導電膜を形成することができる。
 導電性ペーストがバインダとして熱硬化性樹脂を含む場合、導電性ペーストの加熱温度は、好ましくは60~200℃であり、より好ましくは60~150℃である。この場合、導電性ペーストの加熱時間は、作業性の観点から、1~60分が好ましい。
 導電性ペーストがバインダとして熱硬化性樹脂を含む場合、導電性ペーストを加熱する前に乾燥させてもよい。
 基板に塗布された導電性ペーストの厚みは、好ましくは10~200μmであり、より好ましくは20~100μmである。
 導電性ペーストがバインダとして熱可塑性樹脂を含む場合、導電性ペーストを例えば80~160℃で加熱して導電膜を形成することができる。または、導電性ペーストを常温で乾燥させて導電膜を形成することもできる。
 本発明の導電性ペーストを加熱するか、又は乾燥させることによって、導電膜を形成することができる。この導電膜によって、電子部品の電極や回路パターンを形成することができる。
 本発明の導電性ペーストは、セラミック基板だけでなく、PET(ポリエチレンテレフタレート)等の耐熱性の低い材料からなる基板に適用することも可能である。
 また、本発明の導電性ペーストは、耐熱性の低い金属酸化膜が形成された太陽電池の基板に適用することも可能である。
 以下、本発明の実施例及び比較例について説明する。
 実施例1~13及び比較例1~4では、以下の表1~表3に示す配合比によって導電性ペーストを調製した。
 そのために、導電性ペーストの原料として、銀粉a、銀粉b、銀粉c、銀粉d、銀粉e、銀粉fの6種類の銀粉を用意した。
(銀粉a)
 表面処理の方法:オレイン酸によって表面処理
 粒子の形状:フレーク状
 平均粒径:7μm
 BET比表面積:0.662m/g
 タップ密度:5.33g/cm
 イグロス値(強熱減量):0.56%
(銀粉b)
 表面処理の方法:銀粉1000gとオレイン酸20gをポットミルにて混合
 粒子の形状:フレーク状
 平均粒径:10μm
 BET比表面積:0.776m/g
 タップ密度:5.13g/cm
 イグロス値(強熱減量):0.53%
(銀粉c)
 表面処理の方法:オレイン酸及びパルミチン酸の1:1(質量比)の混合物によって表面処理
 粒子の形状:フレーク状
 平均粒径:3μm
 BET比表面積:0.708m/g
 タップ密度:4.88g/cm
 イグロス値(強熱減量):0.59%
(銀粉d)
 表面処理の方法:銀粉1000gと、ステアリン酸20gと、エタノール100gとの混合物をポットミルにて攪拌して銀粉の表面処理を行った。
 粒子の形状:フレーク状
 平均粒径:3μm
 BET比表面積:1.007m/g
 タップ密度:4.76g/cm
 イグロス値(強熱減量):0.48%
(銀粉e)
 表面処理の方法:銀粉1000gを、オレイン酸20gをエタノール100gに溶解させた溶液に浸漬させて銀粉の表面処理を行った。
 粒子の形状:球状
 平均粒径:0.3μm
 BET比表面積:0.635m/g
 タップ密度:1.32g/cm
 イグロス値(強熱減量):1.98%
(銀粉f)
 表面処理の方法:銀粉1000gを、ステアリン酸20gと、エタノール100gとの混合物に浸漬し、ディゾルバーにて攪拌して銀粉の表面処理を行った。
 粒子の形状:球状
 平均粒径:0.3μm
 BET比表面積:1.095m/g
 タップ密度:1.13g/cm
 イグロス値(強熱減量):1.98%
 上記に示した銀粉a~fの物性値は、以下の手順で測定した。
 BET比表面積は、市販の測定器(島津製作所社製フロソーブII)を用いて測定した。
 タップ密度は、タッピングマシン(蔵持科学器械製作所社製)を用いて測定した。
 イグロス値(強熱減量)は、銀粉を800℃で30分間焼成した後の残分の質量から算出した。
 イグロス値は、銀粉の表面に存在する脂肪酸の量(質量%)を示している。例えば、銀粉aでは、銀粉の表面に存在するオレイン酸の質量が、銀粉及びオレイン酸の合計量に対して、0.56%である。銀粉cでは、銀粉の表面に存在するオレイン酸及びパルミチン酸の質量が、銀粉、オレイン酸、及びパルミチン酸の合計量に対して、0.59%である。
 つぎに、実施例1~13及び比較例1~4に係る導電性ペーストを調製した。
(実施例1)
 反応容器に、銀粉aを95質量部、フェノール樹脂を1.58質量部、エポキシ樹脂を2.68質量部、ブチラール樹脂を0.24質量部、カルボキシ末端アクリロニトリル・ブタジエン共重合体を0.40質量部、硬化促進剤を0.10質量部、及び、希釈剤としてブチルカルビトール4.97質量部を投入した。つぎに、これらの混合物を25℃でハイブリッドミキサーにて15秒撹拌した。これにより、実施例1に係る導電性ペーストを調製した。
(実施例2)
 銀粉aの代わりに銀粉bを用いた以外は、実施例1と同様の手順により、実施例2に係る導電性ペーストを調製した。
(実施例3)
 反応容器に、銀粉aを98質量部、フェノール樹脂を0.63質量部、エポキシ樹脂を1.07質量部、ブチラール樹脂を0.10質量部、カルボキシ末端アクリロニトリル・ブタジエン共重合体を0.16質量部、硬化促進剤を0.04質量部、及び、希釈剤としてブチルカルビトール1.99質量部を投入した。つぎに、これらの混合物を25℃でハイブリッドミキサーにて15秒撹拌した。これにより、実施例3に係る導電性ペーストを調製した。
(実施例4)
 銀粉aの代わりに銀粉bを用いた以外は、実施例3と同様の手順により、実施例4に係る導電性ペーストを調製した。
(実施例5)
 反応容器に、銀粉aを24.25質量部、銀粉fを72.75質量部、フェノール樹脂を0.95質量部、エポキシ樹脂を1.61質量部、ブチラール樹脂を0.15質量部、カルボキシ末端アクリロニトリル・ブタジエン共重合体を0.23質量部、硬化促進剤を0.06質量部、及び、希釈剤としてブチルカルビトール2.99質量部を投入した。つぎに、これらの混合物を25℃でハイブリッドミキサーにて15秒撹拌した。これにより、実施例5に係る導電性ペーストを調製した。
(実施例6)
 銀粉fの代わりに銀粉eを用いた以外は、実施例5と同様の手順により、実施例6に係る導電性ペーストを調製した。
(実施例7)
 反応容器に、銀粉aを94.00質量部、フェノキシ樹脂(数平均分子量1,180)を6.00質量部、及び、希釈剤としてブチルカルビトール14.00質量部を投入した。つぎに、これらの混合物を25℃でハイブリッドミキサーにて15秒撹拌した。これにより、実施例7に係る導電性ペーストを調製した。
(実施例8)
 反応容器に、銀粉cを95.00質量部、フェノール樹脂を1.58質量部、エポキシ樹脂を2.68質量部、ブチラール樹脂を0.24質量部、カルボキシ末端アクリロニトリル・ブタジエン共重合体を0.40質量部、硬化促進剤を0.10質量部、及び、希釈剤としてブチルカルビトール4.97質量部を投入した。つぎに、これらの混合物を25℃でハイブリッドミキサーにて15秒撹拌した。これにより、実施例8に係る導電性ペーストを調製した。
(実施例9)
 反応容器に、銀粉aを95質量部、フェノール樹脂を1.58質量部、エポキシ樹脂を2.68質量部、ブチラール樹脂を0.24質量部、カルボキシ末端アクリロニトリル・ブタジエン共重合体を0.40質量部、硬化促進剤を0.10質量部、及び、希釈剤として1,2-エポキシ-4-(2-メチルオキシラニル)-1-メチルシクロヘキサン5.33質量部を投入した。つぎに、これらの混合物を25℃でハイブリッドミキサーにて15秒撹拌した。これにより、実施例9に係る導電性ペーストを調製した。
(実施例10)
 反応容器に、銀粉aを95質量部、フェノール樹脂を1.58質量部、エポキシ樹脂を2.68質量部、ブチラール樹脂を0.24質量部、カルボキシ末端アクリロニトリル・ブタジエン共重合体を0.40質量部、硬化促進剤を0.10質量部、及び、希釈剤として4-tert-ブチルフェニルグリシジルエーテル5.33質量部を投入した。つぎに、これらの混合物を25℃でハイブリッドミキサーにて15秒撹拌した。これにより、実施例10に係る導電性ペーストを調製した。
(実施例11)
 反応容器に、銀粉aを95質量部、フェノール樹脂を1.58質量部、エポキシ樹脂を2.68質量部、ブチラール樹脂を0.24質量部、カルボキシ末端アクリロニトリル・ブタジエン共重合体を0.40質量部、硬化促進剤を0.10質量部、及び、希釈剤として1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン5.33質量部を投入した。つぎに、これらの混合物を25℃でハイブリッドミキサーにて15秒撹拌した。これにより、実施例11に係る導電性ペーストを調製した。
(実施例12)
 反応容器に、銀粉aを95質量部、フェノール樹脂を1.58質量部、エポキシ樹脂を2.68質量部、ブチラール樹脂を0.24質量部、カルボキシ末端アクリロニトリル・ブタジエン共重合体を0.40質量部、硬化促進剤を0.10質量部、及び、希釈剤としてネオデカン酸グリシジルエステル5.33質量部を投入した。つぎに、これらの混合物を25℃でハイブリッドミキサーにて15秒撹拌した。これにより、実施例12に係る導電性ペーストを調製した。
(実施例13)
 反応容器に、銀粉aを95質量部、フェノール樹脂を1.58質量部、エポキシ樹脂を2.68質量部、ブチラール樹脂を0.24質量部、カルボキシ末端アクリロニトリル・ブタジエン共重合体を0.40質量部、硬化促進剤を0.10質量部、及び、希釈剤としてブチルカルビトールアセテート4.97質量部を投入した。つぎに、これらの混合物を25℃でハイブリッドミキサーにて15秒撹拌した。これにより、実施例13に係る導電性ペーストを調製した。
(比較例1)
 銀粉aの代わりに銀粉dを用いた以外は、実施例1と同様の手順により、比較例1に係る導電性ペーストを調製した。
(比較例2)
 銀粉aの代わりに銀粉dを用いた以外は、実施例3と同様の手順により、比較例2に係る導電性ペーストを調製した。
(比較例3)
 銀粉aの代わりに銀粉dを用いた以外は、実施例7と同様の手順により、比較例3に係る導電性ペーストを調製した。
(比較例4)
 比較例1に係る導電性ペーストに、オレイン酸0.50質量部を後から添加することによって、比較例4に係る導電性ペーストを調製した。
 実施例1~13及び比較例1~4で用いた原料の具体的な名称及び物性値は、以下の通りである。
・フェノール樹脂:
 軟化点98~102℃、水酸基(OH)当量104~106g/eq
・エポキシ樹脂:
 トリス(ヒドロキシルフェニル)メタン型固形エポキシ樹脂、エポキシ当量169~179g/eq
・ブチラール樹脂:
 ポリビニルアルコール:ポリビニルブチラール:ポリビニルアセテート=83:16:1(質量比)、平均重合度2,400
・カルボキシ末端アクリロニトリル・ブタジエン共重合体:
 数平均分子量10,000
・硬化促進剤:
 2-エチル-4-メチルイミダゾール
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(比抵抗の測定)
 つぎに、実施例1~13及び比較例1~4で得られた導電性ペーストを用いて製造された導電膜の比抵抗(電気抵抗率)を測定した。
 比抵抗は、以下の手順で測定した。
 幅20mm、長さ20mm、厚さ1mmのアルミナ基板上に、250メッシュのステンレス製スクリーンを用いて、長さ71mm、幅1mm、厚さ20μmの導電性ペースとからなるジグザグパターンを印刷した。
 実施例1~4、7~13と、比較例1~4に係る導電性ペーストを、150℃で30分間加熱した。
 実施例5及び6に係る導電性ペーストを、200℃で30分間加熱した。
 パターンの厚みは、東京精密社製表面粗さ形状測定器(製品名・サーフコム1400)を用いて、パターンと交差する6点の測定値の平均により求めた。
 導電性ペーストを加熱または乾燥させて得られた導電膜について、LCRメーターを用いて、4端子法で比抵抗を測定した。比抵抗の測定結果を表1~表3に示す。
 なお、表1~表3に示されている数字は、特に断りのない限り、質量部で示している。
 表1~表3において、
 「樹脂量(%)」は、銀粉、樹脂(硬化剤、熱硬化性樹脂、熱可塑性樹脂及びアクリロニトリル・ブタジエン共重合体)、及び硬化促進剤の合計量に対する、樹脂の合計量の割合である。
 「系全体に占める樹脂量(%)」は、銀粉、樹脂(硬化剤、熱硬化性樹脂、熱可塑性樹脂及びアクリロニトリル・ブタジエン共重合体)、硬化促進剤及び希釈剤の合計量に対する、樹脂の合計量の割合である。
 「系全体に占める銀粉量(%)」は、銀粉、樹脂(硬化剤、熱硬化性樹脂、熱可塑性樹脂及びアクリロニトリル・ブタジエン共重合体)、硬化促進剤及び希釈剤の合計量に対する、銀粉の合計量の割合である。
 「熱硬化性樹脂の比率(%)」は、樹脂(硬化剤、熱硬化性樹脂、熱可塑性樹脂及びアクリロニトリル・ブタジエン共重合体)の合計量に対する、硬化剤及び熱硬化性樹脂の合計量の割合である。
 表1に示す結果より、実施例1~13に係る導電性ペーストは、優れた特性を有することがわかった。
 実施例1~13に係る導電性ペーストは、室温(約20℃)で液状の脂肪酸であるオレイン酸で表面処理された銀粉を含んでいる。
 これに対して、比較例1~4に係る導電性ペーストは、優れた特性を有していないことがわかった。
 比較例1~4に係る導電性ペーストは、室温(約20℃)で固形の脂肪酸であるステアリン酸で表面処理された銀粉を含んでいる。
 実施例1~13に係る導電性ペーストを加熱して得られた導電膜は、比較例1~4に係る導電性ペーストを加熱して得られた導電膜よりも、大幅に比抵抗が小さいことがわかった。
 フレーク状の銀粉に球状の銀粉を混合することにより、導電膜の比抵抗がさらに小さくなることがわかった(実施例5、6)。
 オレイン酸で表面処理した銀粉と、ステアリン酸で表面処理した銀粉とを含む導電性ペーストを加熱して得られた導電膜は、十分に小さい比抵抗を有することがわかった(実施例5)。
 オレイン酸は液状の脂肪酸であり、ステアリン酸は固形の脂肪酸である。
 オレイン酸とパルミチン酸の混合物で表面処理した銀粉を含む導電性ペーストを加熱して得られた導電膜は、十分に小さい比抵抗を有することがわかった(実施例8)。
 オレイン酸は液状の脂肪酸であり、パルミチン酸は固形の脂肪酸である。
 ステアリン酸で表面処理された銀粉を含む導電性ペーストに、オレイン酸を後から添加して得られた導電性ペーストを加熱して得られた導電膜は、比抵抗が小さくならなかった(比較例4)。
 このことは、比抵抗の小さい導電膜を得るためには、液状の脂肪酸(オレイン酸)で表面処理された銀粉を用いなければならないことを示している。つまり、導電性ペーストに液状の脂肪酸(オレイン酸)を後から添加しても、導電膜の比抵抗は小さくならないことを示している。
 図1は、実施例1に係る導電性ペーストを加熱して得られた導電膜の電子顕微鏡写真である。図1に示すように、実施例1に係る導電性ペーストを加熱して得られた導電膜は、銀粉同士の接触状態が良好であり、銀粉同士が融着しているように見える部分もある。このことにより、導電膜の比抵抗が極めて低くなっていると考えられる。
 図2は、比較例1に係る導電性ペーストを加熱して得られた導電膜の電子顕微鏡写真である。図2に示すように、比較例1に係る導電性ペーストを加熱して得られた導電膜は、銀粉同士の接触状態があまり良好ではない。このことにより、導電膜の比抵抗が高くなっていると考えられる。
 本発明によれば、200℃以下の低温での熱処理が可能あり、かつ、十分に低い電気抵抗率(例えば、0.50×10-4Ω・m以下)を有する導電膜を得ることのできる導電性ペーストを提供することができる。
 本発明によれば、耐熱性の低い材料に対しても電極や回路パターンを形成することができるので、産業上の利用可能性を有する。

Claims (15)

  1.  (A)液状の脂肪酸によって表面処理された銀粉と、(B)熱硬化性樹脂及び/又は熱可塑性樹脂と、(C)希釈剤と、を含む導電性ペースト。
  2.  (A)液状の脂肪酸及び固形の脂肪酸によって表面処理された銀粉と、(B)熱硬化性樹脂及び/又は熱可塑性樹脂と、(C)希釈剤と、を含む導電性ペースト。
  3.  さらに、(A’)固形の脂肪酸のみによって表面処理された銀粉を含む、請求項1または請求項2に記載の導電性ペースト。
  4.  前記液状の脂肪酸は、融点が-20℃~+20℃の脂肪酸である、請求項1から請求項3のうちいずれか1項に記載の導電性ペースト。
  5.  前記固形の脂肪酸は、融点が+20℃より大きい脂肪酸である、請求項2から請求項4のうちいずれか1項に記載の導電性ペースト。
  6.  前記脂肪酸の量が、前記銀粉と前記脂肪酸の合計量に対して0.1~5質量%である、請求項1から請求項5のうちいずれか1項に記載の導電性ペースト。
  7.  前記液状の脂肪酸が、酪酸、吉草酸、カプロン酸、ヘプタン酸、カプリル酸、ペラルゴン酸、ミリストレイン酸、パルミトレイン酸、リシノール酸、オレイン酸、リノール酸及びリノレン酸からなる群より選択される少なくとも1種である、請求項1から請求項6のうちいずれか1項に記載の導電性ペースト。
  8.  前記液状の脂肪酸が、オレイン酸及び/又はリノレン酸である、請求項7に記載の導電性ペースト。
  9.  前記熱硬化性樹脂が、エポキシ樹脂及びフェノール樹脂である、請求項1から請求項8のうちいずれか1項に記載の導電性ペースト。
  10.  前記熱可塑性樹脂が、フェノキシ樹脂、ブチラール樹脂、セルロース樹脂、アクリル樹脂及びポリエステル樹脂からなる群より選択される少なくとも1種である、請求項1から請求項9のうちいずれか1項に記載の導電性ペースト。
  11.  前記希釈剤が、反応性希釈剤である、請求項1から請求項10のうちいずれか1項に記載の導電性ペースト。
  12.  前記反応性希釈剤が、1,2-エポキシ-4-(2-メチルオキシラニル)-1-メチルシクロヘキサンまたは4-tert-ブチルフェニルグリシジルエーテルである、請求項11に記載の導電性ペースト。
  13.  請求項1から請求項12のうちいずれか1項に記載の導電性ペーストを加熱して得られる導電膜。
  14.  請求項13に記載の導電膜を含む電子部品。
  15.  液状の脂肪酸によって銀粉を表面処理する工程と、
     前記銀粉、熱硬化性樹脂及び/又は熱可塑性樹脂、及び、希釈剤を混合する工程と、を含む、導電性ペーストの製造方法。
PCT/JP2012/051546 2011-01-26 2012-01-25 導電性ペースト及びその製造方法 WO2012102304A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137022331A KR102007046B1 (ko) 2011-01-26 2012-01-25 도전성 페이스트 및 그 제조 방법
CN201280006651.0A CN103339685B (zh) 2011-01-26 2012-01-25 导电性糊剂及其制造方法
JP2012554817A JP5916633B2 (ja) 2011-01-26 2012-01-25 導電性ペースト及び導電膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-014352 2011-01-26
JP2011014352 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012102304A1 true WO2012102304A1 (ja) 2012-08-02

Family

ID=46580869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051546 WO2012102304A1 (ja) 2011-01-26 2012-01-25 導電性ペースト及びその製造方法

Country Status (4)

Country Link
JP (2) JP5916633B2 (ja)
KR (1) KR102007046B1 (ja)
CN (1) CN103339685B (ja)
WO (1) WO2012102304A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104140781A (zh) * 2013-05-06 2014-11-12 奇美实业股份有限公司 导电性粘着剂
CN104140780A (zh) * 2013-05-06 2014-11-12 奇美实业股份有限公司 导电性胶粘剂
JP2015093916A (ja) * 2013-11-12 2015-05-18 信越化学工業株式会社 導電性エポキシ樹脂組成物、該組成物を用いた太陽電池セル、及び該太陽電池セルの製造方法
CN105719724A (zh) * 2014-12-22 2016-06-29 株式会社则武 加热固化型导电性糊剂
JP2016530353A (ja) * 2013-07-01 2016-09-29 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング ナノ粒子インク組成物、プロセスおよび応用
WO2017110255A1 (ja) * 2015-12-25 2017-06-29 株式会社ノリタケカンパニーリミテド 銀粉末および銀ペーストならびにその利用
WO2018235734A1 (ja) * 2017-06-19 2018-12-27 太陽インキ製造株式会社 導電性組成物およびそれを用いた導電体並びに積層構造体
JP2019512561A (ja) * 2016-02-22 2019-05-16 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA 導電性組成物および前記組成物の用途
CN112292735A (zh) * 2018-06-26 2021-01-29 纳美仕有限公司 真空印刷用导电性浆料
WO2021153383A1 (ja) * 2020-01-28 2021-08-05 住友ベークライト株式会社 導電性ペーストおよび半導体装置
CN113924629A (zh) * 2019-06-12 2022-01-11 京都一来电子化学股份有限公司 导电性膏体组合物
WO2022202563A1 (ja) * 2021-03-26 2022-09-29 ナミックス株式会社 導電性ペースト、太陽電池用電極及び太陽電池
WO2022202434A1 (ja) * 2021-03-24 2022-09-29 住友ベークライト株式会社 導電性ペーストおよび半導体装置
CN116174739A (zh) * 2023-03-09 2023-05-30 深圳市哈深智材科技有限公司 一种微晶纳米片聚集型类球状银粉及其制备方法
JP7500978B2 (ja) 2020-01-30 2024-06-18 株式会社レゾナック コンパウンド、成形体、及びコンパウンドの硬化物

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015085534A1 (en) * 2013-12-12 2015-06-18 Ablestik (Shanghai) Limited Electrically conductive inks
JP6029719B2 (ja) * 2014-07-31 2016-11-24 Dowaエレクトロニクス株式会社 銀粉及びその製造方法、並びに導電性ペースト
KR20170102230A (ko) * 2014-12-26 2017-09-08 하리마 카세이 가부시키가이샤 도전성 페이스트
JP6263146B2 (ja) * 2015-04-06 2018-01-17 株式会社ノリタケカンパニーリミテド 導電膜付基板、その製造方法、およびポリイミド基板用導電性ペースト
CN106281135A (zh) * 2015-06-12 2017-01-04 中国振华集团云科电子有限公司 一种耐模压浸渍银浆的制备方法
CN105880632B (zh) * 2016-06-14 2018-09-25 深圳市中金岭南科技有限公司 一种抗氧化片状银粉的制备方法
JP2021028967A (ja) 2019-08-13 2021-02-25 株式会社村田製作所 積層セラミック電子部品および樹脂電極用導電性ペースト
JP6705046B1 (ja) 2019-12-12 2020-06-03 株式会社ノリタケカンパニーリミテド 低温成形用導電性組成物および導電膜付き基板
CN112037963B (zh) * 2020-09-02 2022-05-06 深圳市普瑞威科技有限公司 一种导电银浆及其制备方法
JP2022093198A (ja) 2020-12-11 2022-06-23 株式会社村田製作所 積層セラミック電子部品および樹脂電極用導電性ペースト

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064484A (ja) * 1999-09-01 2001-03-13 Sumitomo Metal Mining Co Ltd 導電性樹脂組成物
JP2003055583A (ja) * 1998-12-08 2003-02-26 Taiyo Ink Mfg Ltd 光硬化型異方性導電組成物及びそれを用いて形成した異方性導電パターン
JP2010513682A (ja) * 2006-12-22 2010-04-30 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 水性導電性組成物
JP2011238596A (ja) * 2010-04-14 2011-11-24 Dowa Holdings Co Ltd 熱硬化型導電性ペーストおよび配線基板
JP4832615B1 (ja) * 2010-11-01 2011-12-07 Dowaエレクトロニクス株式会社 低温焼結性導電性ペーストおよびそれを用いた導電膜と導電膜の形成方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612445A (en) * 1995-02-15 1997-03-18 Arizona Chemical Co. Ultraviolet curable epoxidized alkyds
JP2003203622A (ja) * 2002-01-07 2003-07-18 Toshiba Corp 電池内リード材及びそれを用いた電池
JP4224771B2 (ja) * 2002-05-15 2009-02-18 日立化成工業株式会社 導電ペースト
JP4149353B2 (ja) 2003-10-28 2008-09-10 三井金属鉱業株式会社 二層コート金属粉及びその二層コート金属粉の製造方法並びにその二層コート金属粉を用いた導電性ペースト
JP2005330529A (ja) * 2004-05-19 2005-12-02 Dowa Mining Co Ltd 球状銀粉およびその製造方法
JP4507750B2 (ja) * 2004-08-05 2010-07-21 昭栄化学工業株式会社 導電性ペースト
JPWO2006035908A1 (ja) 2004-09-29 2008-05-15 日本金液株式会社 銀ペースト組成物
US7242573B2 (en) * 2004-10-19 2007-07-10 E. I. Du Pont De Nemours And Company Electroconductive paste composition
JP5028695B2 (ja) * 2004-11-25 2012-09-19 Dowaエレクトロニクス株式会社 銀粉およびその製造方法
JP4946130B2 (ja) * 2006-03-28 2012-06-06 住友ベークライト株式会社 導電性ペースト及び導電性ペーストを使用して作製した半導体装置
JP2010055807A (ja) * 2008-08-26 2010-03-11 Sumitomo Rubber Ind Ltd 導電性ペーストとそれを用いた導電機能部材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055583A (ja) * 1998-12-08 2003-02-26 Taiyo Ink Mfg Ltd 光硬化型異方性導電組成物及びそれを用いて形成した異方性導電パターン
JP2001064484A (ja) * 1999-09-01 2001-03-13 Sumitomo Metal Mining Co Ltd 導電性樹脂組成物
JP2010513682A (ja) * 2006-12-22 2010-04-30 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 水性導電性組成物
JP2011238596A (ja) * 2010-04-14 2011-11-24 Dowa Holdings Co Ltd 熱硬化型導電性ペーストおよび配線基板
JP4832615B1 (ja) * 2010-11-01 2011-12-07 Dowaエレクトロニクス株式会社 低温焼結性導電性ペーストおよびそれを用いた導電膜と導電膜の形成方法

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104140780A (zh) * 2013-05-06 2014-11-12 奇美实业股份有限公司 导电性胶粘剂
JP2014220238A (ja) * 2013-05-06 2014-11-20 奇美實業股▲分▼有限公司 導電性ペースト
US9076572B2 (en) 2013-05-06 2015-07-07 Chi Mei Corporation Conductive paste
TWI500737B (zh) * 2013-05-06 2015-09-21 Chi Mei Corp 導電性接著劑
CN104140781A (zh) * 2013-05-06 2014-11-12 奇美实业股份有限公司 导电性粘着剂
JP2016530353A (ja) * 2013-07-01 2016-09-29 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング ナノ粒子インク組成物、プロセスおよび応用
JP2015093916A (ja) * 2013-11-12 2015-05-18 信越化学工業株式会社 導電性エポキシ樹脂組成物、該組成物を用いた太陽電池セル、及び該太陽電池セルの製造方法
CN105719724A (zh) * 2014-12-22 2016-06-29 株式会社则武 加热固化型导电性糊剂
CN105719724B (zh) * 2014-12-22 2019-05-03 株式会社则武 加热固化型导电性糊剂
WO2017110255A1 (ja) * 2015-12-25 2017-06-29 株式会社ノリタケカンパニーリミテド 銀粉末および銀ペーストならびにその利用
JP6158461B1 (ja) * 2015-12-25 2017-07-05 株式会社ノリタケカンパニーリミテド 銀粉末および銀ペーストならびにその利用
KR20180099724A (ko) * 2015-12-25 2018-09-05 가부시키가이샤 노리타케 캄파니 리미티드 은 분말 및 은 페이스트 및 그 이용
KR102505753B1 (ko) 2015-12-25 2023-03-06 가부시키가이샤 노리타케 캄파니 리미티드 은 분말 및 은 페이스트 및 그 이용
JP2019512561A (ja) * 2016-02-22 2019-05-16 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA 導電性組成物および前記組成物の用途
JPWO2018235734A1 (ja) * 2017-06-19 2020-04-23 太陽インキ製造株式会社 導電性組成物およびそれを用いた導電体並びに積層構造体
JP7077316B2 (ja) 2017-06-19 2022-05-30 太陽インキ製造株式会社 導電性組成物およびそれを用いた導電体並びに積層構造体
WO2018235734A1 (ja) * 2017-06-19 2018-12-27 太陽インキ製造株式会社 導電性組成物およびそれを用いた導電体並びに積層構造体
CN112292735A (zh) * 2018-06-26 2021-01-29 纳美仕有限公司 真空印刷用导电性浆料
EP3985074A4 (en) * 2019-06-12 2023-05-24 Kyoto Elex Co., Ltd. CONDUCTIVE PASTE COMPOSITION
CN113924629A (zh) * 2019-06-12 2022-01-11 京都一来电子化学股份有限公司 导电性膏体组合物
CN113924629B (zh) * 2019-06-12 2024-04-09 京都一来电子化学股份有限公司 导电性膏体组合物
WO2021153383A1 (ja) * 2020-01-28 2021-08-05 住友ベークライト株式会社 導電性ペーストおよび半導体装置
JP7500978B2 (ja) 2020-01-30 2024-06-18 株式会社レゾナック コンパウンド、成形体、及びコンパウンドの硬化物
JPWO2022202434A1 (ja) * 2021-03-24 2022-09-29
JP7371792B2 (ja) 2021-03-24 2023-10-31 住友ベークライト株式会社 導電性ペーストおよび半導体装置
WO2022202434A1 (ja) * 2021-03-24 2022-09-29 住友ベークライト株式会社 導電性ペーストおよび半導体装置
WO2022202563A1 (ja) * 2021-03-26 2022-09-29 ナミックス株式会社 導電性ペースト、太陽電池用電極及び太陽電池
CN116174739A (zh) * 2023-03-09 2023-05-30 深圳市哈深智材科技有限公司 一种微晶纳米片聚集型类球状银粉及其制备方法
CN116174739B (zh) * 2023-03-09 2023-09-29 深圳市哈深智材科技有限公司 一种微晶纳米片聚集型类球状银粉及其制备方法

Also Published As

Publication number Publication date
CN103339685B (zh) 2017-03-15
JPWO2012102304A1 (ja) 2014-06-30
JP6174106B2 (ja) 2017-08-02
JP5916633B2 (ja) 2016-05-11
KR20140007862A (ko) 2014-01-20
CN103339685A (zh) 2013-10-02
KR102007046B1 (ko) 2019-08-02
JP2016106356A (ja) 2016-06-16

Similar Documents

Publication Publication Date Title
JP6174106B2 (ja) 導電性ペースト及び導電膜の製造方法
TWI284328B (en) Conductive paste
TWI622998B (zh) 導電性組成物及使用其之硬化物
CN108140443B (zh) 导电浆料和导电膜
JP6049606B2 (ja) 加熱硬化型導電性ペースト
JP4235887B2 (ja) 導電ペースト
JP2009070677A (ja) 熱硬化型導電性ペースト
WO2014054618A1 (ja) 銀ハイブリッド銅粉とその製造法、該銀ハイブリッド銅粉を含有する導電性ペースト、導電性接着剤、導電性膜、及び電気回路
JP2010092684A (ja) 導電性組成物、導電性被膜の形成方法および導電性被膜
JP6277751B2 (ja) 銅粒子分散ペースト、及び導電性基板の製造方法
JP4235888B2 (ja) 導電ペースト
JP2006049148A (ja) 導電性ペースト
JP5859823B2 (ja) 加熱硬化型導電性ペースト組成物
KR20140038413A (ko) 도전 페이스트 및 이것을 사용한 도전막이 형성된 기재, 그리고 도전막이 형성된 기재의 제조 방법
JP6562196B2 (ja) 銅微粒子焼結体と導電性基板の製造方法
JP2006032165A (ja) 導電性金属粒子とそれを用いた導電性樹脂組成物及び導電性接着剤
JP5458862B2 (ja) 加熱硬化型銀ペーストおよびこれを用いて形成した導体膜
JP2017084587A (ja) 酸化銀泥漿、導電性ペースト及びその製造方法
JP2007317535A (ja) 導電性組成物、導電性被膜の形成方法および導電性被膜
JP4235885B2 (ja) 導電ペースト
JP5293581B2 (ja) 導電性組成物、導電性配線の形成方法および導電性配線
JP7276052B2 (ja) 導電性組成物
TWI714867B (zh) 導電性糊
JP2004047422A (ja) 導電ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137022331

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12739752

Country of ref document: EP

Kind code of ref document: A1