WO2012098932A1 - 半導体発光装置 - Google Patents

半導体発光装置 Download PDF

Info

Publication number
WO2012098932A1
WO2012098932A1 PCT/JP2012/050065 JP2012050065W WO2012098932A1 WO 2012098932 A1 WO2012098932 A1 WO 2012098932A1 JP 2012050065 W JP2012050065 W JP 2012050065W WO 2012098932 A1 WO2012098932 A1 WO 2012098932A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
emitting device
light emitting
activated
semiconductor light
Prior art date
Application number
PCT/JP2012/050065
Other languages
English (en)
French (fr)
Inventor
吉村 健一
向星 高橋
浩史 福永
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP12736448.7A priority Critical patent/EP2666841B1/en
Priority to CN201280005648.7A priority patent/CN103328608B/zh
Priority to JP2012553649A priority patent/JP5676653B2/ja
Priority to EP16181473.6A priority patent/EP3133135B1/en
Priority to US13/979,554 priority patent/US9570655B2/en
Publication of WO2012098932A1 publication Critical patent/WO2012098932A1/ja
Priority to US15/076,757 priority patent/US9711686B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Definitions

  • the present invention relates to a semiconductor light emitting device including a phosphor and a semiconductor light emitting element.
  • LEDs light emitting diodes
  • Semiconductor light emitting devices such as light emitting diodes (LEDs) have the advantage of being small in size, consuming little power and being able to stably emit light with high brightness.
  • the movement to replace with lighting fixtures using light emitting devices composed of LEDs is proceeding.
  • the LED that emits white light include a combination of a blue LED and a Ce-activated YAG phosphor represented by a composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce.
  • white light is realized by mixing the blue light of the LED and the yellow light emitted from the Ce-activated YAG phosphor of the phosphor.
  • the red component is insufficient due to the light emission characteristics of the Ce-activated YAG phosphor, and when used in a home lighting device, for example, the human skin color looks unnatural.
  • the average color rendering index (hereinafter referred to as Ra) is about 70 to 75 in the color temperature range defined by the daylight white color or the light bulb color used in the lighting fixture, and particularly the red color.
  • the special color rendering index (hereinafter referred to as R9) indicating the appearance of the light is about ⁇ 40 to ⁇ 5, and the red appearance becomes extremely worse when used as a lighting fixture.
  • Patent Document 1 discloses a white combination of a blue LED as an excitation light source and an orange phosphor having a light emission wavelength of 560 to 590 nm and a green phosphor. A light emitting device is disclosed.
  • an ⁇ sialon phosphor and a ⁇ sialon phosphor are disclosed as examples of an orange phosphor and a green phosphor, respectively, although they are not specifically examples of white light emitting devices in which phosphors are combined.
  • Patent Document 2 discloses and proposes a combination using Eu-activated ⁇ sialon phosphor as a yellow phosphor, Eu-activated ⁇ sialon phosphor as a green phosphor, and Eu-activated CaAlSiN 3 phosphor as a red phosphor.
  • Non-Patent Document 1 has a relationship between the Ra of a white LED that combines a phosphor and a blue LED and the theoretical limit of luminous efficiency that indicates the theoretical limit of the light emission efficiency of the light emitting device (Theoretical Limit of Luminous Efficiency). It is shown.
  • Non-Patent Document 2 discloses a method for measuring the internal quantum efficiency of a phosphor described in Non-Patent Document 1, and Non-Patent Document 3 describes a phosphor disclosed in the present application. As an example of another type of phosphor having a different composition, Eu-activated SrAlSiN 3 is disclosed.
  • JP 2007-227928 A published September 6, 2007
  • JP 2006-261512 A published on September 28, 2006
  • Non-Patent Document 1 in the configuration in which Ra is 80 or more, the theoretical limit luminous efficiency is remarkably lowered, and the light emitting device has a practically useful color rendering property. The luminous efficiency is not sufficient.
  • Patent Document 2 since the wavelength of the emission spectrum of the red phosphor is a long wavelength, the matching between the human visibility curve and the emission spectrum is poor, and the red light emitted by the red phosphor is human eyes. It looks dark.
  • the red light emitted by the red phosphor has a large wavelength shift with the blue light that is the excitation light, so in addition to the large Stokes loss, the red phosphor absorbs the light of the phosphor emitting at a shorter wavelength than the red light. Therefore, using a red phosphor in a semiconductor light-emitting device reduces the light emission efficiency.
  • Patent Documents 1 and 2 cause inconveniences when applied to a semiconductor light-emitting device aiming for both high luminance and high color rendering.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a light-emitting device that has a sufficiently high color rendering property in practical use and does not use a red phosphor and has high luminous efficiency. To do.
  • the present inventors have realized a phosphor and a phosphor using a phosphor and a semiconductor light emitting element in order to realize a sufficiently high color rendering property in practical use and to provide a light emitting device with higher luminous efficiency.
  • the prototype was repeated.
  • the inventors have found that a light-emitting device that can solve the above problems can be provided by the combinations shown below, and have completed the present invention. The detailed contents of the present invention will be described below.
  • a semiconductor light emitting device includes a semiconductor light emitting element that emits blue light, a green phosphor that absorbs the blue light and emits green light, and an orange phosphor that absorbs the blue light and emits orange light.
  • the orange phosphor is an Eu-activated ⁇ sialon phosphor having an emission spectrum peak wavelength in the range of 595 to 620 nm.
  • the Eu activated ⁇ sialon is General formula (Ca x Eu y ) (Si 12- (m + n) Al m + n ) (O n N 16-n ) Eu activated ⁇ sialon indicated by 1.1 ⁇ x ⁇ 2.0 (1) 0 ⁇ y ⁇ 0.4 (2) 1.5 ⁇ x + y ⁇ 2.0 (3) 3.0 ⁇ m ⁇ 4.0 (4) 0 ⁇ n ⁇ y (5) It is designed with the composition which satisfy
  • the Eu activated ⁇ sialon is General formula (Ca x Eu y ) (Si 12- (m + n) Al m + n ) (O n N 16-n ) Eu activated ⁇ sialon indicated by 1.1 ⁇ x ⁇ 1.85 (1 ′) 0.15 ⁇ y ⁇ 0.4 (2 ') 1.5 ⁇ x + y ⁇ 2.0 (3 ') 3.0 ⁇ m ⁇ 4.0 (4 ′) 0 ⁇ n ⁇ y (5 ') It is designed with the composition which satisfy
  • the semiconductor light emitting device is characterized in that the peak wavelength of the emission spectrum of the Eu activated ⁇ sialon is 605 to 620 nm. According to the above configuration, a light emitting device having higher color rendering properties can be realized.
  • the semiconductor light emitting device according to the present invention is characterized in that an average particle diameter of the Eu activated ⁇ sialon phosphor is 15 ⁇ m or more. According to the above configuration, a light emitting device having higher color rendering properties can be realized.
  • the semiconductor light emitting device is characterized in that a specific surface area of the Eu-activated ⁇ sialon phosphor is 0.4 m 2 / g or less. According to the above configuration, a light emitting device with higher luminous efficiency and higher color rendering can be realized.
  • the semiconductor light emitting device is characterized in that the peak wavelength of the emission spectrum of the green phosphor is in the range of 520 nm to 550 nm. According to the above configuration, when a light emitting device that emits white light is combined with the orange phosphor and the semiconductor light emitting element that emits blue light, the emission spectrum of the light emitting device matches the human visibility curve. A light emitting device with high luminous efficiency can be realized.
  • the semiconductor light emitting device is characterized in that the half width of the emission spectrum of the green phosphor is 55 nm or less. According to the above configuration, since mutual absorption between the orange phosphor and the green phosphor is suppressed, a light emitting device with higher luminous efficiency and high color rendering can be realized.
  • the semiconductor light-emitting device is characterized in that the green phosphor has an absorptance at 600 nm of 10% or less. According to the above configuration, unnecessary absorption of orange light by the green phosphor is reduced, and a light emitting device with higher luminous efficiency can be realized.
  • the semiconductor light emitting device is characterized in that the green phosphor is Eu-activated ⁇ sialon phosphor. According to the above configuration, since the internal fluorescent efficiency of the green phosphor is high and the chemical and physical stability is good, it is possible to realize a light emitting device with higher luminous efficiency, higher stability and reliability.
  • the semiconductor light emitting device is characterized in that the oxygen concentration of the Eu-activated ⁇ sialon phosphor is in the range of 0.1 to 0.6% by weight. According to the above configuration, since the emission spectrum of Eu-activated ⁇ sialon has a shorter wavelength, a light emitting device with higher color rendering can be realized.
  • the semiconductor light-emitting device is configured using an Eu-activated ⁇ -sialon phosphor having an emission spectrum peak wavelength in the range of 595 to 620 nm as an orange phosphor. And a semiconductor light-emitting device with high luminous efficiency can be provided.
  • FIG. 6 is a graph showing an emission spectrum of the phosphor obtained in Production Example 1-1.
  • 6 is a graph showing an excitation spectrum of the phosphor obtained in Production Example 1-1.
  • 6 is a graph showing an emission spectrum of the phosphor obtained in Production Example 1-2.
  • 6 is a graph showing an excitation spectrum of the phosphor obtained in Production Example 1-2.
  • 6 is a graph showing an emission spectrum of the phosphor obtained in Production Example 2-1. It is a graph which shows the emission spectrum of the fluorescent substance obtained in manufacture example 2-2.
  • 6 is a graph showing an emission spectrum of the phosphor obtained in Production Example 2-3.
  • 6 is a graph showing an emission spectrum of the phosphor obtained in Production Example 2-4. 6 is a graph showing an emission spectrum of the phosphor obtained in Comparative Production Example 1. 6 is a graph showing an excitation spectrum of a phosphor obtained in Comparative Production Example 1. 6 is a graph showing an emission spectrum of a phosphor obtained in Comparative Production Example 2. 3 is a graph showing an emission spectrum of the light emitting device created in Example 1. 6 is a graph showing an emission spectrum of the light emitting device created in Example 2. 6 is a graph showing an emission spectrum of the light emitting device created in Example 3. 6 is a graph showing an emission spectrum of the light emitting device created in Example 4. 6 is a graph showing an emission spectrum of the light emitting device created in Example 5.
  • Example 7 is a graph showing an emission spectrum of the light emitting device created in Example 6.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Example 7.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Example 8.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Example 9.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Example 10.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Example 11.
  • 14 is a graph showing an emission spectrum of the light emitting device created in Example 12.
  • 14 is a graph showing an emission spectrum of the light emitting device created in Example 13.
  • 6 is a graph showing an emission spectrum of the light emitting device created in Comparative Example 1.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Comparative Example 2.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Comparative Example 3.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Comparative Example 4.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Comparative Example 5.
  • 14 is a graph showing an emission spectrum of the light emitting device created in Comparative Example 6.
  • 6 is a graph showing the relationship between Ra and theoretical limit efficiency of the semiconductor light emitting devices prepared in Examples 1 to 8 and Comparative Examples 1 to 3.
  • 6 is a graph showing the relationship between Ra and theoretical limit efficiency of the semiconductor light emitting devices prepared in Examples 9 to 15 and Comparative Examples 4 to 6.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Comparative Example 7.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Comparative Example 8.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Comparative Example 9.
  • 10 is a graph showing an emission spectrum of the light emitting device created in Comparative Example 10.
  • 6 is a graph showing the relationship between the emission peak wavelength of an orange phosphor and Ra in the semiconductor light emitting devices prepared in Examples 1 to 8 and Comparative Examples 1 and 7 to 9.
  • 6 is a graph showing the relationship between Ra and theoretical limit efficiency of the semiconductor light emitting devices prepared in Examples 1 to 8 and Comparative Examples 1 and 7 to 10.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a semiconductor device according to the present embodiment.
  • a semiconductor light emitting device 1 according to the present embodiment includes a semiconductor light emitting element 2 that emits blue light, an orange phosphor 13 that absorbs the blue light and emits orange light, and absorbs the blue light and emits green light.
  • blue light means light having a peak wavelength of an emission spectrum at a wavelength of 420 to 480 nm
  • green light means light having a peak wavelength of an emission spectrum at a wavelength of 500 to 550 nm, orange light.
  • the green phosphor is a substance that emits the green light when excited by the blue light
  • the orange phosphor is a substance that emits the orange light when excited by the blue light.
  • the body means a substance that emits the red light when excited by the blue light.
  • the orange phosphor 13 is an Eu-activated ⁇ sialon phosphor having an emission spectrum peak wavelength of 595 nm or more.
  • Ra and R9 satisfy practically preferable values.
  • a practically useful light-emitting device having a theoretical limit luminous efficiency much higher than that of conventionally known ones can be realized.
  • the present inventors have studied to improve the color rendering performance by adjusting the emission spectrum of the Eu-activated ⁇ -sialon phosphor, which is an orange phosphor combined with the green phosphor, based on the design guideline that no red phosphor is used. It was.
  • Eu-activated ⁇ sialon a material having an emission spectrum having a longer wavelength than that shown in Non-patent Document 1, Patent Document 1 and 2, it is practically sufficient color rendering without using a red phosphor. It has been found that a light-emitting device having a property can be realized, and a preferable range of the emission peak wavelength of the Eu-activated ⁇ -sialon phosphor is 595 nm or more.
  • Ra and R9 are assumed to replace indoor lighting such as a fluorescent lamp with a semiconductor light emitting device.
  • JISZ9125 2007, lighting fixtures with Ra of 80 or more work or are long. Recommended for use in rooms where people stay for hours.
  • the theoretical limit efficiency is defined in Non-Patent Document 1, and the theoretical limit of the luminous efficiency (lumen per watt: lm / W) of the light emitting device is calculated from the emission spectrum of the light emitting device. It is a thing. When calculating the theoretical limit luminous efficiency, it is assumed that the conversion efficiency from the power of the semiconductor light emitting device to blue light is 100%, and the internal quantum efficiency (IQE) of the phosphor is also 100%. Only Stokes shift loss due to the wavelength conversion is considered as loss.
  • Non-Patent Document 2 Korean Patent Document 2 (Kazuaki Okubo et al. “Quantity Efficiency Measurement of NBS Standard Phosphor”, Illuminating Society Journal, Vol. 83, No. 2, p. 87 (1999)). Can be measured by simple methods.
  • a semiconductor light emitting device 1 has a semiconductor light emitting element 2 mounted on a printed wiring board 3 as a base, and the orange fluorescent light is placed inside a resin frame 4 that is also mounted on the printed wiring board 3.
  • the semiconductor light emitting element 2 is sealed by being filled with a mold resin 5 made of a translucent resin in which the body 13 and the green phosphor 14 are dispersed.
  • the semiconductor light emitting device 2 has an InGaN layer 6 as an active layer, and has a p-side electrode 7 and an n-side electrode 8 sandwiching the InGaN layer 6, and the n-side electrode 8 is connected to the printed wiring board 3.
  • a p-side electrode 7 and an n-side electrode 8 sandwiching the InGaN layer 6, and the n-side electrode 8 is connected to the printed wiring board 3.
  • the p-side electrode 7 of the semiconductor light emitting element 2 is electrically connected to a p-electrode portion 11 provided from the top surface to the back surface of the printed wiring board 3 separately from the n-electrode portion 9 described above via a metal wire 12. ing.
  • the semiconductor light emitting device 1 according to the present embodiment is not limited to the structure shown in FIG. 1, and a conventionally known general semiconductor light emitting device structure can be adopted.
  • the semiconductor light emitting element 2 is a light emitting diode (LED).
  • the semiconductor light emitting element 2 is not limited to a light emitting diode (LED), but a semiconductor laser, an inorganic EL (A conventionally known element that emits blue light, such as an electroluminescence element, can be used.
  • a commercially available product such as manufactured by Cree can be used.
  • the emission peak wavelength of the semiconductor light emitting device 2 is not particularly limited, but from the viewpoint of increasing the light emission efficiency of the semiconductor light emitting device, it is preferably in the range of 440 nm to 470 nm, and from the viewpoint of increasing the Ra and R9 values. More preferably, it is within the range of 450 nm to 465 nm.
  • orange phosphor 13 is an Eu-activated ⁇ sialon phosphor having an emission spectrum peak wavelength in the range of 595 nm to 620 nm. If the emission peak wavelength exceeds 620 nm, the internal quantum efficiency and temperature characteristics of the Eu-activated ⁇ -sialon phosphor tend to be deteriorated, so the wavelength was set to 620 nm.
  • Eu-activated ⁇ -sialon phosphor for example, as shown in Japanese Patent Application Laid-Open No. 2005-307012, a material designed with a low oxygen concentration by using a nitride material as a starting material can be suitably used. This is because ⁇ sialon designed with a low oxygen concentration has a high solid solution limit of elements other than Si, Al, O, N, such as Ca and Eu, and these elements are easily incorporated into crystals.
  • composition formula for the Eu-activated ⁇ sialon phosphor is: General formula (Ca x Eu y ) (Si 12- (m + n) Al m + n ) (O n N 16-n ) Indicated by 1.1 ⁇ x ⁇ 2.0 (1) 0 ⁇ y ⁇ 0.4 (2) 1.5 ⁇ x + y ⁇ 2.0 (3) 3.0 ⁇ m ⁇ 4.0 (4) 0 ⁇ n ⁇ y (5) Designed with a composition that satisfies
  • the Eu-activated ⁇ sialon having the composition as described in (1) to (5) above uses, for example, Ca 3 N 2 as a Ca source, AlN as an Al source, and Si 3 N 4 as an Si source. , Eu 2 O 3 and EuN can be used together as the Eu source.
  • the compositions shown in the above (1) to (5) are characterized in that 0 ⁇ n ⁇ y and 1.5 ⁇ x + y ⁇ 2.0. 0 ⁇ n ⁇ y means that the oxygen concentration is designed to be lower than the Eu concentration. The fact that 1.5 ⁇ x + y ⁇ 2.0 means that the Ca concentration and Eu concentration are designed around the upper limit concentration at which an ⁇ -sialon single phase is obtained.
  • an Eu-activated ⁇ sialon phosphor having an emission spectrum peak wavelength of 605 nm to 620 nm can be more suitably used, and such Eu-activated ⁇ sialon fluorescence can be used.
  • composition formula for the body is General formula (Ca x Eu y ) (Si 12- (m + n) Al m + n ) (O n N 16-n ) Indicated by 1.1 ⁇ x ⁇ 1.85 (1 ′) 0.15 ⁇ y ⁇ 0.4 (2 ') 1.5 ⁇ x + y ⁇ 2.0 (3 ') 3.0 ⁇ m ⁇ 4.0 (4 ′) 0 ⁇ n ⁇ y (5 ') Designed with a composition that satisfies
  • the Eu-activated ⁇ sialon having the composition as described in (1 ′) to (5 ′) above uses, for example, Ca 3 N 2 as a Ca source, AlN as an Al source, and Si 3 N 4 as an Si source. And Eu 2 O 3 and EuN can be used together as the Eu source.
  • the compositions (1 ′) to (5 ′) are characterized in that the y value is larger than those of (1) to (5).
  • a large y value means that the Eu concentration is designed to be high, and the compositions of (1 ′) to (5 ′) have a higher Eu concentration than that of (1) to (5).
  • the peak wavelength of the emission spectrum is realized to be 605 nm to 620 nm.
  • a seed particle addition step of adding ⁇ sialon powder as seed particles can be suitably used as disclosed in, for example, JP-A-2009-96882. This is because the ⁇ sialon phosphor designed to have a low oxygen concentration has a low oxygen concentration at the time of firing, so that grain growth through the liquid phase hardly occurs.
  • a cleaning process by acid treatment as disclosed in JP-A-2005-255855 can be suitably applied to the process for producing the Eu-activated ⁇ sialon.
  • the particle size of the orange phosphor 14 is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 5 ⁇ m to 20 ⁇ m.
  • the particle shape is preferably a single particle rather than an aggregate, and specifically, the specific surface area measured by the air permeation method is 1 m 2 / g or less, more preferably 0.4 m 2. / G or less is preferable.
  • the air permeation method refers to a method generally referred to as the leaner method, and the specific surface area can be obtained from the measurement of the flow velocity and pressure drop of the air that has permeated the sample packed bed.
  • Non-Patent Document 3 as another nitride-based orange phosphor having an emission spectrum peak wavelength of 620 nm or less, it has an emission spectrum peak wavelength at 610 nm and becomes orange with high internal quantum efficiency in blue excitation. It is disclosed with respect to Eu-activated SrAlSiN 3 , which is a phosphor material that emits light and is chemically stable, but the Eu-activated SrAlSiN 3 has an absorptance in the green wavelength range compared to Eu-activated ⁇ -sialon phosphor. In other words, it is preferable to use Eu-activated ⁇ -sialon phosphor as the orange phosphor because it absorbs green light emitted from the green phosphor.
  • Green phosphor From the viewpoint of increasing the light emission efficiency of the semiconductor light emitting device, a green phosphor having a peak wavelength in the range of 520 nm to 550 nm can be preferably used. If the peak wavelength of the emission spectrum of the green phosphor 14 is within the above range, when the light emitting device 1 that emits white light is configured by combining the orange phosphor 13 and the semiconductor light emitting element 2 that emits blue light, An emission spectrum that matches the visual sensitivity curve can be obtained. For this reason, a light emitting device with high luminous efficiency can be realized.
  • the green phosphor 14 preferably has a half-value width of its emission spectrum of 70 nm or less, more preferably 55 nm or less.
  • the lower limit of the half-value width of the emission spectrum of the green phosphor 14 is not particularly limited, but is preferably 15 nm or more.
  • the half-value width of the emission spectrum of the green phosphor 14 is in the above range, the overlap between the absorption spectrum of the orange phosphor 13 and the emission spectrum of the green phosphor 14 is sufficiently small, so that the green phosphor 13 absorbs green light. Is suppressed, and a light emitting device with higher luminous efficiency can be realized.
  • the green phosphor 14 as described above is not particularly limited.
  • Eu-activated oxynitride phosphor is preferably used because of its high stability and excellent temperature characteristics.
  • the Eu-activated BSON phosphor disclosed in Japanese Patent Application Laid-Open No. 2008-138156 and the Eu-activated ⁇ sialon fluorescent material disclosed in Japanese Patent Application Laid-Open No. 2005-255895 are excellent.
  • the body is preferably used.
  • the Eu-activated ⁇ sialon phosphor is excellent in stability and temperature characteristics, and has a particularly narrow emission spectrum with a particularly narrow half-value width.
  • the composition according to the Eu activated BSON phosphor is: Bay ' Eu x' Si u ' O v' N w ' (However, 0 ⁇ y ′ ⁇ 3, 1.6 ⁇ y ′ + x ′ ⁇ 3, 5 ⁇ u ′ ⁇ 7, 9 ⁇ v ′ ⁇ 15, 0 ⁇ w ′ ⁇ 4) And more preferable ranges of y ′, x ′, u ′, v ′, and w ′ are 1.5 ⁇ y ′ ⁇ 3, 2 ⁇ y ′ + x ′ ⁇ 3, and 5.5 ⁇ u. ' ⁇ 7, 10 ⁇ v ′ ⁇ 13, 1.5 ⁇ w ′ ⁇ 4.
  • the composition of the Eu-activated ⁇ sialon phosphor is: Si 6-z ′ Al z ′ O z ′ N 8-z ′ (However, 0 ⁇ z ′ ⁇ 4.2) It is preferable that a more preferable range of z ′ is 0 ⁇ z ′ ⁇ 0.5.
  • the Eu-activated ⁇ sialon preferably has an oxygen concentration in the range of 0.1 to 0.6% by weight, more preferably an Al concentration of 0.13 to 0.8% by weight. If the Eu-activated ⁇ sialon phosphor is within these ranges, the half-value width of the emission spectrum tends to be narrower.
  • the Eu-activated ⁇ sialon phosphor disclosed in International Publication No. WO2008 / 062781 has high emission efficiency due to less unnecessary absorption because the damaged phase of the phosphor is removed by post-treatment such as acid treatment after firing. . Furthermore, the Eu-activated ⁇ sialon phosphor exemplified in Japanese Patent Application Laid-Open No. 2008-303331 is preferable because the oxygen concentration is 0.1 to 0.6% by weight, and the half-value width of the emission spectrum becomes narrower.
  • the green phosphor 14 as described above has a light absorption rate of 10 at 600 nm which is a wavelength region which does not contribute to the light emission of the ⁇ sialon phosphor at all and is near the peak wavelength of the orange phosphor. % Or less can be suitably used.
  • the particle size of the green phosphor 14 is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 5 ⁇ m to 20 ⁇ m.
  • the shape of the particles is preferably a single particle rather than an aggregate, and specifically, the specific surface area is 1 m 2 / g or less, more preferably 0.4 m 2 / g or less. preferable.
  • techniques such as mechanical pulverization, grain boundary phase removal by acid treatment, annealing treatment, and the like can be used as appropriate.
  • the green phosphor 14 used in the present embodiment is an Eu-activated oxynitride phosphor
  • the green phosphor 14 and the orange phosphor 13 are both nitride-based, so two types of fluorescence are used.
  • the body temperature dependency, specific gravity, particle size, etc. are close to each other.
  • nitride-based phosphors have high stability and reliability that are not affected by the surrounding environment because they are highly temperature-dependent and resistant to chemical and physical damage due to the strong covalent bonding of the host crystal. It becomes a light emitting element.
  • the mold resin 5 used for sealing the semiconductor light emitting element 2 is made of a translucent resin such as a silicone resin or an epoxy resin, for example, the orange phosphor 13 and the green phosphor 14. Are dispersed.
  • the dispersion method is not particularly limited, and a conventionally known method can be employed.
  • the mixing ratio of the orange phosphor 13 and the green phosphor 14 to be dispersed is not particularly limited and can be appropriately determined so that a spectrum showing a desired white point can be obtained.
  • the mass ratio of the translucent resin to the orange phosphor 13 and the green phosphor 14 (the mass of the translucent resin / (the orange phosphor 13 + the green phosphor 14)) can be within a range of 1 to 15. .
  • the mass ratio of the green phosphor 14 to the orange phosphor 13 (the mass ratio of the green phosphor 14 / the orange phosphor 13) can be in the range of 0.5 to 4.
  • the printed wiring board 3 the adhesive 10, the metal wire 12, etc. other than the semiconductor light emitting element 2, the orange phosphor 13, the green phosphor 14, and the mold resin 5.
  • a configuration similar to that of the prior art for example, Japanese Patent Application Laid-Open No. 2003-321675, Japanese Patent Application Laid-Open No. 2006-8721, etc.
  • ⁇ -type silicon nitride powder As a raw material powder, 59.8% by mass of ⁇ -type silicon nitride powder, 24.3% by mass of aluminum nitride powder, 13.9% by mass of calcium nitride powder, 0.9% by mass of europium oxide powder, and nitriding It weighed so that it might become a composition of 1.1 mass% of europium powder, and it mixed for 10 minutes or more using the mortar and pestle made from a silicon nitride sintered compact, and obtained the powder aggregate.
  • the europium nitride used was synthesized by nitriding metal europium in ammonia.
  • the obtained powder aggregate was passed through a sieve having an opening of 250 ⁇ m and filled into a boron nitride crucible having a diameter of 20 mm and a height of 20 mm.
  • the powder weighing, mixing and molding steps were all performed in a glove box capable of maintaining a nitrogen atmosphere with a moisture content of 1 ppm or less and oxygen of 1 ppm or less.
  • the crucible is set in a graphite resistance heating type pressure electric furnace, nitrogen having a purity of 99.999% by volume is introduced to a pressure of 1 MPa, the temperature is raised to 1800 ° C. at 500 ° C. per hour, Heat treatment was performed by holding at 1800 ° C. for 2 hours.
  • the product obtained by the heat treatment was pulverized in an agate mortar and further treated at 60 ° C. in a 1: 1 mixed acid of 50% hydrofluoric acid and 96% concentrated sulfuric acid to obtain a phosphor powder.
  • XRD powder X-ray diffraction measurement
  • FIG. 2A is a graph showing an emission spectrum of the obtained phosphor powder, where the vertical axis represents relative emission intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
  • FIG. 2B is a graph showing an excitation spectrum of the obtained phosphor powder, where the vertical axis represents relative emission intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
  • the excitation spectrum and emission spectrum of the phosphor powder shown in FIGS. 2A and 2B are the results of measurement using F-4500 (manufactured by Hitachi, Ltd.).
  • the emission spectrum was measured by excitation with 450 nm light, and the excitation spectrum was measured by scanning the intensity of the emission peak.
  • the specific surface area of the obtained phosphor powder was measured by LEA-NURSE manufactured by Tsutsui Rikagaku Kogyo, it was 0.36 m 2 / g, and the average particle size was measured from an SEM image observed by VE-manufactured by Keyence. 16.2 ⁇ m.
  • the obtained powder aggregate was passed through a sieve having an opening of 250 ⁇ m and filled into a boron nitride crucible having a diameter of 20 mm and a height of 20 mm.
  • the powder weighing, mixing and molding steps were all performed in a glove box capable of maintaining a nitrogen atmosphere with a moisture content of 1 ppm or less and oxygen of 1 ppm or less.
  • the crucible is set in a graphite resistance heating type pressure electric furnace, nitrogen having a purity of 99.999% by volume is introduced to a pressure of 1 MPa, the temperature is raised to 1800 ° C. at 500 ° C. per hour, Heat treatment was performed by holding at 1800 ° C. for 2 hours.
  • the product obtained by the heat treatment was pulverized in an agate mortar and further treated at 60 ° C. in a 1: 1 mixed acid of 50% hydrofluoric acid and 96% concentrated sulfuric acid to obtain a phosphor powder.
  • XRD powder X-ray diffraction measurement
  • FIG. 3A is a graph showing an emission spectrum of the obtained phosphor powder, where the vertical axis represents relative emission intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
  • FIG. 3B is a graph showing an excitation spectrum of the obtained phosphor powder, where the vertical axis represents relative emission intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
  • the excitation spectrum and emission spectrum of the phosphor powder shown in FIGS. 3A and 3B are the results of measurement using F-4500 (manufactured by Hitachi, Ltd.).
  • the emission spectrum was measured by excitation with 450 nm light, and the excitation spectrum was measured by scanning the intensity of the emission peak.
  • the specific surface area of the obtained phosphor powder was measured by LEA-NURSE manufactured by Tsutsui Rikagaku Kogyo, it was 0.38 m 2 / g, and the average particle diameter was measured from the SEM image observed by VE- manufactured by Keyence. , 15.3 ⁇ m.
  • the obtained powder aggregate was passed through a sieve having an opening of 250 ⁇ m and filled into a boron nitride crucible having a diameter of 20 mm and a height of 20 mm.
  • the powder weighing, mixing and molding steps were all performed in a glove box capable of maintaining a nitrogen atmosphere with a moisture content of 1 ppm or less and oxygen of 1 ppm or less.
  • the crucible is set in a graphite resistance heating type pressure electric furnace, nitrogen having a purity of 99.999% by volume is introduced to a pressure of 1 MPa, and the temperature is raised to 1700 ° C. at 500 ° C. per hour, Heat treatment was performed by holding at 1700 ° C. for 2 hours.
  • the product obtained by the heat treatment was pulverized in an agate mortar and further treated at 60 ° C. in a 1: 1 mixed acid of 50% hydrofluoric acid and 96% concentrated sulfuric acid to obtain a phosphor powder.
  • XRD powder X-ray diffraction measurement
  • the phosphor powder emits orange light.
  • the emission characteristics of the obtained powder such as the emission spectrum and excitation spectrum, were equivalent to those of the orange phosphor obtained in Production Example 1-2.
  • the specific surface area of the obtained phosphor powder was measured by LEA-NURSE manufactured by Tsutsui Chemical Co., Ltd., it was 0.78 m 2 / g, and the average particle diameter was measured from an SEM image observed by VE-manufactured by Keyence. 11.2 ⁇ m.
  • the crucible is set in a graphite resistance heating type pressure electric furnace, the firing atmosphere is evacuated by a diffusion pump, heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour, and the purity is 99.800 at 800 ° C.
  • the temperature was raised to 1900 ° C. at 500 ° C. per hour, and further maintained at that temperature for 8 hours to obtain a phosphor sample.
  • the obtained phosphor sample was pulverized using an agate mortar and further treated at 60 ° C. in a 1: 1 mixed acid of 50% hydrofluoric acid and 70% nitric acid to obtain a phosphor powder.
  • the phosphor powder When the phosphor powder was subjected to powder X-ray diffraction measurement (XRD) using Cu K ⁇ radiation, the phosphor powder was found to have a ⁇ -type sialon structure. Further, as a result of irradiating the phosphor powder with a lamp emitting light having a wavelength of 365 nm, it was confirmed that the phosphor powder emitted green light.
  • XRD powder X-ray diffraction measurement
  • the emission spectrum shown in FIG. 4 was obtained.
  • the vertical axis represents emission intensity (arbitrary unit), and the horizontal axis represents wavelength (nm).
  • the specific surface area of the obtained phosphor powder was measured by LEA-NURSE manufactured by Tsutsui Rikagaku Kogyo, it was 0.80 m 2 / g, and the average particle diameter was measured from the SEM image observed by VE-manufactured by Keyence. 9.2 ⁇ m.
  • the crucible is set in a graphite resistance heating type pressure electric furnace, and the firing atmosphere is evacuated by a diffusion pump, and is heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour.
  • 999 vol% nitrogen was introduced to adjust the pressure to 0.5 MPa, the temperature was raised to 1300 ° C. at 500 ° C. per hour, then raised to 1600 ° C. at 1 ° C. per minute, and held at that temperature for 8 hours.
  • the synthesized sample was pulverized into powder with an agate mortar to obtain a powder sample.
  • the powder fired at 1600 ° C. was pulverized using a silicon nitride mortar and pestle and then naturally dropped into a boron nitride crucible having a diameter of 20 mm and a height of 20 mm.
  • the crucible is set in a graphite resistance heating type pressure electric furnace, and the firing atmosphere is evacuated by a diffusion pump, heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour, and the purity is 99.999% by volume at 800 ° C. Then, the pressure was adjusted to 1 MPa, and then the temperature was increased to 1900 ° C. at 500 ° C. per hour, and the temperature was further maintained for 8 hours to obtain a phosphor sample. The obtained phosphor sample was pulverized with an agate mortar and further treated at 60 ° C. in a 1: 1 mixed acid of 50% hydrofluoric acid and 70% nitric acid to obtain a phosphor powder.
  • the emission spectrum shown in FIG. 5 was obtained.
  • the vertical axis represents emission intensity (arbitrary unit), and the horizontal axis represents wavelength (nm).
  • oxygen content contained in these synthetic powders was measured using the oxygen-nitrogen analyzer by a combustion method (TC436 type
  • the absorptance of light having a wavelength of 600 nm was measured using MCPD-7000 (manufactured by Otsuka Electronics Co., Ltd.) and found to be 12.5%.
  • the obtained slurry was oven-dried at 100 ° C., and the obtained powder aggregate was pulverized by a dry rolling ball mill using an agate ball and a nylon pot to obtain fine particles having a particle size of about 10 ⁇ m. After filling the obtained fine particles into an alumina crucible and applying compression molding with light weight, it is fired in air at 1100 ° C. for 3 hours, and the resulting fired body is pulverized with an agate mortar to produce a precursor sample Got.
  • the crucible is set in a graphite resistance heating type pressure electric furnace, the firing atmosphere is evacuated by a diffusion pump, heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour, and the purity is 99.800 at 800 ° C.
  • the temperature was raised to 1300 ° C. at 500 ° C. per hour and further maintained at that temperature for 2 hours to obtain a phosphor sample.
  • the fired product obtained was pulverized using an agate mortar, filled again into an alumina crucible, lightly loaded and compression molded, and then fired in a nitrogen atmosphere at 1300 ° C. for 48 hours. Was pulverized with an agate mortar to obtain phosphor powder.
  • the powder was subjected to powder X-ray diffraction measurement (XRD) using Cu K ⁇ radiation, and all charts obtained from the phosphor powder showed a BSON structure. Further, as a result of irradiating the phosphor powder with a lamp emitting light having a wavelength of 365 nm, it was confirmed that the phosphor powder emitted green light.
  • XRD powder X-ray diffraction measurement
  • the emission spectrum shown in FIG. 6 was obtained.
  • the vertical axis represents emission intensity (arbitrary unit), and the horizontal axis represents wavelength (nm).
  • the absorptance of light having a wavelength of 600 nm was measured by using MCPD-7000 (manufactured by Otsuka Electronics Co., Ltd.) and found to be 8.2%.
  • the obtained mixture was filled in a quartz crucible, fired in a reducing atmosphere of N 2 (95%) + H 2 (5%) at 1400 ° C. for 5 hours, and the obtained fired body was pulverized with an agate mortar. Thus, a phosphor powder was obtained.
  • the vertical axis represents emission intensity (arbitrary unit), and the horizontal axis represents wavelength (nm).
  • the obtained powder aggregate was passed through a sieve having an opening of 250 ⁇ m and filled into a boron nitride crucible having a diameter of 20 mm and a height of 20 mm.
  • the powder weighing, mixing and molding steps were all performed in a glove box capable of maintaining a nitrogen atmosphere with a moisture content of 1 ppm or less and oxygen of 1 ppm or less.
  • the crucible is set in a graphite resistance heating type pressure electric furnace, nitrogen having a purity of 99.999% by volume is introduced to a pressure of 1 MPa, the temperature is raised to 1800 ° C. at 500 ° C. per hour, Heat treatment was performed by holding at 1800 ° C. for 2 hours.
  • the product obtained by the heat treatment was pulverized in an agate mortar and further treated in a 1: 1 mixed acid of 50% hydrofluoric acid and 96% concentrated sulfuric acid to obtain a phosphor powder.
  • XRD powder X-ray diffraction measurement
  • FIG. 8A is a graph showing an emission spectrum of the obtained phosphor powder, where the vertical axis represents relative emission intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
  • FIG. 8B is a graph showing an excitation spectrum of the obtained phosphor powder, where the vertical axis represents relative emission intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
  • the excitation spectrum and emission spectrum of the phosphor powder shown in FIGS. 8A and 8B are the results of measurement using F-4500 (manufactured by Hitachi, Ltd.).
  • the emission spectrum was measured by excitation with 450 nm light, and the excitation spectrum was measured by scanning the intensity of the emission peak.
  • Europium nitride was synthesized by nitriding metal europium in ammonia.
  • the powder aggregate was naturally dropped into a boron nitride crucible having a diameter of 20 mm and a height of 20 mm.
  • the powder weighing, mixing, and forming steps were all performed in a glove box capable of maintaining a nitrogen atmosphere with a moisture content of 1 ppm or less and oxygen of 1 ppm or less.
  • the crucible is set in a graphite resistance heating type pressure electric furnace, nitrogen having a purity of 99.999% by volume is introduced to a pressure of 1 MPa, and the temperature is raised to 1800 ° C. at 500 ° C. per hour.
  • a phosphor sample was obtained by holding at 1800 ° C. for 2 hours.
  • the obtained phosphor sample was pulverized using an agate mortar to obtain phosphor powder.
  • XRD X-ray diffraction measurement
  • FIG. 9 is a graph showing an emission spectrum of the obtained phosphor powder, where the vertical axis represents relative emission intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
  • the emission spectrum of the phosphor powder shown in FIG. 9 is a result of measurement using F-4500 (manufactured by Hitachi, Ltd.), and is obtained when excited with light of 450 nm.
  • an LED having a light emission peak wavelength shown in Table 2 (trade name: EZR, manufactured by Cree) is used. It adjusted suitably so that it might become.
  • FIGS. 10 to 24 show emission spectra of the semiconductor light emitting devices of Examples 1 to 15.
  • the emission spectra shown in FIGS. 10 to 24 were measured using MCPD-7000 (manufactured by Otsuka Electronics).
  • Example 16 Using a silicone resin (trade name: KER2500, manufactured by Shin-Etsu Silicone Co., Ltd.), the phosphor shown in Table 4 is mixed and dispersed with the silicone resin at a mass ratio shown in Table 4 to produce a mold resin, and the structure shown in FIG.
  • a semiconductor light-emitting device of Example 16 having:
  • Example 16 an LED having an emission peak wavelength at 450 nm (trade name: EZR, manufactured by Cree) was used as the semiconductor light emitting element, and the resin / phosphor ratio was a black body locus when the color temperature of the light emitting device was around 5000K. The chromaticity point was appropriately adjusted so as to be asymptotic.
  • Table 5 shows the light emission characteristics of the light emitting devices produced in Example 16 and Example 9, and Table 6 shows the characteristics of the Eu activated ⁇ sialon phosphor used. Each index shown in Table 5 was calculated from the spectrum measured by MCPD-7000.
  • Example 9 has improved color rendering properties compared to Example 16, although the light emission characteristics of the phosphors used were the same. As shown in Table 6, this is considered to be due to the difference in the particle shape such as the average particle diameter and specific surface area of the Eu-activated ⁇ -sialon phosphor, which is an orange phosphor.
  • the Eu-activated ⁇ -sialon phosphor produced in Production Example 1-3 used in Example 16 was used in the Eu-activated ⁇ -sialon phosphor produced in Production Example 1-2 used in Example 9.
  • the average particle size is large and the specific surface area is small.
  • the Eu-activated ⁇ -sialon phosphor produced in Production Example 1-2 has an average particle size of 15.3 ⁇ m and a specific surface area of 0.38 m 2 / g, whereas Production Example 1-3.
  • the Eu-activated ⁇ sialon phosphor produced in 1) has an average particle size of 11.2 ⁇ m and a specific surface area of 0.78 m 2 / g. Therefore, it is considered that the Eu activated ⁇ sialon phosphor produced in Production Example 1-2 is different from the Eu activated ⁇ sialon phosphor produced in Production Example 1-3 in the dispersion state in the mold resin.
  • the dispersion state of the Eu-activated ⁇ sialon phosphor in the mold resin is different, the scattering and absorption states of blue light and green light by the orange phosphor change. This change is considered to affect the emission spectrum of the light-emitting device and improve the color rendering properties of the semiconductor light-emitting device shown in Example 9.
  • the average particle diameter of the Eu-activated ⁇ sialon phosphor is preferably 15 ⁇ m or more, and the specific surface area is preferably 0.4 m 2 / g or less.
  • the specific surface area is small indicates that the particle size of the individual particles constituting the phosphor is large and the crystal uniformity is high. If the crystal uniformity is high, Luminous efficiency is increased. Therefore, by reducing the specific surface area to 0.4 m 2 / g or less, it contributes to the improvement of luminous efficiency.
  • an LED (trade name: EZR, manufactured by Cree) having an emission peak wavelength shown in Table 2 is used, and the ratios of resin, orange phosphor, green phosphor, and red phosphor are the ratios of the light emitting device.
  • the color temperature was appropriately adjusted so as to be around 5000K.
  • Comparative Examples 1 and 4 do not include a red phosphor
  • Comparative Examples 3 and 6 do not include an orange phosphor.
  • Comparative Examples 2 and 5 correspond to the examples disclosed in Patent Document 2.
  • Comparative Examples 2 and 5 correspond to the examples disclosed in Patent Document 3.
  • FIGS. 25 to 30 show emission spectra of the semiconductor light emitting devices of Comparative Examples 1 to 6, respectively.
  • the emission spectra shown in FIGS. 25 to 30 were measured using MCPD-7000 (manufactured by Otsuka Electronics).
  • Table 7 shows the light emission characteristics of the light emitting devices manufactured in the above examples and comparative examples. Each index shown in Table 7 was calculated from the emission spectra of FIGS.
  • FIG. 31 shows the relationship between Ra and theoretical limit luminous efficiency for the semiconductor light emitting devices fabricated in Examples 1 to 8 and Comparative Examples 1 to 3 in which the peak wavelength of the blue LED is 460 nm.
  • 32 is a graph showing the relationship between Ra and theoretical limit efficiency for the semiconductor light emitting devices manufactured in Examples 9 to 15 and Comparative Examples 4 to 6 in which the peak wavelength of the blue LED is 450 nm. The relationship between Ra and theoretical limit luminous efficiency is shown for a blue LED having a peak wavelength of 450 nm.
  • Table 8 the theoretical limit luminous efficiency and the relative value of the LED luminous intensity of each light emitting device created in the above examples and comparative examples are compared.
  • the LED luminous intensity shown in Table 8 was measured with a configuration in which MCPD-7000 and an integrating sphere unit were combined under driving conditions of a voltage of 5 V and a current of 20 mA.
  • Comparative Examples 2, 3, 5, and 6 the ratio of relative LED luminous intensity / relative theoretical limit luminous efficiency is lower than in the examples. That is, in the semiconductor light emitting devices created in Comparative Examples 2, 3, 5, and 6, the measured value of the LED luminous intensity is lower than the LED luminous intensity predicted by the theoretical calculation. This is because the red phosphor is used for the semiconductor light emitting devices manufactured in Comparative Examples 2, 3, 5, and 6 in Table 8, and the red phosphor in addition to the green phosphor absorbing orange light. In addition, absorption of green light and orange light causes a two-stage conversion loss, resulting in a decrease in light emission efficiency of the light emitting device.
  • Comparative Example 1 and Comparative Example 4 have higher LED luminosity than the Examples, but as shown in Table 7, Comparative Example 1 and Comparative Example 4 have Ra of 70 or less and R9 of ⁇ 40 or less. The color rendering is extremely low. Therefore, although the comparative example 1 and the comparative example 4 have high LED luminous intensity, color rendering property is not preferable practically.
  • the light emitting device shown in this example has high light emission efficiency because of less mutual absorption between phosphors than the light emitting device shown in the comparative example. This tendency is particularly noticeable in Examples 1 to 4 and Examples 9 to 11, and in these Examples, the ratio of relative LED luminous intensity / relative theoretical limit luminous efficiency is particularly high at 0.97 or more. . This is because the green phosphors used in Examples 1 to 4 and Examples 9 to 11 are Eu-activated ⁇ sialon phosphors shown in Production Examples 2-1 and 2-2.
  • the Eu-activated ⁇ sialon phosphor has a narrow emission spectrum half-width of 70 nm or less, the overlap between the absorption spectrum of the orange phosphor and the emission spectrum of the green phosphor is reduced, and the mutual absorption between the phosphors is particularly suppressed. .
  • an LED having a light emission peak wavelength at 460 nm (trade name: EZR, manufactured by Cree) is used, and the ratio of resin, orange phosphor, and green phosphor is such that the color temperature of the light emitting device is around 5000K. It adjusted suitably so that it might become.
  • FIGS. 33 to 35 show emission spectra of the semiconductor light emitting devices of Comparative Examples 7 to 9, respectively.
  • the emission spectra shown in FIGS. 33 to 35 were measured using MCPD-7000 (manufactured by Otsuka Electronics).
  • an LED having a light emission peak wavelength at 460 nm (trade name: EZR, manufactured by Cree) is used, and the resin / phosphor ratio is a chromaticity point on a black body locus when the color temperature of the light emitting device is around 5000K. was adjusted as appropriate to asymptotically.
  • FIG. 36 shows emission spectra of the semiconductor light emitting device of Comparative Example 10, respectively.
  • the emission spectrum shown in FIG. 36 was measured using MCPD-7000 (manufactured by Otsuka Electronics).
  • Table 11 shows the light emission characteristics of the light emitting devices manufactured in the above examples and comparative examples. Each index shown in Table 11 was calculated from the emission spectra of FIGS.
  • FIG. 37 shows the relationship between the emission peak wavelength of the orange phosphor and the color rendering properties for Examples 1 to 8 and Comparative Examples 1 and 7 to 9 shown in Table 11.
  • FIG. 38 shows the relationship between Ra of the semiconductor light emitting device and the theoretical limit luminous efficiency for Examples 1 to 8 and Comparative Examples 1 and 7 to 10 shown in Table 11.
  • the peak wavelength range of the orange phosphor according to the present invention will be described with reference to FIG. From FIG. 37, it can be seen that Ra is improved as the peak wavelength of the orange phosphor is longer, and Ra is rapidly improved particularly at a wavelength of 595 nm or more. That is, it was shown that the inflection point at which the color rendering property is rapidly improved is 595 nm with respect to the peak wavelength of the orange phosphor used in the light emitting device.
  • the light-emitting device shown in this embodiment has higher luminous efficiency and color rendering than conventionally known combinations, and is a highly practical light-emitting device.
  • Ra> 80 is satisfied with the theoretical limit efficiency almost equivalent to that using the Ce-activated YAG phosphor.
  • R9 is not particularly defined in the JIS standard or the like, it is a practically preferable feature that R9> 0 when an orange phosphor of 595 nm or more is used. As described above, if R9 is a negative value such as ⁇ 5 or less, the appearance of red is insufficient, and therefore, when used for household lighting equipment, for example, the color of human skin is unnatural. Inconvenience such as being visible occurs.
  • the semiconductor light emitting device has high luminous efficiency and emits white light showing high Ra and R9. For this reason, it can be used suitably for various lighting fixtures such as household lighting and vehicle lamps.

Abstract

 発光効率が高く、安定性、温度特性に優れ、実用上充分高い演色性を有する光を発する発光装置を実現する。この半導体発光装置(1)は、青色光を発する半導体発光素子(2)と、前記青色光を吸収して緑色光を発する緑色蛍光体(14)と、前記青色光を吸収して橙色光を発する橙色蛍光体(13)とを備え、該橙色蛍光体は、595~620nmの範囲に発光スペクトルのピーク波長を有したEu賦活αサイアロン蛍光体であることを特徴とする。

Description

半導体発光装置
 本発明は、蛍光体及び半導体発光素子を備えた半導体発光装置に関する。
 発光ダイオード(LED)等の半導体発光素子は、小型で消費電力が少なく、高輝度の発光を安定に行なうことができるという利点を有しており、近年白熱灯等の照明器具を、白色光を発する、LEDからなる発光装置を用いた照明器具に置き換える動きが進んでいる。白色光を発するLEDとしては、例えば、青色LEDと(Y,Gd)(Al,Ga)12:Ceの組成式で示されるCe賦活YAG系蛍光体とを組み合わせたものがある。
 上記構成の発光装置では、LEDの青色光と蛍光体のCe賦活YAG蛍光体から発せられる黄色光との混色により白色光を実現している。この構成では、Ce賦活YAG蛍光体の発光特性から赤色成分が足りず、家庭用照明器具等に用いた場合、例えば、人の皮膚の色が不自然に見えてしまう等の不都合が生じる。
 具体的には、上記発光装置では、照明器具に用いられる昼白色や電球色で定義される色温度領域において、平均演色評価数(以下、Raと称する)は70~75程度であり、特に赤色の見え方を示す特殊演色評価数(以下、R9と称する)が-40~-5程度であり、照明器具として用いた際に赤色の見え方が極端に悪くなってしまう。
 そこで、上記Ra、R9等の演色性を向上させるために、上記青色LEDに加えて、YAG系蛍光体等の黄色蛍光体に加えて、窒化物系等の緑色蛍光体や赤色蛍光体を組み合わせる構成などが提案されている。
そのような状況から、特許文献1に、高い演色性と安定性を兼ね備えた組み合わせとして、青色LEDを励起光源とし、発光波長は560~590nmである橙色蛍光体と緑色蛍光体とを組み合わせた白色発光装置が開示されている。この文献では、具体的に蛍光体を組合せた白色発光装置事例としてではないが、橙色蛍光体、緑色蛍光体の一例としてそれぞれαサイアロン蛍光体、βサイアロン蛍光体が開示されている。
 特許文献2には、黄色蛍光体としてEu賦活αサイアロン蛍光体、緑色蛍光体としてEu賦活βサイアロン蛍光体、赤色蛍光体としてEu賦活CaAlSiN蛍光体を用いた組み合わせが開示提案されている。
 また、非特許文献1には、蛍光体と青色LEDを組み合わせた白色LEDのRaと発光装置の発光効率の理論的限界を示した理論限界視感効率(Theoretical Limit of Luminous Efficacy)との関係が示されている。非特許文献2には、非特許文献1において記載されている、蛍光体の内部量子効率を測定するための方法に関して開示されており、非特許文献3には、本願において開示する蛍光体とは組成の異なる別の種類の蛍光体の例として、Eu賦活SrAlSiNについて開示されている。
特開2007-227928号公報(2007年9月6日公開) 特開2006-261512号公報(2006年9月28日公開)
K.Sakuma,"Efficiency Investigations of Blue Light Excitation Type for White LEDs,"Proceedings of The 13th International Display Workshops (IDE‘06),PH2-3,pp.1221-1224,Otsu,Japan(2006) 大久保和明 他 「NBS標準蛍光体の量効率測定」照明学会誌 第83巻 第2号、p.87(1999) H.Watanabe "Crystal structure and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphors" Journal of Alloys and Compounds 475(2009)434-439
 しかしながら、特許文献1に記載の構成では、非特許文献1に示されるように、Raが80以上となる構成では理論限界視感効率が著しく低下しており、実用上有用な演色性において発光装置の発光効率が十分ではない。
一方、特許文献2に記載の構成では、赤色蛍光体の発光スペクトルの波長が長波長である為、人間の視感度曲線と発光スペクトルのマッチングが悪く、赤色蛍光体の発する赤色光は人間の目には暗くみえてしまう。また、赤色蛍光体の発する赤色光は励起光である青色光との波長シフトが大きい為、ストークス損失が大きいことに加え、赤色蛍光体は赤色光より短波長で発光する蛍光体の光を吸収しやすく、赤色蛍光体を半導体発光装置に用いることは、発光効率を低下させてしまう。
 即ち、上記特許文献1及び2に記載の構成では、高輝度、かつ高演色性の両立を目指す半導体発光装置に適用する場合には、不都合を生ずる。
 そこで、本発明は、上記の問題点に鑑みてなされたものであり、その目的は、赤色蛍光体を用いることなく実用上充分高い演色性を有し、かつ、発光効率の高い発光装置を提供するものである。
 本発明者らは、上述のように、実用上充分高い演色性を実現し、より発光効率の高い発光装置を提供すべく、蛍光体、及び蛍光体と半導体発光素子とを用いた発光装置の試作を繰り返し行った。その結果、以下に示す組み合わせにより、上記課題を解決する発光装置を提供できることを見出し、本発明を完成するに至った。以下に本発明の詳細な内容について記す。
 本発明に係る半導体発光装置は、青色光を発する半導体発光素子と、前記青色光を吸収して緑色光を発する緑色蛍光体と、前記青色光を吸収して橙色光を発する橙色蛍光体とを備え、該橙色蛍光体は、595~620nmの範囲に発光スペクトルのピーク波長を有したEu賦活αサイアロン蛍光体であることを特徴とする。
 上記構成によれば、実用上充分高い演色性し、発光効率の高い発光装置が実現可能となる。
 本発明に係る半導体発光装置は、上記Eu賦活αサイアロンが、
一般式(CaEu)(Si12-(m+n)Alm+n)(O16-n
で示されるEu賦活αサイアロンで、
 1.1≦x<2.0 ・・・・( 1 )
 0<y<0.4 ・・・・・・( 2 )
 1.5<x+y<2.0 ・・( 3 )
 3.0≦m<4.0 ・・・・( 4 )
 0≦n<y ・・・・・( 5 )
を満たす組成で設計されていることを特徴とする。上記構成によれば、Eu賦活αサイアロンの内部量子効率が高くなり、発光効率の高い発光装置が実現可能となる。
 本発明に係る半導体発光装置は、上記Eu賦活αサイアロンが、
一般式(CaEu)(Si12-(m+n)Alm+n)(O16-n
で示されるEu賦活αサイアロンで、
 1.1≦x<1.85 ・・・・( 1’ )
 0.15<y<0.4 ・・・( 2’ )
 1.5<x+y<2.0 ・・( 3’ )
 3.0≦m<4.0 ・・・・( 4’ )
 0≦n<y ・・・・・( 5’ )
を満たす組成で設計されていることを特徴とする。上記構成によれば、発光スペクトルのピーク波長が605~620nmであるEu賦活αサイアロンの内部量子効率が高くなり、発光効率の高い発光装置が実現可能となる。
 本発明に係る半導体発光装置は、上記Eu賦活αサイアロンの発光スペクトルのピーク波長が、605~620nmであることを特徴とする。上記構成によれば、より高い演色性を有する発光装置が実現可能となる。
 本発明に係る半導体発光装置は、上記Eu賦活αサイアロン蛍光体の平均粒径が15μm以上であることを特徴とする。上記構成によれば、より高い演色性を有する発光装置が実現可能となる。
 本発明に係る半導体発光装置は、上記Eu賦活αサイアロン蛍光体の比表面積が0.4m/g以下であることを特徴とする。上記構成によれば、より発光効率が高く、より高い演色性を有する発光装置が実現可能となる。
 本発明に係る半導体発光装置は、上記緑色蛍光体の発光スペクトルのピーク波長が、520nm~550nmの範囲にあることを特徴とする。上記構成によれば、上記橙色蛍光体及び青色を発光する半導体発光素子と組み合わせることにより白色光を発する発光装置を構成した際に、発光装置の発光スペクトルがヒトの視感度曲線とマッチングするので、発光効率の高い発光装置が実現可能となる。
 本発明に係る半導体発光装置は、上記緑色蛍光体として発光スペクトルの半値幅が55nm以下であることを特徴とする。上記構成によれば、橙色蛍光体と緑色蛍光体間による相互吸収が抑制されるので、より発光効率が高く、演色性の高い発光装置が実現可能となる。
 本発明に係る半導体発光装置は、上記緑色蛍光体の600nmにおける吸収率が10%以下であることを特徴とする。上記構成によれば、緑色蛍光体による橙色光の不要な吸収が低減され、より発光効率の高い発光装置が実現可能となる。
 本発明に係る半導体発光装置は、上記緑色蛍光体が、Eu賦活βサイアロン蛍光体であることを特徴とする。上記構成によれば、緑色蛍光体の内部量子効率が高く、化学的、物理的安定性が良い為、より発光効率が高く、安定性、信頼性の高い発光装置が実現可能となる。
 本発明に係る半導体発光装置は、上記Eu賦活βサイアロン蛍光体の酸素濃度が、0.1~0.6重量%の範囲であることを特徴とする。上記構成によれば、Eu賦活βサイアロンの発光スペクトルが短波長化するため、より演色性が高い発光装置が実現可能となる。
 本発明に係る半導体発光装置は、橙色蛍光体として、595~620nmの範囲に発光スペクトルのピーク波長を有したEu賦活αサイアロン蛍光体を用いて構成したことで、実用上充分高い演色性し、かつ、発光効率の高い半導体発光装置を提供することができる。
本実施の形態に係る半導体発光装置の概略構成を示す断面図である。 製造例1-1で得られた蛍光体の発光スペクトルを示すグラフである。 製造例1-1で得られた蛍光体の励起スペクトルを示すグラフである。 製造例1-2で得られた蛍光体の発光スペクトルを示すグラフである。 製造例1-2で得られた蛍光体の励起スペクトルを示すグラフである。 製造例2-1で得られた蛍光体の発光スペクトルを示すグラフである。 製造例2-2で得られた蛍光体の発光スペクトルを示すグラフである。 製造例2-3で得られた蛍光体の発光スペクトルを示すグラフである。 製造例2-4で得られた蛍光体の発光スペクトルを示すグラフである。 比較製造例1で得られた蛍光体の発光スペクトルを示すグラフである。 比較製造例1で得られた蛍光体の励起スペクトルを示すグラフである。 比較製造例2で得られた蛍光体の発光スペクトルを示すグラフである。 実施例1で作成した発光装置の発光スペクトルを示すグラフである。 実施例2で作成した発光装置の発光スペクトルを示すグラフである。 実施例3で作成した発光装置の発光スペクトルを示すグラフである。 実施例4で作成した発光装置の発光スペクトルを示すグラフである。 実施例5で作成した発光装置の発光スペクトルを示すグラフである。 実施例6で作成した発光装置の発光スペクトルを示すグラフである。 実施例7で作成した発光装置の発光スペクトルを示すグラフである。 実施例8で作成した発光装置の発光スペクトルを示すグラフである。 実施例9で作成した発光装置の発光スペクトルを示すグラフである。 実施例10で作成した発光装置の発光スペクトルを示すグラフである。 実施例11で作成した発光装置の発光スペクトルを示すグラフである。 実施例12で作成した発光装置の発光スペクトルを示すグラフである。 実施例13で作成した発光装置の発光スペクトルを示すグラフである。 実施例14で作成した発光装置の発光スペクトルを示すグラフである。 実施例15で作成した発光装置の発光スペクトルを示すグラフである。 比較例1で作成した発光装置の発光スペクトルを示すグラフである。 比較例2で作成した発光装置の発光スペクトルを示すグラフである。 比較例3で作成した発光装置の発光スペクトルを示すグラフである。 比較例4で作成した発光装置の発光スペクトルを示すグラフである。 比較例5で作成した発光装置の発光スペクトルを示すグラフである。 比較例6で作成した発光装置の発光スペクトルを示すグラフである。 実施例1~8及び比較例1~3で作成した半導体発光装置の、Raと理論限界効率の関係を示したグラフである。 実施例9~15及び比較例4~6で作成した半導体発光装置の、Raと理論限界効率の関係を示したグラフである。 比較例7で作成した発光装置の発光スペクトルを示すグラフである。 比較例8で作成した発光装置の発光スペクトルを示すグラフである。 比較例9で作成した発光装置の発光スペクトルを示すグラフである。 比較例10で作成した発光装置の発光スペクトルを示すグラフである。 実施例1~8及び比較例1、7~9で作成した半導体発光装置の、橙色蛍光体の発光ピーク波長とRaの関係を示したグラフである。 実施例1~8及び比較例1、7~10で作成した半導体発光装置の、Raと理論限界効率の関係を示したグラフである。
 本発明の実施の一形態について説明すれば、以下の通りである。尚、本明細書では、範囲を示す「A~B」はA以上B以下であることを示す。また、本明細書で挙げられている各種物性は、特に断りの無い限り後述する実施例に記載の方法により測定した値を意味する。
 図1は、本実施の形態に係る半導体装置の概略構成を示す断面図である。本実施の形態に係る半導体発光装置1は、青色光を発する半導体発光素子2と、当該青色光を吸収して橙色光を発する橙色蛍光体13と、当該青色光を吸収して緑色光を発する緑色蛍光体14とを備える。ここで、本明細書において、青色光とは、波長420~480nmに発光スペクトルのピーク波長を有する光を、緑色光とは、波長500~550nmに発光スペクトルのピーク波長を有する光を、橙色光とは、波長560~620nmに発光スペクトルのピーク波長を有する光を、赤色光とは、波長630nm~680nmに発光スペクトルのピーク波長を有する光をそれぞれ意味する。また、緑色蛍光体とは、上記青色光により励起されて上記緑色光を発光する物質であり、橙色蛍光体とは、上記青色光により励起されて上記橙色光を発光する物質であり、赤色蛍光体とは、上記青色光により励起されて上記赤色光を発光する物質を意味する。
 そして、上記橙色蛍光体13は、発光スペクトルのピーク波長が595nm以上のEu賦活αサイアロン蛍光体である。該Eu賦活αサイアロン蛍光体を用い、半導体発光素子2が発する青色光と、緑色蛍光体14が発する緑色光として適切なものを選択することにより、Ra、R9が実用上好ましい値を満し、かつ理論限界視感効率が、従来公知のものより極めて高い、実用上有用な発光装置が実現可能となる。
 そこで、本発明者らは赤色蛍光体を用いないという設計指針に基づき、緑色蛍光体と組み合わせる橙色蛍光体であるEu賦活αサイアロン蛍光体の発光スペクトルを調整し、演色性能を向上させる検討を行った。その結果、Eu賦活αサイアロンとして、非特許文献1、特許文献1及び2に示される構成よりも発光スペクトルが長波長であるものを用いることにより、赤色蛍光体を用いることなく実用上充分な演色性を有する発光装置が実現可能であり、上記Eu賦活αサイアロン蛍光体の発光ピーク波長の好ましい範囲が595nm以上であることを見出した。
 ここで、上記Ra、R9における実用上充分な値とは、蛍光灯等の室内照明を半導体発光装置で置き換えることを想定したものである。現在、室内用蛍光灯として主流である3波長蛍光管はRa=81、R9=26程度であり、また、JISZ9125:2007には、Raが80以上である照明器具が、仕事をしたり、長時間滞在する室内に用いるものとして推奨されている。
 また、上記理論限界効率とは、非特許文献1において定義されるものであり、発光装置の発光スペクトルより、発光装置の発光効率(ルーメン・パー・ワット:lm/W)の理論的限界を計算したものである。理論限界視感効率を計算する際は、半導体発光素子の電力から青色光への変換効率を100%、蛍光体の内部量子効率(Internal Quantum Efficiency:IQE)も100%と仮定し、蛍光体での波長変換に起因するストークスシフト損失のみを損失として考慮する。これは言い換えれば、励起光を発する半導体発光素子と、上記励起光によって励起され蛍光を発する蛍光体とで構成される発光装置において、励起光から蛍光への波長変換に伴う理論的に不可避な損失のみを考慮して計算された効率である、といえる。尚、蛍光体の内部量子効率は、非特許文献2(大久保和明 他 「NBS標準蛍光体の量効率測定」照明学会誌 第83巻 第2号、p.87(1999))に示されるような方法で測定できる。
 図1において、半導体発光装置1は、基体としてのプリント配線基板3上に、半導体発光素子2が載置され、同じくプリント配線基板3上に載置された樹脂枠4の内側に、上記橙色蛍光体13及び上記緑色蛍光体14が分散した透光性樹脂からなるモールド樹脂5が充填されて、半導体発光素子2が封止されている。
 上記半導体発光素子2は、活性層としてInGaN層6を有し、InGaN層6を挟んで、p側電極7及びn側電極8を有しており、このn側電極8が、プリント配線基板3の上面から背面にかけて設けられたn電極部9に、導電性を有する接着剤10を介して電気的に接続されている。また、半導体発光素子2のp側電極7は、上述したn電極部9とは別途プリント配線基板3の上面から背面にかけて設けられたp電極部11に金属ワイヤ12を介して電気的に接続されている。
 尚、本実施の形態に係る半導体発光装置1は、図1に示した構造に限定されるものではなく、従来公知の一般的な半導体発光装置の構造を採用することができる。
 (I)半導体発光素子
 本実施の形態では、上記半導体発光素子2は発光ダイオード(LED)であるが、上記半導体発光素子2としては発光ダイオード(LED)に限定されず、半導体レーザ、無機EL(electroluminescence)素子等の青色光を発する従来公知の素子を使用することができる。尚、LEDは、例えば、Cree社製等の市販品を用いることができる。
 上記半導体発光素子2の発光ピーク波長は特には限定されないが、半導体発光素子の発光効率を高くする観点から、440nm~470nmの範囲内であることが好ましく、Ra、R9値をより高くする観点から、450nm~465nmの範囲内であることがより好ましい。
 (II)橙色蛍光体
 上記橙色蛍光体13は、発光スペクトルのピーク波長が595nm~620nmの範囲内であるEu賦活αサイアロン蛍光体である。発光ピーク波長が620nmを超えると、Eu賦活αサイアロン蛍光体の内部量子効率、温度特性が悪くなる傾向にあるため、620nmとした。
 上記発光スペクトルのピーク波長を上記波長範囲とすることにより、実用上充分高い演色性を有し、かつ発光効率、安定性、温度特性に特に優れた半導体発光装置を実現することができる。
 上記Eu賦活αサイアロン蛍光体としては、例えば特開2005-307012で示されるように、出発原料に窒化物原料を用いるなどして、酸素濃度が低く設計されたものを好適に用いることができる。これは、酸素濃度が低く設計されたαサイアロンは、Ca、Eu等のSi、Al、O、N以外の元素の固溶限界が高く、これらの元素を結晶中に取り込みやすいことに起因する。
 上記Eu賦活αサイアロン蛍光体に係る組成式は、
 一般式(CaEu)(Si12-(m+n)Alm+n)(O16-n
で示され、
 1.1≦x<2.0 ・・・・( 1 )
 0<y<0.4 ・・・・・・( 2 )
 1.5<x+y<2.0 ・・( 3 )
 3.0≦m<4.0 ・・・・( 4 )
 0≦n<y ・・・・・( 5 )
 を満たす組成で設計される。
 上記(1)~(5)のような組成のEu賦活αサイアロンは、例えば出発原料に、Ca源としてCaを用い、Al源としてAlNを用い、Si源としてSiを用い、Eu源としてEuとEuNを併用することにより、作製することができる。上記(1)~(5)に示される組成は、0≦n<yであることと、1.5<x+y<2.0であることに特徴がある。0≦n<yであるということは、酸素濃度がEu濃度より低く設計されていることを意味する。1.5<x+y<2.0であるということは、Ca濃度とEu濃度が、αサイアロン単相が得られる上限の濃度付近に設計されているということを意味する。
 また、本発明において、Ra、R9をさらに高くする観点から、発光スペクトルのピーク波長が605nm~620nmのEu賦活αサイアロン蛍光体をさらに好適に用いることができて、このようなEu賦活αサイアロン蛍光体に係る組成式は、
 一般式(CaEu)(Si12-(m+n)Alm+n)(O16-n
で示され、
 1.1≦x<1.85 ・・・・( 1’ )
 0.15<y<0.4 ・・・( 2’ )
 1.5<x+y<2.0 ・・( 3’ )
 3.0≦m<4.0 ・・・・( 4’ )
 0≦n<y ・・・・・( 5’ )
 を満たす組成で設計される。
 上記(1’)~(5’)のような組成のEu賦活αサイアロンは、例えば出発原料に、Ca源としてCaを用い、Al源としてAlNを用い、Si源としてSiを用い、Eu源としてEuとEuNを併用することにより、作製することができる。また、上記(1’)~(5’)の組成は、(1)~(5)と比較してy値が大きいことに特徴がある。y値が大きいということは、Eu濃度が高く設計されていることを意味しており、(1’)~(5’)の組成は、(1)~(5)と比較してEu濃度を高く設計することにより、発光スペクトルのピーク波長が605nm~620nmであることを実現している。
 また、上記Eu賦活αサイアロン蛍光体の製造工程において、例えば特開2009-96882に開示されるように、αサイアロン粉末を種粒子として添加する種粒子添加工程を好適に用いることができる。これは、酸素濃度が低く設計されたαサイアロン蛍光体は、焼成時の酸素濃度が低くなる為、液相を介した粒成長が起こりにくいことに起因する。また、特開2005-255855に示されるような酸処理による洗浄工程も、上記Eu賦活αサイアロンの製造工程に好適に適用できる。
 上記橙色蛍光体14の粒径は1μm~50μmであることが好ましく、5μm~20μmであることが更に好ましい。また、粒子の形状としては、凝集体であるよりも単独の粒子であることが好ましく、具体的には空気透過法により測定される比表面積が1m/g以下、より好ましくは0.4m/g以下であることが好ましい。このような粒径調整、粒子形状調整には、機械的粉砕、上記酸処理による粒界相除去、アニール処理等の技術を適宜用いることができる。ここで、空気透過法とは、一般にリーナース法と呼ばれている方法をいい、試料充填層を透過した空気の流速と圧力降下の測定から比表面積を求めることができる。
 尚、非特許文献3には、発光スペクトルのピーク波長が620nm以下である他の窒化物系橙色蛍光体として、610nmに発光スペクトルのピーク波長を有し、青色励起において高い内部量子効率で橙色に発光し、化学的に安定な蛍光体物質である、Eu賦活SrAlSiNに関して開示されているが、該Eu賦活SrAlSiNは、Eu賦活αサイアロン蛍光体と比較して、緑色の波長域の吸収率が高く、緑色蛍光体が発する緑色光を吸収してしまうため、橙色蛍光体としてEu賦活αサイアロン蛍光体を用いる方がより好ましい。
 (IV)緑色蛍光体
 緑色蛍光体14は、半導体発光装置の発光効率を高くする観点から、ピーク波長が520nm~550nmの範囲にあるものを好適に用いることができる。緑色蛍光体14の発光スペクトルのピーク波長が上記範囲内であれば、上記橙色蛍光体13及び青色を発光する半導体発光素子2と組み合わせることにより白色光を発する発光装置1を構成した際に、ヒトの視感度曲線とマッチングした発光スペクトルを得ることができる。このため、発光効率の高い発光装置が実現可能となる。
 また、上記緑色蛍光体14は、その発光スペクトルの半値幅が70nm以下であることが好ましく、55nm以下の範囲内であるものが更に好ましい。また、上記緑色蛍光体14の発光スペクトルの半値幅の下限は、特には限定されないが、15nm以上が好ましい。
 緑色蛍光体14の発光スペクトルの半値幅が上記範囲であると、上記橙色蛍光体13の吸収スペクトルと緑色蛍光体14の発光スペクトルの重なりが充分小さくなるので、橙色蛍光体13による緑色光の吸収が抑制され、発光効率が更に高い発光装置を実現し得る。
 上記のような緑色蛍光体14としては特には限定されないが、例えば、安定性が高く温度特性に優れるため、Eu賦活酸窒化物系蛍光体が好適に用いられる。
 更には、Eu賦活酸窒化物系蛍光体の中でも発光効率に優れる、特開2008-138156号公報に示されるEu賦活BSON蛍光体や、特開2005-255895号公報に示されるEu賦活βサイアロン蛍光体が好適に用いられる。
 上記緑色蛍光体14として例示した中でも、Eu賦活βサイアロン蛍光体は、安定性及び温度特性に優れ、また、発光スペクトルの半値幅が特に狭く優れた発光特性を示す。
 上記Eu賦活BSON蛍光体に係る組成は、
Bay’Eux’Siu’v’w’
(但し、0≦y’≦3、1.6≦y’+x’≦3、5≦u’≦7、9<v’<15、0<w’≦4)
であることが好ましく、上記y’、x’、u’、v’、w’のより好ましい範囲は、1.5≦y’≦3、2≦y’+x’≦3、5.5≦u’≦7、10<v’<13、1.5<w’≦4である。
 また、上記Eu賦活βサイアロン蛍光体の組成は、
Si6-z’Alz’z’8-z’
(但し、0<z’<4.2)
であることが好ましく、上記z’のさらに好ましい範囲は、0<z’<0.5である。
 また、上記Eu賦活βサイアロンは、酸素濃度が0.1~0.6重量%の範囲であるものが好ましく、Al濃度が0.13~0.8重量%であることがより好ましい。Eu賦活βサイアロン蛍光体がこれら範囲内であれば、より発光スペクトルの半値幅が狭くなる傾向がある。
 尚、国際公開WO2008/062781号に開示されるEu賦活βサイアロン蛍光体は、焼成後に酸処理等の後処理により蛍光体のダメージ相が取り除かれているため、不要な吸収が少なく発光効率が高い。更に、特開2008-303331号公報に例示されるEu賦活βサイアロン蛍光体は、酸素濃度が0.1~0.6重量%であるため、より発光スペクトルの半値幅が狭くなり好ましい。
 上記のような緑色蛍光体14として、より具体的には、βサイアロン蛍光体の発光に全く寄与しない波長域であり、かつ上記橙色蛍光体のピーク波長付近である600nmにおける光の吸収率が10%以下であるものを好適に用いることができる。
 上記緑色蛍光体14の粒径は1μm~50μmであることが好ましく、5μm~20μmであることが更に好ましい。また、粒子の形状としては、凝集体であるよりも単独の粒子であることが好ましく、具体的には比表面積が1m/g以下、より好ましくは0.4m/g以下であることが好ましい。このような粒径調整、粒子形状調整には、機械的粉砕、酸処理による粒界相除去、アニール処理等の技術を適宜用いることができる。
 また、本実施の形態において用いられる緑色蛍光体14がEu賦活酸窒化物系蛍光体である場合、緑色蛍光体14と橙色蛍光体13がいずれもが窒化物系となるので、2種類の蛍光体の温度依存性、比重、粒径等が近い値となる。このため、上記のような半導体発光素子を形成した際に、歩留まり良く製造することが可能となる。加えて、窒化物系蛍光体は母体結晶の共有結合性が強いため、特に温度依存性が少なく、化学的、物理的ダメージにも強いので、周囲環境に影響されない高い安定性、信頼性をもつ発光素子となる。
 また、その他の緑色蛍光体として、
(Re1-xGd(Al1-yGa12:Ce(Re=Y,Lu,Tb、0≦x≦1、0≦y≦1)で表されるCe賦活アルミン酸塩ガーネット蛍光体、
(Ca,Mg)ScSi12:Ceで表されるCe賦活ケイ酸塩ガーネット蛍光体、MSi:Eu(M=Ba,Ca,Sr,Mg)で表されるEu賦活アルカリ土類シリコンオキシナイトライド蛍光体、
SiO:Eu(M=Ba,Ca,Sr,Mg)で表されるEu賦活アルカリ土類シリケート系蛍光体等、従来公知の蛍光体を用いることができる。
 (V)モールド樹脂
 上記半導体発光装置1において、半導体発光素子2の封止に用いるモールド樹脂5は、例えば、シリコーン樹脂、エポキシ樹脂等の透光性樹脂に上記橙色蛍光体13及び緑色蛍光体14を分散させたものである。当該分散方法としては、特には限定されず、従来公知の方法を採用することができる。
 分散させる橙色蛍光体13及び緑色蛍光体14の混合比率は、特に制限されず、所望の白色点を示すスペクトルが得られるように、適宜決定することができる。
 例えば、橙色蛍光体13及び緑色蛍光体14に対する透光性樹脂の質量比(透光性樹脂の質量/(橙色蛍光体13+緑色蛍光体14))で1~15の範囲内とすることができる。更には、橙色蛍光体13に対する緑色蛍光体14の質量比(緑色蛍光体14/橙色蛍光体13の質量比)で0.5~4の範囲内とすることができる。
 (VI)その他
 本実施の形態に係る半導体発光装置において、半導体発光素子2、橙色蛍光体13、緑色蛍光体14、及びモールド樹脂5以外の、プリント配線基板3、接着剤10、金属ワイヤ12等については、従来技術(例えば、特開2003-321675号公報、特開2006-8721号公報等)と同様の構成を採用することができ、従来技術と同様の方法により製造することができる。
 以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 〔1〕蛍光体の作製
以下に実施例、比較例に使用する各蛍光体の製法、特性について示す。また、表1に各蛍光体(製造例1-1~1-3、2-1~2-4、比較製造例1、2)の化学式、蛍光体特性、実施例・比較例適用の内容の一覧を示す。
Figure JPOXMLDOC01-appb-T000001
 (製造例1-1:橙色蛍光体(Eu賦活αサイアロン蛍光体)の作製1)
 組成式(CaEu)(Si12-(m+n)Alm+n)(O16-n)において、x=1.8、y=0.075、m=3.75、n=0.05のものを得るべく、原料粉末として、α型窒化ケイ素粉末59.8質量%、窒化アルミニウム粉末24.3質量%、窒化カルシウム粉末13.9質量%、酸化ユーロピウム粉末0.9質量%、窒化ユーロピウム粉末1.1質量%の組成となるように秤量し、窒化ケイ素焼結体製の乳鉢と乳棒とを用い、10分以上混合し粉体凝集体を得た。尚、窒化ユーロピウムは、金属ユーロピウムをアンモニア中で窒化して合成したものを用いた。
 得られた粉体凝集体を、目開き250μmの篩を通過させ、直径20mm、高さ20mmの大きさの窒化ホウ素製のるつぼに充填した。尚、粉体の秤量、混合、成形の各工程は全て、水分1ppm以下、酸素1ppm以下の窒素雰囲気を保持することができるグローブボックス内で行った。
 次に、該ルツボを、黒鉛抵抗加熱方式の加圧電気炉にセットし、純度が99.999体積%の窒素を導入して圧力を1MPaとし、毎時500℃で1800℃まで昇温し、さらに1800℃で2時間保持して加熱処理を行った。加熱処理によって得られた生成物をメノウ乳鉢で粉砕し、更に50%フッ化水素酸と96%濃硫酸の1:1混酸中、60℃で処理し、蛍光体粉末を得た。
得られた蛍光体粉末について、CuのKα線を用いた粉体X線回折測定(XRD)を行ったところ、当該蛍光体粉末はαサイアロン結晶の構造を有することがわかった。また、当該蛍光体粉末に、波長365nmの光を発するランプで照射した結果、橙色に発光することを確認した。
 図2Aは、得られた蛍光体粉末の発光スペクトルを示すグラフであり、縦軸は相対発光強度(任意単位)、横軸は波長(nm)である。また、図2Bは、得られた蛍光体粉末の励起スペクトルを示すグラフであり、縦軸は相対発光強度(任意単位)、横軸は波長(nm)である。
 尚、図2A及び図2Bに示す蛍光体粉末の励起スペクトル及び発光スペクトルは、F-4500(日立製作所製)を用いて測定した結果である。発光スペクトルは、450nmの光で励起して測定し、励起スペクトルは、発光ピークの強度をスキャンして測定した。
図2Aに示す発光スペクトルの色度座標は(x,y)=(0.559,0.438)、ピーク波長は597nm、半値幅は93nmであった。
 また、MCPD-7000と積分球を組み合わせた測定系により測定した、本製造例1-1に示す蛍光体の内部量子効率は71%であった。
 さらに、得られた蛍光体粉末の比表面積を筒井理化学工業製LEA-NURSEにより測定したところ、0.36m/gであり、平均粒径をキーエンス製VE-によって観察したSEM像より測定したところ、16.2μmであった。
 (製造例1-2:橙色蛍光体(Eu賦活αサイアロン蛍光体)の作製2)
 組成式(CaEu)(Si12-(m+n)Alm+n)(O16-n)において、x=1.7、y=0.2、m=3.8、n=0のものを得るべく、原料粉末として、α型窒化ケイ素粉末58.4質量%、窒化アルミニウム粉末23.7質量%、窒化カルシウム粉末12.8質量%、窒化ユーロピウム粉末5.1質量%の組成となるように秤量し、窒化ケイ素焼結体製の乳鉢と乳棒とを用い、10分以上混合し粉体凝集体を得た。
 得られた粉体凝集体を、目開き250μmの篩を通過させ、直径20mm、高さ20mmの大きさの窒化ホウ素製のるつぼに充填した。尚、粉体の秤量、混合、成形の各工程は全て、水分1ppm以下、酸素1ppm以下の窒素雰囲気を保持することができるグローブボックス内で行った。
 次に、該ルツボを、黒鉛抵抗加熱方式の加圧電気炉にセットし、純度が99.999体積%の窒素を導入して圧力を1MPaとし、毎時500℃で1800℃まで昇温し、さらに1800℃で2時間保持して加熱処理を行った。加熱処理によって得られた生成物をメノウ乳鉢で粉砕し、更に50%フッ化水素酸と96%濃硫酸の1:1混酸中、60℃で処理し、蛍光体粉末を得た。
得られた蛍光体粉末について、CuのKα線を用いた粉体X線回折測定(XRD)を行ったところ、当該蛍光体粉末はαサイアロン結晶の構造を有することがわかった。また、当該蛍光体粉末に、波長365nmの光を発するランプで照射した結果、橙色に発光することを確認した。
 図3Aは、得られた蛍光体粉末の発光スペクトルを示すグラフであり、縦軸は相対発光強度(任意単位)、横軸は波長(nm)である。また、図3Bは、得られた蛍光体粉末の励起スペクトルを示すグラフであり、縦軸は相対発光強度(任意単位)、横軸は波長(nm)である。
 尚、図3A及び図3Bに示す蛍光体粉末の励起スペクトル及び発光スペクトルは、F-4500(日立製作所製)を用いて測定した結果である。発光スペクトルは、450nmの光で励起して測定し、励起スペクトルは、発光ピークの強度をスキャンして測定した。
図3Aに示す発光スペクトルの色度座標は(x,y)=(0.587,0.411)、ピーク波長は610nm、半値幅は92nmであった。
 また、MCPD-7000と積分球を組み合わせた測定系により測定した、本製造例1-2に示す蛍光体の内部量子効率は70%であった。
 さらに、得られた蛍光体粉末の比表面積を筒井理化学工業製LEA-NURSEにより測定したところ、0.38m/gであり、平均粒径をキーエンス製VE-によって観察したSEM像より測定したところ、15.3μmであった。
 (製造例1-3:橙色蛍光体(Eu賦活αサイアロン蛍光体)の作製3)
 組成式(CaEu)(Si12-(m+n)Alm+n)(O16-n)において、x=1.7、y=0.2、m=3.8、n=0と、製造例1-2と同等の設計組成の蛍光体粉末を得るべく、原料粉末を所定量秤量し、窒化ケイ素焼結体製の乳鉢と乳棒とを用い、10分以上混合し粉体凝集体を得た。
 得られた粉体凝集体を、目開き250μmの篩を通過させ、直径20mm、高さ20mmの大きさの窒化ホウ素製のるつぼに充填した。尚、粉体の秤量、混合、成形の各工程は全て、水分1ppm以下、酸素1ppm以下の窒素雰囲気を保持することができるグローブボックス内で行った。
 次に、該ルツボを、黒鉛抵抗加熱方式の加圧電気炉にセットし、純度が99.999体積%の窒素を導入して圧力を1MPaとし、毎時500℃で1700℃まで昇温し、さらに1700℃で2時間保持して加熱処理を行った。加熱処理によって得られた生成物をメノウ乳鉢で粉砕し、更に50%フッ化水素酸と96%濃硫酸の1:1混酸中、60℃で処理し、蛍光体粉末を得た。得られた蛍光体粉末について、CuのKα線を用いた粉体X線回折測定(XRD)を行ったところ、当該蛍光体粉末はαサイアロン結晶の構造を有することがわかった。また、当該蛍光体粉末に、波長365nmの光を発するランプで照射した結果、橙色に発光することを確認した。得られた粉末の発光スペクトル、励起スペクトル等の発光特性は、製造例1-2で得られた橙色蛍光体と同等であった。
 さらに、得られた蛍光体粉末の比表面積を筒井理化学工業製LEA-NURSEにより測定したところ、0.78m/gであり、平均粒径をキーエンス製VE-によって観察したSEM像より測定したところ、11.2μmであった。
 (製造例2-1:緑色蛍光体(Eu賦活βサイアロン蛍光体)の作製)
 Si6-z’Alz’z’8-z’で表される組成式において、z’=0.23のものにEuが0.09at.%賦活されたEu賦活βサイアロン蛍光体を得るべく、α型窒化ケイ素粉末95.82質量%、窒化アルミニウム粉末3.37質量%、及び酸化ユーロピウム粉末0.81質量%の組成となるように秤量し、窒化ケイ素焼結体製の乳鉢と乳棒とを用い、10分以上混合し粉体凝集体を得た。この粉体凝集体を窒化ホウ素製のるつぼに自然落下させて充填した。
 次に、上記るつぼを、黒鉛抵抗加熱方式の加圧電気炉にセットし、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.999体積%の窒素を導入して圧力を1MPaとした後、毎時500℃で1900℃まで昇温し、更にその温度で8時間保持して、蛍光体試料を得た。得られた蛍光体試料をメノウの乳鉢を用いて粉砕し、更に50%フッ化水素酸と70%硝酸の1:1混酸中、60℃で処理し、蛍光体粉末を得た。
 当該蛍光体粉末について、CuのKα線を用いた粉末X線回折測定(XRD)を行なったところ、当該蛍光体粉末はβ型サイアロン構造を有することがわかった。また、当該蛍光体粉末に、波長365nmの光を発するランプで照射した結果、緑色に発光することを確認した。
 得られたEu賦活βサイアロン蛍光体の粉末を450nmの光で励起した際の発光スペクトルをF-4500(日立製作所製)を用いて測定した結果、図4に示される発光スペクトルが得られた。図4において縦軸は発光強度(任意単位)、横軸は波長(nm)である。
 図4に示す発光スペクトルの色度座標は(x,y)=(0.325,0.644)、ピーク波長は540nm、半値幅は53nmであった。また、MCPD-7000(大塚電子製)を用いて波長600nmの光の吸収率を測定した結果、9.1%であった。
 また、MCPD-7000と積分球を組み合わせた測定系により測定した、本製造例2-1に示す蛍光体の内部量子効率は73%であった。
 さらに、得られた蛍光体粉末の比表面積を筒井理化学工業製LEA-NURSEにより測定したところ、0.80m/gであり、平均粒径をキーエンス製VE-によって観察したSEM像より測定したところ、9.2μmであった。
 (製造例2-2:Eu賦活βサイアロン蛍光体の調整2)
 Si6-z’Alz’z’8-z’で表される組成式において、z’=0.06のものにEuが0.10at.%賦活されたEu賦活βサイアロン蛍光体を得るべく、45μmの篩を通した金属Si粉末93.59重量%、窒化アルミニウム粉末5.02重量%及び酸化ユーロピウム粉末1.39重量%の組成となるように所定量秤量し、窒化ケイ素焼結体製の乳鉢と乳棒とを用い、10分以上混合し粉体凝集体を得た。この粉体凝集体を直径20mm、高さ20mmの大きさの窒化ホウ素製のるつぼに自然落下させて入れた。
 次に、該るつぼを、黒鉛抵抗加熱方式の加圧電気炉にセットし、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.999体積%の窒素を導入して圧力を0.5MPaとし、毎時500℃で1300℃まで昇温し、その後毎分1℃で1600℃まで昇温し、その温度で8時間保持した。合成した試料をメノウ製乳鉢によって粉末に粉砕し、粉末試料を得た。
 次に、これらの粉末に再度加熱処理を施した。1600℃で焼成した粉末を窒化ケイ素製の乳鉢と乳棒を用いて粉砕した後に、直径20mm、高さ20mmの大きさの窒化ホウ素製のるつぼに自然落下させて入れた。
 該るつぼを、黒鉛抵抗加熱方式の加圧電気炉にセットし、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.999体積%の窒素を導入して圧力を1MPaとした後、毎時500℃で1900℃まで昇温し、更にその温度で8時間保持して、蛍光体試料を得た。得られた蛍光体試料をメノウ製乳鉢によって粉砕し、更に50%フッ化水素酸と70%硝酸の1:1混酸中、60℃で処理し、蛍光体粉末を得た。
 当該蛍光体粉末について粉末X線回折測定(XRD)を行なったところ、当該蛍光体粉末はβ型サイアロン構造を有することがわかった。また、当該蛍光体粉末に、波長365nmの光を発するランプで照射した結果、緑色に発光することを確認した。
 得られたEu賦活βサイアロン蛍光体の粉末の発光スペクトルを測定した結果、図5に示される発光スペクトルが得られた。図5において縦軸は発光強度(任意単位)、横軸は波長(nm)である。
図5に示す発光スペクトルの色度座標は(x,y)=(0.289,0.674)、ピーク波長は528nm、半値幅は51nmであった。また、燃焼法による酸素窒素分析計(LECO社製TC436型)を用いて、これらの合成粉末中に含まれる酸素量を測定したところ、酸素含有量は0.4重量%であった。また、MCPD-7000(大塚電子製)を用いて波長600nmの光の吸収率を測定した結果12.5%であった。
 また、MCPD-7000と積分球を組み合わせた測定系により測定した、本製造例2-2に示す蛍光体の内部量子効率は69%であった。
 さらに、得られた蛍光体粉末の比表面積を筒井理化学工業製LEA-NURSEにより測定したところ、0.83m/gであり、平均粒径をキーエンス製VE-によって観察したSEM像より測定したところ、10.3μmであった。
 (製造例2-3:緑色蛍光体(Eu賦活BSON蛍光体)の作製)
 Ba2.07Eu0.13Si10.2で表される組成式のものを得るべく、β型窒化ケイ素粉末17.12質量%、酸化ケイ素粉末29.32質量%、炭酸バリウム粉末50.75質量%、及び酸化ユーロピウム粉末2.81質量%の組成となるようにメノウ製乳鉢と乳棒を用いて混合し、粉体混合物50gを得た。得られた粉体混合物を150ccのエタノール中でメノウ製ボールとナイロンポットを用いた転動ボールミルにより混合し、スラリーを得た。
 得られたスラリーを100℃でオーブン乾燥し、得られた粉体凝集体をメノウ製ボールとナイロンポットとを用いた乾式の転動ボールミルにより粉砕し、粒径10μm程度の微粒子を得た。得られた微粒子をアルミナルツボに充填し軽く加重を加えて圧縮成型した後、空気中で1100℃、3時間の条件で焼成し、得られた焼成体をメノウ製乳鉢により粉砕して前駆体試料を得た。
 次に、上記るつぼを、黒鉛抵抗加熱方式の加圧電気炉にセットし、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.999体積%の窒素を導入して圧力を1MPaとした後、毎時500℃で1300℃まで昇温し、更にその温度で2時間保持して、蛍光体試料を得た。得られた焼成物をメノウの乳鉢を用いて粉砕し、再度アルミナルツボに充填し軽く加重を加えて圧縮成型した後、窒素雰囲気で1300℃、48時間の条件で焼成し、得られた焼成体をメノウ製乳鉢により粉砕して蛍光体粉末を得た。
 当該蛍光体粉末について、CuのKα線を用いた粉末X線回折測定(XRD)を行なったところ、当該蛍光体粉末から得られたチャートは全てBSON構造であることを示した。また、当該蛍光体粉末に、波長365nmの光を発するランプで照射した結果、緑色に発光することを確認した。
 得られたEu賦活BSON蛍光体の粉末を450nmの光で励起した際の発光スペクトルをF-4500(日立製作所製)を用いて測定した結果、図6に示される発光スペクトルが得られた。図6において縦軸は発光強度(任意単位)、横軸は波長(nm)である。図6に示す発光スペクトルの色度座標は(x,y)=(0.287,0.623)、ピーク波長は528nm、半値幅は69nmであった。また、MCPD-7000(大塚電子製)を用いて波長600nmの光の吸収率を測定した結果8.2%であった。
 また、MCPD-7000と積分球を組み合わせた測定系により測定した、本製造例1に示す蛍光体の内部量子効率は72%であった。
 (製造例2-4:緑色蛍光体(Ce賦活LuAl12((Lu3-xCe)Al12))蛍光体の調整)
 Lu2.7Ce0.3Al12で表される組成式のものを得るべく、Lu粉末63.7重量%、CeO粉末6.1重量%、Al粉末30.2重量%を所定の組成となるように空気中で秤量し、更に焼成助剤としてBaFを所定量添加してメノウ製ボールとナイロンポットとを用いた転動ボールミルにより混合し、粉体混合物を得た。得られた混合物を石英ルツボに充填し、N(95%)+H(5%)の還元雰囲気で1400℃、5時間の条件で焼成し、得られた焼成体をメノウ製乳鉢により粉砕して蛍光体粉末を得た。
 得られたCe賦活LuAl12蛍光体粉末に、波長365nmの光を発するランプで照射した結果、緑色に発光することを確認した。該粉末の発光スペクトルを測定した結果、図7に示される発光スペクトルが得られた。
 図7において縦軸は発光強度(任意単位)、横軸は波長(nm)である。図7に示す発光スペクトルの色度座標は(x,y)=(0.420,0.554)、ピーク波長は540nm、半値幅は110nmであった。また、MCPD-7000(大塚電子製)を用いて波長600nmの光の吸収率を測定した結果9.3%であった。
 また、MCPD-7000と積分球を組み合わせた測定系により測定した、本製造例2-4に示す蛍光体の内部量子効率は73%であった。
(比較製造例1:Eu賦活αサイアロン蛍光体の作成)
組成式(CaEu)(Si12-(m+n)Alm+n)(O16-n)において、x=0.75、y=0.08、m=1.67、n=0.95のものを得るべく、原料粉末として、α型窒化ケイ素粉末69.0質量%、窒化アルミニウム粉末16.9質量%、炭酸カルシウム粉末11.8質量%、酸化ユーロピウム粉末2.3質量%の組成となるように秤量し、窒化ケイ素焼結体製の乳鉢と乳棒とを用い、10分以上混合し粉体凝集体を得た。
 得られた粉体凝集体を、目開き250μmの篩を通過させ、直径20mm、高さ20mmの大きさの窒化ホウ素製のるつぼに充填した。尚、粉体の秤量、混合、成形の各工程は全て、水分1ppm以下、酸素1ppm以下の窒素雰囲気を保持することができるグローブボックス内で行った。
 次に、該ルツボを、黒鉛抵抗加熱方式の加圧電気炉にセットし、純度が99.999体積%の窒素を導入して圧力を1MPaとし、毎時500℃で1800℃まで昇温し、さらに1800℃で2時間保持して加熱処理を行った。加熱処理によって得られた生成物をメノウ乳鉢で粉砕し、更に50%フッ化水素酸と96%濃硫酸の1:1混酸中で処理し、蛍光体粉末を得た。
得られた蛍光体粉末について、CuのKα線を用いた粉体X線回折測定(XRD)を行ったところ、当該蛍光体粉末はαサイアロン結晶の構造を有することがわかった。また、当該蛍光体粉末に、波長365nmの光を発するランプで照射した結果、橙色に発光することを確認した。
 図8Aは、得られた蛍光体粉末の発光スペクトルを示すグラフであり、縦軸は相対発光強度(任意単位)、横軸は波長(nm)である。また、図8Bは、得られた蛍光体粉末の励起スペクトルを示すグラフであり、縦軸は相対発光強度(任意単位)、横軸は波長(nm)である。
 尚、図8A及び図8Bに示す蛍光体粉末の励起スペクトル及び発光スペクトルは、F-4500(日立製作所製)を用いて測定した結果である。発光スペクトルは、450nmの光で励起して測定し、励起スペクトルは、発光ピークの強度をスキャンして測定した。
図8Aに示す発光スペクトルの色度座標は(x,y)=(0.509,0.484)、ピーク波長は585nm、半値幅は94nmであった。
 また、MCPD-7000と積分球を組み合わせた測定系により測定した、本製造例1に示す蛍光体の内部量子効率は73%であった。
(比較製造例2:Eu賦活CaAlSiN蛍光体の作製)
Ca0.992Eu0.008SiAlNで表される組成式のものを得るべく、窒化アルミニウム粉末29.7質量%、α型窒化ケイ素粉末33.9質量%、窒化カルシウム粉末35.6質量%及び窒化ユーロピウム粉末0.8質量%を秤量し、窒化ケイ素焼結体製の乳鉢と乳棒とを用い、10分以上混合し粉体凝集体を得た。窒化ユーロピウムは、金属ユーロピウムをアンモニア中で窒化して合成したものを用いた。この粉体凝集体を直径20mm、高さ20mmの大きさの窒化ホウ素製のるつぼに自然落下させて入れた。尚、粉末の秤量、混合、成形の各工程は全て、水分1ppm以下、酸素1ppm以下の窒素雰囲気を保持することができるグローブボックス中で行なった。
 次に、当該るつぼを、黒鉛抵抗加熱方式の加圧電気炉にセットし、純度が99.999体積%の窒素を導入して圧力を1MPaとし、毎時500℃で1800℃まで昇温し、更に1800℃で2時間保持して蛍光体試料を得た。得られた蛍光体試料をメノウの乳鉢を用いて粉砕し、蛍光体粉末を得た。当該蛍光体粉末について、CuのKα線を用いた粉末X線回折測定(XRD)を行なったところ、当該蛍光体粉末は、CaAlSiN結晶の構造を有することがわかった。また、当該蛍光体粉末に、波長365nmの光を発するランプで照射した結果、赤色に発光することを確認した。
 図9は、得られた蛍光体粉末の発光スペクトルを示すグラフであり、縦軸は相対発光強度(任意単位)、横軸は波長(nm)である。図9に示す蛍光体粉末の発光スペクトルは、F-4500(日立製作所製)を用いて測定した結果であり、450nmの光で励起した際のものである。図9に示す発光スペクトルの色度座標は(x,y)=(0.657,0.340)、ピーク波長は649nm、半値幅は90nmであった。
 また、MCPD-7000と積分球を組み合わせた測定系により測定した、本比較製造例2に示す蛍光体の内部量子効率は80%であった。
 〔2〕半導体発光装置の作製
 <実施例1~15>
 シリコーン樹脂(商品名:KER2500、信越シリコーン社製)を用い、表2に示す蛍光体を当該シリコーン樹脂と、表3に示す質量比率でそれぞれ混合分散させモールド樹脂を作製し、図1に示した構造を有する、各実施例の半導体発光装置を作製した。
 尚、半導体発光素子として、表2に発光ピーク波長を有するLED(商品名:EZR、Cree社製)を用い、樹脂、橙色蛍光体、緑色蛍光体の各比率は発光装置の色温度が5000K付近となるように適宜調整した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図10~24に、実施例1~15の各半導体発光装置の発光スペクトルを示す。尚、図10~24に示す発光スペクトルは、MCPD-7000(大塚電子製)を用いて測定した。
 <実施例16>
 シリコーン樹脂(商品名:KER2500、信越シリコーン社製)を用い、表4に示す蛍光体を当該シリコーン樹脂と、表4に示す質量比率で混合分散させモールド樹脂を作製し、図1に示した構造を有する、実施例16の半導体発光装置を作製した。
 尚、実施例16では半導体発光素子として、450nmに発光ピーク波長を有するLED(商品名:EZR、Cree社製)を用い、樹脂/蛍光体比率は発光装置の色温度が5000K付近で黒体軌跡に色度点が漸近するように適宜調整した。
 表5に、上記実施例16及び実施例9で作製した各発光装置の発光特性を、表6に使用したEu賦活αサイアロン蛍光体の特性を示す。尚、表5に示す各指標は、MCPD-7000により測定したスペクトルより計算した。
 表5、表6より、実施例9に示す半導体発光装置は、実施例16と比較して、使用した蛍光体の発光特性は同様で有るにも関わらず、演色性が向上している。これは、表6に示すように、橙色蛍光体であるEu賦活αサイアロン蛍光体の平均粒径、比表面積等の粒子形状が異なることに起因すると考えられる。
 実施例9に用いられる製造例1-2で製造されたEu賦活αサイアロン蛍光体は、表6に示すように、実施例16に用いられる製造例1-3で製造されたEu賦活αサイアロン蛍光体と比較して、平均粒径が大きく、比表面積が小さい。より具体的には、製造例1-2で製造されたEu賦活αサイアロン蛍光体は平均粒径が15.3μm、比表面積が0.38m/gであるのに対し、製造例1-3で製造されたEu賦活αサイアロン蛍光体は平均粒径が11.2μm、比表面積が0.78m/gとなっている。よって、製造例1-2で製造されたEu賦活αサイアロン蛍光体は、モールド樹脂中での分散状態が、製造例1-3で製造されたEu賦活αサイアロン蛍光体と異なると考えられる。
 モールド樹脂中でのEu賦活αサイアロン蛍光体の分散状態が異なると、橙色蛍光体による青色光や緑色光の散乱、吸収状態が変化する。この変化が、発光装置の発光スペクトルに影響を及ぼし、実施例9に示す半導体発光装置の演色性を向上させているものと考えられる。
 従って、演色性を向上させるために、Eu賦活αサイアロン蛍光体の平均粒径は、15μm以上であることが好ましく、比表面積は、0.4m/g以下であることが好ましい。また、一般的に比表面積が小さいということは、蛍光体を構成する個々の粒子の粒径が大きく、結晶の均一性が高いことを示していて、結晶の均一性が高いと、蛍光体の発光効率は高くなる。故に、比表面積を0.4m/g以下と小さくすることで、発光効率の向上にも寄与する。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 <比較例1~6>
 シリコーン樹脂(商品名:KER2500、信越シリコーン社製)を用い、表2に示す蛍光体を当該シリコーン樹脂と、表3に示す質量比率でそれぞれ混合分散させモールド樹脂を作製し、図1に示した構造を有する、比較例1~6の半導体発光装置を作製した。
 尚、半導体発光素子として、表2に示す発光ピーク波長を有するLED(商品名:EZR、Cree社製)を用い、樹脂、橙色蛍光体、緑色蛍光体、赤色蛍光体の各比率は発光装置の色温度が5000K付近となるように適宜調整した。なお、比較例1、4は、赤色蛍光体を、比較例3、6は、橙色蛍光体を含まない構成となっている。比較例2、5は、特許文献2に開示された事例に相当するものである。比較例2、5は、特許文献3に開示された事例に相当するものである。
 図25~30に、比較例1~6の半導体発光装置の発光スペクトルをそれぞれ示す。尚、図25~30に示す発光スペクトルは、MCPD-7000(大塚電子製)を用いて測定した。
 表7に、上記実施例及び比較例で作製した各発光装置の発光特性を示す。尚、表7に示す各指標は、図10~図30の発光スペクトルより計算した。図31は、青色LEDのピーク波長が460nmのものである実施例1~8及び比較例1~3で作製した半導体発光装置に関するRaと理論限界視感効率の関係を示したものであり、図32は、青色LEDのピーク波長が450nmである実施例9~15及び比較例4~6で作製した半導体発光装置に関するRaと理論限界効率の関係を示したグラフである。青色LEDのピーク波長が450nmのものについて、Raと理論限界視感効率の関係を示したものである。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 ここで、図31、図32を参照して、本発明の特異な効果について述べる。図31、図32より、Raが向上すると理論限界視感効率が低下するというトレードオフの関係が有ることが分かるが、図中の黒丸で示す本実施例の半導体発光装置は、図中の三角で示す比較例の半導体発光装置と比較して、上記トレードオフの影響が著しく少ないことが分かる。この傾向は特にRaが80以上の領域において顕著であり、本実施例の半導体発光装置は、従来公知の構成のものと比較して、実用的な演色性の領域において著しく高い発光効率を示す構成であることが分かる。
 表8において、上記実施例及び比較例で作成した各発光装置の、理論限界視感効率とLED光度の相対値を比較する。表8に示すLED光度は、電圧5V、電流20mAの駆動条件で、MCPD-7000と積分球ユニットを組み合わせた構成で測定した。
 表8より、本実施例及び比較例におけるLED光度の実測値と理論限界視感効率には、強い相関関係が認められることがわかる。即ち、本発明において理論限界視感効率が高い構成は、実際のLED光度も高くなることが分かる。
 しかしながら、比較例2、3、5、6は実施例より相対LED光度/相対理論限界視感効率の比率が低くなっている。即ち、比較例2、3、5、6で作成された半導体発光装置は、LED光度の実測値が、理論計算により予測されるLED光度より低くなっている。これは、表8において比較例2、3、5、6で作製される半導体発光装置には赤色蛍光体が用いられており、緑色蛍光体が橙色光を吸収することに加えて、赤色蛍光体も緑色光及び橙色光を吸収することにより、二段の変換ロスが生じるため、発光装置の発光効率が低下することに起因する。尚、表8において比較例1、比較例4は実施例よりLED光度が高くなっているが、表7に示すように比較例1、比較例4はRaが70以下、R9が-40以下と演色性が著しく低い。よって、比較例1、比較例4はLED光度は高いが演色性が実用上好ましくない。
 上記のように、本実施例に示す発光装置は、比較例に示す発光装置と比べて、蛍光体間の相互吸収が少ない為、発光効率が高い。この傾向は、実施例1~4及び実施例9~11において、特に顕著であり、これらの実施例は相対LED光度/相対理論限界視感効率の比率が0.97以上と特に高くなっている。これは、実施例1~4及び実施例9~11に使用される緑色蛍光体は、製造例2-1及び2-2に示されるEu賦活βサイアロン蛍光体であることに起因する。Eu賦活βサイアロン蛍光体は、発光スペクトルの半値幅が70nm以下と狭い為、橙色蛍光体の吸収スペクトルと緑色蛍光体の発光スペクトルの重なりが小さくなり、蛍光体間の相互吸収が特に抑制される。
 また、表3及び表8より、青色LEDのピーク波長及び橙色蛍光体が同一のもの同士を比較した場合、製造例2-2の緑色蛍光体を用いた半導体発光装置が最も高いRaを示していることが分かる。これは、製造例2-2に示されるEu賦活βサイアロン蛍光体は、本発明の橙色蛍光体と組み合わせる際に、特に好適な発光スペクトルを有していること示している。
<比較例7~9>
 シリコーン樹脂(商品名:KER2500、信越シリコーン社製)を用い、表9に示す蛍光体を当該シリコーン樹脂と、表10に示す質量比率でそれぞれ混合分散させモールド樹脂を作製し、図1に示した構造を有する、各比較例の半導体発光装置を作製した。
 尚、半導体発光素子として、460nmに発光ピーク波長を有するLED(商品名:EZR、Cree社製)を用い、樹脂、橙色蛍光体、緑色蛍光体の各比率は発光装置の色温度が5000K付近となるように適宜調整した。
 図33~35に、比較例7~9の半導体発光装置の発光スペクトルをそれぞれ示す。尚、図33~35に示す発光スペクトルは、MCPD-7000(大塚電子製)を用いて測定した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
<比較例10>
 シリコーン樹脂(商品名:KER2500、信越シリコーン社製)を用い、市販のCe賦活YAG蛍光体(商品名:P46-Y3、化成オプトニクス製、発光ピーク波長568nm、半値幅129nm、色度座標(x,y)=(0.613,0.386))を当該シリコーン樹脂と、樹脂/蛍光体=11.7の質量比率で混合分散させモールド樹脂を作製し、図1に示した構造を有する、比較例10の半導体発光装置を作製した。
 尚、半導体発光素子として、460nmに発光ピーク波長を有するLED(商品名:EZR、Cree社製)を用い、樹脂/蛍光体比率は発光装置の色温度が5000K付近で黒体軌跡に色度点が漸近するように適宜調整した。
 図36に、比較例10の半導体発光装置の発光スペクトルをそれぞれ示す。尚、図36に示す発光スペクトルは、MCPD-7000(大塚電子製)を用いて測定した。
 表11に、上記実施例及び比較例で作製した各発光装置の発光特性を示す。尚、表11に示す各指標は、図33~図36の発光スペクトルより計算した。図37は、表11に示す実施例1~8及び比較例1、7~9に関しての橙色蛍光体の発光ピーク波長と演色性の関係を示したものである。また、図38は、表11に示す実施例1~8及び比較例1、7~10に関する半導体発光装置のRaと理論限界視感効率の関係を示したものである。
Figure JPOXMLDOC01-appb-T000011
 ここで、図37を参照して、本発明における橙色蛍光体のピーク波長範囲について述べる。図37より、Raは橙色蛍光体のピーク波長が長くなるほど向上し、特に595nm以上の波長でRaが急激に向上することが分かる。即ち、発光装置に用いられる橙色蛍光体のピーク波長について、演色性が急激に向上する変曲点が595nmにあることが示された。
 次に、図38を参照して、本発明における橙色蛍光体の実用上好ましいピーク波長範囲について述べる。図38より、橙色蛍光体の発光ピーク波長が595nm以下のものは、Ce賦活YAGを用いたもの比べてRaが悪くなっている。上述のようにCe賦活YAGのみを半導体発光装置と組み合わせたものは、一般照明用としては演色性が十分でない。即ち、橙色蛍光体の発光ピーク波長が595nm以下のものは実用上充分な演色性を有していない。対して、橙色蛍光体の発光ピーク波長が595nm以上のものは、Ce賦活YAGより演色性が高く、さらに理論限界視感度効率もCe賦活YAGを用いたものより高くなっている。よって、本実施例に示される発光装置は、従来公知の組み合わせより発光効率及び演色性が高く、実用性の高い発光装置となっている。
 さらに、橙色蛍光体の発光ピーク波長が605nm以上となると、Ce賦活YAG蛍光体を用いたものとほぼ同等の理論限界効率でRa>80を満たすので、上記照明のJIS規格を満たし、かつ発光効率の高い発光装置として、実用上さらに好ましい。加えて、R9は上記JIS規格等では特に規定されていないが、595nm以上の橙色蛍光体を用いると、R9>0となることも、実用上好ましい特徴である。上述のように、R9が-5以下などの負値であれば、赤色の見え方が不十分である為、家庭用照明器具等に用いた場合、例えば、人の皮膚の色が不自然に見えてしまう等の不都合が生じる。
 本発明に係る半導体発光装置は、発光効率が高く、高いRa及びR9を示す白色光を発する。このため、家庭用照明、車両用灯具等の各種照明器具に好適に使用することができる。
 1 半導体発光装置
 2 半導体発光素子
 3 プリント配線基板
 4 樹脂枠
 5 モールド樹脂
 6 InGaN層
 7 p側電極
 8 n側電極
 9 n電極部
 10 接着剤
 11 p電極部
 12 金属ワイヤ
 13 橙色蛍光体
 14 緑色蛍光体

Claims (11)

  1.  青色光を発する半導体発光素子と、前記青色光を吸収して緑色光を発する緑色蛍光体と、前記青色光を吸収して橙色光を発する橙色蛍光体とを備え、該橙色蛍光体は、595~620nmの範囲に発光スペクトルのピーク波長を有したEu賦活αサイアロン蛍光体であることを特徴とする半導体発光装置。
  2.  前記Eu賦活αサイアロンが、
    一般式(CaEu)(Si12-(m+n)Alm+n)(O16-n
    で示されるEu賦活αサイアロンで、
     1.1≦x<2.0 ・・・・( 1 )
     0<y<0.4 ・・・・・・( 2 )
     1.5<x+y<2.0 ・・( 3 )
     3.0≦m<4.0 ・・・・( 4 )
     0≦n<y ・・・・・( 5 )
    を満たす組成で設計されていることを特徴とする請求項1に記載の半導体発光装置。
  3.  前記Eu賦活αサイアロンが、
    一般式(CaEu)(Si12-(m+n)Alm+n)(O16-n
    で示されるEu賦活αサイアロンで、
     1.1≦x<1.85 ・・・・( 1’ )
     0.15<y<0.4 ・・・( 2’ )
     1.5<x+y<2.0 ・・( 3’ )
     3.0≦m<4.0 ・・・・( 4’ )
     0≦n<y ・・・・・( 5’ )
    を満たす組成で設計されていることを特徴とする請求項1に記載の半導体発光装置。
  4.  前記Eu賦活αサイアロンの発光スペクトルのピーク波長が、605~620nmであることを特徴とする請求項3に記載の半導体発光装置。
  5.  前記Eu賦活αサイアロン蛍光体の平均粒径が15μm以上であることを特徴とする請求項1~4のいずれかに記載の半導体発光装置。
  6.  前記Eu賦活αサイアロン蛍光体の比表面積が0.4m/g以下であることを特徴とする1~5のいずれかに記載の半導体発光装置。
  7.  前記緑色蛍光体の発光スペクトルのピーク波長が、520nm~550nmの範囲にあることを特徴とする請求項1~6のいずれかに記載の半導体発光装置。
  8.  前記緑色蛍光体として発光スペクトルの半値幅が55nm以下であることを特徴とする請求項7に記載の半導体発光装置。
  9.  前記緑色蛍光体の600nmにおける吸収率が10%以下であることを特徴とする請求項1~8のいずれかに記載の半導体発光装置。
  10.  前記緑色蛍光体が、Eu賦活βサイアロン蛍光体であることを特徴とする請求項1~9のいずれかに記載の半導体発光装置。
  11.  前記Eu賦活βサイアロン蛍光体の酸素濃度が、0.1~0.6重量%の範囲であることを特徴とする請求項10に記載の半導体発光装置。
PCT/JP2012/050065 2011-01-18 2012-01-05 半導体発光装置 WO2012098932A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12736448.7A EP2666841B1 (en) 2011-01-18 2012-01-05 Semiconductor light-emitting device
CN201280005648.7A CN103328608B (zh) 2011-01-18 2012-01-05 半导体发光装置
JP2012553649A JP5676653B2 (ja) 2011-01-18 2012-01-05 半導体発光装置
EP16181473.6A EP3133135B1 (en) 2011-01-18 2012-01-05 Semiconductor light-emitting device
US13/979,554 US9570655B2 (en) 2011-01-18 2012-01-05 Semiconductor light-emitting device
US15/076,757 US9711686B2 (en) 2011-01-18 2016-03-22 Lighting device with plural fluorescent materials

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011008069 2011-01-18
JP2011-008069 2011-01-18
JP2011-119337 2011-05-27
JP2011119337 2011-05-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/979,554 A-371-Of-International US9570655B2 (en) 2011-01-18 2012-01-05 Semiconductor light-emitting device
US15/076,757 Continuation US9711686B2 (en) 2011-01-18 2016-03-22 Lighting device with plural fluorescent materials

Publications (1)

Publication Number Publication Date
WO2012098932A1 true WO2012098932A1 (ja) 2012-07-26

Family

ID=46515563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050065 WO2012098932A1 (ja) 2011-01-18 2012-01-05 半導体発光装置

Country Status (5)

Country Link
US (2) US9570655B2 (ja)
EP (2) EP2666841B1 (ja)
JP (1) JP5676653B2 (ja)
CN (1) CN103328608B (ja)
WO (1) WO2012098932A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224757A (ja) * 2011-04-20 2012-11-15 Ube Industries Ltd Ca含有α型サイアロン蛍光体およびその製造方法
WO2014061748A1 (ja) * 2012-10-17 2014-04-24 宇部興産株式会社 波長変換部材及びそれを用いた発光装置
JP2014167974A (ja) * 2013-02-28 2014-09-11 Toyoda Gosei Co Ltd 蛍光体の選別方法及び発光装置
JP2015028983A (ja) * 2013-07-30 2015-02-12 シャープ株式会社 波長変換部材及び発光装置
KR20160008443A (ko) * 2014-11-10 2016-01-22 엘지전자 주식회사 발광 장치
JP2016207824A (ja) * 2015-04-22 2016-12-08 日亜化学工業株式会社 発光装置及びその製造方法
JP2017017059A (ja) * 2015-06-26 2017-01-19 パナソニックIpマネジメント株式会社 照明用光源及び照明装置
JPWO2016063965A1 (ja) * 2014-10-23 2017-09-07 三菱ケミカル株式会社 蛍光体、発光装置、照明装置及び画像表示装置
WO2020203486A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粉末、複合体および発光装置
WO2020203483A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法
JP2020529733A (ja) * 2017-07-31 2020-10-08 カレント・ライティング・ソルーションズ,エルエルシー 狭帯域緑色蛍光体を有する蛍光体変換白色発光ダイオード
WO2020203488A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粉末、複合体および発光装置
WO2020203487A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粉末、複合体および発光装置
WO2020203485A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法
JP2020164798A (ja) * 2020-02-21 2020-10-08 デンカ株式会社 蛍光体粉末、複合体および発光装置
WO2020209147A1 (ja) * 2019-04-09 2020-10-15 デンカ株式会社 表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置
WO2020209148A1 (ja) * 2019-04-09 2020-10-15 デンカ株式会社 表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置
JP2021011586A (ja) * 2020-10-26 2021-02-04 デンカ株式会社 蛍光体粉末、複合体および発光装置
WO2021079739A1 (ja) * 2019-10-23 2021-04-29 デンカ株式会社 蛍光体プレート、発光装置および蛍光体プレートの製造方法
WO2021157458A1 (ja) * 2020-02-07 2021-08-12 デンカ株式会社 蛍光体プレート、及び発光装置
WO2021176912A1 (ja) * 2020-03-04 2021-09-10 デンカ株式会社 蛍光体プレート、及び発光装置
US11898079B2 (en) 2019-03-29 2024-02-13 Denka Company Limited Phosphor powder, composite, and light-emitting device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008061A (ja) * 2013-06-25 2015-01-15 信越化学工業株式会社 屋外照明
JP6558378B2 (ja) * 2017-01-13 2019-08-14 日亜化学工業株式会社 発光装置
US10270015B1 (en) 2017-01-13 2019-04-23 Nichia Corporation Light-emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307012A (ja) * 2004-04-22 2005-11-04 National Institute For Materials Science サイアロン蛍光体とその製造方法
JP2006057018A (ja) * 2004-08-20 2006-03-02 Dowa Mining Co Ltd 蛍光体およびその製造方法、並びに当該蛍光体を用いた光源
JP2006070088A (ja) * 2004-08-31 2006-03-16 Shoei Chem Ind Co 酸窒化物蛍光体、酸窒化物蛍光体の製造方法及び白色発光素子
JP2006137902A (ja) * 2004-11-15 2006-06-01 Shoei Chem Ind Co 窒化物蛍光体、窒化物蛍光体の製造方法及び白色発光素子
WO2007066733A1 (ja) * 2005-12-08 2007-06-14 National Institute For Materials Science 蛍光体とその製造方法および発光器具
JP2007227928A (ja) * 2006-02-22 2007-09-06 Samsung Electro-Mechanics Co Ltd 白色発光装置
JP2009096882A (ja) * 2007-10-17 2009-05-07 Denki Kagaku Kogyo Kk 蛍光体とその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133352A1 (de) * 2001-07-16 2003-02-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
JP2003321675A (ja) 2002-04-26 2003-11-14 Nichia Chem Ind Ltd 窒化物蛍光体及びその製造方法
JP3837588B2 (ja) 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 蛍光体と蛍光体を用いた発光器具
JP4144877B2 (ja) 2004-03-11 2008-09-03 ユニケミカル株式会社 アミン変性リン酸基を含有する固体高分子電解質膜及びその原料単量体組成物、並びにその固体高分子電解質膜の製造方法及び用途
JP3921545B2 (ja) * 2004-03-12 2007-05-30 独立行政法人物質・材料研究機構 蛍光体とその製造方法
WO2006061778A1 (en) * 2004-12-06 2006-06-15 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a blue-emitting phospor
JP4104013B2 (ja) * 2005-03-18 2008-06-18 株式会社フジクラ 発光デバイス及び照明装置
WO2006134982A1 (ja) * 2005-06-14 2006-12-21 Denki Kagaku Kogyo Kabushiki Kaisha 蛍光体含有樹脂組成物およびシート、それらを用いた発光素子
DE112006001722B4 (de) * 2005-07-01 2021-05-06 National Institute For Materials Science Leuchtstoff und Verfahren zu dessen Herstellung sowie Verwendung des Leuchtstoffs
JP4685627B2 (ja) 2005-12-28 2011-05-18 株式会社日立ハイテクノロジーズ 試料加工方法
KR101096473B1 (ko) 2006-02-02 2011-12-20 미쓰비시 가가꾸 가부시키가이샤 복합 산질화물 형광체, 그것을 사용한 발광 장치, 화상 표시 장치, 조명 장치 및 형광체 함유 조성물, 그리고 복합산질화물
JP5122765B2 (ja) * 2006-06-09 2013-01-16 電気化学工業株式会社 蛍光体の製造方法、蛍光体と照明器具
TWI364853B (en) * 2006-08-14 2012-05-21 Fujikura Ltd Emitting device and illuminating device
JP2008120938A (ja) * 2006-11-14 2008-05-29 Sharp Corp 蛍光体およびその製造方法、ならびに半導体発光装置および画像表示装置
WO2008062781A1 (fr) 2006-11-20 2008-05-29 Denki Kagaku Kogyo Kabushiki Kaisha Substance fluorescente et son procédé de fabrication, et dispositif électroluminescent
JP5367218B2 (ja) * 2006-11-24 2013-12-11 シャープ株式会社 蛍光体の製造方法および発光装置の製造方法
TW200841376A (en) * 2007-02-01 2008-10-16 Matsushita Electric Ind Co Ltd Fluorescent lamp, and light emitting device and display device using fluorescent lamp
US9279079B2 (en) * 2007-05-30 2016-03-08 Sharp Kabushiki Kaisha Method of manufacturing phosphor, light-emitting device, and image display apparatus
JP5263722B2 (ja) 2007-06-08 2013-08-14 シャープ株式会社 蛍光体、発光装置および画像表示装置
WO2009019836A2 (en) * 2007-08-03 2009-02-12 Panasonic Corporation Light-emitting device
JP5941243B2 (ja) * 2007-10-17 2016-06-29 スタンレー電気株式会社 発光装置、それを用いた車両用灯具、およびヘッドランプ
JP5000479B2 (ja) * 2007-12-27 2012-08-15 シャープ株式会社 面光源、表示装置及びその製造方法
WO2009083887A1 (en) * 2008-01-03 2009-07-09 Koninklijke Philips Electronics N.V. Display device and illumination device
US8324798B2 (en) 2010-03-19 2012-12-04 Nitto Denko Corporation Light emitting device using orange-red phosphor with co-dopants

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307012A (ja) * 2004-04-22 2005-11-04 National Institute For Materials Science サイアロン蛍光体とその製造方法
JP2006057018A (ja) * 2004-08-20 2006-03-02 Dowa Mining Co Ltd 蛍光体およびその製造方法、並びに当該蛍光体を用いた光源
JP2006070088A (ja) * 2004-08-31 2006-03-16 Shoei Chem Ind Co 酸窒化物蛍光体、酸窒化物蛍光体の製造方法及び白色発光素子
JP2006137902A (ja) * 2004-11-15 2006-06-01 Shoei Chem Ind Co 窒化物蛍光体、窒化物蛍光体の製造方法及び白色発光素子
WO2007066733A1 (ja) * 2005-12-08 2007-06-14 National Institute For Materials Science 蛍光体とその製造方法および発光器具
JP2007227928A (ja) * 2006-02-22 2007-09-06 Samsung Electro-Mechanics Co Ltd 白色発光装置
JP2009096882A (ja) * 2007-10-17 2009-05-07 Denki Kagaku Kogyo Kk 蛍光体とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2666841A4 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224757A (ja) * 2011-04-20 2012-11-15 Ube Industries Ltd Ca含有α型サイアロン蛍光体およびその製造方法
JPWO2014061748A1 (ja) * 2012-10-17 2016-09-05 宇部興産株式会社 波長変換部材及びそれを用いた発光装置
WO2014061748A1 (ja) * 2012-10-17 2014-04-24 宇部興産株式会社 波長変換部材及びそれを用いた発光装置
CN104736664A (zh) * 2012-10-17 2015-06-24 宇部兴产株式会社 波长转换部件及使用其的发光装置
US9708533B2 (en) 2012-10-17 2017-07-18 Ube Industries, Ltd. Wavelength conversion member and light-emitting device employing same
JP5954425B2 (ja) * 2012-10-17 2016-07-20 宇部興産株式会社 波長変換部材及びそれを用いた発光装置
JP2014167974A (ja) * 2013-02-28 2014-09-11 Toyoda Gosei Co Ltd 蛍光体の選別方法及び発光装置
JP2015028983A (ja) * 2013-07-30 2015-02-12 シャープ株式会社 波長変換部材及び発光装置
JPWO2016063965A1 (ja) * 2014-10-23 2017-09-07 三菱ケミカル株式会社 蛍光体、発光装置、照明装置及び画像表示装置
KR20160008443A (ko) * 2014-11-10 2016-01-22 엘지전자 주식회사 발광 장치
KR102100193B1 (ko) 2014-11-10 2020-04-13 엘지전자 주식회사 발광 장치
JP2016207824A (ja) * 2015-04-22 2016-12-08 日亜化学工業株式会社 発光装置及びその製造方法
JP2017017059A (ja) * 2015-06-26 2017-01-19 パナソニックIpマネジメント株式会社 照明用光源及び照明装置
JP7332578B2 (ja) 2017-07-31 2023-08-23 カレント・ライティング・ソルーションズ,エルエルシー 狭帯域緑色蛍光体を有する蛍光体変換白色発光ダイオード
JP2020529733A (ja) * 2017-07-31 2020-10-08 カレント・ライティング・ソルーションズ,エルエルシー 狭帯域緑色蛍光体を有する蛍光体変換白色発光ダイオード
US11339325B2 (en) 2019-03-29 2022-05-24 Denka Company Limited Phosphor particle, composite, light-emitting device, and method for producing phosphor particle
US11359139B2 (en) 2019-03-29 2022-06-14 Denka Company Limited Phosphor powder, composite, and light-emitting device
KR20210128005A (ko) * 2019-03-29 2021-10-25 덴카 주식회사 형광체 입자, 복합체, 발광 장치 및 형광체 입자의 제조 방법
WO2020203485A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法
JP2020164754A (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粉末、複合体および発光装置
KR20210128006A (ko) * 2019-03-29 2021-10-25 덴카 주식회사 형광체 입자, 복합체, 발광 장치 및 형광체 입자의 제조 방법
TWI829904B (zh) * 2019-03-29 2024-01-21 日商電化股份有限公司 螢光體粉末、複合體及發光裝置
WO2020203486A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粉末、複合体および発光装置
WO2020203488A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粉末、複合体および発光装置
JP7436214B2 (ja) 2019-03-29 2024-02-21 デンカ株式会社 蛍光体粉末、複合体および発光装置
KR20210128007A (ko) * 2019-03-29 2021-10-25 덴카 주식회사 형광체 분말, 복합체 및 발광 장치
US11434422B2 (en) 2019-03-29 2022-09-06 Denka Company Limited Phosphor powder, composite, and light-emitting device
WO2020203487A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粉末、複合体および発光装置
US11898079B2 (en) 2019-03-29 2024-02-13 Denka Company Limited Phosphor powder, composite, and light-emitting device
US11485906B2 (en) 2019-03-29 2022-11-01 Denka Company Limited Phosphor particle, composite, light-emitting device, and method for producing phosphor particle
KR102336243B1 (ko) 2019-03-29 2021-12-07 덴카 주식회사 형광체 입자, 복합체, 발광 장치 및 형광체 입자의 제조 방법
KR102336244B1 (ko) 2019-03-29 2021-12-07 덴카 주식회사 형광체 분말, 복합체 및 발광 장치
KR102336242B1 (ko) 2019-03-29 2021-12-07 덴카 주식회사 형광체 입자, 복합체, 발광 장치 및 형광체 입자의 제조 방법
WO2020203483A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法
WO2020209148A1 (ja) * 2019-04-09 2020-10-15 デンカ株式会社 表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置
WO2020209147A1 (ja) * 2019-04-09 2020-10-15 デンカ株式会社 表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置
TWI829912B (zh) * 2019-04-09 2024-01-21 日商電化股份有限公司 表面被覆螢光體粒子、表面被覆螢光體粒子之製造方法以及發光裝置
WO2021079739A1 (ja) * 2019-10-23 2021-04-29 デンカ株式会社 蛍光体プレート、発光装置および蛍光体プレートの製造方法
WO2021157458A1 (ja) * 2020-02-07 2021-08-12 デンカ株式会社 蛍光体プレート、及び発光装置
JP2020164798A (ja) * 2020-02-21 2020-10-08 デンカ株式会社 蛍光体粉末、複合体および発光装置
JP7432705B2 (ja) 2020-03-04 2024-02-16 デンカ株式会社 蛍光体プレート、及び発光装置
WO2021176912A1 (ja) * 2020-03-04 2021-09-10 デンカ株式会社 蛍光体プレート、及び発光装置
JP2021011586A (ja) * 2020-10-26 2021-02-04 デンカ株式会社 蛍光体粉末、複合体および発光装置
JP7252186B2 (ja) 2020-10-26 2023-04-04 デンカ株式会社 蛍光体粉末、複合体および発光装置

Also Published As

Publication number Publication date
US9711686B2 (en) 2017-07-18
US20160204311A1 (en) 2016-07-14
JPWO2012098932A1 (ja) 2014-06-09
CN103328608B (zh) 2015-04-22
EP3133135A1 (en) 2017-02-22
EP2666841A1 (en) 2013-11-27
CN103328608A (zh) 2013-09-25
JP5676653B2 (ja) 2015-02-25
US20130285104A1 (en) 2013-10-31
EP3133135B1 (en) 2019-03-06
EP2666841A4 (en) 2014-08-20
US9570655B2 (en) 2017-02-14
EP2666841B1 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5676653B2 (ja) 半導体発光装置
JP5450625B2 (ja) 発光装置
JP4869317B2 (ja) 赤色蛍光体およびそれを用いた発光装置
JP5791034B2 (ja) 発光装置
JP5216330B2 (ja) 放射線源および発光物質を含む照明系
JP5511820B2 (ja) アルファ−サイアロン発光体
JP5777032B2 (ja) 発光装置
WO2007004493A1 (ja) 蛍光体とその製造方法および照明器具
WO2007004492A1 (ja) 蛍光体とその製造方法および照明器具
JP4825923B2 (ja) 赤色蛍光体およびそれを用いた発光装置
JP2006282872A (ja) 窒化物蛍光体または酸窒化物蛍光体、及びその製造方法、並びに当該蛍光体を用いた発光装置
JP6323177B2 (ja) 半導体発光装置
JP6287268B2 (ja) 発光装置
TWI458806B (zh) β型矽鋁氮氧化物之製造方法、β型矽鋁氮氧化物及發光裝置
WO2012165032A1 (ja) 発光装置
JP5783512B2 (ja) 発光装置
JP4948015B2 (ja) アルミン酸系青色蛍光体およびそれを用いた発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553649

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012736448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012736448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13979554

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE