WO2012090708A1 - 反応性ポリシロキサン溶液の製造方法 - Google Patents

反応性ポリシロキサン溶液の製造方法 Download PDF

Info

Publication number
WO2012090708A1
WO2012090708A1 PCT/JP2011/078908 JP2011078908W WO2012090708A1 WO 2012090708 A1 WO2012090708 A1 WO 2012090708A1 JP 2011078908 W JP2011078908 W JP 2011078908W WO 2012090708 A1 WO2012090708 A1 WO 2012090708A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
reactive polysiloxane
general formula
washing
polysiloxane
Prior art date
Application number
PCT/JP2011/078908
Other languages
English (en)
French (fr)
Inventor
尚正 古田
昭憲 北村
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to CN201180051751.0A priority Critical patent/CN103228706B/zh
Priority to KR1020137012647A priority patent/KR101763986B1/ko
Priority to US13/996,760 priority patent/US8940852B2/en
Priority to JP2012550818A priority patent/JP5527433B2/ja
Publication of WO2012090708A1 publication Critical patent/WO2012090708A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/32Post-polymerisation treatment
    • C08G77/34Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a method for producing a polymer solution in which a reactive polysiloxane having a reactive functional group comprising a (meth) acryloyl group or an oxetanyl group is dissolved in an organic solvent.
  • the curable composition containing the reactive polysiloxane gives a cured film having excellent heat resistance.
  • a polysiloxane having a reactive functional group such as a (meth) acryloyl group when stored alone, undergoes partial cross-linking, so that the solubility in an organic solvent is reduced and the polysiloxane is dissolved in the organic solvent. It may disappear.
  • a polysiloxane when preserve
  • An unfavorable problem is that gelation or insolubilization occurs in a process after the synthesis of polysiloxane, for example, a concentration process, a dilution process, etc., and the target product cannot be obtained.
  • Patent Document 1 discloses a method for producing a polysiloxane macromonomer having a reactive functional group such as a (meth) acryloyl group, and when the alkoxysilane is subjected to hydrolysis and condensation using a catalyst dissolved in the system, It is described that condensation progresses over time and a gel or the like may occur.
  • organic solvents such as alcohols, ketones and ethers can be used in the production process, it is preferable to remove the organic solvent out of the system during or after the process, and alcohol produced as a by-product by condensation. Further, it is described that the polymer may be precipitated when the organic solvent remains.
  • Patent Document 2 discloses a production method including the following six steps as a production method of a reactive polysiloxane having a reactive functional group such as a (meth) acryloyl group and soluble in an organic solvent.
  • First step As raw materials, an organosilicon compound A1 having a (meth) acryloyl group and a hydrolyzable group and a silicon compound B1 in which four siloxane bond-forming groups are bonded to a silicon atom, A step of hydrolytic copolycondensation of the silicon compound B1 in an amount of 0.3 to 1.8 mol with respect to 1 mol under alkaline conditions.
  • Second step A step of neutralizing the reaction solution obtained in the first step with an acid.
  • Third step A step of removing volatile components from the neutralized solution obtained in the second step.
  • Fourth step A step of mixing and contacting the concentrate obtained in the third step with the organic solvent for washing to dissolve at least the condensate in the organic solvent for washing.
  • 5th process The process of obtaining the organic solution containing a condensate, after wash
  • Step 6 Step of removing volatile components from the organic solution obtained in Step 5.
  • the organic solvent for washing used in the fourth step is preferably one that can dissolve the condensate and is easily separated from water.
  • the organic solvent for washing include methyl isobutyl ketone and the like. Ketones; ethers such as diisopropyl ether; aromatic hydrocarbons such as toluene; aliphatic hydrocarbons such as hexane; esters such as ethyl acetate; and the like.
  • Patent Document 2 discloses that a curable composition can be prepared by adding an organic solvent and other components to the condensate (reactive polysiloxane) obtained in the sixth step.
  • an organic solvent alcohols such as ethanol and isopropyl alcohol capable of dissolving a condensate (reactive polysiloxane); alkylene glycol monoalkyl ethers such as propylene glycol monomethyl ether; aromatic compounds such as toluene and xylene; propylene glycol monomethyl ether Examples include esters such as acetate, ethyl acetate and butyl acetate; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ethers such as dibutyl ether; and N-methylpyrrolidone.
  • the organic washing water is once used in the sixth step. After removing the solvent, a solution composition can be produced without going through a so-called solvent replacement step in which an organic solvent different from the organic solvent for washing is added to obtain a curable composition. Therefore, it is a desirable method that reduces the energy and cost involved in the production of the curable composition and shortens the production time.
  • a compound that does not attack the surface of the article must be selected as the organic solvent used to prepare the curable composition, and the usable organic solvents are limited. .
  • ethyl acetate is not preferred for attacking substrates including polycarbonate and the like. Furthermore, it was unpredictable that it was found that gels were likely to be generated during long-term storage when ethyl acetate was used as the washing organic solvent and the solvent composition was replaced without solvent substitution.
  • a reactive polysiloxane having a reactive functional group and soluble in an organic solvent and a method for producing the same have been conventionally known.
  • a polymer solution is prepared by diluting with an organic solvent, and other components. It has also been known to prepare curable compositions by adding.
  • the organic solvent for washing and the organic solvent for dilution are different from each other in required action or characteristics, they cannot always be shared.
  • the object of the present invention is to synthesize (meth) acryloyl group or oxetanyl without the gelation in the concentration step, dilution step, etc. after synthesis of the reactive polysiloxane in the condensation step, and excellent in the storage stability of the polysiloxane solution. It is to provide a method for producing a polymer solution having a reactive functional group comprising a group.
  • the present inventors hydrolyzed and copolycondensed a raw material compound containing an organosilicon compound having a reactive functional group consisting of a (meth) acryloyl group or an oxetanyl group and a siloxane bond-forming group, and the following general formula
  • a condensation step of synthesizing the reactive polysiloxane represented by (1), a dissolving step of dissolving the obtained reactive polysiloxane in an organic solvent for washing, the obtained organic solution, and water are brought into contact with each other;
  • the aqueous layer is removed from the liquid mixture and the oil layer containing the reactive polysiloxane is recovered.
  • the manufacturing further comprises a concentration step for removing the solvent so that a part of the organic solvent for water washing contained in the oil layer (reactive polysiloxane solution containing the organic solvent for water washing) obtained by the washing step remains.
  • a concentration step for removing the solvent so that a part of the organic solvent for water washing contained in the oil layer (reactive polysiloxane solution containing the organic solvent for water washing) obtained by the washing step remains.
  • R 0 is an organic group containing a functional group selected from a methacryloyl group, an acryloyl group, and an oxetanyl group
  • R 1 represents at least one functional group having 1 to 10 carbon atoms
  • R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 5 is a carbon atom having 1 to 6 carbon atoms.
  • a hydrogen group, n is 0 or 1
  • a, w, x, y and z represent the number of moles
  • w is a positive number
  • a, x, y and z are 0 or positive.
  • the reactive polysiloxane solution obtained by the production method of the present invention is a solution containing the organic solvent for washing as part or all of the medium, and is excellent in storage stability. Moreover, after synthesizing the reactive polysiloxane in the condensation step, a polysiloxane solution can be produced smoothly without gelation in the concentration step, dilution step, or the like. Furthermore, since it can be set as the manufacturing method provided with a concentration process after a washing
  • organic solvents for washing such as propylene glycol monobutyl ether, 1-pentanol, 2-methyl-1-butanol and 1-octanol are prepared by adding additives to the polymer solution because there is no fear of damaging the resin. It is also preferable to apply the prepared curable composition to the surface of a member containing a resin.
  • (meth) acryl means acryl and methacryl
  • (meth) acrylate means acrylate and methacrylate
  • the “(meth) acryloyl group” means an acryloyl group and a methacryloyl group.
  • the reactive polysiloxane produced by the present invention is represented by the following general formula (1). That is, this reactive polysiloxane is used for the hydrolysis condensation reaction of a raw material compound containing an organosilicon compound having a reactive functional group consisting of a (meth) acryloyl group or oxetanyl group and a siloxane bond-forming group, which will be described later. It is the polymer obtained by using.
  • the siloxane bond-forming group means a group that forms a siloxane bond by a hydrolysis condensation reaction, and examples thereof include a hydrolyzable group and a hydroxyl group.
  • examples of the siloxane bond-forming group include a hydroxyl group, a halogeno group, and an alkoxy group.
  • an alkoxy group is preferable and an alkoxy group having 1 to 3 carbon atoms is more preferable because it has good hydrolyzability and does not by-produce an acid. This description is applied to R 11 and the like in the general formula (5) described later.
  • R 0 is an organic group containing a functional group selected from a methacryloyl group, an acryloyl group, and an oxetanyl group
  • R 1 is at least one functional group having 1 to 10 carbon atoms
  • R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 5 is a carbon atom having 1 to 6 carbon atoms.
  • a hydrogen group, n is 0 or 1
  • a, w, x, y and z represent the number of moles
  • w is a positive number
  • a, x, y and z are 0 or positive.
  • R 0 in the general formula (1) is an organic group selected from the following general formulas (2) and (3).
  • R 6 is a hydrogen atom or a methyl group
  • R 7 is an alkylene group having 1 to 6 carbon atoms.
  • R 8 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 9 is an alkylene group having 1 to 6 carbon atoms.
  • the reactive polysiloxane is a polymer containing a structural unit represented by the following formula (12) and may contain a structural unit represented by the following formulas (11) and (13) to (15). .
  • it may become a polymer further containing a silanol group.
  • the structural unit represented by the above formula (11) has four Si—O— bonds and is also called “Q structure”.
  • a raw material compound that gives a Q structure by a condensation reaction is called a “Q monomer”, and this Q monomer is a silicon compound having a tetrafunctional siloxane bond-forming group such as tetraalkoxysilane or tetrahalogenosilane.
  • Preferred tetraalkoxysilanes include tetraalkoxysilanes having 1 to 3 carbon atoms such as tetramethoxysilane (TMOS), tetraethoxysilane, tetra1-propoxysilane, tetra2-propoxysilane, and the like.
  • the structural unit represented by the above formula (12) is a structural unit having a reactive functional group derived from an organosilicon compound represented by the following general formula (5).
  • R 0 is an organic group represented by General Formula (2) or (3)
  • R 1 is an organic group containing at least one functional group having 1 to 10 carbon atoms.
  • R 11 is a siloxane bond-forming group, and n is 0 or 1.
  • R 7 and R 9 are both propylene groups. This is because it is easy to obtain or synthesize the organosilicon compound represented by the general formula (5), which is a raw material compound that forms the structural unit (12) having such an organic functional group.
  • Preferred R 6 is a methyl group
  • preferred R 8 is an ethyl group.
  • the reactive polysiloxane when R 0 is an organic group of the general formula (2) has radical polymerizability
  • the reactive polysiloxane when R 0 is an organic group of the general formula (3) is a cation Has polymerizability.
  • the reactive polysiloxane may be a compound containing the organic group represented by the general formula (2) and the organic group represented by the general formula (3) in the same polymer chain.
  • a polymer having a structure of the general formula (2) and a polymer having a structure of the general formula (3) may be included.
  • a polymer solution containing at least a reactive polysiloxane having a structure of the general formula (2) is preferable.
  • R 1 in the above general formulas (1) and (5) is an organic group containing at least one functional group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms, It is selected from an organic group having a 7-10 aralkyl group or an aryl group having 6-10 carbon atoms and may be the same or different.
  • n is 0 or 1.
  • the structural unit represented by the general formula (12) has three Si—O— bonds, and is also called “T structure”.
  • the structural unit in the case where n is 1 has two Si—O— bonds, and is also called “D structure”.
  • T monomer a trifunctional organosilicon compound having three siloxane bond-forming groups in the molecule and giving a T structure
  • D monomers a trifunctional organosilicon compound having three siloxane bond-forming groups in the molecule and giving a T structure
  • Bifunctional organosilicon compounds that give structure are called “D monomers”.
  • the T monomer and D monomer are included in the compound represented by the general formula (5).
  • the hardness and heat resistance of the resulting cured product are improved.
  • this ratio is too large, the polysiloxane tends to become insoluble, and the viscosity of the polymer solution tends to increase, making it difficult to handle. That is, the value of the ratio (molar ratio a / w) of the structural unit represented by the general formula (11) and the structural unit represented by the general formula (12) has a preferable range. In the present invention, 0 ⁇ a / W ⁇ 3. The range varies depending on the type of the structural unit (12).
  • the structural unit (12) contains, as R 0 , a methacryloyl group or an acryloyl group, preferably 0.3 ⁇ a / w ⁇ 1.8, and more preferably 0.8 ⁇ a / w ⁇ 1. 8 and particularly preferably 1.0 ⁇ a / w ⁇ 1.8.
  • the structural unit (12) contains an oxetanyl group as R 0 , preferably 0.3 ⁇ a / w ⁇ 2.8, and more preferably 0.8 ⁇ a / w ⁇ 2.5. It is.
  • the preferred range of a / w is the same.
  • the reason why the preferable range of a / w is different is that the hydrolysis reactivity of the raw material compound forming the structural unit (12) differs depending on the type of the side chain, and therefore the preferable balance with the structural unit (11) This is because the range that can be taken is different.
  • a reactive polysiloxane having a desired composition is usually obtained by making the composition ratio of the raw material compound charged equal to the proportion of the corresponding structural unit.
  • the ratio of the inorganic part not containing carbon atoms and the organic part containing carbon atoms is not limited.
  • the proportion of the T structure in which n is 0 in the structural unit (12) is larger, and in order to improve the solubility of the reactive polysiloxane in the organic solvent.
  • the ratio of the D structure in which n is 1 is preferably larger.
  • the polymer solution according to the present invention may contain a reactive polysiloxane having structural units of T structure and D structure in the same molecule, or reactive polysiloxane having T structure and reactivity having D structure. And polysiloxane.
  • the content ratio of the T structure and the D structure is determined by the charging ratio of the raw material compound when synthesizing the reactive polysiloxane.
  • the content ratio of the T structure and the D structure is appropriately selected depending on the use of the reactive polysiloxane.
  • the preferred reactive polysiloxane is a polysiloxane having an average value of n of 0 to 0.5 in the general formula (1), more preferably a polysiloxane having an average value of n of 0 to 0.3. Siloxane.
  • T monomer examples include 2-acryloxyethyltrimethoxysilane, 2-acryloxyethyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 2-methacryloxyethyltrimethoxysilane.
  • Examples of the D monomer include 2-acryloxyethyldimethoxymethylsilane, 2-acryloxyethyldiethoxyethylsilane, 3-acryloxypropyldimethoxymethylsilane, 3-acryloxypropyldiethoxyethylsilane, 2-methacryloxy.
  • R 2 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • R 2 is preferably a methyl group or a phenyl group, more preferably a methyl group having a small steric hindrance.
  • Two R 2 s may be the same or different. If different, for example, it can be a methyl group and a phenyl group.
  • organosilicon compound that gives the structural unit (13) examples include dimethoxymethylsilane, dimethoxydimethylsilane, dimethoxymethylphenylsilane, dimethoxydiphenylsilane, diethoxymethylsilane, diethoxydimethylsilane, diethoxymethylphenylsilane, and diethoxydiphenyl. Silane etc. are mentioned.
  • the proportion of the structural units (11), (12) and (13) constituting the reactive polysiloxane satisfies 0 ⁇ x / (a + w) ⁇ 2, preferably 0 ⁇ x / (a + w) ⁇ 1. . That is, the reactive polysiloxane may be a polymer containing the structural unit (13) or a polymer not containing it.
  • R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • R 3 is preferably a methyl group, an ethyl group, a propyl group or a phenyl group, more preferably a methyl group.
  • R 4 is preferably a methyl group, an ethyl group, or a propyl group, and more preferably a methyl group.
  • R 3 and two R 4 may be the same hydrocarbon group, or R 3 and two R 4 may be different hydrocarbon groups. .
  • the proportion of the structural units (11), (12) and (14) constituting the reactive polysiloxane satisfies 0 ⁇ y / (a + w) ⁇ 2, preferably 0 ⁇ y / (a + w) ⁇ 1. . That is, the reactive polysiloxane may be a polymer containing the structural unit (14) or a polymer not containing it.
  • the structural unit represented by the above formula (14) has one Si—O— bond and is also called “M structure”.
  • the M structure functions to block the end of the polysiloxane condensation chain.
  • M monomer a raw material compound that gives an M structure having only one siloxane bond-forming group after condensation.
  • Examples of the M monomer include methoxytrimethylsilane, ethoxytrimethylsilane, methoxytriethylsilane, hydroxytrimethylsilane, hexamethyldisiloxane and the like.
  • R 5 is an alkyl group having 1 to 6 carbon atoms.
  • R 5 is preferably a methyl group, an ethyl group or a propyl group, more preferably a propyl group, more preferably an n-propyl group.
  • the structural unit (15) is a structural unit formed from the organosilicon compound (S1) and the silicon compound (S2). This structural unit (15) is formed, for example, when the reaction in the siloxane bond-forming group does not proceed and polycondensation does not occur in the condensation step.
  • the proportion of the structural units (11) to (15) constituting the reactive polysiloxane satisfies 0 ⁇ z / (a + w + x + y) ⁇ 1, preferably 0.01 ⁇ z / (a + w + x + y) ⁇ 0.5. .
  • the method for producing a reactive polysiloxane solution of the present invention is an organosilicon compound having a reactive functional group comprising a (meth) acryloyl group or an oxetanyl group and a siloxane bond-forming group, that is, represented by the above general formula (5).
  • the compound represented by the general formula (5) is a T monomer or a D monomer which is an organosilicon compound having a reactive functional group and a siloxane bond-forming group. , Containing Q monomer.
  • the copolycondensation is usually carried out in a solvent in the presence of a catalyst
  • the reaction solvent include those having 1 to 3 carbon atoms such as methanol, ethanol, 1-propanol, 2-propanol and the like.
  • Alcohol, tetrahydrofuran, acetone or the like is used.
  • the catalyst may be either an acidic catalyst or a basic catalyst, but is preferably a basic catalyst.
  • Examples of the basic catalyst include ammonia, organic amine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, choline, sodium hydroxide, potassium hydroxide, and calcium hydroxide. Can be mentioned. Of these, ammonium compounds having a quaternary nitrogen atom with good catalytic activity are preferred, and tetramethylammonium hydroxide is more preferred.
  • the condensation step is preferably performed while adding a mixture containing Q monomer and catalyst to a reactor containing T monomer and / or D monomer.
  • a Q monomer and a catalyst are separately added to a reactor containing T monomer and / or D monomer, and T monomer and / or D monomer and Q monomer are added to the reactor.
  • the method include a method in which water is stored and a catalyst is added thereto. A part of the catalyst may be accommodated in the reactor in advance.
  • R 2 in the organosilicon compound providing the structural unit (13) and R 3 and R 4 in the organosilicon compound providing the structural unit (14) are both hydrogen atoms. Rather, it is preferably a hydrocarbon group having 1 to 10 carbon atoms.
  • the amount of water used for the hydrolysis is preferably 0.5 to 10 equivalents with respect to 1 equivalent of the siloxane bond-forming group contained in the raw material compound.
  • the amounts of the Q monomer and the T monomer and / or D monomer used are a mole and w mole, respectively, the molar ratio a / w is 3 or less.
  • the raw material compound which gives the said structural units (13) and (14) is used based on the ratio selected suitably as follows. That is, the amount of the raw material compound giving the structural unit (13) is preferably 0 ⁇ x / (a + w) ⁇ 2, more preferably 0 ⁇ x / (a + w) ⁇ 1, In addition, it is selected together with the amount of the T monomer and / or D monomer used.
  • the amount of the raw material compound giving the structural unit (14) is preferably 0 ⁇ y / (a + w) ⁇ 2, more preferably 0 ⁇ y / (a + w) ⁇ 1, and the Q monomer, It is selected together with the amount of the T monomer and / or D monomer used.
  • a neutralization step for neutralizing the obtained reaction solution, and an organic solvent containing alcohol produced as a by-product in the condensation step is removed from the obtained neutralization solution. And a solvent removal step.
  • the reaction temperature in the production method of the present invention is the temperature of the reaction solution in the step of copolycondensing the raw material compound (condensation step), but the copolycondensation is performed using an acidic catalyst or a basic catalyst.
  • the reaction temperature is substantially the temperature until the neutralization step for neutralizing the reaction solution obtained in the condensation step is completed.
  • the reaction time means the time from the completion of the mixing of the T monomer or D monomer and the Q monomer to the completion of the neutralization step.
  • the condensation step is a simple method that is performed at a constant temperature.
  • the present inventors have found that if the reaction temperature is too high, it becomes difficult to control the condensation reaction, which is expensive in terms of energy, and further, the decomposition of the methacryloyl group or acryloyl group proceeds. On the other hand, it has been found that if the reaction temperature is too low, the reaction time becomes longer, and gel tends to be formed during the reaction. Therefore, the upper limit of the reaction temperature is preferably 100 ° C, more preferably 80 ° C, and still more preferably 60 ° C.
  • the lower limit temperature is preferably 0 ° C., more preferably 15 ° C., and further preferably 30 ° C. in consideration of the possibility of the reaction solution freezing.
  • the reaction temperature may be constant from start to finish or may be raised.
  • the Q monomer is added to a reactor containing T monomer and / or D monomer at a low temperature (for example, 30 ° C.) at the initial stage of addition.
  • a method of gradually raising the temperature is also preferable.
  • the condensation rate of the raw material compound is preferably 92% or more, more preferably 95% or more, and still more preferably 98% or more, in molar units. It is most preferable that substantially all of the siloxane bond-forming groups (including hydrolyzable groups) are condensed, but the upper limit of the condensation rate is usually 99.9%. Therefore, the reactive polysiloxane solution according to the production method of the present invention may contain the reactive polysiloxane in which the hydrolyzable group that has not been condensed remains in the structure of the general formula (1).
  • the residual ratio of the hydrolyzable group is preferably 8% or less, more preferably 2% or less in terms of molar units.
  • the remaining ratio can be calculated from the integration ratio of each signal on the 1 H-NMR (nuclear magnetic resonance spectrum) chart. it can. Note that “substantially all of the hydrolyzable groups are condensed” means that, for example, almost no signal based on hydrolyzable groups is observed in the 1 H-NMR chart of the obtained reactive polysiloxane. Can be confirmed.
  • the production method of the present invention preferably includes a neutralization step of neutralizing the reaction solution containing the reactive polysiloxane after the condensation step.
  • the neutralized reaction solution When the neutralized reaction solution is used, the reactive polysiloxane can be used as it is in the dissolving step without being denatured and dissolved in an organic solvent for washing, and can be advanced to the washing step.
  • the condensation step when a raw material compound in which the siloxane bond-forming group is an alkoxy group is used, an alcohol derived from the alkoxy group and corresponding to the number of carbon atoms is by-produced. Also, when alcohol is used as the reaction solvent, the reaction solution contains alcohol.
  • a solvent removal step for removing alcohol contained in the reaction solution is performed before the dissolution step. It is preferable to provide.
  • the neutralization step it is preferable to use the neutralized solution obtained in the neutralization step for the solvent removal step. By providing this solvent removal step, the yield in the cleaning step is improved.
  • the concentration of the reactive polysiloxane is preferably 20 to 90% by mass.
  • the organic solvent for washing used in the dissolving step is a compound having a hydroxyl group, a boiling point at 1 atm of 110 ° C. or more and 200 ° C. or less, and a solubility in 100 g of water at 20 ° C. of 10 g or less.
  • the washing organic solvent is a compound that dissolves the reactive polysiloxane and preferably forms an oil layer containing the reactive polysiloxane that is well separated from the aqueous layer in the washing step.
  • the organic solvent for washing may become at least a part of the medium in the finally obtained polysiloxane solution, it is preferably a compound that has an appropriate vapor pressure and does not easily attack the resin.
  • the number of hydroxyl groups in the organic solvent for washing is preferably 1 or more, more preferably 1.
  • the boiling point of the organic solvent for washing is preferably 130 ° C. or higher and 180 ° C. or lower.
  • Use of an organic solvent having a boiling point of less than 110 ° C. is not preferable because the difference in boiling point between water and alcohol by-produced by hydrolysis is small and removal of water and by-product alcohol by distillation does not proceed smoothly.
  • the concentration step related to the concentration adjustment of the reactive polysiloxane may not proceed smoothly after the washing step, and a curable composition is prepared.
  • the solubility in water is based on a general definition in which the above washing organic solvent is added to 100 g of water at a temperature of 20 ° C., and the amount that can be uniformly dissolved is defined as solubility.
  • solubility since propylene glycol monomethyl ether (PGM) is uniformly mixed with an arbitrary amount of water, the solubility in water is expressed as infinite, and propylene glycol monobutyl ether dissolves in 6 g per 100 g of water, so the solubility is 6 It is.
  • preferable organic solvents for washing include 1-octanol, 1-pentanol, 2-methyl-1-butanol, and propylene glycol monobutyl ether. Of these, 1-pentanol and propylene glycol monobutyl ether are more preferable, and propylene glycol monobutyl ether is more preferable. Only 1 type may be used for the said organic solvent for water washing, and it can also use 2 or more types together.
  • the use amount of the organic solvent for washing is preferably 20 to 500 parts by mass with respect to 100 parts by mass of the theoretical production amount of the reactive polysiloxane, from the viewpoint of separability of the water layer and the oil layer in the washing step and economical efficiency. More preferred is 50 to 200 parts by mass.
  • the washing step is a step of removing the aqueous layer from the mixed solution after contacting water with an organic solution obtained by dissolving the reactive polysiloxane in the washing organic solvent obtained by the dissolving step. That is, in this washing step, the water-soluble component in the organic solution is transferred to the aqueous layer by separating the mixed solution into the oil layer and the aqueous layer, and the aqueous layer is removed from the oil layer containing the reactive polysiloxane. It is. By this washing step, the oil layer is recovered, and a polysiloxane solution in which the reactive polysiloxane is dissolved in the washing organic solvent can be obtained.
  • the concentration of the reactive polysiloxane is usually 50% by mass or more and may contain water, an organic compound, etc., but the medium is mainly an organic solvent for washing. .
  • a separating funnel In small-scale production, generally, there is a method of discharging an aqueous layer from the bottom of a separating funnel after bringing water and an organic solution into contact with each other or mixing them using an apparatus called a separating funnel.
  • a separating funnel an apparatus called a separating funnel.
  • addition of water and discharge of the aqueous layer may be repeated until the water-soluble component in the oil layer is sufficiently removed from the oil layer, and the aqueous layer is made acidic according to the water-soluble component to be removed. Or making it alkaline.
  • a method using an aqueous solution of an inorganic salt is also known.
  • a counter-current extraction apparatus using the same principle is known, but any method can be used in the production method of the present invention.
  • a saturated salt solution etc. are mentioned other than deionized water,
  • the conventionally well-known water component used for the water washing of an organic polymer can be used.
  • the concentration of the reactive polysiloxane is preferably 0.1 to 80% by mass, more preferably 1 to 70% by mass, and still more preferably 10 to 60%. % By mass.
  • the polymer solution obtained by the production method of the present invention may contain other organic solvent added later if necessary.
  • the other organic solvent is a compound that dissolves the reactive polysiloxane, preferably a compound having one alcoholic hydroxyl group, and examples thereof include alkyl alcohol and propylene glycol monoalkyl ether.
  • Other organic solvents can be used as the organic solvent for dilution.
  • the organic solvent for washing it is preferable that 1% by mass or more and 100% by mass or less of the organic solvent for washing is the above-mentioned organic solvent for washing.
  • the ratio of the organic solvent for washing is more preferably 50% by mass or more and 100% by mass or less, and particularly preferably 100% by mass.
  • the number average molecular weight (Mn) of the reactive polysiloxane can be calculated, for example, in terms of standard polystyrene by conducting gel permeation chromatography (GPC) analysis at 40 ° C. using tetrahydrofuran (THF) as a carrier solvent.
  • Mn is 500 to 100,000, more preferably 1,000 to 50,000, and still more preferably 2,000 to 20,000.
  • the reactive polysiloxane obtained in the condensation step is washed using a specific organic solvent for water washing.
  • a specific organic solvent for water washing.
  • the organic solvent has a boiling point of 110 ° C. or higher and low solubility in water, there are many choices including alkanes.
  • organosilicon compounds are compatible with carbon-based organic solvents.
  • a preferred solvent that is low and that can dissolve the polysiloxane of general formula (1) is difficult to predict.
  • the polymer solution produced by the production method of the present invention has siloxane bond-forming groups such as hydrolyzable groups derived from the raw material remaining. It may also contain a reactive polysiloxane, an organic solvent for washing, other organic solvents, and the like. A liquid containing a sufficient amount of an organic solvent to dissolve the reactive polysiloxane and become a liquid as a whole is called a polymer solution.
  • the polymer solution may be blended with other components within a range not impairing the storage stability to prepare a curable composition or the like.
  • Other components include polymerizable unsaturated compounds, epoxy compounds, radical polymerization inhibitors, antioxidants, UV absorbers, light stabilizers, leveling agents, organic polymers, fillers, metal particles, pigments, polymerization initiators, Examples include sensitizers and organic solvents.
  • Examples of the polymerizable unsaturated compound include, for example, adjusting the physical properties such as hardness, mechanical strength, chemical resistance, and adhesion of a cured product formed from the curable composition, and excellent adhesion to a substrate.
  • a compound having an acryloyl group or a methacryloyl group (hereinafter referred to as “(meth) acrylate compound”) is preferable for the purpose of obtaining a cured film and adjusting the viscosity and curability of the curable composition. Used.
  • Examples of the (meth) acrylate compound include monofunctional (meth) acrylate, polyfunctional (meth) acrylate, and urethane (meth) acrylate. These may be used alone or in combination of two or more.
  • the epoxy compound is not particularly limited in properties such as molecular structure and molecular weight, and conventionally known ones can be used. Specifically, bisphenol A type epoxy resin and derivatives thereof, phenol novolac type epoxy resin, cresol novolac type epoxy resin, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexyl carboxylate, 2- (3,4- Epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-metadioxane, bis (3,4-epoxycyclohexylmethyl) adipate, vinylcyclocyclohexyleneoxide, 4-vinylepoxycyclohexane, bis (3,4 Epoxy-6-methylcyclohexylmethyl) adipate, 3,4-epoxy-6-methylcyclohexylcarboxylate, methylenebis (3,4-epoxycyclohexane), dicyclopentadiene diepoxide
  • epoxy compound what substituted a part or all of the hydrogen atoms in a molecule
  • These epoxy compounds can be used individually by 1 type or in combination of 2 or more types.
  • the epoxy compound preferably has a large number of epoxy groups of 2 or more, such as 1,6-hexanediol diglycidyl ether, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate, etc. Is preferred.
  • phenol compounds such as hydroquinone and hydroquinone monomethyl ether, N-nitrosophenylhydroxylamine salt, and the like can be used.
  • the antioxidant include hindered substances such as 2,6-di-tert-butyl-4-methylphenol and pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate).
  • examples thereof include phenolic antioxidants, sulfur secondary antioxidants such as 4,6-bis (octylthiomethyl) -o-cresol, and phosphorus secondary antioxidants. These may be used alone or in combination of two or more.
  • the storage stability and thermal stability of the reactive polysiloxane and the polymer solution can be improved.
  • the content of the radical polymerization inhibitor is preferably 1 to 10,000 parts by weight with respect to 1,000,000 parts by weight of the reactive polysiloxane. More preferred is 10 to 2,000 parts by mass, and still more preferred is 100 to 500 parts by mass.
  • the content of the antioxidant is preferably 1 to 10,000 parts by mass and more preferably 1,000,000 parts by mass of the reactive polysiloxane. Is 10 to 2,000 parts by mass, more preferably 100 to 500 parts by mass.
  • examples of the organic polymer include (meth) acrylic polymers and epoxy polymers, and suitable monomers for forming these polymers include methyl methacrylate and cyclohexyl. (Meth) acrylate, N- (2- (meth) acryloxyethyl) tetrahydrophthalimide and the like.
  • examples of the filler of the other components include silica particles and alumina particles.
  • An active energy ray-curable composition and a thermosetting composition can be prepared using the polymer solution produced by the production method of the present invention, and a polymerization initiator is selected and blended according to the purpose. .
  • Mn number average molecular weight
  • GPC gel permeation chromatography
  • HMDSO hexamethyldisiloxane
  • Table 1 shows the physical properties of the organic solvent for washing used in Examples and Comparative Examples.
  • PGB is propylene glycol monobutyl ether
  • PGM is propylene glycol monomethyl ether
  • IBA is isobutyl alcohol
  • MEK is methyl ethyl ketone
  • MIBK is methyl isobutyl ketone
  • MAK is an abbreviation for methyl amyl ketone.
  • n-propoxy group-containing tetraalkoxysilane that is, a compound in which the methoxy group of TMOS was substituted with an n-propoxy group (monosubstituted, disubstituted) , 3-substituted and 4-substituted) and unreacted TMOS were detected.
  • the number of 1-propanol substitutions average of the number of n-propoxy groups per molecule of the n-propoxy group-containing compound was determined to be 1.6.
  • the proportions of the n-propoxy group-containing tetraalkoxysilane and the unreacted TMOS are 93% by mass and 7% by mass, respectively, when the total of both is 100% by mass, and the n-propoxy group-containing tetraalkoxysilane and The ratio of the total amount of unreacted TMOS was 52% by mass with respect to the entire reaction solution.
  • this reaction solution is used in Examples and Comparative Examples, but is referred to as “TMOS alcohol exchange solution”.
  • Example 1 Into a flask, 0.003 g of N-nitrosophenylhydroxylamine aluminum salt (trade name “Q-1301”, manufactured by Wako Pure Chemical Industries, Ltd.) as a polymerization inhibitor was added, and 3-methacryloxypropyltrimethoxysilane as a T monomer. 62.09 g (250 mmol) was added, and 75.13 g of 1-propanol and 31.53 g of water were further added. The liquid temperature was adjusted to 60 ° C., and 94.21 g of TMOS alcohol exchange solution containing tetramethylammonium hydroxide prepared in Reference Example 1 was added dropwise over 1 hour with stirring.
  • N-nitrosophenylhydroxylamine aluminum salt trade name “Q-1301”, manufactured by Wako Pure Chemical Industries, Ltd.
  • N-nitrosophenylhydroxylamine aluminum salt as a polymerization inhibitor was added to an oil layer mainly containing polysiloxane (P1) and PGB.
  • the obtained mixed solution was heated under reduced pressure, and a part of the solvent was distilled off to obtain 114 g of a colorless and transparent reactive polysiloxane solution (C1).
  • the solid content concentration was calculated from the weight measurement of the dried product. As a result, it was 52% by mass, and the solid content equivalent yield of the polysiloxane (P1) was 61 g.
  • TCD detector gas chromatograph
  • the Mn of the reactive polysiloxane (P1) was 7,700.
  • the polysiloxane (P1) contained in the polymer solution (C1) was analyzed by 1 H-NMR, and it was confirmed that a methacryloyl group was present.
  • the amount of methacryloyl group was quantified using HMDSO (hexamethyldisiloxane) proton as an internal standard, and based on this, the structural unit (11) constituting polysiloxane (P1) The content of was calculated to obtain 25% by mass.
  • the obtained reactive polysiloxane (P1) is a polymer in which a, w, x, y and z in the general formula (1) are 1, 1, 0, 0 and 0.25, respectively.
  • each raw material was a copolycondensate obtained by a stoichiometric reaction.
  • Example 2 A reactive polysiloxane solution (in the same manner as in Example 1 except that 75 g of 1-pentanol was used instead of 75 g of propylene glycol monobutyl ether (PGB) added to 86 g of the concentrated liquid containing polysiloxane (P1). C2) was obtained. Mn of polysiloxane (P1) was 7,400. When the solvent contained in the polymer solution (C2) was analyzed by gas chromatography (TCD detector), only the 1-pentanol peak was detected.
  • TCD detector gas chromatography
  • Example 3 The reaction temperature when using the TMOS alcohol exchange solution containing tetramethylammonium hydroxide was changed to 80 ° C instead of 60 ° C, and the stirring at 60 ° C for 2 hours was changed to stirring at 80 ° C for 2 hours.
  • a reactive polysiloxane solution (C3) was obtained. Mn of polysiloxane (P1) was 7,000.
  • TCD detector gas chromatograph
  • Example 4 The reaction temperature when using the TMOS alcohol exchange solution containing tetramethylammonium hydroxide was changed to 30 ° C. instead of 60 ° C., and the stirring at 60 ° C. for 2 hours was changed to stirring at 30 ° C. for 2 hours.
  • a reactive polysiloxane solution (C4) was obtained. Mn of polysiloxane (P1) was 11,000.
  • TCD detector gas chromatograph
  • Example 5 In the flask [A], 114.17 g (750 mmol) of tetramethoxysilane and 139.21 g of 3-ethyl-3-((3- (trimethoxysilyl) propoxy) methyl) oxetane (hereinafter referred to as “TMSOX”). (500 mmol) and 189.38 g of 1-propanol were charged and stirred while bubbling nitrogen to obtain a mixture.
  • TMSOX 3-ethyl-3-((3- (trimethoxysilyl) propoxy) methyl) oxetane
  • the internal temperature in the flask [A] was stable at 40 ° C., and consisted of 81.07 g of pure water and 81.07 g of 1-propanol prepared in another flask [B].
  • the liquid mixture was dripped in flask [A] using the supply pump over 1 hour. The dropping speed was kept as constant as possible.
  • the temperature was raised 5 minutes after the start of dropping, and the internal temperature was about 60 ° C. After completion of the dropwise addition of the mixed solution, stirring for another 6 hours was continued at about 60 ° C.
  • the Mn of the reactive polysiloxane (P2) was 4,800.
  • 1 H-NMR analysis of the polysiloxane (P2) contained in the polymer solution (C5) confirmed the presence of an oxetanyl group.
  • the amount of oxetanyl group was quantified using HMDSO (hexamethyldisiloxane) proton as an internal standard, and based on this, the structural unit (11) constituting polysiloxane (P2) The content of was calculated, and 30% by mass was obtained.
  • the obtained reactive polysiloxane (P2) is a polymer in which a, w, x, y and z in the general formula (1) are 1.5, 1, 0, 0 and 0.18, respectively. And that each raw material was a copolycondensate obtained by a stoichiometric reaction.
  • Comparative Example 2 86 g of concentrated liquid prepared in Example 1 and containing polysiloxane (P1) was used. Instead of 75 g of propylene glycol monobutyl ether (PGB) added to this concentrated liquid, 75 g of ethyl acetate was used and stirred to obtain a uniform solution. Furthermore, 90 g of 20% saline was added and stirred for 5 minutes or longer to mix thoroughly. When the stirring was stopped, the liquid in the flask was quickly separated into two layers. After the stirring was stopped, the flask was allowed to stand for 15 minutes or more, and then the aqueous layer was discharged using a tube. By this water washing operation, salts and excess acid contained in the concentrate were removed.
  • P1 polysiloxane
  • N-nitrosophenylhydroxylamine aluminum salt as a polymerization inhibitor was added to an oil layer mainly containing polysiloxane (P1) and ethyl acetate. Further, 160 g of PGM was added, and the resulting mixed solution was heated under reduced pressure, and a part of the solvent was distilled off to obtain a colorless transparent reactive polysiloxane solution (D2) using PGM as a medium. It was 67 mass% when solid content concentration of the polymer solution (D2) was computed. The Mn of the reactive polysiloxane (P1) was 7,300. In addition, 1 H-NMR analysis of the polysiloxane (P1) contained in the polymer solution (D2) confirmed the presence of a methacryloyl group.
  • Comparative Example 3 86 g of concentrated liquid prepared in Example 1 and containing polysiloxane (P1) was used. Instead of 75 g of propylene glycol monobutyl ether (PGB) added to this concentrate, 75 g of methyl ethyl ketone (MEK) was used and stirred to obtain a uniform solution. Furthermore, 90 g of 20% saline was added and stirred for 5 minutes or longer to mix thoroughly. When the stirring was stopped, the liquid in the flask was quickly separated into two layers. After the stirring was stopped, the flask was allowed to stand for 15 minutes or more, and then the aqueous layer was discharged using a tube. By this water washing operation, salts and excess acid contained in the concentrate were removed.
  • PGB propylene glycol monobutyl ether
  • MEK methyl ethyl ketone
  • N-nitrosophenylhydroxylamine aluminum salt as a polymerization inhibitor was added to the oil layer mainly containing polysiloxane (P1) and MEK. Further, 150 g of PGM was added, and the resulting mixed solution was heated under reduced pressure, and a part of the solvent was distilled off to obtain a colorless transparent reactive polysiloxane solution (D3) using PGM as a medium. It was 81 mass% when solid content concentration of the polymer solution (D3) was computed. The Mn of the reactive polysiloxane (P1) was 7,500. Further, the polysiloxane (P1) contained in the polymer solution (D3) was analyzed by 1 H-NMR, and it was confirmed that a methacryloyl group was present.
  • the oil layer mainly containing polysiloxane (P2) and MIBK was heated under reduced pressure, and a part of the solvent was distilled off to obtain a colorless and transparent reactive polysiloxane solution (D3) using MIBK as a medium. It was 52 mass% when solid content concentration of the polymer solution (D3) was computed.
  • the Mn of the reactive polysiloxane (P2) was 4,900. Further, 1 H-NMR analysis of the polysiloxane (P2) contained in the polymer solution (D3) confirmed the presence of an oxetanyl group.
  • Comparative Example 5 The concentrated solution 259 g containing polysiloxane (P2) prepared in Example 5 was used. Instead of 187 g of propylene glycol monobutyl ether (PGB) added to this concentrate, 187 g of methyl amyl ketone (MAK) was used and stirred to obtain a uniform solution. Further, 210 g of 20% saline was added and stirred for 5 minutes or longer to mix thoroughly. When the stirring was stopped, the liquid in the flask was quickly separated into two layers. After the stirring was stopped, the flask was allowed to stand for 15 minutes or more, and then the aqueous layer was discharged using a tube. By this water washing operation, salts and excess acid contained in the concentrate were removed.
  • P2 polysiloxane
  • PGB propylene glycol monobutyl ether
  • MAK methyl amyl ketone
  • Comparative Example 6 86 g of concentrated liquid prepared in Example 1 and containing polysiloxane (P1) was used. Instead of 75 g of propylene glycol monobutyl ether (PGB) added to the concentrate, 75 g of isobutyl alcohol (IBA) was used and stirred to obtain a uniform solution. Furthermore, 90 g of 20% saline was added and stirred for 5 minutes or longer to mix thoroughly. When the stirring was stopped, the liquid in the flask was quickly separated into two layers. After the stirring was stopped, the flask was allowed to stand for 15 minutes or more, and then the aqueous layer was discharged using a tube. By this water washing operation, salts and excess acid contained in the concentrate were removed.
  • PGB propylene glycol monobutyl ether
  • IBA isobutyl alcohol
  • N-nitrosophenylhydroxylamine aluminum salt as a polymerization inhibitor was added to an oil layer mainly containing polysiloxane (P1) and IBA.
  • the obtained mixed solution was heated under reduced pressure, and a part of the solvent was distilled off to obtain 114 g of a colorless and transparent reactive polysiloxane solution (D5). It was 51 mass% when solid content concentration of the polymer solution (D5) was computed.
  • TCD detector gas chromatograph
  • the Mn of the reactive polysiloxane (P1) was 7,200. Further, 1 H-NMR analysis of the polysiloxane (P1) contained in the polymer solution (D4) confirmed the presence of a methacryloyl group.
  • the storage stability of the reactive polysiloxane obtained in the experimental examples other than Comparative Example 1 was evaluated by the following method. Using the diluting solvent shown in Table 2, the polymer solution prepared by diluting the polysiloxane so that the solid content concentration was 50% by mass was evaluated. 20 g of a polymer solution having a solid content concentration of 50% was sealed in a 50 ml sample bottle, stored in an air thermostat at 60 ° C., shaken every 24 hours, and visually observed. If the solution flowed vigorously when the sample bottle was turned upside down, it was judged that gelation had not occurred. Then, this evaluation was performed for 7 days, and the number of days until the gel was confirmed was recorded as the number of storage days.
  • the storage stability evaluation test is terminated.
  • the viscosity ratio before and 7 days after the storage stability evaluation test is calculated, and storage stability is calculated. Sex was evaluated. That is, the rotational viscosity at 25 ° C. was measured with an EDH type viscometer using a cone cone of 2.4 mm and an angle cone of 1 degree 34 minutes, and the calculated viscosity ratio is listed in Table 2. When the viscosity ratio is 1, it means that there is no change in viscosity. The closer the value of the viscosity ratio is to 1, the better the storage stability is.
  • the viscosity ratio of the polymer solutions (C1) to (C3) and (C5) is as small as 1.1 to 1.3, indicating that the production methods of Examples 1 to 3 and 5 are preferable.
  • a curable composition was prepared using the polysiloxane obtained in the examples, and the curability was evaluated by the following method.
  • 2-hydroxy-2-methyl-1-phenyl-propan-1-one 3 as a radical polymerization initiator was added to 200 parts by mass of a polymer solution (C1) containing a reactive polysiloxane (P1) having a solid content of 50% by mass.
  • the curable composition was prepared by dissolving parts by mass. After the curable composition was applied to a polycarbonate plate using a bar coater, the coating film was heated at about 50 ° C. for 5 minutes to volatilize the solvent, thereby forming a coating film having a thickness of about 10 ⁇ m.
  • the polymer solution of the present invention can be stored for a long time in the form of a solution, the alteration of the polysiloxane is suppressed during storage, transportation and the like.
  • the polymer solution of the present invention is easy to use and suitable as an industrial material.
  • the reactive polysiloxane contained in the polymer solution of the present invention has a reactive group of (meth) acryloyl group or oxetanyl group, it provides a curable composition having excellent curability, etc. Useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Polyethers (AREA)

Abstract

 本発明は、(メタ)アクリロイル基またはオキセタニル基からなる反応性官能基と、シロキサン結合生成基とを有する有機ケイ素化合物を含有する原料化合物を、加水分解共重縮合させて、一般式(1)で表される反応性ポリシロキサンを合成する縮合工程と、得られた反応性ポリシロキサンを水洗用有機溶剤に溶解する溶解工程と、得られた有機溶液と、水とを接触させ、混合液から水層を除去する洗浄工程と、を備える反応性ポリシロキサン溶液の製造方法であり、水洗用有機溶剤として、水酸基を有し、1気圧における沸点が110℃以上200℃以下で、20℃における水100gに対する溶解度が10g以下である化合物(例えば、プロピレングリコールモノブチルエーテル、1-ペンタノール)を用いる。

Description

反応性ポリシロキサン溶液の製造方法
 本発明は、(メタ)アクリロイル基またはオキセタニル基からなる反応性官能基を有する反応性ポリシロキサンが有機溶剤に溶解したポリマー溶液の製造方法に関する。反応性ポリシロキサンを含有する硬化性組成物は、耐熱性に優れる硬化被膜等を与える。
 工業的に用いられる化学材料は、保存安定性に優れていることが望ましく、長期保存しても、性状および物性が変化しないことが望ましい。一般的に、(メタ)アクリロイル基等の反応性官能基を有するポリシロキサンは、単独で保存しているときに、部分架橋が進み、有機溶剤への溶解性が低下して、有機溶剤に溶けなくなることがある。また、ポリマー溶液として保存する場合には、ポリシロキサンがゲル化したり、不溶化した成分が溶液から析出したりすることがある。そして、好ましくない不具合は、ポリシロキサンを合成した後の工程、例えば、濃縮工程、希釈工程等において、ゲル化や不溶化が起きてしまい、目的物が得られないことであった。
 特許文献1には、(メタ)アクリロイル基等の反応性官能基を有するポリシロキサンマクロモノマーの製造方法が開示されており、系に溶解する触媒を用いてアルコキシシランを加水分解縮合に供すると、経時的に縮合が進行し、ゲル等が生じる場合のあることが記載されている。また、製造工程において、アルコール、ケトン、エーテル類等の有機溶剤を用いることができるものの、工程中あるいは工程後に、有機溶剤は、系外に除去する方が好ましいことや、縮合により副生したアルコールや有機溶剤が残存していると、ポリマーが析出する可能性のあることが記載されている。
 特許文献2には、(メタ)アクリロイル基等の反応性官能基を有し、有機溶剤に可溶な反応性ポリシロキサンの製造方法として、下記の6つの工程を含む製造方法が開示されている。
第1工程:原料として、(メタ)アクリロイル基および加水分解性基を有する有機ケイ素化合物A1と、4つのシロキサン結合形成基がケイ素原子に結合しているケイ素化合物B1とを、有機ケイ素化合物A1の1モルに対して、ケイ素化合物B1を0.3~1.8モルの割合で、アルカリ性条件下で加水分解共重縮合させる工程。
第2工程:第1工程で得られた反応液を、酸により中和する工程。
第3工程:第2工程で得られた中和液から揮発性成分を除去する工程。
第4工程:第3工程で得られた濃縮物と、水洗用有機溶剤とを、混合および接触させて、少なくとも縮合体を水洗用有機溶剤に溶解する工程。
第5工程:第4工程で得られた有機系液を水により洗浄した後、縮合体を含む有機溶液を得る工程。
第6工程:第5工程で得られた有機溶液から揮発性成分を除去する工程
 特許文献2には、上記の第4工程において用いられる水洗用有機溶剤としては、縮合体を溶解することができて水と分離しやすいものが好ましく、水洗用有機溶剤としては、メチルイソブチルケトン等のケトン類;ジイソプロピルエーテル等のエーテル類;トルエン等の芳香族炭化水素;ヘキサン等の脂肪族炭化水素;酢酸エチル等のエステル類等が好ましい、と記載されていた。
 更に、特許文献2には、第6工程で得られた縮合体(反応性ポリシロキサン)に、有機溶剤やその他の成分を加えて硬化性組成物を調製できることが開示されている。有機溶剤としては、縮合体(反応性ポリシロキサン)を溶解できる、エタノール、イソプロピルアルコール等のアルコール;プロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル;トルエン、キシレン等の芳香族化合物;プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、酢酸ブチル等のエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;ジブチルエーテル等のエーテル;並びにN-メチルピロリドンが例示されていた。
 特許文献2に開示された水洗用有機溶剤、および、硬化性組成物の調製に用いる有機溶剤として、両者に共通している酢酸エチルを用いれば、上記の第6工程によって、一旦、水洗用有機溶剤を除去した後、水洗用有機溶剤とは異なる有機溶剤を加えて硬化性組成物とする、いわゆる、溶剤置換の工程を経ずに、溶液組成物を製造することができる。従って、硬化性組成物の製造に係るエネルギーおよび費用を低減するとともに、製造時間を短縮するものであり、望ましい方法である。しかしながら、硬化性組成物を物品にコーティングする用途では、硬化性組成物の調製に用いる有機溶剤として、物品の表面を侵さない化合物を選択しなければならず、使用できる有機溶剤が限られている。例えば、酢酸エチルは、ポリカーボネート等を含む基材を侵すために好ましいものではない。更に、予想できなかったことに、水洗用有機溶剤として酢酸エチルを用い、溶剤置換をしないで硬化性組成物としたものは、長期保存中にゲルが発生しやすいことが判明した。
 以上より、従来、反応性官能基を有し、有機溶剤に可溶な反応性ポリシロキサンとその製造方法が知られており、有機溶剤により希釈してポリマー溶液を調製すること、更にその他の成分を添加して硬化性組成物を調製することも知られていた。しかしながら、水洗用有機溶剤と、希釈用有機溶剤とは、求められる作用または特性が異なるため、必ずしも共通化できなかった。
特開平6-32903号公報 WO2009/131038号国際公開公報
 本発明の課題は、縮合工程における反応性ポリシロキサンの合成後、濃縮工程、希釈工程等においてゲル化することなく、また、ポリシロキサン溶液の保存安定性に優れた、(メタ)アクリロイル基またはオキセタニル基からなる反応性官能基を有するポリマー溶液の製造方法を提供することである。
 本発明者らは、(メタ)アクリロイル基またはオキセタニル基からなる反応性官能基と、シロキサン結合生成基とを有する有機ケイ素化合物を含有する原料化合物を、加水分解共重縮合させて、下記一般式(1)で表される反応性ポリシロキサンを合成する縮合工程と、得られた反応性ポリシロキサンを水洗用有機溶剤に溶解する溶解工程と、得られた有機溶液と、水とを接触させ、混合液から水層を除去し、反応性ポリシロキサンを含む油層を回収する洗浄工程と、を備える、反応性ポリシロキサン溶液の製造において、水洗用有機溶剤として、水酸基を有し、1気圧における沸点が110℃以上200℃以下で、20℃における水100gに対する溶解度が10g以下である有機溶剤を用いると、保存安定性の良い反応性ポリシロキサン溶液が得られることを見出した。また、洗浄工程により得られた油層(水洗用有機溶剤を含む反応性ポリシロキサン溶液)に含まれる上記水洗用有機溶剤の一部が残存するように脱溶剤を行う濃縮工程を、更に、備える製造方法とすることにより、得られたポリマー溶液も保存安定性に優れていることを見出した。即ち、洗浄工程後の溶剤置換を行わない簡便な反応性ポリシロキサン溶液の製造方法をも見出した。
Figure JPOXMLDOC01-appb-C000007
〔一般式(1)において、R0は、メタクリロイル基、アクリロイル基およびオキセタニル基から選択される官能基を含む有機基であり、R1は、炭素原子数1~10の官能基を少なくとも1つ含む有機基であり、R2、R3およびR4は、それぞれ、独立して、水素原子または炭素原子数1~10の炭化水素基であり、R5は、炭素原子数1~6の炭化水素基であり、nは0または1であり、a、w、x、yおよびzは、モル数を示し、wは正の数であり、a、x、yおよびzは、0または正の数であり、0≦a/w≦3、0≦x/(a+w)≦2、0≦y/(a+w)≦2、0≦z/(a+w+x+y)≦1である。〕
 本発明の製造方法により得られる、反応性ポリシロキサン溶液は、水洗用有機溶剤を媒体の一部または全部として含む溶液であり、保存安定性に優れる。また、縮合工程における反応性ポリシロキサンの合成後、濃縮工程、希釈工程等においてゲル化することなく、円滑にポリシロキサン溶液を製造することができる。更に、洗浄工程の後、濃縮工程を備える製造方法とすることができるので、同じ種類の水洗用有機溶剤を用いて希釈して、所望の濃度を有する反応性ポリシロキサン溶液を容易に製造することができる。そして、その製造に要するエネルギー、費用、および時間が少なくて済む。更に、プロピレングリコールモノブチルエーテル、1-ペンタノール、2-メチル-1-ブタノール、1-オクタノール等の水洗用有機溶剤は、樹脂等を侵す心配がないため、ポリマー溶液に添加剤等を加えて調製された硬化性組成物を、樹脂を含む部材の表面に塗工することも好適である。
 以下、本発明を詳しく説明する。尚、本明細書において、「(メタ)アクリル」とは、アクリルおよびメタクリルを意味し、「(メタ)アクリレート」とは、アクリレートおよびメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基およびメタクリロイル基を意味する。
 本発明により製造される反応性ポリシロキサンは、下記一般式(1)で表される。即ち、この反応性ポリシロキサンは、後述する、(メタ)アクリロイル基またはオキセタニル基からなる反応性官能基と、シロキサン結合生成基とを有する有機ケイ素化合物を含有する原料化合物を、加水分解縮合反応に供して得られた重合体である。
Figure JPOXMLDOC01-appb-C000008
 上記シロキサン結合生成基とは、加水分解縮合反応によってシロキサン結合を生成する基を意味し、加水分解性基および水酸基が挙げられる。このシロキサン結合生成基としては、水酸基、ハロゲノ基、アルコキシ基等が挙げられる。これらのうち、加水分解性が良好であり、酸を副生しないことから、アルコキシ基が好ましく、炭素原子数1~3のアルコキシ基がより好ましい。この説明は、後述する一般式(5)におけるR11等に適用される。
 上記一般式(1)において、R0は、メタクリロイル基、アクリロイル基およびオキセタニル基から選択される官能基を含む有機基であり、R1は、炭素原子数1~10の官能基を少なくとも1つ含む有機基であり、R2、R3およびR4は、それぞれ、独立して、水素原子または炭素原子数1~10の炭化水素基であり、R5は、炭素原子数1~6の炭化水素基であり、nは0または1であり、a、w、x、yおよびzは、モル数を示し、wは正の数であり、a、x、yおよびzは、0または正の数であり、0≦a/w≦3、0≦x/(a+w)≦2、0≦y/(a+w)≦2、0≦z/(a+w+x+y)≦1である。
 一般式(1)のR0は、下記一般式(2)および(3)から選択される有機基である。
Figure JPOXMLDOC01-appb-C000009
〔一般式(2)において、R6は水素原子またはメチル基であり、R7は炭素原子数1~6のアルキレン基である。〕
Figure JPOXMLDOC01-appb-C000010
〔一般式(3)において、R8は水素原子または炭素原子数1~6のアルキル基であり、R9は炭素原子数1~6のアルキレン基である。〕
 即ち、上記反応性ポリシロキサンは、下記式(12)で表される構造単位を含み、下記式(11)および(13)~(15)で表される構造単位を含んでよい重合体である。尚、本発明の製造方法によると、更に、シラノール基を含む重合体となる場合がある。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 上記式(11)で表される構造単位は、Si-O-結合を4個有しており、「Q構造」とも呼ばれる。そして、縮合反応によりQ構造を与える原料化合物は「Qモノマー」と呼ばれ、このQモノマーは、例えば、テトラアルコキシシランやテトラハロゲノシラン等の4官能のシロキサン結合生成基を有するケイ素化合物である。好ましいテトラアルコキシシランとしては、テトラメトキシシラン(TMOS)、テトラエトキシシラン、テトラ1-プロポキシシラン、テトラ2-プロポキシシラン等の炭素原子数1~3のアルコキシ基を有するテトラアルコキシシランが挙げられる。また、好ましいテトラハロゲノシランとしては、テトラクロロシラン等を挙げることができる。
 尚、本発明に係る反応性ポリシロキサンは、上記一般式(1)においてa=0であるポリシロキサンであってもよい。即ち、本発明に係る反応性ポリシロキサンは、一般式(11)で表される構造単位を含まないポリシロキサンであってもよい。
 上記式(12)で表される構造単位は、下記一般式(5)で表される有機ケイ素化合物に由来する、反応性官能基を有する構造単位である。
Figure JPOXMLDOC01-appb-C000016
〔一般式(5)において、R0は、上記一般式(2)または(3)で表される有機基であり、R1は、炭素原子数1~10の官能基を少なくとも1つ含む有機基であり、R11は、シロキサン結合生成基であり、nは0または1である。〕
 反応性官能基を含む上記一般式(2)および(3)において、好ましいR7およびR9は、いずれもプロピレン基である。その理由は、このような有機官能基を有する構造単位(12)を形成する原料化合物である上記一般式(5)で表される有機ケイ素化合物の入手または合成が容易なためである。また、好ましいR6はメチル基であり、好ましいR8はエチル基である。
 R0が一般式(2)の有機基であるときの反応性ポリシロキサンは、ラジカル重合性を有し、R0が一般式(3)の有機基であるときの反応性ポリシロキサンは、カチオン重合性を有する。尚、反応性ポリシロキサンは、一般式(2)で表される有機基と、一般式(3)で表される有機基とを同一のポリマー鎖内で含む化合物であってもよい。また、本発明のポリマー溶液においては、一般式(2)の構造を有するポリマーと一般式(3)の構造を有するポリマーとが含まれてもよい。本発明においては、少なくとも一般式(2)の構造を有する反応性ポリシロキサンを含むポリマー溶液が好ましい。
 上記一般式(1)および(5)におけるR1は、炭素原子数1~10の官能基を少なくとも1つ含む有機基であるが、好ましくは炭素原子数1~6のアルキル基、炭素原子数7~10のアラルキル基または炭素原子数6~10のアリール基を有する有機基から選択され、同一であっても異なってもよい。
 上記一般式(1)、(5)および(12)におけるnは、0または1である。nが0である場合、一般式(12)で表される構造単位は、Si-O-結合を3個有しており、「T構造」とも呼ばれる。また、nが1である場合の構造単位は、Si-O-結合を2個有しており、「D構造」とも呼ばれる。縮合反応後に、分子内にシロキサン結合生成基を3つ有し、T構造を与える3官能の有機ケイ素化合物は「Tモノマー」と呼ばれ、分子内にシロキサン結合生成基を2つ有し、D構造を与える2官能の有機ケイ素化合物は「Dモノマー」と呼ばれる。TモノマーおよびDモノマーは、上記一般式(5)で表される化合物に含まれる。
 上記一般式(11)で表される構造単位の割合が、ポリシロキサン分子内で相対的に多い反応性ポリシロキサンを硬化性組成物に応用すると、得られる硬化物の硬度や耐熱性が向上する。しかしながら、この割合が多すぎると、ポリシロキサンが不溶化する傾向があり、また、ポリマー溶液の粘度が上昇して扱い難くなる傾向がある。即ち、一般式(11)で表される構造単位および一般式(12)で表される構造単位の割合(モル比a/w)の値には好ましい範囲があり、本発明では、0≦a/w≦3である。その範囲は、構造単位(12)の種類によって異なる。
 構造単位(12)が、R0として、メタクリロイル基またはアクリロイル基を含む場合は、好ましくは0.3≦a/w≦1.8であり、更に好ましくは0.8≦a/w≦1.8であり、特に好ましくは1.0≦a/w≦1.8である。
 一方、構造単位(12)が、R0として、オキセタニル基を含む場合は、好ましくは0.3≦a/w≦2.8であり、更に好ましくは0.8≦a/w≦2.5である。
 尚、1分子中に、R0がオキセタニル基である構造単位、および、R0が(メタ)アクリロイル基である構造単位を含む場合も、a/wの好ましい範囲は同様となる。
 このように好ましいa/wの範囲が異なる理由は、側鎖の種類によって、構造単位(12)を形成する原料化合物の加水分解反応性が異なるために、構造単位(11)との好ましいバランスのとれる範囲が異なるためである。ゲル化等によって特定の原料化合物が消費されない限り、通常は、仕込みの原料化合物の組成比を、対応する構造単位の割合と等しくすることにより、望みの組成を有する反応性ポリシロキサンが得られる。
 上記一般式(1)で表される反応性ポリシロキサンにおいて、炭素原子を含まない無機部分および炭素原子を含む有機部分の割合は、限定されない。無機部分の割合をより大きくするためには、構造単位(12)におけるnが0であるT構造の割合が多い方が好ましく、反応性ポリシロキサンの有機溶剤への溶解性を向上させるためには、nが1であるD構造の割合が多い方が好ましい。本発明に係るポリマー溶液は、T構造とD構造の構造単位を同一分子内で有する反応性ポリシロキサンを含んでよいし、あるいは、T構造を有する反応性ポリシロキサンと、D構造を有する反応性ポリシロキサンと、を含んでもよい。いずれの場合も、T構造とD構造の含有割合は、反応性ポリシロキサンを合成するときの原料化合物の仕込み比等で決められる。また、T構造およびD構造の含有割合は、反応性ポリシロキサンの用途によって、適宜、選択される。本発明において好ましい反応性ポリシロキサンは、一般式(1)におけるnの平均値が0~0.5であるポリシロキサンであり、更に好ましくは、nの平均値が0~0.3であるポリシロキサンである。
 上記Tモノマーとしては、2-アクリロキシエチルトリメトキシシラン、2-アクリロキシエチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、2-メタクリロキシエチルトリメトキシシラン、2-メタクリロキシエチルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-エチル-3-((3-(トリメトキシシリル)プロポキシ)メチル)オキセタン、3-エチル-3-((3-(トリエトキシシリル)プロポキシ)メチル)オキセタン、3-メチル-3-((3-(トリメトキシシリル)プロポキシ)メチル)オキセタン等が挙げられる。
 また、上記Dモノマーとしては、2-アクリロキシエチルジメトキシメチルシラン、2-アクリロキシエチルジエトキシエチルシラン、3-アクリロキシプロピルジメトキシメチルシラン、3-アクリロキシプロピルジエトキシエチルシラン、2-メタクリロキシエチルジメトキシプロピルシラン、2-メタクリロキシエチルジエトキシブチルシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-メタクリロキシプロピルトリエトキシメチルシラン、3-エチル-3-((3-(ジメトキシメチルシリル)プロポキシ)メチル)オキセタン、3-エチル-3-((3-(ジメエキシエチルシリル)プロポキシ)メチル)オキセタン、3-メチル-3-((3-(ジメトキシメチルシリル)プロポキシ)メチル)オキセタン等が挙げられる。
 上記一般式(1)および式(13)において、R2は、水素原子または炭素原子数1~10の炭化水素基である。好ましいR2は、メチル基およびフェニル基であり、更に好ましくは立体障害の小さいメチル基である。尚、2つのR2は、同一であってよいし、異なってもよい。異なる場合、例えば、メチル基およびフェニル基とすることができる。
 上記構造単位(13)を与える有機ケイ素化合物としては、ジメトキシメチルシラン、ジメトキシジメチルシラン、ジメトキシメチルフェニルシラン、ジメトキシジフェニルシラン、ジエトキシメチルシラン、ジエトキシジメチルシラン、ジエトキシメチルフェニルシラン、ジエトキシジフェニルシラン等が挙げられる。
 上記反応性ポリシロキサンを構成する構造単位(11)、(12)および(13)の割合は、0≦x/(a+w)≦2を満たし、好ましくは0≦x/(a+w)≦1である。即ち、上記反応性ポリシロキサンは、上記構造単位(13)を含む重合体であってよいし、含まない重合体であってもよい。
 また、上記一般式(1)および式(14)において、R3およびR4は、それぞれ、独立して、水素原子または炭素原子数1~10の炭化水素基である。好ましいR3は、メチル基、エチル基、プロピル基およびフェニル基であり、更に好ましくはメチル基である。また、好ましいR4は、メチル基、エチル基およびプロピル基であり、更に好ましくはメチル基である。上記一般式(1)および式(14)において、R3および2つのR4が、同じ炭化水素基であってよいし、R3および2つのR4が、異なる炭化水素基であってもよい。
 上記反応性ポリシロキサンを構成する構造単位(11)、(12)および(14)の割合は、0≦y/(a+w)≦2を満たし、好ましくは0≦y/(a+w)≦1である。即ち、上記反応性ポリシロキサンは、上記構造単位(14)を含む重合体であってよいし、含まない重合体であってもよい。
 上記式(14)で表される構造単位は、Si-O-結合を1個有しており、「M構造」とも呼ばれる。M構造は、ポリシロキサンの縮合鎖の末端を封鎖する働きがある。反応性ポリシロキサンの分子量を制御する場合には、縮合後にシロキサン結合生成基を1つだけ有するM構造を与える原料化合物(Mモノマー)を用いることが好ましい。
 上記Mモノマーとしては、メトキシトリメチルシラン、エトキシトリメチルシラン、メトキシトリエチルシラン、ヒドロキシトリメチルシラン、ヘキサメチルジシロキサン等が挙げられる。
 上記一般式(1)および式(15)において、R5は、炭素原子数1~6のアルキル基である。好ましいR5は、メチル基、エチル基およびプロピル基であり、更に好ましくはプロピル基であり、より好ましくはn-プロピル基である。
 上記構造単位(15)は、上記有機ケイ素化合物(S1)およびケイ素化合物(S2)に由来して形成される構造単位である。この構造単位(15)は、例えば、縮合工程において、シロキサン結合形成基における反応が進行せず、重縮合しない場合等により形成される。
 上記反応性ポリシロキサンを構成する構造単位(11)~(15)の割合は、0≦z/(a+w+x+y)≦1を満たし、好ましくは0.01≦z/(a+w+x+y)≦0.5である。
 本発明の反応性ポリシロキサン溶液の製造方法は、(メタ)アクリロイル基またはオキセタニル基からなる反応性官能基と、シロキサン結合生成基とを有する有機ケイ素化合物、即ち、上記一般式(5)で表される化合物を含有する原料化合物を、加水分解共重縮合させて反応性ポリシロキサンを合成する縮合工程と、得られた反応性ポリシロキサンを水洗用有機溶剤に溶解する溶解工程と、得られた有機溶液と、水とを接触させ、混合液から水層を除去し、反応性ポリシロキサンを含む油層を回収する洗浄工程と、を備える。上記のように、一般式(5)で表される化合物は、反応性官能基と、シロキサン結合生成基とを有する有機ケイ素化合物であるTモノマーまたはDモノマーであり、更に、原料化合物は、通常、Qモノマーを含有する。
 上記縮合工程において、共重縮合は、触媒の存在下、通常、溶媒中にて行われ、反応溶媒として、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等の炭素原子数1~3のアルコール、テトラヒドロフラン、アセトン等が用いられる。
 また、上記触媒は、酸性触媒および塩基性触媒のいずれでもよいが、塩基性触媒が好ましい。この塩基性触媒としては、アンモニア、有機アミン、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、コリン、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等が挙げられる。これらのうち、触媒活性の良好な第4級窒素原子を有するアンモニウム化合物が好ましく、水酸化テトラメチルアンモニウムがより好ましい。
 上記縮合工程は、好ましくは、Tモノマーおよび/またはDモノマーを収容した反応器に、Qモノマーおよび触媒を含む混合物を添加しながら行われる。また、他の方法としては、Tモノマーおよび/またはDモノマーを収容した反応器に、Qモノマーおよび触媒を、別々に添加する方法、Tモノマーおよび/またはDモノマーと、Qモノマーとを反応器に収容しておき、これに水および触媒を添加する方法等が挙げられる。尚、上記触媒の一部は、予め、反応器内に収容しておいてもよい。
 上記触媒が塩基性触媒である場合には、構造単位(13)を与える有機ケイ素化合物におけるR2、並びに構造単位(14)を与える有機ケイ素化合物におけるR3およびR4は、いずれも、水素原子でなく、炭素原子数1~10の炭化水素基であることが好ましい。
 更に、加水分解に用いられる水の使用量は、原料化合物に含まれるシロキサン結合形成基1当量に対して、好ましくは0.5~10当量である。
 上記Qモノマー、並びに、上記Tモノマーおよび/またはDモノマーの使用量を、それぞれ、aモルおよびwモルとした場合、モル比a/wが3以下となるように用いられる。また、上記構造単位(13)および(14)を与える原料化合物は、以下のように、適宜、選択された割合に基づいて用いられる。即ち、上記構造単位(13)を与える原料化合物の使用量は、好ましくは0≦x/(a+w)≦2、より好ましくは0≦x/(a+w)≦1を満たすように、上記Qモノマー、並びに、上記Tモノマーおよび/またはDモノマーの使用量とともに、選択される。
 上記構造単位(14)を与える原料化合物の使用量は、好ましくは0≦y/(a+w)≦2、より好ましくは0≦y/(a+w)≦1を満たすように、上記Qモノマー、並びに、上記Tモノマーおよび/またはDモノマーの使用量とともに、選択される。
 本発明の好ましい態様においては、縮合工程の後、得られた反応液を中和する中和工程と、得られた中和液から、縮合工程において副生したアルコールを含む有機溶剤等を除去する脱溶剤工程と、を備える。
 本発明の製造方法における反応温度とは、原料化合物を、共重縮合させる工程(縮合工程)における反応液の温度であるが、共重縮合が、酸性触媒または塩基性触媒を用いて行われるので、反応温度は、実質的に、縮合工程により得られた反応液を中和する中和工程を終了するまでの温度である。そして、反応時間は、TモノマーまたはDモノマー、およびQモノマーの混合が完了してから、中和工程が終了するまでの時間を意味する。縮合工程は、温度を一定として行うのが簡便な方法である。本発明者らは、反応温度が高すぎると、縮合反応の制御が難しくなり、エネルギー的にもコストがかかることを見出し、更に、メタクリロイル基またはアクリロイル基の分解が進むことも見出した。一方、反応温度が低すぎると、反応時間が長くなり、反応中にゲルが生じやすくなることを見出した。従って、反応温度の上限は、好ましくは100℃、より好ましくは80℃、更に好ましくは60℃である。下限温度は、反応液が凍結する可能性を考えると、好ましくは0℃、より好ましくは15℃であり、更に好ましくは30℃である。また、反応温度は、終始、一定であってよいし、昇温してもよい。例えば、テトラメチルアンモニウムヒドロキシド等の塩基性触媒を用いる場合に、その添加初期において、低温(例えば、30℃)とし、Tモノマーおよび/またはDモノマーを収容した反応器に、Qモノマーを添加しながら、徐々に温度を上げる方法も好ましい。Qモノマーの添加時も、反応温度の設定温度と同じ温度に調整することが好ましい。
 上記縮合工程において、原料化合物の縮合率は、モル単位で好ましくは92%以上、より好ましくは95%以上、更に好ましくは98%以上である。シロキサン結合生成基(加水分解性基を含む)は実質的に全てが縮合されていることが最も好ましいが、縮合率の上限は、通常、99.9%である。従って、本発明の製造方法による反応性ポリシロキサン溶液には、縮合されなかった加水分解性基が、一般式(1)の構造に残っている反応性ポリシロキサンを含んでもよい。加水分解性基の残存率は、モル単位で好ましくは8%以下、より好ましくは2%以下である。
 反応性ポリシロキサンに、シロキサン結合生成基(加水分解性基を含む)が残存する場合、その残存割合は、1H-NMR(核磁気共鳴スペクトル)チャートの各シグナルの積分比から算出することができる。尚、「加水分解性基の実質的に全てが縮合されている」ことは、例えば、得られた反応性ポリシロキサンの1H-NMRチャートにおいて加水分解性基に基づくシグナルがほとんど観察されないことにより確認することができる。
 本発明の製造方法は、上記のように、縮合工程の後で、反応性ポリシロキサンを含む反応液を中和する中和工程を備えることが好ましい。中和された反応液を用いると、反応性ポリシロキサンは変質することなく、そのまま、溶解工程に供して水洗用有機溶媒に溶かして、洗浄工程に進めることができる。尚、縮合工程において、シロキサン結合生成基がアルコキシ基である原料化合物を用いた場合、アルコキシ基に由来し、且つ、その炭素原子数に応じたアルコールが副生する。また、反応溶媒にアルコールを用いた場合も反応液中にアルコールが含まれる。反応液に含まれるアルコールとして、特に、炭素原子数1~3のアルコールが、溶解工程後に得られる有機溶液に残存している場合には、洗浄工程において油水分離を阻害する傾向がある。従って、縮合工程において、原料化合物として、炭素原子数1~3のアルコキシ基を有する有機ケイ素化合物を用いた場合には、溶解工程の前に、反応液に含まれるアルコールを除去する脱溶剤工程を備えることが好ましい。上記中和工程を行った場合には、中和工程により得られた中和液を、脱溶剤工程に供することが好ましい。この脱溶剤工程を備えることにより、洗浄工程での歩留まりが向上する。この脱溶剤工程においては、アルコール以外に、水の一部または全部、あるいは、1気圧における沸点が110℃未満の有機化合物の一部または全部、を除いてもよい。そして、この脱溶剤工程により得られた反応液において、反応性ポリシロキサンの濃度は、好ましくは20~90質量%である。
 上記溶解工程で用いる水洗用有機溶剤は、水酸基を有し、1気圧における沸点が110℃以上200℃以下で、20℃における水100gに対する溶解度が10g以下である化合物である。また、上記水洗用有機溶剤は、反応性ポリシロキサンを溶解し、好ましくは、洗浄工程において、水層との分離が良好な反応性ポリシロキサンを含む油層を形成する化合物である。更に、上記水洗用有機溶剤は、最終的に得られるポリシロキサン溶液における媒体の少なくとも一部となる場合があるので、適度な蒸気圧を有し、樹脂を侵しにくい化合物であることが好ましい。
 上記水洗用有機溶剤における水酸基の数は、好ましくは1つ以上であり、更に好ましくは1つである。上記水洗用有機溶剤の沸点は、好ましくは130℃以上180℃以下である。沸点が110℃未満の有機溶剤を用いると、水や加水分解により副生したアルコール等との沸点差が小さいため、蒸留による水や副生したアルコール等の除去が円滑に進まず、好ましくない。一方、沸点が200℃を超える有機溶剤を用いると、洗浄工程を行った後、反応性ポリシロキサンの濃度調整に係る濃縮工程等を円滑に進められない場合があり、また硬化性組成物を調製した場合の塗布液からの洗浄用有機溶剤の除去も困難となる場合があり、好ましくない。また、水への溶解度とは、上記水洗用有機溶剤を、温度20℃における水100gに添加して、均一溶解できる量を溶解度とする、一般的な定義に基づく。例えば、プロピレングリコールモノメチルエーテル(PGM)は、任意の量の水と均一混合するので、水への溶解度は無限大で表され、プロピレングリコールモノブチルエーテルは、水100gあたり6g溶解するので、溶解度は6である。
 上記水洗用有機溶剤の好ましい具体例としては、1-オクタノール、1-ペンタノール、2-メチル-1-ブタノール、プロピレングリコールモノブチルエーテルを挙げることができる。これらのうち、より好ましくは1-ペンタノール、プロピレングリコールモノブチルエーテルであり、更に好ましくはプロピレングリコールモノブチルエーテルである。上記水洗用有機溶剤は、1種のみ用いてもよく、2種以上を併用することもできる。
 上記水洗用有機溶剤の使用量は、洗浄工程における水層および油層の分離性並びに経済性の観点から、反応性ポリシロキサンの理論生成量100質量部に対して、好ましくは20~500質量部、より好ましくは50~200質量部である。
 上記洗浄工程は、上記溶解工程により得られた、水洗用有機溶剤に反応性ポリシロキサンが溶解した有機溶液と、水とを接触させた後、混合液から水層を除去する工程である。即ち、この洗浄工程は、混合液から、油層および水層に分離することにより、有機溶液中の水溶性成分を水層に移行させ、この水層を、反応性ポリシロキサンを含む油層から除く工程である。この洗浄工程により、油層を回収し、反応性ポリシロキサンが、水洗用有機溶剤に溶解したポリシロキサン溶液を得ることができる。この回収ポリシロキサン溶液(油層)において、反応性ポリシロキサンの濃度は、通常、50質量%以上であり、水、有機化合物等を含む場合があるが、媒体は、主として、水洗用有機溶剤である。尚、小規模の製造においては、一般的に、分液ロートと呼ばれる器具を用いて、水と有機溶液とを接触させたり混合させたりした後、分液ロート底部から水層を排出する方法が知られている。このとき、油層中の水溶性成分が、油層から十分に除かれるまで、水の添加および水層の排出を繰り返してもよく、また、除きたい水溶性成分に応じて、水層を、酸性にしたりアルカリ性にしたりする方法が知られている。更に、無機塩の水溶液を用いる方法も知られている。工業的規模で実施するには、同じ原理を用いた向流抽出装置等も知られているが、本発明の製造方法においては、いずれの方法をも用いることができる。尚、上記洗浄工程で用いる好ましい水としては、脱イオン水の他、飽和食塩水等が挙げられ、有機ポリマーの水洗に用いられる、従来、公知の水成分を使用することができる。
 上記回収ポリシロキサン溶液(油層)が、水、有機化合物等を含む場合には、この回収ポリシロキサン溶液(油層)に含まれる水洗用有機溶剤の一部が残存するように脱溶剤を行う濃縮工程を備えることが好ましい。このとき、1気圧における沸点が110℃未満の有機化合物の全部が除かれることが好ましく、これにより、媒体の全部を水洗用有機溶剤とすることができ、反応性ポリシロキサンの濃度を所望の範囲とすることが容易となる。
 また、上記洗浄工程の後に得られる回収ポリシロキサン溶液において、反応性ポリシロキサンの濃度は、上記のように、高くなる傾向にある。濃度が高い方が、工業的に効率的であるところ、水洗用有機溶剤は、反応性ポリシロキサンを高濃度に溶解できる点で優れている。しかしながら、ポリマーどうしの架橋反応が進行する場合がある。また、反応性ポリシロキサンの濃度が低いと、ポリマーどうしの架橋が抑制されるので、保存安定性の点では優れている。反応性ポリシロキサンの濃度を所望の範囲とするために、上記濃縮工程により得られた濃縮ポリシロキサン溶液に、上記洗浄工程で用いた同じ水洗用有機溶剤を用いることが好ましい(希釈工程)。本発明の製造方法によって最終的に得られるポリマー溶液において、反応性ポリシロキサンの濃度は、好ましくは0.1~80質量%であり、より好ましくは1~70質量%、更に好ましくは10~60質量%である。
 本発明の製造方法により得られたポリマー溶液は、必要により、後添加された、他の有機溶剤を含んでもよい。他の有機溶剤は、反応性ポリシロキサンを溶解する化合物であり、好ましくはアルコール性水酸基を1つ有する化合物であり、アルキルアルコール、プロピレングリコールモノアルキルエーテル等が挙げられる。具体的には、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、1-ブタノール、イソブチルアルコール、t-ブチルアルコール、3-メチル-1-ブタノール、2,2-ジメチル-1-プロパノール、2-ペンタノール、3-メチル-2-ブタノール、3-ペンタノール、2-メチル-2-ブタノール、シクロペンタノール、プロピレングリコールモノメチルエーテル(PGM)、プロピレングリコールモノエチルエーテル(PGE)、プロピレングリコールモノプロピルエーテル(PGP)等が例示される。他の有機溶剤は、希釈用有機溶剤として用いることができる。
 本発明の製造方法により得られたポリマー溶液において、含まれる全ての有機溶剤に対して1質量%以上100質量%以下が上記水洗用有機溶剤であることが好ましい。そして、この水洗用有機溶剤の割合は、50質量%以上100質量%以下であることがより好ましく、100質量%であることが特に好ましい。
 上記反応性ポリシロキサンの数平均分子量(Mn)は、例えば、テトラヒドロフラン(THF)をキャリア溶剤とする、ゲルパーミエーションクロマトグラフィー(GPC)分析を40℃で行い、標準ポリスチレン換算で算出することができる。好ましいMnは500~100,000、より好ましくは1,000~50,000、更に好ましくは2,000~20,000である。
 本発明の製造方法においては、縮合工程により得られた反応性ポリシロキサンを、特定の水洗用有機溶剤を用いて、洗浄している。有機溶剤として、沸点が110℃以上で水への溶解度が低いだけの条件ならば、アルカン類をはじめとして、数多くの選択があるが、一般に、有機ケイ素化合物は、炭素系有機溶剤との親和性が低く、一般式(1)のポリシロキサンを溶解できる好ましい溶剤は、予想困難である。
 本発明では、水酸基を有するにもかかわらず、水への溶解度が低い特定の有機溶剤が、一般式(1)のポリシロキサンを溶解して洗浄工程に適することを見出した。更に、本発明の製造方法では、ポリシロキサンのゲル化が起きにくいという効果が表れたが、この理由として、ポリマー溶液に含まれるポリシロキサンに、わずかに残るシロキサン結合生成基が、水洗用有機溶剤の水酸基と反応することにより、水洗用有機溶剤分子がいわば保護基となって、残存するシロキサン結合生成基の架橋によるゲル化を防ぐのではないかと考えられる。水酸基を有するにもかかわらず、水への溶解性が低い分子は、バルキーで疎水性が高いものと考えても矛盾がないので、保護基として作用する可能性は高いが、水洗用有機溶剤がこのような作用効果を奏することは、当業者の予想できる範囲を超えたものである。
 本発明の製造方法で製造されたポリマー溶液は、上記一般式(1)で表される反応性ポリシロキサンに加えて、原料に由来する加水分解性基等のシロキサン結合生成基を残存していてもよい反応性ポリシロキサンや、水洗用有機溶剤、他の有機溶剤等を含んでもよい。反応性ポリシロキサンを溶解し全体が液体になるのに十分な量の有機溶剤を含んだ液体をポリマー溶液と呼ぶ。ポリマー溶液には、保存安定性を損ねない範囲で、他の成分を配合し、硬化性組成物等を調製してもよい。他の成分としては、重合性不飽和化合物、エポキシ化合物、ラジカル重合禁止剤、酸化防止剤、紫外線吸収剤、光安定剤、レベリング剤、有機ポリマー、フィラー、金属粒子、顔料、重合開始剤、増感剤、有機溶剤等が挙げられる。
 上記重合性不飽和化合物としては、例えば、硬化性組成物から形成される硬化物の硬度、機械的強度、耐薬品性および密着性等の物性を調整すること、基材への密着性に優れた硬化被膜を得ること、硬化性組成物の粘度および硬化性等を調整すること等を目的として、アクリロイル基またはメタクリロイル基を有する化合物(以下、「(メタ)アクリレート化合物」という。)等が好ましく用いられる。
 上記(メタ)アクリレート化合物としては、単官能(メタ)アクリレート、多官能(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。これらは、単独で用いてよいし、2種以上を組み合わせて用いてもよい。
 上記エポキシ化合物は、分子構造、分子量等の性質において、特に制限はなく、従来、公知のものを用いることができる。具体的には、ビスフェノールA型エポキシ樹脂およびその誘導体、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキシルカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビニルシクロシクロヘキセンジオキサイド、4-ビニルエポキシシクロヘキサン、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシルカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジ-2-エチルヘキシル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ソルビトールのテトラグリシジルエーテル、ジペンタエルスリトールのヘキサグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル、プロピレングリコール、グリセリン等の脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することによって得られるポリエーテルポリオールのポリグリシジルエーテル、脂肪族長鎖二塩基酸脂肪族高級アルコールのモノグリシジルエーテルやフェノール、クレゾール、ブチルフェノール、またこれらにアルキレンオキサイドを付加することによって得られるポリエーテルアルコールのモノグリシジルエーテル、高級脂肪酸のグリシジルエステル、エポキシ化大豆油、エポキシステアリン酸オクチル、エポキシステアリン酸ブチル、エポキシ化アマニ油、エポキシ化ポリブタジエン、エチレンオキサイド、プロピレンオキサイド、シクロヘキセンオキサイド、スチレンオキサイド、メチルグリシジルエーテル、ブチルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、エチレングリコールグリシジルフェニルエーテル、エチレングリコールベンジルグリシジルエーテル、ジエチレングリコールグリシジルテトラヒドロピラニルエーテル、グリシジルメタクリレート、グリシジルアセテート、シリコーンエポキシ等が挙げられる。尚、上記エポキシ化合物としては、分子中の水素原子の一部または全てがフッ素原子で置換されたものを使用することもできる。これらのエポキシ化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。尚、上記エポキシ化合物としては、エポキシ基の数が2以上と多いものが好ましく、例えば、1,6-ヘキサンジオールジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキシルカルボキシレート等が好ましい。
 上記ラジカル重合禁止剤としては、ハイドロキノン、ハイドロキノンモノメチルエーテル等のフェノール系化合物、N-ニトロソフェニルヒドロキシルアミン塩等を用いることができる。
 上記酸化防止剤としては、2,6-ジ-tert-ブチル-4-メチルフェノール、ペンタエリスリトールテトラキス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)等のヒンダードフェノール系酸化防止剤、4,6-ビス(オクチルチオメチル)-o-クレゾール等のイオウ系二次酸化防止剤、リン系二次酸化防止剤等が挙げられる。これらは、1種のみ用いてもよく、2種以上を併用することもできる。
 上記ポリマー溶液が、ラジカル重合禁止剤および酸化防止剤を含むことにより、反応性ポリシロキサンおよびポリマー溶液の保存安定性、熱安定性等を向上させることができる。
 上記ポリマー溶液が、ラジカル重合禁止剤を含有する場合、このラジカル重合禁止剤の含有量は、上記反応性ポリシロキサン1,000,000質量部に対して、好ましくは1~10,000質量部、より好ましくは10~2,000質量部、更に好ましくは100~500質量部である。
 上記ポリマー溶液が、酸化防止剤を含有する場合、この酸化防止剤の含有量は、上記反応性ポリシロキサン1,000,000質量部に対して、好ましくは1~10,000質量部、より好ましくは10~2,000質量部、更に好ましくは100~500質量部である。
 上記ポリマー溶液が含むことができる他の成分のうち、有機ポリマーとしては、(メタ)アクリル系ポリマー、エポキシ系ポリマー等が挙げられ、これらのポリマーを形成する好適なモノマーとしては、メチルメタクリレート、シクロヘキシル(メタ)アクリレート、N-(2-(メタ)アクリロキシエチル)テトラヒドロフタルイミド等が挙げられる。
 上記の他の成分のフィラーとしては、シリカ粒子、アルミナ粒子等が挙げられる。
 本発明の製造方法で製造されたポリマー溶液を用いて、活性エネルギー線硬化性組成物および熱硬化性組成物を調製することができ、目的に応じて、重合開始剤が選択され、配合される。
 以下、本発明を実施例により具体的に説明する。但し、本発明は、この実施例に何ら限定されるものではない。
 尚、Mn(数平均分子量)は、ゲルパーミエーションクロマトグラフ法(GPC)により、溶離液としてTHFを用い、40℃において、連結したGPCカラム「TSK-Gel G4000H」および「TSK-Gel G2000H」(型式名、東ソー社製)を用いて分離し、リテンションタイムから標準ポリスチレンを用いて分子量を算出した。
 また、得られた反応性ポリシロキサンの1H-NMR分析では、測定試料約1gと、内部標準物質であるヘキサメチルジシロキサン(以下、「HMDSO」という)約100mgとを、それぞれ精秤して、分析溶媒として重クロロホルムに溶解し、HMDSOのプロトンのシグナル強度を基準として解析を行った。
 表1に、実施例、比較例において用いた水洗用有機溶剤の物性を示す。「PGB」はプロピレングリコールモノブチルエーテル、「PGM」はプロピレングリコールモノメチルエーテル、「IBA」はイソブチルアルコール、「MEK」はメチルエチルケトン、「MIBK」はメチルイソブチルケトン、「MAK」はメチルアミルケトンの略称である。
Figure JPOXMLDOC01-appb-T000017
1.反応性ポリシロキサンおよびポリマー溶液の製造並びに評価
 実施例および比較例において、Qモノマーとして、下記参考例1により得られた「TMOSのアルコール交換液」を用いた。
  参考例1
 テトラメトキシシラン(TMOS)のメトキシ基の一部を1-プロポキシ基に交換するため、1-プロパノール43.39gと、テトラメトキシシラン38.06g(250ミリモル)とをフラスコに仕込んだ後、撹拌しながら、水酸化テトラメチルアンモニウムの25質量%メタノール溶液12.76g(メタノール299ミリモル、水酸化テトラメチルアンモニウム35ミリモル)を徐々に加え、液温を25℃にして15分以上反応させた。15分後、反応液をガスクロマトグラフ分析(FID検出器)したところ、n-プロポキシ基含有テトラアルコキシシラン、即ち、TMOSのメトキシ基がn-プロポキシ基に置換された化合物(1置換体、2置換体、3置換体および4置換体)と、未反応のTMOSとが検出された。ガスクロマトグラムにおける生成物のピーク面積に基づいて、1-プロパノールの置換数(n-プロポキシ基含有化合物1分子あたりのn-プロポキシ基の数の平均)を求めたところ、1.6であった。n-プロポキシ基含有テトラアルコキシシランおよび未反応のTMOSの割合は、両者の合計を100質量%としたときに、それぞれ、93質量%および7質量%であり、n-プロポキシ基含有テトラアルコキシシランおよび未反応のTMOSの合計量の割合は、反応液の全体に対して52質量%であった。以下、この反応液を、実施例および比較例において用いるが、「TMOSのアルコール交換液」と呼ぶ。
  実施例1
 フラスコに、重合禁止剤としてN-ニトロソフェニルヒドロキシルアミンアルミニウム塩(商品名「Q-1301」、和光純薬工業株式会社製)0.003gを入れ、Tモノマーとしての3-メタクリロキシプロピルトリメトキシシラン62.09g(250ミリモル)を加え、更に、1-プロパノール75.13gおよび水31.53gを加えた。液温を60℃にし、撹拌しながら、参考例1で調製した、水酸化テトラメチルアンモニウムを含むTMOSのアルコール交換液94.21gを1時間かけて滴下した。その後、更に60℃で攪拌を継続し、2時間後、反応を終了した。尚、TMOSのアルコール交換液は、送液ポンプを用いて、できるだけ一定の速度で滴下した。
 次に、反応液の温度を60℃としたまま、シュウ酸の20質量%メチルエチルケトン(MEK)溶液8.27g(シュウ酸18.38ミリモル)を加えて、触媒である水酸化テトラメチルアンモニウムを中和した。中和液を濃縮するため、液温を30℃以下まで冷却し、脱溶剤装置にフラスコを取り付けた。液温40℃以下を保って、減圧下、1-プロパノール、メタノール、水、MEK等を合計で180g留出させ、主に1-プロパノールおよび水を媒体として、約70質量%のポリシロキサン(P1)を含む濃縮液86gを得た。そのときの最高到達真空度は1mmHgであった。
 得られた濃縮液に、PGB(プロピレングリコールモノブチルエーテル)75gを加え、攪拌して、均一な溶液とした。更に、20%の食塩水90gを加え、5分間以上攪拌して、十分に混合した。撹拌をやめると、フラスコ内の液は速やかに2層に分離した。攪拌を停止してからフラスコを15分以上静置した後、チューブを用いて水層を排出し、この水洗操作により、濃縮液に含まれる塩類および過剰の酸を除去した。次いで、油層に、20%食塩水90gを加えて、上記と同様にして撹拌し、水層を排出した。これらの操作を繰り返し、水層のpHが4~7の範囲で3回続けて同じpHを示すまで行った。pHの測定は、3バンドpH試験紙を用いて色の変化を目視で判断した。最終の水洗操作では、17時間静置した後、水層を排出した。本例では、水洗操作を合計で7回実施し、洗浄工程を終了した。
 その後、ポリシロキサン(P1)およびPGBを主として含む油層に、重合禁止剤としてN-ニトロソフェニルヒドロキシルアミンアルミニウム塩を0.003g加えた。得られた混合溶液を、減圧下で加熱し、溶媒の一部を留去し、無色透明な反応性ポリシロキサン溶液(C1)114gを得た。ポリマー溶液(C1)の0.6gを100℃で1時間乾固した後、乾燥物の重量測定から固形分濃度を算出したところ、52質量%であり、ポリシロキサン(P1)の固形分換算収量は61gであった。尚、ガスクロマトグラフ(TCD検出器)により、ポリマー溶液(C1)に含まれる溶媒の分析を行ったところ、PGBのピークだけ検出された。
 反応性ポリシロキサン(P1)のMnは7,700であった。また、ポリマー溶液(C1)に含まれるポリシロキサン(P1)を1H-NMR分析し、メタクリロイル基が存在することを確認した。
 また、この1H-NMR分析により、HMDSO(ヘキサメチルジシロキサン)のプロトンを内部標準としてメタクリロイル基の量を定量し、これを基にして、ポリシロキサン(P1)を構成する構造単位(11)の含有量を計算し、25質量%を得た。その結果、得られた反応性ポリシロキサン(P1)は、一般式(1)におけるa、w、x、yおよびzが、それぞれ、1、1、0、0および0.25であるポリマーであること、並びに、各原料が化学量論的に反応して得られた共重縮合物であることが確認された。
  実施例2
 ポリシロキサン(P1)を含む濃縮液86gに添加したプロピレングリコールモノブチルエーテル(PGB)75gの代わりに、1-ペンタノール75gを用いた他は、実施例1と同様にして、反応性ポリシロキサン溶液(C2)を得た。ポリシロキサン(P1)のMnは7,400であった。尚、ガスクロマトグラフ(TCD検出器)により、ポリマー溶液(C2)に含まれる溶媒の分析を行ったところ、1-ペンタノールのピークだけ検出された。
  実施例3
 水酸化テトラメチルアンモニウムを含むTMOSのアルコール交換液を用いる際の反応温度を60℃に代えて80℃とし、60℃で2時間撹拌のところを80℃で2時間撹拌に変えた他は、実施例1と同様にして反応性ポリシロキサン溶液(C3)を得た。ポリシロキサン(P1)のMnは7,000であった。尚、ガスクロマトグラフ(TCD検出器)により、ポリマー溶液(C3)に含まれる溶媒の分析を行ったところ、プロピレングリコールモノブチルエーテルのピークだけ検出された。
  実施例4
 水酸化テトラメチルアンモニウムを含むTMOSのアルコール交換液を用いる際の反応温度を60℃に代えて30℃とし、60℃で2時間撹拌のところを30℃で2時間撹拌に変えた他は、実施例1と同様にして反応性ポリシロキサン溶液(C4)を得た。ポリシロキサン(P1)のMnは11,000であった。尚、ガスクロマトグラフ(TCD検出器)により、ポリマー溶液(C4)に含まれる溶媒の分析を行ったところ、プロピレングリコールモノブチルエーテルのピークだけ検出された。
  実施例5
 フラスコ[A]に、テトラメトキシシラン114.17g(750ミリモル)と、3-エチル-3-((3-(トリメトキシシリル)プロポキシ)メチル)オキセタン(以下、「TMSOX」という。)139.21g(500ミリモル)と、1-プロパノール189.38gとを仕込み、窒素バブリングをしながら、撹拌して混合物を得た。そして、この混合物を、液温40℃とした後、撹拌しながら、水酸化テトラメチルアンモニウムの25質量%メタノール溶液31.90g(メタノール747ミリモル、水酸化テトラメチルアンモニウム87.5ミリモル)を5分かけて滴下した。すなわち、Qモノマーは滴下ではなく、当初一括仕込である。なお、上記の水酸化テトラメチルアンモニウムのメタノール溶液の滴下中は、内温が40℃になっている必要はない。
 次に、フラスコ[A]内の内温が40℃で安定したことを確認し、別のフラスコ[B]で調製しておいた、純水81.07gと1-プロパノール81.07gとからなる混合液を、供給ポンプを用いてフラスコ[A]内に、1時間かけて滴下した。滴下速度はできるだけ一定にした。滴下開始5分後に昇温を開始し、内温を約60℃とした。混合液の滴下終了後、更に6時間の撹拌を約60℃で継続した。その後、内温を約60℃としたまま、シュウ酸の20質量%メチルエチルケトン(MEK)溶液20.7g(シュウ酸45.94ミリモル)を加えて、触媒の水酸化テトラメチルアンモニウムを中和した。中和液を濃縮するため、液温を30℃以下まで冷却し、脱溶剤装置にフラスコ[A]を取り付けた。液温40℃以下を保って、減圧下、1-プロパノール、メタノール、水、MEK等を合計で382g留出させ、約58質量%のポリシロキサン(P2)を含む濃縮液259gを得た。そのときの最高到達真空度は3mmHgであった。
 得られた濃縮液に、PGB(プロピレングリコールモノブチルエーテル)187gを加え、攪拌して、均一な溶液とした。更に、20%の食塩水210gを加え、5分間以上攪拌して、十分に混合した。撹拌をやめると、フラスコ内の液は速やかに2層に分離した。攪拌を停止してからフラスコを15分以上静置した後、チューブを用いて水層を排出し、この水洗操作により、濃縮液に含まれる塩類および過剰の酸を除去した。次いで、油層に、20%食塩水210gを加えて、上記と同様にして撹拌し、水層を排出した。これらの操作を繰り返し、水層のpHが4~7の範囲で3回続けて同じpHを示すまで行った。pHの測定は、3バンドpH試験紙を用いて色の変化を目視で判断した。最終の水洗操作では、17時間静置した後、水層を排出した。本例では、水洗操作を合計で7回実施し、洗浄工程を終了した。
 その後、ポリシロキサン(P2)およびPGBを主として含む油層を、減圧下で加熱し、溶媒の一部を留去し、無色透明な反応性ポリシロキサン溶液(C5)252gを得た。ポリマー溶液(C5)の0.6gを100℃で1時間乾固した後、乾燥物の重量測定から固形分濃度を算出したところ、59質量%であり、ポリシロキサン(P2)の固形分換算収量は150gであった。尚、ガスクロマトグラフ(TCD検出器)により、ポリマー溶液(C5)に含まれる溶媒の分析を行ったところ、PGBのピークだけ検出された。
 反応性ポリシロキサン(P2)のMnは4,800であった。また、ポリマー溶液(C5)に含まれるポリシロキサン(P2)を1H-NMR分析し、オキセタニル基が存在することを確認した。
 また、この1H-NMR分析により、HMDSO(ヘキサメチルジシロキサン)のプロトンを内部標準としてオキセタニル基の量を定量し、これを基にして、ポリシロキサン(P2)を構成する構造単位(11)の含有量を計算し、30質量%を得た。その結果、得られた反応性ポリシロキサン(P2)は、一般式(1)におけるa、w、x、yおよびzが、それぞれ、1.5、1、0、0および0.18であるポリマーであること、並びに、各原料が化学量論的に反応して得られた共重縮合物であることが確認された。
  比較例1
 ポリシロキサンを含む濃縮液86gに添加したプロピレングリコールモノブチルエーテル(PGB)75gの代わりに、プロピレングリコールモノメチルエーテル(PGM)75gを用いた他は、実施例1と同様にして合成を試みた。しかしながら、洗浄工程で、油層および水層の分離が十分ではなく、反応性ポリシロキサンを回収することができなかった。
  比較例2
 実施例1にて調製した、ポリシロキサン(P1)を含む濃縮液86gを用いた。この濃縮液に添加したプロピレングリコールモノブチルエーテル(PGB)75gの代わりに、酢酸エチル75gを用い、攪拌して、均一な溶液とした。更に、20%の食塩水90gを加え、5分間以上攪拌して、十分に混合した。撹拌をやめると、フラスコ内の液は速やかに2層に分離した。攪拌を停止してからフラスコを15分以上静置した後、チューブを用いて水層を排出し、この水洗操作により、濃縮液に含まれる塩類および過剰の酸を除去した。次いで、油層に、20%食塩水90gを加えて、上記と同様にして撹拌し、水層を排出した。これらの操作を繰り返し、水層のpHが4~7の範囲で3回続けて同じpHを示すまで行った。pHの測定は、3バンドpH試験紙を用いて色の変化を目視で判断した。最終の水洗操作では、17時間静置した後、水層を排出した。本例では、水洗操作を合計で7回実施し、洗浄工程を終了した。
 その後、ポリシロキサン(P1)および酢酸エチルを主として含む油層に、重合禁止剤としてN-ニトロソフェニルヒドロキシルアミンアルミニウム塩を0.003g加えた。更に、PGM160gを加え、得られた混合溶液を、減圧下で加熱し、溶媒の一部を留去し、PGMを媒体とする無色透明な反応性ポリシロキサン溶液(D2)を得た。ポリマー溶液(D2)の固形分濃度を算出したところ、67質量%であった。
 反応性ポリシロキサン(P1)のMnは7,300であった。また、ポリマー溶液(D2)に含まれるポリシロキサン(P1)を1H-NMR分析し、メタクリロイル基が存在することを確認した。
  比較例3
 実施例1にて調製した、ポリシロキサン(P1)を含む濃縮液86gを用いた。この濃縮液に添加したプロピレングリコールモノブチルエーテル(PGB)75gの代わりに、メチルエチルケトン(MEK)75gを用い、攪拌して、均一な溶液とした。更に、20%の食塩水90gを加え、5分間以上攪拌して、十分に混合した。撹拌をやめると、フラスコ内の液は速やかに2層に分離した。攪拌を停止してからフラスコを15分以上静置した後、チューブを用いて水層を排出し、この水洗操作により、濃縮液に含まれる塩類および過剰の酸を除去した。次いで、油層に、20%食塩水90gを加えて、上記と同様にして撹拌し、水層を排出した。これらの操作を繰り返し、水層のpHが4~7の範囲で3回続けて同じpHを示すまで行った。pHの測定は、3バンドpH試験紙を用いて色の変化を目視で判断した。最終の水洗操作では、17時間静置した後、水層を排出した。本例では、水洗操作を合計で7回実施し、洗浄工程を終了した。
 その後、ポリシロキサン(P1)およびMEKを主として含む油層に、重合禁止剤としてN-ニトロソフェニルヒドロキシルアミンアルミニウム塩を0.003g加えた。更に、PGM150gを加え、得られた混合溶液を、減圧下で加熱し、溶媒の一部を留去し、PGMを媒体とする無色透明な反応性ポリシロキサン溶液(D3)を得た。ポリマー溶液(D3)の固形分濃度を算出したところ、81質量%であった。
 反応性ポリシロキサン(P1)のMnは7,500であった。また、ポリマー溶液(D3)に含まれるポリシロキサン(P1)を1H-NMR分析し、メタクリロイル基が存在することを確認した。
  比較例4
 実施例5にて調製した、ポリシロキサン(P2)を含む濃縮液259gを用いた。この濃縮液に添加したプロピレングリコールモノブチルエーテル(PGB)187gの代わりに、メチルイソブチルケトン(MIBK)187gを用い、攪拌して、均一な溶液とした。更に、20%の食塩水210gを加え、5分間以上攪拌して、十分に混合した。撹拌をやめると、フラスコ内の液は速やかに2層に分離した。攪拌を停止してからフラスコを15分以上静置した後、チューブを用いて水層を排出し、この水洗操作により、濃縮液に含まれる塩類および過剰の酸を除去した。次いで、油層に、20%食塩水210gを加えて、上記と同様にして撹拌し、水層を排出した。これらの操作を繰り返し、水層のpHが4~7の範囲で3回続けて同じpHを示すまで行った。pHの測定は、3バンドpH試験紙を用いて色の変化を目視で判断した。最終の水洗操作では、17時間静置した後、水層を排出した。本例では、水洗操作を合計で7回実施し、洗浄工程を終了した。
 その後、ポリシロキサン(P2)およびMIBKを主として含む油層を、減圧下で加熱し、溶媒の一部を留去し、MIBKを媒体とする無色透明な反応性ポリシロキサン溶液(D3)を得た。ポリマー溶液(D3)の固形分濃度を算出したところ、52質量%であった。
 反応性ポリシロキサン(P2)のMnは4,900であった。また、ポリマー溶液(D3)に含まれるポリシロキサン(P2)を1H-NMR分析し、オキセタニル基が存在することを確認した。
  比較例5
 実施例5にて調製した、ポリシロキサン(P2)を含む濃縮液259gを用いた。この濃縮液に添加したプロピレングリコールモノブチルエーテル(PGB)187gの代わりに、メチルアミルケトン(MAK)187gを用い、攪拌して、均一な溶液とした。更に、20%の食塩水210gを加え、5分間以上攪拌して、十分に混合した。撹拌をやめると、フラスコ内の液は速やかに2層に分離した。攪拌を停止してからフラスコを15分以上静置した後、チューブを用いて水層を排出し、この水洗操作により、濃縮液に含まれる塩類および過剰の酸を除去した。次いで、油層に、20%食塩水210gを加えて、上記と同様にして撹拌し、水層を排出した。これらの操作を繰り返し、水層のpHが4~7の範囲で3回続けて同じpHを示すまで行った。pHの測定は、3バンドpH試験紙を用いて色の変化を目視で判断した。最終の水洗操作では、17時間静置した後、水層を排出した。本例では、水洗操作を合計で7回実施し、洗浄工程を終了した。
 その後、ポリシロキサン(P2)およびMAKを主として含む油層を、減圧下で加熱し、溶媒の一部を留去し、MAKを媒体とする無色透明な反応性ポリシロキサン溶液(D4)を得た。ポリマー溶液(D4)の固形分濃度を算出したところ、56質量%であった。
 反応性ポリシロキサン(P2)のMnは5,000であった。また、ポリマー溶液(D4)に含まれるポリシロキサン(P2)を1H-NMR分析し、オキセタニル基が存在することを確認した。
  比較例6
 実施例1にて調製した、ポリシロキサン(P1)を含む濃縮液86gを用いた。この濃縮液に添加したプロピレングリコールモノブチルエーテル(PGB)75gの代わりに、イソブチルアルコール(IBA)75gを用い、攪拌して、均一な溶液とした。更に、20%の食塩水90gを加え、5分間以上攪拌して、十分に混合した。撹拌をやめると、フラスコ内の液は速やかに2層に分離した。攪拌を停止してからフラスコを15分以上静置した後、チューブを用いて水層を排出し、この水洗操作により、濃縮液に含まれる塩類および過剰の酸を除去した。次いで、油層に、20%食塩水90gを加えて、上記と同様にして撹拌し、水層を排出した。これらの操作を繰り返し、水層のpHが4~7の範囲で3回続けて同じpHを示すまで行った。pHの測定は、3バンドpH試験紙を用いて色の変化を目視で判断した。最終の水洗操作では、17時間静置した後、水層を排出した。本例では、水洗操作を合計で7回実施し、洗浄工程を終了した。
 その後、ポリシロキサン(P1)およびIBAを主として含む油層に、重合禁止剤としてN-ニトロソフェニルヒドロキシルアミンアルミニウム塩を0.003g加えた。得られた混合溶液を、減圧下で加熱し、溶媒の一部を留去し、無色透明な反応性ポリシロキサン溶液(D5)114gを得た。ポリマー溶液(D5)の固形分濃度を算出したところ、51質量%であった。尚、ガスクロマトグラフ(TCD検出器)により、ポリマー溶液(D5)に含まれる溶媒の分析を行ったところ、IBAおよび1-プロパノールのピークが検出された。標準物質のピーク面積との比較から、1-プロパノールの濃度が8質量%と定量された。また、水のピークが確認できたが、ピーク形状がブロードなため、定量性が悪く、その濃度は数質量%程度と推測した。
 反応性ポリシロキサン(P1)のMnは7,200であった。また、ポリマー溶液(D4)に含まれるポリシロキサン(P1)を1H-NMR分析し、メタクリロイル基が存在することを確認した。
 比較例1を除く実験例にて得られた反応性ポリシロキサンの保存安定性評価を、以下の方法で行った。
 表2に示した希釈溶剤を用い、ポリシロキサンの固形分濃度が50質量%となるように希釈して、調製されたポリマー溶液を評価した。
 固形分濃度50%のポリマー溶液20gを、50mlのサンプル瓶にとって密栓し、60℃の空気恒温槽に保存して24時間毎にサンプル瓶を振ってみて目視観察した。サンプル瓶をさかさまにしたときに溶液が勢いよく流れればゲル化は起きていないと判断し、さかさまにしても液が流れ落ちなければゲル化したと判断した。そして、この評価を7日間行い、ゲルが確認されるまでの日数を保存日数として記録した。7日後にゲル化が起きていなければ、保存安定性評価試験を終了し、ゲル化が起きていないポリマー溶液については、保存安定性評価の試験前と7日後の粘度比を算出し、保存安定性を評価した。すなわち、EDH型粘度計により、コーン半径2.4mm、角度1度34分の円錐コーンを用いて25℃における回転粘度を測定し、算出した粘度比を表2に載せた。粘度比が1の場合、粘度変化が無いことを意味し、粘度比の値が1に近いほど、保存安定性が優れていることを意味する。
Figure JPOXMLDOC01-appb-T000018
 表2によれば、実施例1~5で得られたポリマー溶液(C1)~(C5)を用いて、固形分濃度50%に調整されたポリマー溶液は、保存安定性評価において7日間経過してもゲルが発生せず、保存安定性に優れることが分かる。特に、ポリマー溶液(C1)~(C3)および(C5)の粘度比は、1.1~1.3と小さく、実施例1~3および5の製造方法が好ましいことが分かる。一方、比較例2、3、4および5で得られたポリマー溶液、(D1)、(D2)、(D3)および(D4)を用いて調製した評価用ポリマー溶液は2日後にゲル化した。即ち、保存安定性評価試験の3日目に、サンプル瓶を振った時にすでにゲル化していて、サンプル瓶で液が流れ落ちなかった。また、比較例6で得られたポリマー溶液(D5)を用いて調製した評価用ポリマー溶液は5日後にゲル化した。
 比較例1で水洗用有機溶剤に用いたPGMは、20℃における水100gへの溶解度が10gを超えるため、油層と水層の分離ができず、反応性ポリシラン溶液を得ることができなかった。水酸基を有しない水洗用有機溶剤を用いた比較例2~5では、油層の回収後、一旦、反応性ポリシロキサン溶液を得ることができたが、所定の媒体を用いた保存において、2日後にゲル化した。この理由は、加水分解性基が残存したポリシロキサン分子のシラノールが水酸基を有さない溶剤とは溶媒和できないため不安定となり、シラノール間で縮合が起きてゲル化したものと思われる。水洗用有機溶剤が水酸基を有するが、沸点が110℃より低い水洗用有機溶剤を用いた比較例6では、油層の回収後、一旦、反応性ポリシロキサン溶液を得ることができた。しかしながら、水洗用有機溶剤の沸点と、水の沸点との差が小さいために、油層からの脱溶剤を十分に行うことができず、媒体がIBA、1-プロパノールおよび水のポリマー溶液(D5)が得られた。これが原因で、IBAを用いて希釈することにより得られたポリマー溶液を保存安定性試験に供すると、5日後にゲル化したものと考えられる。
2.反応性ポリシロキサンの硬化性の評価
 実施例で得られたポリシロキサンを用いて硬化性組成物を調製し、下記の方法で硬化性を評価した。
 固形分濃度50質量%の反応性ポリシロキサン(P1)を含むポリマー溶液(C1)200質量部に、ラジカル重合開始剤である2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン3質量部を溶解させて、硬化性組成物を調製した。硬化性組成物を、バーコーターを用いてポリカーボネート板に塗布した後、塗膜を約50℃で5分間加熱して溶剤を揮発させて、約10μmの厚さの被膜を形成させた。その後、EIT社照度計を用いて、下記の条件により紫外線照射を行って硬化させたところ、1回の照射で表面のタックがなくなり、良好な硬化性を示した。
[紫外線照射条件]
ランプ:80W/cm高圧水銀ランプ
ランプ高さ:10cm
積算光量:210mJ/cm2(UV-A領域)
雰囲気:大気中
 本発明のポリマー溶液は、溶液の形態で、長期保管ができることから、貯蔵、運搬等においてポリシロキサンの変質が抑制される。そして本発明のポリマー溶液は、使用が簡便であり、工業材料として好適である。また、本発明のポリマー溶液に含まれる反応性ポリシロキサンは、(メタ)アクリロイル基またはオキセタニル基の反応性基を有するので、硬化性に優れた硬化性組成物等を与えるものであるから、工業的に有用である。

Claims (8)

  1.  (メタ)アクリロイル基またはオキセタニル基からなる反応性官能基と、シロキサン結合生成基とを有する有機ケイ素化合物を含有する原料化合物を、加水分解共重縮合させて、下記一般式(1)で表される反応性ポリシロキサンを合成する縮合工程と、上記反応性ポリシロキサンを水洗用有機溶剤に溶解する溶解工程と、得られた有機溶液と、水とを接触させ、混合液から水層を除去し、上記反応性ポリシロキサンを含む油層を回収する洗浄工程と、を含む、反応性ポリシロキサン溶液の製造方法において、水洗用有機溶剤が、水酸基を有し、1気圧における沸点が110℃以上200℃以下で、20℃における水100gに対する溶解度が10g以下であることを特徴とする反応性ポリシロキサン溶液の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    〔一般式(1)において、R0は、下記一般式(2)または(3)で表される有機基であり、R1は、炭素原子数1~10の官能基を少なくとも1つ含む有機基であり、R2、R3およびR4は、それぞれ、独立して、水素原子または炭素原子数1~10の炭化水素基であり、R5は、炭素原子数1~6の炭化水素基であり、nは0または1であり、a、w、x、yおよびzは、モル数を示し、wは正の数であり、a,x、yおよびzは、0または正の数であり、0≦a/w≦3、0≦x/(a+w)≦2、0≦y/(a+w)≦2、0≦z/(a+w+x+y)≦1である。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、R6は、水素原子またはメチル基であり、R7は、炭素原子数1~6のアルキレン基である。)

    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)において、R8は、水素原子または炭素原子数1~6のアルキル基であり、R9は、炭素原子数1~6のアルキレン基である。)〕
  2.  上記水洗用有機溶剤が、プロピレングリコールモノブチルエーテル、1-ペンタノール、2-メチル-1-ブタノールおよび1-オクタノールから選択される少なくとも1つである、請求項1に記載の反応性ポリシロキサン溶液の製造方法。
  3.  上記洗浄工程により回収された上記油層に含まれる上記水洗用有機溶剤の一部が残存するように脱溶剤を行う濃縮工程を、更に、備える請求項1に記載の反応性ポリシロキサン溶液の製造方法。
  4.  上記反応性官能基と、シロキサン結合生成基とを有する有機ケイ素化合物が、下記一般式(5)で表される化合物である請求項2に記載の反応性ポリシロキサン溶液の製造方法。

    Figure JPOXMLDOC01-appb-C000004
    〔一般式(5)において、R0は、下記一般式(2)または(3)で表される有機基であり、R1は、炭素原子数1~10の官能基を少なくとも1つ含む有機基であり、R11は、シロキサン結合生成基であり、nは0または1である。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(2)において、R6は、水素原子またはメチル基であり、R7は、炭素原子数1~6のアルキレン基である。)
    Figure JPOXMLDOC01-appb-C000006
    (一般式(3)において、R8は、水素原子または炭素原子数1~6のアルキル基であり、R9は、炭素原子数1~6のアルキレン基である。)〕
  5.  上記原料化合物が、テトラアルコキシシランまたはテトラハロゲノシランを含む請求項4に記載の反応性ポリシロキサン溶液の製造方法。
  6.  反応性ポリシロキサンが、式(1)において、0.3≦a/w≦1.8の化合物である、請求項5に記載の反応性ポリシロキサン溶液の製造方法。
  7.  縮合工程における反応温度が30℃~80℃である、請求項1に記載の反応性ポリシロキサン溶液の製造方法。
  8.  反応性ポリシロキサンの濃度が1~70質量%である、請求項1に記載の反応性ポリシロキサン溶液の製造方法。
PCT/JP2011/078908 2010-12-28 2011-12-14 反応性ポリシロキサン溶液の製造方法 WO2012090708A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180051751.0A CN103228706B (zh) 2010-12-28 2011-12-14 反应性聚硅氧烷溶液的制造方法
KR1020137012647A KR101763986B1 (ko) 2010-12-28 2011-12-14 반응성 폴리실록산 용액의 제조 방법
US13/996,760 US8940852B2 (en) 2010-12-28 2011-12-14 Method for manufacturing reactive polysiloxane solution
JP2012550818A JP5527433B2 (ja) 2010-12-28 2011-12-14 反応性ポリシロキサン溶液の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-292005 2010-12-28
JP2010292005 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090708A1 true WO2012090708A1 (ja) 2012-07-05

Family

ID=46382821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078908 WO2012090708A1 (ja) 2010-12-28 2011-12-14 反応性ポリシロキサン溶液の製造方法

Country Status (6)

Country Link
US (1) US8940852B2 (ja)
JP (1) JP5527433B2 (ja)
KR (1) KR101763986B1 (ja)
CN (1) CN103228706B (ja)
TW (1) TWI507444B (ja)
WO (1) WO2012090708A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012090707A1 (ja) * 2010-12-28 2014-06-05 東亞合成株式会社 溶剤可溶型反応性ポリシロキサンの製造方法
WO2019176716A1 (ja) * 2018-03-16 2019-09-19 東レ株式会社 不純物拡散組成物、それを用いた半導体素子の製造方法および太陽電池の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899567B (zh) * 2014-02-28 2018-12-11 株式会社大赛璐 固化性组合物及其固化物、及晶片级透镜
CN116120558B (zh) * 2023-02-03 2023-11-24 浙江精一新材料科技有限公司 一种可交联改性聚硅氧烷的无溶剂合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321545A (ja) * 2002-04-26 2003-11-14 Toagosei Co Ltd 光カチオン硬化性樹脂の製造方法
JP2004162060A (ja) * 2002-10-24 2004-06-10 Dainippon Ink & Chem Inc シリコーン樹脂の精製方法
JP2005126592A (ja) * 2003-10-24 2005-05-19 Jsr Corp ポリシロキサンの精製方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654330B2 (ja) 1992-05-19 1997-09-17 株式会社日本触媒 ポリシロキサン系マクロモノマーの製造方法
EP2565217B1 (en) * 2008-04-22 2014-05-14 Toagosei Co., Ltd. Curable composition and process for production of organosilicon compound
CN103180369B (zh) * 2010-12-28 2015-01-21 东亚合成株式会社 溶剂可溶型反应性聚硅氧烷的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321545A (ja) * 2002-04-26 2003-11-14 Toagosei Co Ltd 光カチオン硬化性樹脂の製造方法
JP2004162060A (ja) * 2002-10-24 2004-06-10 Dainippon Ink & Chem Inc シリコーン樹脂の精製方法
JP2005126592A (ja) * 2003-10-24 2005-05-19 Jsr Corp ポリシロキサンの精製方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012090707A1 (ja) * 2010-12-28 2014-06-05 東亞合成株式会社 溶剤可溶型反応性ポリシロキサンの製造方法
JP5527432B2 (ja) * 2010-12-28 2014-06-18 東亞合成株式会社 溶剤可溶型反応性ポリシロキサンの製造方法
WO2019176716A1 (ja) * 2018-03-16 2019-09-19 東レ株式会社 不純物拡散組成物、それを用いた半導体素子の製造方法および太陽電池の製造方法
JPWO2019176716A1 (ja) * 2018-03-16 2021-02-04 東レ株式会社 不純物拡散組成物、それを用いた半導体素子の製造方法および太陽電池の製造方法
JP7172994B2 (ja) 2018-03-16 2022-11-16 東レ株式会社 不純物拡散組成物、それを用いた半導体素子の製造方法および太陽電池の製造方法

Also Published As

Publication number Publication date
TW201238998A (en) 2012-10-01
KR101763986B1 (ko) 2017-08-01
JPWO2012090708A1 (ja) 2014-06-05
CN103228706B (zh) 2015-01-14
CN103228706A (zh) 2013-07-31
US20130338286A1 (en) 2013-12-19
JP5527433B2 (ja) 2014-06-18
KR20130140729A (ko) 2013-12-24
US8940852B2 (en) 2015-01-27
TWI507444B (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
TWI498357B (zh) An organic silicon compound having an oxetanyl group, a process for producing the same, and a hardened composition
JP6248221B2 (ja) 硬化後柔軟性に優れる硬化性樹脂、(メタ)アクリル化硬化性樹脂、及び液晶シール剤組成物
KR20110016872A (ko) 경화성 조성물 및 유기 규소 화합물의 제조 방법
JP5527433B2 (ja) 反応性ポリシロキサン溶液の製造方法
EP3208295B1 (en) Method for producing siloxane resin
JP7401977B2 (ja) ポリオルガノシロキサン及びその製造方法、並びに塗料用組成物
JP5527432B2 (ja) 溶剤可溶型反応性ポリシロキサンの製造方法
JP5338657B2 (ja) 保存安定性に優れた反応性ポリシロキサン組成物
US20230331688A1 (en) Diepoxy compound, curable composition, cured product, and optical member
JP5210122B2 (ja) 接着剤用硬化性組成物
JP2000086765A (ja) 有機ケイ素組成物
KR102479148B1 (ko) 카티온 경화성 조성물, 및 경화물의 제조 방법
JP2006274082A (ja) ラジカル重合性基を有する有機ケイ素化合物の製造方法
JP5282732B2 (ja) 反応性ポリシロキサンの製造方法
TWI431067B (zh) Containing organic polysiloxane mixed composition
JP5087752B2 (ja) β−ケトエステル基含オルガノポリシロキサン化合物
JP2017049461A (ja) 反応性シロキサン化合物を含むインプリント成形用重合性組成物
JP5454761B2 (ja) オキセタニル基を有するケイ素化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550818

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137012647

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13996760

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11852779

Country of ref document: EP

Kind code of ref document: A1