WO2012090567A1 - 断熱材及びその製造方法 - Google Patents

断熱材及びその製造方法 Download PDF

Info

Publication number
WO2012090567A1
WO2012090567A1 PCT/JP2011/073006 JP2011073006W WO2012090567A1 WO 2012090567 A1 WO2012090567 A1 WO 2012090567A1 JP 2011073006 W JP2011073006 W JP 2011073006W WO 2012090567 A1 WO2012090567 A1 WO 2012090567A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating material
heat insulating
mass
particles
less
Prior art date
Application number
PCT/JP2011/073006
Other languages
English (en)
French (fr)
Inventor
ちひろ 飯塚
新納 英明
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010290902A external-priority patent/JP5775691B2/ja
Priority claimed from JP2010290900A external-priority patent/JP5783717B2/ja
Priority claimed from JP2011084743A external-priority patent/JP5824228B2/ja
Priority claimed from JP2011084744A external-priority patent/JP2012218961A/ja
Priority claimed from JP2011110590A external-priority patent/JP5876668B2/ja
Priority claimed from JP2011133315A external-priority patent/JP2013001596A/ja
Priority claimed from JP2011165753A external-priority patent/JP5824272B2/ja
Priority claimed from JP2011189750A external-priority patent/JP5824298B2/ja
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to KR1020137014364A priority Critical patent/KR101514906B1/ko
Publication of WO2012090567A1 publication Critical patent/WO2012090567A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0067Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the density of the end product
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Definitions

  • the present invention relates to a heat insulating material and a manufacturing method thereof.
  • the average free path of air molecules at room temperature is about 100 nm. Therefore, in a porous body having voids with a diameter of 100 nm or less, heat transfer due to air convection and conduction is suppressed, and such a porous body exhibits an excellent heat insulating effect.
  • Patent Document 1 describes a heat insulating material obtained by independently forming an ultrafine powder of silica into a porous body.
  • the heat insulating material has a bulk density of 0.2 to 1.5 g / cm 3 and a BET specific surface area.
  • porous particles are formed by coating particles made of a radiation absorption / scattering material or the like with ultrafine particles associated in a ring shape or a spiral shape so that the inner diameter of the ring becomes 0.1 ⁇ m or less.
  • Patent Document 3 discloses a microporous body composed of two or more kinds of fine particles having different primary particle diameters.
  • JP 2007-169158 A Japanese Patent No. 4367612 JP-A-1-103968
  • Patent Documents 1 to 3 theoretically have a thermal conductivity close to that of still air, and can be used as a heat insulating material.
  • the present inventor has found that a problem arises in the manufacturing process when a heat insulating material mainly composed of ultrafine particles as described in Patent Documents 1 to 3 is used industrially. Specifically explaining this problem, the heat insulating material mainly composed of ultrafine particles is very bulky, and at first glance seems to be light and easy to handle, but in reality, when processing such as pressure molding is performed The low bulk density is an obstacle. When compacting powder with a low bulk density, it is difficult to fill the mold first, and the mold and tank for storing the powder must be made large enough to match the volume, resulting in high costs.
  • the powdery heat insulating material needs to deaerate air at the time of pressure molding, it has a large amount of air in advance and, as described in Patent Document 3, contains ultrafine particles as a main component. Since the porous body has a small pore diameter, it tends to be required for a long time for deaeration by reduced pressure or the like, and the productivity is low.
  • the stroke tends to be large when pressure-molding a bulky heat insulating material mainly composed of ultrafine particles. When the stroke is large, the powder in the vicinity of the pressurization location is likely to become insufficient as the distance from the pressurization location increases even if the powder is sufficiently consolidated.
  • Lamination refers to a phenomenon in which a molded product obtained by pressure molding is peeled into two or more layers mainly in the thickness direction. If such delamination occurs, it cannot be handled as a product, and the yield decreases, which is not preferable.
  • the powdery heat insulating material may be used by being filled into a jacket material (for example, a glass cloth bag or tube) and wound around a tubular material or the like. If the powder easily scatters, the working efficiency at the time of filling the outer cover material is poor. Therefore, in such a usage mode, the powder scatter is more problematic, and a solution is desired.
  • a jacket material for example, a glass cloth bag or tube
  • the present invention has been made in view of such problems of the prior art, and is capable of suppressing the occurrence of scattering and molding defects at the time of molding and filling and exhibiting sufficient heat insulating performance.
  • the purpose is to provide a body.
  • Another object of the present invention is to provide a molded body and an encapsulated body using the powder and a method for producing the powder.
  • the present inventor has found that the average particle diameter of silica powder and alumina powder having low thermal conductivity, the BET specific surface area of the powder, and the loose packing It was conceived that by appropriately setting the bulk density, a powder capable of suppressing the occurrence of scattering and molding defects during molding and filling can be obtained, and the present invention has been conceived.
  • the present invention comprises silica and / or alumina, a powdery comprising a plurality of small particles having a particle diameter D S is 5nm or more 30nm or less, BET specific surface area of the powder is 5 m 2 / g or more
  • a powdery heat insulating material having a thermal conductivity at 30 ° C. of not more than 150 m 2 / g and not more than 0.05 W / m ⁇ K.
  • the bulk density of the heat insulating material is preferably 0.030 g / cm 3 or more and 0.35 g / cm 3 or less.
  • the heat insulating material includes silica and / or alumina, further includes a plurality of large particles having a particle diameter DL of 50 nm to 100 ⁇ m, and a ratio of the mass of the large particles to the sum of the mass of the small particles and the mass of the large particles R L is preferably 60% by mass or more and 90% by mass or less.
  • the heat insulating material preferably contains infrared opaque particles and has a thermal conductivity at 800 ° C. of 0.2 W / m ⁇ K or less.
  • the infrared opaque particles have an average particle size of 0.5 ⁇ m or more and 30 ⁇ m or less, and the volume content of the infrared opaque particles is 0.02 vol% or more and 5 vol% or less based on the total volume of the heat insulating material. It is preferable.
  • the heat insulating material includes at least one element selected from the group consisting of alkali metal elements, alkaline earth metal elements, and germanium, and includes at least one type selected from the group consisting of alkali metal elements and alkaline earth metals.
  • the element is contained, the content is 0.005 mass% or more and 5 mass% or less based on the total mass of the heat insulating material, and when germanium is contained, the content is based on the total mass of the heat insulating material. It is preferable that it is 10 mass ppm or more and 1000 mass ppm or less.
  • At least one element selected from the group consisting of alkali metal elements, alkaline earth metal elements and germanium is contained in the large particles.
  • the heat insulating material contains inorganic fibers, and the content of the inorganic fibers is preferably more than 0% by mass and 20% by mass or less based on the total mass of the heat insulating material.
  • the heat insulating material preferably contains phosphorus, and the phosphorus content is preferably 0.002% by mass or more and 6% by mass or less based on the total mass of the heat insulating material.
  • the heat insulating material preferably contains iron, and the iron content is preferably 0.005 mass% or more and 6 mass% or less based on the total mass of the heat insulating material.
  • the present invention also provides a heat insulating material obtained by molding the powdery heat insulating material.
  • the heat insulating material obtained by the above molding preferably has a maximum load of 0.7 MPa or more at a compression rate of 0 to 5%.
  • the heat insulating material obtained by the above molding has a pore diameter of 0.05 ⁇ m or more and 0.5 ⁇ m or less with respect to an integrated pore volume V 0.003 of pores having a pore diameter of 0.003 ⁇ m or more and 150 ⁇ m or less.
  • the ratio R of the integrated pore volume V is 70% or more, and the integrated pore volume V 0.05 of the pores having a pore diameter of 0.05 ⁇ m or more and 150 ⁇ m or less is 0.5 mL / g or more and 2 mL / g or less. It is preferable.
  • the present invention also provides the above heat insulating material housed in a jacket material.
  • the jacket material contains inorganic fibers or the jacket material is a resin film.
  • the present invention also includes a small particle containing silica and / or alumina and having an average particle size of 5 nm to 30 nm, and a large particle containing silica and / or alumina and having an average particle size of 50 nm to 100 ⁇ m.
  • a method for producing a heat insulating material is provided, which includes a step of mixing the mass RL of the large particles with respect to the sum of the mass of the small particles and the mass of the large particles at a ratio R L of 60% by mass to 90% by mass.
  • the present invention is also selected from the group consisting of small particles containing silica and / or alumina and having an average particle diameter of 5 nm to 30 nm, silica and / or alumina, alkali metal elements, alkaline earth metal elements, and germanium.
  • a large particle having an average particle size of 50 nm or more and 100 ⁇ m or less, and a ratio RL of the mass of the large particle to the sum of the mass of the small particle and the mass of the large particle is 60 mass.
  • a method for manufacturing a heat insulating material which includes a step of mixing at a rate of not less than 90% and not more than 90% by mass to obtain an inorganic mixture.
  • the present invention is also a method for producing the above heat insulating material, comprising silica and / or alumina, and having an average particle diameter of 5 nm to 30 nm, silica and / or alumina, an alkali metal element, an alkali A large particle containing at least one element selected from the group consisting of an earth metal element and germanium and having an average particle diameter of 50 nm or more and 100 ⁇ m or less, with respect to the sum of the mass of the small particle and the mass of the large particle
  • a large-particle mass ratio RL includes an inorganic mixture containing 60% by mass or more and 90% by mass or less in a molding die, and a molding process for molding the inorganic mixture, and the molding process includes: (A) A step of heating to 400 ° C.
  • Step a to provide a method of manufacturing a heat insulating material.
  • the molding step it is preferable to set the molding pressure so that the bulk density of the heat insulating material is 0.25 g / cm 3 or more and 2.0 g / cm 3 or less.
  • the present invention is also a method for producing the above heat insulating material, comprising silica and / or alumina, and having an average particle diameter of 5 nm to 30 nm, silica and / or alumina, an alkali metal element, an alkali A large particle containing at least one element selected from the group consisting of an earth metal element and germanium and having an average particle diameter of 50 nm or more and 100 ⁇ m or less, with respect to the sum of the mass of the small particle and the mass of the large particle It was obtained by the housing step of housing the inorganic mixture containing the mass ratio R L of the large particles in the range of 60% by mass or more and 90% by mass or less, the molding step of molding the inorganic mixture, and the molding step.
  • the bulk density of the molded heat insulating material is 0.25 g / cm 3 or more 2.0 g / cm 3 so as to be less than A step of heating while pressing the inorganic mixture with the molding die, or (d) a step of performing a heat treatment at a temperature of 400 ° C. or higher after molding the inorganic mixture by pressing with the molding die.
  • a method for manufacturing a heat insulating material is provided.
  • the present invention it is possible to provide a heat insulating material that is excellent in handleability by suppressing scattering at the time of molding and filling, and has good moldability by suppressing the occurrence of molding defects in the case of pressure molding, and a method for producing the same. can do.
  • molded using the powdery heat insulating material and the jacket material which accommodates a heat insulating material can also be provided.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • Powdery heat insulating material [1-1] Silica, alumina
  • the heat insulating material of the present embodiment includes a plurality of small particles of silica and / or alumina and is in the form of powder.
  • the content of silica and / or alumina in the heat insulating material is 50% by mass or more, heat transfer by solid conduction is small, which is preferable. It is more preferable that the content of silica particles and / or alumina particles is 75% by mass or more of the powder because the adhesion between the powders increases and the powder scattering decreases.
  • silica particles other particles comprised of component represented by the composition formula SiO 2 refers to a material containing SiO 2, a metal component or the like in addition to SiO 2, containing other inorganic compounds Includes particles.
  • the silica particles may contain salts and complex oxides with Si and various other elements, or may contain hydrated oxides such as hydroxides. It may have a silanol group.
  • the alumina particles, other particles consisting of only the component represented by a composition formula Al 2 O 3, are widely encompassing concept of a material containing Al 2 O 3, in addition to Al 2 O 3 Includes particles containing other inorganic compounds such as metal components.
  • the alumina particles may contain salts and composite oxides with Al and various other elements, or may contain hydrated oxides such as hydroxides.
  • the alumina in the silica particles and / or the alumina particles may be crystalline, amorphous, or a mixture thereof. This is preferable because the heat transfer by is small and the heat insulation performance is high.
  • silica particles include the following.
  • An oxide of silicon called “silica” or “quartz”.
  • Partial oxide of silicon Silicon complex oxide such as silica alumina and zeolite. Any one of silicate (glass) of Na, Ca, K, Mg, Ba, Ce, B, Fe and Al.
  • silicate (glass) of Na, Ca, K, Mg, Ba, Ce, B, Fe and Al Any one of silicate (glass) of Na, Ca, K, Mg, Ba, Ce, B, Fe and Al.
  • SiC and SiN oxides any one of silicate (glass) of Na, Ca, K, Mg, Ba, Ce, B, Fe and Al.
  • silicate (glass) of Na, Ca, K, Mg, Ba, Ce, B, Fe and Al Any one of silicate (glass) of Na, Ca, K, M
  • alumina particles include the following.
  • An oxide of aluminum called “alumina”.
  • Alumina called ⁇ -alumina, ⁇ -alumina, ⁇ -alumina.
  • Partial oxide of aluminum Aluminum complex oxides such as silica alumina and zeolite. Any one of Na, Ca, K, Mg, Ba, Ce, B, Fe and Si aluminate (glass).
  • the silica particles and / or alumina particles are thermally stable at the temperature at which the heat insulating material is used. Specifically, it is preferable that the weight of silica particles and / or alumina particles does not decrease by 10% or more when held for 1 hour at the maximum use temperature of the heat insulating material. Moreover, it is preferable that a silica particle and / or an alumina particle have water resistance from a viewpoint of maintaining heat insulation performance and a viewpoint of the shape maintenance at the time of shape
  • the specific gravity of the silica particles and alumina particles is preferably 2.0 or more and 5.0 or less. It is more preferable that it is 2.0 or more and 4.5 or less because the bulk density of the heat insulating material is small, and it is further more preferable that it is 2.0 or more and 4.2 or less.
  • the specific gravity of silica particles and alumina particles refers to the true specific gravity determined by the pycnometer method.
  • a porous body having voids with a diameter of 100 nm or less has a low thermal conductivity and is suitable for a heat insulating material.
  • a porous body is produced by, for example, pressure molding using a powder consisting only of so-called ultrafine particles having a particle diameter of about 20 nm, the volume of the powder before pressing tends to be very large, The manufacturing equipment tends to be large, and the stroke during pressurization becomes longer.
  • the tact time that is, the powder is filled into the mold, pressed, the pressure is released, and the powder is pressed from the mold.
  • the bulk density is small, it tends to be difficult to uniformly fill the mold.
  • scattering when the storage hopper is charged and aggregation within the storage hopper are likely to occur, and molding defects are likely to occur during pressure molding.
  • the heat insulation performance is deteriorated as the use as a heat insulating material is impaired.
  • the average particle size is 5 nm or more and 30 nm or less
  • the average particle size is Particles having a size of 50 nm or more and 100 ⁇ m or less are selected and mixed such that the ratio R L of the mass of the large particles to the sum of the mass of the small particles and the mass of the large particles is in the range of 60 to 90% by mass.
  • the voids formed by these particles form a bottleneck for heat conduction in the space and the heat conduction in the space is easily suppressed.
  • the adhesion and interparticle friction angle which is the physical friction angle between particles, and the friction angle between layers inside the powder
  • the internal friction angle, chargeability, and the like have changed, and it has become possible to alleviate problems such as the ease of scattering and aggregation of the heat insulating material consisting of ultrafine particles.
  • the heat insulating material preferably contains two or more kinds of silica particles and / or alumina particles, and particularly when two kinds of particles having different particle diameters, that is, small particles and large particles made of silica and / or alumina,
  • the mass ratio RL of the large particles is preferably 60% by mass or more and 90% by mass or less based on the sum of the mass of the small particles and the mass of the large particles.
  • the content of the large particles is less than 60% by mass, the powder tends to be scattered, and when it exceeds 90% by mass, the heat insulating performance tends to be lowered and pressure molding tends to be difficult.
  • the mass ratio RL of the large particles is more preferably 60% by mass or more and 85% by mass or less, more preferably 65% by mass or more and 85% by mass or less, and further preferably 65% by mass or more and 75% by mass or less from the viewpoint of heat insulation performance. .
  • Non-Patent Document 1 a heat-insulating material precursor containing ultrafine particles as a main component tends to expand greatly when the pressure is released after pressure molding. This expansion is called springback.
  • a molded body obtained by pressure-molding ultrafine particles containing ultrafine powder as a main component has a problem that a springback occurs and a molding defect occurs in some cases. .
  • the microporous structure contributes to reducing the heat conduction of the heat insulating material, but spring back is likely to occur if the air is not sufficiently vented during pressure molding.
  • the ratio of the large particles to the small particles of the heat insulating material is the BET specific surface area, the scattering property of the powdered heat insulating material, It is preferable to determine the balance so that the suppression of the spring back and the thermal conductivity of the molded heat insulating material have desired values.
  • a crack-shaped molding defect occurs on a surface perpendicular to the press surface during pressure molding. If such a molding defect exists in the heat insulating material, the heat insulating material may be damaged, and the heat insulating performance is also deteriorated, so that it cannot be handled as a product and the yield is reduced, which is not preferable. Further, a heat insulating material mainly composed of ultrafine particles also tends to cause lamination after being pressure-molded. Lamination refers to a phenomenon in which a molded product obtained by pressure molding is peeled into two or more layers mainly in the thickness direction.
  • the “loosely packed bulk density” refers to a value obtained according to the measurement procedure of “initial bulk density” of JIS R 1628.
  • (1) to (4) that is, (1) The mass of the measurement container is measured with a scale. (2) Place the sample in the measuring container until it overflows through the sieve. At this time, the measurement container should not be vibrated or the sample should not be compressed. (3) Grind the powder that has risen from the upper end surface of the measurement container using a grinding plate. At this time, the ground plate is used by being inclined backward from the direction of grinding so as not to compress the powder.
  • the entire measurement container is weighed with a scale, and the mass of the sample is calculated by subtracting the weight of the measurement container.
  • Measure based on JIS R 1628 is an index based on the premise that the difference between the initial bulk density and the bulk density of this measurement is within 0.3%, whereas in the case of the powdery heat insulating material of this embodiment, the initial The difference between the bulk density and the original bulk density may be greatly different.
  • the present inventor has found that the initial bulk density is an important indicator for the ease of lamination when pressure-forming a powdery heat insulating material. Completed the invention.
  • An example of an apparatus for measuring loosely packed bulk density is shown in FIG. The distance between the tip of the funnel attached to the lower part of the sieve and the measuring container shall be 20-30 mm.
  • the loosely packed bulk density of the powdery heat insulating material is preferably 0.030 g / cm 3 or more and 0.35 g / cm 3 or less.
  • the loosely packed bulk density of the powder heat insulating material can be controlled by adjusting the ratio of the mass of the large particles to the sum of the mass of the small particles and the mass of the large particles.
  • the BET specific surface area is 5 m 2 / g or more and 150 m 2 / g or less, and the thermal conductivity at 30 ° C. is 0.05 W / m ⁇ K or less, and the loose filling bulk density is 0.030 g / cm 3 or more and 0.35 g. / Cm 3 or less, select large particles having a relatively small average particle diameter (for example, 50 nm to 10 ⁇ m), or set the mass ratio of the large particles to be small (for example, 60 mass% to 80 mass%). This is an aspect that is easy to adjust.
  • the thermal conductivity of the powder is often about 0.035 W / m ⁇ K or less, that is, by adjusting the loosely filled bulk density for ease of handling, the thermal conductivity can be made as a heat insulating material.
  • the merit that it leads to the preferable range is born.
  • the heat insulation performance tends to be lowered, which is not preferable.
  • more preferably 0.035 g / cm 3 or more 0.3 g / cm 3 or less from the viewpoint of facilitating the filling of the mold 0.040 g / cm in terms of thermal insulation performance 3 to 0.25 g / cm 3 or less is more preferred.
  • the heat-insulating material contains infrared opaque particles, there is a strong tendency to require heat insulation performance at a high temperature, so that the volume before pressurization is appropriately sized and the mold can be easily filled.
  • loose packing bulk density is preferably 0.045 g / cm 3 or more 0.25 g / cm 3 or less, and more is 0.05 g / cm 3 or more 0.25 g / cm 3 or less preferably, further preferably 0.05 g / cm 3 or more 0.20 g / cm 3 or less. Details of the infrared opaque particles will be described later.
  • the content of small particles and large particles can be calculated, for example, by separating small particles and large particles from the heat insulating material and measuring their masses.
  • the method for separating the small particles and the large particles is not particularly limited.
  • the particles can be separated using a classification method or a classification machine described in the revised sixth edition, Chemical Engineering Handbook (Maruzen).
  • Known classification methods include wet classification and dry classification.
  • Wet classification machines include gravity classifiers (sediment classifiers), spitz casters, hydraulic classifiers, siphon sizers, centrifugal classifiers, liquid cyclones, jet sizers, rake classifiers, Aikens types, spiral classifiers, bowl classifiers. Machine, hydro separator, decanter and the like.
  • Machines for dry classification include sieving machines such as vibrating screens, in-plane screens, rotary screens, double cylinder type screens, gravity classifiers, zigzag classifiers, wind classifiers, free vortex type centrifugal classifiers, cyclones, Perfusion separator, forced vortex type centrifugal classifier, turbo classifier, microplex, micron separator, Accucut, super separator, startervant type classifier, turboplex, cyclone air separator, centrifugal classifier such as O-SEPA, louver type classifier And inertia classifiers such as a fanton gelen classifier, elbow jet, and improved virtual impactor.
  • the classifier may be selected according to the particle size of small particles and large particles to be separated, and these classifiers may be used in combination.
  • the particle diameter of silica particles or alumina particles can be measured by observing with a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • the magnification is set so that particles of 5 nm or more and 30 nm or less can be observed (for example, 10,000 times), and a “representative visual field” is randomly extracted and observed for the heat insulating material.
  • “Representative field of view” means not a specific field of view, but a field of view that has a certain degree of common visual field in an arbitrarily selected heat insulating material.
  • the particle diameter (equivalent area equivalent circle diameter) of each particle may be measured if the boundary can be visually recognized at that magnification.
  • the particle diameter of each particle may be determined by the equivalent area circle equivalent diameter, so it is not essential to obtain an average value of the particle diameter, but the entire set of small particles If the average value of the particle diameter is determined for the purpose of grasping the tendency of the physical properties of the heat insulating material, the magnification is set so that particles of 5 nm to 30 nm can be observed, and 100 or more particles are observed. What is necessary is just to calculate
  • Small particles contained in the heat insulating material can be observed, for example, under the following conditions and apparatus.
  • a sample is held on a conductive tape such as a carbon adhesive tape affixed on a sample stage, and an Os coating of about 2 nm is applied to obtain a sample for speculum.
  • the Os coating can be applied using, for example, an osmium coater (HPC-1SW type, manufactured by Vacuum Device Corporation).
  • HPC-1SW osmium coater
  • a speculum a scanning electron microscope (SU-70, manufactured by Hitachi High-Technologies Corporation) is used, and measurement is performed under the condition of an acceleration voltage of 1.0 kV.
  • D S of the small particles is 5nm or more 30nm or less. If D S is in 5nm or more, compared to the case D S is outside the above numerical range, they tend small particles are chemically stable, heat-insulating performance may stable tendency. If D S is a 30nm or less, compared with the case D S is outside the above numerical range, small contact area between the small particles, less heat transfer due to the powder of the solid conduction, tends low thermal conductivity There is. D S is, if it is 5nm or 25nm or less, from the viewpoint of thermal conductivity, more preferable to be 5nm or more 20nm or less, more preferable to be 5nm or more 18nm or less, and particularly preferably 7nm more 14nm or less.
  • the particle diameter D L of the large particles satisfies D S ⁇ D L.
  • D L is preferably at 50nm or more 100 ⁇ m or less.
  • D L is obtained by the same method as D S described above.
  • DL is 50 nm or more
  • the spring back in the formed body tends to be small.
  • DL is 100 ⁇ m or less
  • the thermal conductivity tends to be small.
  • Particle diameter D L of the larger particles but may be 80nm or more 100 ⁇ m or less, if it is 50nm or more 50 ⁇ m or less, facilitates homogeneous mixing of these if the heat insulating material including inorganic fibers and an infrared opacifying particles Therefore, it is preferable.
  • D L is, if it is 50nm or more 10 ⁇ m or less, increase adhesion of the particles, for separation of particles from the powder is small, and still more preferably 50nm or more 5 ⁇ m or less.
  • D L is at least twice the D S, since the springback is reduced when molding the powdery insulation material, preferably.
  • D L is the is more than three times D S, large bulk density of the mixed powder of small particles and large particles, because of their high workability powder volume is small, more preferred.
  • D L is the is more than 4 times the D S, large difference in particle size of the small particles and large particles, since it is easy to disperse for small particles of large particles when mixed with small particles and large particles, further preferable. From the viewpoint of solid heat transfer due to particle aggregation, it is preferable that each particle is dispersed. That is, it is preferable that there are no locations where the large particles are in direct contact with each other.
  • the voids between the large particles generated when the large particles are not directly connected are filled with small particles, and the large particles are difficult to directly contact each other. Therefore, there is no heat transfer path with large solid conduction in the heat insulating material, and the heat conductivity of the whole heat insulating material tends to be low. Furthermore, by filling the gaps between the large particles with small particles, the size of the gaps present in the heat insulating material is reduced, and air convection and heat transfer are suppressed, so the thermal conductivity of the entire heat insulating material is reduced. It tends to be low.
  • the heat insulating material preferably contains a water repellent from the viewpoint of suppressing deterioration of handling properties, deformation of the molded body, cracking and the like when water soaks into the powder or molded body.
  • the water repellent include wax-based water repellents such as paraffin wax, polyethylene wax, and acrylic / ethylene copolymer wax; silicone-based water repellents such as silicone resin, polydimethylsiloxane, and alkylalkoxysilane; and perfluoroalkyl.
  • Fluorine-based water repellents such as carboxylates, perfluoroalkyl phosphate esters and perfluoroalkyltrimethylammonium salts, silane coupling agents such as alkoxysilanes containing alkyl groups and perfluoro groups, trimethylsilyl chloride and 1,1,1 And silylating agents such as 3,3,3-hexamethyldisilazane. These can be used alone or in combination of two or more. These may be used as they are or in the form of a solution or an emulsion. Of these, wax-based water repellents and silicon-based water repellents are preferably used.
  • the content ratio of the water repellent in the powder is preferably 100/30 to 100 / 0.1, and the mass ratio of the total powder / water repellent is 100/30 from the viewpoint of imparting a sufficient water repellent effect. 20 to 100 / 0.5 is more preferable, and 100/10 to 100/1 is more preferable.
  • the method for adding the water repellent is not particularly limited. For example, a method in which the powder is stirred and dried while adding a solution obtained by diluting these water repellents with a solvent such as water or alcohol, and the powder is water or alcohol. Examples of such a method include a method in which a water repellent is added thereto, followed by stirring and filtration, followed by drying, and steam treatment with chlorotrimethylsilane or the like.
  • the BET specific surface area of the heat insulating material is 5 g / m 2 or more and 150 g / m 2 or less, there is an advantage that the amount of the water repellent required for imparting the water repellent effect is small. Furthermore, when the amount of the water repellent used is small, there is an advantage that a small amount of outgas is released when the heat insulating material is exposed to a high temperature, and the influence on the surrounding environment is small.
  • the heat insulating material When the heat insulating material is molded, the heat insulating material preferably contains an inorganic fiber.
  • the heat insulating material containing inorganic fibers has an advantage that, in pressure molding, there is little dropout of particles from the formed heat insulating material, and the productivity is high. Furthermore, the heat insulating material containing an inorganic fiber has the advantage that it is hard to disintegrate and is easy to handle. Even in the state of powder, there is little scattering, which is preferable in handling.
  • the term “inorganic fiber” means that the ratio of the average length of the inorganic fiber to the average thickness (aspect ratio) is 10 or more.
  • the aspect ratio is preferably 10 or more, and when molding a heat insulating material, 50 or more is more preferable from the viewpoint of enabling molding with a small pressure and improving the productivity of the heat insulating material, from the viewpoint of the bending strength of the heat insulating material. 100 or more is more preferable.
  • the aspect ratio of the inorganic fiber can be obtained from the average value of the thickness and length of 1000 inorganic fibers measured by FE-SEM. It is preferable that the inorganic fibers are monodispersed and mixed in the powder, but the inorganic fibers may be mixed in a state in which the inorganic fibers are entangled with each other or a bundle in which a plurality of inorganic fibers are aligned in the same direction. .
  • the inorganic fibers may be aligned in the same direction.
  • the inorganic fibers are oriented in a direction perpendicular to the heat transfer direction. It is preferable.
  • the method for orienting the inorganic fibers perpendicularly to the heat transfer direction is not particularly limited.For example, when filling the jacket material or the construction site with a powdery thermal insulation material, By dropping and filling the heat insulating material, the inorganic fibers tend to be oriented perpendicular to the heat transfer direction.
  • the inorganic fibers that have been oriented in the heat transfer direction can be easily oriented in a direction perpendicular to the heat transfer direction.
  • inorganic fibers examples include long glass fibers (filaments) (SiO 2 —Al 2 O 3 —B 2 O 3 —CaO), glass fibers, glass wool (SiO 2 —Al 2 O 3 —CaO—Na 2 O).
  • Alkali resistant glass fiber SiO 2 —ZrO 2 —CaO—Na 2 O
  • rock wool basalt wool
  • slag wool SiO 2 —
  • ceramic fiber mullite fiber
  • silica fiber SiO 2
  • alumina fiber Al 2 O 3 —SiO 2
  • potassium titanate fiber Alumina whisker, silicon carbide whisker, silicon nitride whisker, calcium carbonate whisker, basic magnesium sulfate whisker Car, calcium sulfate whisker (gypsum fiber), zinc oxide whisker, zirconia fiber, carbon fiber, graphite whisker, phosphate fibers, AES (Alkaline Earth Silicate) fiber (SiO 2 -CaO-MgO), natural mineral wollast
  • biosoluble AES fibers Alkaline Earth Silicate Fiber
  • examples of the AES fiber include SiO 2 —CaO—MgO inorganic glass (inorganic polymer).
  • the average thickness of the inorganic fibers is preferably 1 ⁇ m or more from the viewpoint of preventing scattering. In the case of a heat insulating material, the thickness is preferably 20 ⁇ m or less from the viewpoint of suppressing heat transfer by solid conduction.
  • the average thickness of the inorganic fibers can be obtained by calculating the thickness of 1000 inorganic fibers by FE-SEM and averaging the thicknesses.
  • the content of the inorganic fiber in the heat insulating material is preferably more than 0% by mass with respect to the mass of the whole powder from the viewpoint of suppressing the detachment of the powder from the pressure-formed heat insulating material, and the thermal conductivity is 0.05 W. / M ⁇ K or less is preferable in terms of 20% by mass or less.
  • the content of inorganic fibers is more preferably 0.5% by mass or more and 18% by mass or less from the viewpoint of easy mixing with the infrared opaque particles. From the viewpoint of reducing the filling bulk density, it is more preferably 0.5% by mass or more and 16% by mass or less.
  • the content of the inorganic fiber can be obtained, for example, by classifying the inorganic fiber from powder.
  • the heat insulating material contains infrared opacifying particles when heat insulating performance at a high temperature is required.
  • the infrared opaque particles refer to particles made of a material that reflects, scatters, or absorbs infrared rays. When infrared opaque particles are mixed in the heat insulating material, heat transfer due to radiation is suppressed, so that the heat insulating performance is particularly high in a high temperature region of 200 ° C. or higher.
  • infrared opaque particles examples include zirconium oxide, zirconium silicate, titanium dioxide, iron titanium oxide, iron oxide, copper oxide, silicon carbide, gold ore, chromium dioxide, manganese dioxide, graphite and other carbonaceous materials, carbon fibers , Spinel pigments, aluminum particles, stainless steel particles, bronze particles, copper / zinc alloy particles, and copper / chromium alloy particles.
  • the above metal particles or nonmetal particles known as infrared opaque materials may be used alone or in combination of two or more.
  • zirconium oxide, zirconium silicate, titanium dioxide or silicon carbide is particularly preferable.
  • the composition of the infrared opaque particles is obtained by FE-SEM EDX.
  • the average particle diameter of the infrared opaque particles is preferably 0.5 ⁇ m or more from the viewpoint of heat insulation performance at 200 ° C. or more, and preferably 30 ⁇ m or less from the viewpoint of heat insulation performance at less than 200 ° C. due to suppression of solid conduction.
  • the average particle diameter of the infrared opaque particles is determined by the same method as that for silica particles and alumina particles. Depending on the size of the inorganic fibers, silica particles, and alumina particles, when the silica particles and / or alumina particles are 5 nm to 100 ⁇ m, the infrared opaque particles can be used from the viewpoint of easy mixing with the silica particles and / or alumina particles.
  • the average particle size is more preferably from 0.5 ⁇ m to 10 ⁇ m, and even more preferably from 0.5 ⁇ m to 5 ⁇ m.
  • the inventors have found that the infrared reflection, scattering or absorption efficiency of the infrared opaque particles tends to depend on the volume ratio of the infrared opaque particles contained in the heat insulating material.
  • the content of infrared opaque particles in the heat insulating material is preferably more than 0% by volume and 5% by volume or less based on the volume of the whole heat insulating material.
  • the content of the infrared opaque particles is greater than 5% by volume, heat transfer by solid conduction is large, and thus the heat insulation performance at less than 200 ° C. tends to be low. In order to improve the heat insulation performance at 200 ° C.
  • the content of the infrared opaque particles is more preferably 0.02% by volume or more and 5% by mass or less, and further preferably 0.03% by volume or more and 4% by volume or less.
  • the mixed powder obtained by mixing the powder containing RL in the range of 60% by mass or more and 90% by mass or less with the infrared opaque particles has a tendency to hardly absorb moisture, and has an effect of less variation at the time of weighing. .
  • the content of the infrared opaque particles can be determined, for example, by measuring the composition of the infrared opaque particles with FE-SEM EDX and quantifying the elements contained only in the infrared opaque particles by fluorescent X-ray analysis. it can.
  • the heat insulating material of the present embodiment has a thermal conductivity at 30 ° C. of 0.05 W / m ⁇ K or less.
  • the thermal conductivity may be 0.0479 W / m ⁇ K or less, preferably 0.045 W / m ⁇ K or less, more preferably 0.040 W / m ⁇ K or less, and 0.037 W / m ⁇ K or less. K or less is more preferable, and 0.0237 W / m ⁇ K or less is particularly preferable.
  • the heat insulating material containing the infrared opaque particles is preferable particularly when heat insulating performance in a high temperature region of 200 ° C. or higher is required.
  • the thermal conductivity at 800 ° C. is preferably 0.2 W / m ⁇ K or less, more preferably 0.19 W / m ⁇ K or less, and 0.18 W / m ⁇ K or less. Is more preferable. A method for measuring the thermal conductivity will be described later.
  • the heat insulating material may contain RL in the range of 60% by mass to 90% by mass. It is preferable to measure the thermal conductivity after preparing. When the thermal conductivity is more than 0.05 W / m ⁇ K, it is preferable to change the mixing ratio within a range in which the content is maintained.
  • the mixing amount can be similarly determined when using inorganic fibers and infrared opaque particles. If the mixing ratio of the inorganic fibers and the infrared opaque particles is excessive, the heat insulating property may be lowered. Therefore, it is preferable to appropriately adjust while measuring and confirming the thermal conductivity.
  • the mixing ratio of the inorganic fibers is preferably 18% by mass or less.
  • the mixing ratio of infrared opaque particles is preferably 23% by mass or less.
  • the heat insulating material of the present invention has a BET specific surface area of 5 m 2 / g or more and 150 m 2 / g or less.
  • a heat insulating material having a BET specific surface area in this range is preferable because aggregation during storage of the heat insulating material or supply in the mold, scattering during molding or filling is suppressed, and thermal conductivity tends to be small. A method for measuring the BET specific surface area will be described later.
  • BET specific surface area is less than or equal 5 m 2 / g or more 150 meters 2 / g, further comprises silica and / or alumina and containing small particles having a particle diameter D S is at 5nm or 30nm or less, excellent moldability, flour There is a tendency for body scattering to be small and heat insulation performance to be excellent. The reason for this is not clear, but is estimated as follows. While particles small particles diameter D S is at 5nm or 30nm or less liable to conventional aggregate, loose packing bulk density is small, significantly easily scattered.
  • the heat insulating material As a method of adjusting the BET specific surface area to 5 m 2 / g or more and 150 m 2 / g or less containing the small particles, there is a method of mixing the small particles and the large particles.
  • the heat insulating material When the heat insulating material is adjusted, it is presumed that the property that the small particles are easily aggregated causes the large particles to adhere with an appropriate strength, and as a result, scattering of the powder is suppressed. Small particles tend to agglomerate during storage.
  • One of the causes is that the powder-like heat insulating material made of small particles has a large BET specific surface area, which is likely to absorb moisture in the air. Is done.
  • the BET specific surface area is preferably 5 m 2 / g or more and 130 m 2 / g or less, more preferably 10 m 2 / g or more and 115 m 2 / g or less, further preferably 15 m 2 / g or more and 100 m 2 / g or less, and more preferably 20 m 2 / g or more. 91 m 2 / g or less is particularly preferable.
  • the powder of the present embodiment is composed of an alkali metal element and an alkaline earth metal element. It is preferable to contain at least one element selected from the group consisting of germanium. Specific examples of at least one element selected from the group consisting of alkali metal elements and alkaline earth metal elements (hereinafter sometimes referred to as “basic elements” in the present specification) include lithium, sodium, potassium, Examples thereof include alkali metals such as rubidium and cesium, and alkaline earth metals such as magnesium, calcium, strontium and barium.
  • Only one basic element may be included, or two or more basic elements may be included.
  • Sodium, potassium, magnesium, and calcium are preferable at the point which can be hardened
  • the content of the basic element is preferably 0.005% by mass or more and 5% by mass or less based on the total mass of the heat insulating material. Is preferably 10 mass ppm or more and 1000 mass ppm or less, and the P content is preferably 0.002 mass% or more and 6 mass% or less.
  • the content of Fe is preferably 0.005% by mass or more and 6% by mass or less. Moreover, it is preferable that the content rate of P is 0.002 mass% or more and 6 mass% or less. Further, the basic element content is 0.005 mass% to 3 mass%, the Ge content is 20 mass ppm to 900 mass ppm, and the P content is 0.002 mass% to 5.5 mass%.
  • the Fe content is preferably 0.005 mass% or more and 3 mass% or less from the viewpoint of improving adhesion between particles and fluidity and suppressing aggregation.
  • the basic element content is 0.005 mass% to 2 mass%
  • the Ge content is 20 mass ppm to 800 mass ppm
  • the P content is 0.002 mass% to 5 mass%
  • the Fe content is 0.005 mass% or more and 2 mass% or less.
  • the content of the basic elements, Ge, P, and Fe in the heat insulating material can be quantified by XRF (fluorescence X-ray analysis).
  • the content of the basic elements and Ge, P, and Fe contained in the large particles can be determined, for example, by separating the small particles from the large particles by the above-described method and measuring by the fluorescent X-ray analysis method.
  • the molded heat insulating material of the present embodiment is not easily collapsed or deformed at the time of compression, can be processed into a shape such as cutting without collapsing, and has a heat insulating property.
  • the maximum load in the range of 0 to 5% is preferably 0.7 MPa or more. More preferably, it is 2.0 MPa or more, and further preferably 3.0 MPa or more.
  • the upper limit of the maximum load in the range where the compression rate is 0 to 5% is not particularly limited, but 30 MPa or less is appropriate from the viewpoint of heat insulation performance.
  • the compression rate can be calculated from the sample thickness at the time of compressive strength measurement, that is, the stroke (push-in distance) with respect to the length of the sample in the compression direction. For example, when the compression strength is measured using a sample in which the molded body has a cubic shape of 1 cm ⁇ 1 cm ⁇ 1 cm, a state where the stroke is 0.5 mm is defined as a compression rate of 5%.
  • the pattern of the load-compressibility curve drawn when measuring the compressive strength is not particularly limited. That is, when the compression ratio is in the range of 0 to 5%, the molded body as a sample may collapse and show a clear breaking point, or may not collapse. When the compact as a sample collapses and exhibits a fracture point when the compression ratio is in the range of 0 to 5%, the maximum load of the compact is defined as the load at the fracture point.
  • the load at the breaking point is preferably 0.7 MPa or more, more preferably 2.0 MPa or more, and further preferably 3.0 MPa or more. If the sample does not collapse, it is evaluated using the maximum load value indicated by the compression ratio in the range of 0-5%.
  • Compressive strength can be measured by the method described later.
  • the ratio R of the accumulated pore volume V of pores having a pore diameter of 0.05 ⁇ m or more and 0.5 ⁇ m or less is 0 It is preferably 70% or more with respect to the cumulative pore volume V 0.003 of pores having a diameter of 0.003 ⁇ m or more and 150 ⁇ m or less.
  • R may be expressed as (V / V 0.003 ) ⁇ 100. It means that the larger R is, the narrower the pore distribution is, and the pore diameter is in the range of 0.05 ⁇ m to 0.5 ⁇ m.
  • the pore distribution of the heat insulating material having R of less than 70% is as follows: (1) When there are many pores having a pore diameter of less than 0.05 ⁇ m, (2) Fine pores having a pore diameter of more than 0.5 ⁇ m. When there are a large number of pores, (3) it is assumed that there are pores having a pore diameter of less than 0.05 ⁇ m and more than 0.5 ⁇ m, respectively, and there are few pores of 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • (1) when the heat insulating material is wet with water (liquid), it tends to collapse into a powder form.
  • the heat insulating performance tends to be low. The tendency of (1) and (2) appears according to the ratio of the pore diameter.
  • V 0.05 is less than 0.5 mL / g, the heat insulating performance tends to be low, and if it exceeds 2 mL / g, it tends to collapse into powder when wetted with water (liquid).
  • V 0.003 is preferably 0.5 mL / g or more and 2.5 mL / g or less. The reason for this is not clear, but in the case of (1), when it gets wet, shrinkage occurs due to capillary action, and the particles forming the voids move, causing distortion in the heat insulating material, resulting in a powdery state. It is estimated that it will easily collapse.
  • R is more preferably 75% or more, and more preferably 80% or more with respect to the total pore volume of the heat-insulating material. preferable.
  • the upper limit of R is 100%.
  • the cumulative pore volume V 0.05 of pores having a pore diameter of 0.05 ⁇ m or more and 150 ⁇ m or less is preferably 0.5 mL / g or more and 2 mL / g or less.
  • the integrated pore volume is defined by a value measured by a mercury intrusion method described later.
  • V 0.05 is more preferably 0.5 mL / g or more and 1.7 mL / g or less, and further preferably 0.5 mL / g or more and 1.5 mL / g or less.
  • V 0.003 is preferably 0.5 mL / g or more and 2.5 mL / g or less, more preferably 0.5 mL / g or more and 2.2 mL / g or less, and 0.6 mL / g or more and 2 mL / g or less. Further preferred.
  • the manufacturing method of the heat insulating material of the present embodiment includes silica and / or alumina, includes small particles having an average particle diameter of 5 nm to 30 nm, silica and / or alumina, and has an average A step of mixing large particles having a particle diameter of 50 nm or more and 100 ⁇ m or less at a ratio R L of the mass of the large particles to the sum of the mass of the small particles and the mass of the large particles at 60 mass% or more and 90 mass% or less. .
  • small particles containing silica and / or alumina and having an average particle diameter of 5 nm to 30 nm, silica and / or alumina, an alkali metal element, an alkaline earth metal element, and germanium A large particle having at least one element selected from the group consisting of and having an average particle diameter of 50 nm or more and 100 ⁇ m or less, and a ratio of the mass of the large particle to the sum of the mass of the small particle and the mass of the large particle It is preferable to have a step of mixing RL at 60 mass% or more and 90 mass% or less to obtain an inorganic mixture.
  • the average particle size of the small particles is preferably 5 nm or more and 25 nm or less, more preferably 5 nm or more and 20 nm or less, and further preferably 5 nm or more and 18 nm or less from the viewpoint of thermal conductivity. It is particularly preferably 7 nm or more and 14 nm or less. It is simple and preferable to use small particles and large particles having a known average particle diameter as a raw material for the heat insulating material. When the average particle size is specified by commercially available small particles and large particles, the value can be regarded as the average particle size of each particle.
  • the average particle diameter is 5 nm to 30 nm in the usual measurement method. If there is, it is certain that a plurality of small particles having a particle size of 5 nm to 30 nm are contained, and the average particle size of the large particles is not a difference because it does not affect the characteristics of the heat insulating material.
  • the specific surface area s [m 2 / g] can be measured using nitrogen as an adsorption gas (nitrogen adsorption method).
  • the BET method is adopted for the specific surface area.
  • a gas adsorption measuring apparatus Autosorb 3MP, can be used Yuasa Ionics Corporation.
  • Density ⁇ [g / cm 3] refers to the true specific gravity obtained by pycnometer method.
  • an automatic wet true density measuring device Auto True Densor MAT-7000, manufactured by Seishin Enterprise Co., Ltd.
  • the average particle size of the large particles can be obtained in the same manner as the small particles.
  • the average particle size of the large particles may be 80 nm or more and 100 ⁇ m or less, but when the heat insulating material contains inorganic fibers or infrared opaque particles when the heat insulating material is 50 nm or more and 50 ⁇ m or less. This is preferable because uniform mixing with is easy.
  • D L is, if it is 50nm or more 10 ⁇ m or less, increase adhesion of the particles, for separation of particles from the powder is small, and still more preferably 50nm or more 5 ⁇ m or less.
  • the mass ratio RL of the large particles is preferably 60% by mass or more and 85% by mass or less, more preferably 65% by mass or more and 85% by mass or less, and 65% by mass from the viewpoint of heat insulating performance. More preferably, it is 75 mass% or less.
  • Silica particles, alumina particles are particles having a silica component and an alumina component, respectively, and the mixing ratio of small particles and large particles and the thermal conductivity may be adjusted. it can.
  • the silica particles may be particles produced by condensing silicate ions by a wet method under acidic or alkaline conditions.
  • Silica particles may be obtained by hydrolyzing and condensing alkoxysilane by a wet method, by baking a silica component produced by a wet method, or by producing a silicon compound such as chloride in the gas phase. You may have done.
  • the silica particles may be produced by oxidizing and burning silicon gas obtained by heating a raw material containing silicon metal or silicon.
  • the silica particles may be produced by melting silica or the like.
  • the alumina particles may be obtained by precipitating and filtering aluminum hydroxide from an aqueous solution of a soluble aluminum salt and igniting it. It may be obtained by the Bayer method based on the principle of manufacturing sodium aluminate by treating with gibbsite or boehmite with sodium hydroxide, or by giving gibbsite, boehmite, diaspore, clay, alumite, sulfuric acid, nitric acid, etc. It may be obtained by purifying the aluminum salt by treating with, separating the acid groups by precipitation with ammonia or pyrolysis, and baking.
  • Silica particles and alumina particles may contain components other than silica and components other than alumina, and examples thereof include those present as impurities in the raw material in the above production method. Components other than silica and alumina may be added during the production process of silica and alumina.
  • Known methods for producing silica include the following.
  • ⁇ Silica synthesized by wet method> Gel silica made from sodium silicate and made acidic. Precipitated silica made from sodium silicate and made alkaline. Silica synthesized by hydrolysis and condensation of alkoxysilanes.
  • Known methods for producing alumina include the following. Alumina obtained by acid method. Alumina obtained by the buyer method (alkali method). Sintered alumina obtained by granulating, drying and firing calcined alumina made by the Bayer method. Fused alumina obtained by melting the raw material in an electric furnace and crystallizing it. White fused alumina made from calcined alumina made by the buyer method. Brown electrofused alumina mainly made of bauxite. Fumed alumina. Alumina obtained by vaporizing and oxidizing metal at high temperatures.
  • silica obtained by each manufacturing method gel method silica made acidic using sodium silicate as a raw material, precipitation method silica made alkaline using sodium silicate as a raw material, silica synthesized by hydrolysis and condensation of alkoxysilane Fumed silica made by burning silicon chloride, silica made by burning silicon metal gas, silica produced by arc method or plasma method, fumed alumina causes molding defects during pressure molding It's easy to do. Furthermore, they tend to scatter and tend to aggregate.
  • silica particles and alumina particles obtained by other production methods, a plurality of It is preferable to mix silica particles or alumina particles.
  • Silica fume by-produced during ferrosilicon production fused silica that melts and spheroidizes crushed silica powder in a flame, alumina obtained by the Bayer method, sintered alumina, fused alumina (white fused alumina, brown Fused alumina) has a thermal conductivity of more than 0.05 W / m ⁇ K. Therefore, using only silica and alumina obtained by this production method as a raw material for silica particles and alumina particles is not a preferable aspect in terms of thermal conductivity, but is less scattered and excellent in handling. It may be useful in terms of cost.
  • the thermal conductivity it is possible to adjust the thermal conductivity to 0.05 W / m ⁇ K or less by mixing silica obtained by other manufacturing methods, so when using silica fume, sintered alumina, etc. as a raw material It is preferable to mix silica particles and alumina particles obtained by other production methods. For example, fumed silica made by burning silicon chloride, silica made by burning silicon metal gas, silica particles containing silica fume, sintered alumina, and / or alumina by mixing fumed alumina. The thermal conductivity of the particles can be reduced.
  • silica and alumina fumed silica, silica produced by burning silicon metal gas, silica fume, fused silica, fumed alumina, alumina obtained by the Bayer method, sintered alumina from the viewpoint of productivity and cost It is more preferable to use
  • natural silicate minerals as silica particles.
  • natural minerals include olivine, chlorite, quartz, feldspar, zeolite and the like.
  • Natural minerals can be used as an example of alumina particles.
  • alumina natural minerals include bauxite, porphyry shale, mullite, sillimanite, kyanite, andalusite, and chamotte.
  • the mullite may be synthetic mullite, sintered mullite, or electrofused mullite.
  • a natural mineral is subjected to a treatment such as pulverization to adjust the particle diameter, and can be used as silica particles and / or alumina particles constituting the powder.
  • Alkali metal element, alkaline earth metal element, Ge, P, Fe During the manufacturing process of silica and alumina and the manufacturing process of the heat insulating material, they may be added as compounds containing basic elements, Ge, P and Fe, respectively, but a sufficient amount of basic elements, Ge, P and Fe are added. It is good also considering the silica particle and / or alumina particle which are contained beforehand as a raw material of a heat insulating material.
  • the compound containing a basic element, Ge, P, Fe is not particularly limited.
  • inorganic compound particles containing silica containing basic elements, Ge, P, and Fe as impurities as a raw material of the powder is a preferable embodiment from the viewpoint of productivity, cost, and workability.
  • Such inorganic compound particles containing silica can be obtained, for example, as silica fume that replicates during the production of silica gel-derived particles or ferrosilicon produced by a precipitation method.
  • the method of adding a compound containing each of basic elements, Ge, P, and Fe is not particularly limited. For example, it may be added to silica obtained by the above wet method or dry method, alumina obtained by the acid method or alkali method, sintered alumina, electrofused alumina, or added in each of the above production steps of silica or alumina. May be.
  • the compound containing each basic element, Ge, P, and Fe may be water-soluble or insoluble in water. It may be added as an aqueous solution of a compound containing basic elements, Ge, P, and Fe, and may be dried as necessary, or a compound containing basic elements, Ge, P, and Fe may be solid or liquid. You may add in a state.
  • the compound containing each of the basic elements, Ge, P, and Fe may be previously pulverized to a predetermined particle diameter, or may be preliminarily coarsely pulverized.
  • the silica particles or alumina particles contain an excessive amount of basic elements, Ge, P, and Fe
  • some processing is performed during the silica manufacturing process or the powder manufacturing process to reduce the content of the elements.
  • You may adjust to a predetermined range.
  • the method for adjusting an excessive amount of basic elements, Ge, P, and Fe to a predetermined range is not particularly limited.
  • a substitution method, extraction method, removal method, etc. with an acidic substance or other elements there may be mentioned a substitution method, extraction method, removal method, etc. with an acidic substance or other elements. After treating inorganic compound particles containing silica with nitric acid or aqua regia, It can be dried and used as a raw material for powder.
  • Adjustment of an excessive amount of basic elements, Ge, P, and Fe may be performed after previously pulverizing inorganic compound particles containing silica and / or alumina to a desired particle diameter, or basic elements, Ge, P, and the like.
  • the silica particles may be pulverized after adjusting Fe to a predetermined range.
  • Silica particles and / or alumina particles, infrared opacifying particles and inorganic fibers used are known powder mixers, for example, those listed in the Revised Sixth Edition Chemical Engineering Handbook (Maruzen) And can be mixed. At this time, it is possible to mix two or more kinds of inorganic compound particles containing silica, or a compound containing each of basic elements, Ge, P, and Fe, or an aqueous solution thereof.
  • Known powder mixers include a horizontal cylindrical type, a V type (which may be equipped with a stirring blade), a double cone type, a cubic type, and a shaking type as a container rotating type (the container itself rotates, vibrates and swings).
  • Dynamic rotation type mechanical agitation type (container is fixed and agitated with blades, etc.), single axis ribbon type, double axis paddle type, rotary saddle type, biaxial planetary agitation type, conical screw type, high speed agitation type, rotation
  • the disk type, the rotating container type with roller, the rotating container type with stirring, the high-speed elliptical rotor type, and the fluid stirring type include an airflow stirring type and a non-stirring type by gravity. These mixers may be used in combination.
  • silica particles and / or alumina particles, infrared opacifying particles and inorganic fibers can be performed by using a material known as a pulverizer, for example, those listed in the Revised Sixth Edition, Chemical Engineering Handbook (Maruzen). You may carry out, grind
  • pulverizers include roll mills (high pressure compression roll mills, roll rotating mills), stamp mills, edge runners (fret mills, Chillian mills), cutting / shearing mills (cutter mills, etc.), rod mills, self-pulverizing mills (erofall mills, Cascade mills, vertical roller mills (ring roller mills, rollerless mills, ball race mills), high-speed rotary mills (hammer mills, cage mills, disintegrators, screen mills, disc pin mills), high-speed rotary mills with built-in classifiers (fixed) Impact plate mill, turbo mill, centrifugal classification mill, annular mill, container drive medium mill (rolling ball mill (pot mill, tube mill, conical mill)), vibration ball mill (circular vibration mill, rotational vibration mill, centrifugal mill) ), Planetary mill, centrifugal fluidization mill), medium Stirring mill (tower crusher, stirring tank mill, horizontal flow tank mill, vertical flow tank mill, annular mill), airflow grinder (airflow
  • powder mixers with stirring blades, high-speed rotary mills, high-speed rotary mills with built-in classifiers, container drive medium mills, and compaction shear mills improve the dispersibility of particles and inorganic fibers. Therefore, it is preferable.
  • the peripheral speed of the tip of the stirring blade, rotating plate, hammer plate, blade, pin, etc. it is preferable to set the peripheral speed of the tip of the stirring blade, rotating plate, hammer plate, blade, pin, etc. to 100 km / h or more, more preferably 200 km / h or more, More preferably, it is 300 km / h or more.
  • silica particles and / or alumina particles When mixing a plurality of types of silica particles and / or alumina particles, it is preferable to introduce the silica particles and / or alumina particles into a stirrer or pulverizer in the order of increasing bulk specific gravity.
  • silica particles and / or alumina particles When inorganic fibers and infrared opaque particles are included, it is preferable to add and mix infrared opaque particles after mixing silica particles and / or alumina particles, and then add and mix inorganic fibers.
  • the molding step of molding the inorganic mixture in the present embodiment may be a step of (a) heating the inorganic mixture to 400 ° C. or higher while pressurizing with a molding die, or (b) It may be a step of performing a heat treatment at a temperature of 400 ° C. or higher after forming the inorganic mixture by pressurization.
  • the molding process includes a molding process for molding the inorganic mixture and a cutting process for cutting a part of the molded body obtained by the molding process.
  • the molding process includes (c) a bulk density of the molded heat insulating material is 0.25 g. It may be a step of heating while pressing the inorganic mixture with a mold so as to be not less than / cm 3 and not more than 2.0 g / cm 3 , or (d) the inorganic mixture is molded by pressing with the mold. Then, the process of heat-processing at the temperature of 400 degreeC or more may be sufficient.
  • the powdered heat insulating material may be used as it is without being subjected to a molding process or the like. You may use what was done as a heat insulating material.
  • the powdered heat insulating material is vibrated, etc., so that the thickness of the molded body is uniform. Therefore, it is preferable.
  • Filling the mold with a powdery heat insulating material while reducing the pressure and degassing the mold is preferable from the viewpoint of productivity because the mold can be filled in a short time.
  • the bulk density of the obtained molded body is preferably set to be 0.25 g / cm 3 or more and 2.0 g / cm 3 or less from the viewpoint of reducing the burden during transportation.
  • the time for holding in a pressurized state depends on the slipperiness of the powdery heat insulating material used, the amount of air taken into the particles and the pores, etc. As the pressure value changes with the passage of time, production management tends to be difficult.
  • the method of controlling the bulk density is preferable in that the load of the molded body obtained without requiring time control can be easily set to the target value.
  • the bulk density of the molded powdery insulation 0.25 g / cm 3 or more 1.7 g / cm 3 and more preferably less, further preferably 0.25 g / cm 3 or more 1.5 g / cm 3 or less.
  • the molding pressure at which the bulk density of the molded body is 0.25 g / cm 3 or more and 2.0 g / cm 3 or less is, for example, 0.01 MPa or more and 50 MPa or less, and 0.25 g / cm 3 or more and 1.7 g.
  • the bulk density of the molded heat insulating material is calculated by measuring the size and mass of the heat insulating material in a form in which the heat insulating material is actually used. For example, in the case where the heat insulating material has a layer structure, the bulk density of only the specific layer is not measured, but the dimensions and mass are measured in the form actually used, that is, in the state of the layer structure. If the bulk density does not change due to processing such as cutting, it is possible to measure the bulk density by making the heat insulating material easy to measure.
  • the weight of the necessary inorganic mixture is obtained from the volume of the heat insulating material and the bulk density.
  • the weighed inorganic mixture is filled in a mold and pressed to a predetermined thickness and molded.
  • the powder when producing a molded body having a volume ⁇ cm 3 and a bulk density of ⁇ g / cm 3 (where ⁇ is larger than the loosely packed bulk density of the powder), the powder is weighed by ⁇ g, and the powder Is compressed so as to have a volume ⁇ .
  • Molding may be only pressure molding, but it is preferable to heat-treat the pressure-molded one.
  • the compressive strength is improved and the powder can be used particularly suitably in applications where the load is large.
  • the powder preferably contains an alkali metal element, an alkaline earth metal element, Ge, P, or Fe, and particularly preferably contained in a large particle.
  • the heat treatment temperature is preferably higher than the maximum use temperature of the powdery or molded heat insulating material.
  • the powdery or molded heat insulating material is preferably 400 ° C or higher and 1400 ° C or lower, more preferably 500 ° C or higher and 1300 ° C or lower, and further preferably 600 ° C or higher and 1200 ° C or lower.
  • the atmosphere of the heat treatment of the powdered or molded heat insulating material is in the air (or in the air), in the oxidizing atmosphere (oxygen, ozone, nitrogen oxide, carbon dioxide, hydrogen peroxide, hypochlorous acid, inorganic, Organic peroxides) and in an inert gas atmosphere (helium, argon, nitrogen, etc.). Water vapor may be added to the atmosphere.
  • the heat treatment time may be appropriately selected according to the heat treatment temperature and the amount of the heat insulating material.
  • the heat treatment may be performed after filling the portion where the powdery heat insulating material is used, or may be performed on a heat insulating material obtained by pressure-molding the powder.
  • the heat insulating material includes a formed heat insulating material made of powder and / or powder and an outer covering material that accommodates the heat insulating material.
  • a heat insulating material enveloping body provided with an outer covering material has an advantage that it is easy to handle and easy to construct as compared with a powdered heat insulating material or a molded heat insulating material.
  • the heat insulating material accommodated in the jacket material may be referred to as a core material.
  • the jacket material is not particularly limited as long as it can accommodate the powdery core material and / or the molded heat insulating material. Examples thereof include glass cloth, alumina fiber cloth, and silica cloth. Inorganic fiber fabrics, inorganic fiber knitted fabrics, polyester films, polyethylene films, polypropylene films, nylon films, polyethylene terephthalate films, resin films such as fluororesin films, plastic-metal films, aluminum foils, stainless steel foils, copper foils, etc. Metal foil, ceramic paper, inorganic fiber nonwoven fabric, organic fiber nonwoven fabric, glass fiber paper, carbon fiber paper, rock wool paper, inorganic filler paper, organic fiber paper, ceramic coating, fluororesin coating, siloxane resin coating, etc. Can be mentioned.
  • the thickness of the jacket material is thin.
  • the jacket material is made of a material that is stable at the temperature at which the core material is used, the jacket material is in a state of containing the powdered and / or molded heat insulating material that is the core material even during use.
  • a highly heat-resistant envelope material is preferable from the viewpoint of easy handling of the core material after use, but in this specification, the “envelope material” is the core material.
  • the thing which accommodates the core material in the process of conveyance and construction of the core material is included.
  • the jacket material protects the core material only during transportation and construction, and includes those that melt and / or volatilize during use. Therefore, the organic material contained in the jacket material itself or the jacket material is the core. It may melt or disappear at the use temperature of the material.
  • inorganic fiber fabrics such as glass cloth, alumina fiber cloth, silica cloth, inorganic fiber knitted fabric, polyester film, polyethylene film, polypropylene film, nylon film, polyethylene terephthalate film, fluorine Resin film such as plastic resin film, plastic-metal film, metal foil such as aluminum foil, stainless steel foil, copper foil, ceramic paper, inorganic fiber nonwoven fabric, organic fiber nonwoven fabric, glass fiber paper, carbon fiber paper, rock wool paper, inorganic Sheet shapes such as filled paper and organic fiber paper are preferred.
  • inorganic fiber fabrics such as glass cloth, alumina fiber cloth, silica cloth, inorganic fiber knitted fabric, polyester film, polyethylene film, polypropylene film, nylon film, polyethylene terephthalate film, fluorine Resin film such as plastic resin film, plastic-metal film, metal foil such as aluminum foil, stainless steel foil, copper foil, ceramic paper, inorganic fiber nonwoven fabric, organic fiber nonwoven fabric, glass fiber paper, carbon fiber paper, rock wool paper, inorganic Sheet shapes such
  • the covering material is made of inorganic fiber woven fabric such as glass cloth, alumina fiber cloth, silica cloth, inorganic fiber knitted fabric, ceramic paper, inorganic fiber non-woven fabric from the viewpoint of thermal stability. Is more preferable.
  • the jacket material is more preferably an inorganic fiber fabric from the viewpoint of strength.
  • the powdery heat insulating material includes silica particles and / or alumina particles, and is formed by adding large particles, infrared opaque particles or inorganic fibers depending on the use situation.
  • the powder may be used as a core material and may be filled into a jacket or tube-shaped outer jacket material, or the powder may be pressure-molded into a core material and covered with the outer jacket material.
  • the filling rate of the powder with respect to the volume formed by the jacket material can be appropriately set according to the object using the powdery heat insulating material. .
  • the powdered heat insulating material and the outer cover material may be pressure formed together, or after the powder heat insulating material is pressure formed. It is also possible to coat with a jacket material.
  • the method of coating the core material with the jacket material is not particularly limited, and the core material may be prepared or molded and coated with the jacket material at the same time, or the core material may be coated with the jacket material after preparation or molding. May be.
  • Cover material is inorganic fiber fabric, resin film, plastic-metal film, metal foil, ceramic paper, inorganic fiber nonwoven fabric, organic fiber nonwoven fabric, glass fiber paper, carbon fiber paper, rock wool paper, inorganic filler paper, organic fiber paper, etc.
  • the sheet-like form for example, it is possible to cover with stitching with inorganic fiber yarn or resin fiber yarn, adhesion fixing of the jacket material, and both stitching and adhesion.
  • the jacket material is a resin film, a plastic-metal film, a metal foil or the like, a vacuum pack or a shrink pack is preferable from the viewpoint of easy coating process.
  • the jacket material is ceramic coating, resin coating, or the like, the core material can be covered with the jacket material by applying the core material with a brush or spray.
  • a linear depression in a heat insulating material composed of a pressure-molded core material and a jacket material to give flexibility to the heat insulating material.
  • a linear shape, a curved shape, a broken line shape, or the like can be selected according to the use state of the heat insulating material, and two or more of these may be combined.
  • the thickness of the line and the depth of the depression are determined according to the thickness, strength, and usage of the heat insulating material.
  • the outer jacket material may cover the entire surface of the core material, or may partially cover the core material.
  • the heat insulating material including the powdery heat insulating material including the silica particles and / or the alumina particles, the formed heat insulating material, and the outer covering material according to the present embodiment includes a sound absorbing material, a sound insulating material, and a sound insulating material in addition to the heat insulating material.
  • a sound absorbing material e.g., acoustic carbonate
  • a sound insulating material e.g., a sound insulating material
  • a central portion of a polystyrene foam having a length of 30 cm, a width of 30 cm, and a thickness of 5 cm is hollowed into a square shape having a length of 24 cm and a width of 24 cm to form a foamed polystyrene frame.
  • a concave part is formed by attaching an aluminum foil having a length of 30 cm and a width of 30 cm to one side of the frame to form a sample stage.
  • the surface covered with aluminum foil be the bottom face of a sample stand, and let the other surface with respect to the thickness direction of a polystyrene foam be a ceiling surface.
  • a powdered heat insulating material is filled into a recess without tapping or pressurizing and ground, and then a measurement sample is prepared by placing an aluminum foil 30 cm long and 30 cm wide on the ceiling surface.
  • a measurement sample is prepared by placing an aluminum foil 30 cm long and 30 cm wide on the ceiling surface.
  • the thermal conductivity at 30 ° C. is measured using a heat flow meter HFM 436 Lambda (trade name, manufactured by NETZSCH).
  • the calibration is performed according to JIS A1412-2 using a NIST SRM 1450c calibration standard plate having a density of 163.12 kg / m 3 and a thickness of 25.32 mm under the condition that the temperature difference between the high temperature side and the low temperature side is 20 ° C. 20, 24, 30, 40, 50, 60, and 65 ° C. in advance.
  • molded heat insulating material When measuring the shape
  • the thermal conductivity at 800 ° C. is measured according to the method of JIS A 1421-1.
  • Two heat insulating materials having a disk shape with a diameter of 30 cm and a thickness of 20 mm are used as measurement samples, and a protective hot plate method thermal conductivity measuring device (manufactured by Eiko Seiki Co., Ltd.) is used as a measuring device.
  • the specific surface area of the powder is measured using nitrogen as an adsorption gas with a gas adsorption amount measuring device “Autosorb 3MP” (trade name) manufactured by Yuasa Ionics Co., Ltd. (nitrogen adsorption method).
  • the BET method is adopted for the specific surface area.
  • the sample is dispersed through a sieve having an aperture of 500 ⁇ m by electromagnetic vibration using a sparsely packed bulk density measuring instrument MVD-86 manufactured by Tsutsui Rika Instruments Co., Ltd., and dropped into a 100 mL sample container. After completion of sample filling, it is ground with a scraping spatula, the weight is measured, the density is calculated, and the obtained value is defined as loosely filled bulk density.
  • Insulating materials containing inorganic fibers may leave inorganic fibers on the sieve. In this case, measure the insulating material that has fallen into the sample container through the sieve as described above, and loosely fill the insulating material. The bulk density. Similarly, when any substance remains on the sieve, not only inorganic fibers, the insulation material dropped into the sample container through the sieve is measured, and the bulk density of the insulation material is determined.
  • a powdered heat insulating material is pulverized in a menor mortar, filled into a 30 mm ⁇ polyvinyl chloride ring, and pressure-molded with an XRF tablet molding machine to produce a tablet, which is used as a measurement sample. This is measured with a fluorescent X-ray analyzer RIX-3000 manufactured by Rigaku Corporation. Also in the case of the molded heat insulating material, the content of the alkali metal element or the like can be similarly measured by pulverizing with a menor mortar after making the size into a menor mortar.
  • the inorganic mixture (including the above-mentioned small particles and large particles, and if necessary, the entire mixed powder containing infrared opaque particles and inorganic fibers) is fixed in the horizontal direction, and the inorganic mixture in a state where pressure is applied so as to obtain a molded body having a predetermined bulk density, the thickness in the vertical direction of the inorganic mixture (molding material) and T 1 in a direction perpendicular to, after pressurization, molded in the horizontal direction
  • T 2 thickness in the vertical direction of the molded body after releasing the pressure
  • the ratio of T 2 to T 1 that is, the rate of increase in the thickness of the molded body 100 ⁇ T 2 / T Evaluation is made by measuring 1 [%].
  • “Fixing dimensions in the horizontal direction” means, for example, a state in which a square or cylindrical frame-shaped mold is filled with an inorganic mixture that is a raw material of a molded body.
  • the formed heat insulating material is processed into a length of 2 cm, a width of 2 cm, and a thickness of 2 cm, and a compressive strength is measured at an indentation speed of 0.5 mm / min using a precision universal testing machine Autograph AG-100KN manufactured by Shimadzu Corporation.
  • Measurement is performed by mercury porosimetry using a pore distribution measuring device Autopore 9520 (manufactured by Shimadzu Corporation).
  • the formed heat insulating material is cut into a rectangular parallelepiped so as to enter the cell, one is taken into a low-sensitivity cell, and the pressure is measured under conditions of an initial pressure of about 7 kPa (about 1 psia, pore diameter of about 180 ⁇ m).
  • the mercury parameters are set at the instrument default mercury contact angle of 130 degrees and the mercury surface tension of 485 dynes / cm.
  • Example 1 10% by mass of silica powder (small particles) having an average particle diameter of 14 nm and 90% by mass of silica powder (large particles) having an average particle diameter of 60 ⁇ m were uniformly mixed with a hammer mill to obtain a powder form of Example 1. Insulation material was obtained.
  • a molding having an inner dimension of 30 cm in length and 30 cm in width is performed.
  • pressure molding was performed with a mold having an inner dimension of 30 cm in length and 30 cm in width using the heat insulating material 1638 g of Example 1, and the length was 30 cm, the width was 30 cm, the thickness was 20 mm, and the bulk density was 0.91 g / cm 3 .
  • a molded insulation was obtained.
  • the rate of increase in thickness was 103%.
  • the powdery heat insulating material of Example 1 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was also smooth.
  • Ten heat-insulating materials molded by the same method were prepared, but lamination was suppressed in any of the molded bodies, and no molding defects were observed.
  • molded heat insulating material was 0.0478 W / m * K.
  • Example 2 25% by mass of silica powder (small particles) having an average particle size of 7.5 nm and 75% by mass of silica powder (large particles) having an average particle size of 6 ⁇ m were uniformly mixed with a hammer mill to obtain the powder of Example 2.
  • a body-like heat insulating material was obtained.
  • the heat insulating material had a BET specific surface area of 91 m 2 / g and a thermal conductivity at 30 ° C. of 0.0297 W / m ⁇ K. Since the bulk density of this heat insulating material was 0.075 g / cm 3 , the volume of the heat insulating material 900 g of Example 2 was 12000 cm 3 when calculated in the same manner as in Example 1.
  • the heat insulating material of Example 2 is used to produce a molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold. When calculated in the same manner as in Example 1, it is 13.3 cm. Further, 936 g of the heat insulating material of Example 2 was subjected to pressure molding using the same mold as that of Example 1, and the molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.52 g / cm 3 was formed. Got. The increase rate of the thickness at this time was 106%.
  • Example 2 When the powdery heat insulating material of Example 2 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was smooth. Ten heat-insulating materials molded by the same method were prepared, but lamination was suppressed in any of the molded bodies, and no molding defects were observed. Moreover, the heat conductivity in 30 degreeC of the shape
  • Example 3 25% by mass of silica powder (small particles) having an average particle size of 14 nm and 75% by mass of silica powder (large particles) having an average particle size of 10 ⁇ m were uniformly mixed with a hammer mill to obtain a powder form of Example 3. Insulation material was obtained. The heat insulating material had a BET specific surface area of 49 m 2 / g and a thermal conductivity at 30 ° C. of 0.0313 W / m ⁇ K. Since this sparse packing bulk density of the insulation material was 0.091 g / cm 3, the volume of the insulation material 900g of Example 3 is 9890Cm 3 is calculated in the same manner as in Example 1.
  • the depth required by the mold is carried out.
  • the heat insulating material 1260g of Example 3 was pressure-molded with the same metal mold as Example 1, and formed into a heat insulating material of 30 cm in length, 30 cm in width, 20 mm in thickness, and a bulk density of 0.7 g / cm 3. Got. At this time, the increase rate of the thickness was 105%.
  • Example 3 When the powdery heat insulating material of Example 3 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was also smooth. Ten heat-insulating materials molded by the same method were prepared, but lamination was suppressed in any of the molded heat-insulating materials, and no molding defects were observed. Moreover, the heat conductivity in 30 degreeC of the shape
  • Example 4 20% by mass of silica powder (small particles) having an average particle size of 14 nm and 80% by mass of silica powder (large particles) having an average particle size of 150 nm were uniformly mixed with a hammer mill to obtain a powder form of Example 4. Insulation material was obtained.
  • the heat insulating material had a BET specific surface area of 54 m 2 / g and a thermal conductivity at 30 ° C. of 0.0299 W / m ⁇ K. Since the bulk density of this heat insulating material was 0.069 g / cm 3 , the volume of the heat insulating material 900 g of Example 4 was 13043 cm 3 when calculated in the same manner as in Example 1.
  • the heat insulating material of Example 4 is used to produce a molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold. When calculated in the same manner as in Example 1, it is 14.5 cm. Further, 954 g of the heat insulating material of Example 4 was subjected to pressure molding using the same mold as that of Example 1, and the molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.53 g / cm 3 was formed. Got. At this time, the rate of increase in thickness was 107%.
  • Example 4 When the heat insulating material of Example 4 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was smooth. Ten heat-insulating materials molded by the same method were prepared, but lamination was suppressed in any of the molded heat-insulating materials, and no molding defects were observed. Moreover, the heat conductivity in 30 degreeC of the shape
  • Example 5 35% by mass of silica powder (small particles) having an average particle size of 14 nm and 65% by mass of silica powder (large particles) having an average particle size of 320 nm were uniformly mixed with a hammer mill to obtain a powder form of Example 5. Insulation material was obtained. This heat insulating material had a BET specific surface area of 74 m 2 / g and a thermal conductivity at 30 ° C. of 0.0293 W / m ⁇ K. Since this sparse packing bulk density of the insulation material was 0.038 g / cm 3, the volume of the insulation material 900g of Example 5 is 24684Cm 3 is calculated in the same manner as in Example 1.
  • the heat insulating material of Example 5 is used to produce a heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold. When calculated in the same manner as in Example 1, it is 26.3 cm. Further, the heat insulating material 846g of Example 5 was subjected to pressure molding using the same mold as that of Example 1, and the molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.47 g / cm 3 was formed. Got. The increase rate of the thickness at this time was 106%.
  • Example 5 When the heat insulating material of Example 5 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was smooth. When 10 sheets of heat insulating material molded by the same method were prepared, lamination was observed in one of them, but lamination was suppressed in any of the remaining 9 sheets, and molding defects were not seen. . Moreover, the heat conductivity in 30 degreeC of the shape
  • Example 6 40% by mass of silica powder (small particles) having an average particle size of 12 nm and 60% by mass of silica powder (large particles) having an average particle size of 100 ⁇ m were uniformly mixed with a hammer mill to obtain a powder form of Example 6. Insulation material was obtained. The heat insulating material had a BET specific surface area of 91 m 2 / g and a thermal conductivity at 30 ° C. of 0.0469 W / m ⁇ K. Since this sparse packing bulk density of the insulation material was 0.184 g / cm 3, the volume of the insulation material 900g of Example 6 is 4891cm 3.
  • the heat insulating material of Example 6 is used to produce a molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold. Is calculated in the same manner as in Example 1, and it is 5.4 cm. Further, the heat insulating material 1044g of Example 6 was subjected to pressure molding with the same mold as that of Example 1, and the molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm and a bulk density of 0.58 g / cm 3 Got. At this time, the increase rate of the thickness was 105%.
  • Example 6 When the heat insulating material of Example 6 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was also smooth. Ten heat-insulating materials molded by the same method were prepared, but lamination was suppressed in any of the molded heat-insulating materials, and no molding defects were observed. Moreover, the heat conductivity in 30 degreeC of the shape
  • Example 7 30% by mass of silica powder (small particles) having an average particle size of 14 nm and 70% by mass of silica powder (large particles) having an average particle size of 80 nm were uniformly mixed with a hammer mill to obtain a powder form of Example 7. Insulation material was obtained. This heat insulating material had a BET specific surface area of 82 m 2 / g and a thermal conductivity at 30 ° C. of 0.0237 W / m ⁇ K. Since this sparse packing bulk density of the insulation material was 0.065 g / cm 3, the volume of the insulation material 900g of Example 7 is 13846cm 3.
  • Example 7 When the heat insulating material of Example 7 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was smooth. Ten heat-insulating materials molded by the same method were prepared, but lamination was suppressed in any of the molded heat-insulating materials, and no molding defects were observed. Moreover, the heat conductivity in 30 degreeC of the shape
  • Example 8 20% by mass of silica powder (small particles) having an average particle size of 14 nm and 80% by mass of alumina powder (large particles) having an average particle size of 200 nm were uniformly mixed with a hammer mill to obtain a powder form of Example 8. Insulation material was obtained.
  • the heat insulating material had a BET specific surface area of 45 m 2 / g and a thermal conductivity at 30 ° C. of 0.0272 W / m ⁇ K. Since this sparse packing bulk density of the insulation material was 0.085 g / cm 3, the volume of the insulation material 900g of Example 8 is 10588cm 3.
  • the heat insulating material of Example 8 is used to produce a molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold. When calculated in the same manner as in Example 1, it is 11.8 cm. Further, 1296 g of the heat insulating material of Example 8 was used for pressure molding with the same mold as that of Example 1, and the molded heat insulating material was 30 cm long, 30 cm wide, 20 mm thick, and a bulk density of 0.72 g / cm 3. Got. At this time, the rate of increase in thickness was 104%.
  • Example 8 When the powder of Example 8 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was smooth. Ten heat-insulating materials molded by the same method were prepared, but lamination was suppressed in any of the molded bodies, and no molding defects were observed. Moreover, the heat conductivity in 30 degreeC of the shape
  • Example 9 15% by mass of alumina powder (small particles) having an average particle size of 7 nm and 85% by mass of silica powder (large particles) having an average particle size of 80 nm were uniformly mixed with a hammer mill to obtain a powder form of Example 9. Insulation material was obtained. This heat insulating material had a BET specific surface area of 62 m 2 / g and a thermal conductivity at 30 ° C. of 0.0261 W / m ⁇ K. Since this sparse packing bulk density of the powder was 0.113 g / cm 3, the volume of the insulation material 900g of Example 9 is 7965cm 3.
  • the heat insulating material of Example 8 is used to produce a molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold. When calculated in the same manner as in Example 1, it is 8.85 cm. Further, the heat insulating material 972 g of Example 9 was subjected to pressure molding using the same mold as that of Example 1, and the molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.54 g / cm 3 was formed. Got. At this time, the rate of increase in thickness was 106%.
  • Example 9 When the heat insulating material of Example 9 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was smooth. Ten heat-insulating materials molded by the same method were prepared, but lamination was suppressed in any of the molded heat-insulating materials, and no molding defects were observed. Moreover, the heat conductivity in 30 degreeC of the shape
  • Example 10 After uniformly mixing 21% by mass of silica powder (small particles) with an average particle size of 14 nm and 63% by mass of silica powder (large particles) with an average particle size of 150 nm using a hammer mill, the average particle size is 1 ⁇ m. Then, 16% by mass of zirconium silicate as infrared opaque particles was added and mixed uniformly to obtain a powdery heat insulating material of Example 10. In the powder of Example 10, the ratio R L of the mass of the large particles to the sum of the mass of the small particles and the mass of the large particles was 75%. The content of zirconium silicate was 0.21% by volume based on the volume of the entire heat insulating material.
  • the heat insulating material had a BET specific surface area of 52 m 2 / g and a thermal conductivity at 30 ° C. of 0.0273 W / m ⁇ K. Since this sparse packing bulk density of the insulation material was 0.061 g / cm 3, the volume of the insulation material 900g of Example 10 is 14754cm 3. Therefore, when it is assumed that the heat insulating material of Example 10 is used to produce a molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold. When calculated in the same manner as in Example 1, it is 16.4 cm.
  • the heat insulating material 1044g of Example 10 was subjected to pressure molding using the same mold as that of Example 1, and the molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.58 g / cm 3 was formed. Got. At this time, the rate of increase in thickness was 102%.
  • the powder of Example 10 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was smooth.
  • Ten heat-insulating materials molded by the same method were prepared, but lamination was suppressed in any of the molded bodies, and no molding defects were observed.
  • molded heat insulating material was 0.0275 W / m * K.
  • Example 11 After 20% by mass of silica powder (small particles) having an average particle size of 14 nm and 60% by mass of silica powder (large particles) having an average particle size of 150 nm are uniformly mixed with a hammer mill, the average particle size is 1 ⁇ m. Then, 15 mass% of zirconium silicate as infrared opaque particles is added and mixed uniformly, and further, 5 mass% of glass fiber having an average fiber diameter of 11 ⁇ m, an average fiber length of 6.4 mm, and a heat resistance temperature of 1050 ° C. was added and mixed with a high-speed shear mixer to obtain a powdery heat insulating material of Example 11.
  • the ratio R L of the mass of the large particles to the sum of the mass of the small particles and the mass of the large particles was 75%. Further, the content of zirconium silicate was 0.19% by volume based on the volume of the whole heat insulating material.
  • the heat insulating material had a BET specific surface area of 50 m 2 / g and a thermal conductivity at 30 ° C. of 0.0279 W / m ⁇ K. Since this sparse packing bulk density of the insulation material was 0.059 g / cm 3, the volume of the insulation material 900g of Example 11 is 15254cm 3.
  • the heat insulating material of Example 11 is used to produce a heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold. When calculated in the same manner as in Example 1, it is 16.9 cm. Further, the heat insulating material 702g of Example 11 was subjected to pressure molding using the same mold as that of Example 1, and the molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.39 g / cm 3 was formed. Got. At this time, the rate of increase in thickness was 102%.
  • Example 11 When the heat insulating material of Example 11 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was smooth. Ten heat-insulating materials molded by the same method were prepared, but lamination was suppressed in any of the molded heat-insulating materials, and no molding defects were observed. Moreover, the heat conductivity in 30 degreeC of the shape
  • this powdery heat insulating material is used, and pressure forming is performed using a cylindrical mold having an inner diameter of 30 cm to form a disk-shaped heat insulating material having a diameter of 30 cm and a thickness of 20 mm. Two sheets were obtained. When the heat conductivity at 800 ° C. was measured using these two molded heat insulating materials, it was 0.0921 W / m ⁇ K.
  • Example 12 After uniformly mixing 19% by mass of silica powder (small particles) with an average particle size of 7.5 nm and 57% by mass of silica powder (large particles) with an average particle size of 80 nm using a hammer mill, the average particle size is Glass fiber 10 having 1 ⁇ m of infrared opaque particles, 14% by mass of zirconium silicate, was added and mixed uniformly, and the average fiber diameter was 11 ⁇ m, the average fiber length was 6.4 mm, and the heat resistance temperature was 1050 ° C. The mass% was added and mixed with a high-speed shear mixer to obtain a powdery heat insulating material of Example 12.
  • the ratio R L of the mass of the large particles to the sum of the mass of the small particles and the mass of the large particles was 75%.
  • the content of zirconium silicate was 0.25% by volume based on the volume of the entire heat insulating material.
  • the heat insulating material had a BET specific surface area of 89 m 2 / g and a thermal conductivity at 30 ° C. of 0.0273 W / m ⁇ K. Since the bulk density of this heat insulating material was 0.081 g / cm 3 , the volume of the heat insulating material 900 g of Example 12 was 11111 cm 3 .
  • the heat insulating material of Example 12 is used to produce a formed heat insulating body having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold. When calculated in the same manner as in Example 1, it is 12.3 cm. Further, 972 g of the heat insulating material of Example 12 was subjected to pressure molding using the same mold as that of Example 1, and the molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.54 g / cm 3 was formed. Got. At this time, the rate of increase in thickness was 103%.
  • Example 12 When the powder of Example 12 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was smooth. Ten heat-insulating materials molded by the same method were prepared, but lamination was suppressed in any of the molded heat-insulating materials, and no molding defects were observed. Moreover, the heat conductivity in 30 degreeC of the shape
  • Example 13 After mixing 27% by mass of silica powder (small particles) with an average particle size of 14 nm and 51% by mass of silica powder (large particles) with an average particle size of 6 ⁇ m using a hammer mill, the average particle size is 1 ⁇ m. Then, 21 mass% of zirconium silicate which is an infrared opaque particle is added and mixed uniformly, and further, 1 mass% of glass fiber having an average fiber diameter of 11 ⁇ m, an average fiber length of 6.4 mm and a heat resistance temperature of 1050 ° C. was added and mixed with a high-speed shear mixer to obtain a powdery heat insulating material of Example 13.
  • the ratio R L of the mass of the large particles to the sum of the mass of the small particles and the mass of the large particles was 65%.
  • the content of zirconium silicate was 0.50% by volume based on the volume of the entire heat insulating material.
  • the heat insulating material had a BET specific surface area of 53 m 2 / g and a thermal conductivity at 30 ° C. of 0.0288 W / m ⁇ K. Since this sparse packing bulk density of the insulation material was 0.110 g / cm 3, the volume of the insulation material 900g of Example 13 is 8182cm 3.
  • the heat insulating material of Example 13 is used to produce a formed heat insulating body having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold. When calculated in the same manner as in Example 1, it is 9.09 cm. Further, the heat insulating material 1242g of Example 13 was subjected to pressure molding using the same mold as that of Example 1, and the molded heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.69 g / cm 3. Got. At this time, the rate of increase in thickness was 103%.
  • Example 13 When the powder of Example 13 was put into the hopper, there was little scattering and aggregation of the powder, and the filling into the mold was smooth. Ten heat-insulating materials molded by the same method were prepared, but lamination was suppressed in any of the molded heat-insulating materials, and no molding defects were observed. Moreover, the heat conductivity in 30 degreeC of the shape
  • Table 1 shows the contents of Na, K, Mg, Ca, Ge, P, and Fe in the heat insulating materials of Examples 1 to 13 on the basis of the total mass of the heat insulating material.
  • Table 2 shows the contents of Na, K, Mg, Ca, Ge, P, and Fe contained in the large particles in the heat insulating materials of Examples 1 to 13 on the basis of the total mass of the large particles.
  • Example 14 The molded heat insulating material obtained in Example 3 was subjected to heat treatment at 1000 ° C. for 10 hours to obtain the heat insulating material of Example 14.
  • the heat insulating material was cut and processed into a length of 2 cm, a width of 2 cm, and a thickness of 2 cm, and the compressive strength was measured. As a result, the maximum load at a compression rate of 5.0% was 0.81 MPa.
  • the ratio R of V to V 0.003 was 77.9%, and V 0.05 was 1.199 mL / g.
  • Example 15 The molded heat insulating material obtained in Example 4 was subjected to heat treatment at 900 ° C. for 5 hours to obtain the heat insulating material of Example 15. As a result of measuring the compressive strength of this heat insulating material in the same manner as in Example 14, the sample collapsed to show a breaking point at a compression rate of 3.9%, and the load at this time was 3.89 MPa.
  • the ratio R of V to V 0.003 was 98.2%, and V 0.05 was 0.857 mL / g.
  • Example 16 The molded heat insulating material obtained in Example 5 was subjected to heat treatment at 900 ° C. for 10 hours to obtain the heat insulating material of Example 16. As a result of measuring the compressive strength of this heat insulating material in the same manner as in Example 14, the sample collapsed to show a breaking point at a compression rate of 4.7%, and the load at this time was 1.090 MPa. In the molded body of the heat insulating material of Example 16, the ratio R of V to V 0.003 was 81.5%, and V 0.05 was 1.109 mL / g.
  • Example 17 The molded heat insulating material obtained in Example 6 was subjected to heat treatment at 900 ° C. for 2 hours to obtain the heat insulating material of Example 17. As a result of measuring the compressive strength of this heat insulating material in the same manner as in Example 14, the sample collapsed to show a breaking point at a compression rate of 4.9%, and the load at this time was 6.29 MPa. Further, in the molded body of the heat insulating material of Example 17, the ratio R of V to V 0.003 was 32.9%, and V 0.05 was 0.581 mL / g.
  • Example 18 The molded heat insulating material obtained in Example 7 was subjected to heat treatment at 1000 ° C. for 5 hours to obtain the heat insulating material of Example 18. As a result of measuring the compressive strength of this heat insulating material in the same manner as in Example 14, the maximum load at a compression rate of 5.0% was 0.87 MPa. In the molded body of the heat insulating material of Example 16, the ratio R of V to V 0.003 was 52.8%, and V 0.05 was 1.361 mL / g.
  • Example 19 The molded heat insulating material obtained in Example 8 was subjected to heat treatment at 1100 ° C. for 5 hours to obtain the heat insulating material of Example 19. As a result of measuring the compressive strength of this heat insulating material in the same manner as in Example 14, the sample collapsed to show a breaking point at a compression rate of 4.3%, and the load at this time was 1.12 MPa. Further, in the molded body of the heat insulating material of Example 19, the ratio R of V to V 0.003 was 87.6%, and V 0.05 was 1.097 mL / g.
  • Example 20 The molded heat insulating material obtained in Example 9 was subjected to heat treatment at 1100 ° C. for 5 hours to obtain the heat insulating material of Example 20. As a result of measuring the compressive strength of this heat insulating material in the same manner as in Example 14, the sample collapsed to show a breaking point at a compressibility of 4.1%, and the load at this time was 2.73 MPa. In the molded body of the heat insulating material of Example 20, the ratio R of V to V 0.003 was 90.0%, and V 0.05 was 0.937 mL / g.
  • Example 21 The molded heat insulating material obtained in Example 10 was subjected to heat treatment at 900 ° C. for 5 hours to obtain the heat insulating material of Example 21. As a result of measuring the compressive strength of this heat insulating material in the same manner as in Example 14, the sample collapsed to show a breaking point at a compression rate of 4.5%, and the load at this time was 3.60 MPa. In the molded body of the heat insulating material of Example 21, the ratio R of V to V 0.003 was 89.3%, and V 0.05 was 1.142 mL / g.
  • Example 22 The molded heat insulating material obtained in Example 11 was subjected to heat treatment at 900 ° C. for 5 hours to obtain the heat insulating material of Example 22. As a result of measuring the compressive strength of this heat insulating material in the same manner as in Example 14, the sample collapsed to show a breaking point when the compression rate was 4.4%, and the load at this time was 0.98 MPa. In the molded body of the heat insulating material of Example 22, the ratio R of V to V 0.003 was 76.9%, and V 0.05 was 1.031 mL / g.
  • Example 23 The molded heat insulating material obtained in Example 12 was subjected to heat treatment at 1000 ° C. for 24 hours to obtain the heat insulating material of Example 23. As a result of measuring the compressive strength of this heat insulating material in the same manner as in Example 14, the sample collapsed to show a breaking point at a compression rate of 3.4%, and the load at this time was 1.92 MPa. Further, in the molded body of the heat insulating material of Example 22, the ratio R of V to V 0.003 was 91.1%, and V 0.05 was 1.077 mL / g.
  • Example 24 The molded heat insulating material obtained in Example 13 was subjected to heat treatment at 900 ° C. for 24 hours to obtain the heat insulating material of Example 24. As a result of measuring the compressive strength of this heat insulating material in the same manner as in Example 14, the maximum load at a compression rate of 5.0% was 0.75 MPa. Further, in the molded body of the heat insulating material of Example 24, the ratio R of V to V 0.003 was 48.1%, and V 0.05 was 0.691 mL / g.
  • Comparative Example 1 100% by mass of silica powder having an average particle diameter of 14 nm was used as the powdery heat insulating material of Comparative Example 1.
  • This heat insulating material had a BET specific surface area of 195 m 2 / g and a thermal conductivity at 30 ° C. of 0.018 W / m ⁇ K. Since this sparse packing bulk density of the insulation material was 0.0107 g / cm 3, the volume of the insulation material 900g of Comparative Example 1 is a 84112cm 3.
  • the heat insulating material of Comparative Example 1 is used to produce a heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold. When calculated in the same manner as in Example 1, it is 93.5 cm.
  • the heat insulating material 306 g of Comparative Example 1 was subjected to pressure molding using the same mold as that of Example 1, and the molded heat insulating material was 30 cm long, 30 cm wide, 20 mm thick, and a bulk density of 0.17 g / cm 3. Got. At this time, the rate of increase in thickness was 132%.
  • Comparative Example 2 100% by mass of silica powder having an average particle diameter of 10 ⁇ m was used as the powdery heat insulating material of Comparative Example 2.
  • the heat insulating material had a BET specific surface area of 0.27 m 2 / g and a thermal conductivity at 30 ° C. of 0.0636 W / m ⁇ K. Since this sparse packing bulk density of the insulation material was 0.693 g / cm 3, the volume of the heat insulating material 1800g of Comparative Example 2 is a 2597cm 3.
  • the heat insulating material of Comparative Example 2 is used to produce a heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold.
  • the heat insulating material 1458g of Comparative Example 2 was subjected to pressure molding using the same mold as in Example 1, and the molded heat insulating material was 30 cm long, 30 cm wide, 20 mm thick, and a bulk density of 0.81 g / cm 3. Got the body. At this time, the rate of increase in thickness was 108%.
  • Comparative Example 3 80% by mass of silica powder (small particles) with an average particle size of 14 nm and 20% by mass of silica powder (large particles) with an average particle size of 60 ⁇ m were mixed uniformly with a hammer mill. Insulation material was obtained. This heat insulating material had a BET specific surface area of 158 m 2 / g and a thermal conductivity at 30 ° C. of 0.0212 W / m ⁇ K. Since this sparse packing bulk density of the powder was 0.0126g / cm 3, the volume of the powder 900g of Comparative Example 3 is 71429Cm 3.
  • the heat insulating material of Comparative Example 3 is used to produce a heat insulating material having a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.5 g / cm 3 , the depth required by the mold. When calculated in the same manner as in Example 1, it is 79.4 cm. Further, by using 486 g of the heat insulating material of Comparative Example 3 and press-molding with the same mold as that of Example 1, the heat insulating material was formed with a length of 30 cm, a width of 30 cm, a thickness of 20 mm, and a bulk density of 0.27 g / cm 3. Got. At this time, the rate of increase in thickness was 128%.
  • Comparative Example 4 The molded heat insulating material obtained in Comparative Example 1 was subjected to heat treatment at 900 ° C. for 24 hours to obtain the heat insulating material of Comparative Example 4. As a result of measuring the compressive strength of this heat insulating material in the same manner as in Example 14, the maximum load at a compression rate of 5.0% was 0.11 MPa.
  • the present invention it is possible to provide a heat insulating material that is excellent in handleability by suppressing scattering at the time of molding and filling, and has good moldability by suppressing the occurrence of molding defects in the case of pressure molding, and a method for producing the same. can do.
  • molded using the powdery heat insulating material and the jacket material which accommodates a heat insulating material can also be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 本発明は、従来技術の有する課題に鑑みてなされたものであり、成形時や充填時における飛散や成形欠陥の発生を抑制することが可能であり、且つ十分な断熱性能を示す粉体を提供することを目的とする。 本発明の断熱材は、シリカ及び/又はアルミナを含み、粒子径Dが5nm以上30nm以下である複数の小粒子を含む粉体状であって、粉体のBET比表面積が5m/g以上150m/g以下であり、30℃における熱伝導率が0.05W/m・K以下である。

Description

断熱材及びその製造方法
 本発明は、断熱材及びその製造方法に関する。
 室温での空気分子の平均自由行程は約100nmである。従って、直径100nm以下の空隙を有する多孔質体内では、空気による対流や伝導による伝熱が抑制されるため、このような多孔質体は優れた断熱作用を示す。
 この断熱作用の原理に従い、超微粒子は熱伝導率が低く断熱材に適していることが知られている。例えば、特許文献1には、シリカの超微粉末を多孔体に単独で成形した断熱材が記載されており、この断熱材のかさ密度は0.2~1.5g/cm、BET比表面積は15~400m/g、平均粒子径は0.001~0.5μm、積算総細孔容積は0.3~4cm/gであり、平均細孔径1μm以下である細孔の積算細孔容積は成形体中の積算細孔容積の70%以上かつ平均細孔径0.1μm以下である細孔の積算細孔容積は成形体中の積算細孔容積の10%以上である。特許文献2には、リング内径が0.1μm以下となるようにリング状又はらせん状に会合した超微粒子によって、輻射吸収散乱材料等からなる粒子を被覆して多孔体被覆粒子を形成し、これを無機繊維又は多孔体被覆粒子と同様に形成された多孔体被覆繊維と混合して、断熱材前駆体の粉体とし、この前駆体を加圧成形して断熱材を製造する方法が記載されている。特許文献3には、一次粒子径の異なる2種以上の微粒子からなる微細多孔体が開示されている。
特開2007-169158号公報 特許4367612号明細書 特開平1-103968号公報
独立行政法人 新エネルギー・産業技術総合開発機構、平成17年度~18年度成果報告書 エネルギー使用合理化技術戦略的開発 エネルギー使用合理化技術実用化開発 「ナノ多孔・複合構造を持つ超低熱伝導材料の実用化開発」
 特許文献1~3に記載されているような粉体や成形体は、理論的には静止空気に近い熱伝導率を有しており、断熱材として使用が可能である。しかしながら、特許文献1~3に記載のような超微粒子を主成分とする断熱材を工業的に利用しようとすると、製造工程で問題が出てくることを本発明者は発見した。この問題を具体的に説明すると、超微粒子を主成分とする断熱材は非常にかさ高く、一見、軽量で扱い易いように思われるが、実際には、加圧成形等の加工をする場合に疎充填かさ密度の小ささが障害となる。疎充填かさ密度の小さい粉体を加圧成形する場合、まず、成形型に充填しにくい上、成形型や粉体を貯蔵するタンク等をその体積に見合う程度に大きくしなければならずコスト高である。また金型への供給工程において断熱材が凝集すると、貯槽ホッパ内で断熱材の残量によって疎充填かさ密度が変化するため、安定した連続供給が難しいことがある。このような成形原料の凝集は、金型への充填不足を招く可能性があり、生産性を著しく低下させる。
 さらに、粉体状の断熱材は加圧成形時に空気を脱気する必要があるが、予め保有している空気量が多い上、特許文献3に記載されているように、超微粒子を主成分とする多孔体は細孔径が小さいため、減圧等による脱気に長時間必要とする傾向があり、生産性が低い。また、超微粒子を主成分とするようなかさ高い断熱材を加圧成形する際にはストロークが大きくなる傾向がある。ストロークが大きいと、加圧箇所近傍の粉体は充分に圧密されても、加圧箇所から離れるにしたがって圧密が不十分となりやすい。例えば、成形型に粉体を充填し、上方から加圧した場合、成形型に充填され加圧されている粉体の上部は充分に圧密されるが、下部、すなわち成形型の底付近は圧密が不十分となる傾向がある。粉体の圧密化にムラがあると、圧力を開放した際にラミネーションが発生しやすい。ラミネーションとは、加圧成形をして得られた成形品について、主に厚み方向において2層以上に剥離してしまう現象のことをいう。このような層剥離が発生すると、製品として扱えず、歩留まりが低下するので好ましくない。
 粉体状の断熱材は、加圧成形される以外にも、外被材(例えばガラスクロスの袋やチューブ)中に充填され、管状物等に巻きつけるなどして利用されることがある。粉体が飛散しやすいと外被材への充填時の作業効率が悪いため、このような使用態様の場合は粉体の飛散は一層問題であり、解決が望まれている。
 本発明は、このような従来技術の有する課題に鑑みてなされたものであり、成形時や充填時における飛散や成形欠陥の発生を抑制することが可能であり、且つ十分な断熱性能を示す粉体を提供することを目的とする。また、上記粉体を用いた成形体及び被包体並びに粉体の製造方法を提供することも目的とする。
 本発明者は、従来技術を踏まえ、その課題の克服のために鋭意検討した結果、低い熱伝導率を有するシリカ粉体やアルミナ粉体の平均粒子径や、粉体のBET比表面積、疎充填かさ密度を適切に設定することで、成形時や充填時における飛散や成形欠陥の発生を抑制することが可能である粉体が得られることに想到し、本発明に想到した。
 すなわち、本発明は、シリカ及び/又はアルミナを含み、粒子径Dが5nm以上30nm以下である複数の小粒子を含む粉体状であって、粉体のBET比表面積が5m/g以上150m/g以下であり、30℃における熱伝導率が0.05W/m・K以下である粉体状の断熱材を提供する。
 上記断熱材の疎充填かさ密度は0.030g/cm以上0.35g/cm以下であることが好ましい。
 上記断熱材は、シリカ及び/又はアルミナを含み、粒子径Dが50nm以上100μm以下である複数の大粒子をさらに含み、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下であることが好ましい。
 上記断熱材は、赤外線不透明化粒子を含有し、800℃における熱伝導率が0.2W/m・K以下であることが好ましい。
 上記赤外線不透明化粒子の平均粒子径は0.5μm以上30μm以下であり、赤外線不透明化粒子の体積含有率は、断熱材の全体積を基準として、0.02体積%以上5体積%以下であることが好ましい。
 上記断熱材は、アルカリ金属元素、アルカリ土類金属元素及びゲルマニウムからなる群より選択される少なくとも1種の元素を含み、アルカリ金属元素及びアルカリ土類金属からなる群より選択される少なくとも1種の元素を含有する場合、その含有率は、断熱材の全質量を基準として0.005質量%以上5質量%以下であり、ゲルマニウムを含有する場合、その含有率は、断熱材の全質量を基準として10質量ppm以上1000質量ppm以下であることが好ましい。
 上記アルカリ金属元素、アルカリ土類金属元素及びゲルマニウムからなる群より選択される少なくとも1種の元素は、上記大粒子に含有されていることが好ましい。
 上記断熱材は、無機繊維を含有し、無機繊維の含有率は、断熱材の全質量を基準として、0質量%超20質量%以下であることが好ましい。
 上記断熱材は、リンを含有し、リンの含有率が、断熱材の全質量を基準として、0.002質量%以上6質量%以下であることが好ましい。
 上記断熱材は、鉄を含有し、鉄の含有率が、断熱材の全質量を基準として、0.005質量%以上6質量%以下であることが好ましい。
 本発明はまた、上記粉体状の断熱材を成型して得られる断熱材を提供する。
 上記成型して得られる断熱材は、圧縮率0~5%における最大荷重が0.7MPa以上であることが好ましい。
 上記成型して得られる断熱材は、細孔径が0.003μm以上150μm以下である細孔の積算細孔容積V0.003に対する、細孔径が0.05μm以上0.5μm以下である細孔の積算細孔容積Vの割合Rが70%以上であり、細孔径が0.05μm以上150μm以下である細孔の積算細孔容積V0.05が0.5mL/g以上2mL/g以下であることが好ましい。
 本発明はまた、外被材に収容された上記断熱材を提供する。
 上記外被材は無機繊維を含むか、外被材が樹脂フィルムであることが好ましい。
 本発明はまた、シリカ及び/又はアルミナを含み、平均粒子径が5nm以上30nm以下である小粒子と、シリカ及び/又はアルミナを含み、平均粒子径が50nm以上100μm以下である大粒子と、を、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下で混合する工程を有する、断熱材の製造方法を提供する。
 本発明はまた、シリカ及び/又はアルミナを含み、平均粒子径が5nm以上30nm以下である小粒子と、シリカ及び/又はアルミナと、アルカリ金属元素、アルカリ土類金属元素及びゲルマニウムからなる群より選択される少なくとも1種の元素とを含み、平均粒子径が50nm以上100μm以下である大粒子と、を、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下で混合し、無機混合物を得る工程を有する、断熱材の製造方法を提供する。
 本発明はまた、上記の断熱材の製造方法であって、シリカ及び/又はアルミナを含み、平均粒子径が5nm以上30nm以下である小粒子と、シリカ及び/又はアルミナと、アルカリ金属元素、アルカリ土類金属元素及びゲルマニウムからなる群より選択される少なくとも1種の元素とを含み、平均粒子径が50nm以上100μm以下である大粒子と、を、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下の範囲で含む無機混合物を、成形型に収容する収容工程と、無機混合物を成形する成形工程と、を備え、成形工程は、(a)成形型により無機混合物を加圧しながら400℃以上に加熱する工程、又は(b)加圧により無機混合物を成形した後、400℃以上の温度で加熱処理を施す工程、である、断熱材の製造方法を提供する。ここで、成形工程において、断熱材のかさ密度が0.25g/cm以上2.0g/cm以下になるように成形圧力を設定することが好ましい。
 本発明はまた、上記の断熱材の製造方法であって、シリカ及び/又はアルミナを含み、平均粒子径が5nm以上30nm以下である小粒子と、シリカ及び/又はアルミナと、アルカリ金属元素、アルカリ土類金属元素及びゲルマニウムからなる群より選択される少なくとも1種の元素とを含み、平均粒子径が50nm以上100μm以下である大粒子と、を、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下の範囲で含む無機混合物を、成形型に収容する収容工程と、無機混合物を成形する成形工程と、前記成形工程により得られた成形体の一部を切削する切削工程と、を備え、成形工程は、(c)成形した断熱材のかさ密度が0.25g/cm以上2.0g/cm以下になるように前記成形型により前記無機混合物を加圧しながら加熱する工程、又は(d)前記成形型で加圧することにより前記無機混合物を成形した後、400℃以上の温度で加熱処理を施す工程、である、断熱材の製造方法を提供する。
 本発明によれば、成形時や充填時における飛散が抑制されて取扱い性に優れ、加圧成形した場合の成形欠陥の発生が抑制されて成形性が良好である断熱材及びその製造方法を提供することができる。また、粉体状の断熱材を用いて成形した断熱材、断熱材を収容する外被材を備える断熱材被包体を提供することもできる。
疎充填かさ密度と大粒子の含有率Rとの関係を示すグラフである。 疎充填かさ密度の測定装置の一例を示す写真である。 本発明の一実施形態に係る外被材を備える断熱材の断面模式図である。 本発明の一実施形態に係る断熱材が含有する小粒子及び大粒子の断面模式図である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。なお、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[1]粉体状断熱材
[1-1]シリカ、アルミナ
 本実施形態の断熱材は、シリカ及び/又はアルミナの複数の小粒子を含み、粉体状である。断熱材中のシリカ及び/又はアルミナの含有率が50質量%以上であると、固体伝導による伝熱が小さいため好ましい。シリカ粒子及び/又はアルミナ粒子の含有率が粉体の75質量%以上であると、粉体同士の付着力が増して、粉体の飛散が少なくなるためより好ましい。なお、本明細書中シリカ粒子とは、組成式SiOで表される成分からなる粒子の他、SiOを含む材料を指し、SiOに加えて金属成分等、他の無機化合物を含有する粒子を包含する。シリカ粒子は、純粋な二酸化ケイ素に加えて、Si及び種々の他元素との塩や複合酸化物を含有してもよいし、水酸化物のような含水酸化物を含有してもよいし、シラノール基を有していてもよい。本明細書中、アルミナ粒子とは、組成式Alで表される成分のみからなる粒子の他、Alを含む材料を広く包含する概念であり、Alに加えて金属成分等、他の無機化合物を含有する粒子を包含する。アルミナ粒子は、純粋な酸化アルミニウムに加えて、Al及び種々の他元素との塩や複合酸化物を含有してもよいし、水酸化物のような含水酸化物を含有していてもよい。シリカ粒子及び/又はアルミナ粒子中のアルミナは、結晶質であっても、非晶質であっても、それらの混合体であってもよいが、非晶質であると断熱材中の固体伝導による伝熱が小さく、断熱性能が高いため、好ましい。
 シリカ粒子の具体例としては、下記のものが挙げられる。
「シリカ」や「石英」と呼ばれるケイ素の酸化物。
ケイ素の部分酸化物。
シリカアルミナやゼオライトのようなケイ素の複合酸化物。
Na、Ca、K、Mg、Ba、Ce、B、Fe及びAlのいずれかのケイ酸塩(ガラス)。
ケイ素以外の元素の酸化物、部分酸化物、塩又は複合酸化物(アルミナやチタニア等)と、ケイ素の酸化物、部分酸化物、塩又は複合酸化物との混合体。
SiCやSiNの酸化物。
 アルミナ粒子の具体例としては、下記のものが挙げられる。
「アルミナ」と呼ばれるアルミニウムの酸化物。
α-アルミナ、γ-アルミナ、β-アルミナと呼ばれるアルミナ。
アルミニウムの部分酸化物。
シリカアルミナやゼオライトのようなアルミニウムの複合酸化物。
Na、Ca、K、Mg、Ba、Ce、B、Fe及びSiのいずれかのアルミン酸塩(ガラス)。
アルミニウム以外の元素の酸化物、部分酸化物、塩又は複合酸化物(シリカやチタニア等)と、アルミニウムの酸化物、部分酸化物、塩又は複合酸化物との混合体。
炭化アルミニウムや窒化アルミニウムの酸化物。
 断熱材が使用される温度においてシリカ粒子及び/又はアルミナ粒子が熱的に安定であることが好ましい。具体的には、断熱材の使用最高温度において1時間保持したときに、シリカ粒子及び/又はアルミナ粒子の重量が10%以上減少しないことが好ましい。また、シリカ粒子及び/又はアルミナ粒子は、断熱性能を維持する観点や、成形した場合の形状保持の観点から、耐水性を有することが好ましい。具体的には、25℃の水100gに対するシリカ粒子及び/又はアルミナ粒子の溶解量が0.1g未満であることが好ましく、0.01g未満であることがより好ましい。
 シリカ粒子、アルミナ粒子の比重は、2.0以上5.0以下であることが好ましい。2.0以上4.5以下であると、断熱材のかさ密度が小さいためより好ましく、2.0以上4.2以下であるとさらに好ましい。ここで、シリカ粒子、アルミナ粒子の比重は、ピクノメーター法により求まる真比重を指す。
 上述したように、直径100nm以下の空隙を有する多孔質体は、熱伝導率が低く断熱材に適していることが知られている。このような断熱材を得たい場合、粒子径100nm以下の微粒子を加圧等によって成形するのが単純である。しかしながら、粒径20nm程度のいわゆる超微粒子のみからなる粉体を用いて、例えば加圧成形をして多孔質体を製造する場合、加圧前の粉体の体積が非常に大きい傾向があり、製造装置が大型になりやすい上、加圧時のストロークが長くなり、その結果タクトタイム、すなわち粉体を成形型に充填し、加圧し、圧力を開放し、成形型から粉体を加圧成形した成形体を取り出すまでにかかる時間が長くなるほか、ラミネーションが起こり易く不良率が高いために生産性が低下する傾向がある。また、かさ密度が小さいため、成形型に均一に充填するのが困難な傾向がある。さらに、例えば粉体の供給工程において、貯槽ホッパ投入時の飛散や貯槽ホッパ内での凝集が起こりやすい上、加圧成形時に成形欠陥が発生しやすい。成形欠陥を抑制するために、例えば超微粒子量を減らし、無機繊維量を増やすと、断熱材としての使用に障害が出るほど断熱性能が低下してしまう。
 ところが、粉体状の断熱材のBET比表面積を適切な範囲に調整することにより加圧成形装置等の製造装置の小型化が可能であり、優れた断熱性能を発現させることが可能であることが発見された。しかも、BET比表面積を適切な範囲に調整するにあたっては、従来は断熱材原料として適していないとみなされていた、例えばマイクロメートルオーダーのそれほど粒子径が小さくない粒子(大粒子)を原料にしても、驚くべきことに、適切な量で超微粒子(小粒子)と混合することでBET比表面積と優れた断熱性能を両立できる断熱材を得られることが分かった。
 本発明者が検討をしたところ、小粒子として、シリカ及び/又はアルミナを含み、平均粒子径が5nm以上30nm以下である粒子と、大粒子として、シリカ及び/又はアルミナを含み、平均粒子径が50nm以上100μm以下である粒子とを選択し、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下の範囲になるように混合することで、断熱材のBET比表面積を5m/g以上150m/g以下に調整しやすく、加圧前の粉体の体積が大きくなりすぎず、さらに成形型に充填しやすい上、飛散や凝集がしにくい粉体を得られることを見出した。
 なお、小粒子と大粒子を混合して粉体を調製する場合、小粒子の集合と大粒子の集合を混合するのが好ましい態様であって、各集合に「平均粒子径」が存在する。一方、小粒子と大粒子を含有する粉体の状態では、連続した粒径分布であっても、複数の極大値を有する粒径分布であっても、熱伝導の観点では差し支えなく、後述するとおり「複数の小粒子を含む」を満たせばよい。またBET比表面積に粒径分布は影響するものの、極大値が複数であることは直接の要件ではない。よって、断熱材の物の要件としては「複数の小粒子を含む」を満たすことが必要で、粉体に含まれる小粒子及び/又は大粒子の特性として「平均粒子径」を特定する必要がないというのが本発明者の認識である。
 さらに本発明者が検討を重ねたところ、小粒子と大粒子を混合した粉体状の断熱材の疎充填かさ密度は、前記Rが0~60質量%未満の範囲ではRによらず疎充填かさ密度が小さい傾向であるのに対し、Rが60質量%以上では、粉体状の断熱材の疎充填かさ密度が増大する傾向であることが分かった(図1参照)。すなわち、Rが60質量%以上であると粉体状の断熱材の疎充填かさ密度が適切な大きさになり、加圧前の体積が大きくなり過ぎず、成形型に充填しやすくなると推定される。この理由は定かではないが、Rによって小粒子と大粒子の充填状態が異なり、Rが60質量%未満では小粒子と大粒子とで形成される空隙が比較的大きいため、粉体状の断熱材の疎充填かさ密度が小さくなると考えられる。これに対し、Rが60質量%以上であると、小粒子と大粒子の充填状態がより密な状態になって空隙が減少し、粉体状の断熱材の疎充填かさ密度が増大すると推定される。一方で、空隙が減少するにもかかわらず優れた熱伝導率を示すのは、Rが60質量%以上90質量%以下の範囲で小粒子と大粒子が混合されると、充填状態は比較的密になるものの、これらの粒子によって形成される空隙が空間の熱伝導のボトルネックを形成し、空間の熱伝導が抑制されやすいことに起因すると推測している。また、粒子径の異なる粒子が混合され、BET比表面積が適切な範囲に調整されることで、付着性や粒子同士の物理摩擦角である粒子間摩擦角、粉体内部における層同士の摩擦角である内部摩擦角、帯電性等が変化し、超微粒子のみからなる断熱材の飛散しやすさ、凝集しやすさといった課題を緩和することが可能になったのではないかと推測している。
 すなわち、断熱材はシリカ粒子及び/又はアルミナ粒子を2種類以上含むのが好ましく、特に、粒子径の異なる2種類の粒子、すなわちシリカ及び/又はアルミナからなる小粒子と大粒子を含有する場合、小粒子の質量と大粒子の質量の合計を基準として、大粒子の質量の割合Rが60質量%以上90質量%以下であることが好ましい。大粒子の含有量が60質量%未満であると、粉体が飛散しやすい傾向があり、90質量%超であると、断熱性能が低下しやすく、加圧成形しにくい傾向がある。大粒子の質量の割合Rは、断熱性能の観点から60質量%以上85質量%以下がより好ましく、65質量%以上85質量%以下がさらに好ましく、65質量%以上75質量%以下がさらに好ましい。
 非特許文献1に記載されているように、超微粒子を主成分とする断熱材前駆体は、加圧成形した後、圧力を開放した時に、成形体が大きく膨張しやすい傾向がある。この膨張はスプリングバックと呼ばれている。特許文献1記載のシリカ成形体のように、超微粉末を主成分とする超微粒子を加圧成形した成形体には、スプリングバックが発生し、場合によっては成形欠陥が発生するという問題がある。確かに微細多孔構造は、断熱材の熱伝導を小さくするのに寄与するが、加圧成形時の空気抜きが不十分であると、スプリングバックが発生しやすい。大粒子を配合することで、小粒子のみからなる場合に比べて、成形時におけるスプリングバックの発生は抑制できる傾向があるが、この配合量が25質量%以上であると抑制効果が顕著である。上述のとおり、大粒子の配合量が多すぎると断熱性能は低下する傾向にあることから、断熱材の大粒子と小粒子の比率は、BET比表面積、粉体状の断熱材の飛散性、成形した断熱材のスプリングバックの抑制及び熱伝導率が所望の値となるようにバランスを考えて決定するのが好ましい。
 特許文献2に記載の断熱材には、非特許文献1に開示されているように、加圧成形時にプレス面に対して垂直な面に亀裂状の成形欠陥が発生する。このような成形欠陥が断熱材に存在すると、断熱材が破損する恐れがあるばかりか、断熱性能も低下するため製品として扱えず、歩留まりが低下するので好ましくない。また、超微粒子を主成分とする断熱材は、加圧成形した後、ラミネーションが発生しやすい傾向もある。ラミネーションとは、加圧成形をして得られた成形品について、主に厚み方向において2層以上に剥離してしまう現象のことをいう。このような層剥離が発生すると、製品として扱えず、歩留まりが低下するので好ましくない。シリカを主成分とする大粒子及び小粒子であって、大粒子の粒子径が40nm~10μm、小粒子の粒子径が5nm~30nmの場合、粉体に占める大粒子の比率が、上述のスプリングバック抑制に好ましいものであると、ラミネーションも発生しにくい傾向にある。上述したように、大粒子の配合量が60質量%以上であるとBET比表面積、疎充填かさ密度が適度な大きさになってストロークが小さくなる上、大粒子、小粒子の平均粒子径が前記の範囲であると、粒子の充填状態が好ましい様態になり、ラミネーションの抑制効果が顕著となる傾向がある。
 本明細書中、「疎充填かさ密度」とは、JIS R 1628の「初期かさ密度」の測定手順に従って得られる値のことをいう。具体的には「7.1 定容積測定法の手順」において、(1)~(4)、すなわち、
(1)測定容器の質量を、はかりによって量る。
(2)測定容器に、ふるいをとおして試料をあふれるまで入れる。このとき測定容器に振動を加えたり、試料を圧縮してはならない。
(3)測定容器の上端面から盛り上がった粉末を、すりきり板を使ってすりきる。このときすりきり板は、粉末を圧縮しないようすり切る方向から後ろへ傾斜させて使用する。
(4)測定容器ごと質量をはかりで量り、測定容器の質量を差し引いて試料の質量を計算する。
に基づいて測定する。JIS R 1628は、初期かさ密度と本測定のかさ密度の差が0.3%以内であることを前提としている指標であるのに対し、本実施態様の粉体状の断熱材の場合は初期かさ密度と本来のかさ密度の差が大きく異なる場合がある。しかし、本発明者はそれを踏まえた上で、粉体状の断熱材を加圧成形する場合のラミネーションの起こり易さについては、「初期かさ密度」が重要な指標になることを見出し、本発明を完成した。疎充填かさ密度の測定装置の一例を図2に示す。ふるいの下部に取り付けた漏斗の先端と測定容器の間の距離は20~30mmとする。
 粉体状の断熱材の疎充填かさ密度は、0.030g/cm以上0.35g/cm以下が好ましい。疎充填かさ密度が0.030g/cm未満であると、断熱材の体積が大きく、例えば加圧成形に必要な装置が大型化する傾向がある上、著しく飛散、凝集しやすくなる傾向があるため好ましくない。粉体状の断熱材の疎充填かさ密度は、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合を調整することにより制御することができる。
 BET比表面積が5m/g以上150m/g以下、かつ30℃における熱伝導率が0.05W/m・K以下を満たしつつ、疎充填かさ密度を0.030g/cm以上0.35g/cm以下にする場合、平均粒子径が比較的小さい大粒子(例えば50nm~10μm)を選択するか、大粒子の質量の割合を少なめ(例えば60質量%以上80質量%以下)に設定するのが調整し易い態様である。この場合、粉体の熱伝導率は0.035W/m・K以下程度になる場合が多く、すなわち扱い易さのために疎充填かさ密度を調整することで、熱伝導率を断熱材としてより好ましい範囲にすることに繋がるというメリットが生まれる。
 疎充填かさ密度が0.35g/cm超であると、断熱性能が低下する傾向があるため、好ましくない。加圧前の体積を適切な大きさとし、成形型への充填を容易にする観点から0.035g/cm以上0.3g/cm以下がより好ましく、断熱性能の観点から0.040g/cm以上0.25g/cm以下がさらに好ましい。また、断熱材が赤外線不透明化粒子を含有する場合は、高い温度での断熱性能を要する傾向が強いため、加圧前の体積を適切な大きさとし、成形型への充填を容易にする観点と共に、高い温度域での断熱性能の観点から、疎充填かさ密度は0.045g/cm以上0.25g/cm以下が好ましく、0.05g/cm以上0.25g/cm以下がより好ましく、0.05g/cm以上0.20g/cm以下がさらに好ましい。赤外線不透明化粒子の詳細については、後述する。
 小粒子と大粒子の含有量は、例えば断熱材から小粒子、大粒子を分離し、それぞれの質量を測定することで算出することが可能である。小粒子と大粒子を分離する方法は特に限定されないが、例えば、改訂六版 化学工学便覧(丸善)に掲載されている分級方法や分級機を使用して分離することができる。公知の分級方法としては湿式分級や乾式分級が挙げられる。湿式分級を行う機械としては、重力分級機(沈降分級機)、スピッツカステン、水力分級機、サイホンサイザー、遠心分級機、液体サイクロン、ジェットサイザー、レーキ分級機、エーキンス型、スパイラル分級機、ボウル分級機、ハイドロセパレーター、デカンター等が挙げられる。乾式分級を行う機械としては、振動ふるい、面内ふるい、回転ふるい、二重円筒型ふるい等のふるい分け機、重力分級機、ジグザグ分級機、風力分級機、自由うず型遠心分級機、サイクロン、ディパージョンセパレーター、強制うず型遠心分級機、ターボクラシファイア、ミクロプレックス、ミクロンセパレーター、アキュカット、スーパーセパレーター、スターテバント型分級機、ターボプレックス、サイクロンエアーセパレーター、O-SEPA等の遠心分級機、ルーバー型分級機、ファントンゲレン型分級機、エルボージェット、改良型バーチャルインパクター等の慣性分級機等が挙げられる。分級機は、分離したい小粒子、大粒子の粒子径に応じて選択すればよく、これらの分級機を組み合わせて使用してもよい。
 シリカ粒子やアルミナ粒子の粒子径は、電界放射型走査型電子顕微鏡(FE-SEM)で観察することにより測定できる。小粒子を測定する場合、5nm以上30nm以下の粒子を観察できるように倍率を設定し(例えば10000倍)、その断熱材に「代表的な視野」を無作為に抽出して観察する。「代表的な視野」とは、特異的な視野ではなく、任意に選択した断熱材において視野の様子がある程度共通している視野を意味する。断熱材が小粒子より遥かに大きい粒子や繊維を含有する断熱材の場合は、大部分がこれらによって占められてしまう視野もあり得るが、ごく一部においてのみ観察される視野は代表的な視野ではないので、これを選択しないこととする。倍率10000倍で観察する場合、まず、100倍程度で観察し、平均的に見られる視野を選択してから倍率10000倍で観察するのは、時間のロスが少ない点から好ましい態様である。
 代表的な視野を観察し、その視野に2個以上の小粒子が観察されれば、当該断熱材は「小粒子を含有する」ものであると判断できる。ただし、最初に観察した視野に2個以上の小粒子が観察されなかった場合でも、代表的な視野を100視野観察し、合計で100個の小粒子が観察できれば「小粒子を含有する」とする。つまり、本明細書中、(1)初めに観察した代表的な断面視野に2個以上の小粒子が観察されれば、「小粒子を含有する」ことを表し、もし、(2)初めに観察した代表的な断面視野に2個以上の小粒子が観察されなかった場合には、代表的な断面視野100視野に合計で100個の小粒子が観察されれば、「小粒子を含有する」を満たすと定義する。
 粒子は必ずしも円形の粒子である必要はなく、いびつな形状であってもよい。粒子の径は等面積円相当径によって求めるものとする。等面積円相当径とは、粒子の投影面積と同じ面積を持つ円の直径であり、Heywood径とも呼ぶ。いびつな形の粒子があったとしても、その面積が例えば78nm(粒子径=10nmの円の面積に相当)であれば、粒子径は10nmとみなす。製造工程で加熱を含む断熱材の場合、小粒子同士が融着し、境界が視認できない場合もあり得るが、その融着したいびつな形状で断面積が702nm(=粒子径が30nmの円の面積に相当)以下であれば1つの「小粒子」として把握される。ある程度の融着が起こっていても、その倍率で境界を視認できるのであれば、各粒子の粒子径(等面積円相当径)を測定すればよい。
 小粒子を含むか否かを判断する上では、各粒子の粒子径は等面積円相当径によって判断すればよいので、粒子径の平均値を求めることは必須ではないが、小粒子の集合全体から断熱材の物理特性の傾向を把握する等の目的で粒子径の平均値を求める場合、5nm以上30nm以下の粒子を観察できるように倍率を設定して100個以上の粒子を観察し、その等面積円相当径を求めて数平均で算出すればよい。
 断熱材に含まれる小粒子は、例えば次の条件、装置で観察することができる。試料台上に貼り付けたカーボン粘着テープ等の導電性テープに試料を保持し、約2nmのOsコーティングを施して検鏡用試料とする。Osコーティングは、例えばオスミウムコーター(HPC-1SW型、株式会社真空デバイス社製)を使用して施すことができる。検鏡装置としては、走査型電子顕微鏡(SU-70、株式会社日立ハイテクノロジーズ社製)を使用し、加速電圧 1.0kVの条件で測定する。
 小粒子の粒子径Dは、5nm以上30nm以下である。Dが5nm以上であると、Dが上記の数値範囲外である場合に比べて、小粒子が化学的に安定である傾向があり、断熱性能が安定しやすい傾向がある。Dが30nm以下であると、Dが上記の数値範囲外である場合に比べて、小粒子同士の接触面積が小さく、粉体の固体伝導による伝熱が少なく、熱伝導率が小さい傾向がある。Dは、5nm以上25nm以下であると、熱伝導率の観点から好ましく、5nm以上20nm以下であるとより好ましく、5nm以上18nm以下であるとさらに好ましく、7nm以上14nm以下であると特に好ましい。
 大粒子の粒子径Dは、D<Dを満たす。Dは50nm以上100μm以下であることが好ましい。Dは、前述のDと同じ方法により求められる。Dが50nm以上であると、粉体状の断熱材を成形した場合に成形体におけるスプリングバックが小さい傾向がある。Dが100μm以下であると、熱伝導率が小さい傾向がある。大粒子の粒子径Dは、80nm以上100μm以下であってもよいが、50nm以上50μm以下であると、断熱材が無機繊維や赤外線不透明化粒子を含む場合にこれらとの均一な混合が容易であるため、好ましい。Dは、50nm以上10μm以下であると、粒子の付着力が大きく、粉体からの粒子の脱落が少ないため、より好ましく、50nm以上5μm以下がさらに好ましい。
 DがDの2倍以上であると、粉体状の断熱材を成形した場合にスプリングバックが小さくなるため、好ましい。DはDの3倍以上であると、小粒子と大粒子の混合粉体のかさ比重が大きく、粉体体積が小さいと作業性が高いので、より好ましい。DはDの4倍以上であると、小粒子と大粒子の粒径の差が大きく、小粒子と大粒子を混合した際に大粒子の小粒子に対する分散が容易であるので、さらに好ましい。粒子の凝集による固体伝熱の観点から、各々の粒子が分散していることが好ましい。すなわち、大粒子が互いに直接接触、連結している箇所が存在しないことが好ましい。大粒子が直接連結しないことで生じる大粒子間の空隙は小粒子で充填され、大粒子同士が直接接触し難い。そのため、断熱材中に固体伝導の大きい伝熱経路が存在せず、断熱材全体の熱伝導率が低くなり易い。さらに、大粒子間の空隙を小粒子が充填することで、断熱材中に存在する空隙の大きさが小さくなり、空気による対流や伝熱が抑制されるため、断熱材全体の熱伝導率が低くなり易い。
 断熱材は、水が粉体や成形体に浸み込んだ場合にハンドリング性の低下や成形体の変形、ひび割れ等が起こるのを抑制する観点から、撥水剤を含むことが好ましい。撥水剤としては、例えば、パラフィンワックス、ポリエチレンワックス、アクリル・エチレン共重合体ワックス等のワックス系撥水剤;シリコーン樹脂、ポリジメチルシロキサン、アルキルアルコキシシラン等のシリコン系撥水剤;パーフロロアルキルカルボン酸塩、パーフロロアルキルリン酸エステル、パーフロロアルキルトリメチルアンモニウム塩等のフッ素系撥水剤、アルキル基やパーフルオロ基を含むアルコキシシラン等のシランカップリング剤、トリメチルシリルクロライドや1,1,1,3,3,3-ヘキサメチルジシラザン等のシリル化剤が挙げられる。これらは1種または2種以上で使用することができる。これらはそのまま用いてもよいし、溶液やエマルジョンの形態で用いることも可能である。このうち、ワックス系撥水剤、シリコン系撥水剤が好ましく用いられる。粉体中の撥水剤の含有率は、十分な撥水効果を付与する観点から、粉体全体の質量/撥水剤の質量比は100/30~100/0.1が好ましく、100/20~100/0.5がより好ましく、100/10~100/1がさらに好ましい。撥水剤の添加方法は特に限定されないが、例えば、これらの撥水剤を水又はアルコール等の溶媒で希釈したものを添加しながら粉体を攪拌後乾燥する方法、粉体を水又はアルコール等の溶媒に分散させてスラリーとし、そこへ撥水剤を添加して攪拌及び濾過後、乾燥する方法や、クロロトリメチルシラン等での蒸気処理が挙げられる。断熱材のBET比表面積が5g/m以上150g/m以下であると、撥水効果を付与するために要する撥水剤の量が少量であるという利点がある。さらに、使用する撥水剤の量が少量であると、断熱材が高温に曝された際に放出されるアウトガスが少量であり、周辺環境への影響が小さいという利点もある。
[1-2]無機繊維
 断熱材を成形する場合、断熱材は無機繊維を含有するのが好ましい。無機繊維を含有する断熱材は、加圧成形において、成形した断熱材からの粒子の脱落が少なく、生産性が高いという利点を有する。さらに、無機繊維を含有する断熱材は崩壊しにくく、取り扱いやすいという利点を有する。粉体の状態においても、飛散が少ないので、取扱の上で好ましい。本明細書中、無機繊維とは平均太さに対する無機繊維の平均長さの比(アスペクト比)が10以上であるものをいう。アスペクト比は10以上であることが好ましく、断熱材を成形する場合、小さい圧力で成形を可能とし、断熱材の生産性を向上させる観点から50以上がより好ましく、断熱材の曲げ強度の観点から100以上がさらに好ましい。無機繊維のアスペクト比は、FE-SEMにより測定した無機繊維1000本の太さ及び長さの平均値から求めることができる。無機繊維は粉体中で単分散して混合されていることが好ましいが、無機繊維が互いに絡まった状態や、複数の無機繊維が同一方向で揃った束の状態で混合されていてもかまわない。また、単分散状態において、無機繊維の向きが同一方向で揃った状態であってもかまわないが、熱伝導率を小さくする観点から、無機繊維は、伝熱方向に対して垂直方向に配向していることが好ましい。無機繊維を伝熱方向に対して垂直に配向させる方法は特に限定されないが、例えば、外被材や施工箇所に粉体状の断熱材を充填する場合、充填箇所へ高所から粉体状の断熱材を落下させて充填することにより、無機繊維が伝熱方向に対して垂直に配向しやすい傾向がある。加圧成形した断熱材の場合、例えば伝熱方向と同じ方向で加圧することにより、伝熱方向に配向していた無機繊維を、伝熱方向に対して垂直方向へ配向させやすい。
 無機繊維の例を示すと、ガラス長繊維(フィラメント)(SiO-Al-B-CaO)、グラスファイバー、グラスウール(SiO-Al-CaO-NaO)、耐アルカリガラス繊維(SiO-ZrO-CaO-NaO)、ロックウール(バサルトウール)(SiO-Al-Fe-MgO-CaO)、スラグウール(SiO-Al-MgO-CaO)、セラミックファイバー(ムライト繊維)(Al-SiO)、シリカ繊維(SiO)、アルミナ繊維(Al-SiO)、チタン酸カリウム繊維、アルミナウィスカー、炭化ケイ素ウィスカー、窒化ケイ素ウィスカー、炭酸カルシウムウィスカー、塩基性硫酸マグネシウムウィスカー、硫酸カルシウムウィスカー(セッコウ繊維)、酸化亜鉛ウィスカー、ジルコニア繊維、炭素繊維、黒鉛ウィスカー、フォスフェート繊維、AES(Alkaline Earth Silicate)ファイバー(SiO-CaO-MgO)、天然鉱物のウォラストナイト、セピオライト、アタパルジャイト、ブルーサイトを挙げることができる。
 無機繊維の中でも、特に人体にとって安全である生体溶解性のAESファイバー(Alkaline Earth Silicate Fiber)を用いることが好ましい。AESファイバーとしては、例えば、SiO-CaO-MgO系の無機質のガラス(無機高分子)が挙げられる。
 無機繊維の平均太さは飛散を防ぐ観点で1μm以上が好ましい。断熱材の場合は固体伝導による伝熱を押さえる観点で20μm以下であることが好ましい。無機繊維の平均太さは、FE-SEMにより無機繊維1000本の太さを求めて、これを平均して求めることができる。
 断熱材中の無機繊維の含有率は、加圧成形した断熱材からの粉体の脱離抑制の観点で粉体全体の質量に対して0質量%超が好ましく、熱伝導率が0.05W/m・K以下とする観点で20質量%以下であることが好ましい。
 断熱材が赤外線不透明化粒子を含有する場合、赤外線不透明化粒子との混合の容易さの観点から、無機繊維の含有率は0.5質量%以上18質量%以下であることがより好ましく、疎充填かさ密度が小さくなる観点から0.5質量%以上16質量%以下であることがさらに好ましい。
 無機繊維の含有率は、例えば、無機繊維を粉体から分級することにより、求めることができる。
[1-3]赤外線不透明化粒子
 断熱材は、赤外線不透明化粒子を含有することが、高い温度での断熱性能を要する場合は、好ましい。赤外線不透明化粒子とは、赤外線を反射、散乱又は吸収する材料からなる粒子を指す。断熱材に赤外線不透明化粒子が混合されていると、輻射による伝熱が抑制されるため、特に200℃以上の高い温度領域での断熱性能が高い。
 赤外線不透明化粒子の例として、酸化ジルコニウム、ケイ酸ジルコニウム、二酸化チタン、鉄チタン酸化物、酸化鉄、酸化銅、炭化ケイ素、金鉱石、二酸化クロム、二酸化マンガン、グラファイトなどの炭素質物質、炭素繊維、スピネル顔料、アルミニウムの粒子、ステンレス鋼の粒子、青銅の粒子、銅/亜鉛合金の粒子、銅/クロム合金の粒子を挙げることができる。従来、赤外線不透明物質として知られる上記の金属粒子又は非金属粒子を、単独で用いてもよく、2種類以上を併用してもよい。
 赤外線不透明化粒子としては、特に、酸化ジルコニウム、ケイ酸ジルコニウム、二酸化チタン又は炭化ケイ素が好ましい。赤外線不透明化粒子の組成はFE-SEM EDXにより求められる。
 赤外線不透明化粒子の平均粒子径は、200℃以上での断熱性能の観点で0.5μm以上が好ましく、固体伝導の抑制による200℃未満での断熱性能の観点で30μm以下であることが好ましい。なお、赤外線不透明化粒子の平均粒子径は、シリカ粒子やアルミナ粒子と同じ方法により求められる。無機繊維やシリカ粒子、アルミナ粒子のサイズにもよるが、シリカ粒子及び/又はアルミナ粒子が5nm~100μmの場合、シリカ粒子及び/又はアルミナ粒子との混合の容易さの観点で赤外線不透明化粒子の平均粒子径は、0.5μm以上10μm以下であることがより好ましく、0.5μm以上5μm以下であることがさらに好ましい。
 発明者らは、赤外線不透明化粒子の赤外線反射、散乱又は吸収効率は、断熱材中に含まれる赤外線不透明化粒子の体積割合に依存する傾向があることを見出した。断熱材中の赤外線不透明化粒子の含有率は、断熱材全体の体積を基準として0体積%超5体積%以下であることが好ましい。赤外線不透明化粒子の含有率が5体積%より大きいと、固体伝導による伝熱が大きいため、200℃未満での断熱性能が低い傾向がある。200℃以上での断熱性能を向上させるためには、赤外線不透明化粒子の含有率は、0.02体積%以上5質量%以下がより好ましく、0.03体積%以上4体積%以下がさらに好ましい。前記Rが60質量%以上90質量%以下の範囲で含有する粉体と、赤外線不透明化粒子とを混合した混合粉体は、吸湿しにくい傾向があり、秤量時にバラつきが少ないという効果がある。また、シリカ粒子及び/又はアルミナ粒子と赤外線不透明化粒子の付着性が強くなる傾向があり、攪拌機や混合機の攪拌槽、混合槽内壁に付着しにくく各々の粒子が高分散した混合状態を得やすい、混合した粉体の回収ロスが少ないという効果がある。粉体全体の質量に対する赤外線不透明化粒子の割合を、0.1質量%以上39.5質量%以下にすると、赤外線不透明化粒子の含有率を0体積%超5体積%以下にしやすい傾向があるのでの好ましく、0.5質量%以上35質量%以下がより好ましく、1質量%以上30質量%以下がさらに好ましい。
 赤外線不透明化粒子の含有率は、例えば、赤外線不透明化粒子の組成をFE-SEM EDXで測定し、赤外線不透明化粒子のみが含有する元素を蛍光X線分析法により定量することで、求めることができる。
[1-4]熱伝導率
 本実施態様の断熱材は、30℃における熱伝導率が0.05W/m・K以下である。断熱性能の観点から、熱伝導率は0.0479W/m・K以下でもよく、0.045W/m・K以下が好ましく、0.040W/m・K以下がより好ましく、0.037W/m・K以下がさらに好ましく、0.0237W/m・K以下が特に好ましい。赤外線不透明化粒子を含有する断熱材は、特に200℃以上の高い温度領域での断熱性能を要する場合に、好ましい。粉体が赤外線不透明化粒子を含有する場合、800℃における熱伝導率は0.2W/m・K以下が好ましく、0.19W/m・K以下がより好ましく、0.18W/m・K以下がさらに好ましい。熱伝導率の測定方法は、後述する。
 複数の種類のシリカ粒子及び/又はアルミナ粒子、例えば小粒子と大粒子を混合して断熱材を調製する際は、Rを60質量%以上90質量%以下の範囲で含有するように断熱材を調製した上で熱伝導率を測定することが好ましい。熱伝導率が0.05W/m・K超である場合は、前記含有率を維持する範囲で混合率を変えるのが好ましい。無機繊維、赤外線不透明化粒子を使用する場合も同様に混合量を決定することができる。無機繊維、赤外線不透明化粒子の混合率は、過剰であると断熱性が低下する場合があるため、熱伝導率を測定し、確認しながら適宜調製することが好ましい。例えば、シリカに平均繊維径が12μm、平均長さが5mmの無機繊維を混合する場合、無機繊維の混合率は18質量%以下であることが好ましい。例えば、シリカに平均粒子径が2μmの赤外線不透明化粒子を混合する場合、赤外線不透明化粒子の混合率は23質量%以下であることが好ましい。また、熱伝導率の小さい材料からなる無機繊維や赤外線不透明化粒子を選択すると、熱伝導率が0.05W/m・K以下の混合粉体を調製しやすい傾向がある。
[1-5]BET比表面積
 本発明の断熱材は、BET比表面積が5m/g以上150m/g以下である。この範囲にBET比表面積を有する断熱材は、断熱材の保管時や金型への供給工程における凝集、成形時や充填時における飛散が抑制され、熱伝導率が小さい傾向があるので好ましい。BET比表面積の測定方法は、後述する。
 BET比表面積が5m/g以上150m/g以下であって、さらにシリカ及び/又はアルミナを含み、粒子径Dが5nm以上30nm以下である小粒子を含有すると、成形性に優れ、粉体の飛散が少なく、且つ断熱性能が優れる傾向がある。この理由は定かではないが、次のように推定される。粒子径Dが5nm以上30nm以下である小粒子は従来凝集しやすい一方で、疎充填かさ密度が小さく、著しく飛散しやすい。これに対し、前記小粒子を含有し、さらにBET比表面積が5m/g以上150m/g以下に調整する方法として、小粒子と前記大粒子とを混合する方法があるが、このようにして断熱材を調整すると、小粒子の凝集しやすい性質が大粒子を適度な強さで付着させ、その結果粉体の飛散が抑制されると推測される。また、小粒子は保管時に凝集しやすい傾向があるが、この原因の一つとして、小粒子からなる粉体状の断熱材のBET比表面積が大きいため空気中の水分を吸収しやすいことが推測される。これに対し、BET比表面積を5m/g以上150m/g以下に調整することで空気中の水分の吸収が抑制され、粉体状の断熱材が凝集しにくくなると推定される。BET比表面積は5m/g以上130m/g以下が好ましく、10m/g以上115m/g以下がより好ましく、15m/g以上100m/g以下がさらに好ましく、20m/g以上91m/g以下が特に好ましい。
[1-6]アルカリ金属元素、アルカリ土類金属元素、Ge、P、Feの含有率
 断熱材の飛散を抑制する観点から、本実施形態の粉体は、アルカリ金属元素、アルカリ土類金属元素、ゲルマニウムからなる群より選択される少なくとも1種の元素を含むことが好ましい。アルカリ金属元素及びアルカリ土類金属元素からなる群より選択される少なくとも1種の元素(以下、本明細書において「塩基性元素」という場合がある)の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属がそれぞれ挙げられる。塩基性元素は一種のみ含まれてもよく、2種類以上が含まれてもよい。その種類は特に限定されないが、粒子同士の付着性改善や、加熱処理を施す場合には、比較的低温の熱処理で硬化させることができる点で、ナトリウム、カリウム、マグネシウム、カルシウムが好ましい。
 断熱材が塩基性元素を含有する場合、塩基性元素の含有率は、断熱材の全質量を基準として0.005質量%以上5質量%以下が好ましく、Geを含有する場合、Geの含有率は10質量ppm以上1000質量ppm以下、Pの含有率は0.002質量%以上6質量%以下が好ましい。
 Feの含有率は0.005質量%以上6質量%以下であることが好ましい。また、Pの含有率は0.002質量%以上6質量%以下であることが好ましい。また、塩基性元素の含有率が0.005質量%以上3質量%以下、Geの含有率が20質量ppm以上900質量ppm以下、Pの含有率が0.002質量%以上5.5質量%以下、Feの含有率が0.005質量%以上3質量%以下であることが粒子同士の付着性や流動性を改善し、凝集を抑制する観点でより好ましい。さらに、塩基性元素の含有率が0.005質量%以上2質量%以下、Geの含有率が20質量ppm以上800質量ppm以下、Pの含有率が0.002質量%以上5質量%以下、Feの含有率が0.005質量%以上2質量%以下であることがさらに好ましい。断熱材における塩基性元素、Ge、P、Feの含有率は、XRF(蛍光X線分析)により定量することができる。
 アルカリ金属元素、アルカリ土類金属元素、Geは、大粒子に含有されていると、断熱材の飛散や凝集の抑制、加熱処理を施す場合の生産性向上といった効果がより顕著に現れる傾向があるため、好ましい。大粒子に含まれる塩基性元素やGe、P、Feの含有率は、例えば上述した方法で小粒子と大粒子を分離し、蛍光X線分析法で測定することにより求めることができる。
[1-7]圧縮強度
 本実施形態の成形した断熱材は、圧縮時に崩壊や変形が生じにくく、崩壊することなく切断等の形状加工が可能であり、且つ断熱性を有する観点から、圧縮率が0~5%の範囲における最大荷重が0.7MPa以上であることが好ましい。2.0MPa以上であることがより好ましく、3.0MPa以上であることがさらに好ましい。圧縮率が0~5%の範囲における最大荷重の上限は特に限定されないが、断熱性能の観点から30MPa以下が妥当である。
 圧縮率は、圧縮強度測定時のサンプル厚み、すなわちサンプルの圧縮方向長さに対するストローク(押し込み距離)から算出することが可能である。例えば、成形体を1cm×1cm×1cmの立方体形状にしたサンプルを用いて圧縮強度を測定する場合、ストロークが0.5mmとなる状態を圧縮率が5%であると定義する。圧縮率は、下記数式(1)で算出される。
  圧縮率=100×ストローク(押し込み距離)/サンプルの圧縮方向長さ   (1)
 圧縮強度測定時に描かれる荷重-圧縮率曲線のパターンは、特に限定されない。すなわち、上記圧縮率が0~5%の範囲において、サンプルである成形体が崩壊し明確な破壊点を示しても、崩壊しなくてもかまわない。圧縮率が0~5%の範囲においてサンプルである成形体が崩壊し破壊点を示す場合、その成形体の最大荷重は破壊点における荷重と定義する。その破壊点における荷重が0.7MPa以上であることが好ましく、2.0MPa以上であることがより好ましく、3.0MPa以上であることがさらに好ましい。サンプルが崩壊しない場合は、圧縮率が0~5%の範囲で示す最大荷重の値を使用して評価する。
 圧縮強度は、後述する方法で測定することが可能である。
[1-8]積算細孔容積
 本実施形態の成形した断熱材においては、細孔径が0.05μm以上0.5μm以下である細孔の積算細孔容積Vの割合Rが、細孔径が0.003μm以上150μm以下である細孔の積算細孔容積V0.003に対して70%以上であることが好ましい。Rは、(V/V0.003)×100と表してもよい。Rが大きいほど細孔分布が狭く、細孔径が0.05μm以上0.5μm以下の範囲で揃っていることを意味する。Rが70%未満である断熱材の細孔分布としては、成形体に(1)細孔径が0.05μm未満の細孔が多数存在する場合、(2)細孔径が0.5μm超の細孔が多数存在する場合、(3)細孔径が0.05μm未満と0.5μm超の細孔がそれぞれ存在し、0.05μm以上0.5μm以下の細孔が少ない場合が想定される。(1)の場合、断熱材が水(液体)で濡れた際に粉体状に崩壊しやすい傾向があり、(2)の場合、断熱性能が低い傾向があり、(3)の場合はそれぞれの細孔径の割合に応じて(1)、(2)の傾向が現れる。V0.05が0.5mL/g未満であると断熱性能が低い傾向があり、2mL/g超であると水(液体)で濡れた際に粉体状に崩壊しやすい傾向がある。なお、このときV0.003は0.5mL/g以上2.5mL/g以下であることが好ましい。この理由は定かではないが、(1)の場合、水に濡れると毛管現象によって収縮力が生じ、空隙を形成している粒子が移動する等して断熱材に歪みが生じ、粉体状に崩壊しやすくなると推定される。(2)の場合、細孔径が空気分子の平均自由行程である約100nmよりも大であるため、空気による対流や伝導による伝熱が抑制され難く、断熱性能が低下すると推定される。断熱材が水(液体)に濡れた際に粉体状に崩壊するのを抑制する観点から、Rが、断熱材の全細孔容積に対して75%以上がより好ましく、80%以上がさらに好ましい。なお、Rの上限は100%である。
 細孔径が0.05μm以上150μm以下である細孔の積算細孔容積V0.05は0.5mL/g以上2mL/g以下であることが好ましい。積算細孔容積は、後述する水銀圧入法により測定した値により定義される。V0.05が上記範囲であると、断熱材が適度な空隙を有し、優れた断熱性能を奏すると推定している。V0.05は、0.5mL/g以上1.7mL/g以下がより好ましく、0.5mL/g以上1.5mL/g以下がさらに好ましい。なお、V0.003は、0.5mL/g以上2.5mL/g以下が好ましく、0.5mL/g以上2.2mL/g以下がより好ましく、0.6mL/g以上2mL/g以下がさらに好ましい。
[2]断熱材の製造方法
 本実施形態の断熱材の製造方法は、シリカ及び/又はアルミナを含み、平均粒子径が5nm以上30nm以下である小粒子と、シリカ及び/又はアルミナを含み、平均粒子径が50nm以上100μm以下である大粒子と、を、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下で混合する工程を有する。
 また、断熱材の製造方法としては、シリカ及び/又はアルミナを含み、平均粒子径が5nm以上30nm以下である小粒子と、シリカ及び/又はアルミナと、アルカリ金属元素、アルカリ土類金属元素及びゲルマニウムからなる群より選択される少なくとも1種の元素とを含み、平均粒子径が50nm以上100μm以下である大粒子と、を、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下で混合し、無機混合物を得る工程を有することが好ましい。
 上記断熱材の製造方法において、小粒子の平均粒子径は、熱伝導率の観点から、5nm以上25nm以下であると好ましく、5nm以上20nm以下であるとより好ましく、5nm以上18nm以下であるとさらに好ましく、7nm以上14nm以下であると特に好ましい。
 断熱材の原料として、平均粒子径が既知の小粒子、大粒子を使用することは簡便であり好ましい様態である。市販の小粒子、大粒子で平均粒子径が特定されている場合、その値を各粒子の平均粒子径と捉えることができる。市販品における粒子径の測定方法には種々のものがあり、測定法の違いによって求められる径に多少のばらつきがある可能性もあるが、通常の測定法で平均粒子径が5nm以上30nm以下であれば、粒子径5nm以上30nm以下の小粒子を複数含有することは確実であるし、大粒子の平均粒子径についても、断熱材の特性に影響するほどの差ではないので問題ない。
 原料の平均粒子径が未知である場合、小粒子の平均粒子径は、粒子が球形であると仮定し、小粒子の比表面積を測定し、下記式
  d=6/ρs
(ただし、dは粒子の直径[m]、sは比表面積[m/g]、ρは密度[g/cm])
によって求めることができる。粒子が球形でない場合、この式から求められる平均粒子径が真の値から解離してしまうこともあり得るが、その場合であっても、平均粒子径が5nm以上30nm以下であれば、粒子径5nm以上30nm以下の小粒子を複数含有することは確実であるので、問題ない。比表面積s[m/g]は、吸着ガスとして窒素を用いて測定することができる(窒素吸着法)。比表面積はBET法を採用する。測定装置としては、例えばガス吸着量測定装置(オートソーブ3MP、ユアサ・アイオニクス社製を使用することができる。密度ρ[g/cm]は、ピクノメーター法により求められる真比重を指す。測定装置として、例えば自動湿式真密度測定器(オート トゥルーデンサーMAT-7000、株式会社セイシン企業製)を使用することができる。大粒子の平均粒子径も、小粒子と同様にして求めることができる。
 上記断熱材の製造方法において、大粒子の平均粒子径は、80nm以上100μm以下であってもよいが、50nm以上50μm以下であると、断熱材が無機繊維や赤外線不透明化粒子を含む場合にこれらとの均一な混合が容易であるため、好ましい。Dは、50nm以上10μm以下であると、粒子の付着力が大きく、粉体からの粒子の脱落が少ないため、より好ましく、50nm以上5μm以下がさらに好ましい。
 上記断熱材の製造方法において、大粒子の質量の割合Rは、断熱性能の観点から、60質量%以上85質量%以下が好ましく、65質量%以上85質量%以下がより好ましく、65質量%以上75質量%以下がさらに好ましい。
 以下、断熱材の製造方法に用いる原料及び各工程を説明する。
[2-1]シリカ粒子、アルミナ粒子
 シリカ粒子、アルミナ粒子は、それぞれシリカ成分、アルミナ成分を有する粒子であって、小粒子と大粒子の混合割合、熱伝導率を調整したものとすることができる。例えば、シリカ粒子は、酸性又はアルカリ性の条件下での湿式法により、ケイ酸イオンを縮合して製造された粒子でもよい。シリカ粒子は、湿式法でアルコキシシランを加水分解・縮合したものでもよいし、湿式法で製造されたシリカ成分を焼成しものでもよいし、塩化物などケイ素の化合物を気相で燃焼して製造したものでもよい。シリカ粒子は、ケイ素金属やケイ素を含む原料を加熱して得られたケイ素ガスを酸化・燃焼して製造されたものでもよい。シリカ粒子は、ケイ石などを溶融して製造されたものでもよい。例えば、アルミナ粒子は、可溶性のアルミニウム塩の水溶液から水酸化アルミニウムを沈殿させて濾過し、それを強熱して得られたものでもよい。ギブス石又はベーマイトを原料として水酸化ナトリウムで処理し、アルミン酸ナトリウムを製造する原理に基づくバイヤー法で得られるものでもよいし、ギブス石、ベーマイト、ダイアスポア、粘土、ミョウバン石などを硫酸、硝酸などで処理をしてアルミニウム塩を純化し、アンモニアによる沈殿法または熱分解法で酸基を分離し、焼成して得られるものでもよい。
 シリカ粒子やアルミナ粒子は、それぞれシリカ以外、アルミナ以外の成分を含有してもよく、例として上記の製法において原料中に不純物として存在するものが挙げられる。シリカやアルミナ以外の成分を、シリカやアルミナの製造プロセス中に添加してもよい。
 公知のシリカの製法には以下のものがある。
<湿式法で合成されるシリカ>
ケイ酸ナトリウムを原料に酸性で作られるゲル法シリカ。
ケイ酸ナトリウムを原料にアルカリ性で作られる沈降法シリカ。
アルコキシシランの加水分解・縮合で合成されるシリカ。
<乾式法で合成されるシリカ>
ケイ素の塩化物を燃焼して作られるヒュームドシリカ。
金属を高温で気化、酸化させて得られるシリカ。
フェロシリコン製造時などに副生するシリカヒューム。
アーク法やプラズマ法で製造されるシリカ。
粉砕したシリカ粉末を火炎中で溶融・球状化する溶融シリカ。
 公知のアルミナの製法には以下のものがある。
酸法で得られるアルミナ。
バイヤー法(アルカリ法)で得られるアルミナ。
バイヤー法で作られた仮焼アルミナを造粒、乾燥、焼成して得られる焼結アルミナ。
原料を電気炉で溶融後結晶固化して得られる電融アルミナ。
バイヤー法で作られた仮焼アルミナを原料にする白色電融アルミナ。
ボーキサイトを主原料にする褐色電融アルミナ。
ヒュームドアルミナ。
金属を高温で気化、酸化させて得られるアルミナ。
 各製造方法によって得られるシリカのうち、ケイ酸ナトリウムを原料に酸性で作られるゲル法シリカ、ケイ酸ナトリウムを原料にアルカリ性で作られる沈降法シリカ、アルコキシシランの加水分解・縮合で合成されるシリカ、ケイ素の塩化物を燃焼して作られるヒュームドシリカ、ケイ素金属ガスを燃焼して作られるシリカ、アーク法やプラズマ法で製造されるシリカ、ヒュームドアルミナは、加圧成形時に成形欠陥が発生しやすい。さらに、飛散しやすく、凝集しやすい傾向がある。上述した方法で平均粒子径の異なるシリカを混合することで、成形欠陥や飛散、凝集を抑制することが可能であるので、他の製造方法で得られたシリカ粒子やアルミナ粒子も含め、複数のシリカ粒子やアルミナ粒子を混合することが好ましい。
 フェロシリコン製造時などに副生するシリカヒューム、粉砕したシリカ粉末を火炎中で溶融・球状化する溶融シリカ、バイヤー法で得られるアルミナ、焼結アルミナ、電融アルミナ(白色電融アルミナ、褐色電融アルミナ)は熱伝導率が0.05W/m・K超である。従って、この製造方法によって得られたシリカやアルミナのみをシリカ粒子、アルミナ粒子の原料とするのは、熱伝導率の点では好ましい態様ではないが、飛散が少なく、ハンドリングの面で優れている他、コストの面では有用な場合がある。他の製造方法で得られたシリカを混合することで、熱伝導率を0.05W/m・K以下に調整することは可能であるので、シリカヒューム、焼結アルミナ等を原料とする場合は、他の製造方法で得られたシリカ粒子やアルミナ粒子を混合することが好ましい。例えばケイ素の塩化物を燃焼して作られるヒュームドシリカ、ケイ素金属ガスを燃焼して作られるシリカ、ヒュームドアルミナを混合することで、シリカヒューム、焼結アルミナ等を含むシリカ粒子及び/又はアルミナ粒子の熱伝導率を低減することができる。
 上記のシリカやアルミナのうち、生産性やコストの観点からヒュームドシリカ、ケイ素金属ガスを燃焼して作られるシリカ、シリカヒューム、溶融シリカ、ヒュームドアルミナ、バイヤー法で得られるアルミナ、焼結アルミナを用いることがより好ましい。
 シリカ粒子として、天然のケイ酸塩鉱物を使用することが可能である。天然の鉱物としては、例えばカンラン石類、緑簾石類、石英、長石類、沸石類等が挙げられる。アルミナ粒子の例として、天然鉱物を使用することが可能である。アルミナの天然鉱物としては、ボーキサイト、ばん土頁岩、ムライト、シリマナイト、カイヤナイト、アンダルサイト、シャモットが挙げられる。ムライトは、合成ムライトである焼結ムライト、電融ムライトであってもよい。天然の鉱物に粉砕等の処理を施すことで粒子径が調整されて、粉体を構成するシリカ粒子及び/又はアルミナ粒子として使用することが可能である。
[2-2]アルカリ金属元素、アルカリ土類金属元素、Ge、P、Fe
 シリカやアルミナの製造プロセスや断熱材の製造プロセス中に、塩基性元素、Ge、P、Feを含む化合物としてそれぞれ添加してもよいが、十分な量の塩基性元素、Ge、P、Feを予め含有しているシリカ粒子及び/又はアルミナ粒子を断熱材の原料としてもよい。塩基性元素、Ge、P、Feを含む化合物としては、特に限定されないが、例えば塩基性元素、Ge、P、Feの酸化物、複合酸化物、水酸化物、窒化物、炭化物、炭酸塩、酢酸塩、硝酸塩、アンモニウム塩、難溶性の塩、及びアルコキシド等が挙げられる。これらは単独で添加してもよく、もしくはこれらの混合物を添加してもよい。塩基性元素、Ge、P、Feを不純物として含有するシリカを含む無機化合物粒子を粉体の原料とするのは、生産性、コスト、作業性の観点から、好ましい態様である。このようなシリカを含む無機化合物粒子は、例えば沈殿法で作られたシリカゲル由来の粒子やフェロシリコン製造時などに複製するシリカヒュームとして得ることができる。
 塩基性元素、Ge、P、Feをそれぞれ含む化合物を添加する方法は、特に限定されない。例えば、上記湿式法や乾式法で得られたシリカ、酸法やアルカリ法で得られたアルミナ、焼結アルミナ、電融アルミナに添加してもよいし、シリカやアルミナの上記各製造工程において添加してもよい。塩基性元素、Ge、P、Feをそれぞれ含む化合物は、水溶性であっても水に不溶であってもよい。塩基性元素、Ge、P、Feをそれぞれ含む化合物の水溶液として添加し、必要に応じて乾燥させてもよいし、塩基性元素、Ge、P、Feをそれぞれ含む化合物を固形物もしくは液状物の状態で添加してもよい。塩基性元素、Ge、P、Feをそれぞれ含む化合物は、予め所定の粒子径まで粉砕しておいてもよく、また、予備的に粗粉砕しておいてもよい。
 シリカ粒子やアルミナ粒子が過剰な量の塩基性元素、Ge、P、Feを含んでいる場合は、シリカの製造プロセスや粉体の製造プロセス中に何らかの処理を施して、前記元素の含有量を所定範囲に調整してもよい。過剰な量の塩基性元素、Ge、P、Feを所定範囲に調整する方法は特に限定されない。例えば、塩基性元素の含有量の調整方法としては、酸性物質または他の元素による、置換、抽出、除去方法等が挙げられ、シリカを含む無機化合物粒子を硝酸や王水等で処理した後、乾燥し、粉体の原料として用いることが可能である。過剰な量の塩基性元素、Ge、P、Feの調整は、シリカ及び/又はアルミナを含む無機化合物粒子を予め所望の粒子径まで粉砕した後に行ってもよいし、塩基性元素、Ge、P、Feを所定範囲に調整した後に、シリカ粒子を粉砕してもかまわない。
[2-3]混合方法
 シリカ粒子及び/又はアルミナ粒子、赤外線不透明化粒子及び無機繊維は、公知の粉体混合機、例えば、改訂六版 化学工学便覧(丸善)に掲載されているものを使用して混合することができる。この時、シリカを含む無機化合物粒子を2種類以上混合したり、塩基性元素、Ge、P、Feをそれぞれ含む化合物やその水溶液を混合したりすることも可能である。公知の粉体混合機としては、容器回転型(容器自体が回転、振動、揺動する)として水平円筒型、V型(攪拌羽根が付いていてもよい)、ダブルコーン型、立方体型及び揺動回転型、機械撹拌型(容器は固定され、羽根などで撹拌する)として、単軸リボン型、複軸パドル型、回転鋤型、二軸遊星攪拌型、円錐スクリュー型、高速撹拌型、回転円盤型、ローラー付き回転容器型、撹拌付き回転容器型、高速楕円ローター型、流動撹拌型(空気、ガスによって撹拌する)として、気流撹拌型、重力による無撹拌型が挙げられる。これらの混合機を組み合わせて使用してもよい。
 シリカ粒子及び/又はアルミナ粒子、赤外線不透明化粒子及び無機繊維の混合は、粉砕機として公知のもの、例えば、改訂六版 化学工学便覧(丸善)に掲載されているものを使用して、粒子を粉砕したり、無機繊維を裁断したり、粒子や無機繊維の分散性を向上させながら行ってもよい。この時、シリカ粒子及び/又はアルミナ粒子を2種類以上粉砕、分散させたり、塩基性元素、Ge、P、Feをそれぞれ含む化合物やその水溶液を粉砕、分散させたりすることも可能である。公知の粉砕機としては、ロールミル(高圧圧縮ロールミル、ロール回転ミル)、スタンプミル、エッジランナー(フレットミル、チリアンミル)、切断・せん断ミル(カッターミルなど)、ロッドミル、自生粉砕機(エロフォールミル、カスケードミルなど)、竪型ローラーミル(リングローラーミル、ローラーレスミル、ボールレースミル)、高速回転ミル(ハンマーミル、ケージミル、ディスインテグレーター、スクリーンミル、ディスクピンミル)、分級機内蔵型高速回転ミル(固定衝撃板型ミル、ターボ型ミル、遠心分級型ミル、アニュラー型ミル)、容器駆動媒体ミル(転動ボールミル(ポットミル、チューブミル、コニカルミル)、振動ボールミル(円形振動ミル、旋動振動ミル、遠心ミル)、遊星ミル、遠心流動化ミル)、媒体撹拌式ミル(塔式粉砕機、撹拌槽式ミル、横型流通槽式ミル、竪型流通槽式ミル、アニュラーミル)、気流式粉砕機(気流吸込型、ノズル内通過型、衝突型、流動層ジェット吹込型)、圧密せん断ミル(高速遠心ローラーミル、インナーピース式)、乳鉢、石臼などが挙げられる。これらの粉砕機を組み合わせて使用してもよい。
 これらの混合機と粉砕機のうち、撹拌羽根を有する粉体混合機、高速回転ミル、分級機内蔵型高速回転ミル、容器駆動媒体ミル、圧密せん断ミルが、粒子や無機繊維の分散性が向上するため、好ましい。粒子や無機繊維の分散性を向上させるには、撹拌羽根、回転板、ハンマープレート、ブレード、ピン等の先端の周速を100km/h以上にするのが好ましく、200km/h以上がより好ましく、300km/h以上がさらに好ましい。
 複数の種類のシリカ粒子及び/又はアルミナ粒子を混合する場合、かさ比重が小さい順にシリカ粒子及び/又はアルミナ粒子を攪拌機もしくは粉砕機に投入することが好ましい。無機繊維や赤外線不透明化粒子を含む場合は、シリカ粒子及び/又はアルミナ粒子を混合した後に赤外線不透明化粒子を添加して混合し、さらにその後無機繊維を添加して混合するのが好ましい。
[2-4]成形方法
 本実施形態における無機混合物を成形する成形工程は、(a)成形型により無機混合物を加圧しながら400℃以上に加熱する工程であってもよく、又は、(b)加圧により無機混合物を成形した後、400℃以上の温度で加熱処理を施す工程であってもよい。本成形工程において、断熱材のかさ密度が0.25g/cm以上2.0g/cm以下になるように成形圧力を設定することが好ましい。
 また、無機混合物を成形する成形工程と、成形工程により得られた成形体の一部を切削する切削工程と、を備え、成形工程は、(c)成形した断熱材のかさ密度が0.25g/cm以上2.0g/cm以下になるように成形型により無機混合物を加圧しながら加熱する工程であってもよく、又は、(d)成形型で加圧することにより無機混合物を成形した後、400℃以上の温度で加熱処理を施す工程であってもよい。
 粉体状の断熱材の場合、成形等の工程を経ることなく、粉体状の断熱材を使用する箇所に充填しただけでそのまま用いてもよいし、粉体状の断熱材を加圧成形したものを断熱材として用いてもよい。
 粉体状の断熱材を加圧成形して成形体を製造する場合、金型プレス成形法(ラム式加圧成形法)、ラバープレス法(静水圧成形法)、押出成形法など、従来から知られるセラミックス加圧成形法によって成形することができる。生産性の観点から、金型プレス成形法が好ましい。
 金型プレス成形法やラバープレス法で粉体状の断熱材を型に充填するときには、粉体状の断熱材に振動を与えるなどして、均一に充填することが、成形体の厚みが均一となるため、好ましい。型内を減圧・脱気しながら粉体状の断熱材を型に充填すると、短時間で充填できるため、生産性の観点から好ましい。
 得られる成形体のかさ密度は、運搬時の負担を軽減する観点から0.25g/cm以上2.0g/cm以下になるように設定するのが好ましい。成形の条件を加圧圧力で制御しようとすると、使用する粉体状の断熱材のすべり性、粉体の粒子間や細孔への空気の取り込み量等によって、加圧した状態で保持する時間の経過に伴って圧力値が変化してしまうため、生産管理が困難になる傾向がある。これに対し、かさ密度を制御する方法は、時間の制御を要することなく得られる成形体の荷重を目標値にし易い点で好ましい。成形した粉体状の断熱材のかさ密度は、0.25g/cm以上1.7g/cm以下がより好ましく、0.25g/cm以上1.5g/cm以下がさらに好ましい。また、成形体のかさ密度が0.25g/cm以上2.0g/cm以下になる成形圧力としては例えば0.01MPa以上50MPa以下の圧力であり、0.25g/cm以上1.7g/cm以下になる成形圧力としては例えば0.01MPa以上40MPa以下の圧力であり、0.25g/cm以上1.5g/cm以下になる成形圧力としては例えば0.01MPa以上30MPa以下の圧力である。なお、成形した断熱材のかさ密度は、断熱材を実際に使用する形態において断熱材の寸法及び質量を測定して算出する。例えば、断熱材が層構造を有する場合、その特定の層のみのかさ密度を測定するのではなく、実際に使用する形態、すなわち層構造の状態で寸法及び質量を測定する。切削等の加工によってかさ密度が変化しないのであれば、断熱材を測定しやすい大きさにし、かさ密度を測定することも可能である。
 得られる断熱材のかさ密度が所定の大きさになるように、断熱材を製造する方法の一例を説明すると、まず断熱材の体積及びかさ密度から必要な無機混合物の重量を求める。次いで、秤量した無機混合物を成形型に充填し、所定の厚みになるように加圧して成形する。具体的には、縦30cm、横30cm、厚み20mmでかさ密度が0.5g/cmである成形体を製造する場合、目的とするかさ密度に製造する成形体の体積をかけることで、断熱材の製造に必要な粉体の重量を求めることが可能である。すなわち、上述した断熱材の例では、0.5[g/cm]×30[cm]×30[cm]×2[cm]=900[g]となり、必要な粉体は900gとなる。
 一般化すると、体積αcmで、かさ密度がβg/cm(ただし、βは粉体の疎充填かさ密度より大きい)の成形体を製造する場合、αβgだけ、粉体を秤量し、粉体を圧縮することによって、体積αになるように成形する。
 粉体状の断熱材や、加圧成形中又は加圧成形後の断熱材を、粉体状もしくは成形した断熱材の耐熱性が十分である温度や時間の条件の範囲内で、加熱乾燥し、粉体状もしくは成形した断熱材の吸着水を除去した後実用に供すると、熱伝導率が低くなるため好ましい。さらに、加熱処理を施してもよい。
 成形は、加圧成形のみでもよいが、加圧成形したものを加熱処理するのが好ましい。粉体を加圧成形したものに加熱処理を施すと、圧縮強度が向上し、荷重が大きい用途において特に好適に使用することができる。加熱処理工程の生産性を向上させる観点から、粉体にはアルカリ金属元素、アルカリ土類金属元素、Ge、P、Feが含まれることが好ましく、特に大粒子に含まれることが好ましい。
 寸法安定性の観点から、加熱処理温度は、その粉体状もしくは成形した断熱材の使用最高温度より高温が好ましい。粉体状もしくは成形した断熱材の用途により様々であるが、具体的には400℃以上1400℃以下が好ましく、より好ましくは500℃以上1300℃以下、更に好ましくは600℃以上1200℃以下である。
 粉体状もしくは成形した断熱材の加熱処理の雰囲気は、空気中(又は大気中)、酸化性雰囲気中(酸素、オゾン、窒素酸化物、二酸化炭素、過酸化水素、次亜塩素酸、無機・有機過酸化物等)、及び不活性ガス雰囲気中(ヘリウム、アルゴン、窒素等)が挙げられる。雰囲気中に水蒸気を添加してもよい。加熱処理時間は、加熱処理温度及び断熱材の量に応じて適宜選択すればよい。加熱処理は、上記粉体状の断熱材を使用する箇所に充填した後に施してもよいし、粉体を加圧成形した断熱材ものに施してもよい。
[3]外被材を備える断熱材被包体
 断熱材は、粉体状及び/又は粉体からなる成形した断熱材と、それを収容する外被材とを備えることが好ましい。外被材を備える断熱材被包体は、粉体状の断熱材や成形した断熱材と比較して取扱が容易で、施工もしやすいという利点を有する。なお、外被材に収納された断熱材をコア材という場合がある。
[3-1]外被材
 外被材は、コア材である粉体状及び/又は成形した断熱材を収容可能な限り、特に限定されないが、例として、ガラスクロス、アルミナ繊維クロス、シリカクロス等の無機繊維織物、無機繊維編物、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ナイロンフィルム、ポリエチレンテレフタレートフィルム、フッ素系樹脂フィルム等の樹脂フィルム、プラスチック-金属フィルム、アルミニウム箔、ステンレス箔、銅箔等の金属箔、セラミックペーパー、無機繊維不織布、有機繊維不織布、ガラス繊維紙、炭素繊維紙、ロックウール紙、無機充填紙、有機繊維紙、セラミックコーティング、フッ素樹脂コーティング、シロキサン樹脂コーティング等の樹脂コーティング等を挙げることができる。外被材の熱容量を小さくする観点から、外被材の厚みは薄い方が好ましいが、使用状況や必要な強度等に応じて適宜選択することが可能である。外被材が、コア材を使用する温度で安定なものからなる場合、使用時においても、外被材がコア材である粉体状及び/又は成形した断熱材を収容した状態である。高温で使用される被包体の場合は、使用後のコア材の取扱いがし易い観点で、耐熱性の高い外被材は好ましいが、本明細書中、「外被材」はコア材の使用時にコア材を収容しているものの他、コア材の運搬や施工の工程でコア材を収容しているものを包含する。つまり、外被材は運搬時や施工時にのみコア材を保護し、使用時には溶融及び/又は揮発してしまうものを包含するので、外被材そのものや外被材に含まれる有機成分は、コア材の使用温度で溶融や消失をしてもよい。
 外被材は、被覆工程が容易である観点から、ガラスクロス、アルミナ繊維クロス、シリカクロス等の無機繊維織物、無機繊維編物、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ナイロンフィルム、ポリエチレンテレフタレートフィルム、フッ素系樹脂フィルム等の樹脂フィルム、プラスチック-金属フィルム、アルミニウム箔、ステンレス箔、銅箔等の金属箔、セラミックペーパー、無機繊維不織布、有機繊維不織布、ガラス繊維紙、炭素繊維紙、ロックウール紙、無機充填紙、有機繊維紙のようなシート形状が好ましい。
 被包体が高温で使用される場合、外被材は、熱的な安定性の観点から、ガラスクロス、アルミナ繊維クロス、シリカクロス等の無機繊維織物、無機繊維編物、セラミックペーパー、無機繊維不織布がより好ましい。外被材は、強度の観点から無機繊維織物がさらに好ましい。
[3-2]外被材で被覆する方法
 粉体状の断熱材は、シリカ粒子及び/又はアルミナ粒子を含み、使用状況に応じて大粒子、赤外線不透明化粒子や無機繊維を添加し形成した粉体をコア材として、袋状やチューブ状に加工した外被材に充填したものでもよいし、この粉体を加圧成形してコア材とし、外被材で被覆したものでもよい。粉体状の断熱材をコア材とする場合、外被材が形成する容積に対する粉体の充填率は、粉体状の断熱材を使用する対象物に応じて適宜設定することが可能である。成形した断熱材をコア材とする場合は、後述するように、粉体状の断熱材と外被材を共に加圧成形してもよいし、粉体状の断熱材を加圧成形した後に外被材で被覆することも可能である。
 コア材を外被材で被覆する方法は特に限定されず、コア材の調製や成形と外被材での被覆を同時に実施してもよいし、コア材を調製又は成形後に外被材で被覆してもよい。
 外被材が無機繊維織物、樹脂フィルム、プラスチック-金属フィルム、金属箔、セラミックペーパー、無機繊維不織布、有機繊維不織布、ガラス繊維紙、炭素繊維紙、ロックウール紙、無機充填紙、有機繊維紙等のシート状の形態である場合、例えば無機繊維糸や樹脂繊維糸等での縫合、外被材の接着固定、縫合と接着の両方で被覆することが可能である。
 外被材が樹脂フィルム、プラスチック-金属フィルム、金属箔等の場合は、被覆工程の容易さの観点から、真空パックやシュリンクパックが好ましい。外被材がセラミックコーティング、樹脂コーティング等の場合は、コア材に刷毛やスプレーで塗布することにより、コア材を外被材で被覆することが可能である。
 加圧成形したコア材と外被材から構成される断熱材に線状のくぼみを設け、断熱材に柔軟性を付与することも可能である。線の形態は、断熱材の使用状況に応じて直線状、曲線状、破線状等を選ぶことができ、これらのうち2種類以上を組み合わせてもよい。線の太さ、くぼみの深さは断熱材の厚み、強度、使用状況に応じて決定される。
 外被材は、コア材の表面全体を被覆していてもよいし、コア材を部分的に被覆していてもよい。
[4]用途
 本実施形態のシリカ粒子及び/又はアルミナ粒子を含む粉体状の断熱材、成形した断熱材及び外被材を備える断熱材は、断熱材の他、吸音材、防音材、遮音材、反響防止材、消音材、研磨剤、触媒担体、吸着剤、芳香剤や殺菌剤などの薬剤を吸着する担体、脱臭剤、消臭剤、調湿材、充填剤、顔料等に好適に用いることもできる。
[5]パラメータの測定
断熱材の熱伝導率、BET比表面積、疎充填かさ密度の測定、アルカリ金属元素等の含有率、加圧成形時に必要とされる成形型の深さ評価、スプリングバックの測定、圧縮強度の測定、積算細孔容積の測定は、次の方法により実施する。
[熱伝導率の測定]
 縦30cm、横30cm、厚み5cmの発泡スチロールの中心部を縦24cm、横24cmの正方形状にくりぬき、発泡スチロールの枠を形成する。枠の一方に縦30cm、横30cmのアルミ箔を貼り付けて凹部を形成し、試料台とする。なお、アルミ箔で覆った面を試料台の底面とし、発泡スチロールの厚み方向に対するもう一方の面を天井面とする。粉体状の断熱材をタップや加圧をせずに凹部へ充填し、すりきりにした後、天井面に縦30cm、横30cmのアルミ箔をのせたものを測定試料とする。測定試料を用いて、30℃での熱伝導率を、ヒートフローメーター HFM 436 Lambda(商品名、NETZSCH社製)を使用して熱伝導率を測定する。較正は、JISA1412-2に従い、密度163.12kg/m、厚さ25.32mmのNIST SRM 1450c校正用標準板を使用して、高温側と低温側の温度差が20℃の条件において、15、20、24、30、40、50、60、65℃で予め実施する。成形した断熱材を測定する場合は、縦30cm、横30cm、厚み20mmの形状にした成形体を測定試料とする。800℃における熱伝導率は、JIS A 1421-1の方法に準拠して測定する。直径30cm、厚み20mmの円板状にした断熱材2枚を測定試料とし、測定装置として、保護熱板法熱伝導率測定装置(英弘精機株式会社製)を使用する。
[断熱材のBET比表面積測定]
 ユアサ・アイオニクス社製のガス吸着量測定装置「オートソーブ3MP」(商品名)により、吸着ガスとして窒素を用いて、粉体の比表面積を測定する(窒素吸着法)。比表面積はBET法を採用する。
[粉体の疎充填かさ密度の測定]
 筒井理化学器械株式会社製の疎充填カサ密度測定器MVD-86形を用いて、電磁振動によりアパーチャーが500μmのふるいを通してサンプルを分散させ、100mLの試料容器に落下投入させる。試料充填終了後にすり切りヘラにてすり切り、重量を測定して密度を計算し、得られた値を疎充填かさ密度とする。無機繊維を含有する断熱材では、ふるいの上に無機繊維が残存する場合があるが、この場合は、ふるいを通して試料容器に落下した断熱材について上記のように測定し、その断熱材の疎充填かさ密度とする。無機繊維に限らず、ふるいの上に何らかの物質が残存する場合も同様に、ふるいを通して試料容器に落下した断熱材について測定し、その断熱材の疎充填かさ密度とする。
[アルカリ金属元素等の含有率の測定]
 粉体状の断熱材をメノー乳鉢で粉砕し、30mmφ塩ビリングに充填してXRF錠剤成型器で加圧成形してタブレットを作成し、測定試料とする。これを株式会社リガク製蛍光X線分析装置RIX-3000で測定する。成形した断熱材の場合も、メノー乳鉢に入るサイズにした後、メノー乳鉢で粉砕することで、同様にアルカリ金属元素等の含有率を測定できる。
[加圧成形時に必要とされる成形型の深さ評価]
 粉体を成形型に充填して加圧成形し、縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形体を製造すると仮定した場合、原料の粉体の必要量は900gであり、かさ密度が1.0g/cmの成形体を製造すると仮定した場合、原料の粉体の必要量は1800gである。各粉体の疎充填かさ密度が0.5g/cm未満の場合は、疎充填かさ密度から、900gにおける粉体の体積を計算し、疎充填かさ密度が0.5g/cm以上の場合は、疎充填かさ密度から、1800gにおける粉体の体積を計算し、前記成形体を得るための成形型における必要深さを算出する。
[スプリングバックの測定]
 成形体原料である無機混合物(前述の小粒子と大粒子を含み、必要に応じて、さらに赤外線不透明化粒子や無機繊維等を含む混合粉末全体)の、水平方向における寸法を固定し、無機混合物に対して垂直方向に所定のかさ密度の成形体を得られるように圧力を加えた状態での、無機混合物(成形体)の垂直方向における厚みをTとし、加圧後、水平方向における成形体の寸法を固定したまま、圧力を開放した後の成形体の垂直方向における厚みをTとしたとき、Tに対するTの比率、すなわち成形体の厚みの増加率100×T/T[%]を測定することで評価する。なお、「水平方向における寸法を固定」するとは、例えば、正方形や円筒状の枠状の金型に成形体原料である無機混合物が充填された状態のことを指す。
[圧縮強度の測定]
 成形した断熱材を縦2cm、横2cm、厚み2cmに加工し、株式会社島津製作所製 精密万能試験機オートグラフAG-100KNを使用して、押し込み速度0.5mm/分で圧縮強度を測定する。
[積算細孔容積の測定]
 細孔分布測定装置 オートポア 9520形(株式会社 島津製作所製)を使用して、水銀圧入法により測定する。成形した断熱材をセルに入るように直方体に切断して1個を低感度セルに採り、初期圧約7kPa(約1psia、細孔直径約180μm相当)の条件で昇圧測定する。水銀パラメータは、装置デフォルトの水銀接触角130degrees、水銀表面張力485dynes/cmに設定し、測定する。
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。当業者は、以下に示す実施例のみならず様々な変更を加えて実施することが可能であり、かかる変更も本発明の特許請求の範囲に包含される。なお、実施例及び比較例における熱伝導率の測定、粉体の疎充填かさ密度の測定、加圧成形時に必要とされる成形型の深さ評価、スプリングバックの測定は、それぞれ上述のとおりとした。
[実施例1]
 平均粒子径が14nmのシリカ粉体(小粒子)10質量%と、平均粒子径が60μmのシリカ粉体(大粒子)90質量%をハンマーミルで均一に混合し、実施例1の粉体状の断熱材を得た。この断熱材のBET比表面積は20m/gであり、30℃における熱伝導率は0.0479W/m・Kであった。この断熱材の疎充填かさ密度は0.62g/cmであったことから、実施例1の断熱材1800gの体積は1800/0.62=2903cmである。従って、実施例1の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が1.0g/cmの成形体を製造すると仮定した場合、内寸が縦30cm、横30cmの成形型が必要とする深さは2903/(30×30)=3.23cmである。また、実施例1の断熱材1638gを使用して内寸が縦30cm、横30cmの金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.91g/cmの成形した断熱材を得た。この時の厚みの増加率は103%であった。実施例1の粉体状の断熱材をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形体においてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0478W/m・Kであった。
[実施例2]
 平均粒子径が7.5nmのシリカ粉体(小粒子)25質量%と、平均粒子径が6μmのシリカ粉体(大粒子)75質量%をハンマーミルで均一に混合し、実施例2の粉体状の断熱材を得た。この断熱材のBET比表面積は91m/gであり、30℃における熱伝導率は0.0297W/m・Kであった。この断熱材の疎充填かさ密度は0.075g/cmであったことから、実施例2の断熱材900gの体積は、実施例1と同様に計算すると12000cmである。従って、実施例2の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、13.3cmである。また、実施例2の断熱材936gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.52g/cmの成形した断熱材を得た。この時の厚みの増加率は106%であった。実施例2の粉体状の断熱材をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形体においてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0301W/m・Kであった。
[実施例3]
 平均粒子径が14nmのシリカ粉体(小粒子)25質量%と、平均粒子径が10μmのシリカ粉体(大粒子)75質量%をハンマーミルで均一に混合し、実施例3の粉体状の断熱材を得た。この断熱材のBET比表面積は49m/gであり、30℃における熱伝導率は0.0313W/m・Kであった。この断熱材の疎充填かさ密度は0.091g/cmであったことから、実施例3の断熱材900gの体積は、実施例1と同様に計算すると9890cmである。従って、実施例3の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形体を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、11.0cmである。また、実施例3の断熱材1260gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.7g/cmの成形した断熱材を得た。この時の厚みの増加率は105%であった。実施例3の粉体状の断熱材をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形した断熱材においてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0314W/m・Kであった。
[実施例4]
 平均粒子径が14nmのシリカ粉体(小粒子)20質量%と、平均粒子径が150nmのシリカ粉体(大粒子)80質量%をハンマーミルで均一に混合し、実施例4の粉体状の断熱材を得た。この断熱材のBET比表面積は54m/gであり、30℃における熱伝導率は0.0299W/m・Kであった。この断熱材の疎充填かさ密度は0.069g/cmであったことから、実施例4の断熱材900gの体積は、実施例1と同様に計算すると13043cmである。従って、実施例4の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、14.5cmである。また、実施例4の断熱材954gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.53g/cmの成形した断熱材を得た。この時の厚みの増加率は107%であった。実施例4の断熱材をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形した断熱材においてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0298W/m・Kであった。
[実施例5]
 平均粒子径が14nmのシリカ粉体(小粒子)35質量%と、平均粒子径が320nmのシリカ粉体(大粒子)65質量%をハンマーミルで均一に混合し、実施例5の粉体状の断熱材を得た。この断熱材のBET比表面積は74m/gであり、30℃における熱伝導率は0.0293W/m・Kであった。この断熱材の疎充填かさ密度は0.038g/cmであったことから、実施例5の断熱材900gの体積は、実施例1と同様に計算すると24684cmである。従って、実施例5の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、26.3cmである。また、実施例5の断熱材846gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.47g/cmの成形した断熱材を得た。この時の厚みの増加率は106%であった。実施例5の断熱材をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したところ、このうち1枚にラミネーションが見られたが、残りの9枚は、いずれにおいてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0294W/m・Kであった。
[実施例6]
 平均粒子径が12nmのシリカ粉体(小粒子)40質量%と、平均粒子径が100μmのシリカ粉体(大粒子)60質量%をハンマーミルで均一に混合し、実施例6の粉体状の断熱材を得た。この断熱材のBET比表面積は91m/gであり、30℃における熱伝導率は0.0469W/m・Kであった。この断熱材の疎充填かさ密度は0.184g/cmであったことから、実施例6の断熱材900gの体積は4891cmである。従って、実施例6の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、5.4cmである。また、実施例6の断熱材1044gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.58g/cmの成形した断熱材を得た。この時の厚みの増加率は105%であった。実施例6の断熱材をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形した断熱材においてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0468W/m・Kであった。
[実施例7]
 平均粒子径が14nmのシリカ粉体(小粒子)30質量%と、平均粒子径が80nmのシリカ粉体(大粒子)70質量%をハンマーミルで均一に混合し、実施例7の粉体状の断熱材を得た。この断熱材のBET比表面積は82m/gであり、30℃における熱伝導率は0.0237W/m・Kであった。この断熱材の疎充填かさ密度は0.065g/cmであったことから、実施例7の断熱材900gの体積は13846cmである。従って、実施例7の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形体を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、15.4cmである。また、実施例7の断熱材756gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.42g/cmの成形した断熱材を得た。この時の厚みの増加率は106%であった。実施例7の断熱材をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形した断熱材においてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0236W/m・Kであった。
[実施例8]
 平均粒子径が14nmのシリカ粉体(小粒子)20質量%と、平均粒子径が200nmのアルミナ粉体(大粒子)80質量%をハンマーミルで均一に混合し、実施例8の粉体状の断熱材を得た。この断熱材のBET比表面積は45m/gであり、30℃における熱伝導率は0.0272W/m・Kであった。この断熱材の疎充填かさ密度は0.085g/cmであったことから、実施例8の断熱材900gの体積は10588cmである。従って、実施例8の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、11.8cmである。また、実施例8の断熱材1296gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.72g/cmの成形した断熱材を得た。この時の厚みの増加率は104%であった。実施例8の粉体をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形体においてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0271W/m・Kであった。
[実施例9]
 平均粒子径が7nmのアルミナ粉体(小粒子)15質量%と、平均粒子径が80nmのシリカ粉体(大粒子)85質量%をハンマーミルで均一に混合し、実施例9の粉体状の断熱材を得た。この断熱材のBET比表面積は62m/gであり、30℃における熱伝導率は0.0261W/m・Kであった。この粉体の疎充填かさ密度は0.113g/cmであったことから、実施例9の断熱材900gの体積は7965cmである。従って、実施例8の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、8.85cmである。また、実施例9の断熱材972gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.54g/cmの成形した断熱材を得た。この時の厚みの増加率は106%であった。実施例9の断熱材をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形した断熱材においてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0262W/m・Kであった。
[実施例10]
 平均粒子径が14nmのシリカ粉体(小粒子)21質量%と、平均粒子径が150nmのシリカ粉体(大粒子)63質量%をハンマーミルで均一に混合した後、平均粒子径が1μmの、赤外不透明化粒子であるケイ酸ジルコニウム16質量%を添加して引き続き均一に混合し、実施例10の粉体状の断熱材を得た。実施例10の粉体において、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rは75%であった。また、ケイ酸ジルコニウムの含有量は、断熱材全体の体積を基準として0.21体積%であった。この断熱材のBET比表面積は52m/gであり、30℃における熱伝導率は0.0273W/m・Kであった。この断熱材の疎充填かさ密度は0.061g/cmであったことから、実施例10の断熱材900gの体積は14754cmである。従って、実施例10の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、16.4cmである。また、実施例10の断熱材1044gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.58g/cmの成形した断熱材を得た。この時の厚みの増加率は102%であった。実施例10の粉体をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形体においてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0275W/m・Kであった。
 また、この粉体状の断熱材を819gずつ使用して、内径が直径30cmの円筒型の金型を使用して加圧成形を行い、直径30cm、厚み20mmの円板状の成形した断熱材を2枚得た。この2枚の成形した断熱材を用いて、800℃における熱伝導率を測定したところ、0.0851W/m・Kであった。
[実施例11]
 平均粒子径が14nmのシリカ粉体(小粒子)20質量%と、平均粒子径が150nmのシリカ粉体(大粒子)60質量%をハンマーミルで均一に混合した後、平均粒子径が1μmの、赤外不透明化粒子であるケイ酸ジルコニウム15質量%を添加して引き続き均一に混合し、さらに平均繊維径が11μmで平均繊維長が6.4mm、耐熱温度が1050℃のグラスファイバー5質量%を添加して高速せん断ミキサーで混合して均一にし、実施例11の粉体状の断熱材を得た。実施例11の断熱材において、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rは75%であった。また、ケイ酸ジルコニウムの含有量は、断熱材全体の体積を基準として0.19体積%であった。この断熱材のBET比表面積は50m/gであり、30℃における熱伝導率は0.0279W/m・Kであった。この断熱材の疎充填かさ密度は0.059g/cmであったことから、実施例11の断熱材900gの体積は15254cmである。従って、実施例11の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、16.9cmである。また、実施例11の断熱材702gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.39g/cmの成形した断熱材を得た。この時の厚みの増加率は102%であった。実施例11の断熱材をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形した断熱材においてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0278W/m・Kであった。
 また、この粉体状の断熱材を551gずつ使用して、内径が直径30cmの円筒型の金型を使用して加圧成形を行い、直径30cm、厚み20mmの円板状の成形した断熱材を2枚得た。この2枚の成形した断熱材を用いて、800℃における熱伝導率を測定したところ、0.0921W/m・Kであった。
[実施例12]
 平均粒子径が7.5nmのシリカ粉体(小粒子)19質量%と、平均粒子径が80nmのシリカ粉体(大粒子)57質量%をハンマーミルで均一に混合した後、平均粒子径が1μmの、赤外不透明化粒子であるケイ酸ジルコニウム14質量%を添加して引き続き均一に混合し、さらに平均繊維径が11μmで平均繊維長が6.4mm、耐熱温度が1050℃のグラスファイバー10質量%を添加して高速せん断ミキサーで混合して均一にし、実施例12の粉体状の断熱材を得た。実施例12の断熱材において、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rは75%であった。また、ケイ酸ジルコニウムの含有量は、断熱材全体の体積を基準として0.25体積%であった。この断熱材のBET比表面積は89m/gであり、30℃における熱伝導率は0.0273W/m・Kであった。この断熱材の疎充填かさ密度は0.081g/cmであったことから、実施例12の断熱材900gの体積は11111cmである。従って、実施例12の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材体を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、12.3cmである。また、実施例12の断熱材972gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.54g/cmの成形した断熱材を得た。この時の厚みの増加率は103%であった。実施例12の粉体をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形した断熱材においてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0272W/m・Kであった。
 また、この粉体状の断熱材を763gずつ使用して、内径が直径30cmの円筒型の金型を使用して加圧成形を行い、直径30cm、厚み20mmの円板状の成形した断熱材を2枚得た。この2枚の成形した断熱材を用いて、800℃における熱伝導率を測定したところ、0.131W/m・Kであった。
[実施例13]
 平均粒子径が14nmのシリカ粉体(小粒子)27質量%と、平均粒子径が6μmのシリカ粉体(大粒子)51質量%をハンマーミルで均一に混合した後、平均粒子径が1μmの、赤外不透明化粒子であるケイ酸ジルコニウム21質量%を添加して引き続き均一に混合し、さらに平均繊維径が11μmで平均繊維長が6.4mm、耐熱温度が1050℃のグラスファイバー1質量%を添加して高速せん断ミキサーで混合して均一にし、実施例13の粉体状の断熱材を得た。実施例13の断熱材において、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rは65%であった。また、ケイ酸ジルコニウムの含有量は、断熱材全体の体積を基準として0.50体積%であった。この断熱材のBET比表面積は53m/gであり、30℃における熱伝導率は0.0288W/m・Kであった。この断熱材の疎充填かさ密度は0.110g/cmであったことから、実施例13の断熱材900gの体積は8182cmである。従って、実施例13の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材体を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、9.09cmである。また、実施例13の断熱材1242gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.69g/cmの成形した断熱材を得た。この時の厚みの増加率は103%であった。実施例13の粉体をホッパへ投入する際、粉体の飛散や凝集は少なかった上、成形型への充填もスムーズであった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形した断熱材においてもラミネーションが抑制されており、成形欠陥が見られなかった。また、成形した断熱材の30℃における熱伝導率は0.0289W/m・Kであった。
 また、この粉体状の断熱材を975gずつ使用して、内径が直径30cmの円筒型の金型を使用して加圧成形を行い、直径30cm、厚み20mmの円板状の成形した断熱材を2枚得た。この2枚の成形した断熱材を用いて、800℃における熱伝導率を測定したところ、0.0480W/m・Kであった。
 表1に、実施例1~13の断熱材におけるNa、K、Mg、Ca、Ge、P及びFeの、断熱材の全質量を基準とした含有量を示す。また、表2に、実施例1~13の断熱材中の大粒子に含まれるNa、K、Mg、Ca、Ge、P及びFeの、大粒子の全質量を基準とした含有量を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[実施例14]
 実施例3で得た成型した断熱材に1000℃で10時間加熱処理を施し、実施例14の断熱材とした。この断熱材を切断して縦2cm、横2cm、厚み2cmに加工し、圧縮強度を測定した結果、圧縮率=5.0%における最大荷重は0.81MPaだった。また、実施例14の断熱材に成形体において、V0.003に対するVの割合Rは77.9%であり、V0.05は1.199mL/gであった。
[実施例15]
 実施例4で得た成型した断熱材に900℃で5時間加熱処理を施し、実施例15の断熱材とした。この断熱材を実施例14と同様にして圧縮強度を測定した結果、圧縮率=3.9%においてサンプルが崩壊して破壊点を示し、この時の荷重が3.89MPaであった。また、実施例15の断熱材に成形体において、V0.003に対するVの割合Rは98.2%であり、V0.05は0.857mL/gであった。
[実施例16]
 実施例5で得た成型した断熱材に900℃で10時間加熱処理を施し、実施例16の断熱材とした。この断熱材を実施例14と同様にして圧縮強度を測定した結果、圧縮率=4.7%においてサンプルが崩壊して破壊点を示し、この時の荷重が1.090MPaであった。また、実施例16の断熱材に成形体において、V0.003に対するVの割合Rは81.5%であり、V0.05は1.109mL/gであった。
[実施例17]
 実施例6で得た成型した断熱材に900℃で2時間加熱処理を施し、実施例17の断熱材とした。この断熱材を実施例14と同様にして圧縮強度を測定した結果、圧縮率=4.9%においてサンプルが崩壊して破壊点を示し、この時の荷重が6.29MPaであった。また、実施例17の断熱材に成形体において、V0.003に対するVの割合Rは32.9%であり、V0.05は0.581mL/gであった。
[実施例18]
 実施例7で得た成型した断熱材に1000℃で5時間加熱処理を施し、実施例18の断熱材とした。この断熱材を実施例14と同様にして圧縮強度を測定した結果、圧縮率=5.0%における最大荷重は0.87MPaだった。また、実施例16の断熱材に成形体において、V0.003に対するVの割合Rは52.8%であり、V0.05は1.361mL/gであった。
[実施例19]
 実施例8で得た成型した断熱材に1100℃で5時間加熱処理を施し、実施例19の断熱材とした。この断熱材を実施例14と同様にして圧縮強度を測定した結果、圧縮率=4.3%においてサンプルが崩壊して破壊点を示し、この時の荷重が1.12MPaであった。また、実施例19の断熱材に成形体において、V0.003に対するVの割合Rは87.6%であり、V0.05は1.097mL/gであった。
[実施例20]
 実施例9で得た成型した断熱材に1100℃で5時間加熱処理を施し、実施例20の断熱材とした。この断熱材を実施例14と同様にして圧縮強度を測定した結果、圧縮率=4.1%においてサンプルが崩壊して破壊点を示し、この時の荷重が2.73MPaであった。また、実施例20の断熱材に成形体において、V0.003に対するVの割合Rは90.0%であり、V0.05は0.937mL/gであった。
[実施例21]
 実施例10で得た成型した断熱材に900℃で5時間加熱処理を施し、実施例21の断熱材とした。この断熱材を実施例14と同様にして圧縮強度を測定した結果、圧縮率=4.5%においてサンプルが崩壊して破壊点を示し、この時の荷重が3.60MPaであった。また、実施例21の断熱材に成形体において、V0.003に対するVの割合Rは89.3%であり、V0.05は1.142mL/gであった。
[実施例22]
 実施例11で得た成型した断熱材に900℃で5時間加熱処理を施し、実施例22の断熱材とした。この断熱材を実施例14と同様にして圧縮強度を測定した結果、圧縮率=4.4%においてサンプルが崩壊して破壊点を示し、この時の荷重が0.98MPaであった。また、実施例22の断熱材に成形体において、V0.003に対するVの割合Rは76.9%であり、V0.05は1.031mL/gであった。
[実施例23]
 実施例12で得た成型した断熱材に1000℃で24時間加熱処理を施し、実施例23の断熱材とした。この断熱材を実施例14と同様にして圧縮強度を測定した結果、圧縮率=3.4%においてサンプルが崩壊して破壊点を示し、この時の荷重が1.92MPaであった。また、実施例22の断熱材に成形体において、V0.003に対するVの割合Rは91.1%であり、V0.05は1.077mL/gであった。
[実施例24]
 実施例13で得た成型した断熱材に900℃で24時間加熱処理を施し、実施例24の断熱材とした。この断熱材を実施例14と同様にして圧縮強度を測定した結果、圧縮率=5.0%における最大荷重は0.75MPaだった。また、実施例24の断熱材に成形体において、V0.003に対するVの割合Rは48.1%であり、V0.05は0.691mL/gであった。
[比較例1]
 平均粒子径が14nmのシリカ粉体100質量%を比較例1の粉体状の断熱材とした。この断熱材のBET比表面積は195m/gであり、30℃における熱伝導率は0.018W/m・Kであった。この断熱材の疎充填かさ密度は0.0107g/cmであったことから、比較例1の断熱材900gの体積は84112cmである。従って、比較例1の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、93.5cmである。また、比較例1の断熱材306gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.17g/cmの成形した断熱材を得た。この時の厚みの増加率は132%であった。比較例1の断熱材をホッパへ投入する際、粉体が著しく飛散した上、供給ラインにおいて凝集し、成形型に均一に充填するのが困難であった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形した断熱材においても成形欠陥が発生していた。このため、成形した断熱材の30℃における熱伝導率は測定できなかった。
[比較例2]
 平均粒子径が10μmのシリカ粉体100質量%を比較例2の粉体状の断熱材とした。この断熱材のBET比表面積は0.27m/gであり、30℃における熱伝導率は0.0636W/m・Kであった。この断熱材の疎充填かさ密度は0.693g/cmであったことから、比較例2の断熱材1800gの体積は2597cmである。従って、比較例2の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、2.89cmである。また、比較例2の断熱材1458gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.81g/cmの成形した断熱材体を得た。この時の厚みの増加率は108%であった。比較例2の粉体をホッパへ投入する際、粉体の飛散は少なかったが、供給ラインにおいて凝集し、成形型に均一に充填するのが困難であった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形した断熱材も脆く、金型から取り出す際に崩壊した。このため、成形した断熱材の30℃における熱伝導率は測定できなかった。
[比較例3]
 平均粒子径が14nmのシリカ粉体(小粒子)80質量%と、平均粒子径が60μmのシリカ粉体(大粒子)20質量%をハンマーミルで均一に混合し、比較例3の粉体状の断熱材を得た。この断熱材のBET比表面積は158m/gであり、30℃における熱伝導率は0.0212W/m・Kであった。この粉体の疎充填かさ密度は0.0126g/cmであったことから、比較例3の粉体900gの体積は71429cmである。従って、比較例3の断熱材を使用して縦30cm、横30cm、厚み20mm、かさ密度が0.5g/cmの成形した断熱材を製造すると仮定した場合、成形型が必要とする深さを実施例1と同様に計算すると、79.4cmである。また、比較例3の断熱材486gを使用して実施例1と同じ金型で加圧成形を行い、縦30cm、横30cm、厚み20mm、かさ密度が0.27g/cmの成形した断熱材を得た。この時の厚みの増加率は128%であった。比較例3の断熱材をホッパへ投入する際、粉体が著しく飛散した上、供給ラインにおいて凝集し、成形型に均一に充填するのが困難であった。同様の方法で成形した断熱材を10枚作成したが、いずれの成形した断熱材においても成形欠陥が発生していた。このため、成形体の30℃における熱伝導率は測定できなかった。
[比較例4]
 比較例1で得た成型した断熱材に900℃で24時間加熱処理を施し、比較例4の断熱材とした。この断熱材を実施例14と同様にして圧縮強度を測定した結果、圧縮率=5.0%における最大荷重は0.11MPaだった。
[比較例5]
 平均粒子径が150nmのシリカ粉体1368gを使用して実施例1と同様に加圧成型を行い成形体を得た後、900℃で5時間加熱処理を施し、比較例2の断熱材を得た。この断熱材を実施例14と同様にして圧縮強度を測定した結果、圧縮率=5.0%における最大荷重は0.17MPaであり、30℃における熱伝導率は0.119W/m・Kであった。
 本発明によれば、成形時や充填時における飛散が抑制されて取扱い性に優れ、加圧成形した場合の成形欠陥の発生が抑制されて成形性が良好である断熱材及びその製造方法を提供することができる。また、粉体状の断熱材を用いて成形した断熱材、断熱材を収容する外被材を備える断熱材被包体を提供することもできる。
 1…断熱材被包体、2…断熱材、3…外被材、S…小粒子、L…大粒子。

Claims (20)

  1.  シリカ及び/又はアルミナを含み、粒子径Dが5nm以上30nm以下である複数の小粒子を含む粉体状であって、粉体のBET比表面積が5m/g以上150m/g以下であり、30℃における熱伝導率が0.05W/m・K以下である粉体状の断熱材。
  2.  疎充填かさ密度が0.030g/cm以上0.35g/cm以下である、請求項1記載の断熱材。
  3.  シリカ及び/又はアルミナを含み、粒子径Dが50nm以上100μm以下である複数の大粒子をさらに含み、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下である請求項1又は2に記載の断熱材。
  4.  赤外線不透明化粒子を含有し、800℃における熱伝導率が0.2W/m・K以下である請求項1~3のいずれか一項に記載の断熱材。
  5.  前記赤外線不透明化粒子の平均粒子径が0.5μm以上30μm以下であり、前記赤外線不透明化粒子の体積含有率が、断熱材の全体積を基準として、0.02体積%以上5体積%以下である、請求項4に記載の断熱材。
  6.  アルカリ金属元素、アルカリ土類金属元素及びゲルマニウムからなる群より選択される少なくとも1種の元素を含み、前記アルカリ金属元素及びアルカリ土類金属元素からなる群より選択される少なくとも1種の元素を含有する場合、その含有率が、断熱材の全質量を基準として0.005質量%以上5質量%以下であり、ゲルマニウムを含有する場合、その含有率が、断熱材の全質量を基準として10質量ppm以上1000質量ppm以下である、請求項1~5のいずれか一項に記載の断熱材。
  7.  前記アルカリ金属元素、アルカリ土類金属元素及びゲルマニウムからなる群より選択される少なくとも1種の元素が、前記大粒子に含有されていることを特徴とする、請求項6に記載の断熱材。
  8. 無機繊維を含有し、前記無機繊維の含有率が、断熱材の全質量を基準として、0質量%超20質量%以下である、請求項1~7のいずれか一項に記載の断熱材。
  9.  リンを含有し、前記リンの含有率が、断熱材の全質量を基準として、0.002質量%以上6質量%以下である、請求項1~8のいずれか一項に記載の断熱材。
  10.  鉄を含有し、前記鉄の含有率が、断熱材の全質量を基準として、0.005質量%以上6質量%以下である、請求項1~9のいずれか一項に記載の断熱材。
  11.  請求項1~10のいずれか一項に記載の粉体状の断熱材を成形して得られる断熱材。
  12.  圧縮率0~5%における最大荷重が0.7MPa以上である、請求項11に記載の断熱材。
  13.  細孔径が0.003μm以上150μm以下である細孔の積算細孔容積V0.003に対する、細孔径が0.05μm以上0.5μm以下である細孔の積算細孔容積Vの割合Rが70%以上であり、細孔径が0.05μm以上150μm以下である細孔の積算細孔容積V0.05が0.5mL/g以上2mL/g以下である、請求項12に記載の断熱材。
  14.  外被材に収容された、請求項1~13のいずれか一項に記載の断熱材。
  15.  前記外被材が無機繊維を含むか、前記外被材が樹脂フィルムである請求項14に記載の断熱材。
  16.  シリカ及び/又はアルミナを含み、平均粒子径が5nm以上30nm以下である小粒子と、シリカ及び/又はアルミナを含み、平均粒子径が50nm以上100μm以下である大粒子と、を、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下で混合する工程を有する、断熱材の製造方法。
  17.  シリカ及び/又はアルミナを含み、平均粒子径が5nm以上30nm以下である小粒子と、シリカ及び/又はアルミナと、アルカリ金属元素、アルカリ土類金属元素及びゲルマニウムからなる群より選択される少なくとも1種の元素とを含み、平均粒子径が50nm以上100μm以下である大粒子と、を、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下で混合し、無機混合物を得る工程と、を有する、断熱材の製造方法。
  18.  シリカ及び/又はアルミナを含み、平均粒子径が5nm以上30nm以下である小粒子と、シリカ及び/又はアルミナと、アルカリ金属元素、アルカリ土類金属元素及びゲルマニウムからなる群より選択される少なくとも1種の元素を含み、平均粒子径が50nm以上100μm以下である大粒子と、を、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下で混合し、無機混合物を得る工程と、前記無機混合物を、成形型に収容する収容工程と、
     前記無機混合物を成形する成形工程と、を備え、
     前記成形工程は、下記の工程(a)又は工程(b)を有する、断熱材の製造方法。
    (a)前記成形型により前記無機混合物を加圧しながら400℃以上に加熱する工程。
    (b)加圧により前記無機混合物を成形した後、400℃以上の温度で加熱処理を施す工程。
  19.  前記成形工程において、前記成形した断熱材のかさ密度が0.25g/cm以上2.0g/cm以下になるように成形圧力を設定する、請求項18に記載の断熱材の製造方法。
  20.  シリカ及び/又はアルミナを含み、平均粒子径が5nm以上30nm以下である小粒子と、シリカ及び/又はアルミナと、アルカリ金属元素、アルカリ土類金属元素及びゲルマニウムからなる群より選択される少なくとも1種の元素を含み、平均粒子径が50nm以上100μm以下である大粒子と、を、小粒子の質量と大粒子の質量の合計に対する大粒子の質量の割合Rが60質量%以上90質量%以下で混合し、無機混合物を得る工程と、前記無機混合物を、成形型に収容する収容工程と、前記無機混合物を成形する成形工程と、前記成形工程により得られた成形体の一部を切削する切削工程と、を備え、前記成形工程が下記の工程(c)又は工程(d)を有する、断熱材の製造方法。
    (c)成形した断熱材のかさ密度が0.25g/cm以上2.0g/cm以下になるように前記成形型により前記無機混合物を加圧しながら加熱する工程。
    (d)前記成形型で加圧することにより前記無機混合物を成形した後、400℃以上の温度で加熱処理を施す工程。
     
PCT/JP2011/073006 2010-12-27 2011-10-05 断熱材及びその製造方法 WO2012090567A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137014364A KR101514906B1 (ko) 2010-12-27 2011-10-05 단열재 및 그 제조 방법

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2010-290902 2010-12-27
JP2010-290900 2010-12-27
JP2010290902A JP5775691B2 (ja) 2010-12-27 2010-12-27 断熱材及び断熱材の製造方法
JP2010290900A JP5783717B2 (ja) 2010-12-27 2010-12-27 断熱材
JP2011-084743 2011-04-06
JP2011084743A JP5824228B2 (ja) 2011-04-06 2011-04-06 粉体、成形体、被包体及び粉体の製造方法
JP2011084744A JP2012218961A (ja) 2011-04-06 2011-04-06 粉体、成形体、被包体及び粉体の製造方法
JP2011-084744 2011-04-06
JP2011110590A JP5876668B2 (ja) 2011-05-17 2011-05-17 成形体の製造方法及び切削体の製造方法
JP2011-110590 2011-05-17
JP2011133315A JP2013001596A (ja) 2011-06-15 2011-06-15 成形体、被包体、成形体の製造方法及び切削体の製造方法
JP2011-133315 2011-06-15
JP2011165753A JP5824272B2 (ja) 2011-07-28 2011-07-28 粉体、成形体、被包体及び粉体の製造方法
JP2011-165753 2011-07-28
JP2011-189750 2011-08-31
JP2011189750A JP5824298B2 (ja) 2011-08-31 2011-08-31 成形体、被包体、成形体の製造方法及び断熱方法

Publications (1)

Publication Number Publication Date
WO2012090567A1 true WO2012090567A1 (ja) 2012-07-05

Family

ID=46382691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073006 WO2012090567A1 (ja) 2010-12-27 2011-10-05 断熱材及びその製造方法

Country Status (3)

Country Link
KR (1) KR101514906B1 (ja)
TW (1) TWI522333B (ja)
WO (1) WO2012090567A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101767658B1 (ko) 2014-10-20 2017-08-14 주식회사 엘지화학 다공성 알루미노실리케이트를 포함하는 진공 단열재용 심재와 이를 구비한 진공 단열재
TWI624105B (zh) * 2017-06-13 2018-05-11 中興應用材料科技股份有限公司 用於儲能裝置內的防火絕緣複合薄膜及其製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05194008A (ja) * 1991-06-19 1993-08-03 Nichias Corp 断熱材の製造法
JP2007056903A (ja) * 2005-08-22 2007-03-08 Nissan Motor Co Ltd 断熱材及びその断熱材を用いた断熱構造体
JP2010156065A (ja) * 2008-12-26 2010-07-15 Nichias Corp 無機質成形体の製造方法
JP2011084441A (ja) * 2009-10-16 2011-04-28 Nichias Corp 断熱材及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4439970B2 (ja) 2004-03-31 2010-03-24 牧男 内藤 複合多孔体の製造方法
JP4842871B2 (ja) 2007-03-29 2011-12-21 株式会社エーアンドエーマテリアル けい酸カルシウム保温材の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05194008A (ja) * 1991-06-19 1993-08-03 Nichias Corp 断熱材の製造法
JP2007056903A (ja) * 2005-08-22 2007-03-08 Nissan Motor Co Ltd 断熱材及びその断熱材を用いた断熱構造体
JP2010156065A (ja) * 2008-12-26 2010-07-15 Nichias Corp 無機質成形体の製造方法
JP2011084441A (ja) * 2009-10-16 2011-04-28 Nichias Corp 断熱材及びその製造方法

Also Published As

Publication number Publication date
TWI522333B (zh) 2016-02-21
TW201228989A (en) 2012-07-16
KR20130095299A (ko) 2013-08-27
KR101514906B1 (ko) 2015-04-23

Similar Documents

Publication Publication Date Title
KR101506413B1 (ko) 단열재 및 그 제조 방법
JP5824298B2 (ja) 成形体、被包体、成形体の製造方法及び断熱方法
JP6070710B2 (ja) 真空断熱材の製造方法および真空断熱材
JP5824272B2 (ja) 粉体、成形体、被包体及び粉体の製造方法
KR20140002673A (ko) 합성 비정질 실리카 분말 및 그 제조 방법
JP6769690B2 (ja) 粉体、その成形体及び被包体
JP2017210403A (ja) 細孔を含む不透明石英ガラスの製造方法
JP5854642B2 (ja) 粉体の製造方法
CN103043996B (zh) 绝热材料及其制造方法
JP5683989B2 (ja) 断熱材及びその製造方法
WO2012090567A1 (ja) 断熱材及びその製造方法
CN103043998A (zh) 绝热材料及其制造方法
JP5700548B2 (ja) 成形体、被包体及び成形体の製造方法
CN107129261A (zh) 粉体、其成形体以及包覆体
JP5675507B2 (ja) 粉体、成形体、被包体及び粉体の製造方法
JP5775691B2 (ja) 断熱材及び断熱材の製造方法
JP5824228B2 (ja) 粉体、成形体、被包体及び粉体の製造方法
JP2012218961A (ja) 粉体、成形体、被包体及び粉体の製造方法
JPWO2020009226A1 (ja) 断熱充填材、断熱材、断熱構造
JP2012097883A (ja) 断熱材
JP5626844B2 (ja) 断熱材
JP2013249218A (ja) 合成非晶質シリカ粉末及びその製造方法
JP5876668B2 (ja) 成形体の製造方法及び切削体の製造方法
JP5783717B2 (ja) 断熱材
JP2012122543A (ja) 断熱材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137014364

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852369

Country of ref document: EP

Kind code of ref document: A1