WO2012060309A1 - 結晶製造方法 - Google Patents

結晶製造方法 Download PDF

Info

Publication number
WO2012060309A1
WO2012060309A1 PCT/JP2011/075023 JP2011075023W WO2012060309A1 WO 2012060309 A1 WO2012060309 A1 WO 2012060309A1 JP 2011075023 W JP2011075023 W JP 2011075023W WO 2012060309 A1 WO2012060309 A1 WO 2012060309A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
raw material
crystal
seed substrate
material powder
Prior art date
Application number
PCT/JP2011/075023
Other languages
English (en)
French (fr)
Inventor
小林 伸行
一樹 前田
浩一 近藤
七瀧 努
克宏 今井
吉川 潤
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN2011800511410A priority Critical patent/CN103180490A/zh
Priority to JP2012541839A priority patent/JP5914348B2/ja
Priority to EP11837959.3A priority patent/EP2636771A4/en
Publication of WO2012060309A1 publication Critical patent/WO2012060309A1/ja
Priority to US13/866,185 priority patent/US9663871B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/04Isothermal recrystallisation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride

Definitions

  • the present invention relates to a crystal manufacturing method.
  • a crystal manufacturing method there is a method of preparing a raw material melt of a single crystal to be produced and precipitating it on a seed single crystal.
  • this method has been difficult to apply to materials having a very high melting point or being easily decomposed, such as high melting point oxides such as ZnO, nitrides (for example, GaN), and carbides (for example, SiC). Therefore, for example, in GaN, a Na flux method has been proposed in which a raw material is dissolved using Na as a flux and precipitated into seeds to obtain a single crystal (see, for example, Patent Document 1).
  • a GaN phase is formed on a heterogeneous substrate such as sapphire using a hydride vapor phase epitaxy, and the heterogeneous substrate is removed after the growth of the GaN layer to obtain a self-supporting GaN single crystal substrate.
  • a method has been proposed (see, for example, Patent Document 2).
  • an aerosol deposition method has been proposed in which an aerosol of raw material powder is sprayed onto a single crystal substrate to form a film containing the raw material component on the substrate, and then a single crystal is grown by performing a heat treatment ( For example, see Patent Document 3).
  • the growth rate may be slow, for example, 0.02 mm / h or less.
  • it is vapor phase growth, and it may be difficult to form a thick bulk single crystal of several millimeters or more.
  • voids may be generated when a process of forming a film on a substrate made of a single crystal, performing heat treatment and growing the single crystal is repeated, and a practical crystal is formed. It was still not enough to get.
  • the present invention has been made in view of such problems, and a main object of the present invention is to provide a crystal production method capable of producing crystals with better orientation and denseness.
  • the present inventors have found that when the raw material powder is sprayed onto the seed substrate at the temperature at which the single crystal raw material powder is single-crystallized, the crystal growth is performed. It has been found that crystals with better compactness can be produced, and the present invention has been completed.
  • the crystal manufacturing method of the present invention is a film containing a raw material component on a seed substrate containing a single crystal by spraying the raw material powder containing the raw material component at a predetermined single crystallization temperature at which the raw material component is single-crystallized. And a film formation crystallization step of crystallizing the formed film containing the raw material component at the single crystallization temperature.
  • the crystal production method of the present invention can produce crystals with better orientation and denseness.
  • the reason for this is not clear, but is presumed as follows.
  • AD method aerosol deposition method
  • PJD method powder jet deposition method
  • the phenomenon that the powder that collides with the substrate is densely fixed by plastic deformation due to impact force.
  • the film is formed by repeating the above.
  • voids are likely to remain (see JP 2009-132944 A).
  • the crystal manufacturing method of the present invention since the film is formed under the heat treatment conditions for single crystallization, the dense film structure thus formed is successively single-crystallized to increase the thickness, so that voids are formed.
  • a crystal that is less likely to occur and has better orientation and denseness can be produced. Further, in the crystal manufacturing method of the present invention, for example, it is possible to easily grow crystals on nitrides that are difficult to be melted such as GaN, AlN, InN, and mixed crystals thereof (AlGaInN), and carbides such as SiC. Because it can be done, it has great industrial significance. In addition, for example, ZnO or the like that has a high melting point and cannot be melted, but can be crystal-produced by the hydrothermal method, the crystal production method of the present invention requires a trace amount necessary for making a semiconductor, which is difficult by the hydrothermal method. Since the adjustment of the components becomes easy, the industrial significance is particularly great. Thus, it is assumed that the crystal manufacturing method of the present invention can produce a practical crystal (for example, a single crystal).
  • FIG. Explanatory drawing of the scanning method of the slit 37.
  • FIG. Explanatory drawing of a crystallization process.
  • FIG. The block diagram which shows the outline of a structure of the crystal manufacturing apparatus 20B.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a crystal manufacturing apparatus 20 used in the crystal manufacturing method of the present invention.
  • the crystal manufacturing apparatus 20 is configured as an apparatus used in an aerosol deposition method (AD method) in which a raw material powder is jetted onto a seed substrate in an atmosphere at a pressure lower than atmospheric pressure.
  • the crystal manufacturing apparatus 20 forms an aerosol generating unit 22 that generates an aerosol of raw material powder containing raw material components, and forms a film containing the raw material components by injecting the raw material powder onto the seed substrate 21 and crystallizes this film.
  • a crystal generation unit 30 to be operated.
  • the aerosol generation unit 22 contains a raw material powder, receives an supply of a carrier gas from a gas cylinder (not shown), and generates an aerosol, and a raw material supply pipe 24 that supplies the generated aerosol to the crystal generation unit 30. It has.
  • a preheater heater 26 for preheating the aerosol is disposed on the crystal supply unit 30 side of the raw material supply pipe 24, and the preheated aerosol is supplied to the crystal generation unit 30.
  • the crystal generation unit 30 fixes the seed substrate 21 by being disposed inside the vacuum chamber 31 for injecting the aerosol onto the seed substrate 21, the room-like heat insulating material 32 provided in the vacuum chamber 31, and the heat insulating material 32.
  • the crystal generation unit 30 includes a heating unit 35 that is disposed inside the heat insulating material 32 and heats the seed substrate 21, a spray nozzle 36 that has a slit 37 formed at the tip thereof and sprays aerosol onto the seed substrate 21, and a vacuum chamber And a vacuum pump 38 for depressurizing 31.
  • each is configured using a member such as quartz glass or ceramics so that a heat treatment at a temperature at which the raw material powder becomes a single crystal, for example, 900 ° C. or more, can be performed in the vacuum chamber 31. Yes. A crystal manufacturing method using this crystal manufacturing apparatus 20 will be described below.
  • a film forming process for forming a film containing a raw material component on a seed substrate made of a single crystal by injecting a raw material powder containing the raw material component at a predetermined single crystallization temperature at which the raw material component becomes a single crystal. And a crystallization process for crystallizing the film containing the raw material at a predetermined single crystallization temperature.
  • the raw material powder containing the raw material component is not particularly limited as long as it produces a single crystal, and examples thereof include powders containing oxides, nitrides, and carbides.
  • examples of the oxide include ZnO.
  • examples of the nitride include GaN, AlN, InN, and mixed crystals thereof (AlGaInN), and among these, GaN is preferable.
  • a carbide carbonized_material, SiC etc. are mentioned, for example.
  • the raw material powder is preferably primary particles that do not aggregate (particles that do not include grain boundaries in the particles), and the particle size is preferably 0.05 ⁇ m or more and 10 ⁇ m or less, for example, 0.2 ⁇ m or more and 2 ⁇ m.
  • This particle diameter means the median diameter (D50) measured by dispersing in a dispersion medium (such as an organic solvent or water) using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the raw material powder may be previously milled by a ball mill, a planetary ball mill, a jet mill or the like. As a result, the surface properties and crystallinity of the particles change, and the film formation rate in the AD method can be improved.
  • the seed substrate may be made of the same component as the raw material component, and examples thereof include oxides, nitrides, and carbides.
  • the seed substrate may be any substrate including a single crystal, and may be, for example, a single crystal substrate or a support substrate having a single crystal film formed on the surface. Of these, a single crystal substrate is more preferable.
  • the temperature of the film forming process is assumed to be, for example, a predetermined single crystallization temperature at which the film forming body made of the raw material component is single crystallized.
  • the single crystallization temperature is empirically set to a temperature at which single crystallization proceeds according to the type of raw material component (for example, GaN), the crystal structure, and the microstructure of the film formation body such as the crystal grain size and density.
  • This single crystallization temperature may be, for example, 900 ° C. or higher, 1000 ° C. or higher, or 1200 ° C. or higher.
  • This single crystallization temperature is preferably in a range lower than the melting point or decomposition temperature of the raw material powder.
  • the carrier gas and the pressure adjusting gas are more preferably inert gases.
  • N 2 gas is preferred.
  • the injection conditions a film is formed when injected at room temperature, and the carrier structure, the pressure adjusting gas, and the vacuum chamber are such that the crystal structure is 100 nm or less and the density is 95% or more. It is preferable to adjust the pressure. By doing so, the single crystallization temperature can be lowered.
  • the crystallite diameter can be measured by TEM observation, and the density can be measured by image analysis by cross-sectional SEM observation.
  • the injection nozzle is preferably formed with a slit having a long side and a short side.
  • the slit may be formed in a range where the long side is 1 mm or more and 10 mm or less, and may be formed in a range where the short side is 0.1 mm or more and 1 mm or less.
  • the thickness of the film formed by spraying the raw material powder is preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the thickness of this film is preferably 0.1 ⁇ m or more. When the thickness of this film is 5 ⁇ m or less, the denseness is further improved.
  • FIG. 2 is an explanatory diagram of the scanning method of the slit 37.
  • the raw material powder is sprayed from a slit having a long side and a short side, and the slit and the seed substrate are scanned relatively in a direction perpendicular to the long side.
  • a film is formed on the seed substrate (first film formation region 21a).
  • the seed substrate 21 is moved by the XY stage 33, but it is also possible to move the injection nozzle 36 side.
  • the slit and the seed substrate are relatively scanned in the long side direction, and then the slit and the seed substrate are perpendicular to the long side with respect to the region adjacent to the film formed on the seed substrate.
  • the current film is formed adjacent to the previously formed film by scanning relatively (second film formation region 21b). Then, these operation processes may be repeated. By performing such scanning a plurality of times, a single crystal having a relatively large area can be obtained, and the intervals between the film formations of the respective times are almost the same, and a uniform single crystal is obtained.
  • the thickness of the single crystal to be generated can be controlled.
  • the slit is scanned so as to draw a rectangle, but the slit may be scanned so as to draw a figure 8, or the slit may be scanned zigzag, or the slit may be reciprocated.
  • the scanning of the slit is preferably performed at a scanning speed corresponding to the time during which the film is crystallized by a crystallization process described later. This scanning speed can be determined empirically depending on the type of raw material and the single crystallization temperature, and is preferably in the range of 0.1 mm / s to 10 mm / s, for example.
  • the film formed by the previous spraying may be crystallized and then the next spraying may be performed or the first spraying may be performed.
  • the next injection may be performed on the non-crystallized film.
  • the thickness of the portion that is not single-crystallized is 2 ⁇ m or less, the portion that is not single-crystallized may remain.
  • the treatment is performed at the temperature of the film formation treatment (single crystallization temperature) described above.
  • the film made of the raw material particles formed on the substrate in the film forming process is crystallized by placing it at a single crystallization temperature.
  • This single crystallization temperature is the same as that described in the film formation process, and may be, for example, 900 ° C. or higher, 1000 ° C. or higher, or 1200 ° C. or higher.
  • This single crystallization temperature is preferably in a range lower than the melting point of the raw material powder.
  • FIG. 3 is an explanatory diagram of the crystallization process. As shown in FIG.
  • the injected raw material particles collide with the substrate (seed substrate) and are impact-solidified on the substrate to form a film forming body 39. Since the atmosphere in which the film forming process is performed is a single crystallization temperature, the impact-solidified raw material particles are sequentially grown into a single crystal by solid phase crystal growth. Alternatively, crystal growth with high orientation and density occurs. Thus, a three-dimensionally oriented crystal can be obtained.
  • the obtained crystal is preferably a single crystal, but may include a portion that is not a single crystal, or may be polycrystalline and three-dimensionally oriented.
  • a crystal having better orientation and denseness can be produced. Further, it is possible to obtain a thick crystal body (single crystal) with very few voids. This is because, for example, in the crystal manufacturing method of the present invention, since the film is formed under the heat treatment conditions for single crystallization, the dense film structure formed is successively increased in thickness while being single-crystallized. It is presumed that voids are less likely to be generated, and crystals with better orientation and denseness can be produced.
  • crystal growth can be easily performed using raw material powder having a very high melting point (for example, nitride) or raw material powder that is easily decomposed (for example, carbide). Can do.
  • raw material powder having a very high melting point for example, nitride
  • raw material powder that is easily decomposed for example, carbide
  • the crystal manufacturing apparatus 20 used in the aerosol deposition method in which the raw material powder is sprayed onto the seed substrate at an atmospheric pressure lower than the atmospheric pressure is used.
  • the present invention is not particularly limited thereto.
  • the crystal manufacturing apparatus 50 used in the powder jet deposition method in which the raw material powder is sprayed onto the seed substrate in an atmospheric pressure or an atmosphere of atmospheric pressure or higher is used. Also good.
  • FIG. 4 is a configuration diagram showing an outline of the configuration of the crystal manufacturing apparatus 50 used in the crystal manufacturing method of the present invention.
  • the crystal manufacturing apparatus 50 forms a film containing a raw material component by jetting the raw material powder onto a seed substrate 51 and a jet powder generation unit 52 that generates a raw material fluid including the raw material powder and a carrier gas, and crystallizes this film. And a crystal generation unit 60 to be converted.
  • the jet powder generation unit 52 includes a pressure tank 53 that contains raw material powder and receives a supply of carrier gas from a gas cylinder (not shown), and a raw material supply pipe 54 that supplies the generated aerosol to the crystal generation unit 60.
  • a preheating heater 56 that preheats the raw material fluid is disposed on the crystal generation unit 60 side of the raw material supply pipe 54, and the preheated raw material fluid is supplied to the crystal generation unit 60.
  • the crystal generation unit 60 includes a chamber 61 for injecting a raw material fluid onto the seed substrate 51 under normal pressure, a room-shaped heat insulating material 62 provided in the chamber 61, and a seed substrate 51 disposed in the heat insulating material 62.
  • a substrate holder 64 to be fixed, and an XY stage 63 that moves the substrate holder 64 in the X-axis to Y-axis directions are provided.
  • the crystal generation unit 60 includes a heating unit 65 that is disposed inside the heat insulating material 62 and heats the seed substrate 51, and an injection nozzle 66 that has a slit 67 formed at the tip and injects a raw material fluid onto the seed substrate 51. I have.
  • each of the chamber 61 is constituted by a member such as quartz glass or ceramics so that heat treatment can be performed at a temperature at which the raw material powder is single-crystallized, for example, 900 ° C. or higher. Then, using this crystal manufacturing apparatus 50, a raw material powder containing the raw material component is sprayed at a predetermined single crystallization temperature at which the raw material component becomes a single crystal, and a film containing the raw material component is formed on a seed substrate made of a single crystal. A film formation crystallization process is performed in which a crystallization process is performed to crystallize a film containing a raw material at a predetermined single crystallization temperature.
  • a spraying condition a film is formed when sprayed at room temperature, and the carrier gas and the chamber pressure are adjusted so that the film structure has a crystallite diameter of 100 nm or less and a density of 95% or more. It may be adjusted.
  • Other conditions can be performed in accordance with the conditions of the AD method described above. Even in this case, a crystal with better orientation and denseness can be produced.
  • the entire film formation chamber (inside the heat insulating material 32) including the seed substrate 21 is heated by the heating unit 35 disposed inside the heat insulating material 32. It is not particularly limited to this.
  • the temperature control in the film forming chamber (inside the heat insulating material 32) may be performed by heating only the substrate portion with another heating source.
  • a heating device 70 that heats the seed substrate 21 from the outside of the vacuum chamber 31 may be used.
  • FIG. 5 is a configuration diagram showing an outline of the configuration of the crystal manufacturing apparatus 20B.
  • the crystal manufacturing apparatus 20B is provided with a heating device 70 for irradiating a laser in addition to the crystal manufacturing apparatus 20 (see FIG. 1).
  • a heating device 70 for irradiating a laser in addition to the crystal manufacturing apparatus 20 (see FIG. 1).
  • the same components as those of the crystal manufacturing apparatus 20 are denoted by the same reference numerals and description thereof is omitted.
  • a transmission window 71 is disposed in the vacuum chamber 31 and a transmission window 72 is disposed in the heat insulating material 32 between the heating apparatus 70 and the substrate holder 34. Can be irradiated onto the substrate holder 34.
  • the heating device 70 includes an optical system 73 capable of adjusting a laser irradiation range on the substrate holder 34 and a laser generation device 74 that generates a heating laser.
  • the seed substrate 21 on the substrate holder 34 is irradiated with the laser generated by the laser generator 74 to the seed substrate 21 on the substrate holder 34 through the optical system 73 and the transmission windows 71 and 72, or a part of the seed substrate 21. It is configured to be heatable.
  • the heating source of the substrate portion is not particularly limited, and for example, in addition to various lasers such as a CO 2 laser, a YAG laser, an excimer laser, and a semiconductor laser, an infrared lamp can be applied.
  • the infrared lamp may be installed near the seed substrate in the chamber to heat the substrate portion, or may be installed outside the chamber to introduce infrared light using an infrared introduction rod. According to the heating source, the output of the heating unit 35 can be suppressed, and the amount of energy used when producing a single crystal can be reduced. Moreover, since the seed substrate 21 can be directly heated and the heat resistance required for the crystal generation unit 30 is reduced, the selectivity and durability of the members constituting the crystal manufacturing apparatus 20 can be further improved.
  • the heating unit 35 for heating the entire film formation chamber and the heating source (heating device 70) for heating only the substrate portion are used in combination, so that the temperature difference between the film formation chamber and the seed substrate 21 is within a predetermined range.
  • the temperature difference between the film formation chamber and the seed substrate 21 is preferably 700 ° C. or less.
  • the injection nozzle is provided with the slit, but is not particularly limited as long as the raw material powder can be injected, and may be a circular, elliptical, or polygonal hole. .
  • the crystal manufacturing apparatuses 20 and 20B and the crystal manufacturing apparatus 50 are used.
  • the present invention is not particularly limited thereto, and the crystal manufacturing apparatuses 20 and 20B or An apparatus other than the crystal manufacturing apparatus 50 may be used.
  • Example 1 A GaN powder (manufactured by High Purity Chemical Laboratory, average primary particle size 0.2 ⁇ m) was used as a raw material powder, and a GaN single crystal substrate (13 mm ⁇ 18 mm square, (002) plane) was used as a seed substrate. Further, a GaN single crystal was manufactured using an AD method crystal manufacturing apparatus corresponding to a temperature in the chamber of 1200 ° C. shown in FIG. As production conditions, first, the injection conditions were N 2 for the carrier gas and the pressure adjusting gas. A ceramic nozzle having a slit with a long side of 5 mm and a short side of 0.3 mm was used.
  • the nozzle scanning conditions are as follows: 0.5 mm / s scanning speed, as shown in FIG. 2, moving 10 mm in the direction perpendicular to the long side of the slit and moving forward, moving 5 mm in the long side direction of the slit,
  • the cycle of moving 10 mm in the direction perpendicular to the long side and moving in the returning direction and moving 5 mm in the long side direction of the slit and in the initial position direction was set to 200 cycles.
  • the carrier gas set pressure was adjusted to 0.06 MPa, the flow rate to 6 L / min, the pressure adjusting gas flow rate to 0 L / min, and the chamber internal pressure to 100 Pa or less.
  • the film structure was a crystallite diameter of 100 nm or less and a density of 95% or more.
  • the temperature of the film formation chamber which is the temperature at which the single crystal grows, was set to 1050 ° C. as the crystal growth condition.
  • the obtained single crystal had a thickness of 0.5 mm.
  • Example 2 ZnO powder (manufactured by High Purity Chemical Laboratory, average primary particle size 0.5 ⁇ m) was used as the raw material powder, and a ZnO single crystal substrate (10 mm ⁇ 10 mm square, (002) plane) was used as the seed substrate.
  • the same apparatus as in Example 1 was used for crystal production, and the film formation conditions by the AD method were that the carrier gas and the pressure adjusting gas were He, and the size of the injection nozzle was 10 mm long side ⁇ 0.4 mm short side.
  • the film structure was a crystallite diameter of 100 nm or less and a density of 98% or more. Under these injection conditions, the temperature of the film formation chamber, which is the temperature at which the single crystal grows, was set to 1250 ° C. as the crystal growth condition. The resulting single crystal thickness was 0.8 mm.
  • Example 3 The raw material powder / seed substrate was the same as in Example 2, and a crystal manufacturing apparatus 20B in which a laser heating device 70 was added to the crystal manufacturing apparatus 20 used in Example 1 or 2 was used (see FIG. 5). With this apparatus, the temperature of the film formation chamber was set to 800 ° C., and the single crystal substrate portion was heated to 1250 ° C. with a CO 2 laser. The laser output at this time was 80 W, and the beam diameter was 10 mm. Nozzle size and other film forming conditions were the same as in Example 2 to produce a single crystal. The single crystal thickness obtained at this time was 0.8 mm.
  • Example 1 In Example 1, the temperature of the film formation chamber was set to room temperature, the number of scans was set to 20 cycles, and a film containing a raw material component was formed on the seed substrate. Thereafter, heat treatment was performed in a N 2 atmosphere at 1200 ° C. for 1 h, and the formed film was crystallized. At this time, the temperature was raised from 900 to 1200 ° C. at 50 ° C./h. Thus, what was obtained as a film forming process and a crystallization process as separate processes was used as a crystal of Comparative Example 1. The thickness of the obtained single crystal was 0.04 mm. It should be noted that the thickness was hardly changed even when the number of scans was increased.
  • Example 1 [Electron microscope (SEM) photography] As evaluation of the produced Examples 1 to 3 and Comparative Example 1, SEM imaging of the cross section was performed.
  • SEM imaging a scanning electron microscope (JSM-6390, manufactured by JEOL Ltd.) was used. The sample was polished along the film surface and observed at a magnification of 1000 times. At this time, in Example 1, no voids could be confirmed, whereas in Comparative Example 1, 20 or more voids were observed.
  • the SEM observation of the cross section was performed about the single crystal of Example 2, 3 by the method similar to Example 1, the space
  • Example 1 when an XRD profile was measured with an XRD measuring apparatus (Bruker AXS, “D8ADVANCE”) for the film surface, in Example 1, only the diffraction peak due to the (002) plane was observed, and the morphology appearing on the film surface Single crystallization was confirmed because the in-plane directions of a regular hexagon were aligned. Further, when the XRD profiles for the film surfaces of Examples 2 and 3 were measured, only the diffraction peak due to the (002) plane was observed, and the in-plane orientation of the regular hexagon that is the morphology appearing on the film surface was aligned. Thus, single crystallization was also confirmed in Examples 2 and 3. On the other hand, in Comparative Example 1, diffraction peaks other than (002) were also observed, and it was confirmed that the degree of single crystallization was low.
  • the present invention can be used in the technical field of manufacturing a single crystal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 本発明の結晶製造方法は、原料成分が単結晶化する所定の単結晶化温度で、この原料成分を含む原料粉体を噴射して単結晶からなる種基板上に原料成分を含む膜を形成する成膜処理を行うと共に、原料を含む膜を所定の単結晶化温度のまま結晶化させる結晶化処理を行う、成膜結晶化工程を含むものである。この成膜結晶化工程では、単結晶化温度が900℃以上であることが好ましい。また、成膜結晶化工程では、原料粉体及び種基板が窒化物又は酸化物であることが好ましい。

Description

結晶製造方法
 本発明は、結晶製造方法に関する。
 従来、結晶製造方法としては、作製する単結晶の原料融液を調製し、種となる単結晶に析出させる方法がある。しかしながら、この方法では、ZnOなどの高融点酸化物や、窒化物(例えばGaN)や炭化物(例えばSiC)など、融点が非常に高い、もしくは分解しやすい材料では適用が困難であった。そこで、例えばGaNでは、Naをフラックスとして原料を溶解し、種に析出させ単結晶を得るNaフラックス法が提案されている(例えば、特許文献1参照)。また、サファイアなどの異種基板上にハイドライド気相成長法(Hydride Vapor Phase Epitaxy)を用いてGaN相を形成し、GaN層の成長後に異種基板を除去することにより自立したGaNの単結晶基板を得る方法が提案されている(例えば、特許文献2参照)。あるいは、原料粉体のエアロゾルを単結晶基板上に噴射して基板上に原料成分を含む膜を形成させたのち、熱処理を行うことにより単結晶を成長させるエアロゾルデポジション法が提案されている(例えば、特許文献3参照)。
US Patent 5,868,837 特開2003-178984号公報 特開2006-298747号公報
 しかしながら、この特許文献1に記載された結晶製造方法では、例えば0.02mm/h以下と成長速度が遅いということがあった。また、特許文献2に記載された結晶製造方法では、気相成長であり、数ミリメートル以上の厚いバルク単結晶を形成することが困難であることがあった。特許文献3に記載された結晶製造方法では、単結晶からなる基板に膜を形成させ、熱処理を行い単結晶を成長させるという工程を繰り返し行うと、空隙が生じることがあり、実用的な結晶を得るには、まだ十分ではなかった。
 本発明は、このような課題に鑑みなされたものであり、配向性及び緻密性がより良好な結晶を作製することができる結晶製造方法を提供することを主目的とする。
 上述した主目的を達成するために鋭意研究したところ、本発明者らは、単結晶の原料粉体が単結晶化する温度において種基板に原料粉体を噴射すると同時に結晶成長させると配向性及び緻密性がより良好な結晶を作製することができることを見いだし、本発明を完成するに至った。
 即ち、本発明の結晶製造方法は、原料成分が単結晶化する所定の単結晶化温度で該原料成分を含む原料粉体を噴射して単結晶を含む種基板上に該原料成分を含む膜を形成すると共に、前記形成した原料成分を含む膜を前記単結晶化温度のまま結晶化させる成膜結晶化工程、を含むものである。
 本発明の結晶製造方法は、配向性及び緻密性がより良好な結晶を作製することができる。この理由は定かではないが、以下のように推察される。例えば、減圧下で行うエアロゾルデポジション法(AD法)や加圧下で行うパウダージェットデポジション法(PJD法)などでは、基板に衝突した粉末が衝撃力により塑性変形することで緻密に固着する現象を繰り返すことで成膜する。しかしながら、厚さが増すに従い空隙が残りやすくなることがある(特開2009-132944参照)。これに対して、本発明の結晶製造方法では、単結晶化する熱処理条件化で成膜を行うことから、成膜された緻密な膜組織が順次単結晶化しながら厚さを増すため、空隙が発生しにくく、配向性及び緻密性がより良好な結晶を作製することができる。また、本発明の結晶製造方法では、例えば、GaN、AlN、InN、これらの混晶(AlGaInN)など融液化が困難な窒化物や、SiCなどの炭化物に対して、容易に結晶成長させることができるため、特に産業上の意義が大きい。また、例えば、ZnOなど、融点が高く融液化できないものの、水熱法により結晶製造できるものについても、本発明の結晶製造方法では、水熱法では困難な、半導体化させる上で必要である微量成分の調整が容易となるため、特に産業上の意義が大きい。このように、本発明の結晶製造方法では、実用的な結晶(例えば単結晶)を作製することができるものと推察される。
結晶製造装置20の構成の概略を示す構成図。 スリット37の走査方法の説明図。 結晶化処理の説明図。 結晶製造装置50の構成の概略を示す構成図。 結晶製造装置20Bの構成の概略を示す構成図。
 次に、本発明を実施するための形態を図面を用いて説明する。図1は、本発明の結晶製造方法に用いる結晶製造装置20の構成の概略を示す構成図である。結晶製造装置20は、大気圧より低い気圧の雰囲気下で原料粉体を種基板上に噴射するエアロゾルデポジション法(AD法)に用いられる装置として構成されている。この結晶製造装置20は、原料成分を含む原料粉体のエアロゾルを生成するエアロゾル生成部22と、原料粉体を種基板21に噴射して原料成分を含む膜を形成すると共にこの膜を結晶化させる結晶生成部30とを備えている。エアロゾル生成部22は、原料粉体を収容し図示しないガスボンベからの搬送ガスの供給を受けてエアロゾルを生成するエアロゾル生成室23と、生成したエアロゾルを結晶生成部30へ供給する原料供給管24とを備えている。原料供給管24の結晶生成部30側には、エアロゾルを予備加熱する予備加熱ヒーター26が配設されており、予備加熱したエアロゾルが結晶生成部30へ供給されるようになっている。結晶生成部30は、種基板21にエアロゾルを噴射する真空チャンバー31と、真空チャンバー31内に設けられた部屋状の断熱材32と、断熱材32の内部に配設され種基板21を固定する基板ホルダ34と、基板ホルダ34をX軸-Y軸方向に移動するX-Yステージ33と、を備えている。また、結晶生成部30は、断熱材32の内部に配設され種基板21を加熱する加熱部35と、先端にスリット37が形成されエアロゾルを種基板21へ噴射する噴射ノズル36と、真空チャンバー31を減圧する真空ポンプ38と、を備えている。この結晶製造装置20では、真空チャンバー31内において、原料粉体が単結晶化する温度、例えば900℃以上の加熱処理を行えるように、石英ガラスやセラミックスなどの部材を用いて各々が構成されている。この結晶製造装置20を利用する結晶製造方法について以下説明する。
[成膜結晶化工程]
 この工程では、原料成分が単結晶化する所定の単結晶化温度で、この原料成分を含む原料粉体を噴射して単結晶からなる種基板上に原料成分を含む膜を形成する成膜処理を行うと共に、原料を含む膜を所定の単結晶化温度のまま結晶化させる結晶化処理を行う。
 成膜処理において、原料成分を含む原料粉体としては、単結晶を作製するものであれば特に限定されないが、例えば、酸化物や窒化物、炭化物を含む粉体などが挙げられる。このうち、酸化物としてはZnOなどが挙げられる。また、窒化物としては、例えば、GaN、AlN、InN、これらの混晶(AlGaInN)などが挙げられ、このうちGaNが好ましい。また、炭化物としては、例えば、SiCなどが挙げられる。原料粉体は、AD法においては、凝集のない1次粒子(粒子内に粒界を含まない粒子)が好ましく、粒径は、例えば、0.05μm以上10μm以下が好ましく、0.2μm以上2μm以下がより好ましい。この粒径は、レーザ回折/散乱式粒度分布測定装置を用いて分散媒(有機溶剤や水など)に分散させて測定したメディアン径(D50)をいうものとする。なお、原料粉体は予めボールミル、遊星ボールミル、ジェットミル等によるミル処理を行ってもよい。これにより粒子の表面性状や結晶性が変化し、AD法における成膜速度を向上することが可能となる。また、原料粉体に対し、熱処理を行ってもよい。これによりAD法により成膜された膜の緻密度を向上することが可能となる。成膜処理において、種基板は、原料成分と同じ成分からなるものとしてもよく、例えば、酸化物や窒化物、炭化物などが挙げられる。この種基板は、単結晶を含むものであればよく、例えば、単結晶基板でもよいし、表面に単結晶膜が形成された支持基板でもよい。このうち、単結晶基板であることがより好ましい。成膜処理の温度は、例えば、原料成分からなる成膜体が単結晶化する所定の単結晶化温度で行うものとする。例えば、単結晶化温度は、原料成分の種別(例えばGaN)や結晶構造、さらには結晶粒径や緻密度などの成膜体の微構造に応じて単結晶化が進行する温度に経験的に求めるものとする。この単結晶化温度は、例えば、900℃以上としてもよいし、1000℃以上としてもよいし、1200℃以上としてもよい。この単結晶化温度は、原料粉体の融点もしくは分解温度よりも低い範囲とすることが好ましい。
 成膜処理において、搬送ガス及び圧力調整ガスは、不活性ガスであることがより好ましく、例えば原料粉体が窒化物であるときには、N2ガスが好ましい。噴射条件としては、室温にて噴射したときに膜が形成され、その膜組織として、結晶子径が100nm以下で、緻密度が95%以上となるように、搬送ガスおよび圧力調整ガス、真空チャンバーの圧力を調整することが好ましい。こうすることで、単結晶化温度が低くできる。結晶子径はTEM観察から、緻密度は断面SEM観察による画像解析から測定できる。噴射ノズルは、長辺及び短辺を有するスリットが形成されていることが好ましい。このスリットは、長辺が1mm以上10mm以下の範囲で形成してもよく、短辺が0.1mm以上1mm以下の範囲で形成してもよい。原料粉体を噴射して形成する膜の厚さは、5μm以下であることが好ましく、3μm以下であることがより好ましい。この膜の厚さは、0.1μm以上であることが好ましい。この膜の厚さを5μm以下とすると、緻密性がより向上する。
 この成膜処理において、原料粉体を長辺及び短辺を有するスリットから噴射する際には、このスリットを走査するものとしてもよい。スリットの走査は、特に限定されないが、成膜処理を同じ領域に対して数回行う、即ち重ね塗りとなるよう行うものとしてもよい。図2は、スリット37の走査方法の説明図である。図2に示すように、成膜する際は、原料粉体を長辺及び短辺を有するスリットから噴射すると共にこの長辺に対して垂直方向にスリットと種基板とを相対的に走査して種基板上に膜を形成する(第1成膜領域21a)。ここで、図1の結晶製造装置20では、X-Yステージ33により種基板21を移動させるものとするが、噴射ノズル36側を移動させるものとしてもよい。次に、長辺方向にスリットと種基板とを相対的に走査し、その後、種基板上に形成された膜に隣接した領域に対して長辺に対して垂直方向にスリットと種基板とを相対的に走査し前回形成された膜に隣接して今回の膜を形成する(第2成膜領域21b)。そして、これらの操作処理を繰り返し行うものとしてもよい。このような走査を複数回行うことにより、比較的大きな面積の単結晶を得ることができ、また、各回の成膜のインターバルが全面について同程度となり、均質な単結晶が得られる。さらには、生成する単結晶の厚さを制御することができる。ここでは、矩形を描くようにスリットを走査させるものとしたが、8の字を描くようにスリットを走査させてもよいし、ジグザグにスリットを走査させてもよいし、スリットを往復させてもよい。スリットの走査は、後述する結晶化処理によって、膜が結晶化する時間に応じた走査速度で行うことが好ましい。この走査速度は、原料の種別、単結晶化温度に応じて経験的に求めることができ、例えば、0.1mm/s以上10mm/s以下の範囲とすることが好ましい。なお、原料粉体を重ねて噴射する際には、先に噴射して形成された膜が結晶化済みとなった上に重ねて次の噴射を行ってもよいし、先に噴射して形成された膜が結晶化していない上に重ねて次の噴射を行ってもよい。この成膜処理において、例えば、単結晶化していない部分の厚さが2μm以下であれば、単結晶化していない部分が残っていてもよい。
 結晶化処理では、上述した成膜処理の温度(単結晶化温度)のまま処理を行う。この結晶化処理では、成膜処理において基板上に形成された原料粒子からなる膜を、単結晶化温度中に置くことにより結晶化させる処理である。この単結晶化温度は、成膜処理で説明したものと同じであり、例えば、900℃以上としてもよいし、1000℃以上としてもよいし、1200℃以上としてもよい。この単結晶化温度は、原料粉体の融点よりも低い範囲とすることが好ましい。図3は、結晶化処理の説明図である。図3に示すように、成膜処理において、噴射された原料粒子が基板(種基板)に衝突して基板上で衝撃固化し成膜体39が生成する。この成膜処理を行っている雰囲気が単結晶化温度であることから、衝撃固化した原料粒子が順次、固相結晶成長し単結晶化する。あるいは配向性及び緻密性の高い結晶成長が起きる。このようにして、3次元的に配向した結晶を得ることができるのである。なお、得られる結晶体は、単結晶であることが好ましいが、単結晶ではない部分を含んでいてもよいし、多結晶であって且つ3次元的に配向したものであってもよい。
 以上説明した実施形態の結晶製造方法によれば、配向性及び緻密性がより良好な結晶を作製することができる。また、空隙が極めて少なく且つ厚い結晶体(単結晶)を得ることができる。この理由は、例えば、本発明の結晶製造方法では、単結晶化する熱処理条件化で成膜を行うことから、成膜された緻密な膜組織が順次、単結晶化しながら厚さを増すため、空隙が発生しにくく、配向性及び緻密性がより良好な結晶を作製することができるものと推察される。また、単結晶化温度で原料粒子を噴射すればよいため、融点が非常に高い原料粉体(例えば窒化物)、又は分解しやすい原料粉体(例えば炭化物)を用いて容易に結晶成長させることができる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、大気圧より低い気圧中で原料粉体を種基板上に噴射するエアロゾルデポジション法に用いられる結晶製造装置20を利用するものとしたが、特にこれに限定されず、図4に示すように、大気圧の気圧中又は大気圧以上の気圧の雰囲気中で原料粉体を種基板上に噴射するパウダージェットデポジション法に用いられる結晶製造装置50を利用するものとしてもよい。図4は、本発明の結晶製造方法に用いる結晶製造装置50の構成の概略を示す構成図である。結晶製造装置50は、原料粉体及び搬送ガスを含む原料流体を生成するジェットパウダー生成部52と、原料粉体を種基板51に噴射して原料成分を含む膜を形成すると共にこの膜を結晶化させる結晶生成部60とを備えている。ジェットパウダー生成部52は、原料粉体を収容し図示しないガスボンベからの搬送ガスの供給を受ける圧力タンク53と、生成したエアロゾルを結晶生成部60へ供給する原料供給管54とを備えている。原料供給管54の結晶生成部60側には、原料流体を予備加熱する予備加熱ヒーター56が配設されており、予備加熱した原料流体が結晶生成部60へ供給されるようになっている。結晶生成部60は、常圧下で種基板51に原料流体を噴射するチャンバー61と、チャンバー61内に設けられた部屋状の断熱材62と、断熱材62の内部に配設され種基板51を固定する基板ホルダ64と、基板ホルダ64をX軸-Y軸方向に移動するX-Yステージ63と、を備えている。また、結晶生成部60は、断熱材62の内部に配設され種基板51を加熱する加熱部65と、先端にスリット67が形成され原料流体を種基板51へ噴射する噴射ノズル66と、を備えている。この結晶製造装置50では、チャンバー61内において、原料粉体が単結晶化する温度、例えば900℃以上の加熱処理を行えるように、石英ガラスやセラミックスなどの部材により各々が構成されている。そして、この結晶製造装置50を用い、原料成分が単結晶化する所定の単結晶化温度で、この原料成分を含む原料粉体を噴射して単結晶からなる種基板上に原料成分を含む膜を形成する成膜処理を行うと共に、原料を含む膜を所定の単結晶化温度のまま結晶化させる結晶化処理を行う成膜結晶化工程を実行する。このとき、噴射条件として、室温にて噴射したときに膜が形成され、その膜組織として、結晶子径が100nm以下で、緻密度が95%以上となるように、搬送ガス、チャンバーの圧力を調整するものとしてもよい。その他の条件は、上述したAD法の条件に準じて行うことができる。こうしても、配向性及び緻密性がより良好な結晶を作製することができる。
 上述した実施形態では、結晶製造装置20において、断熱材32の内部に配設された加熱部35により種基板21を含む成膜室(断熱材32の内側)全体を加熱するものとしたが、特にこれに限定されない。成膜室(断熱材32の内側)の温度制御は成膜室内部の加熱部35(ヒーター)に加え、基板部分のみを別の加熱源により加熱してもよい。例えば、図5に示すように、加熱部35に加えて、真空チャンバー31の外部から種基板21を加熱する加熱装置70を用いるものとしてもよい。図5は、結晶製造装置20Bの構成の概略を示す構成図である。この結晶製造装置20Bは、結晶製造装置20(図1参照)に加えてレーザーを照射する加熱装置70が配設されている。ここでは、結晶製造装置20Bにおいて、結晶製造装置20と同様の構成については同じ符号を付してその説明を省略する。結晶製造装置20Bは、加熱装置70と基板ホルダ34との間において、真空チャンバー31に透過窓71が配設され、断熱材32に透過窓72が配設されており、加熱装置70からのレーザーを基板ホルダ34上に照射可能となっている。加熱装置70は、基板ホルダ34上へのレーザーの照射範囲を調整可能な光学系73と、加熱用のレーザーを発生させるレーザー発生装置74とを備えている。この結晶製造装置20Bでは、レーザー発生装置74で発生したレーザーを、光学系73及び透過窓71,72を介して基板ホルダ34上の種基板21へ照射することにより種基板21の全体または一部を加熱可能に構成されている。基板部分の加熱源は特に限定されるものではなく、例えばCO2レーザー、YAGレーザー、エキシマレーザー、半導体レーザーといった各種レーザーに加え、赤外線ランプなどを適用可能である。赤外線ランプはチャンバー内の種基板付近に設置し、基板部分を加熱してもよいし、チャンバー外に設置し、赤外線導入ロッドを用いて赤外光を導入してもよい。上記加熱源によれば、加熱部35の出力を抑えられ、単結晶作製時のエネルギー使用量を低減することができる。また、直接的に種基板21を加熱可能であり、結晶生成部30に求められる耐熱性が低減するため、結晶製造装置20を構成する部材の選択性及び耐久性をより向上することができる。なお、基板部分のみを加熱する加熱源のみにより種基板21を加熱すると、種基板21とエアロゾルのガス流との温度差により基板表面からガス流が押し返されるという現象を含む熱泳動効果の影響により、成膜が困難となることがある。このため、成膜室全体を加熱する加熱部35と基板部分のみを加熱する加熱源(加熱装置70)とを併用し、成膜室と種基板21の温度差を所定範囲内にすることが好ましい。成膜室と種基板21の温度差は700℃以下とすることが好ましい。
 上述した実施形態では、噴射ノズルにはスリットが設けられているものとしたが、原料粉体を噴射することができれば、特にこれに限定されず、円形や楕円形、多角形の孔としてもよい。
 上述した実施形態では、結晶製造装置20,20Bや結晶製造装置50を用いるものとしたが、特にこれに限定されず、成膜結晶化工程を実行可能であれば、結晶製造装置20,20Bや結晶製造装置50以外の装置を用いるものとしてもよい。
 以下には、結晶製造方法を具体的に製造した例を実施例として説明する。
[実施例1]
 原料粉体としてGaN粉体(高純度化学研究所製、平均一次粒径0.2μm)、種基板としてGaN単結晶基板(13mm×18mm角、(002)面)を用いた。また、図1に示す、チャンバー内温度が1200℃に対応するAD法の結晶製造装置を用いてGaN単結晶を製造した。製造条件として、まず噴射条件は、搬送ガス及び圧力調整ガスをN2とした。長辺5mm×短辺0.3mmのスリットが形成されたセラミックス製のノズルを用いた。また、ノズルのスキャン条件は、0.5mm/sのスキャン速度で、図2に示すように、スリットの長辺に対して垂直且つ進む方向に10mm移動、スリットの長辺方向に5mm移動、スリットの長辺に対して垂直且つ戻る方向に10mm移動、スリットの長辺方向且つ初期位置方向に5mm移動、とのサイクルを200サイクルとした。室温での1サイクルの成膜において、搬送ガスの設定圧力を0.06MPa、流量を6L/min、圧力調整ガスの流量を0L/min、チャンバー内圧力を100Pa以下に調整した。このとき、膜組織として結晶子径100nm以下、緻密度95%以上となった。この噴射条件において、結晶成長条件として、単結晶が成長する温度である成膜室の温度を1050℃とした。得られた単結晶は、厚さ0.5mmであった。
[実施例2]
 原料粉体としてZnO粉体(高純度化学研究所製、平均一次粒径0.5μm)、種基板としてZnO単結晶基板(10mm×10mm角、(002)面)を用いた。結晶製造には実施例1と同様の装置を用い、AD法による成膜条件は、搬送ガス及び圧力調整ガスをHeとし、噴射ノズルのサイズを長辺10mm×短辺0.4mmとした以外は実施例1と同様である。このとき、膜組織として結晶子径100nm以下、緻密度98%以上となった。この噴射条件において、結晶成長条件として、単結晶が成長する温度である成膜室の温度を1250℃とした。得られた単結晶厚さは0.8mmであった。
[実施例3]
 原料粉体・種基板は実施例2と同様とし、実施例1又は2で使用した結晶製造装置20にレーザー加熱装置70を付加した結晶製造装置20Bを用いた(図5参照)。本装置により、成膜室の温度を800℃とすると共に、CO2レーザーにより単結晶基板部分を1250℃に加熱した。このときのレーザー出力は80W、ビーム径は10mmとした。ノズルサイズ、その他の成膜条件は実施例2と同様として単結晶を作製した。このとき得られた単結晶厚さは0.8mmであった。
[比較例1]
 実施例1において、成膜室の温度を室温とし、スキャン数を20サイクルとし、種基板上に原料成分を含む膜を形成した。その後、1200℃ N2雰囲気で1h熱処理を行い、形成した膜の結晶化を行った。このとき、900~1200℃までを50℃/hで昇温した。このように、成膜工程と結晶化工程とを別々の工程として得られたものを比較例1の結晶とした。得られた単結晶の厚さは、0.04mmであった。なお、スキャン数を増やしても厚さはほとんど変わらなかった。
[電子顕微鏡(SEM)撮影]
 作製した実施例1~3及び比較例1の評価として、断面のSEM撮影を行った。SEM撮影は、走査型電子顕微鏡(日本電子製JSM-6390)を用いた。試料は、膜面に沿って研磨し、倍率1000倍で観察した。このとき、実施例1では空隙が確認できなかったのに対し、比較例1では空隙が20個以上観察された。また、実施例2,3の単結晶について、実施例1と同様の方法で断面のSEM観察を行ったところ、実施例2,3についても空隙は確認されなかった。また、膜面に対するXRD測定装置(ブルカーAXS社製、「D8ADVANCE」)によりXRDプロファイルを測定したところ、実施例1では、(002)面による回折ピークのみが観測され、さらに膜表面に現れるモフォロジーである正六角形の面内の向きが揃っていることから、単結晶化が確認された。また、実施例2,3の膜面に対するXRDプロファイルを測定したところ、(002)面による回折ピークのみが観測され、さらに膜表面に現れるモフォロジーである正六角形の面内の向きが揃っていることから、実施例2,3についても単結晶化が確認された。一方、比較例1では(002)以外の回折ピークも観測され、単結晶化の度合いが低いことが確認された。
 本出願は、2010年11月2日に出願された日本国特許出願第2010-245948号、2011年3月10日に出願された日本国特許出願第2011-052458号、及び2011年8月26日に出願された日本国特許出願第2011-184848号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、単結晶を製造する技術分野に利用可能である。

Claims (8)

  1.  原料成分が単結晶化する所定の単結晶化温度で該原料成分を含む原料粉体を噴射して単結晶を含む種基板上に該原料成分を含む膜を形成すると共に、前記形成した原料成分を含む膜を前記単結晶化温度のまま結晶化させる成膜結晶化工程、
     を含む結晶製造方法。
  2.  前記成膜結晶化工程では、前記単結晶化温度が900℃以上である、請求項1に記載の結晶製造方法。
  3.  前記成膜結晶化工程では、前記原料粉体に含まれる原料成分及び前記種基板が窒化物である、請求項1又は2に記載の結晶製造方法。
  4.  前記成膜結晶化工程では、前記原料粉体に含まれる原料成分及び前記種基板が酸化物である、請求項1又は2に記載の結晶製造方法。
  5.  前記成膜結晶化工程では、前記原料粉体を噴射して形成する膜の厚さが5μm以下である、請求項1~4のいずれか1項に記載の結晶製造方法。
  6.  前記成膜結晶化工程では、前記原料粉体を長辺及び短辺を有するスリットから噴射すると共に該長辺に対して垂直方向に該スリットと該種基板とを相対的に走査し該種基板上に前記膜を形成したのち、該長辺方向に該スリットと該種基板とを相対的に走査し、その後、前記種基板上に形成された膜に隣接した領域に対して該長辺に対して垂直方向に該スリットと該種基板とを相対的に走査し前回形成された膜に隣接して今回の膜を形成する処理を繰り返すことにより、前記種基板上に前記膜を形成する、請求項1~5のいずれか1項に記載の結晶製造方法。
  7.  前記成膜結晶化工程では、大気圧より低い気圧の雰囲気中で前記原料粉体を前記種基板上に噴射するエアロゾルデポジション法により前記膜を形成すると共に、前記膜を結晶化させる、請求項1~6のいずれか1項に記載の結晶製造方法。
  8.  前記成膜結晶化工程では、大気圧又は大気圧以上の気圧の雰囲気中で前記原料粉体を前記種基板上に噴射するパウダージェットデポジション法により前記膜を形成すると共に、前記膜を結晶化させる、請求項1~6のいずれか1項に記載の結晶製造方法。
PCT/JP2011/075023 2010-11-02 2011-10-31 結晶製造方法 WO2012060309A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800511410A CN103180490A (zh) 2010-11-02 2011-10-31 晶体制造方法
JP2012541839A JP5914348B2 (ja) 2010-11-02 2011-10-31 結晶製造方法
EP11837959.3A EP2636771A4 (en) 2010-11-02 2011-10-31 CRYSTAL METHOD
US13/866,185 US9663871B2 (en) 2010-11-02 2013-04-19 Method for forming a single crystal by spraying the raw material onto a seed substrate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010245948 2010-11-02
JP2010-245948 2010-11-02
JP2011-052458 2011-03-10
JP2011052458 2011-03-10
JP2011184848 2011-08-26
JP2011-184848 2011-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/866,185 Continuation US9663871B2 (en) 2010-11-02 2013-04-19 Method for forming a single crystal by spraying the raw material onto a seed substrate

Publications (1)

Publication Number Publication Date
WO2012060309A1 true WO2012060309A1 (ja) 2012-05-10

Family

ID=46024422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075023 WO2012060309A1 (ja) 2010-11-02 2011-10-31 結晶製造方法

Country Status (5)

Country Link
US (1) US9663871B2 (ja)
EP (1) EP2636771A4 (ja)
JP (1) JP5914348B2 (ja)
CN (1) CN103180490A (ja)
WO (1) WO2012060309A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035356A1 (ja) * 2011-09-07 2013-03-14 日本碍子株式会社 結晶製造方法
WO2014057951A1 (ja) * 2012-10-10 2014-04-17 日本発條株式会社 成膜方法及び成膜装置
WO2014091968A1 (ja) * 2012-12-14 2014-06-19 日本碍子株式会社 単結晶製造方法、及び当該方法によって製造される単結晶
WO2014091969A1 (ja) * 2012-12-14 2014-06-19 日本碍子株式会社 単結晶製造装置、当該装置を用いる単結晶製造方法、及び当該方法によって製造される単結晶
WO2014092167A1 (ja) * 2012-12-14 2014-06-19 日本碍子株式会社 酸化亜鉛基板を用いた面発光素子
JP2017213510A (ja) * 2016-05-31 2017-12-07 富士通株式会社 光励起材料

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10092926B2 (en) * 2016-06-01 2018-10-09 Arizona Board Of Regents On Behalf Of Arizona State University System and methods for deposition spray of particulate coatings
KR102649715B1 (ko) * 2020-10-30 2024-03-21 세메스 주식회사 표면 처리 장치 및 표면 처리 방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442853A (ja) * 1990-06-08 1992-02-13 Vacuum Metallurgical Co Ltd ガス・デポジション法による高温超伝導体厚膜の形成法およびその形成装置
JPH0649656A (ja) * 1992-08-04 1994-02-22 Vacuum Metallurgical Co Ltd ガス・デポジション法による超微粒子膜の形成法およびその形成装置
US5868837A (en) 1997-01-17 1999-02-09 Cornell Research Foundation, Inc. Low temperature method of preparing GaN single crystals
JP2003178984A (ja) 2001-03-27 2003-06-27 Nec Corp Iii族窒化物半導体基板およびその製造方法
JP2006188046A (ja) * 2004-12-09 2006-07-20 Fuji Photo Film Co Ltd セラミックス膜の製造方法及びセラミックス膜を含む構造物
JP2006298747A (ja) 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd 配向膜の製造方法、及び、液体吐出ヘッドの製造方法
JP2008285339A (ja) * 2007-05-15 2008-11-27 Shimane Univ セラミックス膜、発光素子及びセラミックス膜の製造方法
JP2009132944A (ja) 2006-03-13 2009-06-18 Hoya Corp エアロゾルデポジション法による成膜体の形成方法
JP2010245948A (ja) 2009-04-08 2010-10-28 Canon Inc 画像表示装置及び方法、プログラム、並びに記録媒体
JP2011052458A (ja) 2009-09-02 2011-03-17 Niigata Transys Co Ltd 樹脂固定軌道の構築方法
JP2011184848A (ja) 2004-11-11 2011-09-22 Albany Internatl Corp 形成布

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649656A (en) * 1987-07-02 1989-01-12 Nec Corp Bipolar transistor
JPH0657906B2 (ja) * 1990-04-19 1994-08-03 鐘紡株式会社 布帛の拡布センタリング装置
EP1340583A1 (en) * 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Method of controlled remelting of or laser metal forming on the surface of an article
JP2003267796A (ja) * 2002-03-15 2003-09-25 Akio Ikesue ペロブスカイト構造を有する酸化物及びその製造方法
JP2003347234A (ja) * 2002-05-27 2003-12-05 Toyota Central Res & Dev Lab Inc Iii族窒化物膜の製造方法
JP4182205B2 (ja) * 2003-03-20 2008-11-19 独立行政法人産業技術総合研究所 13族窒化物の結晶構造変化方法
JP2005203761A (ja) * 2003-12-15 2005-07-28 Canon Inc 圧電膜素子およびその製造方法ならびに液体吐出ヘッド
JP4753869B2 (ja) * 2004-03-31 2011-08-24 日本碍子株式会社 窒化ガリウム単結晶の育成方法
JP2006032485A (ja) * 2004-07-13 2006-02-02 Brother Ind Ltd 圧電膜形成方法
JP2006097087A (ja) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd 成膜方法及び成膜装置
US7785659B2 (en) * 2005-03-22 2010-08-31 Fujifilm Corporation Method of manufacturing an orientation film using aerosol deposition on a seed substrate
WO2007037498A1 (en) * 2005-09-30 2007-04-05 Fujifilm Corporation Method of manufacturing composite structure, impurity removal processing apparatus, film forming apparatus, composite structure and raw material powder
JP2008222489A (ja) * 2007-03-13 2008-09-25 Shin Etsu Chem Co Ltd 炭化珪素製造用原料に用いるスラリ、二次粒子及び単結晶炭化珪素の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442853A (ja) * 1990-06-08 1992-02-13 Vacuum Metallurgical Co Ltd ガス・デポジション法による高温超伝導体厚膜の形成法およびその形成装置
JPH0649656A (ja) * 1992-08-04 1994-02-22 Vacuum Metallurgical Co Ltd ガス・デポジション法による超微粒子膜の形成法およびその形成装置
US5868837A (en) 1997-01-17 1999-02-09 Cornell Research Foundation, Inc. Low temperature method of preparing GaN single crystals
JP2003178984A (ja) 2001-03-27 2003-06-27 Nec Corp Iii族窒化物半導体基板およびその製造方法
JP2011184848A (ja) 2004-11-11 2011-09-22 Albany Internatl Corp 形成布
JP2006188046A (ja) * 2004-12-09 2006-07-20 Fuji Photo Film Co Ltd セラミックス膜の製造方法及びセラミックス膜を含む構造物
JP2006298747A (ja) 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd 配向膜の製造方法、及び、液体吐出ヘッドの製造方法
JP2009132944A (ja) 2006-03-13 2009-06-18 Hoya Corp エアロゾルデポジション法による成膜体の形成方法
JP2008285339A (ja) * 2007-05-15 2008-11-27 Shimane Univ セラミックス膜、発光素子及びセラミックス膜の製造方法
JP2010245948A (ja) 2009-04-08 2010-10-28 Canon Inc 画像表示装置及び方法、プログラム、並びに記録媒体
JP2011052458A (ja) 2009-09-02 2011-03-17 Niigata Transys Co Ltd 樹脂固定軌道の構築方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ATSUSHI IWATA ET AL.: "Hexagonal to cubic crystal structure transformation during aerosol deposition of aluminum nitride", JOURNAL OF CRYSTAL GROWTH, vol. 275, 2005, pages E1269 - E1273, XP027849746 *
MAXIM LEBEDEV ET AL.: "Substrate heating effects on hardness of an a-A1203 thick film formed by aerosol deposition method", JOURNAL OF CRYSTAL GROWTH, vol. 275, pages E1301 - E1306, XP027849751 *
See also references of EP2636771A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035356A1 (ja) * 2011-09-07 2013-03-14 日本碍子株式会社 結晶製造方法
WO2014057951A1 (ja) * 2012-10-10 2014-04-17 日本発條株式会社 成膜方法及び成膜装置
JP2014076426A (ja) * 2012-10-10 2014-05-01 Nhk Spring Co Ltd 成膜方法及び成膜装置
CN104704144A (zh) * 2012-10-10 2015-06-10 日本发条株式会社 成膜方法以及成膜装置
CN104704144B (zh) * 2012-10-10 2017-05-03 日本发条株式会社 成膜方法以及成膜装置
KR101745219B1 (ko) * 2012-10-10 2017-06-08 닛폰 하츠죠 가부시키가이샤 성막 방법 및 성막 장치
US10350616B2 (en) 2012-10-10 2019-07-16 Nhk Spring Co., Ltd. Film forming method and film forming apparatus
WO2014091968A1 (ja) * 2012-12-14 2014-06-19 日本碍子株式会社 単結晶製造方法、及び当該方法によって製造される単結晶
WO2014091969A1 (ja) * 2012-12-14 2014-06-19 日本碍子株式会社 単結晶製造装置、当該装置を用いる単結晶製造方法、及び当該方法によって製造される単結晶
WO2014092167A1 (ja) * 2012-12-14 2014-06-19 日本碍子株式会社 酸化亜鉛基板を用いた面発光素子
JP2017213510A (ja) * 2016-05-31 2017-12-07 富士通株式会社 光励起材料

Also Published As

Publication number Publication date
EP2636771A1 (en) 2013-09-11
EP2636771A4 (en) 2014-10-08
US9663871B2 (en) 2017-05-30
JP5914348B2 (ja) 2016-05-11
CN103180490A (zh) 2013-06-26
JPWO2012060309A1 (ja) 2014-05-12
US20130263771A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5914348B2 (ja) 結晶製造方法
WO2014196095A1 (ja) 酸化物結晶薄膜の製造方法
JP4949668B2 (ja) セラミックス膜の製造方法及びセラミックス膜を含む構造物
CN101786653B (zh) 一种掺杂稀土元素氧化锌一维纳米材料的制备方法和应用
JP7146946B2 (ja) 3C-SiC膜を調製するためのプロセス
JP2014234344A (ja) 酸化物結晶薄膜の製造方法
WO2014091968A1 (ja) 単結晶製造方法、及び当該方法によって製造される単結晶
KR20100110216A (ko) 열플라즈마 화학기상증착법을 이용한 제어 가능한 그래핀 시트 제조방법
Redkin et al. Aligned arrays of zinc oxide nanorods on silicon substrates
CN100371509C (zh) ZnO纳米晶柱/纳米晶丝复合结构产品及其制备工艺
JP6021281B2 (ja) 酸化亜鉛単結晶の製造方法
KR101161172B1 (ko) 치아교정용 세라믹 브라켓의 제조방법
KR101335723B1 (ko) 수열 합성법과 플라즈마 표면 처리의 반복에 의한 나노 로드의 제조 방법, 이에 의하여 제조된 나노 로드 및 이를 포함하는 소자
WO2013035356A1 (ja) 結晶製造方法
KR100948193B1 (ko) 인듐 나노와이어의 성장 방법
JP2008053665A (ja) 半導体基板の製造方法、半導体基板の製造装置及び半導体基板
JP2017081770A (ja) シリコンナノ粒子の製造方法及び装置
KR101335722B1 (ko) 수열 합성법과 원자층 증착법을 이용한 박막 형성에 의한 나노 로드의 제조 방법, 이에 의하여 제조된 나노 로드 및 이를 포함하는 소자
CN112853490B (zh) 一种二维Cd7Te7Cl8O17晶体材料及其制备方法
Ng et al. Synthesis of ZnO nanoflakes by 1064 nm Nd: YAG pulsed laser deposition in a horizontal tube furnace
JP2013216558A (ja) 3b族元素及び7b族元素が固溶された酸化亜鉛単結晶
CN105645464A (zh) 一种尺寸均匀In2O3八面体纳米颗粒的制备方法
KR20170041958A (ko) 금속 기지상에 배향된 탄소 섬유의 제조방법 및 그 금속 기지
Yu et al. Self-catalyst synthesis of aligned ZnO nanorods by pulsed laser deposition
Wei et al. Vapour transport growth of ZnO nanowires using a predeposited nanocrystalline template

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012541839

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011837959

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE