WO2012057171A1 - 樹脂組成物、それを用いたプリプレグ及び積層板 - Google Patents

樹脂組成物、それを用いたプリプレグ及び積層板 Download PDF

Info

Publication number
WO2012057171A1
WO2012057171A1 PCT/JP2011/074598 JP2011074598W WO2012057171A1 WO 2012057171 A1 WO2012057171 A1 WO 2012057171A1 JP 2011074598 W JP2011074598 W JP 2011074598W WO 2012057171 A1 WO2012057171 A1 WO 2012057171A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
resin
laminate
compound
Prior art date
Application number
PCT/JP2011/074598
Other languages
English (en)
French (fr)
Inventor
哲朗 新山
嘉久 曽根
Original Assignee
エア・ウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エア・ウォーター株式会社 filed Critical エア・ウォーター株式会社
Priority to CN201180051975.1A priority Critical patent/CN103180385B/zh
Priority to KR1020137009123A priority patent/KR101507528B1/ko
Priority to JP2012540896A priority patent/JP5832444B2/ja
Priority to US13/824,899 priority patent/US20130260155A1/en
Publication of WO2012057171A1 publication Critical patent/WO2012057171A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/04Epoxynovolacs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal

Definitions

  • the present invention is used in the field of electronic materials such as electronic / electrical parts, printed wiring boards, semiconductor substrates, and IC encapsulants, and particularly exhibits excellent flame retardancy without containing a halogen-containing flame retardant or a phosphorus-containing flame retardant.
  • the present invention relates to a resin composition suitable for printed wiring boards and semiconductor substrates that require high heat resistance and flame retardancy, a prepreg using the same, and a composite material and a laminate obtained therefrom.
  • halogen-free materials materials that do not contain halogen compounds
  • phosphorus-containing compounds such as red phosphorus have been mainly studied as flame retardants replacing halogen-containing compounds.
  • phosphorus-containing flame retardants may generate toxic phosphorus compounds such as phosphine during combustion, and when a typical phosphate ester is used as a phosphorus-containing compound flame retardant, the moisture resistance of the composition is significantly impaired.
  • metal hydroxides are known as other flame retardants.
  • aluminum hydroxide is known to have an effect as a flame retardant by the following reaction that releases crystal water when heated.
  • Patent Document 2 When the amount of aluminum hydroxide added is large, the performance of the resin composition and the laminate formed by the resin, in particular, moisture resistance and heat resistance after moisture absorption (solder heat resistance) are significantly reduced (see Patent Document 2). Since the moisture resistance and the heat resistance after moisture absorption greatly affect the reliability at the time of mounting when the laminate is used as a semiconductor substrate or the like, improvement is required. Conventionally, when evaluating the flame retardancy of a laminate, the evaluation is often performed with a thick plate such as 1.6 mm. However, as electronic devices have become smaller and lighter in recent years, the thickness of a laminate used as a semiconductor substrate is required to be 0.5 mm or less, preferably 0.2 mm or less.
  • a material having high heat resistance (high Tg) and low thermal expansion has been demanded to withstand high temperature processing.
  • a high Tg material is considered to be low in warpage due to low thermal expansion, and can withstand Cu wire bonding processing because of its high temperature elastic modulus.
  • this high Tg material is disadvantageous in that it has a high heat resistance, but is fragile, easily burned, and has poor adhesion. The reason why the adhesiveness is inferior is considered to be brittle because a highly crosslinked epoxy resin is used.
  • a resin composition having a high Tg and low thermal expansion can be obtained by combining a resin composition containing a specific maleimide group and an epoxy resin (epoxy curing agent containing a naphthol skeleton or / and an epoxy resin). It has been reported. (See Patent Documents 3 and 4). However, halogenated flame retardants such as brominated epoxy resins are used to impart flame retardancy (see Patent Document 5), and metal hydroxides such as aluminum hydroxide are used in large quantities as flame retardants. There was a need.
  • An object of the present invention is to provide a resin composition having high Tg (high heat resistance), low thermal expansion and excellent flame retardancy.
  • the present invention provides a resin composition which is advantageous for halogen-free since it has a high Tg and excellent flame retardancy, and also has excellent adhesion to Cu.
  • the present invention (A) a polymaleimide compound represented by the following general formula [1], (B) It contains an epoxy resin having at least two glycidyl groups in the molecule represented by the following general formula [2], and (C) a phenol compound having at least two OH groups in the molecule.
  • a modified polyimide resin composition is provided.
  • R 1 represents a k-valent organic group
  • X a and X b may be the same or different and each represents a monovalent atom or group selected from a hydrogen atom and an organic group.
  • K is an integer of 2 or more.
  • n represents an average value and is a value of 1 to 15
  • G represents a glycidyl group
  • R may be the same as or different from each other, and may be a hydrogen atom, having 1 to 8 carbon atoms.
  • P represents a hydrogen atom, an alkyl group, an alkene group or an aromatic hydrocarbon group.
  • a modified polyimide resin obtained by reacting the resin composition by heat treatment, particularly a modified polyimide resin obtained by reacting at least between (A) and (C) is a preferred embodiment of the present invention.
  • the present invention also provides a modification containing (A), (B) and (C), and (D) a glycidyl ether compound and (E) at least one compound selected from compounds having at least one active hydrogen.
  • a polyimide resin composition is provided.
  • the present invention further includes a prepreg obtained by impregnating the modified polyimide resin composition base material, a composite material obtained by heating and pressing a laminate of one or a plurality of the prepregs, and a single prepreg or Provided is a laminate obtained by integrating metal foils on one or both sides of the outermost layer of a laminate of a plurality of sheets.
  • a resin composition having high Tg (high heat resistance), low thermal expansion and excellent flame retardancy is provided. Since the resin composition of the present invention has high flame retardancy, sufficient flame retardancy can be obtained even when it becomes a thin laminate of 0.5 mm or less. In addition, since the flame retardancy of the resin composition is high, it is not necessary to add a flame retardant that can degrade moisture absorption characteristics such as metal hydroxides, and / or the addition can be made smaller than usual. The resin composition and the laminate formed thereby have high moisture resistance and moisture absorption heat resistance.
  • the resin composition of the present invention has an excellent performance that a high Tg is exhibited while maintaining high flame retardancy, and a resin composition having a high adhesive strength with Cu is developed without using a highly crosslinked epoxy resin. It is the resin composition which has.
  • FIG. 1 is a chart of FD-MS method molecular weight measurement of the modified polyimide resin composition (a) obtained in Example 1.
  • the present invention (A) a polymaleimide compound represented by the following general formula [1], (B) It contains an epoxy resin having at least two glycidyl groups in the molecule represented by the following general formula [2], and (C) a phenol compound having at least two OH groups in the molecule.
  • the modified polyimide resin composition is provided.
  • the modified polyimide resin composition according to the present invention (hereinafter sometimes simply referred to as a resin composition) will be described in detail below.
  • Resin Composition The polymaleimide compound (A) used in the present invention is a compound having two or more maleimide groups in one molecule represented by the following general formula [1].
  • R 1 is a k-valent organic group
  • X a and X b are the same or different monovalent atoms or groups selected from a hydrogen atom and an organic group
  • k is an integer of 2 or more, preferably 2 to 10.
  • Preferred polymaleimide compounds include those in which R 1 in the general formula [1] is selected from the group consisting of the following general formula [3].
  • Z represents —CY 2 —, —CO—, —O—, —, —S—, —SO 2 —
  • Y represents —CH 3 , CH 3 CH 2 —, CH 3 O—, —OH. , -NH 2 or a hydrogen atom, which may be the same or different.
  • R represents an integer of 1 to 10.
  • examples of the organic group include alkyl groups having 1 to 20 carbon atoms such as a methyl group.
  • a polymaleimide compound for example, N, N′-ethylene bismaleimide, N, N′-hexamethylene bismaleimide, N, N ′-(1,3-phenylene) bismaleimide, N, N′— [1,3- (2-methylphenylene)] bismaleimide, N, N ′-(1,4-phenylene) bismaleimide, bis (4-maleimidophenyl) methane, bis (3-methyl-4-maleimidophenyl) Methane, bis (4-maleimidophenyl) ether, bis (4-maleimidophenyl) sulfone, bis (4-maleimidophenyl) sulfide, bis (4-maleimidophenyl) ketone, bis (4-maleimidocyclohexyl) methane, 1,4 -Bis (4-maleimidoph
  • a polymaleimide compound represented by the following general formula [4], a polymaleimide compound represented by the general formula [5], a polymaleimide compound represented by the general formula [6], and the like should be cited as suitable examples. Can do. These polymaleimide compounds may be used alone or in combination of two or more. (In the formula, s is an average value of 0 to 10) (Wherein t is an average value of 0 to 10) (In the formula, u is an average value of 0 to 6)
  • the epoxy resin (B) used in the present invention is an epoxy resin having at least two glycidyl groups in the molecule represented by the following general formula [2]. In the formula, n represents an average value and takes a value of 1 to 15.
  • G represents a glycidyl group
  • R represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkene group
  • each R may be the same as or different from each other.
  • the alkyl group include a methyl group, a butyl group, a 2-ethylhexyl group, a decyl group, and a stearyl group.
  • the alkene group include an allyl group.
  • Examples of the aromatic hydrocarbon group include a phenyl group, sec- A butylphenyl group etc. are mentioned.
  • P represents a hydrogen atom, an alkyl group, an alkene group, or an aromatic hydrocarbon group.
  • R and P are preferably a hydrogen atom.
  • the epoxy resin (B) of the present invention can be appropriately selected from those commercially available.
  • Examples of the phenol compound having at least two OH groups in the molecule (C) used in the present invention include a phenol compound represented by the following general formula [7].
  • Ar 1 and Ar 2 are respectively a phenylene group represented by the following general formula [8] or a naphthalene group represented by the following general formula [9],
  • X represents a direct bond, alkylene having 1 to 4 carbon atoms, alkylene having 8 to 15 carbon atoms including an aromatic ring, O, S or SO 2 , and examples of alkylene include methylene, Examples of the alkylene having 8 to 15 carbon atoms containing an aromatic ring include phenylene, naphthalene, and those containing a biphenylene structure.
  • R 2 , R 3 and R 4 are each a hydrocarbon group or a hydroxyl group, v, w and x are each an integer of 0 to 3, m is an integer of 0 or more, provided that when m is 0, Ar 1 is at least (Has one hydroxyl group)
  • Specific examples of the phenol compound (C) of the present invention include hydroquinone, resorcin, catechol, pyrogallol, phloroglucin; o, m′-biphenol, o, p′-biphenol, m, m′-biphenol, m, p ′.
  • -Biphenols such as biphenol and p, p'-biphenol; bisphenols such as bisphenol F and bisphenol A; 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxy Naphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, phenol novolac resin, Kure Runoborakku resin, phenol aralkyl resin, phenol naphthylalkyl resins include triphenolmethane type novolak resin, dicyclopentadiene type phenol resin, naphthol aralkyl resin, a known phenolic resin-based curing agent such as biphenyl aralkyl resin.
  • R 5 represents a monovalent group selected from an alkyl group, an alkene group, and an aromatic hydrocarbon group.
  • an alkyl group having 1 to 20 carbon atoms is preferable, and examples thereof include a methyl group, a butyl group, a 2-ethylhexyl group, a decyl group, a stearyl group, and the alkene group includes an alkene group having 2 to 20 carbon atoms.
  • An allyl group and the like are preferable, and the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms, such as a phenyl group and a sec-butylphenyl group.
  • the resin By containing these glycidyl ether compounds, the resin is easily solubilized in the solvent during the varnishing reaction using a general-purpose solvent such as acetone or methyl ethyl ketone. A varnish can be obtained. Furthermore, since the resin is incorporated into the resin skeleton by a ring-opening reaction of the glycidyl group during the resin curing reaction, the resin cured product does not deteriorate in mechanical strength or chemical resistance. In order to achieve high moisture resistance, which is an important characteristic in electronic material applications, R 2 preferably does not contain a hydrophilic group, and in order to further improve dielectric properties, alkyl group, alkene group, aromatic A group selected from group hydrocarbon groups is preferred.
  • glycidyl ether compounds include alkyl glycidyl ethers such as methyl glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, decyl glycidyl ether, stearyl glycidyl ether, alkene glycidyl ethers such as allyl glycidyl ether, and phenyl Examples thereof include aromatic glycidyl ethers such as glycidyl ether and sec-butylphenyl glycidyl ether.
  • any compound having at least one active hydrogen in the molecule can be used.
  • the compound having at least one active hydrogen in the molecule include phenols such as phenol, bisphenol A, bisphenol F, cresol, resorcinol, naphthol, dihydroxynaphthol, aniline, aminophenol, phenylenediamine, ethylenediamine, bis ( 4-aminophenyl) amines such as methane, glycidol, glycerin diglycidyl ether, ethylene glycol monoglycidyl ether, resorcinol monoglycidyl ether, naphthoresorcinol monoglycidyl ether, and the like with one alcoholic or phenolic OH group in one molecule , A compound containing one or more epoxy groups, a compound having an OH group and an acetylene group such as
  • the total amount of the (B) component epoxy resin and the (C) component phenol compound is 10 to 500 parts by weight, preferably 25 to 300 parts by weight, based on 100 parts by weight of the (A) component polymaleimide compound.
  • the ratio of the number of OH groups of the phenol compound of component (C) to the number of glycidyl groups of the epoxy resin of component (B) is in the range of 0.2 to 5.0, preferably in the range of 0.5 to 3.0. .
  • the amount of the component (D) glycidyl ether compound is 3 to 100 parts by mass, preferably 5 to 50 parts by mass, and more preferably 7 to 20 parts by mass.
  • the resin composition of the present invention preferably further contains a curing accelerator.
  • curing accelerators examples include imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole tetraphenylborate; triethanolamine, triethylenediamine, Examples include amines such as N-methylmorpholine; tetraphenylboron salts such as triethylammonium tetraphenylborate; 1,8-diaza-bicyclo (5,4,0) undecene-7 and derivatives thereof. These curing accelerators can be used alone or in combination of two or more.
  • the content of these curing accelerators is preferably blended so as to obtain the desired gelation time of the varnish or prepreg described later, but generally the total amount of resin components ((A) + (B) + (C) + (D) + (E) component total amount) is used in the range of 0.005 to 5 parts by mass with respect to 100 parts by mass.
  • An inorganic filler can also be added to the resin composition of the present invention.
  • Preferable examples of the type of inorganic filler include silica, alumina, titanium oxide, talc, calcined talc, kaolin, mica, clay, aluminum nitride, glass, aluminum hydroxide, aluminum oxyoxide and the like.
  • silica, alumina, titanium oxide, talc, aluminum hydroxide, and aluminum oxyoxide are more preferable, and silica, talc, and aluminum oxyoxide are particularly preferable. Since silica, alumina, and titanium oxide have high hardness, they can contribute to an improvement in elastic modulus with a small addition. When a spherical shape is used, when the resin composition varnish (hereinafter sometimes simply referred to as “resin varnish”) is used, there is no extreme increase in viscosity, and subsequent workability is excellent. preferable. Spherical silica is a preferred inorganic filler as silica. Talc can contribute to the improvement of the flexural modulus, especially in the case of a flat shape.
  • the inorganic filler content is generally 0 to 100 parts by mass of the total amount of resin components (total amount of (A) + (B) + (C) + (D) + (E) components). It is preferably used in the range of 200 parts by mass.
  • Other additives may be added to the resin composition of the present invention depending on the application. Preferable examples of other additives include additives generally used as antifoaming agents, leveling agents, and surface tension adjusting agents. Specific examples include fluorine-based, silicone-based, acrylic-based antifoaming agents, and leveling agents.
  • the content of other additives is generally based on 100 parts by mass of the total amount of resin components (total amount of (A) + (B) + (C) + (D) + (E) components).
  • a flame retardant it is preferably used in the range of 0.0005 to 5 parts by mass.
  • a flame retardant it can be appropriately selected from conventionally known organic flame retardants and inorganic flame retardants.
  • the composition according to the present invention comprises: (A) at least a divalent maleimide compound represented by the general formula [1], (B) The above general formula [2] An epoxy resin having at least two or more glycidyl groups in the molecule, and (C) a phenol compound having at least two or more OH groups in the molecule are added, and if necessary (D) a glycidyl ether compound and / or (E) a compound having at least one active hydrogen can be added and heated and mixed together with necessary additional components to obtain a resin composition. Heating and mixing are preferably performed at a temperature of 80 to 200 ° C. for about 0.1 to 10 hours.
  • these components can be heated and mixed in an organic solvent to produce a resin composition and simultaneously produce a resin varnish.
  • mixing by heating in an organic solvent although it depends on the boiling point of the organic solvent, generally a temperature of 50 to 200 ° C. and a time of about 0.1 to 30 hours are required.
  • the resin varnish is obtained by dissolving a resin composition in a solvent. That is, the resin varnish of the present invention comprises a resin composition portion obtained by heating and mixing the components (D) and / or (E) with the components (A), (B) and (C) as necessary. It is obtained by dissolving in a solvent. As described above, these components can be heated and mixed in an organic solvent to produce a resin composition and simultaneously produce a resin varnish.
  • Solvents used to obtain the resin varnish include ethylene glycol monoethyl ether, propylene glycol monomethyl ether, ethylene glycol monobutyl ether, N, N-dimethylformamide, N, N-dimethylacetamide, dioxane, acetone, N-methyl- 2-Pyrrolidone, dimethyl sulfoxide, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, etc. can be used, but a solvent having a relatively low boiling point is more preferable, and methyl ethyl ketone, acetone, dioxane or a mixture containing these as main components Is preferably used.
  • the above resin component is usually contained in an amount of 40 to 80% by mass, preferably 50 to 70% by mass.
  • an inorganic filler as described above can also be added to the resin varnish.
  • the modified polyimide resin composition (a) obtained in the examples described later is an adduct of BMI-S, which is a polyimide compound described later, and SN-485, which is a naphthol aralkyl resin, which is described later. 1] to [F-4] are considered to be compounds (F) having a maleimide group and a phenolic hydroxyl group in the same molecule.
  • R 1 is a k-valent organic group
  • X a , X b , X c and X d are the same or different monovalent atoms or groups selected from a hydrogen atom and an organic group
  • k is an integer of 2 or more
  • H and j are integers of 1 or more
  • k ⁇ j are integers of polymaleimide compounds
  • the modified polyimide resin composition of the present invention was able to solve these problems, but the maleimide compound and the curing agent were subjected to an addition reaction. It is presumed that the conversion to a compound such as There is a possibility that this compound is a key material that connects polymaleimide and an epoxy cured product with an organic bond, and this addition reaction improves the compatibility between the resins, while maintaining the high heat resistance of maleimide, It is presumed that the performance satisfying the base material properties such as flame retardancy and adhesiveness can be expressed.
  • the prepreg according to the present invention can be produced by applying or impregnating the above resin varnish to a substrate and then drying to remove the solvent.
  • a base material As a base material, all the well-known base materials used for conventional prepregs, such as a glass nonwoven fabric, a glass cloth, a carbon fiber cloth, an organic fiber cloth, paper, can be used.
  • a prepreg After applying or impregnating the resin varnish to the base material, a prepreg is produced through a drying step, and the coating method, impregnation method and drying method are not particularly limited, and conventionally known methods are used.
  • the drying conditions are appropriately determined depending on the boiling point of the solvent to be used, but a very high temperature is not preferable, and the amount of residual solvent in the prepreg is desirably 3% by mass or less.
  • the composite material according to the present invention can be obtained by hot pressing and curing one prepreg, or by integrating a plurality of laminated prepregs by hot pressing and heat curing.
  • the heating and pressing conditions at the time of producing the composite material are not particularly limited, but the heating temperature is 100 to 300 ° C., preferably 150 to 250 ° C., the pressure is 10 to 100 Kg / cm 2 , and the heating and pressing time is It takes about 10 to 300 minutes.
  • Laminate The laminate according to the present invention is obtained by laminating and integrating a metal foil or a metal plate on one side or both sides of a composite material.
  • This laminated plate is made by laminating a metal foil or a metal plate on one or both sides of one prepreg and hot pressing, or laminating a metal foil or a metal plate on one or both sides as the outermost layer of a laminated prepreg. Then, the prepreg can be heated and cured by heat pressing and integrated with a metal foil or a metal plate. Copper, aluminum, iron, stainless steel, etc. can be used as the metal foil or metal plate.
  • the conditions for heat curing are preferably the same as the conditions for producing the composite material. Moreover, it is good also as a laminated board for multilayer printed wiring boards using an inner layer core material.
  • the performance test methods in the examples and comparative examples are as follows.
  • Glass transition temperature Dynamic viscoelasticity method
  • Flame retardance Measured according to UL standard flame resistance test method. The evaluation of flame retardancy was performed using a copper-clad laminate having a thickness of 0.2 to 0.3 mm formed by superposing two prepregs.
  • Copper foil peel test Tested according to JIS C-6481.
  • Solder heat resistance In accordance with JIS C-6481, the test piece was subjected to water absorption treatment at 120 ° C. and 100% RH for 3 hours, and then floated in a 300 ° C.
  • Nonvolatile content (%) ⁇ (W 2 ⁇ W 0 ) / W 1 ⁇ ⁇ 100 Details of the raw materials used in Examples and Comparative Examples are as follows.
  • a large peak other than the molecular weight 748 is a peak derived from the raw material.
  • Molecular weights 479, 807, 1134, 1463, and 1792 were peaks derived from the raw material epoxy resin NC3000-H, and molecular weights 358 were peaks derived from the raw material polymaleimide compound BMI-S.
  • Example 2 To the varnish (I) of the modified polyimide resin composition obtained in Example 1, a curing accelerator, an additive (leveling agent), and an inorganic filler (aluminum hydroxide) were added and stirred uniformly to prepare a resin varnish. This was impregnated into a glass cloth of 108 g / m 2 (thickness of about 100 ⁇ m) and dried at 160 ° C. for 6 minutes to obtain a prepreg of about 200 g / m 2 (thickness of about 100 ⁇ m). Two prepregs are stacked, and 18 ⁇ m copper foil is arranged on the upper and lower outermost layers, and molded at 180 to 230 ° C.
  • Example 3 In Example 2, a laminate was prepared in the same manner as in Example 2 except that the use of aluminum hydroxide was omitted and the weight ratio of glass cloth / resin was increased.
  • the composition of the modified polyimide resin composition cured product of the obtained laminate was 29 wt% resin and 71 wt% glass cloth. Table 1 shows the test results of the obtained laminate. Tg (glass transition temperature), flame retardancy, peel strength, and solder heat resistance were all good. Even without aluminum hydroxide, the flame retardancy was high.
  • Example 4 In Example 2, a laminate was prepared in the same manner as in Example 2 except that calcined talc was used instead of aluminum hydroxide.
  • the composition of the modified polyimide resin composition cured product of the obtained laminate was 30 wt% resin, 15 wt% fired talc, and 55 wt% glass cloth. Table 1 shows the test results of the obtained laminate.
  • Example 5 Tg (glass transition temperature), flame retardancy, peel strength, and solder heat resistance were all good.
  • Example 5 In Example 2, a laminate was prepared in the same manner as in Example 2 except that aluminum oxyoxide was used instead of aluminum hydroxide. The composition of the modified polyimide resin composition cured product of the obtained laminate was 25 wt% resin, 17 wt% aluminum oxyoxide, and 58 wt% glass cloth. Table 1 shows the test results of the obtained laminate. Tg (glass transition temperature), flame retardancy, peel strength, and solder heat resistance were all good.
  • Example 6 In Example 2, a laminate was prepared in the same manner as in Example 2 except that silica was used instead of aluminum hydroxide.
  • the composition of the modified polyimide resin composition cured product of the obtained laminate is 25 wt% resin, 7.25 wt% silica with an average particle diameter of 0.5 ⁇ m, 17.75 wt% silica with an average particle diameter of 1.5 ⁇ m, glass cloth It was 50 wt%.
  • Table 1 shows the test results of the obtained laminate. Tg (glass transition temperature), flame retardancy, peel strength, and solder heat resistance were all good.
  • Comparative Example 1 In Example 1, instead of biphenyl aralkyl epoxy resin, the following EXA-4710 (made by DIC Corporation: 2,7-DON type epoxy oligomer, epoxy equivalent 173) was used, and the composition ratio in Table 1 was used.
  • the modified polyimide resin composition varnish (II) was obtained in the same manner as in Example 1.
  • the obtained resin varnish (II) was non-uniform.
  • n 1 to 5.
  • Comparative Example 2 In Example 1, instead of the biphenyl aralkyl epoxy resin, the following JER1032 (manufactured by Mitsubishi Chemical Co., Ltd .: triphenolmethane type epoxy resin, epoxy equivalent 170) was used, and the same operation as in Example 1 with the composition ratio in Table 1
  • Example 3 In Example 1, instead of biphenyl aralkyl epoxy resin, JER1001 (Mitsubishi Chemical: bisphenol A type epoxy resin, epoxy equivalent 475) shown below was used, and the composition ratio in Table 1 was the same as in Example 1.
  • Comparative Example 4 Using the varnish (II) obtained in Comparative Example 1, an attempt was made to obtain a laminate by the same operation as in Example 2. However, the varnish was not uniform and could not be used, and could not be prepreg.
  • Comparative Example 7 Using the varnish (IV) of the modified polyimide resin composition obtained in Comparative Example 3, prepregs and copper-clad laminates were obtained by the same operations (conditions) as in Example 2 at the compounding ratios shown in Table 1. The characteristic evaluation results are also shown in Table 1. The difference from Comparative Example 6 is that the impregnation rate of the glass cloth was changed and the resin impregnation rate was lowered from 46% to 30%. Even the test piece of the laminated board having a lowered resin composition was completely burned in the flame retardant test.

Abstract

 本発明は、高Tg(高耐熱)、低熱膨張であって、難燃性にも優れた樹脂組成物であって、ハロゲンフリー化に有利であり、Cuとの接着性にも優れた樹脂組成物、それを基材に含浸して得られるプリプレグ、及びそれから得られる複合体と積層板を提供する。 (A)式[1]のポリマレイミド化合物、(B)式[2]の分子中に少なくとも2個のグリシジル基 を有するエポキシ樹脂、及び(C)分子中に少なくとも2個のOH基を有するフェノール化合物を含有する変性ポリイミド樹脂組成物、それを基材に含浸して得られるプリプレグ、及びそれから得られる複合体と積層板である。

Description

樹脂組成物、それを用いたプリプレグ及び積層板
 本発明は、電子・電気部品、プリント配線板、半導体基板、IC封止材等の電子材料分野において使用され、特にハロゲン含有難燃剤やリン含有難燃剤を含まず優れた難燃性を示し、高い耐熱性と難燃性が要求されるプリント配線板や半導体基板用に好適な樹脂組成物、これを用いたプリプレグ、並びにそれから得られる複合材および積層板に関する。
 電子材料分野では、火災に対する安全性を確保するために難燃性が要求されている。プリント配線板用、半導体基板用の積層板材料に関しては、その代表的な規格としてUnderwriters Laboratories Inc.のUL94規格があり、垂直燃焼試験で好ましくはV−1、より好ましくはV−0の条件に合格することが求められる。これまでに当該分野で使用されている樹脂はこの条件に合格するために、含臭素化合物などの含ハロゲン化合物を難燃剤として含有している。これら含ハロゲン化合物は高度な難燃性を有するが、例えば芳香族臭素化合物は熱分解により腐食性を有する臭素、臭化水素を発生するだけでなく、酸素存在下では毒性の高い化合物を形成する可能性がある(非特許文献1参照)。
 このような理由からハロゲン化合物を含まない材料、所謂「ハロゲンフリー」の材料が開発されている(例えば特許文献1等参照)。その中で含ハロゲン化合物に替わる難燃剤として、赤リン等の含リン化合物が中心的に検討されてきた。しかしながら、含リン難燃剤は燃焼時にホスフィンなどの有毒リン化合物を発生する恐れがある上、含リン化合物難燃剤として代表的なリン酸エステルを使用した場合、組成物の耐湿性が著しく損なわれるという欠点がある。
 一方、他の難燃剤として金属水酸化物が知られており、例えば水酸化アルミニウムは、加熱時に結晶水を放出する以下のような反応により難燃剤としての効果があることが知られている。
 2Al(OH) → Al+3H
 しかしながら、水酸化アルミニウム等の金属水酸化物を単独で難燃剤として使用する場合、求められる難燃性能を得るためには多量の添加が必要である。一般的なエポキシ樹脂を使用し、水酸化アルミニウムを難燃剤として添加した積層板の場合では、UL94規格のV−0レベルを達成するのに必要な水酸化アルミニウムの添加量は、樹脂組成物の70wt%~75wt%程度、燃焼しにくい骨格の樹脂を使用した場合でも50wt%程度の水酸化アルミニウムの添加が必要となる(非特許文献2参照)。水酸化アルミニウムの添加量が多い場合、樹脂組成物およびその樹脂により形成される積層板の性能、特に耐湿性及び吸湿後の耐熱性(ハンダ耐熱性)が著しく低下する(特許文献2参照)。耐湿性や吸湿後の耐熱性は、積層板が半導体用基板などとして使用される場合の実装時の信頼性に大きく影響するため、改善が要求されている。
 また従来は積層板の難燃性を評価する場合、1.6mmなどの厚いもので評価を行うことが多い。しかし近年の電子機器の軽薄短小化に伴い、半導体基板として使用される積層板の厚さは0.5mm以下、好ましくは0.2mm以下が求められている。厚さが薄くなればなるほど、燃焼時に酸素と接触しやすく、燃えやすいため一般的に難燃剤は多く必要になる。そのため薄い積層板での難燃性を満足し、かつ十分な耐湿性、吸湿後のハンダ耐熱性を持つ積層板材料を得るためには更に難燃性の高い樹脂組成が求められている。
 近年またこれら積層板用の樹脂組成物では、鉛フリー半田などによる半導体実装方法では260℃以上もの高温処理が必要になってきており、パッケージの反りの問題が顕著化してきている。また、Cuワイヤボンディングへの移行に伴い高温高弾性率の要求もある。つまり高温処理に耐えるため高耐熱(高Tg)で低熱膨張の材料が求められてきている。
 一般的に高Tgの材料は、低熱膨張であるため反りが少なく、高温弾性率が高いためCuワイヤボンディング処理にも耐えられると考えられる。しかしこの高Tg材料は耐熱性が高いことに反して、もろく、燃えやすいこと、接着性劣ることが欠点である。接着性が劣る理由としては高架橋のエポキシ樹脂を使用しているためもろいと考えられる。(柔軟なエポキシでは接着はよいがTgが低い。)
 これまでに、特定のマレイミド基を含有する樹脂組成物とエポキシ樹脂(ナフトール骨格含有のエポキシ硬化剤または/及びエポキシ樹脂)を複合化させることで、高Tg,低熱膨張の樹脂組成物が得られることが報告されている。(特許文献3、4参照)。しかしながら、難燃性を付与するためにブロム化エポキシ樹脂などのハロゲン化難燃材を使用したり(特許文献5参照)、水酸化アルミニウムなどの金属水酸化物を難燃材として多量に使用する必要があった。しかしながらこれらの場合でも0.2mm以下の薄板で行われる厳しい難燃性試験に耐えうる十分な難燃性を得ることは難しかった。一方、基板材料に求められる吸湿条件下での耐熱性の向上にナフタレン環を有する特定のエポキシ樹脂を使用した場合、十分な耐熱性を得られることが分かっている(特許文献6参照)。ただし耐熱性と難燃性は必ずしも一致しないため、十分な耐熱性と難燃性を併せもつ樹脂組成を得ることは難しかった。
 高Tgと難燃の両立が重要な課題であるが、従来の熱硬化性樹脂は、両特性が背反するため、要求を充分に満足する材料は無く、その登場が望まれている。
特開2003−231762号公報 特開2001−226465号公報 特開2003−119348号公報 特開2003−147170号公報 特開2004−307673号公報 特開2003−335925号公報
エレクトロニクス実装学会誌 5(2)、pp.159~165(2003) ポリマーの難燃化、大成社、pp.69~79(1992)、"ハロゲン系難燃剤"
 本発明は、高Tg(高耐熱)、低熱膨張であって、難燃性にも優れた樹脂組成物を提供することを目的とする。
 本発明は、高Tgで難燃性に優れているのでハロゲンフリー化に有利であり、またCuとの接着性にも優れた樹脂組成物を提供するものである。
 本発明は、
(A)下記一般式[1]で示されるポリマレイミド化合物、
(B)下記一般式[2]で示される分子中に少なくとも2個のグリシジル基を有するエポキシ樹脂、および
(C)分子中に少なくとも2個のOH基を有するフェノール化合物
を含有することを特長とする変性ポリイミド樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-I000003
(式中、Rはk価の有機基を表わし、X、Xは、同一であっても異なっていてもよく、水素原子および有機基から選ばれた一価の原子または基を表し、kは2以上の整数である。)
Figure JPOXMLDOC01-appb-I000004
(式中、nは、平均値を示し、1~15の値であり、Gはグリシジル基を表し、Rは互いに同一であっても異なっていてもよく、水素原子、炭素数1~8のアルキル基またはアルケン基を表し、Pは水素原子、アルキル基、アルケン基または芳香族炭化水素基を表す。)
 前記樹脂組成物を熱処理して反応させることにより得られる変性ポリイミド樹脂、特に少なくとも(A)と(C)の間で反応させることにより得られる変性ポリイミド樹脂は本発明の好ましい態様である。
 本発明は、また前記(A)、(B)および(C)と、さらに(D)グリシジルエーテル化合物および(E)少なくとも一つの活性水素を有する化合物から選ばれた少なくとも一つの化合物を含有する変性ポリイミド樹脂組成物を提供する。
 本発明はさらに、前記変性ポリイミド樹脂組成物基材に含浸して得られるプリプレグ、該プリプレグの一枚または複数枚を積層したものを加熱加圧して得られる複合材、および該プリプレグの一枚または複数枚を積層したものの最外層の片面または両面に金属箔を一体化させて得られる積層板を提供する。
 本発明により、高Tg(高耐熱)、低熱膨張であって、難燃性にも優れた樹脂組成物が提供される。
 本発明の樹脂組成物は高い難燃性を持つため、0.5mm以下という薄い積層板となった場合でも十分な難燃性を得ることができる。また樹脂組成物の難燃性が高いことにより、金属水酸化物等の吸湿特性を劣化させ得る難燃剤の添加が不要/又は添加を通常に比べて少量とすることが可能であり、結果として樹脂組成物、それにより形成される積層板は高い耐湿性、吸湿耐熱性をもつものである。
 本発明の樹脂組成物は、高い難燃性を維持したまま、高Tgを示し、高架橋のエポキシ樹脂を使用しなくともCuとの高い接着強度を持つ樹脂組成物が発現するという優れた性能を有する樹脂組成物である。
 図1は、実施例1で得られた変性ポリイミド樹脂組成物(a)のFD−MS法分子量測定のチャートである。
 本発明は、
(A)下記一般式[1]で示されるポリマレイミド化合物、
(B)下記一般式[2]で示される分子中に少なくとも2個のグリシジル基を有するエポキシ樹脂、および
(C)分子中に少なくとも2個のOH基を有するフェノール化合物
を含有することを特長とする変性ポリイミド樹脂組成物を提供するものである。
 本発明に係る変性ポリイミド樹脂組成物(以下単に樹脂組成物と呼ぶことがある)について、以下に詳細に説明する。
樹脂組成物
 本発明で用いられるポリマレイミド化合物(A)は下記一般式[1]で示される1分子中に2個以上のマレイミド基を有する化合物である。
Figure JPOXMLDOC01-appb-I000005
 式中、Rはk価の有機基、X、Xは水素原子および有機基から選ばれた同一または異なる一価の原子または基、kは2以上の整数であり、好ましくは2~10である。
 好ましいポリマレイミド化合物としては、一般式[1]中のRが下記一般式[3]からなる群より選ばれたものを挙げる事ができる。
Figure JPOXMLDOC01-appb-I000006
 式中、Zは−CY−、−CO−、−O−、−、−S−、−SO−を示し、Yは−CH、CHCH−、CHO−、−OH、−NHまたは水素原子を示し、同一であっても異なってもよい。またrは1~10の整数を表わす。
 一般式(1)中、有機基としてはメチル基などの炭素数1~20のアルキル基が例示できる。
 このようなポリマレイミド化合物としては、例えば、N,N’−エチレンビスマレイミド、N,N’−ヘキサメチレンビスマレイミド、N,N’−(1,3−フェニレン)ビスマレイミド、N,N’−[1,3−(2−メチルフェニレン)]ビスマレイミド、N,N’−(1,4−フェニレン)ビスマレイミド、ビス(4−マレイミドフェニル)メタン、ビス(3−メチル−4−マレイミドフェニル)メタン、ビス(4−マレイミドフェニル)エーテル、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)ケトン、ビス(4−マレイミドシクロヘキシル)メタン、1,4−ビス(4−マレイミドフェニル)シクロヘキサン、1,4−ビス(4−マレイミドメチル)シクロヘキサン、1,4−ビス(マレイミドメチル)ベンゼン、1,3−ビス(3−マレイミドフェノキシ)ベンゼン、ビス[4−(4−マレイミドフェノキシ)フェニル]メタン、1,1−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,1−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]ブタン、4,4’−ビス(3−マレイミドフェノキシ)ビフェニル、4,4’−ビス(4−マレイミドフェノキシ)ビフェニル、ビス[4−(3−マレイミドフェノキシ)フェニル]ケトン、ビス[4−(4−マレイミドフェノキシ)フェニル]ケトン、ビス[4−(3−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(3−マレイミドフェノキシ)フェニル]エーテル、ビス[4−(4−マレイミドフェノキシ)フェニル]エーテル、1,4−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン等を挙げることができる。また下記一般式[4]で表されるポリマレイミド化合物、および一般式[5]で表されるポリマレイミド化合物、および一般式[6]で表されるポリマレイミド化合物等も好適な例として挙げることができる。また、これらのポリマレイミド化合物は、単独で用いても2種以上を混合して用いてもよい。
Figure JPOXMLDOC01-appb-I000007
(式中、sは平均値で0~10である)
Figure JPOXMLDOC01-appb-I000008
(式中、tは平均値で0~10である)
Figure JPOXMLDOC01-appb-I000009
(式中、uは平均値で0~6である)
 本発明で用いられるエポキシ樹脂(B)は下記一般式[2]で示される分子中に少なくとも2個のグリシジル基を有するエポキシ樹脂である。
Figure JPOXMLDOC01-appb-I000010
 式中、nは平均値を示し1~15の値を取る。Gはグリシジル基を表し、Rは水素原子、炭素数1~8のアルキル基、アルケン基のいずれかを表し、個々のRは互いに同一であっても異なっていてもよい。アルキル基としては、メチル基、ブチル基、2−エチルヘキシル基、デシル基、ステアリル基等が挙げられ、アルケン基としては、アリル基等が挙げられ、芳香族炭化水素基としてはフェニル基、sec−ブチルフェニル基等が挙げられる。Pは水素原子またはアルキル基、アルケン基、芳香族炭化水素基を表す。RおよびPとしては水素原子が好ましい。
 本発明のエポキシ樹脂(B)は、市販されているものから適宜選択して使用することができる。例えば、上記式[2]中、P=H、R=Hであるものは、日本化薬株式会社からNC−3000として入手可能である。
 本発明で用いられる(C)分子中に少なくとも2個のOH基を有するフェノール化合物としては、下記一般式[7]で表されるフェノール化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000011
(式中、Ar、Arは、それぞれ下記一般式[8]で示されるフェニレン基または下記一般式[9]で示されるナフタレン基であり、
Figure JPOXMLDOC01-appb-I000012
 上記式中、Xは直接結合、炭素数1~4のアルキレン、芳香環を含む炭素数8~15のアルキレン、O、SまたはSOのいずれかを示し、アルキレンとしてはメチレン等が挙げられ、芳香環を含む炭素数8~15のアルキレンとしてはフェニレン、ナフタレン、ビフェニレン構造を含むもの等が挙げられる。R、R、Rはそれぞれ炭化水素基又は水酸基であり、v、w、xはそれぞれ0~3の整数、mは0以上の整数、但しmが0の場合は、Arは少なくとも1個の水酸基を有するものである)
 本発明のフェノール化合物(C)の具体的な例として、ヒドロキノン、レゾルシン、カテコール、ピロガロール、フロログルシン;o,m’−ビフェノール、o,p’−ビフェノール、m,m’−ビフェノール、m,p’−ビフェノール、p,p’−ビフェノールなどのビフェノール類;ビスフェノールF、ビスフェノールAなどのビスフェノール類;1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、1,8−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレンのほか、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、フェノールナフチルアルキル樹脂、トリフェノールメタン型ノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、ナフトールアラルキル樹脂、ビフェニルアラルキル樹脂などの公知のフェノール樹脂系硬化剤を挙げることができる。これらの中では、ビフェニルアラルキル樹脂、フェノールアラルキル樹脂が好ましく、ナフトールアラルキル樹脂がより好ましい。
 本発明の変性ポリイミド樹脂組成物にさらに含有されていてよい(D)グリシジルエーテル化合物としては、下記式[10]で表されるグリシジルエーテル化合物を好ましい例として挙げることができる。
Figure JPOXMLDOC01-appb-I000013
 式中、Rはアルキル基、アルケン基および芳香族炭化水素基から選ばれる1価の基を表す。アルキル基としては、炭素数1~20のアルキル基が好ましく、メチル基、ブチル基、2−エチルヘキシル基、デシル基、ステアリル基などが挙げられ、アルケン基としては、炭素数2~20のアルケン基が好ましく、アリル基等が挙げられ、芳香族炭化水素基としては炭素数6~20の芳香族炭化水素基が好ましく、フェニル基、sec−ブチルフェニル基等が挙げられる。
 これらグリシジルエーテル化合物を含有することにより、アセトン、メチルエチルケトン等の汎用的な溶剤を用いたワニス化反応の際に、樹脂が溶剤中に容易に可溶化するため、プリプレグ化に好適な均一溶液状のワニスを得ることができる。さらに樹脂硬化反応時には、グリシジル基の開環反応により樹脂骨格内に組み込まれることから、樹脂硬化物は機械強度や耐薬品性の低下が生じない。
 また電子材料用途における重要な特性である高度の耐湿性を達成するためには、Rは親水基を含まないことが好ましく、さらに誘電特性を向上させるためには、アルキル基、アルケン基、芳香族炭化水素基から選ばれる基であることが好ましい。このようなグリシジルエーテル化合物の具体例としては、メチルグリシジルエーテル、ブチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテル等のアルキルグリシジルエーテル、アリルグリシジルエーテル等のアルケングリシジルエーテル、およびフェニルグリシジルエーテル、sec−ブチルフェニルグリシジルエーテル等の芳香族グリシジルエーテルが挙げられる。
 本発明の変性ポリイミド樹脂組成物にさらに含有されていてよい(E)少なくとも一つの活性水素を有する化合物としては、分子中に少なくとも一つの活性水素を有する化合物なら全て使用できる。分子中に少なくとも一つの活性水素を有する化合物の好ましい例としては、フェノール、ビスフェノールA、ビスフェノールF、クレゾール、レゾルシノール、ナフトール、ジヒドロキシナフトール等のフェノール類、アニリン、アミノフェノール、フェニレンジアミン、エチレンジアミン、ビス(4−アミノフェニル)メタン等のアミン類、グリシドール、グリセリンジグリシジルエーテル、エチレングリコールモノグリシジルエーテル、レゾルシノールモノグリシジルエーテル、ナフトレゾルシノールモノグリシジルエーテル等、一分子中に一つのアルコール性もしくはフェノール性OH基と、一つ以上のエポキシ基とを含む化合物、プロパギルアルコール等のOH基とアセチレン基を有する化合物等が挙げられる。
 次に本発明の変性ポリイミド樹脂組成物の樹脂組成について説明する。
 (A)成分のポリマレイミド化合物100質量部に対して、(B)成分のエポキシ樹脂と(C)成分のフェノール化合物との合計配合量は、10~500質量部、好ましくは25~300質量部であり、(B)成分のエポキシ樹脂のグリシジル基数に対する(C)成分のフェノール化合物のOH基数の比率が0.2~5.0の範囲、好ましくは0.5~3.0の範囲である。また(D)成分のグリシジルエーテル化合物の配合量は、3~100質量部、好ましくは5~50質量部、更に好ましくは7~20質量部である。
 (B)成分のエポキシ樹脂と(C)成分のフェノール化合物の合計配合量が上記範囲にあると良好な金属箔や金属板との接着力が得られる。(B)成分のエポキシ樹脂のグリシジル基数に対する(C)成分のフェノール化合物のOH基数が上記範囲にあると良好な樹脂組成物の硬化が得られる。また(D)成分のグリシジルエーテル化合物の配合量は、変性樹脂ワニス製造時にスラリー状の均一性、プリプレグ製造上膜厚の均一化、ピンホール等の外観上問題などの観点から上記範囲にあることが好ましい。
 本発明の樹脂組成物は、更に硬化促進剤を含有することが好ましい。硬化促進剤としては例として2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール、2−エチル−4−メチルイミダゾールテトラフェニルボレートなどのイミダゾール類;トリエタノールアミン、トリエチレンジアミン、N−メチルモルホリンなどのアミン類;トリエチルアンモニウムテトラフェニルボレート等のテトラフェニルボロン塩類;1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7およびその誘導体等が挙げられる。これらの硬化促進剤は、単独または2種以上組み合わせて用いることができる。
 これら硬化促進剤の含有量は、後述するワニスまたはプリプレグの所望するゲル化時間が得られるように配合するのが望ましいが、一般的には、樹脂成分の合計量((A)+(B)+(C)+(D)+(E)成分の合計量)100質量部に対して、0.005~5質量部の範囲で用いられる。
 本発明の樹脂組成物には無機充填剤を加えることもできる。無機充填剤の種類の好ましい例としてはシリカ、アルミナ、酸化チタン、タルク、焼成タルク、カオリン、マイカ、クレー、窒化アルミニウム、ガラス、水酸化アルミニウム、オキシ酸化アルミニウムなどが挙げられる。シリカ、アルミナ、酸化チタン、タルク、水酸化アルミニウム、オキシ酸化アルミニウムがより好ましく、特にシリカ、タルク及びオキシ酸化アルミニウムが好ましい。シリカ、アルミナ、酸化チタンは硬度が高いため少量の添加で弾性率向上に寄与することが可能である。形状については球状のものを用いた場合、樹脂組成物のワニス(以下、単に「樹脂ワニス」と呼ぶことがある)となった場合に粘度の極端な上昇がなく、その後の作業性に優れるため好ましい。シリカとして球状のシリカは好ましい無機充填材である。タルクは特に扁平な形状のものの場合曲げ弾性率の向上に寄与することが可能である。無機充填剤含有量は、一般的には樹脂成分の合計量((A)+(B)+(C)+(D)+(E)成分の合計量)100質量部に対して、0~200質量部の範囲で用いられることが好ましい。
 本発明の樹脂組成物には用途に応じて他の添加剤を加えることもできる。他の添加剤の好ましい例としては、消泡剤、レベリング剤、表面張力調整剤として一般に使用される添加剤などがあげられる。具体的な例としてはフッ素系、シリコーン系、アクリル系などの消泡剤、レベリング剤が挙げられる。他の添加剤の含有量は、一般的には樹脂成分の合計量((A)+(B)+(C)+(D)+(E)成分の合計量)100質量部に対して、0.0005~5質量部の範囲で用いられることが好ましい。
 また本発明の樹脂組成物には、必要に応じて難燃剤を添加してもよい。難燃剤を使用するときは、従来公知の有機難燃剤及び無機難燃剤から適宜選択して使用することができる。
樹脂組成物の調整方法
 本発明に係る組成物は、
(A)上記一般式[1]で表される少なくとも2価以上のマレイミド化合物、
(B)上記一般式[2]分子中に少なくとも2個以上のグリシジル基を有するエポキシ樹脂、および
(C)分子中に少なくとも2個以上のOH基を有するフェノール化合物を加えて、さらに必要に応じて(D)グリシジルエーテル化合物および/または(E)少なくとも1つの活性水素を有する化合物を加えて、必要な添加成分とともに加熱混合して樹脂組成物とすることができる。加熱混合は80~200℃の温度で0.1~10時間程度行うのが好ましい。また、これらの成分を有機溶剤中で加熱混合して、樹脂組成物を製造すると同時に樹脂ワニスを製造することもできる。有機溶剤中で加熱混合する場合には、有機溶剤の沸点にもよるが、一般的には50~200℃の温度で、0.1~30時間程度の時間が必要になる。
 樹脂ワニスは、樹脂組成物を溶剤に溶解させたものである。すなわち本発明の樹脂ワニスは、前記(A)、(B)および(C)成分に、必要に応じて(D)および/または(E)成分を加熱混合して得られる樹脂組成物分を、溶剤に溶解させることにより得られる。また前記したように、これらの成分を有機溶剤中で加熱混合することにより樹脂組成物を製造すると同時に樹脂ワニスを製造することもできる。
 樹脂ワニスを得るのに用いられる溶剤としては、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジオキサン、アセトン、N−メチル−2−ピロリドン、ジメチルスルホキシド、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2−ヘプタノン等が使用できるが、溶剤としては比較的沸点の低い物がより好ましく、メチルエチルケトン、アセトン、ジオキサンあるいはこれらを主成分とする混合物が好ましく用いられる。
 樹脂ワニス中には上記樹脂成分が通常40~80質量%、好ましくは50~70質量%の範囲で含まれることが望ましい。また樹脂ワニスには、前記したような無機充填剤を添加することもできる。
 後記実施例で得られた変性ポリイミド樹脂組成物(a)は、後記のポリイミド化合物であるBMI−Sと後記のナフトールアラルキル樹脂であるSN−485の付加物であって、下記一般式[F−1]~[F−4]で表わされる同一分子内にマレイミド基とフェノール性水酸基を有する化合物(F)であると考えられる。
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
 式中、Rはk価の有機基、X、X、X、Xは、水素原子および有機基から選ばれた同一または異なる一価の原子または基、kは2以上の整数であり、h、jは1以上の整数で、k≧jである。
 一般的にポリマレイミド化合物はエポキシ樹脂との相溶性が悪く、樹脂ワニスにした際、一部樹脂の析出やポリマレイミド硬化体とエポキシ硬化体の層分離が発生し耐熱性の低下などを引き起こすため、各種基板材料の特性を満足させることが困難であったところ、本発明の変性ポリイミド樹脂組成物によって、これらの課題を解決できたのであるが、それにはマレイミド化合物と硬化剤が付加反応した上記のような化合物への変換が寄与しているものと推定される。この化合物がポリマレイミドとエポキシ硬化体を有機結合で結ぶキーマテリアルである可能性があり、この付加反応により樹脂同士の相溶性が改善し、マレイミドが持つ高耐熱性を維持したまま、エポキシ樹脂が有する難燃性や接着性などの基材特性をも満たす性能が発現可能となったことが推定される。
プリプレグ
 本発明に係るプリプレグは、上記樹脂ワニスを基材に塗布または含浸せしめ、次いで乾燥して溶剤を除去することにより製造することができる。
 基材としては、ガラス不織布、ガラスクロス、炭素繊維布、有機繊維布、紙などの従来プリプレグに用いられる公知の基材が全て使用可能である。上記樹脂ワニスを上記基材に塗布または含浸した後、乾燥工程を経てプリプレグを製造するが、塗布方法、含浸方法、乾燥方法は従来公知の方法が用いられ特に限定されるものではない。乾燥条件については、使用する溶剤の沸点により適宜決められるが、あまり高温は好ましくなく、またプリプレグ中の残存溶剤の量が3質量%以下となることが望ましい。
複合材
 本発明に係る複合材は、プリプレグ1枚を熱プレスして加熱硬化させるか、または複数枚積層されたプリプレグを熱プレスして加熱硬化させることによって一体化させることによって得られる。複合材を製造する時の加熱加圧条件は特に限定されるものではないが、加熱温度は100~300℃、好ましくは150~250℃、圧力は10~100Kg/cm、加熱加圧時間は10~300分程度である。
積層板
 本発明に係る積層板は、複合材の片面または両面に金属箔または金属板を積層一体化させたものである。この積層板は、1枚のプリプレグの片面もしくは両面に金属箔もしくは金属板を積層し熱プレスするか、または複数枚積層されたプリプレグの最外層となる片面または両面に金属箔または金属板を積層し熱プレスすることにより、プリプレグを加熱硬化させるとともに金属箔または金属板と一体化させることにより製造することができる。金属箔または金属板としては銅、アルミニウム、鉄、ステンレス等が使用できる。加熱硬化させる際の条件は、複合材を製造する際の条件と同様の条件が好ましい。また、内層コア材を用いて多層プリント配線板用積層板としてもよい。
 以下に本発明を、実施例及び比較例を用いてより具体的に説明するが、これらの例によって何ら限定されるものではない。
 実施例及び比較例における性能の試験方法は次のとおりである。
(1)ガラス転移温度:動的粘弾性法
(2)難燃性:UL規格の耐燃性試験方法に準じて測定した。
 なお、難燃性の評価についてはプリプレグを2枚重ね合わせ作成した0.2~0.3mm厚みの銅張積層板を使用して行った。
(3)銅箔ピール試験:JIS C−6481に準じて試験した。
(4)半田耐熱性:JIS C−6481に準じて、試験片を120℃、100%RHの条件下で、3時間吸水処理後、300℃の半田浴に120秒フロートし、積層板の銅箔部分に膨れの有無を調べた。
(5)ゲルタイム測定
 予め170±1℃に調整された熱盤上に、ワニス約0.5ccを滴下し、同時にストップウォッチによる計時を開始する。また直ちに先端を尖らせたフッ素樹脂棒で熱盤面の直径20mmの範囲で試料をかきまぜ、数秒毎に熱盤から30mm程度垂直に持ち上げる。その持ち上げた際に熱盤に落下する試料の粘性を目視で観察し、ゲル化するまでの所要時間を測定する。測定は3回繰り返し、その平均値をゲルタイムとし、結果は小数点以下1桁目を四捨五入する。
(6)粘度測定
 JIS C2103 5.3およびJIS K7117に準拠して測定する。
 恒温水槽中で温度調整し、25℃±1℃になった時点でB型粘度計の装置で測定する。
(7)不揮発分測定
 JIS C2103 5.4に準拠して測定する。
 重量(W)を測定したアルミカップ中に、ワニス約2.0gを量り取り(W)、200±3℃に調整したオーブン中で30分間保持した後オーブンから取り出し、デシケーター内で室温まで冷却する。冷却したサンプルとアルミカップの全重量(W)を測定する。その後、以下の式から不揮発分を計算し、小数点以下2桁目を四捨五入する。
 不揮発分(%)={(W−W)/W}×100
 実施例及び比較例において用いた原料の詳細は以下のとおりである。
(1)ポリマレイミド化合物(A):下記式で示されるBMI−S(商品名、窒素原子含有量:約8%、三井化学(株)社製)
Figure JPOXMLDOC01-appb-I000016
(2)エポキシ樹脂(B):ビフェニルアラルキルエポキシ樹脂、NC3000H(商品名、エポキシ当量290、日本化薬(株)社製)
(3)フェノール樹脂(C):ナフトールアラルキル樹脂、SN485(商品名、OH当量215、新日鉄化学(株)社製)
(4)無機充填剤
1)水酸化アルミニウム:平均粒子径;1.1μm
2)オキシ酸化アルミニウム(AlO(OH)):平均粒子径;2μm、
3)焼成タルク:平均粒子径;3μm
4)シリカ:平均粒子径;0.5、1.5μm
(5)硬化促進剤:2−エチル−4−メチルイミダゾールテトラフェニルボレート
(6)反応性希釈剤:アリルグリシジルエーテル
(実施例1)
 攪拌機、温度計、冷却管を設置した丸底フラスコにビス(4−マレイミドフェニル)メタン270.0g、ナフトールアラルキル樹脂〔SN−485、新日鉄化学〕82.0g、ビフェニルアラルキルエポキシ樹脂〔NC−3000−H、日本化薬)〕221.0g、メチルエチルケトン(MEK)120.0gを仕込み、内温が80℃に到達後2時間混合攪拌した。その後、反応性希釈剤(アリルグリシジルエーテル)27.0g、N−メチル−2−ピロリドン(NMP)12.0gを添加し、80℃を4時間保持した。
 次にNMP28.0gを添加して更に80℃で18時間保持した。MEK200.0g、NMP40.0gを添加して2時間攪拌して、均一に溶解した状態の変性ポリイミド樹脂組成物のワニス(I)を得た。
 得られたワニスの170℃ゲルタイムは200秒で、粘度は120m・Pa/s、樹脂固形分は62wt%であった。
 ここで得られたワニス(I)をFD−MS分析すると、この樹脂ワニス(I)の中に含まれる変性ポリイミド樹脂組成物(a)として分子量748の成分が検出された。この成分はBMI−SとSN−485の付加物であって、下記式[11]もしくは式[12]で表わされる同一分子内にマレイミド基とフェノール性水酸基を有する化合物(F)であった。
 この樹脂ワニスの中に含まれる変性ポリイミド樹脂組成物(a)のFD−MS法分子量測定のチャートを図1に示した。
 [11]は、前記一般式[F−1]および[F−2]においてk=2、j=1、h=1の化合物であり、[12]は、一般式[F−3]および[F−4]でk=2、j=1、h=1の化合物と同一の化合物を示している。
 また、図1で分子量748以外の大きなピークは、原料由来のピークである。分子量479、807、1134、1463、1792は、原料のエポキシ樹脂NC3000−H由来のピークであり、また分子量358は、原料のポリマレイミド化合物BMI−S由来のピークであった。
Figure JPOXMLDOC01-appb-I000017
(実施例2)
 実施例1で得た変性ポリイミド樹脂組成物のワニス(I)に、硬化促進剤、添加剤(レベリング剤)、無機充填剤(水酸化アルミニウム)を加え均一に攪拌し、樹脂ワニスを調製した。これを108g/m(厚み約100μm)のガラスクロスに含浸し、160℃で6分間乾燥して、約200g/m(厚み約100μm)のプリプレグを得た。このプリプレグを2枚重ね合わせ、さらにその上下の最外層に18μmの銅箔を配して、2MPaの圧力で、180~230℃、120分の加熱条件で成形し、0.2~0.3mm厚みの銅張積層板を得た。このようにして得られた積層板の試験結果も同様に表1中に示した。
 得られた積層板の変性ポリイミド樹脂組成硬化物の組成は、樹脂25wt%、水酸化アルミニウムは17wt%、ガラスクロス58wt%であった。
 このようにして得られた積層板の試験結果を第1表に示した。Tg(ガラス転移温度)、難燃性、ピール強度、半田耐熱性はすべて良好であった。
(実施例3)
 実施例2において、水酸化アルミニウムの使用を省略し、ガラスクロス/樹脂の重量比率を上げるほかは、実施例2と同様の操作で積層板を調製した。得られた積層板の変性ポリイミド樹脂組成硬化物の組成は、樹脂29wt%、ガラスクロス71wt%であった。得られた積層板の試験結果を第1表に示した。
 Tg(ガラス転移温度)、難燃性、ピール強度、半田耐熱性はすべて良好であった。水酸化アルミニウムを入れなくとも、難燃性が高かった。
(実施例4)
 実施例2において、水酸化アルミニウムの代わりに、焼成タルクを使用するほかは、実施例2と同様の操作で積層板を調製した。
 得られた積層板の変性ポリイミド樹脂組成硬化物の組成は、樹脂30wt%、焼成タルクは15wt%、ガラスクロス55wt%であった。得られた積層板の試験結果を第1表に示した。
 Tg(ガラス転移温度)、難燃性、ピール強度、半田耐熱性はすべて良好であった。
(実施例5)
 実施例2において、水酸化アルミニウムの代わりに、オキシ酸化アルミニウムを使用するほかは、実施例2と同様の操作で積層板を調製した。得られた積層板の変性ポリイミド樹脂組成硬化物の組成は、樹脂25wt%、オキシ酸化アルミニウム17wt%、ガラスクロス58wt%であった。得られた積層板の試験結果を第1表に示した。
 Tg(ガラス転移温度)、難燃性、ピール強度、半田耐熱性はすべて良好であった。
(実施例6)
 実施例2において、水酸化アルミニウムの代わりに、シリカを使用するほかは、実施例2と同様の操作で積層板を調製した。
 得られた積層板の変性ポリイミド樹脂組成硬化物の組成は、樹脂25wt%、平均粒子径0.5μmのシリカは7.25wt%、平均粒子径1.5μmのシリカは17.75wt%、ガラスクロス50wt%であった。得られた積層板の試験結果を第1表に示した。
 Tg(ガラス転移温度)、難燃性、ピール強度、半田耐熱性はすべて良好であった。
(比較例1)
 実施例1において、ビフェニルアラルキルエポキシ樹脂に代えて、下記に示すEXA−4710(DIC株式会社製:2,7−DON型エポキシオリゴマー、エポキシ当量173)を用い、表1の組成比で、実施例1と同様の操作で変性ポリイミド樹脂組成物のワニス(II)を得た。
 得られた樹脂ワニス(II)は不均一であった。
Figure JPOXMLDOC01-appb-I000018
 式中、n=1~5である。
(比較例2)
 実施例1において、ビフェニルアラルキルエポキシ樹脂に代えて、下記に示すJER1032(三菱化学製:トリフェノールメタン型エポキシ樹脂、エポキシ当量170)を用い、表1の組成比で、実施例1と同様の操作で変性ポリイミド樹脂組成物のワニス(III)を得た。
Figure JPOXMLDOC01-appb-I000019
 式中、n=1~5である。
(比較例3)
 実施例1において、ビフェニルアラルキルエポキシ樹脂に代えて、下記に示すJER1001(三菱化学製:ビスフェノールA型エポキシ樹脂、エポキシ当量475)を用い、表1の組成比で、実施例1と同様の操作で変性ポリイミド樹脂組成物のワニス(IV)を得た。
Figure JPOXMLDOC01-appb-I000020
 式中、n=1~5である。
(比較例4)
 比較例1で得られたワニス(II)を用い、実施例2と同様の操作で積層板を得ようと試みたが、ワニスが不均一で使用できず、プリプレグ化できなかった。
(比較例5)
 比較例2で得られた変性ポリイミド樹脂組成物のワニス(III)を用い、表1に示す配合比で実施例2と同様の操作(条件)でプリプレグ、および銅張積層板を得た。この特性評価結果を表1に併せて示す。
 この積層板の難燃試験では、試験片は全焼してしまった。
(比較例6)
 比較例3で得られた変性ポリイミド樹脂組成物のワニス(IV)を用い、表1に示す配合比で実施例2と同様の操作(条件)でプリプレグ、および銅張積層板を得た。この特性評価結果を表1に併せて示す。
 この積層板の難燃試験では、試験片は全焼してしまった。
(比較例7)
 比較例3で得られた変性ポリイミド樹脂組成物のワニス(IV)を用い、表1に示す配合比で実施例2と同様の操作(条件)でプリプレグ、および銅張積層板を得た。この特性評価結果を表1に併せて示す。比較例6と異なる点はガラスクロスの含浸率を変更し、樹脂含浸率を46%から30%に下げたことである。
 樹脂組成を下げた積層板の試験片でも、難燃試験で全焼してしまった。
Figure JPOXMLDOC01-appb-T000021

Claims (7)

  1. (A)下記一般式[1]で示されるポリマレイミド化合物、
    (B)下記一般式[2]で示される分子中に少なくとも2個のグリシジル基を有するエポキシ樹脂、および
    (C)分子中に少なくとも2個のOH基を有するフェノール化合物
    を含有することを特長とする変性ポリイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-I000001
    (式中、Rはk価の有機基を表わし、X、Xは、同一であっても異なっていてもよく、水素原子および有機基から選ばれた一価の原子または基を表し、kは2以上の整数である。)
    Figure JPOXMLDOC01-appb-I000002
    (式中、nは、平均値を示し、1~15の値であり、Gはグリシジル基を表し、Rは互いに同一であっても異なっていてもよく、水素原子、炭素数1~8のアルキル基またはアルケン基を表し、Pは水素原子、アルキル基、アルケン基または芳香族炭化水素基を表す。)
  2.  請求項1に記載の樹脂組成物を熱処理して反応させることにより得られる変性ポリイミド樹脂。
  3.  請求項1に記載の樹脂組成物(A)、(B)、(C)を熱処理し、少なくとも(A)と(C)の間で反応させることにより得られる変性ポリイミド樹脂。
  4.  さらに(D)グリシジルエーテル化合物および(E)少なくとも一つの活性水素を有する化合物から選ばれた少なくとも一つの化合物を含有することを特徴とする請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  請求項1~4のいずれか1項に記載の樹脂組成物を基材に含浸して得られるプリプレグ。
  6.  請求項5に記載のプリプレグの一枚または複数枚を積層したものを加熱加圧して得られる複合体。
  7.  請求項5に記載のプリプレグの一枚または複数枚を積層したものの最外層の片面または両面に金属箔を一体化させて得られる積層板。
PCT/JP2011/074598 2010-10-29 2011-10-19 樹脂組成物、それを用いたプリプレグ及び積層板 WO2012057171A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180051975.1A CN103180385B (zh) 2010-10-29 2011-10-19 树脂组合物、使用该树脂组合物的预浸料及层叠板
KR1020137009123A KR101507528B1 (ko) 2010-10-29 2011-10-19 수지 조성물, 그것을 사용한 프리프레그 및 적층판
JP2012540896A JP5832444B2 (ja) 2010-10-29 2011-10-19 樹脂組成物、それを用いたプリプレグ及び積層板
US13/824,899 US20130260155A1 (en) 2010-10-29 2011-10-19 Resin composition, and prepreg and laminate using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-243048 2010-10-29
JP2010243048 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012057171A1 true WO2012057171A1 (ja) 2012-05-03

Family

ID=45993877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074598 WO2012057171A1 (ja) 2010-10-29 2011-10-19 樹脂組成物、それを用いたプリプレグ及び積層板

Country Status (6)

Country Link
US (1) US20130260155A1 (ja)
JP (1) JP5832444B2 (ja)
KR (1) KR101507528B1 (ja)
CN (1) CN103180385B (ja)
TW (1) TWI444431B (ja)
WO (1) WO2012057171A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236367A (ja) * 2010-05-12 2011-11-24 Sumitomo Bakelite Co Ltd 封止用樹脂組成物及び電子部品装置
CN105102221A (zh) * 2013-04-16 2015-11-25 东洋纺株式会社 金属箔层叠体
JP2016210927A (ja) * 2015-05-12 2016-12-15 京セラ株式会社 封止用成形材料及び電子部品装置
JP2017145345A (ja) * 2016-02-18 2017-08-24 エア・ウォーター株式会社 熱硬化性樹脂組成物、その製造方法および用途

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104263200A (zh) * 2014-10-09 2015-01-07 六安市微特电机有限责任公司 一种无溶剂浸渍绝缘漆及其制备方法
CN104987666A (zh) * 2015-06-30 2015-10-21 苏州洋杰电子有限公司 环氧树脂-聚马来酰亚胺复合半导体封装材料及其制备方法
TWI593754B (zh) * 2016-10-05 2017-08-01 台灣日邦樹脂股份有限公司 聚醯亞胺複合材料的製造方法
TWI759144B (zh) * 2020-12-28 2022-03-21 大陸商中山台光電子材料有限公司 樹脂組合物及其製品

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093167A (ja) * 1995-04-21 1997-01-07 Toshiba Corp 樹脂組成物及びこれを用いた樹脂封止型半導体装置
JPH09328601A (ja) * 1995-12-08 1997-12-22 Mitsui Petrochem Ind Ltd 熱硬化性樹脂組成物並びにそれを用いたプリプレグおよび積層板
JPH1045876A (ja) * 1996-05-31 1998-02-17 Mitsui Petrochem Ind Ltd 熱硬化性樹脂組成物並びにそれを用いたプリプレグおよび積層板
JP2001247640A (ja) * 2000-03-06 2001-09-11 Aisin Seiki Co Ltd ビスマレイミド変性フェノール樹脂、パッド、シュー
JP2002308964A (ja) * 2001-04-11 2002-10-23 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2009035728A (ja) * 2007-07-12 2009-02-19 Mitsubishi Gas Chem Co Inc プリプレグ及び積層板
JP2010053334A (ja) * 2008-07-31 2010-03-11 Sekisui Chem Co Ltd エポキシ系樹脂組成物、プリプレグ、硬化体、シート状成形体、積層板及び多層積層板
JP2010090238A (ja) * 2008-10-07 2010-04-22 Ajinomoto Co Inc エポキシ樹脂組成物
JP2010275497A (ja) * 2009-06-01 2010-12-09 Mitsubishi Gas Chemical Co Inc 樹脂組成物、プリプレグ及び積層板
JP2011157509A (ja) * 2010-02-02 2011-08-18 Hitachi Chem Co Ltd 熱硬化性絶縁樹脂組成物、並びにこれを用いたプリプレグ、積層板及び多層プリント配線板
WO2011126070A1 (ja) * 2010-04-08 2011-10-13 三菱瓦斯化学株式会社 樹脂組成物、プリプレグおよび積層板
JP2011219674A (ja) * 2010-04-13 2011-11-04 Sumitomo Bakelite Co Ltd 回路基板用熱硬化樹脂性組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140166A (ja) * 1997-11-11 1999-05-25 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP4672930B2 (ja) * 2001-09-04 2011-04-20 三井化学株式会社 変性ポリイミド樹脂組成物ならびにそれを用いたプリプレグおよび積層板
JP2003335925A (ja) * 2002-05-23 2003-11-28 Mitsui Chemicals Inc 変性ポリイミド樹脂組成物ならびにそれを用いたプリプレグおよび積層板
JP2005154739A (ja) * 2003-11-05 2005-06-16 Mitsui Chemicals Inc 樹脂組成物ならびにそれを用いたプリプレグおよび積層板
WO2007105357A1 (ja) * 2006-03-07 2007-09-20 Sumitomo Bakelite Co., Ltd. 半導体封止用エポキシ樹脂組成物、及び半導体装置
JP5030297B2 (ja) * 2007-05-18 2012-09-19 日本化薬株式会社 積層板用樹脂組成物、プリプレグ及び積層板
JP5233710B2 (ja) * 2008-02-12 2013-07-10 三菱瓦斯化学株式会社 樹脂組成物、プリプレグおよび金属箔張り積層板
EP2799514B1 (en) * 2011-12-26 2017-08-02 Tokuyama Corporation Photochromic composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093167A (ja) * 1995-04-21 1997-01-07 Toshiba Corp 樹脂組成物及びこれを用いた樹脂封止型半導体装置
JPH09328601A (ja) * 1995-12-08 1997-12-22 Mitsui Petrochem Ind Ltd 熱硬化性樹脂組成物並びにそれを用いたプリプレグおよび積層板
JPH1045876A (ja) * 1996-05-31 1998-02-17 Mitsui Petrochem Ind Ltd 熱硬化性樹脂組成物並びにそれを用いたプリプレグおよび積層板
JP2001247640A (ja) * 2000-03-06 2001-09-11 Aisin Seiki Co Ltd ビスマレイミド変性フェノール樹脂、パッド、シュー
JP2002308964A (ja) * 2001-04-11 2002-10-23 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2009035728A (ja) * 2007-07-12 2009-02-19 Mitsubishi Gas Chem Co Inc プリプレグ及び積層板
JP2010053334A (ja) * 2008-07-31 2010-03-11 Sekisui Chem Co Ltd エポキシ系樹脂組成物、プリプレグ、硬化体、シート状成形体、積層板及び多層積層板
JP2010090238A (ja) * 2008-10-07 2010-04-22 Ajinomoto Co Inc エポキシ樹脂組成物
JP2010275497A (ja) * 2009-06-01 2010-12-09 Mitsubishi Gas Chemical Co Inc 樹脂組成物、プリプレグ及び積層板
JP2011157509A (ja) * 2010-02-02 2011-08-18 Hitachi Chem Co Ltd 熱硬化性絶縁樹脂組成物、並びにこれを用いたプリプレグ、積層板及び多層プリント配線板
WO2011126070A1 (ja) * 2010-04-08 2011-10-13 三菱瓦斯化学株式会社 樹脂組成物、プリプレグおよび積層板
JP2011219674A (ja) * 2010-04-13 2011-11-04 Sumitomo Bakelite Co Ltd 回路基板用熱硬化樹脂性組成物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236367A (ja) * 2010-05-12 2011-11-24 Sumitomo Bakelite Co Ltd 封止用樹脂組成物及び電子部品装置
CN105102221A (zh) * 2013-04-16 2015-11-25 东洋纺株式会社 金属箔层叠体
JP2016210927A (ja) * 2015-05-12 2016-12-15 京セラ株式会社 封止用成形材料及び電子部品装置
JP2017145345A (ja) * 2016-02-18 2017-08-24 エア・ウォーター株式会社 熱硬化性樹脂組成物、その製造方法および用途

Also Published As

Publication number Publication date
US20130260155A1 (en) 2013-10-03
TW201226474A (en) 2012-07-01
CN103180385A (zh) 2013-06-26
CN103180385B (zh) 2015-11-25
JPWO2012057171A1 (ja) 2014-05-12
JP5832444B2 (ja) 2015-12-16
KR101507528B1 (ko) 2015-03-31
TWI444431B (zh) 2014-07-11
KR20130100150A (ko) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5832444B2 (ja) 樹脂組成物、それを用いたプリプレグ及び積層板
EP2770025B1 (en) Halogen-free low-dielectric resin composition, and prepreg and copper foil laminate made by using same
TWI537341B (zh) 熱固性樹脂組合物及物件
US9944766B2 (en) Prepreg, metal-clad laminated board, and printed wiring board
WO2004029127A1 (ja) 印刷配線板用樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
KR102325101B1 (ko) 말레이미드 수지 조성물, 프리프레그, 적층판과 인쇄회로기판
TWI666248B (zh) 馬來醯亞胺樹脂組合物、預浸料、層壓板和印刷電路板
JP2013079326A (ja) 樹脂組成物、該組成物を含有するビルドアップ用絶縁体、及び該組成物を用いたプリプレグ
JP2017101152A (ja) 変性ポリイミド樹脂組成物およびその製造方法、並びにそれを用いたプリプレグおよび積層板
JP6307236B2 (ja) 硬化性樹脂組成物、硬化物、電気・電子部品及び回路基板材料
US20050095434A1 (en) Resin composition, prepreg and laminate using the composition
JP4317380B2 (ja) 変性ポリイミド樹脂組成物ならびにそれを用いたプリプレグおよび積層板
JP4672930B2 (ja) 変性ポリイミド樹脂組成物ならびにそれを用いたプリプレグおよび積層板
TWI309606B (en) Resin composition, prepreg and laminate using the composition
JP4676739B2 (ja) 樹脂組成物ならびにそれを用いたプリプレグおよび積層板
CN114605779B (zh) 一种热固性树脂组合物及包含其的预浸料、电路基板和印刷电路板
JP6203303B2 (ja) 熱硬化性樹脂組成物、その製造方法および用途
KR101754592B1 (ko) 고속전송 배선판용 저유전 에폭시수지 조성물 및 이를 이용하여 제조된 인쇄회로기판
JP2005154739A (ja) 樹脂組成物ならびにそれを用いたプリプレグおよび積層板
JPWO2017204249A1 (ja) 金属張積層板、プリント配線板及び半導体パッケージ
JPH1045876A (ja) 熱硬化性樹脂組成物並びにそれを用いたプリプレグおよび積層板
JP2003147170A (ja) 樹脂組成物ならびにそれを用いたプリプレグおよび積層板
JP4198508B2 (ja) 変性ポリイミド樹脂組成物ならびにそれを用いたプリプレグおよび積層板
JP2003119348A (ja) 難燃性樹脂組成物およびその用途
JPH10158363A (ja) 熱硬化性樹脂組成物並びにそれを用いたプリプレグおよび積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540896

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137009123

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13824899

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11836304

Country of ref document: EP

Kind code of ref document: A1