WO2012049779A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2012049779A1
WO2012049779A1 PCT/JP2010/068212 JP2010068212W WO2012049779A1 WO 2012049779 A1 WO2012049779 A1 WO 2012049779A1 JP 2010068212 W JP2010068212 W JP 2010068212W WO 2012049779 A1 WO2012049779 A1 WO 2012049779A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
electrode mixture
secondary battery
Prior art date
Application number
PCT/JP2010/068212
Other languages
English (en)
French (fr)
Inventor
裕喜 永井
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/068212 priority Critical patent/WO2012049779A1/ja
Priority to JP2012538547A priority patent/JP5737596B2/ja
Priority to KR1020137012213A priority patent/KR101500250B1/ko
Priority to US13/879,105 priority patent/US9553310B2/en
Priority to CN201080069612.6A priority patent/CN103155238B/zh
Publication of WO2012049779A1 publication Critical patent/WO2012049779A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • secondary battery generally refers to a rechargeable power storage device in general, a so-called storage battery such as a lithium-ion secondary battery, a nickel-hydrogen battery, a nickel-cadmium battery, and the like. It is a term encompassing power storage elements such as electric double layer capacitors.
  • the “lithium ion secondary battery” includes a secondary battery that uses lithium ions as electrolyte ions and is charged / discharged by the movement of charges accompanying the lithium ions between the positive and negative electrodes.
  • Lithium ion secondary batteries have positive and negative electrodes with materials (active materials) that can reversibly absorb and release lithium ions (Li ions), and are charged by the movement of lithium ions between the positive and negative electrodes. Or it is discharged.
  • a typical example of an active material used for an electrode (typically a positive electrode) of such a lithium ion secondary battery is a composite oxide containing lithium and a transition metal element.
  • a lithium composite oxide (nickel-containing lithium composite oxide) containing at least nickel (Ni) as the transition metal element and having a layered structure is preferably used.
  • Patent document 1 is mentioned as a technical document regarding the active material of a lithium ion secondary battery.
  • Patent Document 1 discloses a positive electrode active material made of a lithium-containing composite oxide powder, wherein the DBP liquid absorption amount of the powder is 20 to 40 ml per 100 g of lithium-containing composite oxide weight.
  • the DBP liquid absorption amount of the powder is obtained by using an abstract meter, a plastograph or a plasticoder in accordance with the DBP absorption amount A method or B method test method defined in JIS K6217 (1997). Measure the reagent liquid with a constant speed burette, measure and record the change in viscosity characteristics with a torque detector, and specify it according to the amount of reagent liquid added corresponding to 70% of the maximum torque generated. Is done.
  • the lithium ion secondary battery has a high energy density per unit weight, and is expected as a secondary battery suitable for a vehicle-mounted high-output power source.
  • a lithium ion secondary battery as a vehicle-mounted power source is required to have a particularly high output when starting or accelerating. In this case, merely evaluating the DBP absorption amount may not provide the required performance in applications that require such high output repeatedly.
  • the secondary battery according to the present invention includes a current collector and a positive electrode mixture layer coated on the current collector.
  • the positive electrode mixture layer includes a positive electrode active material, a conductive material, and a binder.
  • the positive electrode active material is composed of secondary particles having a hollow structure in which a plurality of primary particles of a lithium transition metal oxide are aggregated, and has a through-hole penetrating from the outside into the hollow portion.
  • the particle porosity A1 of the positive electrode active material is 2.0 (%) ⁇ A1 ⁇ 70 (%)
  • the DBP absorption amount A2 of the positive electrode active material is 23 (mL / 100 g).
  • ⁇ A2 and the tap density A3 of the positive electrode active material is 1.0 (g / mL) ⁇ A3 ⁇ 1.9 (g / mL).
  • the electrolyte solution can easily enter the positive electrode active material, the contact area between the positive electrode active material 610 and the electrolyte solution is wide, and lithium ions (Li) are generated between the positive electrode active material and the electrolyte solution. You can easily go back and forth. For this reason, the required performance can be obtained particularly in applications that require high output repeatedly.
  • the particle porosity A1 of the positive electrode active material may be 2.4 (%) ⁇ A1.
  • the particle porosity A1 of the positive electrode active material may further satisfy 25 (%) ⁇ A1.
  • the DBP absorption amount A2 of the positive electrode active material may be A2 ⁇ 54 (mL / 100 g).
  • the particle porosity A1 of the positive electrode active material may be A1 ⁇ 66 (%).
  • the particle diameter D defined by D50 of the secondary particles of the positive electrode active material may be 3 ( ⁇ m) ⁇ D ⁇ 7 ( ⁇ m).
  • the specific surface area E of the secondary particles of the positive electrode active material may be 0.8 (m 2 /g) ⁇ E ⁇ 1.5 (m 2 / g).
  • the average opening width of the through holes may be 0.01 ⁇ m or more. Further, the average opening width of the through holes may be 2.0 ⁇ m or less.
  • the positive electrode mixture layer may be rolled after the positive electrode mixture is applied to the current collector and dried.
  • FIG. 1 is a diagram illustrating an example of the structure of a lithium ion secondary battery.
  • FIG. 2 is a view showing a wound electrode body of a lithium ion secondary battery.
  • FIG. 3 is a diagram showing a III-III cross section in FIG.
  • FIG. 4 is a side view showing a welding location between an uncoated portion of the wound electrode body and the electrode terminal.
  • FIG. 5 is a cross-sectional view showing the structure of the positive electrode mixture layer.
  • FIG. 6 is a cross-sectional view showing an example of positive electrode active material particles.
  • FIG. 7 is a schematic diagram of the 18650 type cell used in the evaluation test.
  • FIG. 8 is a diagram showing an equivalent circuit fitting of the Nyquist plot in the reaction resistance measurement.
  • FIG. 8 is a diagram showing an equivalent circuit fitting of the Nyquist plot in the reaction resistance measurement.
  • FIG. 9 is a diagram illustrating a charge / discharge cycle in a low-rate high-rate cycle characteristic evaluation test.
  • FIG. 10 is a diagram illustrating an example of a positive electrode active material having a large tap density.
  • FIG. 11 is a diagram illustrating an example of a positive electrode active material having a small tap density.
  • FIG. 12 is an example of a cross-sectional SEM image of the positive electrode sheet.
  • FIG. 13 is a diagram illustrating an example of a vehicle equipped with a vehicle driving battery.
  • FIG. 1 shows a lithium ion secondary battery 100.
  • the lithium ion secondary battery 100 includes a wound electrode body 200 and a battery case 300.
  • FIG. 2 is a view showing a wound electrode body 200.
  • FIG. 3 shows a III-III cross section in FIG.
  • the wound electrode body 200 includes a positive electrode sheet 220, a negative electrode sheet 240, and separators 262 and 264.
  • the positive electrode sheet 220, the negative electrode sheet 240, and the separators 262 and 264 are respectively strip-shaped sheet materials.
  • the positive electrode sheet 220 has a strip-shaped positive electrode current collector 221 (positive electrode core material).
  • a metal foil suitable for the positive electrode can be suitably used.
  • a strip-shaped aluminum foil having a predetermined width is used.
  • the positive electrode sheet 220 includes an uncoated portion 222 and a positive electrode mixture layer 223.
  • the uncoated part 222 is set along the edge of one side in the width direction of the positive electrode current collector 221.
  • the positive electrode mixture layer 223 is a layer coated with a positive electrode mixture 224 containing a positive electrode active material.
  • the positive electrode mixture 224 is coated on both surfaces of the positive electrode current collector 221 except for the uncoated part 222 set on the positive electrode current collector 221.
  • the positive electrode mixture 224 is a mixture in which a positive electrode active material, a conductive material, a binder, and the like are mixed.
  • the positive electrode active material a material used as a positive electrode active material of a lithium ion secondary battery can be used.
  • the positive electrode active material include LiNiCoMnO 2 (lithium nickel cobalt manganese composite oxide), LiNiO 2 (lithium nickelate), LiCoO 2 (lithium cobaltate), LiMn 2 O 4 (lithium manganate), LiFePO 4 ( Lithium transition metal oxides such as lithium iron phosphate).
  • LiMn 2 O 4 for example, has a spinel structure.
  • LiNiO 2 and LiCoO 2 have a layered rock salt structure.
  • LiFePO 4 has, for example, an olivine structure.
  • LiFePO 4 having an olivine structure includes, for example, nanometer order particles.
  • LiFePO 4 having an olivine structure can be further covered with a carbon film.
  • the positive electrode mixture 224 can contain optional components such as a conductive material and a binder (binder) in addition to the positive electrode active material.
  • a conductive material include carbon materials such as carbon powder and carbon fiber. One kind selected from such conductive materials may be used alone, or two or more kinds may be used in combination.
  • carbon powder various carbon blacks (for example, acetylene black, oil furnace black, graphitized carbon black, carbon black, graphite, ketjen black), graphite powder, and the like can be used.
  • a polymer that is soluble or dispersible in a solvent to be used can be used.
  • cellulose polymers such as carboxymethyl cellulose (CMC) and hydroxypropyl methyl cellulose (HPMC) (for example, polyvinyl alcohol (PVA) and polytetrafluoroethylene (PTFE))
  • PVA polyvinyl alcohol
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • SBR styrene butadiene rubber
  • Water-soluble or water-dispersible polymers such as
  • polymers such as polyvinylidene fluoride (PVDF) and polyvinylidene chloride (PVDF) and polyvinylidene chloride (PVDF) and polyvinylidene chloride (PVDF) and polyvinylidene chloride (PVDF) and polyvinylidene chloride (PVDF) and polyvinylid
  • the polymer material illustrated above may be used for the purpose of exhibiting functions as a thickener and other additives of the composition in addition to the function as a binder.
  • the solvent any of an aqueous solvent and a non-aqueous solvent can be used.
  • a preferred example of the non-aqueous solvent is N-methyl-2-pyrrolidone (NMP).
  • the mass ratio of the positive electrode active material in the total positive electrode mixture is preferably about 50% by mass or more (typically 50 to 95% by mass), usually about 70 to 95% by mass (for example, 75 to 90% by mass). %) Is more preferable.
  • the ratio of the conductive material to the whole positive electrode mixture can be, for example, about 2 to 20% by mass, and preferably about 2 to 15% by mass.
  • the ratio of the binder to the whole positive electrode mixture can be, for example, about 1 to 10% by mass, and usually about 2 to 5% by mass is preferable.
  • the negative electrode sheet 240 has a strip-shaped negative electrode current collector 241 (negative electrode core material).
  • a metal foil suitable for the negative electrode can be suitably used.
  • a strip-shaped copper foil having a predetermined width is used for the negative electrode current collector 241.
  • the negative electrode sheet 240 has an uncoated portion 242 and a negative electrode mixture layer 243.
  • the uncoated portion 242 is set along the edge on one side in the width direction of the negative electrode current collector 241.
  • the negative electrode mixture layer 243 is a layer coated with a negative electrode mixture 244 containing a negative electrode active material.
  • the negative electrode mixture 244 is coated on both surfaces of the negative electrode current collector 241 except for the uncoated portion 242 set on the negative electrode current collector 241.
  • the negative electrode mixture 244 is a mixture in which a negative electrode active material, a conductive material, a binder, and the like are mixed.
  • a material used as a negative electrode active material of a lithium ion secondary battery can be used.
  • the negative electrode active material include natural graphite, artificial graphite, carbon-based materials such as natural graphite and amorphous carbon of artificial graphite, lithium transition metal oxides, and lithium transition metal nitrides. Note that the negative electrode active material itself has conductivity. For this reason, the conductive material is added to the negative electrode mixture 244 as necessary. In this example, as shown in FIG.
  • a heat-resistant layer 245 (HRL: heat-resistant layer) is further formed on the surface of the negative electrode mixture layer 243.
  • the heat-resistant layer 245 is mainly formed of a metal oxide (for example, alumina).
  • the heat resistant layer 245 is formed on the surface of the negative electrode mixture layer 243.
  • illustration is omitted, for example, a heat-resistant layer may be formed on the surfaces of the separators 262 and 264.
  • a negative electrode active material the material of 1 type, or 2 or more types conventionally used for a lithium ion secondary battery can be used without limitation.
  • a particulate carbon material carbon particles including a graphite structure (layered structure) at least in part. More specifically, so-called graphitic (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), and a carbon material that combines these can be used.
  • graphite particles such as natural graphite can be used.
  • an appropriate amount of a thickener is mixed in the negative electrode mixture in order to maintain the dispersion of the negative electrode active material.
  • the same thickener, binder and conductive material as those used for the positive electrode mixture can be used.
  • the ratio of the negative electrode active material to the whole negative electrode mixture can be about 80% by mass or more (for example, 80 to 99% by mass). Further, the ratio of the negative electrode active material to the whole negative electrode mixture is preferably about 90% by mass or more (for example, 90 to 99% by mass, more preferably 95 to 99% by mass). In the composition using the binder, the ratio of the binder to the whole negative electrode mixture can be, for example, about 0.5 to 10% by mass, and usually about 1 to 5% by mass.
  • the positive electrode mixture layer 223 and the negative electrode mixture layer 243 are each formed by applying to the positive electrode current collector 221 or the negative electrode current collector 241, drying, and rolling.
  • the positive electrode mixture 224 and the negative electrode mixture 244 are applied to the sheet-like current collector.
  • a conventionally known suitable coating device for example, a slit coater, a die coater, a comma coater, a gravure coater, or the like can be used.
  • the positive electrode mixture 224 and the negative electrode mixture 244 can be continuously applied to the current collector by using a long belt-like sheet-like current collector.
  • ⁇ Drying process In the drying step, the positive electrode mixture and the negative electrode mixture applied to the sheet-like current collector are dried. At this time, appropriate drying conditions may be set to prevent migration.
  • a positive electrode mixture 224 or a negative electrode mixture 244 applied to the current collector is obtained by using a long belt-like sheet-shaped current collector and passing the current collector along a running path provided in the drying furnace. Can be dried continuously.
  • the positive electrode mixture layer 223 and the negative electrode mixture layer 243 dried in the drying step are pressed in the thickness direction to obtain a sheet-like positive electrode (positive electrode sheet) having a desired property.
  • a conventionally known roll pressing method, flat plate pressing method, or the like can be appropriately employed.
  • the separators 262 and 264 are members that separate the positive electrode sheet 220 and the negative electrode sheet 240.
  • the separators 262 and 264 are made of a strip-shaped sheet material having a predetermined width and having a plurality of minute holes.
  • Examples of the separators 262 and 264 include a single layer structure separator and a multilayer structure separator made of a porous polyolefin resin.
  • the width b ⁇ b> 1 of the negative electrode mixture layer 243 is slightly wider than the width a ⁇ b> 1 of the positive electrode mixture layer 223.
  • the widths c1 and c2 of the separators 262 and 264 are slightly wider than the width b1 of the negative electrode mixture layer 243 (c1, c2>b1> a1).
  • Winded electrode body 200 The positive electrode sheet 220 and the negative electrode sheet 240 of the wound electrode body 200 are overlapped and wound with the separators 262 and 264 interposed therebetween.
  • the positive electrode sheet 220, the negative electrode sheet 240, and the separators 262 and 264 are stacked in the order of the positive electrode sheet 220, the separator 262, the negative electrode sheet 240, and the separator 264 in the length direction as shown in FIG. ing.
  • separators 262 and 264 are stacked on the positive electrode mixture layer 223 and the negative electrode mixture layer 243.
  • the width of the negative electrode mixture layer 243 is slightly wider than that of the positive electrode mixture layer 223, and the negative electrode mixture layer 243 is stacked so as to cover the positive electrode mixture layer 223.
  • the uncoated part 222 of the positive electrode sheet 220 and the uncoated part 242 of the negative electrode sheet 240 are overlapped so as to protrude on opposite sides in the width direction of the separators 262 and 264.
  • the stacked sheet material (for example, the positive electrode sheet 220) is wound around a winding axis set in the width direction.
  • the wound electrode body 200 is wound while the positive electrode sheet 220, the negative electrode sheet 240, and the separators 262 and 264 are stacked in a predetermined order.
  • the sheets are stacked while the position of each sheet is controlled by a position adjusting mechanism such as EPC (edge position control).
  • EPC edge position control
  • the negative electrode mixture layer 243 is overlaid so as to cover the positive electrode mixture layer 223.
  • the battery case 300 is a so-called square battery case, and includes a container body 320 and a lid 340.
  • the container main body 320 has a bottomed rectangular tube shape and is a flat box-shaped container having one side surface (upper surface) opened.
  • the lid 340 is a member that is attached to the opening (opening on the upper surface) of the container body 320 and closes the opening.
  • the container main body 320 and the lid 340 constituting the battery case 300 adopt a light metal (in this example, aluminum) such as aluminum or an aluminum alloy. Thereby, the weight energy efficiency can be improved.
  • the battery case 300 has a flat rectangular internal space as a space for accommodating the wound electrode body 200.
  • the flat internal space of the battery case 300 is slightly wider than the wound electrode body 200.
  • the wound electrode body 200 is accommodated in the internal space of the battery case 300.
  • the wound electrode body 200 is accommodated in the battery case 300 in a state of being flatly deformed in one direction orthogonal to the winding axis.
  • the battery case 300 includes a bottomed rectangular tube-shaped container body 320 and a lid 340 that closes the opening of the container body 320.
  • the container main body 320 can be molded by, for example, deep drawing molding or impact molding.
  • Impact molding is a kind of cold forging, and is also referred to as impact extrusion or impact press.
  • the electrode terminals 420 and 440 are attached to the lid 340 of the battery case 300.
  • the electrode terminals 420 and 440 pass through the battery case 300 (lid 340) and come out of the battery case 300.
  • the lid 340 is provided with a safety valve 360.
  • the wound electrode body 200 is attached to electrode terminals 420 and 440 attached to the battery case 300 (in this example, the lid body 340).
  • the wound electrode body 200 is housed in the battery case 300 in a state of being flatly pushed and bent in one direction orthogonal to the winding axis.
  • the uncoated part 222 of the positive electrode sheet 220 and the uncoated part 242 of the negative electrode sheet 240 protrude on the opposite sides in the width direction of the separators 262 and 264.
  • one electrode terminal 420 is fixed to the uncoated part 222 of the positive electrode current collector 221, and the other electrode terminal 440 is fixed to the uncoated part 242 of the negative electrode current collector 241. .
  • the electrode terminals 420 and 440 of the lid 340 extend to the uncoated portion 222 of the wound electrode body 200 and the intermediate portions 222 a and 242 a of the uncoated portion 242. Yes.
  • the tip portions of the electrode terminals 420 and 440 are welded to intermediate portions of the uncoated portions 222 and 242, respectively.
  • FIG. 4 is a side view showing a welding location between the uncoated portions 222 and 242 of the wound electrode body 200 and the electrode terminals 420 and 440.
  • the uncoated part 222 of the positive electrode current collector 221 and the uncoated part 242 of the negative electrode current collector 241 are spirally exposed.
  • these uncoated portions 222 and 242 are gathered together at their intermediate portions and welded to the tip portions of the electrode terminals 420 and 440, respectively.
  • ultrasonic welding is used for welding the electrode terminal 420 and the positive electrode current collector 221 due to the difference in materials.
  • resistance welding is used for welding the electrode terminal 440 and the negative electrode current collector 241.
  • the wound electrode body 200 is attached to the electrode terminals 420 and 440 fixed to the lid body 340 in a state of being flatly pushed and bent.
  • the wound electrode body 200 is accommodated in the flat internal space of the container body 320.
  • the container body 320 is closed by the lid 340 after the wound electrode body 200 is accommodated.
  • the joint 322 (see FIG. 1) between the lid 340 and the container main body 320 is welded and sealed, for example, by laser welding.
  • the wound electrode body 200 is positioned in the battery case 300 by the electrode terminals 420 and 440 fixed to the lid 340 (battery case 300).
  • an electrolytic solution is injected into the battery case 300 from a liquid injection hole provided in the lid 340.
  • an electrolytic solution in which LiPF 6 is contained at a concentration of about 1 mol / liter in a mixed solvent of ethylene carbonate and diethyl carbonate (for example, a mixed solvent having a volume ratio of about 1: 1) is used. Yes.
  • a metal sealing cap is attached to the injection hole (for example, by welding) to seal the battery case 300.
  • the nonaqueous electrolyte solution conventionally used for a lithium ion secondary battery can be used.
  • the flat internal space of the battery case 300 is slightly wider than the wound electrode body 200 deformed flat.
  • gaps 310 and 312 are provided between the wound electrode body 200 and the battery case 300.
  • the gaps 310 and 312 serve as a gas escape path.
  • the lithium ion secondary battery 100 having such a configuration has a high temperature when overcharge occurs.
  • the electrolyte solution is decomposed to generate gas.
  • the generated gas is smoothly discharged to the outside through the gaps 310 and 312 between the wound electrode body 200 and the battery case 300 on both sides of the wound electrode body 200 and the safety valve 360.
  • the positive electrode current collector 221 and the negative electrode current collector 241 are electrically connected to an external device through electrode terminals 420 and 440 that penetrate the battery case 300.
  • the above shows an example of a lithium ion secondary battery.
  • the lithium ion secondary battery is not limited to the above form.
  • an electrode sheet in which an electrode mixture is applied to a metal foil is used in various other battery forms.
  • cylindrical batteries and laminated batteries are known as other battery types.
  • a cylindrical battery is a battery in which a wound electrode body is accommodated in a cylindrical battery case.
  • a laminate type battery is a battery in which a positive electrode sheet and a negative electrode sheet are stacked with a separator interposed therebetween.
  • the lithium ion secondary battery 100 the same structure can be employ
  • FIG. 5 is a cross-sectional view of the positive electrode sheet 220 of the lithium ion secondary battery 100.
  • the positive electrode active material 610 and the conductive material 620 in the positive electrode mixture layer 223 are schematically illustrated so as to clarify the structure of the positive electrode mixture layer 223.
  • the positive electrode mixture 224 is applied to both surfaces of the positive electrode current collector 221.
  • the positive electrode mixture 224 layer (positive electrode mixture layer 223) includes a positive electrode active material 610, a conductive material 620, and a binder 630.
  • the positive electrode mixture layer 223 further includes a binder 630 (binder).
  • a cross-sectional sample of the positive electrode mixture layer 223 as shown in FIG. 5 may be obtained, for example, by a cross-sectional SEM image.
  • the cross-sectional SEM image is a cross-sectional photograph obtained by an electron microscope.
  • an arbitrary cross section of the positive electrode sheet 220 is obtained by CP treatment (Cross Section Polisher treatment).
  • a scanning electron microscope (FE-SEM) HITACHI S-4500 manufactured by Hitachi High-Technologies Corporation can be used.
  • Positive hole of positive electrode mixture layer 223 is formed by applying the positive electrode mixture to a current collector (metal foil), drying and rolling as described above.
  • the particles are bonded by the action of the binder 630. Since the positive electrode mixture layer 223 is in a state where the positive electrode active material 610 and the conductive material 620 are joined by the binder 630, there are many minute cavities between the particles.
  • the conductive material 620 is smaller than the positive electrode active material 610 (secondary particles) and enters a plurality of gaps in the positive electrode active material 610.
  • the positive electrode active material 610 and the positive electrode current collector 221 are electrically connected by the conductive material 620.
  • the positive electrode mixture layer 223 has a minute gap that should be referred to as a cavity.
  • An electrolyte (not shown) soaks into the minute gaps of the positive electrode mixture layer 223.
  • the gap (cavity) formed inside the positive electrode mixture layer 223 is appropriately referred to as “hole”.
  • FIG. 6 schematically shows the positive electrode active material 610.
  • the positive electrode active material 610 includes secondary particles 910, a hollow portion 920, and a through hole 930 as shown in FIG. 6.
  • the secondary particles 910 are particles in which a plurality of primary particles (not shown) of lithium transition metal oxides are aggregated.
  • the hollow portion 920 is an internal hole formed in the secondary particle 910.
  • the through hole 930 is a hole that penetrates the secondary particle 910 so as to connect the outside of the secondary particle 910 and the hollow portion 920.
  • the positive electrode active material 610 having a hollow structure means a secondary particle 910 having the hollow portion 920 and the through hole 930.
  • the particle size of such secondary particles is about 3 ⁇ m to 12 ⁇ m, more preferably about 3 ⁇ m to 8 ⁇ m.
  • the median diameter (d50) obtained from the particle size distribution measured by the particle size distribution measuring instrument based on the light scattering method is adopted as the particle size.
  • ⁇ Conductive material 620 As the conductive material 620, carbon powder such as acetylene black, oil furnace black, graphitized carbon black, carbon black, graphite, or ketjen black) or graphite powder can be used. In this case, the conductive material 620 may be mixed with one kind or plural kinds of carbon powders at a predetermined ratio. Here, the conductive material 620 has a particle size smaller than that of the positive electrode active material 610. The particle size of the conductive material 620 is, for example, about 10 ⁇ m to 100 ⁇ m.
  • the positive electrode active material 610 will be described in more detail.
  • a through-hole 930 is formed inside the hollow portion 920 to such an extent that the electrolyte can enter more reliably.
  • the opening width k of the through-hole 930 is good in average being 0.01 micrometer or more, for example. Thereby, the effect obtained by the electrolyte entering the hollow portion 920 can be more easily obtained.
  • the opening width k of the through-hole 930 is the passing length (through-hole) in the narrowest part of the through-hole 930 in the path from the outside of the active material particle through the secondary particle to the hollow portion 920.
  • the inner diameter of the hole 930 is the passing length (through-hole) in the narrowest part of the through-hole 930 in the path from the outside of the active material particle through the secondary particle to the hollow portion 920.
  • the through hole 930 when there are a plurality of through holes 930 in the hollow portion 920, it is preferable to evaluate the through hole 930 having the largest opening width k among the plurality of through holes 930.
  • the opening width k of the through hole 930 may be an average of 2.0 ⁇ m or less.
  • the number of through holes 930 may be about 1 to 20 on average per particle of the positive electrode active material 610 having a hollow structure. According to the positive electrode active material 610 having such a structure, good battery performance can be exhibited more stably (for example, while suppressing deterioration due to charge / discharge cycles).
  • the number of through-holes 930 of positive electrode active material 610 having a hollow structure is, for example, ascertaining the number of through-holes per particle for at least 10 or more active material particles arbitrarily selected, and obtaining the arithmetic average value thereof. Good.
  • the method for manufacturing the positive electrode active material 610 having a hollow structure preferably includes, for example, a raw material hydroxide generation step, a mixing step, and a firing step.
  • the raw material hydroxide generating step is a step of supplying ammonium ions to the aqueous solution of the transition metal compound to precipitate the particles of the transition metal hydroxide from the aqueous solution.
  • the aqueous solution may contain at least one transition metal element constituting the lithium transition metal oxide.
  • the raw material hydroxide generation step preferably includes a nucleation stage and a particle growth stage.
  • the nucleation stage is a stage in which the transition metal hydroxide is precipitated from the aqueous solution at a pH of 12 or more and an ammonium ion concentration of 25 g / L or less.
  • the particle growth stage is a stage in which the transition metal hydroxide precipitated in the nucleation stage is grown at a pH of less than 12 and an ammonium ion concentration of 3 g / L or more.
  • the mixing step is a step of preparing an unfired mixture by mixing the transition metal hydroxide particles obtained in the raw material hydroxide generating step and the lithium compound.
  • the firing step is a step of obtaining active material particles by firing the mixture obtained in the mixing step. According to such a manufacturing method, a positive electrode active material 610 having a perforated hollow structure as shown in FIG. 6 can be appropriately manufactured.
  • the firing step is preferably performed so that the maximum firing temperature is 800 ° C. to 1100 ° C.
  • the active material particle which has desired average hardness can be manufactured suitably.
  • This firing step is preferably performed so that, for example, secondary particles that do not substantially have a gap at the grain boundaries of the primary particles are formed in portions other than the hollow portion 920 and the through holes 930.
  • the firing step includes a first firing stage in which the mixture is fired at a temperature T1 of 700 ° C. or more and 900 ° C. or less, and a result obtained through the first firing step is 800 ° C. or more and 1100 ° C. or less and the first firing stage. And a second firing stage in which firing is performed at a temperature T2 higher than the firing temperature T1.
  • the firing step includes a first firing stage in which the mixture is fired at a temperature T1 of 700 ° C. or more and 900 ° C. or less, and a result obtained through the first firing stage.
  • a second firing stage in which firing is performed at a temperature T2 that is 800 ° C. or more and 1100 ° C. or less and higher than a firing temperature T1 in the first firing stage.
  • the positive electrode active material 610 having a hollow structure may be a lithium transition metal oxide having a layered structure containing nickel as a constituent element. Further, the positive electrode active material 610 having a hollow structure may be a lithium transition metal oxide having a layered structure including nickel, cobalt, and manganese as constituent elements.
  • the particle porosity A1 of the positive electrode active material 610 is 2.0 (%) ⁇ A1 ⁇ 70 (%).
  • the DBP absorption amount A2 of the positive electrode active material 610 is 23 (mL / 100 g) ⁇ A2.
  • the tap density A3 of the positive electrode active material 610 is 1.0 (g / mL) ⁇ A3 ⁇ 1.9 (g / mL).
  • the particle porosity A1, the DBP absorption amount A2, and the tap density A3 will be described in order.
  • particle porosity A1 (Particle pore volume ratio) ⁇
  • the particle porosity A1 indicates the ratio of the hollow portion 920 to the apparent volume of the secondary particles 910 of the positive electrode active material 610 including the hollow portion 920 and the through-hole 930.
  • the particle porosity A1 may be referred to as “particle void volume ratio”.
  • apparent volume refers to a volume including pores.
  • the particle porosity A1 is a value obtained by dividing the volume of the hollow portion 920 by the apparent volume of the secondary particles 910 including the hollow portion 920, as represented by the following formula.
  • the particle porosity A1 can be measured based on a cross-sectional SEM image of the positive electrode mixture layer 223 as shown in FIG.
  • a cross-sectional image can be obtained by, for example, a cross-sectional SEM image of the positive electrode mixture layer 223.
  • the cross-section of the positive electrode active material 610, the intra-particle vacancies B, and the extra-particle vacancies C are distinguished for the positive-electrode active material 610 in which the cross-section is shown, based on the difference in color tone and shade can do.
  • the particle porosity A ⁇ b> 1 is the total volume Vb of the intraparticle pores B in the positive electrode mixture layer 223 and the apparent volume Va ⁇ b> 1 of the positive electrode active material 610 in the positive electrode mixture layer 223.
  • the ratio (Vb / Va1) is a ratio (Sb) between the area Sb occupied by the intraparticle pores B in the cross section of the positive electrode mixture layer 223 and the apparent cross sectional area Sa1 of the positive electrode active material 610 in the positive electrode mixture layer 223. / Sa1).
  • This ratio (Sb / Sa1) is the number of dots in the portion distinguished from the cross section of the positive electrode active material 610 in the cross-sectional SEM image, and the number of dots in the portion distinguished from the cross section of the intra-particle void B and the positive electrode active material 610. It can be approximated by the ratio of In this case, it is possible to approximate more accurately by increasing the number of cross-sectional samples.
  • DBP absorption amount A2 is determined in accordance with JIS K6217-4 “Carbon black for rubber—Basic characteristics—Part 4: Determination of DBP absorption amount”.
  • DBP dibutyl phthalate
  • a powder to be inspected powder of secondary particles 910 of the positive electrode active material 610
  • a constant speed burette a powder to be inspected
  • a change in viscosity characteristics is measured by a torque detector.
  • the amount of reagent liquid added per unit weight of the inspection target powder corresponding to 70% of the generated maximum torque is defined as DBP absorption (mL / 100 g).
  • an absorption amount measuring device S410 of Asahi Research Institute, Ltd. may be used.
  • the tap density A3 refers to a density measured after tapping by a tapping powder reduction measuring device.
  • a tapping type powder reduction degree measuring device a tapping type powder reduction degree measuring device TPM-3 manufactured by Tsutsui Richemical Instruments Co., Ltd. was used.
  • TPM-3 a tapping type powder reduction degree measuring device manufactured by Tsutsui Richemical Instruments Co., Ltd.
  • 60 g of a powder of secondary particles 910 of the positive electrode active material 610 was used. The measurement was performed according to the following procedures 1 to 4.
  • Procedure 1 After a dedicated graduated cylinder is thoroughly dried, a weighed sample is placed in the graduated cylinder.
  • Procedure 2 A measuring cylinder is attached to a tapping type powder reduction measuring device.
  • Procedure 3 Adjust tapping drop distance to 20 mm.
  • Procedure 4 After tapping 500 times with a tapping-type powder reduction measuring device, the volume of the sample is read from the scale of the graduated cylinder.
  • the tap density A3 is obtained by dividing the weight of the sample measured in the procedure 1 (here, 60 g) by the volume (mL) of the sample read in the procedure 4. An expression for obtaining the tap density A3 is shown below.
  • Tap density A3 (g / mL) weight of sample (60 g) / sample volume (mL)
  • the present inventor prepared a plurality of samples of the positive electrode active material 610 having different particle porosity A1, DBP absorption A2, and tap density A3. Then, using each sample of the positive electrode active material 610, a battery 800 for an evaluation test (see FIG. 7) was prepared, and low temperature reaction resistance, output characteristics, high rate cycle characteristics, and low rate cycle characteristics were measured. Then, the influence of the particle porosity A1, the DBP absorption amount A2, and the tap density A3 on the performance of the lithium ion secondary battery 100 was examined.
  • a positive electrode active material 610 having a composition represented by Li 1.15 Ni 0.33 Co 0.34 Mn 0.33 O 2 was used as the positive electrode active material 610.
  • the secondary particles of the positive electrode active material 610 have a perforated hollow structure as shown in FIG.
  • the positive electrode active material was changed and the sample of the several lithium ion secondary battery for evaluation tests was obtained.
  • a plurality of batteries were prepared for each sample and used for various tests.
  • the evaluation test results are shown in Table 1.
  • Table 1 the DBP absorption amount and mass ratio of the positive electrode active material and the conductive material of each of Samples 1 to 18 are as shown in Table 1.
  • Table 1 shows “particle porosity A1”, “DBP absorption A2”, “tap density A3”, “particle diameter (average particle diameter D50)”, “specific surface area”, “low temperature” for samples 1 to 18.
  • reaction resistance “output characteristics”, “high rate cycle characteristics” and “low rate cycle characteristics” are shown, respectively.
  • “particle porosity A1”, “DBP absorption amount A2”, “tap density A3”, “particle diameter (average particle diameter D50)” and “specific surface area” are the values for samples 1 to 18 of the positive electrode active material. It is measured.
  • the measurement methods of “particle porosity A1”, “DBP absorption amount A2”, and “tap density A3” are as described above.
  • particle diameter (average particle diameter D50)” and “specific surface area” will be described.
  • the particle diameter (average particle diameter D50) of the secondary particles 910 of the positive electrode active material 610 a measurement value by a general laser diffraction particle size distribution measurement can be adopted.
  • the particle diameter may be evaluated by an average particle diameter (D50).
  • the average particle size (D50) of each sample was set to about 3 ⁇ m to 7 ⁇ m.
  • the specific surface area is a surface area per unit weight.
  • the specific surface area a value measured by a general nitrogen adsorption method can be adopted.
  • the specific surface area increases, the area that can come into contact with the electrolytic solution per unit weight of the positive electrode active material 610 increases, so that an effect of improving battery performance can be expected.
  • the specific surface area of the positive electrode active material 610 is too small, the effect of improving the reaction resistance (particularly, the reaction resistance at a low temperature) tends to decrease.
  • the specific surface area was set to a certain range for each sample.
  • FIG. 7 schematically shows a battery 800 for an evaluation test.
  • the battery 800 for evaluation test created here is a cylindrical lithium ion secondary battery called a so-called 18650 type cell.
  • the rated capacity of the battery 800 for the evaluation test was about 220 mAh.
  • the battery 800 for the evaluation test is formed by laminating a positive electrode sheet 810, a negative electrode sheet 820, and two separators 830 and 840, and winding the laminated sheet.
  • a wound electrode body 850 in which separators 830 and 840 were interposed between the negative electrode sheet 820 and the negative electrode sheet 820 was produced.
  • the cross-sectional structure of the positive electrode sheet 810 and the negative electrode sheet 820 of the battery 800 for evaluation test is substantially the same as the cross-sectional structure of the positive electrode sheet 220 or the negative electrode sheet 240 (see FIG. 1) of the lithium ion secondary battery 100 described above. did.
  • a porous polyethylene sheet having a thickness of 20 ⁇ m was used for the separators 830 and 840.
  • the wound electrode body 850 was housed in an outer case 860 together with a non-aqueous electrolyte (not shown) to construct a battery 800 for an evaluation test (18650 type lithium ion battery for an evaluation test).
  • the samples 1 to 18 described above were used as the positive electrode active material 610.
  • acetylene black (AB) was used as the conductive material 620.
  • NMP N-methyl-2-pyrrolidone
  • the binder 630 polyvinylidene fluoride (PVDF) was used.
  • the exterior case 860 has a substantially cylindrical shape, and electrode terminals 870 and 880 connected inside the positive electrode sheet 810 and the negative electrode sheet 820 are provided at both ends of the cylindrical shape.
  • this evaluation test battery 800 has a composition in which LiPF 6 is dissolved at a concentration of 1 mol / L in a mixed solvent containing EC, DMC, and EMC in a volume ratio of 3: 3: 4 as a non-aqueous electrolyte. A non-aqueous electrolyte was used.
  • the conditions excluding the positive electrode active material 610 were substantially the same. Further, an aluminum foil having a thickness of 15 ⁇ m was used for the positive electrode current collector. The amount of the positive electrode mixture applied to the positive electrode current collector 221 was about 15 mg / cm 2 . Further, with respect to the same sample, the positive electrode mixture application step and the rolling step are adjusted so that the positive electrode mixture layer 223 has two types of positive electrode sheets 810 having a porosity of about 30% and a porosity of about 45%. And two types of batteries 800 for evaluation tests were prepared.
  • the volume Vbc of the holes (B, C) formed inside the positive electrode mixture layer can be measured by using, for example, a mercury porosimeter.
  • “hole” means a hole opened to the outside.
  • the closed space in the positive electrode mixture layer 223 is not included in the “hole” in this method.
  • the mercury porosimeter is a device that measures the pore distribution of a porous body by a mercury intrusion method.
  • the mercury porosimeter for example, Autopore III9410 manufactured by Shimadzu Corporation can be used. In this case, for example, measurement may be performed at 4 psi to 60000 psi (pore range of 50 ⁇ m to 0.003 ⁇ m).
  • hole (B, C) contained in the positive mix layer 223 is measured using a mercury porosimeter.
  • the mercury porosimeter is a device that measures the pore distribution of a porous body by a mercury intrusion method.
  • a mercury intrusion method first, a sample of the positive electrode sheet 220 is evacuated and immersed in mercury. In this state, when the pressure applied to the mercury increases, the mercury gradually enters a small space. Based on the relationship between the amount of mercury that has entered the positive electrode mixture layer 223 and the pressure applied to the mercury, the volume of the holes (B, C) in the positive electrode mixture layer 223 can be obtained.
  • the volume Vbc of the holes (B, C) included in the positive electrode mixture layer 223 can be obtained.
  • the ratio (Vbc / Va) obtained here indicates the volume ratio at which there are vacancies in which the electrolyte solution can penetrate into the positive electrode mixture layer 223.
  • the positive electrode active material 610 having the hollow structure described above it is particularly preferable that the positive electrode material mixture layer 223 has a hole into which the electrolyte solution can permeate. Thereby, the electrolyte solution can be immersed in the positive electrode mixture layer 223.
  • the ratio (Vbc / Va) of the positive electrode mixture layer 223 is 0.25 ⁇ (Vbc / Va). ) More preferably, about 0.30 ⁇ (Vbc / Va).
  • the ratio (Vbc / Va) is preferably (Vbc / Va) ⁇ 0.60, for example, (Vbc / Va) ⁇ 0.57.
  • the upper limit of the porosity (Vbc / Va) is not particularly limited, but may be an appropriate size that can be realized.
  • the porosity (Vbc / Va) may be an appropriate size that can be realized, and may be, for example, about 0.65. Note that the porosity (Vbc / Va) may be larger than 65 (%), but if the porosity (Vbc / Va) becomes too high, an electron path path between the positive electrode active material 610 and the conductive material 620 cannot be constructed. In addition, the current collecting property may be deteriorated.
  • the porosity (Vbc / Va) may be 65% or less, for example, about 60%, more preferably about 57 (%).
  • the electron path path between the positive electrode active material 610 and the conductive material 620 is more reliably constructed, and it is considered that a secondary battery with more stable performance can be obtained.
  • Porosity (Vbc / Va) [(“Positive electrode sheet 220 thickness d” ⁇ “Positive electrode current collector 221 thickness e”) ⁇ “Positive area Mv of positive electrode mixture layer 223” ⁇ ⁇ (Positive electrode Weight ratio ⁇ of active material 610) / (true density X of positive electrode active material 610) + (weight ratio ⁇ of conductive material 620) / (true density Y of conductive material 620) + (weight ratio ⁇ of binder 630) / ( True density Z of binder 630)]] / ("thickness d of positive electrode sheet 220"-"thickness e of positive electrode current collector 221"); It is.
  • the “true density” is a value obtained by dividing the weight by the actual volume not including the pores.
  • Mv ⁇ ⁇ ( ⁇ / X) + ( ⁇ / Y) + ( ⁇ / Z) ⁇ is the thickness of the positive electrode mixture layer 223 when it is assumed that the positive electrode mixture layer 223 has no holes. It is what I have sought.
  • weight ratio ⁇ of positive electrode active material 610 can be measured, for example, before the positive electrode mixture layer 223 is formed.
  • the “true density” can be measured by a density measuring device such as a gas displacement pycnometer.
  • the thickness (de) of the positive electrode mixture layer 223” and “the basis weight Mv of the positive electrode mixture layer 223” can be measured, for example, after the formation of the positive electrode mixture layer 223.
  • the thickness (de) of the positive electrode mixture layer 223” and “the basis weight Mv of the positive electrode mixture layer 223” may be set as target values in the coating process or rolling process of the positive electrode mixture layer 223. it can.
  • the positive electrode mixture layer 223 is formed on both surfaces of the positive electrode current collector 221. For this reason, it is preferable to calculate the porosity in consideration that the positive electrode mixture layer 223 is formed on both surfaces of the positive electrode current collector 221.
  • the porosity (Vbc / Va) is, for example, the area Sbc occupied by the pores (B, C) included per unit cross-sectional area of the positive electrode mixture layer 223 in the cross-sectional sample of the positive electrode mixture layer 223, and the positive electrode mixture It can be approximated by the ratio (Sbc / Sa) to the apparent sectional area Sa of the layer 223.
  • the ratio (Sbc / Sa) may be obtained from a plurality of cross-sectional samples of the positive electrode mixture layer 223. As the cross-sectional sample of the positive electrode mixture layer 223 increases, the ratio (Sbc / Sa) can more accurately approximate the porosity (Vbc / Va).
  • a cross-sectional sample may be taken from a plurality of cross sections orthogonal to the one direction along one arbitrary direction of the positive electrode sheet 220.
  • a cross-sectional sample of the positive electrode mixture layer 223 may be obtained from a cross-sectional SEM image.
  • the cross-sectional SEM image is a cross-sectional photograph obtained by an electron microscope.
  • an arbitrary cross section of the positive electrode sheet 220 is obtained by CP treatment (Cross Section Polisher treatment).
  • a scanning electron microscope (FE-SEM) HITACHI S-4500 manufactured by Hitachi High-Technologies Corporation can be used.
  • the rated capacity is measured by the following procedures 1 to 3 at a temperature of 25 ° C. and a voltage range of 3.0 V to 4.1 V for the battery for the evaluation test after the conditioning process.
  • Procedure 1 After reaching 3.0V by constant current discharge of 1C, discharge by constant voltage discharge for 2 hours, and then rest for 10 seconds.
  • Procedure 2 After reaching 4.1 V by constant current charging at 1 C, charge for 2.5 hours by constant voltage charging, and then rest for 10 seconds.
  • Procedure 3 After reaching 3.0 V by constant current discharge at 0.5 C, discharge at constant voltage discharge for 2 hours, and then stop for 10 seconds.
  • Rated capacity The discharge capacity (CCCV discharge capacity) in the discharge from the constant current discharge to the constant voltage discharge in the procedure 3 is defined as the rated capacity.
  • the SOC adjustment is performed by the following procedures 1 and 2 under the temperature environment of 25 ° C. for the evaluation test battery prepared above.
  • the SOC adjustment may be performed after the conditioning process and the measurement of the rated capacity.
  • Procedure 1 Charging at a constant current of 3V to 1C to obtain a charged state (SOC 60%) of about 60% of the rated capacity.
  • SOC means State of Charge.
  • Procedure 2 After procedure 1, charge at constant voltage for 2.5 hours. Thereby, the battery 800 for an evaluation test can be adjusted to a predetermined charging state.
  • the positive electrode mixture layer 223 has a porosity of about 30% and a porosity of about 45% for the same sample by adjusting the coating process and rolling process of the positive electrode mixture.
  • Two types of positive electrode sheets 810 were prepared, and two types of batteries 800 for evaluation tests were prepared.
  • the measured values of the battery 800 for evaluation tests in which the porosity of the positive electrode mixture layer 223 is about 30% were adopted.
  • the measured value of the battery 800 was adopted.
  • FIG. 8 is a diagram showing an equivalent circuit fitting of the Nyquist plot in the reaction resistance measurement.
  • SOC 60% charged state of approximately 60% of the rated capacity
  • SOC 40% discharged state of approximately 40% of the rated capacity
  • complex impedance measurement was performed in a frequency range of 10 ⁇ 3 to 10 4 Hz.
  • the DC resistance (R sol ) and the reaction resistance (R ct ) are calculated by equivalent circuit fitting of the Nyquist plot.
  • the reaction resistance (R ct ) can be obtained by the following equation.
  • R ct (R ct + R sol ) ⁇ R sol
  • the reaction resistance measured at ⁇ 30 degrees and SOC 40% charged state of about 40% of the rated capacity
  • the output characteristics are obtained by the following procedure.
  • the measurement temperature environment is 25 ° C.
  • Procedure 1 As SOC adjustment, SOC is set to 60% by 1C constant current charging, constant voltage charging is performed for 2.5 hours at the SOC 60%, and rested for 10 seconds.
  • Procedure 2 As constant wattage discharge, discharge is performed at a constant wattage from the state of SOC 60% according to the above procedure 1. Then, the number of seconds up to 2.5V is measured.
  • Procedure 3 Procedure 1 and Procedure 2 are repeated while changing the constant wattage condition in Procedure 2 in the range of 5 to 60 W.
  • Procedure 4 The number of seconds up to 2.5V measured under each W condition is taken on the horizontal axis, W at that time is taken on the vertical axis, and W at 10 seconds is calculated from the approximate curve.
  • W obtained in step 4 was used as the output characteristic.
  • “High-rate discharge characteristic evaluation” is performed by adjusting the charge state of the following (I) to (V) 2500 times after the battery 800 for different evaluation tests is adjusted to the SOC 60% charge state by the SOC adjustment described above. Perform a high-rate cycle test. Meanwhile, an operation of adjusting the SOC to 60% is performed every 100 cycles.
  • FIG. 9 shows the charge / discharge cycle in the characteristic evaluation test.
  • (I) Discharge for 10 seconds at a constant current of 20 C (4.4 A in this case).
  • (III) Charge at a constant current of 1 C for 200 seconds.
  • the rate of increase in resistance in the discharge (I) is measured for each cycle. (However, the SOC adjustment is performed every time the charge / discharge cycle consisting of (I) to (V) is repeated 100 times.)
  • “High-rate discharge characteristic evaluation” in Table 1 indicates the rate of increase in resistance in the discharge of (I) at the 2500th cycle.
  • Low rate cycle characteristics are obtained by performing an alternating current impedance measurement method at 25 ° C. on a battery 800 for different evaluation tests, and calculating direct current resistance (R sol ) and reaction resistance (R ct ).
  • the AC impedance measurement method conforms to the method in “low temperature reaction resistance”. Thereafter, the charge / discharge cycle consisting of the following (I) and (II) is repeated 1000 times at a temperature of 60 ° C. and a voltage range of 3.0 V to 4.1 V.
  • the required performance can be obtained only by evaluating the DBP absorption amount (mL / 100 g). It may not be possible.
  • the preferable DBP absorption amount (mL / 100 g) of the positive electrode active material 610 is 20 to 40.
  • Samples 13 to 18 low-temperature reaction resistance, high rate cycle characteristics, An event was observed in which the low rate cycle characteristics increased.
  • the secondary particles 910 having a hollow structure in which a plurality of primary particles 900 of a lithium transition metal oxide are aggregated and having a through-hole 930 that penetrates the hollow portion 920 from the outside.
  • the positive electrode active material 610 when used, the above tendency is different. That is, when such a positive electrode active material 610 is used, in addition to the DBP absorption amount (mL / 100 g), by considering the particle porosity A1 and the tap density A3, the low temperature reaction resistance, the high rate cycle characteristics, The lithium ion secondary battery 100 with a preferable low rate cycle characteristic can be obtained.
  • the particle porosity A1 of the positive electrode active material is preferably 2.0 (%) ⁇ A1 ⁇ 70 (%).
  • the DBP absorption amount A2 of the positive electrode active material is preferably 23 (mL / 100 g) ⁇ A2.
  • the tap density A3 of the positive electrode active material is preferably 1.0 (g / mL) ⁇ A3 ⁇ 1.9 (g / mL).
  • the particle porosity A1 defines how many voids B are formed in the secondary particles 910 of the positive electrode active material 610.
  • the particle porosity A1 is 2.0 (%) ⁇ A1 ⁇ 70 (%), it is considered that the positive electrode active material 610 has moderately formed voids into which the electrolytic solution can enter. If the pores into which the electrolytic solution can enter are appropriately formed in the positive electrode active material 610, the electrolytic solution enters the secondary particles 910, so that the contact area between the primary particles 900 of the positive electrode active material 610 and the electrolytic solution is large. The number of lithium ions (Li) can be easily changed. On the other hand, if the particle porosity A1 is too small, the electrolytic solution is difficult to enter the secondary particles 910, and the required effect obtained when the electrolytic solution enters the secondary particles 910 is obtained. Absent.
  • the particle porosity A1 of the positive electrode active material 610 may be 2.4 (%) ⁇ A1.
  • the positive electrode active material 610 has a hollow portion 920 and a through-hole 930 as shown in FIG. 11 as compared with a positive electrode active material 610A having no hollow portion (hole) as shown in FIG.
  • the positive electrode active material 610 is considered to be higher in volume after tapping (tap density A3 is reduced).
  • the positive electrode active material 610 that is bulky after tapping (the tap density A3 is small) has the hollow portion 920 effectively, and the contact area between the positive electrode active material 610 and the electrolyte is increased.
  • FIG. 12 is an example of a cross-sectional SEM image of the positive electrode mixture layer 223.
  • the conductive material 620 is densely gathered between the particles of the positive electrode active material 610.
  • the positive electrode active material 610 including the hollow secondary particles 910 in which a plurality of primary particles of the lithium transition metal oxide are aggregated and having the through holes 930 penetrating from the outside into the hollow portion 920 is used.
  • the particle porosity A1 of the positive electrode active material is set to 2.0 (%) ⁇ A1 ⁇ 70 (%).
  • the DBP absorption amount A2 of the positive electrode active material is set to 23 (mL / 100 g) ⁇ A2.
  • the tap density A3 of the positive electrode active material is set to 1.0 (g / mL) ⁇ A3 ⁇ 1.9 (g / mL).
  • the particle porosity A1 of the positive electrode active material 610 increases, the hollow portion 920 of the positive electrode active material 610 increases and the electrolyte soaks into the hollow portion 920. Further, also inside the positive electrode active material 610, lithium ions (Li ions) go back and forth between the electrolytic solution that has entered the hollow portion and the positive electrode active material 610. For this reason, since the primary particles 900 of the positive electrode active material 610 in the vicinity of the hollow portion are also utilized, the output of the secondary battery is improved.
  • the particle porosity A1 of the positive electrode active material may be 2.4 (%) ⁇ A1, and more preferably, the particle porosity A1 of the positive electrode active material may be 25 (%) ⁇ A1.
  • the upper limit of the particle porosity A1 of the positive electrode active material is not particularly limited, but may be, for example, about A1 ⁇ 70 (%), for example, about A1 ⁇ 66 (%).
  • the DBP absorption amount A2 of the positive electrode active material 610 may be, for example, 30 (mL / 100 g) ⁇ A2, or 32 (mL / 100 g) ⁇ A2.
  • the upper limit of the DBP absorption amount A2 is not particularly limited.
  • the DBP absorption amount A2 may be A2 ⁇ 54 (mL / 100 g).
  • the smaller the tap density A3 of the positive electrode active material the higher the bulk of the positive electrode active material 610 and the lower the bulk density (bulk density). In this case, the density of the positive electrode mixture layer 223 after rolling can also be lowered. In this case, since the positive electrode active material 610 is bulky, it is considered that the space of the conductive material 620 becomes small so as to be inversely proportional thereto. For this reason, in the rolling process at the time of forming the positive mix layer 223, it is thought that the extra-particle void
  • the tap density A3 may be about A3 ⁇ 1.7 (g / mL), for example.
  • the internal resistance is low (in other words, the output characteristics are good), and the charge / discharge cycle (in particular, high rate).
  • a lithium secondary battery with a small increase in resistance can be obtained more reliably by a charging / discharging cycle including discharging at (3).
  • the particle diameter D defined by D50 of the secondary particles 910 of the positive electrode active material 610 may be 3 ( ⁇ m) ⁇ D ⁇ 7 ( ⁇ m).
  • the particle diameter D is defined by the outer shape of the secondary particle 910 without considering the hollow portion 920 of the secondary particle 910 of the positive electrode active material 610.
  • the positive electrode active material 610 has a size larger than a predetermined size, and a void larger than a predetermined size is formed inside. Can be done.
  • the specific surface area E of the secondary particles 910 of the positive electrode active material 610 may be 0.8 (m 2 /g) ⁇ E ⁇ 1.5 (m 2 / g). According to the positive electrode active material 610 having a hollow structure that satisfies such a specific surface area, it can be used for the positive electrode of the lithium ion secondary battery 100 to stably exhibit higher performance. For example, a lithium secondary battery having a low internal resistance (in other words, good output characteristics) and having a small increase in resistance even by a charge / discharge cycle (particularly, a charge / discharge cycle including discharge at a high rate) can be constructed.
  • the positive electrode mixture layer may be rolled after the positive electrode mixture is applied to the current collector and dried.
  • the positive electrode active material 610 has a tap density A3 of 1.0 (g / mL) ⁇ A3 ⁇ 1.9 (g / mL)
  • the positive electrode mixture layer uses the positive electrode mixture as a current collector. Even when it is rolled after coating and drying, the bulk is higher than the true density of the positive electrode active material.
  • the positive electrode active material 610 has a particle porosity A1 of 2.0 (%) ⁇ A1 ⁇ 70 (%) and a DBP absorption amount A2 of 23 (mL / 100 g) ⁇ A2, the positive electrode mixture A gap through which the electrolyte can penetrate into the layer is more reliably formed.
  • the particle porosity A1 of the positive electrode active material 610 is 2.0 (%) ⁇ A1 ⁇ 70 (%), the contact area between the electrolyte immersed in the positive electrode mixture layer and the positive electrode active material is also increased. large.
  • the DBP absorption amount A2 of the positive electrode active material is 23 (mL / 100 g) ⁇ A2.
  • the electrolytic solution immersed in the positive electrode mixture layer is easily absorbed by the positive electrode active material. Therefore, the concentration unevenness of lithium ions (Li ions) in the positive electrode mixture layer is less likely to occur.
  • a lithium secondary battery having low internal resistance in other words, good output characteristics
  • having a small increase in resistance even by a charge / discharge cycle particularly, a charge / discharge cycle including discharge at a high rate
  • the internal resistance is low (in other words, the output characteristics are good), and the resistance rises little by charge / discharge cycles (especially, charge / discharge cycles including high-rate discharge).
  • a secondary battery can be constructed.
  • the positive electrode active material is composed of secondary particles having a hollow structure in which a plurality of primary particles of lithium transition metal oxide are aggregated, and The hollow part of the secondary particle may have a through-hole penetrating from the outside.
  • the positive electrode active material 610 has a particle porosity A1 of 2.0 (%) ⁇ A1 ⁇ 70 (%); a DBP absorption amount A2 of 23 (mL / 100 g) ⁇ A2; and a tap density A3 of 1. It is good that 0 (g / mL) ⁇ A3 ⁇ 1.9 (g / mL).
  • the particle porosity A1 of the positive electrode active material is 25 (%) ⁇ A1 ⁇ 66 (%).
  • the DBP absorption amount A2 of the positive electrode active material is preferably 30 (mL / 100 g) ⁇ A2.
  • the tap density A3 of the positive electrode active material is preferably 1.0 (g / mL) ⁇ A3 ⁇ 1.7 (g / mL).
  • the lithium ion secondary battery 100 including the active material particles disclosed herein can be excellent in output characteristics and durability. For this reason, as shown in FIG. 13, it is suitable as a lithium ion secondary battery mounted in the vehicle 1. In this case, for example, it can be suitably used as a power source for a motor (electric motor) of a vehicle such as an automobile in the form of an assembled battery 1000 in which a plurality of lithium ion secondary batteries are connected and combined.
  • a motor electric motor
  • Lithium ion secondary battery (secondary battery) 200 wound electrode body 220 positive electrode sheet 221 positive electrode current collector 222 uncoated part 222a middle part 223 positive electrode mixture layer 224 positive electrode mixture 240 negative electrode sheet 241 negative electrode current collector 242 uncoated part 243 negative electrode mixture layer 244 negative electrode Mixture 245 Heat-resistant layer 262 Separator 264 Separator 300 Battery case 310, 312 Gap 320 Container body 322 Lid and container body joint 340 Lid 360 Safety valve 420 Electrode terminal (positive electrode) 440 Electrode terminal (negative electrode) 610 Positive electrode active material 620 Conductive material 630 Binder 800 Battery for evaluation test 810 Positive electrode sheet 820 Negative electrode sheet 830, 840 Separator 850 Winding electrode body 860 Exterior terminal 870 Electrode terminal 900 Primary particle 910 Secondary particle 920 Hollow portion 930 Through hole 1000 Vehicle drive battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明に係る二次電池は、集電体と、集電体に塗工された正極合剤層とを備えている。正極合剤層は、正極活物質、導電材およびバインダを含んでおり、正極活物質は、リチウム遷移金属酸化物の一次粒子が複数集合した中空構造の二次粒子で構成され、かつ、外部から中空部に貫通した貫通孔を有している。また、正極活物質の粒子空孔率A1は、2.0(%)≦A1≦70(%)である。また、正極活物質のDBP吸収量A2は、23(mL/100g)≦A2である。さらに正極活物質のタップ密度A3は、1.0(g/mL)≦A3≦1.9(g/mL)である。

Description

二次電池
 本発明は二次電池に関する。ここで、本明細書において「二次電池」とは、繰り返し充電可能な蓄電デバイス一般をいい、リチウムイオン二次電池(lithium-ion secondary battery)、ニッケル水素電池、ニッケルカドミウム電池などのいわゆる蓄電池ならびに電気二重層キャパシタなどの蓄電素子を包含する用語である。
 また、本明細書において「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池が含まれる。
 リチウムイオン二次電池は、リチウムイオン(Liイオン)を可逆的に吸蔵および放出し得る材料(活物質)を正負の電極に備えており、正負の電極の間をリチウムイオンが行き来することによって充電又は放電される。かかるリチウムイオン二次電池の電極(典型的には正極)に用いられる活物質の代表例として、リチウムと遷移金属元素とを含む複合酸化物が挙げられる。例えば、上記遷移金属元素として少なくともニッケル(Ni)を含むリチウム複合酸化物(ニッケル含有リチウム複合酸化物)であって層状構造を有するものが好ましく用いられる。リチウムイオン二次電池の活物質に関する技術文献として特許文献1が挙げられる。
 ここで、特許文献1には、リチウム含有複合酸化物の粉末からなる正極活物質において、前記粉末のDBP吸液量が、リチウム含有複合酸化物重量100g当たり20~40mlである正極活物質が開示されている。ここで、前記粉末のDBP吸液量は、前記粉末を、JIS K6217(1997)で規定されたDBP吸収量A法又はB法試験方法に準拠したアブソープトメータ、プラストグラフ又はプラスチコーダを用い、試薬液体を定速度ビュレットで適定し、その際の粘度特性の変化をトルク検出器によって測定、記録し、発生した最大トルクの70%時点のトルクに対応する試薬液体の添加量によって、規定される。
日本国特許出願公開2005-285606号公報
 ところで、リチウムイオン二次電池は、単位重量あたりのエネルギー密度が高く、車両搭載用高出力電源に適した二次電池として期待されている。車両搭載用電源としてのリチウムイオン二次電池は、発進時や加速時に、特に、高い出力が必要とされる。この場合、DBP吸収量を評価するのみでは、かかる繰り返し高い出力が必要とされる用途において、必要な性能が得られない場合がある。
 本発明にかかる二次電池は、集電体と、集電体に塗工された正極合剤層とを備えている。ここで、正極合剤層は、正極活物質、導電材およびバインダを含んでいる。また、正極活物質は、リチウム遷移金属酸化物の一次粒子が複数集合した中空構造の二次粒子で構成され、かつ、外部から中空部に貫通した貫通孔を有している。さらに、この二次電池では、正極活物質の粒子空孔率A1は、2.0(%)≦A1≦70(%)であり、正極活物質のDBP吸収量A2が、23(mL/100g)≦A2であり、かつ、正極活物質のタップ密度A3が、1.0(g/mL)≦A3≦1.9(g/mL)である。
 かかる二次電池によれば、正極活物質に電解液が浸入し易く、正極活物質610と電解液との接触面積が広く、正極活物質と電解液との間で、リチウムイオン(Li)が容易に行き来し得る。このため、特に、繰り返し高い出力が必要とされる用途において必要な性能が得られ得る。
 この場合、正極活物質の粒子空孔率A1は、2.4(%)≦A1でもよい。正極活物質の粒子空孔率A1は、さらに25(%)≦A1でもよい。また、正極活物質のDBP吸収量A2は、A2≦54(mL/100g)でもよい。また、正極活物質の粒子空孔率A1は、A1≦66(%)でもよい。また、正極活物質の二次粒子のD50で定義される粒子径Dは3(μm)≦D≦7(μm)でもよい。また、正極活物質の二次粒子の比表面積Eは、0.8(m/g)≦E≦1.5(m/g)でもよい。また、貫通孔の開口幅は平均0.01μm以上でもよい。また、貫通孔の開口幅は平均2.0μm以下でもよい。また、正極合剤層は、正極合剤を集電体に塗布、乾燥させた後で、圧延されていてもよい。
図1は、リチウムイオン二次電池の構造の一例を示す図である。 図2は、リチウムイオン二次電池の捲回電極体を示す図である。 図3は、図2中のIII-III断面を示す図である。 図4は、捲回電極体の未塗工部と電極端子との溶接箇所を示す側面図である。 図5は、正極合剤層の構造を示す断面図である。 図6は、正極活物質粒子の一例を示す断面図である。 図7は、評価試験で用いられた18650型セルの模式図である。 図8は、反応抵抗測定におけるナイキスト・プロットの等価回路フィッティングを示す図である。 図9は、低温時ハイレートサイクル特性評価試験における充放電サイクルを示す図である。 図10は、タップ密度が大きい正極活物質の一例を示す図である。 図11は、タップ密度が小さい正極活物質の一例を示す図である。 図12は、正極シートの断面SEM画像の一例である。 図13は、車両駆動用電池を搭載した車両の一例を示す図である。
 以下、本発明の一実施形態に係る二次電池を図面に基づいて説明する。なお、同じ作用を奏する部材、部位には適宜に同じ符号を付している。また、各図面は、模式的に描いており、必ずしも実物を反映しない。ここではまず、本発明の二次電池の一例としてのリチウムイオン二次電池の構造例を説明し、その後、リチウムイオン二次電池の正極合剤層を説明し、さらにリチウムイオン二次電池の評価試験を説明する。
 図1は、リチウムイオン二次電池100を示している。このリチウムイオン二次電池100は、図1に示すように、捲回電極体200と電池ケース300とを備えている。また、図2は、捲回電極体200を示す図である。図3は、図2中のIII-III断面を示している。
 捲回電極体200は、図2に示すように、正極シート220、負極シート240およびセパレータ262、264を有している。正極シート220、負極シート240およびセパレータ262、264は、それぞれ帯状のシート材である。
≪正極シート220≫
 正極シート220は、図2に示すように、帯状の正極集電体221(正極芯材)を有している。正極集電体221には、正極に適する金属箔が好適に使用され得る。この正極集電体221には、所定の幅を有する帯状のアルミニウム箔が用いられている。また、正極シート220は、未塗工部222と正極合剤層223とを有している。未塗工部222は正極集電体221の幅方向片側の縁部に沿って設定されている。正極合剤層223は、正極活物質を含む正極合剤224が塗工された層である。正極合剤224は、正極集電体221に設定された未塗工部222を除いて、正極集電体221の両面に塗工されている。
≪正極合剤224、正極活物質≫
 ここで、正極合剤224は、正極活物質や導電材やバインダなどを混ぜ合わせた合剤である。正極活物質には、リチウムイオン二次電池の正極活物質として用いられる物質を使用することができる。正極活物質の例を挙げると、LiNiCoMnO(リチウムニッケルコバルトマンガン複合酸化物)、LiNiO(ニッケル酸リチウム)、LiCoO(コバルト酸リチウム)、LiMn(マンガン酸リチウム)、LiFePO(リン酸鉄リチウム)などのリチウム遷移金属酸化物が挙げられる。ここで、LiMnは、例えば、スピネル構造を有している。また、LiNiOやLiCoOは層状の岩塩構造を有している。また、LiFePOは、例えば、オリビン構造を有している。オリビン構造のLiFePOには、例えば、ナノメートルオーダーの粒子がある。また、オリビン構造のLiFePOは、さらにカーボン膜で被覆することができる。
≪導電材≫
 正極合剤224は、正極活物質の他に、導電材、バインダ(結着剤)などの任意成分を必要に応じて含有し得る。導電材としては、例えば、カーボン粉末やカーボンファイバーなどのカーボン材料が例示される。このような導電材から選択される一種を単独で用いてもよく二種以上を併用してもよい。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、オイルファーネスブラック、黒鉛化カーボンブラック、カーボンブラック、黒鉛、ケッチェンブラック)、グラファイト粉末などのカーボン粉末を用いることができる。
≪バインダ、増粘剤、溶媒≫
 また、バインダとしては、使用する溶媒に溶解又は分散可溶なポリマーを用いることができる。例えば、水性溶媒を用いた正極合剤組成物においては、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース(HPMC)などのセルロース系ポリマー(例えば、ポリビニルアルコール(PVA)やポリテトラフルオロエチレン(PTFE)など)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系樹脂(例えば、酢酸ビニル共重合体やスチレンブタジエンゴム(SBR)など)、アクリル酸変性SBR樹脂(SBR系ラテックス)などのゴム類;などの水溶性又は水分散性ポリマーを好ましく採用することができる。また、非水溶媒を用いた正極合剤組成物においては、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)などのポリマーを好ましく採用することができる。なお、上記で例示したポリマー材料は、バインダとしての機能の他に、上記組成物の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適例として、N-メチル-2-ピロリドン(NMP)が挙げられる。
 正極合剤全体に占める正極活物質の質量割合は、凡そ50質量%以上(典型的には50~95質量%)であることが好ましく、通常は凡そ70~95質量%(例えば75~90質量%)であることがより好ましい。また、正極合剤全体に占める導電材の割合は、例えば凡そ2~20質量%とすることができ、通常は凡そ2~15質量%とすることが好ましい。バインダを使用する組成では、正極合剤全体に占めるバインダの割合を例えば凡そ1~10質量%とすることができ、通常は凡そ2~5質量%とすることが好ましい。
≪負極シート240≫
 負極シート240は、図2に示すように、帯状の負極集電体241(負極芯材)を有している。負極集電体241には、負極に適する金属箔が好適に使用され得る。この実施形態では、負極集電体241には、所定の幅を有する帯状の銅箔が用いられている。また、負極シート240は、未塗工部242と、負極合剤層243とを有している。未塗工部242は負極集電体241の幅方向片側の縁部に沿って設定されている。負極合剤層243は、負極活物質を含む負極合剤244が塗工された層である。負極合剤244は、負極集電体241に設定された未塗工部242を除いて、負極集電体241の両面に塗工されている。
≪負極合剤244≫
 ここで、負極合剤244は、負極活物質や導電材やバインダなどを混ぜ合わせた合剤である。負極活物質には、リチウムイオン二次電池の負極活物質として用いられる物質を使用することができる。負極活物質の例を挙げると、天然黒鉛、人造黒鉛、天然黒鉛や人造黒鉛のアモルファスカーボンなどの炭素系材料、リチウム遷移金属酸化物、リチウム遷移金属窒化物などが挙げられる。なお、負極活物質は、それ自体に導電性を有している。このため、導電材は必要に応じて負極合剤244に加えられる。また、この例では、図3に示すように、負極合剤層243の表面には、さらに耐熱層245(HRL:heat-resistant layer)が形成されている。耐熱層245には、主として金属酸化物(例えば、アルミナ)で形成されている。なお、このリチウムイオン二次電池100では、負極合剤層243の表面に耐熱層245が形成されている。図示は省略するが、例えば、セパレータ262、264の表面に耐熱層を形成してもよい。
≪負極活物質≫
 また、負極活物質としては、従来からリチウムイオン二次電池に用いられる材料の一種又は二種以上を特に限定なく使用することができる。例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。より具体的には、いわゆる黒鉛質(グラファイト)、難黒鉛化炭素質(ハードカーボン)、易黒鉛化炭素質(ソフトカーボン)、これらを組み合わせた炭素材料を用いることができる。例えば、天然黒鉛のような黒鉛粒子を使用することができる。また、負極合剤には、負極活物質の分散を維持するべく、負極合剤には適量の増粘剤が混ぜられている。負極合剤には、正極合剤に使われるのと同様の増粘剤やバインダや導電材を使用することができる。
 特に限定するものではないが、負極合剤全体に占める負極活物質の割合は凡そ80質量%以上(例えば80~99質量%)とすることができる。また、負極合剤全体に占める負極活物質の割合は、凡そ90質量%以上(例えば90~99質量%、より好ましくは95~99質量%)であることが好ましい。バインダを使用する組成では、負極合剤全体に占めるバインダの割合を、例えば、凡そ0.5~10質量%とすることができ、通常は凡そ1~5質量%とすることが好ましい。正極合剤層223や負極合剤層243は、それぞれ正極集電体221又は負極集電体241に塗布し、乾燥させ、さらに圧延することによって形成されている。
≪合剤の塗布≫
 塗布工程では、正極合剤224や負極合剤244がシート状集電体に塗布される。塗布工程には、従来公知の適当な塗布装置、例えば、スリットコーター、ダイコーター、コンマコーター、グラビアコーターなどを用いることができる。この場合、長尺帯状のシート状集電体を用いることによって、正極合剤224や負極合剤244を集電体に連続して塗布することができる。
≪乾燥工程≫
 乾燥工程では、シート状集電体に塗布された正極合剤や負極合剤を乾燥させる。この際、マイグレーションを防止するべく、適当な乾燥条件を設定するとよい。この場合、長尺帯状のシート状集電体を用い、乾燥炉内に設けた走行路に沿って集電体を通すことによって、集電体に塗布された正極合剤224や負極合剤244を連続して乾燥させることができる。
≪圧延工程≫
 また、圧延工程では、乾燥工程で乾燥した正極合剤層223や負極合剤層243を、厚み方向にプレスすることにより、目的とする性状のシート状正極(正極シート)が得られる。上記プレスを行う方法としては、従来公知のロールプレス法、平板プレス法などを適宜採用することができる。
≪セパレータ262、264≫
 セパレータ262、264は、正極シート220と負極シート240とを隔てる部材である。この例では、セパレータ262、264は、微小な孔を複数有する所定幅の帯状のシート材で構成されている。セパレータ262、264には、例えば、多孔質ポリオレフィン系樹脂で構成された単層構造のセパレータや積層構造のセパレータがある。この例では、図2および図3に示すように、負極合剤層243の幅b1は、正極合剤層223の幅a1よりも少し広い。さらにセパレータ262、264の幅c1、c2は、負極合剤層243の幅b1よりも少し広い(c1、c2>b1>a1)。
≪捲回電極体200≫
 捲回電極体200の正極シート220および負極シート240は、セパレータ262、264を介在させた状態で重ねられ、かつ、捲回されている。
 この例では、正極シート220と負極シート240とセパレータ262、264は、図2に示すように、長さ方向を揃えて、正極シート220、セパレータ262、負極シート240、セパレータ264の順で重ねられている。この際、正極合剤層223と負極合剤層243には、セパレータ262、264が重ねられる。また、負極合剤層243の幅は正極合剤層223よりも少し広く、負極合剤層243は正極合剤層223を覆うように重ねられている。これにより、充放電時に、正極合剤層223と負極合剤層243との間で、リチウムイオン(Li)がより確実に行き来する。
 さらに、正極シート220の未塗工部222と負極シート240の未塗工部242とは、セパレータ262、264の幅方向において互いに反対側にはみ出るように重ねられている。重ねられたシート材(例えば、正極シート220)は、幅方向に設定された捲回軸周りに捲回されている。
 なお、かかる捲回電極体200は、正極シート220と負極シート240とセパレータ262、264を所定の順に重ねつつ捲回する。この工程において、各シートの位置をEPC(edge position control)のような位置調整機構で制御しつつ各シートを重ねる。この際、セパレータ262、264が介在した状態ではあるが、負極合剤層243は正極合剤層223を覆うように重ねられる。
≪電池ケース300≫
 また、この例では、電池ケース300は、図1に示すように、いわゆる角型の電池ケースであり、容器本体320と、蓋体340とを備えている。容器本体320は、有底四角筒状を有しており、一側面(上面)が開口した扁平な箱型の容器である。蓋体340は、当該容器本体320の開口(上面の開口)に取り付けられて当該開口を塞ぐ部材である。
 車載用の二次電池では、燃費向上のため、重量エネルギー効率(単位重量当りの電池の容量)を向上させることが望まれる。このため、電池ケース300を構成する容器本体320と蓋体340は、アルミニウムやアルミニウム合金などの軽量金属(この例では、アルミニウム)を採用することが望まれる。これにより重量エネルギー効率を向上させることができる。
 この電池ケース300は、捲回電極体200を収容する空間として、扁平な矩形の内部空間を有している。また、図1に示すように、当該電池ケース300の扁平な内部空間は、捲回電極体200よりも横幅が少し広い。この実施形態では、電池ケース300の内部空間には、捲回電極体200が収容されている。捲回電極体200は、図1に示すように、捲回軸に直交する一の方向において扁平に変形させられた状態で電池ケース300に収容されている。
 この実施形態では、電池ケース300は、有底四角筒状の容器本体320と、容器本体320の開口を塞ぐ蓋体340とを備えている。ここで、容器本体320は、例えば、深絞り成形やインパクト成形によって成形することができる。なお、インパクト成形は、冷間での鍛造の一種であり、衝撃押出加工やインパクトプレスとも称される。
 また、電池ケース300の蓋体340には、電極端子420、440が取り付けられている。電極端子420、440は、電池ケース300(蓋体340)を貫通して電池ケース300の外部に出ている。また、蓋体340には安全弁360が設けられている。
 この例では、捲回電極体200は、電池ケース300(この例では、蓋体340)に取り付けられた電極端子420、440に取り付けられている。捲回電極体200は、捲回軸に直交する一の方向において扁平に押し曲げられた状態で電池ケース300に収納されている。また、捲回電極体200は、セパレータ262、264の幅方向において、正極シート220の未塗工部222と負極シート240の未塗工部242とが互いに反対側にはみ出ている。このうち、一方の電極端子420は、正極集電体221の未塗工部222に固定されており、他方の電極端子440は、負極集電体241の未塗工部242に固定されている。
 また、この例では、図1に示すように、蓋体340の電極端子420、440は、捲回電極体200の未塗工部222、未塗工部242の中間部分222a、242aに延びている。当該電極端子420、440の先端部は、未塗工部222、242のそれぞれの中間部分に溶接されている。図4は、捲回電極体200の未塗工部222、242と電極端子420、440との溶接箇所を示す側面図である。
 図4に示すように、セパレータ262、264の両側において、正極集電体221の未塗工部222、負極集電体241の未塗工部242はらせん状に露出している。この実施形態では、これらの未塗工部222、242をその中間部分において、それぞれ寄せ集め、電極端子420、440の先端部に溶接している。この際、それぞれの材質の違いから、電極端子420と正極集電体221の溶接には、例えば、超音波溶接が用いられる。また、電極端子440と負極集電体241の溶接には、例えば、抵抗溶接が用いられる。
 このように、捲回電極体200は、扁平に押し曲げられた状態で、蓋体340に固定された電極端子420、440に取り付けられている。かかる捲回電極体200は、容器本体320の扁平な内部空間に収容される。容器本体320は、捲回電極体200が収容された後、蓋体340によって塞がれる。蓋体340と容器本体320の合わせ目322(図1参照)は、例えば、レーザ溶接によって溶接されて封止されている。このように、この例では、捲回電極体200は、蓋体340(電池ケース300)に固定された電極端子420、440によって、電池ケース300内に位置決めされている。
≪電解液≫
 その後、蓋体340に設けられた注液孔から電池ケース300内に電解液が注入される。電解液は、この例では、エチレンカーボネートとジエチルカーボネートとの混合溶媒(例えば、体積比1:1程度の混合溶媒)にLiPFを約1mol/リットルの濃度で含有させた電解液が用いられている。その後、注液孔に金属製の封止キャップを取り付けて(例えば溶接して)電池ケース300を封止する。なお、電解液としては、従来からリチウムイオン二次電池に用いられる非水電解液を使用することができる。
≪ガス抜け経路≫
 また、この例では、当該電池ケース300の扁平な内部空間は、扁平に変形した捲回電極体200よりも少し広い。捲回電極体200の両側には、捲回電極体200と電池ケース300との間に隙間310、312が設けられている。当該隙間310、312は、ガス抜け経路になる。
 かかる構成のリチウムイオン二次電池100は、過充電が生じた場合に温度が高くなる。リチウムイオン二次電池100の温度が高くなると、電解液が分解されてガスが発生する。発生したガスは、捲回電極体200の両側における捲回電極体200と電池ケース300との隙間310、312、および、安全弁360を通して、スムーズに外部に排気される。かかるリチウムイオン二次電池100では、正極集電体221と負極集電体241は、電池ケース300を貫通した電極端子420、440を通じて外部の装置に電気的に接続される。
≪他の電池形態≫
 なお、上記はリチウムイオン二次電池の一例を示すものである。リチウムイオン二次電池は上記形態に限定されない。また、同様に金属箔に電極合剤が塗工された電極シートは、他にも種々の電池形態に用いられる。例えば、他の電池形態として、円筒型電池やラミネート型電池などが知られている。円筒型電池は、円筒型の電池ケースに捲回電極体を収容した電池である。また、ラミネート型電池は、正極シートと負極シートとをセパレータを介在させて積層した電池である。なお、上記はリチウムイオン二次電池100を例示しているが、リチウムイオン二次電池以外の二次電池でも、同様の構造を採用し得る。
 以下、この実施形態における正極合剤層223を説明する。
≪正極合剤層223≫
 図5は、リチウムイオン二次電池100の正極シート220の断面図である。なお、図5において、正極合剤層223の構造が明確になるように、正極合剤層223中の正極活物質610と導電材620を大きく模式的に表している。この実施形態では、正極シート220は、図5に示すように、正極集電体221の両面にそれぞれ正極合剤224が塗工されている。かかる正極合剤224の層(正極合剤層223)には、正極活物質610と導電材620とバインダ630が含まれている。この実施形態では、正極合剤層223には、さらにバインダ630(結着剤)が含まれている。
 図5に示すような、正極合剤層223の断面サンプルは、例えば、断面SEM画像によって得ると良い。ここで、断面SEM画像は、電子顕微鏡によって得られる断面写真である。例えば、CP処理(Cross Section Polisher処理)にて正極シート220の任意の断面を得る。電子顕微鏡としては、例えば、株式会社日立ハイテクノロジーズ(Hitachi High-Technologies Corporation)製の走査型電子顕微鏡(FE-SEM) HITACHI S-4500を用いることができる。
≪正極合剤層223の空孔≫
 正極合剤層223は、上述したように正極合剤を集電体(金属箔)に塗布し、乾燥させ、圧延したものである。正極合剤層223では、図5に示すように、バインダ630の作用によって各粒子が結合している。かかる正極合剤層223は、正極活物質610や導電材620がバインダ630によって接合された状態なので、各粒子間に微小な空洞が多く存在している。また、導電材620は、正極活物質610(二次粒子)に比べて小さく、正極活物質610の複数の隙間に入り込んでいる。正極活物質610と正極集電体221とは、かかる導電材620によって電気的に接続されている。また、正極合剤層223には、空洞とも称すべき微小な隙間を有している。正極合剤層223の微小な隙間には電解液(図示省略)が浸み込む。ここでは、正極合剤層223の内部に形成された隙間(空洞)を適宜に「空孔」と称する。
≪正極活物質610≫
 図6は、正極活物質610を模式的に示している。この実施形態では、正極活物質610は、図6に示すように、二次粒子910と、中空部920と、貫通孔930とを有している。ここで、二次粒子910は、リチウム遷移金属酸化物の一次粒子(図示省略)が複数集合した粒子である。中空部920は、二次粒子910に形成された内部空孔である。貫通孔930は、二次粒子910の外部と中空部920とを繋げるように、二次粒子910を貫通した孔である。ここで、中空構造の正極活物質610という場合には、かかる中空部920および貫通孔930を有する二次粒子910を意味する。かかる二次粒子の粒径は、約3μm~12μmであり、より好ましくは約3μm~8μmである。なお、ここで、粒径には、光散乱法に基づく粒度分布測定器によって測定される粒度分布から求められるメジアン径(d50)が採用されている。
≪導電材620≫
 また、導電材620は、アセチレンブラック、オイルファーネスブラック、黒鉛化カーボンブラック、カーボンブラック、黒鉛、ケッチェンブラック)、グラファイト粉末などのカーボン粉末を用いることができる。この場合、導電材620は、一種、或いは、複数種のカーボン粉末を所定割合で混ぜてもよい。ここでは、導電材620は、正極活物質610よりも粒径が小さい。導電材620の粒径は、例えば、約10μm~100μmである。
 以下、正極活物質610について、より詳細に説明する。
 かかる中空構造の正極活物質610では、中空部920の内部に、より確実に電解液が入り込み得る程度の貫通孔930が形成されているとよい。このため、貫通孔930の開口幅kは、例えば、平均0.01μm以上であるとよい。これにより、中空部920の内部に電解液が入り込むことによって得られる効果が、より確実に得られ易くなる。ここで、貫通孔930の開口幅kとは、活物質粒子の外部から二次粒子を貫通して中空部920に至る経路の中で、最も貫通孔930が狭い部分における差渡し長さ(貫通孔930の内径)をいう。なお、中空部920に複数の貫通孔930がある場合には、複数の貫通孔930のうち、最も大きい開口幅kを有する貫通孔930で評価するとよい。また、貫通孔930の開口幅kは平均2.0μm以下であってもよい。
 また、貫通孔930の数は、中空構造の正極活物質610の一粒子当たり平均1~20個程度でもよい。かかる構造の正極活物質610によると、良好な電池性能をより安定して(例えば、充放電サイクルによる劣化を抑えて)発揮することができる。なお、中空構造の正極活物質610の貫通孔930の数は、例えば、任意に選択した少なくとも10個以上の活物質粒子について一粒子当たりの貫通孔数を把握し、それらの算術平均値を求めるとよい。
 かかる中空構造の正極活物質610を製造する方法は、例えば、原料水酸化物生成工程、混合工程、焼成工程を含んでいるとよい。
 ここで、原料水酸化物生成工程は、遷移金属化合物の水性溶液にアンモニウムイオンを供給して、遷移金属水酸化物の粒子を水性溶液から析出させる工程である。水性溶液は、リチウム遷移金属酸化物を構成する遷移金属元素の少なくとも一つを含んでいるとよい。さらに、原料水酸化物生成工程は、核生成段階と、粒子成長段階とを含んでいるとよい。ここで、核生成段階は、pH12以上かつアンモニウムイオン濃度25g/L以下で水性溶液から遷移金属水酸化物を析出させる段階である。粒子成長段階は、核生成段階で析出した遷移金属水酸化物をpH12未満かつアンモニウムイオン濃度3g/L以上で成長させる段階である。
 また、混合工程は、原料水酸化物生成工程で得られた遷移金属水酸化物の粒子とリチウム化合物とを混合して未焼成の混合物を調製する工程である。
 また、焼成工程は、混合工程で得られた混合物を焼成して活物質粒子を得る工程である。
 かかる製造方法によると、図6に示すような孔開き中空構造の正極活物質610を適切に製造することができる。
 また、この場合、焼成工程は、最高焼成温度が800℃~1100℃となるように行うとよい。このことによって、上記一次粒子を十分に焼結させることができるので、所望の平均硬度を有する活物質粒子が好適に製造され得る。この焼成工程は、例えば、中空部920および貫通孔930以外の部分では一次粒子の粒界に実質的に隙間が存在しない二次粒子が形成されるように行うことが好ましい。
 また、焼成工程は、混合物を700℃以上900℃以下の温度T1で焼成する第一焼成段階と、その第一焼成段階を経た結果物を800℃以上1100℃以下であって且つ第一焼成段階における焼成温度T1よりも高い温度T2で焼成する第二焼成段階とを含んでもよい。
 ここに開示される活物質粒子製造方法の好ましい一態様では、焼成工程が、混合物を700℃以上900℃以下の温度T1で焼成する第一焼成段階と、その第一焼成段階を経た結果物を800℃以上1100℃以下であって且つ第一焼成段階における焼成温度T1よりも高い温度T2で焼成する第二焼成段階とを含む。これら第一および第二の焼成段階を含む態様で上記混合物を焼成することにより、ここに開示される好ましい孔開き中空構造を有する活物質粒子が適切に製造され得る。
 また、かかる中空構造の正極活物質610は、ニッケルを構成元素として含む層状構造のリチウム遷移金属酸化物であってもよい。また、中空構造の正極活物質610は、ニッケル、コバルトおよびマンガンを構成元素として含む層状構造のリチウム遷移金属酸化物であってもよい。
 このリチウムイオン二次電池100では、正極活物質610の粒子空孔率A1は、2.0(%)≦A1≦70(%)である。また、正極活物質610のDBP吸収量A2は、23(mL/100g)≦A2である。さらに、正極活物質610のタップ密度A3は、1.0(g/mL)≦A3≦1.9(g/mL)である。以下、粒子空孔率A1、DBP吸収量A2およびタップ密度A3を順に説明する。
≪粒子空孔率A1(粒子空孔体積比率)≫
 ここで、粒子空孔率A1は、中空部920および貫通孔930を含む正極活物質610の二次粒子910の見かけの体積に対する中空部920の割合を示している。粒子空孔率A1は、換言すれば、「粒子空孔体積比率」とも称され得る。ここで「見かけの体積」は、空孔を含む体積をいう。
≪粒子空孔率A1の測定≫
 粒子空孔率A1は、例えば、下記の式で表されるように、中空部920を含む二次粒子910の見かけの体積によって中空部920の容積を割った値になる。
粒子空孔率A1=(正極合剤層223中の粒子内空孔Bの全容積Vb)/(正極合剤層223中の正極活物質610の見かけの体積Va1)
すなわち、
A1=Vb/Va1;
である。
 かかる粒子空孔率A1は、図12に示すような正極合剤層223の断面SEM画像に基づいて測定することができる。かかる断面画像は、例えば、正極合剤層223の断面SEM画像によって得ることができる。断面SEM画像によれば、色調や濃淡の違いに基づいて、断面が写っている正極活物質610について、正極活物質610の断面と、粒子内空孔Bと、粒子外空孔Cとを区別することができる。
 粒子空孔率A1は、図5に示すように、正極合剤層223中の粒子内空孔Bの全容積Vbと、正極合剤層223中の正極活物質610の見かけの体積Va1との比(Vb/Va1)である。かかる比(Vb/Va1)は、正極合剤層223の断面で粒子内空孔Bが占める面積Sbと、正極合剤層223中の正極活物質610の見かけの断面積Sa1との比(Sb/Sa1)によって近似できる。かかる比(Sb/Sa1)は、断面SEM画像において正極活物質610の断面と区別される部分のドット数と、粒子内空孔Bおよび正極活物質610の断面と区別される部分のドット数との比によって近似することができる。この場合、断面サンプルの数を多くすることによってより正確に近似することができる。
≪DBP吸収量A2≫
 次に、DBP吸収量A2は、JIS K6217-4「ゴム用カーボンブラック‐基本特性‐第4部:DBP吸収量の求め方」に準拠して求める。ここでは、試薬液体としてDBP(ジブチルフタレート)を用い、検査対象粉末(正極活物質610の二次粒子910の粉末)に定速度ビュレットで滴定し、粘度特性の変化をトルク検出器によって測定する。そして、発生した最大トルクの70%のトルクに対応する、検査対象粉末の単位重量当りの試薬液体の添加量をDBP吸収量(mL/100g)とする。DBP吸収量A2の測定器としては、例えば、株式会社あさひ総研の吸収量測定装置S410を使用するとよい。
≪タップ密度A3≫
 次に、タップ密度A3は、タッピング式の粉体減少度測定装置によって、タッピングした後で測定される密度をいう。この実施形態では、タッピング式の粉体減少度測定装置として、筒井理化学器械株式会社製のタッピング式の粉体減少度測定装置TPM-3を用いた。試料としての正極活物質610の二次粒子910の粉末60gを用いた。そして、次の手順1~4に沿って測定した。
手順1:専用のメスシリンダーをよく乾燥させた後、当該メスシリンダーに計量された試料を入れる。
手順2:メスシリンダーをタッピング式の粉体減少度測定装置に取り付ける。
手順3:タッピング落下距離を20mmに調整する。
手順4:タッピング式の粉体減少度測定装置にて、500回タップさせた後、メスシリンダーの目盛りから試料の体積を読み取る。
 ここで、タップ密度A3は、手順1で計量された試料の重量(ここでは、60g)を、手順4で読み取られた試料の体積(mL)で割ることによって求められる。タップ密度A3を求める式を下記に示す。
 
タップ密度A3(g/mL)=試料の重量(60g)/試料体積(mL)
 
 本発明者は、粒子空孔率A1、DBP吸収量A2、タップ密度A3が異なる正極活物質610のサンプルを複数用意した。そして、かかる正極活物質610の各サンプルを用いて、評価試験用の電池800(図7参照)を作成し、低温反応抵抗、出力特性、ハイレートサイクル特性、低レートサイクル特性をそれぞれ測定した。そして、上記粒子空孔率A1、DBP吸収量A2およびタップ密度A3が、リチウムイオン二次電池100の性能にどのような影響を与えるかを調べた。
 この評価試験では、正極活物質610として、Li1.15Ni0.33Co0.34Mn0.332で表わされる組成の正極活物質610を用いた。ただし、正極活物質610の生成処理を工夫することによって、図6に示すように、正極活物質610の二次粒子を孔開き中空構造にした。
 ここでは、正極活物質を変えて、複数の評価試験用のリチウムイオン二次電池のサンプルを得た。そして、各サンプルについて、複数の電池を作成し、種々の試験に用いた。かかる評価試験結果を表1に示す。表1において、各サンプル1~18の正極活物質や導電材のDBP吸収量や質量比は、表1に示されている通りである。
Figure JPOXMLDOC01-appb-T000001
 表1には、サンプル1~18について、「粒子空孔率A1」、「DBP吸収量A2」、「タップ密度A3」、「粒子径(平均粒径D50)」、「比表面積」、「低温反応抵抗」、「出力特性」、「ハイレートサイクル特性」および「低レートサイクル特性」がそれぞれ示されている。このうち、「粒子空孔率A1」、「DBP吸収量A2」、「タップ密度A3」、「粒子径(平均粒径D50)」および「比表面積」は、正極活物質のサンプル1~18について測定したものである。ここで、「粒子空孔率A1」、「DBP吸収量A2」および「タップ密度A3」の測定方法は、上述の通りである。以下、「粒子径(平均粒径D50)」および「比表面積」を説明する。
≪粒子径(平均粒径D50)≫
 ここで、正極活物質610の二次粒子910の粒子径(平均粒径D50)は、一般的なレーザ回折式粒度分布測定による測定値を採用することができる。粒子径は、平均粒径(D50)で評価するとよい。ここでは、正極活物質610の二次粒子910の粒子径の違いによる電池性能への影響を小さく抑えるべく、各サンプルの平均粒径(D50)を凡そ3μm~7μmとした。
≪比表面積≫
 また、比表面積は、単位重量当たりの表面積である。比表面積には、一般的な窒素吸着法による測定値を採用することができる。比表面積が大きくなると、正極活物質610の単位重量当たりに電解液と接触し得る面積が増えるのであるから、電池性能を向上させる効果が期待できる。これに対して、例えば、正極活物質610の比表面積が小さすぎると、反応抵抗(特に、低温における反応抵抗)を向上させる効果が少なくなる傾向がある。ここでは、二次粒子910の比表面積の違いによる電池性能への影響を小さく抑えるべく、各サンプルについて、比表面積を一定の範囲とした。
 次に、表1中、「低温反応抵抗」、「出力特性」、「ハイレートサイクル特性」および「低レートサイクル特性」は、それぞれサンプル1~18を正極活物質610として用いて作成した評価試験用の電池800の測定値である。以下、評価試験用の電池800を説明し、その後、「多孔度」、「低温反応抵抗」、「出力特性」、「ハイレートサイクル特性」および「低レートサイクル特性」の測定方法を説明する。
≪評価試験用の電池≫
 図7は、評価試験用の電池800を模式的に示している。ここで作成した評価試験用の電池800は、図7に示すように、いわゆる18650型セルと呼ばれる円筒型のリチウムイオン二次電池である。ここでは、評価試験用の電池800の定格容量は、約220mAhとした。
 この評価試験用の電池800は、図7に示すように、正極シート810と、負極シート820と、二枚のセパレータ830、840とを積層し、その積層シートを捲回して、正極シート810と負極シート820との間にセパレータ830、840が介在した捲回電極体850を作製した。
 ここで、評価試験用の電池800の正極シート810と負極シート820の断面構造は、上述したリチウムイオン二次電池100の正極シート220又は負極シート240(図1参照)と概ね同様の断面構造とした。また、セパレータ830、840には、厚さ20μmの多孔質ポリエチレンシートを用いた。かかる捲回電極体850を非水電解液(図示省略)とともに外装ケース860に収容して、評価試験用の電池800(評価試験用の18650型リチウムイオン電池)を構築した。
 また、正極シート810については、図6に示すように、正極活物質610として、上述したサンプル1~18を用いた。また、この評価試験では、導電材620として、アセチレンブラック(AB)を用いた。また、この評価試験では、溶媒としてN-メチル-2-ピロリドン(NMP)を用いた。また、バインダ630にはポリフッ化ビニリデン(PVDF)を用いた。
 また、外装ケース860は、図6に示すように、略円筒形状であり、円筒形状の両側端部に、正極シート810と負極シート820に内部で接続された電極端子870、880が設けられている。また、この評価試験用の電池800では、非水電解液として、ECとDMCとEMCとを3:3:4の体積比で含む混合溶媒に1mol/Lの濃度でLiPFを溶解した組成の非水電解液を使用した。
 この評価試験では、正極活物質610を除いた条件は概ね同じとした。また、正極集電体には、厚さ15μmのアルミ箔を用いた。また、正極集電体221に対する正極合剤の塗布量は、凡そ15mg/cmとした。また、同じサンプルについて、正極合剤の塗布工程、圧延工程を調整して、正極合剤層223の多孔度が約30%のものと、多孔度が約45%のものの2種類の正極シート810を作成し、2種類の評価試験用の電池800を用意した。
≪多孔度(Vbc/Va)≫
 正極合剤層223の内部に形成された空孔(B、C)の容積Vbcと、正極合剤層223の見かけの体積Vaとの比(Vbc/Va)は、正極合剤層223の内部の空孔(B、C)の割合を示している。上記の比(Vbc/Va)が大きいほど、正極合剤層223に電解液が浸み込み得る空孔(B、C)の容量が大きい。上記の比(Vbc/Va)は、適宜に「多孔度」或いは「合剤層内全空孔率」と呼ぶことができる。上記の比(Vbc/Va)には、種々の求め方がある。
≪Vaの測定方法≫
 正極合剤層の見かけの体積Vaは、例えば、図5に示すように、正極シート220のサンプルの平面視での面積Sと、正極合剤層223の厚さa(図示省略)との積によって求めることができる(Va=S×a)。
 この実施形態では、正極集電体221の両面に正極合剤層223が形成されている。このため正極合剤層223の厚さaは、両面の正極合剤層223の厚さb、cの和として求めることができる(a=b+c)。また、他の方法として、かかる正極合剤層223の厚さaは、正極シート220の全体の厚さdと、正極集電体221の厚さeとの差(d-e)として求めることができる(a=d-e)。また、正極シート220のサンプルの平面視での面積Sは、例えば、正極シート220のサンプルを正方形や長方形に切り取ることによって、容易に求めることができる。このように、正極シート220のサンプルの平面視での面積Sと正極合剤層223の厚さaとを求めることによって、正極合剤層223の見かけの体積Vaを求めることができる。
≪Vbcの測定方法≫
 正極合剤層の内部に形成された空孔(B、C)の容積Vbcは、例えば、水銀ポロシメータ(mercury porosimeter)を用いることによって測定することができる。なお、この測定方法において、「空孔」は、外部に開かれた空孔を意味している。正極合剤層223内の閉じられた空間は、この方法では「空孔」に含まれない。水銀ポロシメータは、水銀圧入法より多孔体の細孔分布を測定する装置である。水銀ポロシメータには、例えば、株式会社島津製作所製のオートポアIII9410を用いることができる。この場合、例えば、4psi~60000psi(50μm~0.003μmの細孔範囲)にて測定するとよい。
 例えば、正極シート220から複数のサンプルを切り取る。次に、当該サンプルについて、水銀ポロシメータを用いて正極合剤層223に含まれる空孔(B、C)の容積を測る。水銀ポロシメータは、水銀圧入法よって多孔体の細孔分布を測定する装置である。水銀圧入法では、まず、正極シート220のサンプルを真空引きし、水銀に浸ける。この状態で、水銀にかけられる圧力が増すと、水銀は、徐々に小さい空間へ浸入していく。そして、正極合剤層223に浸入した水銀の量と水銀にかけられる圧力との関係に基づいて、正極合剤層223中の空孔(B、C)の容積を求めることができる。かかる水銀圧入法によって、正極合剤層223に含まれる空孔(B、C)の容積Vbcを求めることができる。
≪多孔度(Vbc/Va)の算出≫
 上記の多孔度(Vbc/Va)は、上記のように求められる正極合剤層223に含まれる空孔(B、C)の容積Vbcと、正極合剤層の見かけの体積Va(Va=S×a)との比によって求めることができる。ここで求められる比(Vbc/Va)は、正極合剤層223に電解液が浸み込み得る空孔が存在する体積割合を示している。
 上述した中空構造の正極活物質610が用いられている場合では、特に、正極合剤層223の内部に電解液が浸み込み得る空孔を有しているとよい。これにより、正極合剤層223に電解液を浸み込ませることができる。本発明者の知見によれば、上述した中空構造の正極活物質610が用いられている場合において、正極合剤層223の上記の比(Vbc/Va)は、0.25≦(Vbc/Va)となる。より好ましくは凡そ0.30≦(Vbc/Va)であるとよい。また、比(Vbc/Va)は、好ましくは(Vbc/Va)≦0.60、例えば、(Vbc/Va)≦0.57であることが適当である。
 なお、多孔度(Vbc/Va)が小さすぎると、正極合剤層223の内部に浸み込む電解液の量が少なくなり、正極活物質610と電解液との間でリチウムイオン(Li)の行き来が難しくなる。このため、電池抵抗が上がる要因となる。また、正極合剤層223の多孔度が高くなれば、いわゆる液枯れが生じ難く、正極活物質610と電解液との間でリチウムイオン(Liイオン)の行き来が容易になる。
 このように、正極合剤層223の多孔度Xは大きければ大きい方が好ましい傾向がある。このため、多孔度(Vbc/Va)の上限は、特に拘らないが、実現可能な程度の適当な大きさであればよい。このため、多孔度(Vbc/Va)は、実現可能な程度の適当な大きさであればよく、例えば、0.65程度であってもよい。なお、多孔度(Vbc/Va)は65(%)より大きくてもよいが、あまりに多孔度(Vbc/Va)が高くなると、正極活物質610と導電材620との電子パス経路が構築できずに集電性が悪化するおそれもある。例えば、多孔度(Vbc/Va)は65%以下、例えば、60%程度、より好ましくは57(%)程度としてもよい。これにより、正極活物質610と導電材620との電子パス経路がより確実に構築されるので、より性能が安定した二次電池が得られると考えられる。
 上記の多孔度(Vbc/Va)には種々の求め方がある。以下に、他の測定方法を例示する。
 ≪多孔度(Vbc/Va)の他の測定方法(1)≫
 上記の多孔度(Vbc/Va)は、正極シート810を作成する前に測定される各成分の測定値に基づいて、下記の式で求められる。
 
多孔度(Vbc/Va)=
[(d-e)-Mv×{(α/X)+(β/Y)+(γ/Z)}]/(d-e);
 
すなわち、
 多孔度(Vbc/Va)=[(「正極シート220の厚さd」-「正極集電体221の厚さe」)-「正極合剤層223の両面の目付量Mv」×{(正極活物質610の重量比α)/(正極活物質610の真密度X)+(導電材620の重量比β)/(導電材620の真密度Y)+(バインダ630の重量比γ)/(バインダ630の真密度Z)}]/(「正極シート220の厚さd」-「正極集電体221の厚さe」);
である。ここで、「真密度」は、空孔を含まない実体積によって重量を割った値である。
 また、Mv×{(α/X)+(β/Y)+(γ/Z)}は、正極合剤層223に空孔がないと仮定した場合における、正極合剤層223の厚さを求めたものである。
 また、「正極活物質610の重量比α」、「正極活物質610の真密度X」、「導電材620の重量比β」、「導電材620の真密度Y」、「バインダ630の重量比γ」、「バインダ630の真密度Z」は、例えば、正極合剤層223を形成する前に測定することができる。「真密度」は、密度測定装置、例えば、気体置換型ピクノメータによって測定することができる。
 また、「正極合剤層223の厚さ(d-e)」や「正極合剤層223の目付量Mv」は、例えば、正極合剤層223の形成後に測定することができる。また、「正極合剤層223の厚さ(d-e)」や「正極合剤層223の目付量Mv」は、正極合剤層223の塗布工程や圧延工程で目標値として設定することもできる。
 また、この実施形態では、図5に示すように、正極集電体221の両面に正極合剤層223が形成されている。このため、正極合剤層223が正極集電体221の両面に形成されることを考慮して多孔度を算出するとよい。
≪多孔度(Vbc/Va)の他の測定方法(2)≫
 多孔度(Vbc/Va)は、さらに別の方法によって近似できる。
 多孔度(Vbc/Va)は、例えば、正極合剤層223の断面サンプルにおいて、正極合剤層223の単位断面積当たりに含まれる空孔(B、C)が占める面積Sbcと、正極合剤層223の見かけの断面積Saとの比(Sbc/Sa)によって近似できる。この場合、正極合剤層223の複数の断面サンプルから比(Sbc/Sa)を求めるとよい。正極合剤層223の断面サンプルが多くなればなるほど、上記の比(Sbc/Sa)は多孔度(Vbc/Va)を正確に近似できるようになる。この場合、例えば、正極シート220の任意の一方向に沿って、当該一方向に直交する複数の断面から断面サンプルをとるとよい。
 ここで、例えば、正極合剤層223の断面サンプルは、断面SEM画像によって得ると良い。ここで、断面SEM画像は、電子顕微鏡によって得られる断面写真である。例えば、CP処理(Cross Section Polisher処理)にて正極シート220の任意の断面を得る。電子顕微鏡としては、例えば、株式会社日立ハイテクノロジーズ(Hitachi High-Technologies Corporation)製の走査型電子顕微鏡(FE-SEM) HITACHI S-4500を用いることができる。
 かかる正極合剤層223の断面SEM画像によれば、色調や濃淡の違いに基づいて、正極合剤層223の構成物質の断面Aや正極合剤層223の内部に形成された空孔(B、C)を特定することができる。
≪コンディショニング≫
 次に、上記のように構築した評価試験用の電池について、コンディショニング工程、定格容量の測定、SOC調整を順に説明する。
 コンディショニング工程は、次の手順1、2によって行なわれる。
手順1:1Cの定電流充電にて4.1Vに到達した後、5分間休止する。
手順2:手順1の後、定電圧充電にて1.5時間充電し、5分間休止する。
≪定格容量の測定≫
 次に、定格容量は、上記コンディショニング工程の後、評価試験用の電池について、温度25℃、3.0Vから4.1Vの電圧範囲で、次の手順1~3によって測定される。
手順1:1Cの定電流放電によって3.0Vに到達後、定電圧放電にて2時間放電し、その後、10秒間休止する。
手順2:1Cの定電流充電によって4.1Vに到達後、定電圧充電にて2.5時間充電し、その後、10秒間休止する。
手順3:0.5Cの定電流放電によって、3.0Vに到達後、定電圧放電にて2時間放電し、その後、10秒間停止する。
定格容量:手順3における定電流放電から定電圧放電に至る放電における放電容量(CCCV放電容量)を定格容量とする。
≪SOC調整≫
 SOC調整は、上記で作製した評価試験用の電池を25℃の温度環境下にて次の1、2の手順によって調整される。ここで、SOC調整は、上記コンディショニング工程および定格容量の測定の後で行なうとよい。
手順1:3Vから1Cの定電流で充電し、定格容量の凡そ60%の充電状態(SOC60%)にする。ここで、「SOC」は、State of Chargeを意味する。
手順2:手順1の後、2.5時間、定電圧充電する。
これにより、評価試験用の電池800は、所定の充電状態に調整することができる。
 次に、かかる評価試験用の電池800について、「低温反応抵抗」、「出力特性」、「ハイレートサイクル特性」および「低レートサイクル特性」の測定方法を順に説明する。なお、この実施形態では、同じサンプルについて、正極合剤の塗布工程、圧延工程を調整して、正極合剤層223の多孔度が約30%のものと、多孔度が約45%のものの2種類の正極シート810を作成し、2種類の評価試験用の電池800を用意した。「低温反応抵抗」、「ハイレートサイクル特性」および「低レートサイクル特性」については、正極合剤層223の多孔度が約30%の評価試験用の電池800の測定値を採用した。また、「出力特性」については、正極合剤層223の多孔度が約30%の評価試験用の電池800の測定値と、正極合剤層223の多孔度が約45%の評価試験用の電池800の測定値とを採用した。
≪低温反応抵抗≫
 反応抵抗の測定は、交流インピーダンス測定法による。図8は、反応抵抗測定における、ナイキスト・プロットの等価回路フィッティングを示す図である。この実施形態では、25度、SOC60%(定格容量の凡そ60%の充電状態)の場合と、-30度、SOC40%(定格容量の凡そ40%の充電状態)の場合との2つの測定条件で測定した。測定は、10-3~10Hzの周波数範囲で複素インピーダンス測定を行なった。そして、図8に示すように、ナイキスト・プロットの等価回路フィッティングによって、直流抵抗(Rsol)と、反応抵抗(Rct)を算出する。ここで、反応抵抗(Rct)は、下記の式で求めることができる。
ct=(Rct+Rsol)-Rsol
ここでは、-30度、SOC40%(定格容量の凡そ40%の充電状態)で測定された、反応抵抗を「低温反応抵抗」とした。
≪出力特性≫
 出力特性は、以下の手順によって求められる。なお、この実施形態では、測定の温度環境を25℃とした。
手順1:SOC調整として、1C定電流充電によってSOC60%とし、当該SOC60%にて定電圧充電を2.5時間行い、10秒間休止させる。
手順2:定ワット放電として、上記手順1によるSOC60%の状態から、定ワットにて放電する。そして、2.5Vまでの秒数を測定する。
手順3:手順2における定ワットの条件を5~60Wの範囲で変えて、手順1と、手順2を繰り返す。
手順4:各W条件にて測定された2.5Vまでの秒数を横軸にとり、そのときのWを縦軸にとり、近似曲線から10秒時のWを算出する。
ここでは、手順4で求められたWを出力特性とした。
≪ハイレート放電特性評価≫
 「ハイレート放電特性評価」は、異なる評価試験用の電池800について、上記SOC調整によって、SOC60%の充電状態に調整した後、以下の(I)~(V)からなる充放電サイクルを2500回繰り返すハイレートサイクル試験を行う。その間、100サイクル毎に、SOCを60%に調整する操作を行う。図9は、当該特性評価試験における、充放電サイクルを示している。
 (I).20C(ここでは4.4A)の定電流で10秒間放電させる。
 (II).5秒間休止する。
 (III).1Cの定電流で200秒間充電する。
 (IV).145秒間休止する。
 (V).サイクル毎に(I)の放電における抵抗の上昇率を測定する。
(ただし、(I)~(V)からなる充放電サイクルを100回繰り返す毎に、上記SOC調整を行う。)
 表1の「ハイレート放電特性評価」は、2500サイクル目における、(I)の放電における抵抗の上昇率を示している。
≪低レートサイクル特性≫
 「低レートサイクル特性」は、異なる評価試験用の電池800について、25℃にて交流インピーダンス測定法を実施して、直流抵抗(Rsol)と反応抵抗(Rct)を算出する。ここで、交流インピーダンス測定法は、「低温反応抵抗」における方法に準じる。その後、温度60℃、電圧範囲3.0V~4.1Vで、以下の(I)、(II)からなる充放電サイクルを1000回繰り返す。
≪低レートサイクル特性における充放電サイクル≫
(I)2C定電圧放電によって3Vに到達させる。
(II)2C定電圧充電によって4.1Vに到達させる。
≪直流抵抗(Rsol)と反応抵抗(Rct)の増加率≫
 その後、評価試験用の電池800を25℃にて交流インピーダンス測定法を実施して、直流抵抗(Rsol)と反応抵抗(Rct)を算出する。そして、直流抵抗(Rsol)と反応抵抗(Rct)とについて、それぞれ1000サイクル後に算出された抵抗値を、初期抵抗(1000サイクル前に算出された直流抵抗(Rsol)と反応抵抗(Rct))で割って、それぞれの増加率が求める。
増加率=1000サイクル後の抵抗値/1000サイクル前の抵抗値
 このような試験を基に、以下の知見が得られる。すなわち、発進時や加速時に、特に、高い出力が必要とされる車両搭載用電源としてのリチウムイオン二次電池においては、DBP吸収量(mL/100g)を評価するのみでは、必要な性能が得られない場合がある。例えば、特許文献1では、正極活物質610の好ましいDBP吸収量(mL/100g)は、20~40であるとされるところ、サンプル13~18に示すように、低温反応抵抗、ハイレートサイクル特性や、低レートサイクル特性が大きくなる事象が見られた。
 しかしながら、例えば、図6に示すように、リチウム遷移金属酸化物の一次粒子900が複数集合した中空構造の二次粒子910で構成され、かつ、外部から中空部920に貫通した貫通孔930を有した正極活物質610を用いた場合には、上記傾向が異なる。すなわち、かかる正極活物質610を用いた場合には、DBP吸収量(mL/100g)に加えて、粒子空孔率A1や、タップ密度A3を考慮することによって、低温反応抵抗、ハイレートサイクル特性、低レートサイクル特性が好ましいリチウムイオン二次電池100が得られ得る。
 この場合、正極活物質の粒子空孔率A1は、2.0(%)≦A1≦70(%)であるとよい。また、正極活物質のDBP吸収量A2は、23(mL/100g)≦A2であるとよい。さらに、正極活物質のタップ密度A3は、1.0(g/mL)≦A3≦1.9(g/mL)であるとよい。
 ここで、粒子空孔率A1は、正極活物質610の二次粒子910に空孔Bがどの程度形成されているかが規定される。粒子空孔率A1は、2.0(%)≦A1≦70(%)である場合には、電解液が浸入し得る空孔が正極活物質610に程よく形成されていると考えられる。電解液が浸入し得る空孔が正極活物質610に程よく形成されていると、電解液が二次粒子910内部に浸入するので、正極活物質610の一次粒子900と電解液との接触面積が増え、リチウムイオン(Li)の行き来が容易になる。これに対して、粒子空孔率A1が小さすぎると、電解液が二次粒子910内部に浸入し難くなり、電解液が二次粒子910内部に浸入した場合に得られる所要の効果が得られない。
 例えば、正極活物質610の粒子空孔率A1は、2.4(%)≦A1であってもよい。これにより、正極活物質610に電解液が浸入し易くなるから、正極活物質への必要な性能がより確実に得られ得る。
 また、タップ密度A3は、正極活物質610のタッピングによってどの程度の嵩になるかが評価できる。この場合、正極活物質610は、例えば、図10に示すように、中空部(空孔)がない正極活物質610Aに比べて、図11に示すように、中空部920や貫通孔930を有する正極活物質610の方が、タッピング後に嵩が高くなり(タップ密度A3が小さくなる)と考えられる。この場合、タッピング後に嵩が高い(タップ密度A3が小さい)正極活物質610は、中空部920が有効に存在し、正極活物質610と電解液との接触面積が大きくなる。これにより、導電材620が密になり、正極活物質610と導電材620との電子パス経路がより確実に構築される。このため、より性能が安定した二次電池が得られると考えられる。図12は、正極合剤層223の断面SEM画像の一例である。例えば、図12中のELで示す部分に示すように、正極活物質610の粒子間に導電材620が密に集合している。
 以上のように、リチウム遷移金属酸化物の一次粒子が複数集合した中空構造の二次粒子910で構成され、かつ、外部から中空部920に貫通した貫通孔930を有した正極活物質610を用いる。そして、正極活物質の粒子空孔率A1を、2.0(%)≦A1≦70(%)とする。また、正極活物質のDBP吸収量A2を、23(mL/100g)≦A2とする。さらに、正極活物質のタップ密度A3を、1.0(g/mL)≦A3≦1.9(g/mL)とする。これにより、低温反応抵抗、ハイレートサイクル特性、低レートサイクル特性が好ましいリチウムイオン二次電池100が得られ得る。
 なお、正極活物質610の粒子空孔率A1が高くなれば、正極活物質610の中空部920が大きくなり、中空部920に電解液が浸み込むので、液枯れが生じ難くなる。また正極活物質610の内部でも、中空部に浸入した電解液と、正極活物質610との間でリチウムイオン(Liイオン)が行き来する。このため、中空部近傍の正極活物質610の一次粒子900も活用されるので、二次電池の出力が向上する。
 この場合、正極活物質の粒子空孔率A1は2.4(%)≦A1でもよく、さらに好ましくは、正極活物質の粒子空孔率A1は25(%)≦A1でもよい。また、正極活物質の粒子空孔率A1の上限は特に拘らないが、例えば、A1≦70(%)、例えば、A1≦66(%)程度でもよい。
 また、正極活物質のDBP吸収量A2が大きくなれば、正極活物質610に電解液が浸み込み易くなり、液枯れが生じ難くなる。このため、正極活物質610のDBP吸収量A2は、例えば、30(mL/100g)≦A2、さらには32(mL/100g)≦A2でもよい。また、DBP吸収量A2の上限は特に拘らないが、例えば、DBP吸収量A2は、A2≦54(mL/100g)であるとよい。
 また、正極活物質のタップ密度A3は、小さいほど、正極活物質610の嵩が高くなり、また、かさ密度(嵩密度)が低くなる。この場合、圧延後の正極合剤層223の密度も低くなり得る。また、この場合、正極活物質610の嵩が高いので、これに反比例するように導電材620のスペースが小さくなると考えられる。このため、正極合剤層223を形成する際の圧延工程において、正極活物質610の粒子外空孔Cが小さくなると考えられる。このため、正極活物質610間に存在する導電材620が密になり、正極活物質610と導電材620との電子パス経路がより確実に構築される。このため、より性能が安定した二次電池が得られると考えられる。かかるタップ密度A3は、例えば、A3≦1.7(g/mL)程度でもよい。
 このように、上述した粒子空孔率A1、DBP吸収量A2およびタップ密度A3を備えていることによって、内部抵抗が低く(換言すれば、出力特性が良く)、且つ充放電サイクル(特に、ハイレートでの放電を含む充放電サイクル)によっても抵抗の上昇の少ないリチウム二次電池をより確実に得ることができる。
 また、正極活物質610の二次粒子910のD50で定義される粒子径Dは、3(μm)≦D≦7(μm)としてもよい。ここで、粒子径Dは、正極活物質610の二次粒子910の中空部920を考慮せず、二次粒子910の外形によって規定される。また、粒子径Dは、3(μm)≦D≦7(μm)であれば、正極活物質610は所定以上の大きさを有しており、内部に所定以上の大きさの空孔が形成され得る。
 また、正極活物質610の二次粒子910の比表面積Eは、0.8(m/g)≦E≦1.5(m/g)でもよい。かかる比表面積の条件を満たす中空構造の正極活物質610によれば、リチウムイオン二次電池100の正極に用いられて、より高い性能を安定して発揮することができる。例えば、内部抵抗が低く(換言すれば、出力特性が良く)、且つ充放電サイクル(特に、ハイレートでの放電を含む充放電サイクル)によっても抵抗の上昇の少ないリチウム二次電池が構築され得る。
 また、正極合剤層は、正極合剤を集電体に塗布し、乾燥させた後で、圧延されていてもよい。この場合、正極活物質610は、タップ密度A3が1.0(g/mL)≦A3≦1.9(g/mL)であるため、正極合剤層は、正極合剤を集電体に塗布、乾燥させた後で、圧延されている場合でも、正極活物質の真密度に比べて嵩が高い。また、正極活物質610は、粒子空孔率A1が2.0(%)≦A1≦70(%)、および、DBP吸収量A2が23(mL/100g)≦A2であるから、正極合剤層に電解液が浸み込み得る隙間がより確実に形成される。また、正極活物質610の粒子空孔率A1が2.0(%)≦A1≦70(%)であるから、正極合剤層に浸み込んだ電解液と正極活物質との接触面積も大きい。さらに、正極活物質のDBP吸収量A2が23(mL/100g)≦A2である。このため、正極合剤層に浸み込んだ電解液が正極活物質に吸収され易い。よって、正極合剤層中のリチウムイオン(Liイオン)の濃度ムラが生じ難くなる。これにより、内部抵抗が低く(換言すれば、出力特性が良く)、且つ充放電サイクル(特に、ハイレートでの放電を含む充放電サイクル)によっても抵抗の上昇の少ないリチウム二次電池が構築され得る。
≪正極活物質≫
 上述した正極活物質610によれば、内部抵抗が低く(換言すれば、出力特性が良く)、且つ充放電サイクル(特に、ハイレートでの放電を含む充放電サイクル)によっても抵抗の上昇の少ないリチウム二次電池が構築され得る。従って、ハイレートでの充放電サイクル特性を向上させ得る正極活物質の好ましい一形態としては、正極活物質はリチウム遷移金属酸化物の一次粒子が複数集合した中空構造の二次粒子で構成され、さらに、二次粒子の中空部に外部から貫通した貫通孔を有しているとよい。さらに、正極活物質610は、粒子空孔率A1が2.0(%)≦A1≦70(%);DBP吸収量A2が23(mL/100g)≦A2;および、タップ密度A3が1.0(g/mL)≦A3≦1.9(g/mL)であるとよい。
 なお、より好ましくは、正極活物質の粒子空孔率A1は、25(%)≦A1≦66(%)であるとよい。また、正極活物質のDBP吸収量A2は、30(mL/100g)≦A2であるとよい。さらに、正極活物質のタップ密度A3は、1.0(g/mL)≦A3≦1.7(g/mL)であるとよい。これにより、内部抵抗が低く(換言すれば、出力特性が良く)、且つ充放電サイクル(特に、ハイレートでの放電を含む充放電サイクル)によっても抵抗の上昇の少ないリチウム二次電池がより確実に構築され得る。
 以上のように、ここに開示される活物質粒子を備えるリチウムイオン二次電池100は、出力特性およびその耐久性に優れたものとなり得る。このため、図13に示すように、車両1に搭載されるリチウムイオン二次電池として好適である。この場合、例えば、リチウムイオン二次電池の複数個を接続して組み合わせた組電池1000の形態で、自動車などの車両のモータ(電動機)用の電源として好適に利用され得る。
 以上、本発明の一実施形態に係るリチウムイオン二次電池を例示し、本発明の実施の形態を種々説明したが、本発明は上述した何れの実施形態にも限定されない。
100  リチウムイオン二次電池(二次電池)
200  捲回電極体
220  正極シート
221  正極集電体
222  未塗工部
222a 中間部分
223  正極合剤層
224  正極合剤
240  負極シート
241  負極集電体
242  未塗工部
243  負極合剤層
244  負極合剤
245  耐熱層
262  セパレータ
264  セパレータ
300  電池ケース
310、312              隙間
320  容器本体
322 蓋体と容器本体の合わせ目
340  蓋体
360  安全弁
420 電極端子(正極)
440 電極端子(負極)
610  正極活物質
620  導電材
630  バインダ
800  評価試験用の電池
810  正極シート
820  負極シート
830、840              セパレータ
850  捲回電極体
860  外装ケース
870  電極端子
900  一次粒子
910  二次粒子
920  中空部
930  貫通孔
1000 車両駆動用電池

Claims (13)

  1.  集電体と、
     前記集電体に塗工された正極合剤層と
    を備え、
     前記正極合剤層は、正極活物質、導電材およびバインダを含み、
     前記正極活物質は、リチウム遷移金属酸化物の一次粒子が複数集合した中空構造の二次粒子で構成され、かつ、外部から中空部に貫通した貫通孔を有しており、
     前記正極活物質の粒子空孔率A1は、2.0(%)≦A1≦70(%)であり、
     前記正極活物質のDBP吸収量A2は、23(mL/100g)≦A2であり、かつ、
     前記正極活物質のタップ密度A3は、1.0(g/mL)≦A3≦1.9(g/mL)である、二次電池。
  2.  前記正極活物質の粒子空孔率A1は、2.4(%)≦A1である、請求項1に記載された二次電池。
  3.  前記正極活物質の粒子空孔率A1は、25(%)≦A1である、請求項1又は2に記載された二次電池。
  4.  前記正極活物質の粒子空孔率A1は、A1≦66(%)である、請求項1から3までの何れか一項に記載された二次電池。
  5.  前記正極活物質のDBP吸収量A2は、32(mL/100g)≦A2である、請求項1から4までの何れか一項に記載された二次電池。
  6.  前記正極活物質のDBP吸収量A2は、A2≦54(mL/100g)である、請求項1から5までの何れか一項に記載された二次電池。
  7.  前記正極活物質の二次粒子のD50で定義される粒子径Dが、3(μm)≦D≦7(μm)である、請求項1から6までの何れか一項に記載された二次電池。
  8.  前記正極活物質の二次粒子の比表面積Eが、0.8(m/g)≦E≦1.5(m/g)である、請求項1から7までの何れか一項に記載された二次電池。
  9.  前記貫通孔の開口幅が平均0.01μm以上である、請求項1から8までの何れか一項に記載された二次電池。
  10.  前記貫通孔の開口幅が平均2.0μm以下である、請求項1から9までの何れか一項に記載された二次電池。
  11.  前記正極合剤層は、前記正極合剤を前記集電体に塗布、乾燥させた後で、圧延されている、請求項1から10までの何れか一項に記載された二次電池。
  12.  請求項1から11までの何れか一項に記載された二次電池によって構成された、車両駆動用電池。
  13.  リチウム遷移金属酸化物の一次粒子が複数集合した中空構造の二次粒子;および、
     前記二次粒子の中空部に外部から貫通した貫通孔;を有し、
     粒子空孔率A1が、2.0(%)≦A1≦70(%);
     DBP吸収量A2が、23(mL/100g)≦A2≦54(mL/100g);および、
     タップ密度A3が、1.0(g/mL)≦A3≦1.9(g/mL)である、正極活物質。
PCT/JP2010/068212 2010-10-15 2010-10-15 二次電池 WO2012049779A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/068212 WO2012049779A1 (ja) 2010-10-15 2010-10-15 二次電池
JP2012538547A JP5737596B2 (ja) 2010-10-15 2010-10-15 二次電池
KR1020137012213A KR101500250B1 (ko) 2010-10-15 2010-10-15 이차 전지
US13/879,105 US9553310B2 (en) 2010-10-15 2010-10-15 Secondary battery
CN201080069612.6A CN103155238B (zh) 2010-10-15 2010-10-15 二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068212 WO2012049779A1 (ja) 2010-10-15 2010-10-15 二次電池

Publications (1)

Publication Number Publication Date
WO2012049779A1 true WO2012049779A1 (ja) 2012-04-19

Family

ID=45938026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068212 WO2012049779A1 (ja) 2010-10-15 2010-10-15 二次電池

Country Status (5)

Country Link
US (1) US9553310B2 (ja)
JP (1) JP5737596B2 (ja)
KR (1) KR101500250B1 (ja)
CN (1) CN103155238B (ja)
WO (1) WO2012049779A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014001899A1 (en) * 2012-06-29 2014-01-03 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
JP2014011064A (ja) * 2012-06-29 2014-01-20 Toyota Motor Corp リチウム二次電池
WO2014060814A1 (en) * 2012-10-17 2014-04-24 Toyota Jidosha Kabushiki Kaisha Secondary battery
CN103928702A (zh) * 2013-01-11 2014-07-16 株式会社杰士汤浅国际 蓄电元件及其制造方法
CN103928711A (zh) * 2013-01-11 2014-07-16 株式会社杰士汤浅国际 蓄电元件及其制造方法
WO2014142279A1 (ja) * 2013-03-15 2014-09-18 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
JP2015191854A (ja) * 2014-03-28 2015-11-02 トヨタ自動車株式会社 非水電解液二次電池
US9219278B2 (en) 2011-10-20 2015-12-22 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and use thereof
US20160006030A1 (en) * 2013-01-24 2016-01-07 Sumitomo Metal Mining Co., Ltd. Positive electrode active material, and lithium secondary battery using same
JP2016054101A (ja) * 2014-09-04 2016-04-14 株式会社日立製作所 リチウムイオン二次電池
KR20170017768A (ko) * 2015-08-06 2017-02-15 도요타지도샤가부시키가이샤 비수 전해액 이차 전지
JP2017091664A (ja) * 2015-11-04 2017-05-25 トヨタ自動車株式会社 非水電解液二次電池
US9843033B2 (en) 2013-02-28 2017-12-12 Nissan Motor Co., Ltd. Positive electrode active substance, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
WO2018061298A1 (ja) * 2016-09-29 2018-04-05 パナソニック株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
WO2018079826A1 (ja) * 2016-10-31 2018-05-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018120829A (ja) * 2017-01-27 2018-08-02 株式会社Gsユアサ 蓄電素子
JP2018536972A (ja) * 2016-03-04 2018-12-13 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494506B1 (ko) * 2011-05-06 2015-02-17 도요타 지도샤(주) 리튬 이온 이차 전지
JP5664930B2 (ja) * 2012-06-29 2015-02-04 トヨタ自動車株式会社 非水電解質二次電池
CN103579615A (zh) * 2013-08-19 2014-02-12 惠州亿纬锂能股份有限公司 一种锂电池正极材料及使用该正极材料的锂电池
JP6191876B2 (ja) * 2014-06-10 2017-09-06 トヨタ自動車株式会社 電池
JP2016062832A (ja) * 2014-09-19 2016-04-25 トヨタ自動車株式会社 二次電池の製造方法
CN104993097B (zh) * 2015-05-26 2017-06-30 广东烛光新能源科技有限公司 一种负极片、含有该负极片的电化学储能器件及其制备方法
CN108028361B (zh) * 2015-09-30 2021-05-14 远景Aesc能源元器件有限公司 用于锂离子二次电池的正极以及锂离子二次电池
CN108370036A (zh) * 2015-12-15 2018-08-03 株式会社杰士汤浅国际 锂二次电池用正极活性物质、正极活性物质的前体的制造方法、正极活性物质的制造方法、锂二次电池用正极和锂二次电池
WO2017114684A1 (en) * 2015-12-30 2017-07-06 Robert Bosch Gmbh Metal oxide cathode
CN109428076B (zh) * 2017-09-04 2023-04-11 三星电子株式会社 正极活性材料前体、正极活性材料、制备正极活性材料的方法、正极和锂电池
JP6495997B1 (ja) * 2017-11-20 2019-04-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20230107474A1 (en) * 2020-01-31 2023-04-06 Kyocera Corporation Electrode for secondary battery and secondary battery
CN113066956B (zh) * 2021-03-17 2022-06-10 宁德新能源科技有限公司 电化学装置及电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074517A (ja) * 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JPH1074516A (ja) * 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JP2001192208A (ja) * 1999-06-03 2001-07-17 Titan Kogyo Kk リチウムチタン複合酸化物及びその製造方法、並びにその用途
JP2004253174A (ja) * 2003-02-18 2004-09-09 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2005044722A (ja) * 2003-07-25 2005-02-17 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質および非水電解液二次電池
JP2005285606A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 正極活物質及びその評価方法並びに非水電解質二次電池
JP2007042579A (ja) * 2005-06-29 2007-02-15 Matsushita Electric Ind Co Ltd リチウム二次電池用複合粒子とその製造方法、それを用いたリチウム二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3977354B2 (ja) * 1995-03-17 2007-09-19 キヤノン株式会社 正極活物質の製造方法、負極活物質の製造方法及びリチウムを利用する二次電池の製造方法
JP3581474B2 (ja) * 1995-03-17 2004-10-27 キヤノン株式会社 リチウムを利用する二次電池
EP0827223B1 (en) 1996-08-29 1999-11-03 Murata Manufacturing Co., Ltd. Lithium secondary battery
JP3110728B1 (ja) * 1999-05-06 2000-11-20 同和鉱業株式会社 非水系二次電池用正極活物質および正極
JP2000340226A (ja) * 1999-05-26 2000-12-08 Kawasaki Steel Corp リチウムマンガン複合酸化物粒子およびその製造方法
EP1184918B1 (en) * 2000-08-28 2009-10-14 Nissan Motor Co., Ltd. Rechargeable lithium ion battery
US7682741B2 (en) 2005-06-29 2010-03-23 Panasonic Corporation Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
JP5371024B2 (ja) 2007-11-28 2013-12-18 日産自動車株式会社 二次電池用正極およびこれを用いた非水電解液二次電池
JP5175826B2 (ja) * 2009-12-02 2013-04-03 トヨタ自動車株式会社 活物質粒子およびその利用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074517A (ja) * 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JPH1074516A (ja) * 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JP2001192208A (ja) * 1999-06-03 2001-07-17 Titan Kogyo Kk リチウムチタン複合酸化物及びその製造方法、並びにその用途
JP2004253174A (ja) * 2003-02-18 2004-09-09 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2005044722A (ja) * 2003-07-25 2005-02-17 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質および非水電解液二次電池
JP2005285606A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 正極活物質及びその評価方法並びに非水電解質二次電池
JP2007042579A (ja) * 2005-06-29 2007-02-15 Matsushita Electric Ind Co Ltd リチウム二次電池用複合粒子とその製造方法、それを用いたリチウム二次電池

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9219278B2 (en) 2011-10-20 2015-12-22 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and use thereof
CN104380499A (zh) * 2012-06-29 2015-02-25 丰田自动车株式会社 非水电解质二次电池
JP2014011064A (ja) * 2012-06-29 2014-01-20 Toyota Motor Corp リチウム二次電池
JP2014011070A (ja) * 2012-06-29 2014-01-20 Toyota Motor Corp 非水電解質二次電池
US9627711B2 (en) 2012-06-29 2017-04-18 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
WO2014001899A1 (en) * 2012-06-29 2014-01-03 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
WO2014060814A1 (en) * 2012-10-17 2014-04-24 Toyota Jidosha Kabushiki Kaisha Secondary battery
CN104471749A (zh) * 2012-10-17 2015-03-25 丰田自动车株式会社 二次电池
CN103928702A (zh) * 2013-01-11 2014-07-16 株式会社杰士汤浅国际 蓄电元件及其制造方法
EP2755261B1 (en) * 2013-01-11 2018-12-12 GS Yuasa International Ltd. Electric storage device and manufacturing method thereof
US20140199582A1 (en) * 2013-01-11 2014-07-17 Gs Yuasa International Ltd. Electric storage device and manufacturing method thereof
US9954219B2 (en) * 2013-01-11 2018-04-24 Gs Yuasa International Ltd. Electric storage device and manufacturing method thereof
US20140199589A1 (en) * 2013-01-11 2014-07-17 Gs Yuasa International Ltd. Electric storage device and manufacturing method thereof
CN103928702B (zh) * 2013-01-11 2017-12-19 株式会社杰士汤浅国际 蓄电元件及其制造方法
US9660251B2 (en) 2013-01-11 2017-05-23 Gs Yuasa International Ltd. Electric storage device and manufacturing method thereof
CN103928711A (zh) * 2013-01-11 2014-07-16 株式会社杰士汤浅国际 蓄电元件及其制造方法
US20160006030A1 (en) * 2013-01-24 2016-01-07 Sumitomo Metal Mining Co., Ltd. Positive electrode active material, and lithium secondary battery using same
KR101840098B1 (ko) * 2013-01-24 2018-03-19 도요타지도샤가부시키가이샤 정극 활물질 및 상기 활물질을 사용한 리튬 이차 전지
US9843033B2 (en) 2013-02-28 2017-12-12 Nissan Motor Co., Ltd. Positive electrode active substance, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
JPWO2014142279A1 (ja) * 2013-03-15 2017-02-16 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
WO2014142279A1 (ja) * 2013-03-15 2014-09-18 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
JP6008041B2 (ja) * 2013-03-15 2016-10-19 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
US9450229B2 (en) 2013-03-15 2016-09-20 Nissan Motor Co., Ltd. Positive electrode active substance, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
JP2015191854A (ja) * 2014-03-28 2015-11-02 トヨタ自動車株式会社 非水電解液二次電池
JP2016054101A (ja) * 2014-09-04 2016-04-14 株式会社日立製作所 リチウムイオン二次電池
KR101980422B1 (ko) * 2015-08-06 2019-05-20 도요타지도샤가부시키가이샤 비수 전해액 이차 전지
KR20170017768A (ko) * 2015-08-06 2017-02-15 도요타지도샤가부시키가이샤 비수 전해액 이차 전지
JP2017091664A (ja) * 2015-11-04 2017-05-25 トヨタ自動車株式会社 非水電解液二次電池
JP6991530B2 (ja) 2016-03-04 2022-01-12 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質
JP2021180191A (ja) * 2016-03-04 2021-11-18 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質
US10700352B2 (en) 2016-03-04 2020-06-30 Lg Chem, Ltd. Precursor of positive electrode active material for secondary battery and positive electrode active material prepared using the same
JP2018536972A (ja) * 2016-03-04 2018-12-13 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質
US11043659B2 (en) 2016-09-29 2021-06-22 Panasonic Corporation Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2018061298A1 (ja) * 2016-09-29 2019-07-18 パナソニック株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
WO2018061298A1 (ja) * 2016-09-29 2018-04-05 パナソニック株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
US11088366B2 (en) 2016-10-31 2021-08-10 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP2018092700A (ja) * 2016-10-31 2018-06-14 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018079826A1 (ja) * 2016-10-31 2018-05-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018120829A (ja) * 2017-01-27 2018-08-02 株式会社Gsユアサ 蓄電素子

Also Published As

Publication number Publication date
CN103155238A (zh) 2013-06-12
US9553310B2 (en) 2017-01-24
CN103155238B (zh) 2015-07-15
JPWO2012049779A1 (ja) 2014-02-24
KR20130070650A (ko) 2013-06-27
JP5737596B2 (ja) 2015-06-17
KR101500250B1 (ko) 2015-03-06
US20130209888A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5737596B2 (ja) 二次電池
JP5812357B2 (ja) 二次電池
JP5510761B2 (ja) 二次電池
US9184442B2 (en) Secondary battery
JP5598716B2 (ja) リチウム二次電池及びその製造方法
JP5741899B2 (ja) 二次電池
JP5787194B2 (ja) 電源システム
JP5773225B2 (ja) 二次電池
JP2013137955A (ja) 非水系二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069612.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858423

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012538547

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13879105

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012213

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10858423

Country of ref document: EP

Kind code of ref document: A1