CN103155238A - 二次电池 - Google Patents

二次电池 Download PDF

Info

Publication number
CN103155238A
CN103155238A CN2010800696126A CN201080069612A CN103155238A CN 103155238 A CN103155238 A CN 103155238A CN 2010800696126 A CN2010800696126 A CN 2010800696126A CN 201080069612 A CN201080069612 A CN 201080069612A CN 103155238 A CN103155238 A CN 103155238A
Authority
CN
China
Prior art keywords
active material
positive active
anode mixture
positive
mixture layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800696126A
Other languages
English (en)
Other versions
CN103155238B (zh
Inventor
永井裕喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN103155238A publication Critical patent/CN103155238A/zh
Application granted granted Critical
Publication of CN103155238B publication Critical patent/CN103155238B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及的二次电池,具备集电体和被涂布到集电体上的正极合剂层。正极合剂层含有正极活性物质、导电材料和粘合剂,正极活性物质由中空结构的二次粒子构成,并且,具有从外部贯通至中空部的贯通孔,所述二次粒子由多个锂过渡金属氧化物的一次粒子聚集而成。另外,正极活性物质的粒子孔隙率A1为2.0(%)≤A1≤70(%)。另外,正极活性物质的DBP吸收量A2为23(mL/100g)≤A2。并且正极活性物质的振实密度A3为1.0(g/mL)≤A3≤1.9(g/mL)。

Description

二次电池
技术领域
本发明涉及二次电池。在此,本说明书中所谓「二次电池」,是指一般的可反复充电的蓄电装置,是包括锂离子二次电池(lithium-ionsecondary battery)、镍氢电池、镍镉电池等的所谓的蓄电池和双电层电容器等的蓄电元件的用语。
另外,本说明书中所谓「锂离子二次电池」,包含作为电解质离子利用锂离子,通过正负极间的与锂离子相伴的电荷的移动来实现充放电的二次电池。
背景技术
锂离子二次电池,在正负电极具备能够可逆地吸藏和释放锂离子(Li离子)的材料(活性物质),通过锂离子在正负电极之间往来而进行充电或放电。作为该锂离子二次电池的电极(典型的是正极)所使用的活性物质的代表例,可举出含有锂和过渡金属元素的复合氧化物。例如,可优选地使用作为上述过渡金属元素至少含有镍(Ni)的、具有层状结构的锂复合氧化物(含有镍的锂复合氧化物)。作为与锂离子二次电池的活性物质相关的技术文献可举出专利文献1。
在此,专利文献1中公开了下述正极活性物质,在包含含锂复合氧化物的粉末的正极活性物质中,上述粉末的DBP吸液量为,含锂复合氧化物每100g重量20~40毫升。在此,上述粉末的DBP吸液量,将上述粉末使用以JIS K6217(1997)所规定的DBP吸收量A法或B法试验方法为基准的アブソープトメータ(Absorpto meter)、塑性变形计或塑度计(plasticorder),将试剂液体用恒速滴定管进行滴定,通过扭矩检测器测定此时的粘度特性的变化并进行记录,由与产生了的最大扭矩的70%时刻的扭矩对应的试剂液体的添加量来规定。
在先技术文献
专利文献1:日本国专利申请公开2005-285606号公报
发明内容
然而,锂离子二次电池,每单位重量的能量密度高,作为适用于车辆搭载用高输出电源的二次电池受到期待。作为车辆搭载用电源的锂离子二次电池,在起动时和加速时,特别需要高的输出功率。该情况下,只评价DBP吸收量,有时在需要该反复的高输出功率的用途上得不到必要的性能。
本发明涉及的二次电池,具备集电体和被涂布到集电体上的正极合剂层。在此,正极合剂层含有正极活性物质、导电材料和粘合剂。另外,正极活性物质由中空结构的二次粒子构成,且具有从外部贯通至中空部的贯通孔,上述二次粒子由多个锂过渡金属氧化物的一次粒子聚集而成。并且,该二次电池中,正极活性物质的粒子孔隙率A1为2.0(%)≤A1≤70(%),正极活性物质的DBP吸收量A2为23(mL/100g)≤A2,且正极活性物质的振实密度A3为1.0(g/mL)≤A3≤1.9(g/mL)。
根据该二次电池,电解液易于浸入正极活性物质中,正极活性物质610和电解液的接触面积大,锂离子(Li)在正极活性物质和电解液之间可容易地往来。因此,特别是在需要反复的高输出功率的用途上可得到必要的性能。
该情况下,正极活性物质的粒子孔隙率A1可以为2.4(%)≤A1。正极活性物质的粒子孔隙率A1进一步可以为25(%)≤A1。另外,正极活性物质的DBP吸收量A2可以为A2≤54(mL/100g)。另外,正极活性物质的粒子孔隙率A1可以为A1≤66(%)。另外,正极活性物质的二次粒子的以D50定义的粒径D可以为3(μm)≤D≤7(μm)。另外,正极活性物质的二次粒子的比表面积E可以为0.8(m2/g)≤E≤1.5(m2/g)。另外,贯通孔的开口宽度平均可以为0.01μm以上。另外,贯通孔的开口宽度平均可以为2.0μm以下。另外,正极合剂层可以在集电体上涂布正极合剂并使其干燥后,被轧制。
附图说明
图1是表示锂离子二次电池的结构的一例的图。
图2是表示锂离子二次电池的卷绕电极体的图。
图3是表示图2中的Ⅲ-Ⅲ截面的图。
图4是表示卷绕电极体的未涂布部和电极端子的焊接处的侧视图。
图5是表示正极合剂层的结构的截面图。
图6是表示正极活性物质粒子的一例的截面图。
图7是评价试验中使用的18650型电池的模式图。
图8是表示反应电阻测定中的尼奎斯特图的等效电路拟合的图。
图9是表示低温时高速率循环特性评价试验中的充放电循环的图。
图10是表示振实密度大的正极活性物质的一例的图。
图11是表示振实密度小的正极活性物质的一例的图。
图12是正极片的截面SEM图像的一例。
图13是表示搭载有车辆驱动用电池的车辆的一例的图。
具体实施方式
以下,基于附图对本发明的一实施方式涉及的二次电池进行说明。再者,对发挥相同作用的构件、部位适当地附带相同的标记。另外,各附图为模式地描绘,并不一定反映实物。在此,首先对作为本发明的二次电池的一例的锂离子二次电池的结构例进行说明,之后对锂离子二次电池的正极合剂层进行说明,进而对锂离子二次电池的评价试验进行说明。
图1表示了锂离子二次电池100。该锂离子二次电池100如图1所示,具备卷绕电极体200和电池壳体300。另外,图2是表示卷绕电极体200的图。图3表示图2中的Ⅲ-Ⅲ截面。
卷绕电极体200如图2所示,具有正极片220、负极片240和隔板262、264。正极片220、负极片240和隔板262、264分别为带状的片材。
<正极片220>
正极片220如图2所示,具有带状的正极集电体221(正极芯材)。正极集电体221可很好地使用适合于正极的金属箔。该正极集电体221可使用具有规定宽度的带状的铝箔。另外,正极片220具有未涂布部222和正极合剂层223。未涂布部222沿着正极集电体221的横向单侧的边缘部被设定。正极合剂层223,是涂布有含有正极活性物质的正极合剂224的层。正极合剂224,除了被设定在正极集电体221上的未涂布部222以外,被涂布到正极集电体221的两面。
<正极合剂224、正极活性物质>
在此,正极合剂224是将正极活性物质、导电材料和粘合剂等混合了的合剂。正极活性物质可以使用可作为锂离子二次电池的正极活性物质被使用的物质。如果列举正极活性物质的例子,则可以举出LiNiCoMnO2(锂镍钴锰复合氧化物)、LiNiO2(镍酸锂)、LiCoO2(钴酸锂)、LiMn2O4(锰酸锂)、LiFePO4(磷酸铁锂)等的锂过渡金属氧化物。在此,LiMn2O4具有例如尖晶石结构。另外,LiNiO2和LiCoO2具有层状的岩盐结构。另外,LiFePO4具有例如橄榄石结构。橄榄石结构的LiFePO4具有例如纳米等级的粒子。另外,橄榄石结构的LiFePO4还可以用碳膜被覆。
<导电材料>
正极合剂224除了正极活性物质以外,可根据需要含有导电材料、粘合剂(粘结剂)等的任意成分。作为导电材料,可例示例如碳粉末和碳纤维等的碳材料。可以单独地使用从这样的导电材料中选出的一种也可以并用两种以上。作为碳粉末,可以使用各种炭黑(例如,乙炔黑、油炉法炭黑、石墨化炭黑、炭黑、石墨、科琴炭黑)、石墨粉末等的碳粉末。
<粘合剂、增粘剂、溶剂>
另外,作为粘合剂,可以使用在使用的溶剂中溶解或分散可溶的聚合物。例如,在使用了水性溶剂的正极合剂组合物中,可以优选地采用羧甲基纤维素(CMC)、羟丙基甲基纤维素(HPMC)等的纤维素系聚合物(例如聚乙烯醇(PVA)和聚四氟乙烯(PTFE)等)、四氟乙烯-六氟丙烯共聚物(FEP)等的氟系树脂(例如醋酸乙烯基酯共聚物和苯乙烯丁二烯橡胶(SBR)等)、丙烯酸改性SBR树脂(SBR系乳胶)等的橡胶类;等的水溶性或水分散性聚合物。另外,在使用了非水溶剂的正极合剂组合物中,可以优选地采用聚偏二氟乙烯(PVDF)、聚偏二氯乙烯(PVDC)等的聚合物。再者,上述例示了的聚合物材料,除了作为粘合剂的功能以外,还可以出于发挥作为上述组合物的增粘剂等的添加剂的功能的目的被使用。作为溶剂,水性溶剂和非水溶剂的任一种都可以使用。作为非水溶剂的优选例,可列举N-甲基-2-吡咯烷酮(NMP)。
正极活性物质在正极合剂全体中占有的质量比例,优选大致为50质量%以上(典型的是50~95质量%),通常更优选大致为70~95质量%(例如75~90质量%)。另外,导电材料在正极合剂全体中占有的比例,例如可以设为大致2~20质量%,通常优选设为大致2~15质量%。在使用粘合剂的组成中,可以将粘合剂在正极合剂全体中占有的比例例如设为大致1~10质量%,通常优选设为大致2~5质量%。
<负极片240>
负极片240如图2所示,具有带状的负极集电体241(负极芯材)。负极集电体241可很好地使用适合于负极的金属箔。该实施方式中,负极集电体241可使用具有规定宽度的带状的铜箔。另外,负极片240具有未涂布部242和负极合剂层243。未涂布部242沿着负极集电体241的横向单侧的边缘部被设定。负极合剂层243,是涂布有含有负极活性物质的负极合剂244的层。负极合剂244,除了被设定在负极集电体241上的未涂布部242以外,被涂布到负极集电体241的两面。
<负极合剂244>
在此,负极合剂244是将负极活性物质、导电材料和粘合剂等混合了的合剂。负极活性物质可以使用可作为锂离子二次电池的负极活性物质被使用的物质。如果列举负极活性物质的例子,则可举出天然石墨、人工石墨、天然石墨和人工石墨的无定形碳等的碳系材料、锂过渡金属氧化物、锂过渡金属氮化物等。再者,负极活性物质,其本身具有导电性。因此,导电材料可根据需要被加入负极合剂244中。另外,该例中,如图3所示,在负极合剂层243的表面,进一步形成有耐热层245(HRL:heat-resistantlayer)。耐热层245主要由金属氧化物(例如氧化铝)形成。再者,该锂离子二次电池100中,在负极合剂层243的表面形成有耐热层245。省略图示,但例如也可以在隔板262、264的表面形成耐热层。
<负极活性物质>
另外,作为负极活性物质,可以不特别限定地使用一直以来被用于锂离子二次电池的材料的一种或两种以上。例如,可列举至少一部分含有石墨结构(层状结构)的粒子状的碳材料(碳粒子)。更具体地讲,可以使用所谓的石墨质(graphite)、难石墨化碳质(硬碳)、易石墨化碳质(软碳)、将它们组合了的碳材料。例如,可以使用天然石墨那样的石墨粒子。另外,负极合剂为了维持负极活性物质的分散,在负极合剂中混入了适量的增粘剂。负极合剂能够使用与正极合剂所使用的同样的增粘剂、粘合剂和导电材料。
虽然并不特别限定,但负极活性物质在负极合剂全体中占有的比例可以设为大致80质量%以上(例如80~99质量%)。另外,负极活性物质在负极合剂全体中占有的比例,优选大致为90质量%以上(例如90~99质量%,更优选为95~99质量%)。在使用粘合剂的组成中,可以将粘合剂在负极合剂全体中占有的比例例如设为大致0.5~10质量%,通常优选设为大致1~5质量%。正极合剂层223和负极合剂层243通过分别在正极集电体221或负极集电体241上进行涂布并使其干燥,再进行轧制来形成。
<合剂的涂布>
涂布工序中,正极合剂224和负极合剂244被涂布到片状集电体上。涂布工序可以使用以往公知的适当的涂布装置,例如狭缝涂布机、模具涂布机、逗号涂布机、凹版涂布机等。该情况下,通过使用长带状的片状集电体,可以在集电体上连续涂布正极合剂224和负极合剂层244。
<干燥工序>
干燥工序中,使被涂布到片状集电体上的正极合剂和负极合剂干燥。此时,为了防止偏聚(migration),优选设定适当的干燥条件。该情况下,通过使用长带状的片状集电体,将集电体沿着在干燥炉内设置的行进路线通过,可以使被涂布到集电体上的正极合剂224和负极合剂244连续干燥。
<轧制工序>
另外,轧制工序中,通过将在干燥工序中干燥了的正极合剂层223和负极合剂层243在厚度方向上进行压制,可得到目标性状的片状正极(正极片)。作为进行上述压制的方法,可以适宜地采用以往公知的辊压法、平板压制法等。
<隔板262、264>
隔板262、264是隔离正极片220和负极片240的构件。在该例中,隔板262、264由具有多个微小孔的规定宽度的带状的片材构成。隔板262、264中有例如由多孔质聚烯烃系树脂构成的单层结构的隔板和叠层结构的隔板。在该例中,如图2和图3所示,负极合剂层243的宽度b1比正极合剂层223的宽度a1稍宽。并且隔板262、264的宽度c1、c2比负极合剂层243的宽度b1稍宽(c1、c2>b1>a1)。
<卷绕电极体200>
卷绕电极体200的正极片220和负极片240在使隔板262、264介于其间的状态下被重叠、并且卷绕。
该例中,正极片220、负极片240和隔板262、264如图2所示,将长度方向对齐,按正极片220、隔板262、负极片240、隔板264的顺序被重叠。此时,在正极合剂层223和负极合剂层243上重叠隔板262、264。另外,负极合剂层243的宽度比正极合剂层223稍宽,负极合剂层243以覆盖正极合剂层223的方式被重叠。由此,在充放电时,锂离子(Li)在正极合剂层223和负极合剂层243之间更切实地往来。
此外,正极片220的未涂布部222和负极片240的未涂布部242,以在隔板262、264的横向上向相互相对侧伸出的方式被重叠。被重叠的片材(例如正极片220),绕着在横向上设定的卷绕轴卷绕。
再者,该卷绕电极体200,一边将正极片220、负极片240和隔板262、264以规定的顺序重叠一边进行卷绕。在该工序中,将各片的位置用EPC(边缘位置控制,edge position control)那样的位置调整机构进行控制并将各片重叠。此时,是隔板262、264介于电极片间的状态,负极合剂层243以覆盖正极合剂层223的方式被重叠。
<电池壳体300>
另外,在该例中,电池壳体300如图1所示,是所谓的角型的电池壳体,具备容器主体320和盖体340。容器主体320是具有有底四边筒状,一侧面(上面)开口了的扁平的箱型容器。盖体340是被安装于该容器主体320的开口(上面的开口)来堵塞该开口的构件。
车载用的二次电池,为了提高燃油效率,希望使重量能效(每单位重量的电池的容量)提高。因此,构成电池壳体300的容器主体320和盖体340,优选地采用铝或铝合金等的轻金属(该例中为铝)。由此可以使重量能效提高。
该电池壳体300,作为收容卷绕电极体200的空间,具有扁平的矩形的内部空间。另外,如图1所示,该电池壳体300的扁平的内部空间,横宽比卷绕电极体200稍宽。该实施方式中,卷绕电极体200被收容到电池壳体300的内部空间中。卷绕电极体200如图1所示,以在与卷绕轴正交的一个方向上被扁平地变形的状态收容于电池壳体300中。
该实施方式中,电池壳体300具备有底四边筒状的容器主体320和堵塞容器主体320的开口的盖体340。在此,容器主体320,例如,可以通过深拉深成形或冲击成形(impact molding)来成形。再者,冲击成形,是冷态下的锻造的一种,也被称为冲击挤出加工和冲击压制。
另外,在电池壳体300的盖体340上安装有电极端子420、440。电极端子420、440贯通电池壳体300(盖体340)并向电池壳体300的外部伸出。另外,在盖体340上设置有安全阀360。
该例中,卷绕电极体200被安装到在电池壳体300(该例中为盖体340)上安装的电极端子420、440上。卷绕电极体200以在与卷绕轴正交的一个方向上被扁平地压弯的状态被收纳于电池壳体300中。另外,卷绕电极体200,在隔板262、264的横向上,正极片220的未涂布部222和负极片240的未涂布部242向相互相对侧伸出。其中,一个电极端子420被固定在正极集电体221的未涂布部222上,另一个电极端子440被固定在负极集电体241的未涂布部242上。
另外,该例中,如图1所示,盖体340的电极端子420、440,向卷绕电极体200的未涂布部222、未涂布部242的中间部分222a、242a延伸。该电极端子420、440的前端部,被焊接到未涂布部222、242的各自的中间部分。图4是表示卷绕电极体200的未涂布部222、242和电极端子420、440的焊接处的侧视图。
如图4所示,在隔板262、264的两侧,正极集电体221的未涂布部222、负极集电体241的未涂布部242呈螺旋状地露出。该实施方式中,将这些未涂布部222、242在其中间部分分别聚拢,在电极端子420、440的前端部进行焊接。此时,由于各自的材质的不同,电极端子420和正极集电体221的焊接使用例如超声波焊接。另外,电极端子440和负极集电体241的焊接使用例如电阻焊接。
这样,卷绕电极体200在被扁平地压弯了的状态下,被安装于固定在盖体340上的电极端子420、440上。该卷绕电极体200被收容到容器主体320的扁平的内部空间中。容器主体320收容了卷绕电极体200后,由盖体340堵塞。盖体340和容器主体320的接缝322(参照图1)通过例如激光焊接进行焊接而被密封。这样,该例中,卷绕电极体200通过被固定在盖体340(电池壳体300)上的电极端子420、440,在电池壳体300内被定位。
<电解液>
其后,从设置在盖体340上的注液孔向电池壳体300内注入电解液。电解液在该例中,使用向碳酸亚乙酯和碳酸二乙酯的混合溶剂(例如,体积比为1:1左右的混合溶剂)中以约1摩尔/升的浓度含有LiPF6的电解液。其后,对注液孔安装(例如焊接)金属制的密封帽来密封电池壳体300。再者,作为电解液,可以使用一直以来被用于锂离子二次电池的非水电解液。
<脱气路径>
另外,该例中,该电池壳体300的扁平的内部空间比扁平地变形了的卷绕电极体200稍宽。在卷绕电极体200的两侧,在卷绕电极体200和电池壳体300之间设置有间隙310、312。该间隙310、312成为脱气路径。
该结构的锂离子二次电池100,在发生了过充电的情况下温度变高。如果锂离子二次电池100的温度变高,则电解液被分解而产生气体。产生了的气体,在卷绕电极体200的两侧的卷绕电极体200与电池壳体300的间隙310、312和安全阀360通过,顺畅地向外部脱气。该锂离子二次电池100中,正极集电体221和负极集电体241通过贯穿了电池壳体300的电极端子420、440与外部的装置电连接。
<其他的电池形态>
再者,上述是表示锂离子二次电池的一例的电池形态。锂离子二次电池不限定于上述形态。另外,同样地在金属箔上涂布有电极合剂的电极片,可用于其他各种的电池形态。例如,作为其他的电池形态,已知圆筒型电池和层压型电池等。圆筒型电池是在圆筒型的电池壳体中收容了卷绕电极体的电池。另外,层压型电池是将正极片和负极片使隔板介于其间进行了层叠的电池。再者,上述对锂离子二次电池100进行了例示,但即使是锂离子二次电池以外的二次电池,也可采用同样的结构。
以下,对该实施方式中的正极合剂层223进行说明。
<正极合剂层223>
图5是锂离子二次电池100的正极片220的截面图。再者,图5中,合剂将正极合剂层223中的正极活性物质610和导电材料620放大地模式表示,使得正极合剂层223的结构变得明确。该实施方式中,正极片220如图5所示,正极合剂224被分别涂布到正极集电体221的两面。该正极合剂224的层(正极合剂层223)含有正极活性物质610、导电材料620和粘合剂630。该实施方式中,正极合剂层223还含有粘合剂630(粘结剂)。
如图5所示,正极合剂层223的截面样品,例如优选由截面SEM图像得到。在此,截面SEM图像是通过电子显微镜得到的截面相片。例如,通过CP处理(截面抛光处理,Cross Section Polisher处理)得到正极片220的任意截面。作为电子显微镜,例如,可以使用株式会社日立ハイテクノロジーズ(Hitachi High-Technologies Corporation)制的扫描型电子显微镜(FE-SEM)HITACHI S-4500。
<正极合剂层223的孔隙>
正极合剂层223是如上所述在集电体(金属箔)上涂布正极合剂并使其干燥,进行轧制而形成的。正极合剂层223,如图5所示通过粘合剂630的作用粘结各粒子。该正极合剂层223为正极活性物质610和导电材料620通过粘合剂630被接合了的状态,因此在各粒子间存在许多微小的空洞。另外,导电材料620比正极活性物质610(二次粒子)小,进入了正极活性物质610的多个间隙中。正极活性物质610和正极集电体221通过该导电材料620被电连接。另外,正极合剂层223中具有应称为空洞的微小的间隙。电解液(省略图示)浸入正极合剂层223的微小的间隙中。在此,将在正极合剂层223的内部形成了的间隙(空洞)适宜地称为「孔隙」。
<正极活性物质610>
图6模式地表示了正极活性物质610。该实施方式中,正极活性物质610如图6所示,具有二次粒子910、中空部920和贯通孔930。在此,二次粒子910是由多个锂过渡金属氧化物的一次粒子(省略图示)聚集而成的粒子。中空部920是在二次粒子910中形成了的内部孔隙。贯通孔930是连接二次粒子910的外部和中空部920,贯通了二次粒子910的孔。在此,称为中空结构的正极活性物质610的情况,意指具有该中空部920和贯通孔930的二次粒子910。该二次粒子的粒径约为3μm~12μm,更优选约为3μm~8μm。再者,在此,粒径采用中径(d50),该中径(d50)由通过基于光散射法的粒度分布测定器测定的粒度分布求得。
<导电材料620>
另外,导电材料620可以使用乙炔黑、油炉法炭黑、石墨化炭黑、炭黑、石墨、科琴炭黑)、石墨粉末等的碳粉末。该情况下,导电材料620可以按规定比例混合一种或多种的碳粉末。在此,导电材料620与正极活性物质610相比粒径较小。导电材料620的粒径,例如约为10μm~100μm。
以下,对于正极活性物质610更详细地进行说明。
该中空结构的正极活性物质610中,优选形成有在中空部920的内部可更切实地进入电解液的程度的贯通孔930。因此,贯通孔930的开口宽度k,优选例如平均为0.01μm以上。由此,通过电解液进入中空部920的内部而得到的效果,变得更切实地易于得到。在此,贯通孔930的开口宽度k,是指从活性物质粒子的外部贯通二次粒子至中空部920的路径中,贯通孔930最狭窄的部分的直径长度(贯通孔930的内径)。再者,在中空部920有多个贯通孔930的情况下,优选多个贯通孔930之中,以具有最大的开口宽度k的贯通孔进行评价。另外,贯通孔930的开口宽度k平均可以为2.0μm以下。
另外,贯通孔930的数量可以为,中空结构的正极活性物质610的每一粒子平均1~20个左右。根据该结构的正极活性物质610,可以使良好的电池性能更加稳定(例如,抑制充放电循环造成的劣化)地发挥。再者,中空结构的正极活性物质610的贯通孔930的数量,例如,优选对于任意选出的至少10个以上的活性物质粒子掌握每一粒子的贯通孔数,求得它们的算术平均值。
制造该中空结构的正极活性物质610的方法,例如,优选包括原料氢氧化物生成工序、混合工序、烧成工序。
在此,原料氢氧化物生成工序,是向过渡金属化合物的水性溶液中供给铵离子,使过渡金属氢氧化物的粒子从水性溶液中析出的工序。水性溶液优选含有构成锂过渡金属氧化物的过渡金属元素的至少一种。并且,原料氢氧化物生成工序,优选包括核生成阶段和粒子生长阶段。在此,核生成阶段是在pH值为12以上且铵离子浓度为25g/L以下使过渡金属氢氧化物从水性溶液中析出的阶段。粒子生长阶段是在pH值低于12且铵离子浓度为3g/L以上使核生成阶段中析出的过渡金属氢氧化物生长的阶段。
另外,混合工序是将原料氢氧化物生成工序中得到的过渡金属氢氧化物的粒子和锂化合物进行混合,调制未烧成的混合物的工序。
另外,烧成工序是对混合工序中得到的混合物进行烧成得到活性物质粒子的工序。
根据该制造方法,可以适当地制造如图6所示的开孔中空结构的正极活性物质610。
另外,该情况下,烧成工序,优选以最高烧成温度为800℃~1100℃的方式进行。由此,能够使上述一次粒子充分烧结,因此可以很好地制造具有所期望的平均硬度的活性物质粒子。该烧成工序,例如,优选进行以在中空部920和贯通孔930以外的部分,形成在一次粒子的晶界实质上不存在间隙的二次粒子。
另外,烧成工序可以包括:第一烧成阶段,该阶段在700℃~900℃的温度T1下对混合物进行烧成;和第二烧成阶段,该阶段在800℃~1100℃且比第一烧成阶段中的烧成温度T1高的温度T2下对经过该第一烧成阶段的产物进行烧成。
在此公开的活性物质粒子制造方法的优选一方式中,烧成工序包括:第一烧成阶段,该阶段在700℃~900℃的温度T1下对混合物进行烧成;和第二烧成阶段,该阶段在800℃~1100℃且比第一烧成阶段中的烧成温度T1高的温度T2下对经过该第一烧成阶段的产物进行烧成。通过以包括这些第一和第二烧成阶段的方式对上述混合物进行烧成,可以适当地制造在此公开的优选的具有开孔中空结构的活性物质粒子。
另外,该中空结构的正极活性物质610可以是含有镍作为构成元素的层状结构的锂过渡金属氧化物。另外,中空结构的正极活性物质610可以是含有镍、钴和锰作为构成元素的层状结构的锂过渡金属氧化物。
该锂离子二次电池100中,正极活性物质610的粒子孔隙率A1为2.0(%)≤A1≤70(%)。另外,正极活性物质610的DBP吸收量A2为23(mL/100g)≤A2。并且,正极活性物质610的振实密度A3为1.0(g/mL)≤A3≤1.9(g/mL)。以下,依次说明粒子孔隙率A1、DBP吸收量A2和振实密度A3。
<粒子孔隙率A1(粒子孔隙体积比率)>
在此,粒子孔隙率A1,表示中空部920相对于包含中空部920和贯通孔930的正极活性物质610的二次粒子910的表观体积的比例。粒子孔隙率A1,换言之,也可以称为「粒子孔隙体积比率」。在此「表观体积」是指包含孔隙的体积。
<粒子孔隙率A1的测定>
粒子孔隙率A1,例如,如下述式中所示的那样,是将中空部920的容积除以包含中空部920的二次粒子910的表观体积得到的值。
粒子孔隙率A1=(正极合剂层223中的粒子内孔隙B的总容积Vb)/(正极合剂层223中的正极活性物质610的表观体积Va1)
即,
A1=Vb/Va1。
该粒子孔隙率A1,可以基于如图12所示的正极合剂层223的截面SEM图像进行测定。该截面图像,例如,可以由正极合剂层223的截面SEM图像得到。根据截面SEM图像,基于色调和明暗的差异,对于截面拍摄的正极活性物质610,可以对正极活性物质610的截面、粒子内孔隙B和粒子外孔隙C进行区别。
粒子孔隙率A1如图5所示,是正极合剂层223中的粒子内孔隙B的总容积Vb、与正极合剂层223中的正极活性物质610的表观体积Va1之比(Vb/Va1)。该比(Vb/Va1)可以通过正极合剂层223的截面上粒子内孔隙B占有的面积Sb、与正极合剂层223中的正极活性物质610的表观截面积Sa1之比(Sb/Sa1)进行近似。该比(Sb/Sa1)可以通过截面SEM图像中与正极活性物质610的截面区别的部分的点(dot)数、和与粒子内孔隙B及正极活性物质610的截面区别的部分的点数之比进行近似。该情况下,可以通过增加截面样品的数量更加准确地进行近似。
<DBP吸收量A2>
接着,DBP吸收量A2,依据JIS K6217-4「橡胶用炭黑-基本特性-第4部:DBP吸收量的求法」求得。在此,作为试剂液体使用DBP(邻苯二甲酸二丁酯),利用恒速滴定管对检查对象粉末(正极活性物质610的二次粒子910的粉末)进行滴定,通过扭矩检测器测定粘度特性的变化。并且,将与产生的最大扭矩的70%的扭矩对应的、检查对象粉末的每单位重量的试剂液体的添加量作为DBP吸收量(mL/100g)。作为DBP吸收量A2的测定器,例如,优选使用株式会社あさひ総研的吸收量测定装置S410。
<振实密度A3>
接着,振实密度A3,是指通过振实(tapping)式的粉体减少度测定装置,在进行振实后测定的密度。该实施方式中,作为振实式的粉体减少度测定装置,使用了筒井理化学器械株式会社制的振实式的粉体减少度测定装置TPM-3。使用了作为试料的正极活性物质610的二次粒子910的粉末60g。并且,按照以下的步骤1~4进行了测定。
步骤1:使专用的量筒良好地干燥后,在该量筒中放入称量后的试料。
步骤2:将量筒安装到振实式的粉体减少度测定装置上。
步骤3:将振实下落距离调整为20mm。
步骤4:通过振实式的粉体减少度测定装置,进行了500次振实后,从量筒的刻度上读取试料的体积。
在此,振实密度A3,通过将步骤1中称量后的试料的重量(在此为60g)除以步骤4中读取了的试料的体积(mL)来求得。将求得振实密度A3的式子在下述表示。
振实密度A3(g/mL)=试料的重量(60g)/试料体积(mL)
本发明者准备了多个粒子孔隙率A1、DBP吸收量A2、振实密度A3不同的正极活性物质610的样品。并且,使用该正极活性物质610的各样品,制成评价试验用的电池800(参照图7),分别测定了低温反应电阻、输出特性、高速率循环特性、低速率循环特性。并且,调查了上述粒子孔隙率A1、DBP吸收量A2和振实密度A3对锂离子二次电池100的性能造成怎样的影响。
该评价试验中,作为正极活性物质610,使用了以Li1.15Ni0.33Co0.34Mn0.33O2表示的组成的正极活性物质610。但是,通过仔细研究正极活性物质610的生成处理,如图6所示,使正极活性物质610的二次粒子形成为开孔中空结构。
在此,改变正极活性物质,得到了多个评价试验用的锂离子二次电池的样品。并且,对于各样品,制成多个电池,用于各种试验。该评价试验结果示于表1。表1中,各样品1~18的正极活性物质和导电材料的DBP吸收量和质量比,如表1中所示。
Figure BDA00003047550700171
表1中,对于样品1~18,分别表示「粒子孔隙率A1」、「DBP吸收量A2」、「振实密度A3」、「粒径(平均粒径D50)」、「比表面积」、「低温反应电阻」、「输出特性」、「高速率循环特性」和「低速率循环特性」。其中,「粒子孔隙率A1」、「DBP吸收量A2」、「振实密度A3」、「粒径(平均粒径D50)」和「比表面积」,是对于正极活性物质的样品1~18测定的。在此,「粒子孔隙率A1」、「DBP吸收量A2」和「振实密度A3」的测定方法如上所述。以下,对「粒径(平均粒径D50)」和「比表面积」进行说明。
<粒径(平均粒径D50)>
在此,正极活性物质610的二次粒子910的粒径(平均粒径D50),可以采用由一般的激光衍射式粒度分布测定得到的测定值。粒径优选以平均粒径(D50)进行评价。在此,为了将正极活性物质610的二次粒子910的粒径的差异造成的对电池性能的影响抑制为较小,将各样品的平均粒径(D50)设为大致3μm~7μm。
<比表面积>
另外,比表面积是每单位重量的表面积。比表面积可以采用由一般的氮吸附法得到的测定值。如果比表面积变大,则正极活性物质610的每单位重量可与电解液接触的面积增加,因此可以期待使电池性能提高的效果。与此相对,例如,如果正极活性物质610的比表面积过于小,则有使反应电阻(特别是低温时的反应电阻)提高的效果变小的倾向。在此,为了将二次粒子910的比表面积的差异造成的对电池性能的影响抑制为较小,对于各样品,将比表面积设为一定的范围。
接着,表1中,「低温反应电阻」、「输出特性」、「高速率循环特性」和「低速率循环特性」,是分别使用样品1~18作为正极活性物质610制成的评价试验用的电池800的测定值。以下,对评价试验用的电池800进行说明,其后,对「多孔率」、「低温反应电阻」、「输出特性」、「高速率循环特性」和「低速率循环特性」的测定方法进行说明。
<评价试验用的电池>
图7模式地表示了评价试验用的电池800。在此制成的评价试验用的电池800如图7所示,是被称为所谓18650型电池的圆筒型的锂离子二次电池。在此,评价试验用的电池800的额定容量设为约220mAh。
该评价试验用的电池800如图7所示,将正极片810、负极片820和两枚隔板830、840进行叠层,将该叠层片进行卷绕,制作出隔板830、840介于正极片810和负极片820之间的卷绕电极体850。
在此,评价试验用的电池800的正极片810和负极片820的截面结构,形成为与上述的锂离子二次电池100的正极片220或负极片240(参照图1)大致同样的截面结构。另外,隔板830、840,使用了厚度为20μm的多孔质聚乙烯片。将该卷绕电极体850与非水电解液(省略图示)一起收容到外装壳体860中,构建了评价试验用的电池800(评价试验用的18650型锂离子电池)。
另外,对于正极片810,如图6所示,作为正极活性物质610,使用了上述的样品1~18。另外,该评价试验中,作为导电材料620,使用了乙炔黑(AB)。另外,该评价试验中,作为溶剂使用了N-甲基-2-吡咯烷酮(NMP)。另外,粘合剂630使用了聚偏二氟乙烯(PVDF)。
另外,外装壳体860如图6所示,为大致圆筒形状,在圆筒形状的两侧端部,设置有与正极片810和负极片820在内部连接了的电极端子870、880。另外,该评价试验用的电池800中,作为非水电解液,使用了在以3:3:4的体积比含有EC、DMC和EMC的混合溶剂中以1摩尔/升的浓度溶解了LiPF6的组成的非水电解液。
该评价试验中,除正极活性物质610以外的条件大致相同。另外,正极集电体,使用了厚度为15μm的铝箔。另外,正极合剂对正极集电体221的涂布量,设为大致15mg/cm2。另外,对于相同的样品,调整正极合剂的涂布工序、轧制工序,制成正极合剂层223的多孔率约为30%的、和多孔率约为45%的两种正极片810,准备了两种评价试验用的电池800。
<多孔率(Vbc/Va)>
在正极合剂层223的内部形成的孔隙(B、C)的容积Vbc与正极合剂层223的表观体积Va之比(Vbc/Va),表示正极合剂层223的内部的孔隙(B、C)的比例。上述比(Vbc/Va)越大,正极合剂层223中能够浸入电解液的孔隙(B、C)的容量越大。上述比(Vbc/Va),可以适当地称为「多孔率」或「合剂层内总孔隙率」。上述比(Vbc/Va)有多种求法。
<Va的测定方法>
正极合剂层的表观体积Va,例如,如图5所示,可以由正极片220的样品的俯视时的面积S、与正极合剂层223的厚度a(省略图示)之积来求得(Va=S×a)。
该实施方式中,在正极集电体221的两面形成有正极合剂层223。因此正极合剂层223的厚度a,可以作为两面的正极合剂层223的厚度b、c之和求得(a=b+c)。另外,作为其他的方法,该正极合剂层223的厚度a,可以作为正极片220的全体的厚度d与正极集电体221的厚度e之差(d-e)求得(a=d-e)。另外,正极片220的样品的俯视时的面积S,例如,可以通过将正极片220的样品切取为正方形或长方形来容易地求得。这样,通过求得正极片220的样品的俯视时的面积S和正极合剂层223的厚度a,可以求得正极合剂层223的表观体积Va。
<Vbc的测定方法>
在正极合剂层的内部形成的孔隙(B、C)的容积Vbc,例如,可以通过使用水银孔率计(mercury porosimeter)进行测定。再者,该测定方法中,「孔隙」意味着向外部开放的孔隙。正极合剂层223内的封闭空间,在该方法中不包含于「孔隙」中。水银孔率计,是采用水银压入法测定多孔体的细孔分布的装置。水银孔率计,例如可以使用株式会社岛津制作所制的オートポアⅢ9410。该情况下,例如优选在4psi~60000psi(50μm~0.003μm的细孔范围)下测定。
例如,从正极片220上切取多个样品。接着,对于该样品,使用水银孔率计测定正极合剂层223中含有的孔隙(B、C)的容积。水银孔率计,是采用水银压入法测定多孔体的细孔分布的装置。水银压入法,首先,将正极片220的样品抽真空,浸入水银中。该状态下,对水银施加的压力增加时,水银渐渐向小的空间浸入。并且,基于浸入到正极合剂层223中的水银的量和对水银施加的压力的关系,可以求得正极合剂层223中的孔隙(B、C)的容积。采用该水银压入法,能够求得正极合剂层223中含有的孔隙(B、C)的容积Vbc。
<多孔率(Vbc/Va)的计算>
上述的多孔率(Vbc/Va),可以由如上述那样求得的正极合剂层223中含有的孔隙(B、C)的容积Vbc与正极合剂层的表观体积Va(Va=S×a)之比求得。在此求得的比(Vbc/Va),表示正极合剂层223中可浸入电解液的孔隙存在的体积比例。
使用上述的中空结构的正极活性物质610的情况下,特别地,优选具有在正极合剂层223的内部可浸入电解液的孔隙。由此,可以使电解液浸入正极合剂层223中。根据本发明者的见解,在使用上述的中空结构的正极活性物质610的情况下,正极合剂层223的上述比(Vbc/Va)为0.25≤(Vbc/Va)。更优选大致为0.30≤(Vbc/Va)。另外,比(Vbc/Va)优选为(Vbc/Va)≤0.60,例如,(Vbc/Va)≤0.57是适当的。
再者,如果多孔率(Vbc/Va)过小,则浸入到正极合剂层223的内部的电解液的量变少,锂离子(Li)在正极活性物质610和电解液之间的往来变得困难。因此,成为电池电阻上升的要因。另外,如果正极合剂层223的多孔率变高,则难以产生所谓的液体枯竭,锂离子(Li离子)在正极活性物质610和电解液之间的往来变得容易。
这样,有正极合剂层223的多孔率X越大越好的倾向。因此,多孔率(Vbc/Va)的上限没有特别限制,为可实现的程度的适当大小即可。因此,多孔率(Vbc/Va),为可实现的程度的适当大小即可,例如可以为0.65左右。再者,多孔率(Vbc/Va)也可以比65(%)大,但如果多孔率(Vbc/Va)变得太高,则有正极活性物质610和导电材料620的电子通路不能构建从而集电性恶化之虞。例如,多孔率(Vbc/Va)可以为65%以下,例如60%左右,更优选为57(%)左右。由此可认为,正极活性物质610和导电材料620的电子通路更切实地被构建,因此能够得到性能更加稳定的二次电池。
上述的多孔率(Vbc/Va)有多种的求法。以下例示其他的测定方法。<多孔率(Vbc/Va)的其他的测定方法(1)>
上述的多孔率(Vbc/Va),基于在制成正极片810之前测定的各成分的测定值,以下述式求得。
多孔率(Vbc/Va)=
[(d-e)-Mv×{(α/X)+(β/Y)+(γ/Z)}]/(d-e);
即,
多孔率(Vbc/Va)=[(「正极片220的厚度d」-「正极集电体221的厚度e」)-「正极合剂层223的两面的涂布量Mv」×{(正极活性物质610的重量比α)/(正极活性物质610的真密度X)+(导电材料620的重量比β)/(导电材料620的真密度Y)+(粘合剂630的重量比γ)/(粘合剂630的真密度Z)}]/(「正极片220的厚度d」-「正极集电体221的厚度e」)。在此,「真密度」是将重量除以不含孔隙的实际体积的值。
另外,Mv×{(α/X)+(β/Y)+(γ/Z)},是在假定为正极合剂层223中没有孔隙的情况下,求出正极合剂层223的厚度的式子。
另外,「正极活性物质610的重量比α」、「正极活性物质610的真密度X」、「导电材料620的重量比β」、「导电材料620的真密度Y」、「粘合剂630的重量比γ」、「粘合剂630的真密度Z」,例如可以在形成正极合剂层223之前进行测定。「真密度」,可以通过密度测定装置,例如气体置换型比重瓶进行测定。
另外,「正极合剂层223的厚度(d-e)」和「正极合剂层223的涂布量Mv」,例如可以在正极合剂层223的形成后进行测定。另外,「正极合剂层223的厚度(d-e)」和「正极合剂层223的涂布量Mv」,也可以在正极合剂层223的涂布工序或轧制工序中作为目标值进行设定。
另外,该实施方式中,如图5所示,在正极集电体221的两面上形成有正极合剂层223。因此,优选考虑正极合剂层223形成于正极集电体221的两面算出多孔率。
<多孔率(Vbc/Va)的其他的测定方法(2)>
多孔率(Vbc/Va)还可以采用其他的方法进行近似。
多孔率(Vbc/Va),例如,在正极合剂层223的截面样品中,可以由正极合剂层223的每单位截面面积所含有的孔隙(B、C)占有的面积Sbc、与正极合剂层223的表观截面积Sa之比(Sbc/Sa)进行近似。该情况下,优选从正极合剂层223的多个截面样品求得比(Sbc/Sa)。正极合剂层223的截面样品越多,上述比(Sbc/Sa)越能够准确地近似多孔率(Vbc/Va)。该情况下,例如,优选沿正极片220的任意的一个方向,从与该方向正交的多个截面上取截面样品。
在此,例如,正极合剂层223的截面样品,优选由截面SEM图像得到。在此,截面SEM图像,是通过电子显微镜得到的截面相片。例如,通过CP处理(Cross Section Polisher处理)得到正极片220的任意截面。作为电子显微镜,例如,可以使用株式会社日立ハイテクノロジーズ(Hitachi High-Technologies Corporation)制的扫描型电子显微镜(FE-SEM)HITACHI S-4500。
根据该正极合剂层223的截面SEM图像,基于色调和明暗的差异,可以将正极合剂层223的构成物质的截面A和在正极合剂层223的内部形成的孔隙(B、C)进行特定。
<调整>
接着,对于上述那样构建了的评价试验用的电池,依次说明调整工序、额定容量的测定、SOC调整。
调整工序,通过以下的步骤1、2进行。
步骤1:以1C的恒流充电到达4.1V后,休止5分钟。
步骤2:步骤1之后,以恒压充电进行1.5小时充电,休止5分钟。
<额定容量的测定>
接着,额定容量,上述调整工序之后,对于评价试验用的电池,在25℃的温度下,3.0V~4.1V的电压范围,通过以下的步骤1~3进行测定。
步骤1:采用1C的恒流放电到达3.0V后,以恒压放电进行2小时放电,之后休止10秒钟。
步骤2:采用1C的恒流充电到达4.1V后,以恒压充电进行2.5小时充电,之后休止10秒钟。
步骤3:采用0.5C的恒流放电到达3.0V后,以恒压放电进行2小时放电,之后停止10秒钟。
额定容量:将步骤3中的从恒流放电到恒压放电的放电中的放电容量(CCCV放电容量)作为额定容量。
<SOC调整>
SOC调整,将上述制作出的评价试验用的电池在25℃的温度环境下通过以下的1、2的步骤进行调整。在此,SOC调整,优选在上述调整工序和额定容量的测定之后进行。
步骤1:从3V以1C的恒流进行充电,成为额定容量的大致60%的充电状态(SOC60%)。在此,「SOC」意指荷电状态(State of Charge)。
步骤2:步骤1之后,进行2.5小时恒压充电。
由此,评价试验用的电池800,可以调整为规定的充电状态。
接着,对于该评价试验用的电池800,依次说明「低温反应电阻」、「输出特性」、「高速率循环特性」和「低速率循环特性」的测定方法。再者,该实施方式中,对于相同的样品,对正极合剂的涂布工序、轧制工序进行调整,制成正极合剂层223的多孔率约为30%的、和多孔率约为45%的两种正极片810,准备了两种评价试验用的电池800。对于「低温反应电阻」、「高速率循环特性」和「低速率循环特性」,采用了正极合剂层223的多孔率约为30%的评价试验用的电池800的测定值。另外,对于「输出特性」,采用了正极合剂层223的多孔率约为30%的评价试验用的电池800的测定值、和正极合剂层223的多孔率约为45%的评价试验用的电池800的测定值。
<低温反应电阻>
反应电阻的测定,采用交流阻抗测定法。图8是表示反应电阻测定中的尼奎斯特图的等效电路拟合的图。该实施方式中,在25度、SOC60%(额定容量的大致60%的充电状态)的情况和-30度、SOC40%(额定容量的大致40%的充电状态)的情况两种测定条件下进行了测定。测定是在10-3~104Hz的频率范围进行了复阻抗测定。并且,如图8所示,通过尼奎斯特图的等效电路拟合,算出直流电阻(Rsol)和反应电阻(Rct)。在此,反应电阻(Rct)可以用下述式求得。
Rct=(Rct+Rsol)-Rsol
在此,将在-30度、SOC40%(额定容量的大致40%的充电状态)下测定出的反应电阻作为「低温反应电阻」。
<输出特性>
输出特性,通过以下的步骤求得。再者,该实施方式中,测定的温度环境设定为25℃。
步骤1:作为SOC调整,采用1C恒流充电成为SOC60%,在该SOC60%下进行2.5小时恒压充电,使其休止10秒钟。
步骤2:作为恒功率放电,从上述步骤1带来的SOC60%的状态开始,以恒功率进行放电。并且,测定直到2.5V的秒数。
步骤3:将步骤2中的恒功率的条件在5~60W的范围改变,重复步骤1、步骤2。
步骤4:将在各W条件下测定出的直到2.5V的秒数取为横轴,将此时的W取为纵轴,从近似曲线算出10秒时的W。
在此,将步骤4中求得的W作为输出特性。
<高速率放电特性评价>
「高速率放电特性评价」,对于不同的评价试验用的电池800,通过上述SOC调整,调整为SOC60%的充电状态之后,将由以下的(Ⅰ)~(Ⅴ)构成的充放电循环反复2500次进行高速率循环试验。其间,每100次循环,进行将SOC调整为60%的操作。图9表示该特性评价试验中的充放电循环。
(Ⅰ).以20C(在此为4.4A)的恒流进行10秒钟放电。
(Ⅱ).休止5秒钟。
(Ⅲ).以1C的恒流进行200秒钟充电。
(Ⅳ).休止145秒钟。
(Ⅴ).每一循环对(Ⅰ)的放电中的电阻的上升率进行测定。
(但是,由(Ⅰ)~(Ⅴ)构成的充放电循环每反复100次,进行上述SOC调整。)
表1的「高速率放电特性评价」,表示第2500次循环中的(Ⅰ)的放电的电阻的上升率。
<低速率循环特性>
「低速率循环特性」,对于不同的评价试验用的电池800,在25℃下实施交流阻抗测定法,算出直流电阻(Rsol)和反应电阻(Rct)。在此,交流阻抗测定法,遵循「低温反应电阻」中的方法。之后,在温度60℃、电压范围3.0V~4.1V下,将由以下的(Ⅰ)、(Ⅱ)构成的充放电循环反复进行1000次。
<低速率循环特性中的充放电循环>
(Ⅰ)采用2C恒压放电使其达到3V。
(Ⅱ)采用2C恒压充电使其达到4.1V。
<直流电阻(Rsol)和反应电阻(Rct)的增加率>
之后,将评价试验用的电池800在25℃下实施交流阻抗测定法,算出直流电阻(Rsol)和反应电阻(Rct)。并且,对于直流电阻(Rsol)和反应电阻(Rct),分别将1000次循环后算出的电阻值除以初始电阻(1000次循环前算出的直流电阻(Rsol)和反应电阻(Rct)),求得各自的增加率。增加率=1000次循环后的电阻值/1000次循环前的电阻值
基于这样的试验,可得到以下的见解。即,起动时和加速时,特别是在作为需要高输出功率的车辆搭载用电源的锂离子二次电池中,仅仅评价DBP吸收量(mL/100g),有时得不到必要的性能。例如,专利文献1中,正极活性物质610的优选DBP吸收量(mL/100g)为20~40,此时如样品13~18所示,见到了低温反应电阻、高速率循环特性和低速率循环特性变大的情况。
但是,例如,如图6所示,使用由多个锂过渡金属氧化物的一次粒子900聚集而成的中空结构的二次粒子910构成,并且具有从外部贯通至中空部920的贯通孔930的正极活性物质610的情况下,与上述倾向不同。即,使用了该正极活性物质610的情况下,通过除了DBP吸收量(mL/100g)以外,还考虑粒子孔隙率A1和振实密度A3,可得到低温反应电阻、高速率循环特性、低速率循环特性合适的锂离子二次电池100。
该情况下,正极活性物质的粒子孔隙率A1优选为2.0(%)≤A1≤70(%)。另外,正极活性物质的DBP吸收量A2优选为23(mL/100g)≤A2。并且,正极活性物质的振实密度A3优选为1.0(g/mL)≤A3≤1.9(g/mL)。
在此,粒子孔隙率A1,规定在正极活性物质610的二次粒子910中孔隙B形成为何种程度。在粒子孔隙率A1为2.0(%)≤A1≤70(%)的情况下,可以认为电解液可浸入的孔隙适度地形成于正极活性物质610中。如果电解液可浸入的孔隙适度地形成于正极活性物质610中,则由于电解液浸入到二次粒子910内部,正极活性物质610的一次粒子900和电解液的接触面积增加,锂离子(Li)的往来变得容易。与此相对,如果粒子孔隙率A1过小,则电解液变得难以浸入二次粒子910内部,得不到在电解液浸入了二次粒子910内部的情况下可得到的所需要的效果。
例如,正极活性物质610的粒子孔隙率A1可以为2.4(%)≤A1。由此,由于电解液变得易于浸入正极活性物质610中,可以更加切实地得到对正极活性物质必要的性能。
另外,振实密度A3,可以评价通过正极活性物质610的振实成为何种程度的体积(松紧度)。该情况下,正极活性物质610,例如,与如图10所示的没有中空部(孔隙)的正极活性物质610A相比,可以认为如图11所示的具有中空部920和贯通孔930的正极活性物质610在振实后体积增大(振实密度A3变小)。该情况下,振实后体积增大(振实密度A3小)的正极活性物质610,中空部920有效地存在,正极活性物质610和电解液的接触面积变大。由此,导电材料620变密,正极活性物质610和导电材料620的电子通路更切实地被构建。因此,认为可得到性能更加稳定的二次电池。图12是正极合剂层223的截面SEM图像的一例。例如,如图12中的用EL表示的部分所示,导电材料620密集地聚集在正极活性物质610的粒子间。
如以上那样,使用由多个锂过渡金属氧化物的一次粒子聚集而成的中空结构的二次粒子910构成,并且具有从外部贯通至中空部920的贯通孔930的正极活性物质610。并且,将正极活性物质的粒子孔隙率A1设定为2.0(%)≤A1≤70(%)。另外,将正极活性物质的DBP吸收量A2设定为23(mL/100g)≤A2。并且,将正极活性物质的振实密度A3设定为1.0(g/mL)≤A3≤1.9(g/mL)。由此,可得到低温反应电阻、高速率循环特性、低速率循环特性好的锂离子二次电池100。
再者,如果正极活性物质610的粒子孔隙率A1变高,则正极活性物质610的中空部920变大,电解液浸入中空部920中,因此变得难以产生液体枯竭。另外,在正极活性物质610的内部,锂离子(Li离子)在浸入了中空部的电解液和正极活性物质610之间往来。因此,由于中空部附近的正极活性物质610的一次粒子900也被有效利用,二次电池的输出功率提高。
该情况下,正极活性物质的粒子孔隙率A1可以为2.4(%)≤A1,进一步优选的是正极活性物质的粒子孔隙率A1可以为25(%)≤A1。另外,正极活性物质的粒子孔隙率A1的上限没有特别限制,但例如可以为A1≤70(%)、例如A1≤66(%)左右。
另外,如果正极活性物质的DBP吸收量A2变大,则电解液变得易于浸入正极活性物质610中,难以产生液体枯竭。因此,正极活性物质610的DBP吸收量A2,例如可以为30(mL/100g)≤A2、进一步可以为32(mL/100g)≤A2。另外,DBP吸收量A2的上限没有特别限制,但例如优选DBP吸收量A2为A2≤54(mL/100g)。
另外,正极活性物质的振实密度A3越小,正极活性物质610的体积越大,并且体积密度(表观密度、视密度)越低。该情况下,轧制后的正极合剂层223的密度也可变低。另外,该情况下,认为由于正极活性物质610的体积大,与其为反比例地导电材料620的空间变小。因此,认为在形成正极合剂层223时的轧制工序中,正极活性物质610的粒子外孔隙C变小。因此,存在于正极活性物质610间的导电材料620变密,正极活性物质610和导电材料620的电子通路更切实地被构建。因此,认为可得到性能更加稳定的二次电池。该振实密度A3,例如可以为A3≤1.7(g/mL)左右。
这样,通过具备上述的粒子孔隙率A1、DBP吸收量A2和振实密度A3,能够更加切实地得到内阻低(换言之为输出特性良好)、且即使进行充放电循环(特别是包括高速率下的放电的充放电循环)电阻的上升也少的锂二次电池。
另外,正极活性物质610的二次粒子910的以D50定义的粒径D可以为3(μm)≤D≤7(μm)。在此,粒径D不考虑正极活性物质610的二次粒子910的中空部920,由二次粒子910的外形来规定。另外,如果粒径D为3(μm)≤D≤7(μm),则正极活性物质610具有规定以上的大小,在其内部可以形成规定以上的大小的孔隙。
另外,正极活性物质610的二次粒子910的比表面积E可以为0.8(m2/g)≤E≤1.5(m2/g)。根据满足该比表面积的条件的中空结构的正极活性物质610,被用于锂离子二次电池100的正极,可以稳定发挥更高的性能。例如,可构建内阻低(换言之为输出特性良好)、且即使进行充放电循环(特别是包括高速率下的放电的充放电循环)电阻的上升也少的锂二次电池。
另外,正极合剂层,可以将正极合剂涂布到集电体上并使其干燥后,被轧制。该情况下,正极活性物质610的振实密度A3为1.0(g/mL)≤A3≤1.9(g/mL),因此正极合剂层即使在将正极合剂涂布到集电体上并使其干燥后,被轧制的情况下,也与正极活性物质的真密度相比体积较大。另外,正极活性物质610的粒子孔隙率A1为2.0(%)≤A1≤70(%),且DBP吸收量A2为23(mL/100g)≤A2,因此正极合剂层中更切实地形成有可浸入电解液的间隙。另外,正极活性物质610的粒子孔隙率A1为2.0(%)≤A1≤70(%),因此浸入正极合剂层的电解液和正极活性物质的接触面积也大。此外,正极活性物质的DBP吸收量A2为23(mL/100g)≤A2。因此,进入了正极合剂层的电解液易于被正极活性物质吸收。因而,正极合剂层中的锂离子(Li离子)的浓度不匀变得难以产生。由此,可构建内阻低(换言之为输出特性良好)、且即使进行充放电循环(特别是包括高速率下的放电的充放电循环)电阻的上升也少的锂二次电池。
<正极活性物质>
根据上述的正极活性物质610,可构建内阻低(换言之为输出特性良好)、且即使进行充放电循环(特别是包括高速率下的放电的充放电循环)电阻的上升也少的锂二次电池。因此,作为可使高速率下的充放电循环特性提高的正极活性物质的优选一方式,优选:正极活性物质由多个锂过渡金属氧化物的一次粒子聚集而成的中空结构的二次粒子构成,还具有从外部贯通至二次粒子的中空部的贯通孔。并且,正极活性物质610,优选:粒子孔隙率A1为2.0(%)≤A1≤70(%);DBP吸收量A2为23(mL/100g)≤A2;并且振实密度A3为1.0(g/mL)≤A3≤1.9(g/mL)。
再者,更优选为,正极活性物质的粒子孔隙率A1为25(%)≤A1≤66(%)。另外,正极活性物质的DBP吸收量A2优选为30(mL/100g)≤A2。并且,正极活性物质的振实密度A3优选为1.0(g/mL)≤A3≤1.7(g/mL)。由此,可构建内阻低(换言之为输出特性良好)、且即使进行充放电循环(特别是包括高速率下的放电的充放电循环)电阻的上升也少的锂二次电池。
如以上那样,具备在此公开的活性物质粒子的锂离子二次电池100,可成为输出特性及其耐久性优异的电池。因此,如图13所示,作为车辆1中所搭载的锂离子二次电池是合适的。该情况下,例如,可在将多个锂离子二次电池连接组合而成的电池组1000的形态下,作为汽车等的车辆的电动机(motor)用的电源被很好地利用。
以上,对本发明的一实施方式涉及的锂离子二次电池进行了例示,对本发明的实施方式进行了各种说明,但本发明不限定于上述的任一实施方式。
附图标记说明
100  锂离子二次电池(二次电池)
200  卷绕电极体
220  正极片
221  正极集电体
222  未涂布部
222a 中间部分
223  正极合剂层
224  正极合剂
240  负极片
241  负极集电体
242  未涂布部
243  负极合剂层
244  负极合剂
245  耐热层
262  隔板
264  隔板
300  电池壳体
310、312  间隙
320  容器主体
322  盖体和容器主体的接缝
340  盖体
360  安全阀
420  电极端子(正极)
440  电极端子(负极)
610  正极活性物质
620  导电材料
630  粘合剂
800  评价试验用的电池
810  正极片
820  负极片
830、840  隔板
850  卷绕电极体
860  外装壳体
870  电极端子
900  一次粒子
910  二次粒子
920  中空部
930  贯通孔
1000 车辆驱动用电池

Claims (13)

1.一种二次电池,具备:
集电体;和
被涂布到所述集电体上的正极合剂层,
所述正极合剂层含有正极活性物质、导电材料和粘合剂,
所述正极活性物质,由中空结构的二次粒子构成,并且,具有从外部贯通至中空部的贯通孔,所述二次粒子由多个锂过渡金属氧化物的一次粒子聚集而成,
所述正极活性物质的粒子孔隙率A1为2.0%≤A1≤70%,
所述正极活性物质的DBP吸收量A2为23mL/100g≤A2,并且,
所述正极活性物质的振实密度A3为1.0g/mL≤A3≤1.9g/mL。
2.根据权利要求1所述的二次电池,所述正极活性物质的粒子孔隙率A1为2.4%≤A1。
3.根据权利要求1或2所述的二次电池,所述正极活性物质的粒子孔隙率A1为25%≤A1。
4.根据权利要求1~3的任一项所述的二次电池,所述正极活性物质的粒子孔隙率A1为A1≤66%。
5.根据权利要求1~4的任一项所述的二次电池,所述正极活性物质的DBP吸收量A2为32mL/100g≤A2。
6.根据权利要求1~5的任一项所述的二次电池,所述正极活性物质的DBP吸收量A2为A2≤54mL/100g。
7.根据权利要求1~6的任一项所述的二次电池,所述正极活性物质的二次粒子的以D50定义的粒径D为3μm≤D≤7μm。
8.根据权利要求1~7的任一项所述的二次电池,所述正极活性物质的二次粒子的比表面积E为0.8m2/g≤E≤1.5m2/g。
9.根据权利要求1~8的任一项所述的二次电池,所述贯通孔的开口宽度平均为0.01μm以上。
10.根据权利要求1~9的任一项所述的二次电池,所述贯通孔的开口宽度平均为2.0μm以下。
11.根据权利要求1~10的任一项所述的二次电池,所述正极合剂层在所述集电体上涂布所述正极合剂并使其干燥后,被轧制。
12.一种车辆驱动用电池,由权利要求1~11的任一项所述的二次电池构成。
13.一种正极活性物质,具有:
由多个锂过渡金属氧化物的一次粒子聚集而成的中空结构的二次粒子;和
从外部贯通至所述二次粒子的中空部的贯通孔,
粒子孔隙率A1为2.0%≤A1≤70%;
DBP吸收量A2为23mL/100g≤A2≤54mL/100g;并且
振实密度A3为1.0g/mL≤A3≤1.9g/mL。
CN201080069612.6A 2010-10-15 2010-10-15 二次电池 Active CN103155238B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068212 WO2012049779A1 (ja) 2010-10-15 2010-10-15 二次電池

Publications (2)

Publication Number Publication Date
CN103155238A true CN103155238A (zh) 2013-06-12
CN103155238B CN103155238B (zh) 2015-07-15

Family

ID=45938026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080069612.6A Active CN103155238B (zh) 2010-10-15 2010-10-15 二次电池

Country Status (5)

Country Link
US (1) US9553310B2 (zh)
JP (1) JP5737596B2 (zh)
KR (1) KR101500250B1 (zh)
CN (1) CN103155238B (zh)
WO (1) WO2012049779A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579615A (zh) * 2013-08-19 2014-02-12 惠州亿纬锂能股份有限公司 一种锂电池正极材料及使用该正极材料的锂电池
CN104993097A (zh) * 2015-05-26 2015-10-21 广东烛光新能源科技有限公司 一种负极片、含有该负极片的电化学储能器件及其制备方法
CN106450425A (zh) * 2015-08-06 2017-02-22 丰田自动车株式会社 非水电解液二次电池
CN108028361A (zh) * 2015-09-30 2018-05-11 Nec能源元器件株式会社 用于锂离子二次电池的正极以及锂离子二次电池
CN108370036A (zh) * 2015-12-15 2018-08-03 株式会社杰士汤浅国际 锂二次电池用正极活性物质、正极活性物质的前体的制造方法、正极活性物质的制造方法、锂二次电池用正极和锂二次电池
CN109314224A (zh) * 2016-09-29 2019-02-05 松下电器产业株式会社 非水电解质二次电池用正极、及非水电解质二次电池
CN113066956A (zh) * 2021-03-17 2021-07-02 宁德新能源科技有限公司 电化学装置及电子装置
CN115004397A (zh) * 2020-01-31 2022-09-02 京瓷株式会社 二次电池用电极以及二次电池

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494506B1 (ko) * 2011-05-06 2015-02-17 도요타 지도샤(주) 리튬 이온 이차 전지
WO2013057826A1 (ja) 2011-10-20 2013-04-25 トヨタ自動車株式会社 非水電解液二次電池およびその利用
JP5630669B2 (ja) * 2012-06-29 2014-11-26 トヨタ自動車株式会社 リチウム二次電池
JP5626602B2 (ja) 2012-06-29 2014-11-19 トヨタ自動車株式会社 非水電解質二次電池
JP5664930B2 (ja) * 2012-06-29 2015-02-04 トヨタ自動車株式会社 非水電解質二次電池
JP5664932B2 (ja) * 2012-10-17 2015-02-04 トヨタ自動車株式会社 二次電池
JP6361955B2 (ja) * 2013-01-11 2018-07-25 株式会社Gsユアサ 蓄電素子及びその製造方法
JP6369739B2 (ja) * 2013-01-11 2018-08-08 株式会社Gsユアサ 蓄電素子及びその製造方法
JP6017978B2 (ja) * 2013-01-24 2016-11-02 トヨタ自動車株式会社 正極活物質及び該活物質を用いたリチウム二次電池
JP6229709B2 (ja) 2013-02-28 2017-11-15 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
KR101635336B1 (ko) 2013-03-15 2016-06-30 닛산 지도우샤 가부시키가이샤 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
JP6249228B2 (ja) * 2014-03-28 2017-12-20 トヨタ自動車株式会社 非水電解液二次電池
JP6191876B2 (ja) * 2014-06-10 2017-09-06 トヨタ自動車株式会社 電池
JP2016054101A (ja) * 2014-09-04 2016-04-14 株式会社日立製作所 リチウムイオン二次電池
JP2016062832A (ja) * 2014-09-19 2016-04-25 トヨタ自動車株式会社 二次電池の製造方法
JP6338115B2 (ja) * 2015-11-04 2018-06-06 トヨタ自動車株式会社 非水電解液二次電池
WO2017114684A1 (en) * 2015-12-30 2017-07-06 Robert Bosch Gmbh Metal oxide cathode
KR101937896B1 (ko) * 2016-03-04 2019-01-14 주식회사 엘지화학 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
JP6381606B2 (ja) * 2016-10-31 2018-08-29 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6770716B2 (ja) * 2017-01-27 2020-10-21 株式会社Gsユアサ リチウムイオン二次電池
CN109428076B (zh) * 2017-09-04 2023-04-11 三星电子株式会社 正极活性材料前体、正极活性材料、制备正极活性材料的方法、正极和锂电池
JP6495997B1 (ja) * 2017-11-20 2019-04-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044722A (ja) * 2003-07-25 2005-02-17 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質および非水電解液二次電池
US20050221182A1 (en) * 2004-03-30 2005-10-06 Matsushita Electric Industrial Co., Ltd. Positive electrode active material, non-aqueous electrolyte secondary battery containing the same and method for evaluating positive electrode active material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3977354B2 (ja) * 1995-03-17 2007-09-19 キヤノン株式会社 正極活物質の製造方法、負極活物質の製造方法及びリチウムを利用する二次電池の製造方法
JP3581474B2 (ja) * 1995-03-17 2004-10-27 キヤノン株式会社 リチウムを利用する二次電池
EP0827223B1 (en) 1996-08-29 1999-11-03 Murata Manufacturing Co., Ltd. Lithium secondary battery
JP3296204B2 (ja) * 1996-08-29 2002-06-24 株式会社村田製作所 リチウム二次電池
JP3296203B2 (ja) * 1996-08-29 2002-06-24 株式会社村田製作所 リチウム二次電池
JP3110728B1 (ja) * 1999-05-06 2000-11-20 同和鉱業株式会社 非水系二次電池用正極活物質および正極
JP2000340226A (ja) * 1999-05-26 2000-12-08 Kawasaki Steel Corp リチウムマンガン複合酸化物粒子およびその製造方法
JP4768901B2 (ja) * 1999-06-03 2011-09-07 チタン工業株式会社 リチウムチタン複合酸化物及びその製造方法、並びにその用途
EP1184918B1 (en) * 2000-08-28 2009-10-14 Nissan Motor Co., Ltd. Rechargeable lithium ion battery
JP4096754B2 (ja) * 2003-02-18 2008-06-04 日亜化学工業株式会社 非水電解液二次電池用正極活物質
US7682741B2 (en) 2005-06-29 2010-03-23 Panasonic Corporation Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
JP5098192B2 (ja) * 2005-06-29 2012-12-12 パナソニック株式会社 リチウム二次電池用複合粒子とその製造方法、それを用いたリチウム二次電池
JP5371024B2 (ja) 2007-11-28 2013-12-18 日産自動車株式会社 二次電池用正極およびこれを用いた非水電解液二次電池
JP5175826B2 (ja) * 2009-12-02 2013-04-03 トヨタ自動車株式会社 活物質粒子およびその利用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044722A (ja) * 2003-07-25 2005-02-17 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質および非水電解液二次電池
US20050221182A1 (en) * 2004-03-30 2005-10-06 Matsushita Electric Industrial Co., Ltd. Positive electrode active material, non-aqueous electrolyte secondary battery containing the same and method for evaluating positive electrode active material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579615A (zh) * 2013-08-19 2014-02-12 惠州亿纬锂能股份有限公司 一种锂电池正极材料及使用该正极材料的锂电池
CN104993097A (zh) * 2015-05-26 2015-10-21 广东烛光新能源科技有限公司 一种负极片、含有该负极片的电化学储能器件及其制备方法
CN106450425A (zh) * 2015-08-06 2017-02-22 丰田自动车株式会社 非水电解液二次电池
CN106450425B (zh) * 2015-08-06 2019-06-21 丰田自动车株式会社 非水电解液二次电池
CN108028361A (zh) * 2015-09-30 2018-05-11 Nec能源元器件株式会社 用于锂离子二次电池的正极以及锂离子二次电池
CN108028361B (zh) * 2015-09-30 2021-05-14 远景Aesc能源元器件有限公司 用于锂离子二次电池的正极以及锂离子二次电池
CN108370036A (zh) * 2015-12-15 2018-08-03 株式会社杰士汤浅国际 锂二次电池用正极活性物质、正极活性物质的前体的制造方法、正极活性物质的制造方法、锂二次电池用正极和锂二次电池
CN109314224A (zh) * 2016-09-29 2019-02-05 松下电器产业株式会社 非水电解质二次电池用正极、及非水电解质二次电池
US11043659B2 (en) 2016-09-29 2021-06-22 Panasonic Corporation Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN115004397A (zh) * 2020-01-31 2022-09-02 京瓷株式会社 二次电池用电极以及二次电池
CN113066956A (zh) * 2021-03-17 2021-07-02 宁德新能源科技有限公司 电化学装置及电子装置
CN113066956B (zh) * 2021-03-17 2022-06-10 宁德新能源科技有限公司 电化学装置及电子装置

Also Published As

Publication number Publication date
US9553310B2 (en) 2017-01-24
CN103155238B (zh) 2015-07-15
JPWO2012049779A1 (ja) 2014-02-24
KR20130070650A (ko) 2013-06-27
JP5737596B2 (ja) 2015-06-17
KR101500250B1 (ko) 2015-03-06
US20130209888A1 (en) 2013-08-15
WO2012049779A1 (ja) 2012-04-19

Similar Documents

Publication Publication Date Title
CN103155238B (zh) 二次电池
CN103329314B (zh) 二次电池
CN103155239B (zh) 二次电池
US9184442B2 (en) Secondary battery
US9997743B2 (en) Nonaqueous electrolyte secondary battery
US9553299B2 (en) Lithium-ion secondary battery
CN103597638B (zh) 锂离子二次电池
CN103155229B (zh) 二次电池
US9219278B2 (en) Non-aqueous electrolyte secondary battery and use thereof
US20140170501A1 (en) Lithium-ion secondary battery and method of manufacturing the same
US9337490B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant