WO2013057826A1 - 非水電解液二次電池およびその利用 - Google Patents

非水電解液二次電池およびその利用 Download PDF

Info

Publication number
WO2013057826A1
WO2013057826A1 PCT/JP2011/074217 JP2011074217W WO2013057826A1 WO 2013057826 A1 WO2013057826 A1 WO 2013057826A1 JP 2011074217 W JP2011074217 W JP 2011074217W WO 2013057826 A1 WO2013057826 A1 WO 2013057826A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
positive electrode
negative electrode
secondary battery
Prior art date
Application number
PCT/JP2011/074217
Other languages
English (en)
French (fr)
Inventor
浩二 高畑
章浩 落合
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180074287.7A priority Critical patent/CN103891030B/zh
Priority to KR1020147013062A priority patent/KR101579700B1/ko
Priority to US14/352,849 priority patent/US9219278B2/en
Priority to PCT/JP2011/074217 priority patent/WO2013057826A1/ja
Priority to JP2013539480A priority patent/JP5818115B2/ja
Publication of WO2013057826A1 publication Critical patent/WO2013057826A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery that is lightweight and has a high energy density is expected to be preferably used as a high-output power source for mounting on a vehicle.
  • a lithium ion secondary battery which is a typical example of such a non-aqueous electrolyte secondary battery, includes an electrode active material (a positive electrode active material and a negative electrode active material) capable of reversibly occluding and releasing chemical species (lithium ions) serving as charge carriers.
  • Patent Documents 1 to 4 are listed as conventional techniques disclosing the oil absorption amount of the positive electrode active material or the negative electrode active material.
  • Non-aqueous electrolyte secondary battery used as a power source for a vehicle for example, a lithium-ion secondary battery as a power source and a hybrid vehicle that uses another power source having a different operating principle such as an internal combustion engine
  • Lithium ion secondary battery is a typical example of a non-aqueous electrolyte secondary battery in which such a usage mode is assumed.
  • the conventional general non-aqueous electrolyte secondary battery exhibits relatively high durability for low-rate charge / discharge cycles, but for high-rate discharge / charge cycles. It has been known that performance is likely to deteriorate. One of the causes is an increase in internal resistance due to repeated high-rate charge / discharge.
  • the present invention has been created to solve the above-described conventional problems, and an object thereof is to provide a non-aqueous electrolyte secondary battery in which an increase in resistance due to repeated charge and discharge is suppressed. . Another object is to provide a vehicle including a non-aqueous electrolyte secondary battery having such performance.
  • a positive electrode and a negative electrode are provided, the positive electrode has a positive electrode active material layer containing a positive electrode active material as a main component, and the negative electrode contains a negative electrode active material as a main component.
  • a nonaqueous electrolyte secondary battery is provided, wherein / A is 1.27 to 1.79.
  • the inventors of the present invention have been diligently investigating the cause of the increase in resistance in the high-rate discharge cycle.
  • the high-rate discharge is repeated, the non-aqueous electrolyte having a high supporting salt concentration hardly enters the positive and negative electrodes, As a result of the relative decrease in the supported salt concentration of the nonaqueous electrolyte in the positive and negative electrodes, uneven support salt concentration occurs inside and outside the positive and negative electrodes, which increases the resistance of the nonaqueous electrolyte secondary battery. I guessed that there was a possibility.
  • the positive electrode active material and the affinity between the negative electrode active material and the non-aqueous electrolyte (for example, the positive and negative electrodes) It has been found that when the non-aqueous electrolyte easily permeates into the active material layer satisfies a specific relationship, an increase in resistance due to repeated high-rate discharge can be suppressed, and the present invention has been completed.
  • oil absorption dibutyl phthalate (DBP) oil absorption and linseed oil absorption
  • DBP dibutyl phthalate
  • the resulting non-aqueous electrolyte secondary battery has increased resistance due to repeated charge and discharge (typically repeated high-rate discharge) Increase in internal resistance in the case of Therefore, according to the present invention, it is possible to provide a lithium ion secondary battery or other nonaqueous electrolyte secondary battery in which an increase in resistance due to repeated charge and discharge is suppressed.
  • the positive electrode active material has a DBP oil absorption A of 25 mL / 100 g or more.
  • the DBP oil absorption amount A of the positive electrode active material is set to a predetermined value or more.
  • the affinity between the positive electrode active material and the non-aqueous electrolyte and the affinity between the negative electrode active material and the non-aqueous electrolyte are appropriate relative to each other.
  • the affinity between the positive electrode active material and the non-aqueous electrolyte is further improved within the range satisfying the general relationship.
  • the resistance increases due to repeated charge and discharge typically non-aqueous electrolysis when high-rate discharge is repeated
  • Increase in internal resistance of the liquid secondary battery can be suitably suppressed.
  • the linseed oil absorption B of the negative electrode active material is 45 mL / 100 g or more.
  • the affinity between the positive electrode active material and the non-aqueous electrolyte and the affinity between the negative electrode active material and the non-aqueous electrolyte are appropriate.
  • the affinity between the negative electrode active material and the non-aqueous electrolyte is further improved.
  • the resistance increases due to repeated charge / discharge (typically non-aqueous when high-rate discharge is repeated). (Increase in internal resistance of the electrolyte secondary battery) can be suitably suppressed.
  • the positive electrode active material has a DBP oil absorption amount A (mL / 100 g) and the negative electrode active material has a linseed oil absorption amount B (mL / 100 g).
  • the total A + B is 87 (mL / 200 g) or more.
  • the affinity between the positive electrode active material and the non-aqueous electrolyte and the affinity between the negative electrode active material and the non-aqueous electrolyte is further improved.
  • the resistance increases due to repeated charge and discharge (typically high rate discharge). (Increase in internal resistance of the nonaqueous electrolyte secondary battery) can be suitably suppressed.
  • the positive electrode active material is a lithium transition metal oxide containing at least one of nickel, cobalt, and manganese as a constituent element
  • the negative electrode It is constructed as a lithium ion secondary battery whose active material is graphite.
  • a vehicle including any one of the nonaqueous electrolyte secondary batteries disclosed herein.
  • a non-aqueous electrolyte secondary battery suppresses an increase in resistance (typically, an increase in the internal resistance of the non-aqueous electrolyte secondary battery when high-rate discharge is repeated), so that the hybrid vehicle, electric vehicle, fuel It can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile equipped with an electric motor such as a battery car.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is a perspective view which shows typically the state which winds and produces the electrode body which concerns on one Embodiment. It is a side view which shows typically the vehicle (automobile) provided with the lithium ion secondary battery which concerns on one Embodiment. It is a graph which shows the relationship between ratio B / A of the linseed oil absorption amount B (mL / 100g) of a negative electrode active material with respect to DBP oil absorption amount A (mL / 100g) of a positive electrode active material, and resistance increase rate (%).
  • B / A of the linseed oil absorption amount B mL / 100g
  • DBP oil absorption amount A mL / 100g
  • a lithium ion secondary battery As a preferred embodiment of the nonaqueous electrolyte secondary battery disclosed herein, a lithium ion secondary battery will be described as an example. However, the application of the present invention is intended to be limited to such a battery. is not. For example, the present invention can also be applied to a non-aqueous electrolyte secondary battery that uses a metal ion (for example, sodium ion) other than lithium ion as a charge carrier.
  • “secondary battery” generally refers to a battery that can be repeatedly charged and discharged.
  • a capacitor such as an electric double layer capacitor (ie, a physical battery) Battery).
  • the “lithium ion secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of charges accompanying the lithium ions between the positive and negative electrodes.
  • a lithium ion secondary battery 100 can have the same configuration as the conventional one.
  • a rectangular battery case 10 having a rectangular parallelepiped shape and the battery And a lid 14 that closes the opening 12 of the case 10.
  • the lid body 14 is provided with an external positive electrode current collecting terminal 38 and an external negative electrode current collecting terminal 48 for external connection.
  • a part of the terminals 38 and 48 protrudes to the surface side of the lid body 14. Yes.
  • a part of the external positive current collector terminal 38 and a part of the external negative current collector terminal 48 are respectively connected to the internal positive terminal 37 or the internal negative terminal 47 inside the case.
  • the wound electrode body 20 includes a sheet-like positive electrode sheet 30 in which a positive electrode active material layer 34 is formed on the surface of a long positive electrode current collector 32, and a long sheet-like separator. 50 and a sheet-like negative electrode sheet 40 in which a negative electrode active material layer 44 is formed on the surface of a long negative electrode current collector 42.
  • the positive electrode sheet 30 and the negative electrode sheet 40 are stacked via two separator sheets 50, and the positive electrode sheet 30, the separator sheet 50, the negative electrode sheet 40, and the separator sheet 50 are stacked in this order.
  • the laminate is wound around a shaft core (not shown) in a cylindrical shape, and is formed into a flat shape by squashing the obtained wound electrode body 20 from the side surface direction.
  • the wound electrode body 20 is formed on the surface of the positive electrode active material layer 34 formed on the surface of the positive electrode current collector 32 and the surface of the negative electrode current collector 42 at the center in the width direction with respect to the winding direction. A portion where the negative electrode active material layer 44 overlaps and is densely stacked is formed. Further, at one end portion in the width direction with respect to the winding direction, the exposed portion of the positive electrode current collector 32 (the positive electrode active material layer non-forming portion 36) is formed without the positive electrode active material layer 34 being formed.
  • the sheet 40 (or a dense laminated portion of the positive electrode active material layer 34 and the negative electrode active material layer 44) is laminated and protruded.
  • the positive electrode active material layer non-forming part 36 in the positive electrode current collector 32 is laminated at the end of the wound electrode body 20 to form the positive electrode current collector laminated part 35. Further, the other end portion of the wound electrode body 20 has the same configuration as that of the positive electrode sheet 30, and the negative electrode active material layer non-formation portion 46 in the negative electrode current collector 42 is laminated, so that the negative electrode current collector lamination portion 45 is formed. Is formed.
  • the separator sheet 50 a sheet having a width larger than the width of the laminated portion of the positive electrode active material layer 34 and the negative electrode active material layer 44 and smaller than the width of the wound electrode body 20 is used. 32 and the negative electrode current collector 42 are arranged so as to be sandwiched between the stacked portions of the positive electrode active material layer 34 and the negative electrode active material layer 44 so as not to contact each other and cause an internal short circuit.
  • the positive electrode (typically, the positive electrode sheet 30) of the lithium ion secondary battery has a configuration in which a positive electrode active material layer 34 containing a positive electrode active material is formed on a long positive electrode current collector 32.
  • a conductive member made of a highly conductive metal is preferably used.
  • aluminum or an alloy containing aluminum as a main component can be used.
  • the shape of the positive electrode current collector 32 may vary depending on the shape of the lithium ion secondary battery, and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape. .
  • the positive electrode active material constituting the positive electrode active material layer 34 has a ratio B / A of the linseed oil absorption amount B (mL / 100 g) of the linseed oil of the negative electrode active material to the DBP oil absorption amount A (mL / 100 g) of the positive electrode active material described later.
  • B the linseed oil absorption amount B
  • A the positive electrode active material
  • a typical positive electrode active material includes a composite oxide containing lithium and at least one transition metal element (preferably at least one of nickel, cobalt, and manganese).
  • so-called single-system lithium-containing composite oxides containing one kind of transition metal element such as cobalt lithium composite oxide (LiCoO 2 ), nickel lithium composite oxide (LiNiO 2 ), manganese lithium composite oxide (LiMn 2 O 4 ), etc.
  • the general formula is LiMAO 4 (where M is at least one metal element selected from the group consisting of Fe, Co, Ni and Mn, and A is P, Si, S and A polyanionic compound represented by the above is an element selected from the group consisting of V.
  • A is P and / or Si (for example, LiFePO 4 , LiFeSiO 4 , LiCoPO 4 , LiCoSiO 4 , LiFe0.5Co 0.5 PO 4 , LiFe 0.5 Co 0.5 SiO 4 , LiMnPO 4) 4, LiMnSiO 4, LiNiPO 4, LiNiSiO 4) can be cited as particularly preferred polyanionic compound.
  • the DBP oil absorption A of the positive electrode active material as described above is the ratio B / A of the linseed oil absorption B (mL / 100 g) of the linseed oil of the negative electrode active material to the DBP oil absorption A (mL / 100 g) of the positive electrode active material described later.
  • it is 25 mL / 100 g or more (for example, 30 mL / 100 g or more, typically 34 mL / 100 g or more), and 55 mL / 100 g or less (for example, 50 mL / 100 g). 100 g or less, typically 37 mL / 100 g or less).
  • the affinity between the positive electrode active material and the non-aqueous electrolyte and the affinity between the negative electrode active material and the non-aqueous electrolyte have a predetermined relative relationship.
  • the affinity between the positive electrode active material and the non-aqueous electrolyte is further improved, and as a result, the increase in the internal resistance of the non-aqueous electrolyte secondary battery when high-rate discharge is repeated is suitably suppressed. Can do.
  • the oil absorption amount of the positive electrode active material is evaluated based on the DBP oil absorption amount.
  • the DBP oil absorption is determined according to JIS K6217-4 “Carbon black for rubber—Basic characteristics—Part 4: Determination of oil absorption”.
  • DBP dibutyl phthalate
  • titration is performed on a powder to be inspected (positive electrode active material) with a constant speed burette, and a change in viscosity characteristics is measured by a torque detector.
  • the addition amount of the reagent liquid per unit weight of the inspection target powder corresponding to the torque of 70% of the generated maximum torque is defined as DBP oil absorption (mL / 100 g).
  • a DBP oil absorption measuring device for example, an absorption measuring device manufactured by Asahi Research Institute, Ltd. can be used.
  • a compound constituting such a positive electrode active material can be prepared and provided by, for example, a conventionally known method.
  • the oxide can be prepared by mixing several raw material compounds appropriately selected according to the atomic composition at a predetermined molar ratio and firing the mixture at a predetermined temperature by an appropriate means.
  • a granular positive electrode active material powder substantially composed of secondary particles having a desired average particle size and / or particle size distribution is obtained.
  • Can do by measuring the DBP oil absorption of the obtained positive electrode active material powder by a method based on JIS K6217-4 described above, a positive electrode active material suitable for constructing the lithium ion secondary battery according to the present invention is obtained. Can be selected.
  • the proportion of the positive electrode active material in the positive electrode active material layer exceeds approximately 50% by mass, and is approximately 70% to 99% by mass (eg, 70% to 95% by mass, typically 75% to 90% by mass). It is preferable that
  • the positive electrode active material layer includes, in addition to the positive electrode active material, one or more kinds of conductive materials, binders, and other additives that can be blended in the positive electrode active material layer of a general lithium ion secondary battery. Additives can be included as required.
  • a conductive material a conductive powder material such as carbon powder or carbon fiber is preferably used.
  • carbon powder various carbon blacks such as acetylene black, furnace black, ketjen black, and graphite powder are preferable.
  • conductive fibers such as carbon fibers and metal fibers, metal powders such as copper and nickel, and organic conductive materials such as polyphenylene derivatives can be contained alone or as a mixture thereof.
  • the same binder as that used for the positive electrode of a general lithium ion secondary battery can be appropriately employed.
  • a polymer that is soluble or dispersible in the solvent used When an aqueous solvent is used, cellulose polymers such as carboxymethylcellulose (CMC) and hydroxypropylmethylcellulose (HPMC); polyvinyl alcohol (PVA); polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer Water-soluble or water-dispersible polymers such as fluorine resins such as (FEP); vinyl acetate copolymers; rubbers such as styrene butadiene rubber (SBR) and acrylic acid-modified SBR resins (SBR latex); be able to.
  • fluorine resins such as (FEP)
  • vinyl acetate copolymers rubbers such as styrene butadiene rubber (SBR) and acrylic acid-modified SBR resins (SBR latex
  • a polymer such as polyvinylidene fluoride (PVDF) or polyvinylidene chloride (PVDC) can be preferably used.
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • Such a binder may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polymer material exemplified above may be used for the purpose of exhibiting the function as a thickener or other additive of the above composition.
  • the ratio of these additives to the positive electrode active material layer is not particularly limited, but the ratio of the conductive material is preferably about 4% by mass to 25% by mass (eg, about 9% by mass to 22% by mass).
  • the ratio of the dressing material and other additives is preferably about 1% by mass to 5% by mass (eg, about 1% by mass to 3% by mass).
  • the method for producing the positive electrode as described above is not particularly limited, and a conventional method can be adopted.
  • a positive electrode active material, a conductive material, a binder and the like are mixed with an appropriate solvent (aqueous solvent or non-aqueous solvent) to form a paste or slurry-like composition for forming a positive electrode active material layer (hereinafter referred to as a paste-like composition).
  • a paste-like composition for forming a positive electrode active material layer
  • Also referred to as a product
  • the mixing operation can be performed using, for example, an appropriate kneader (planetary mixer, homodisper, clear mix, fill mix, etc.).
  • both an aqueous solvent and a non-aqueous solvent can be used.
  • the aqueous solvent only needs to be water-based as a whole, that is, water or a mixed solvent mainly composed of water can be preferably used.
  • the non-aqueous solvent include N-methyl-2-pyrrolidone (NMP), methyl ethyl ketone, toluene and the like.
  • NMP N-methyl-2-pyrrolidone
  • the paste composition thus prepared is applied to a positive electrode current collector, the solvent is evaporated and dried, and then compressed (pressed).
  • a technique similar to a conventionally known method can be appropriately employed.
  • the composition can be suitably applied to the positive electrode current collector by using an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater.
  • an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater.
  • it can dry favorably by using natural drying, a hot air, low-humidity air, a vacuum, infrared rays, far infrared rays, and an electron beam individually or in combination.
  • a compression method a conventionally known compression method such as a roll press method or a flat plate press method can be employed.
  • the thickness may be measured with a film thickness measuring instrument, and the compression may be performed a plurality of times until the desired thickness is obtained by adjusting the press pressure.
  • the positive electrode of the lithium ion secondary battery in which the positive electrode active material layer is formed on the positive electrode current collector is obtained.
  • the basis weight per unit area of the positive electrode active material layer on the positive electrode current collector (the coating amount in terms of solid content of the positive electrode active material layer forming composition) is sufficient.
  • a conductive path conductive path
  • it is 5 mg / cm 2 or more (for example, 7 mg / cm 2 or more, typically 10 mg / cm 2 or more), It is preferably 100 mg / cm 2 or less (for example, 50 mg / cm 2 or less, typically 25 mg / cm 2 or less).
  • the negative electrode (typically, the negative electrode sheet 40) has a configuration in which a negative electrode active material layer 44 containing a negative electrode active material is formed on a long negative electrode current collector 42.
  • a conductive member made of a highly conductive metal is preferably used as in the case of the conventional lithium ion secondary battery.
  • copper or copper is the main component.
  • An alloy can be used.
  • the shape of the negative electrode current collector 42 is not particularly limited because it may vary depending on the shape of the lithium ion secondary battery, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
  • the negative electrode active material layer 44 includes a negative electrode active material capable of inserting and extracting lithium ions serving as charge carriers.
  • a negative electrode active material capable of inserting and extracting lithium ions serving as charge carriers.
  • the composition and shape thereof are not particularly limited, and one or more materials conventionally used in lithium ion secondary batteries can be used. Examples of the negative electrode active material include carbon materials used in typical lithium ion secondary batteries.
  • the carbon material used as the negative electrode active material include graphite carbon (graphite) and amorphous carbon.
  • graphite carbon graphite
  • a particulate carbon material carbon particles including a graphite structure (layered structure) at least partially is preferably used.
  • any carbon material of a so-called graphitic material (graphite), a non-graphitizable carbonaceous material (hard carbon), a graphitizable carbonaceous material (soft carbon), or a combination of these is suitable.
  • natural graphite or artificial graphite
  • Such natural graphite (or artificial graphite) may be obtained by spheroidizing graphite.
  • the median diameter (average particle diameter D 50 : 50% volume average particle diameter) that can be derived from the particle size distribution measured based on the particle size distribution measuring apparatus based on the laser scattering / diffraction method is used. Those within a range of about 5 ⁇ m to 30 ⁇ m can be preferably used. Further, a carbonaceous powder in which the surface of the graphite is coated with amorphous carbon may be used.
  • oxides such as lithium titanate (LTO), simple substances such as silicon materials and tin materials, alloys, compounds, and composite materials using the above materials in combination.
  • the linseed oil absorption amount B of the negative electrode active material as described above is the ratio B / A of the linseed oil absorption amount B (mL / 100 g) of the negative electrode active material to the DBP oil absorption amount A (mL / 100 g) of the positive electrode active material described later. Is 45 mL / 100 g or more (eg, 50 mL / 100 g or more, typically 55 mL / 100 g or more), and 100 mL / 100 g or less (eg, 80 mL). / 100 g or less, typically 75 mL / 100 g or less).
  • the affinity between the positive electrode active material and the non-aqueous electrolyte and the affinity between the negative electrode active material and the non-aqueous electrolyte are predetermined relative relationships. As long as the compatibility between the negative electrode active material and the non-aqueous electrolyte is further improved, the increase in the internal resistance of the non-aqueous electrolyte secondary battery when high-rate discharge is repeated is suitably suppressed. be able to.
  • the oil absorption amount of the negative electrode active material is evaluated based on the oil absorption amount of linseed oil.
  • the oil absorption (mL / 100 g) of linseed oil is based on the measurement method of DBP oil absorption A of the positive electrode active material, and linseed oil is used instead of DBP as a reagent liquid, and titrated with a constant speed burette on the powder to be inspected.
  • the change in viscosity characteristics can be measured with a torque detector.
  • the amount of the reagent liquid added per unit weight of the powder to be inspected that corresponds to a torque of 70% of the generated maximum torque is defined as the oil absorption amount of linseed oil.
  • the negative electrode active material suitable for constructing the lithium ion secondary battery which concerns on this invention can be selected by measuring a linseed oil absorption amount by the method mentioned above.
  • the proportion of the negative electrode active material in the negative electrode active material layer exceeds approximately 50% by mass, and approximately 90% by mass to 99% by mass (eg, 95% by mass to 99% by mass, typically 97% by mass to 99% by mass). It is preferable that
  • the negative electrode active material layer is one or more binders, thickeners, other additives, etc. that can be blended in the negative electrode active material layer of a general lithium ion secondary battery. These additives can be contained as required.
  • the binder include various polymer materials. For example, when the negative electrode active material layer is formed using an aqueous liquid composition (a composition using water or a mixed solvent containing water as a main component as a dispersion medium of active material particles), water is used as a binder. A polymer material that dissolves or disperses in water can be preferably used.
  • water-soluble (water-soluble) polymer material examples include cellulose such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), and hydroxypropylmethylcellulose phthalate (HPMCP).
  • CMC carboxymethylcellulose
  • MC methylcellulose
  • CAP cellulose acetate phthalate
  • HPMC hydroxypropylmethylcellulose
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxyprop
  • Fluorine resins such as coalescence (FEP) and ethylene-tetrafluoroethylene copolymer (ETFE); vinyl acetate copolymer; styrene butadiene rubber (SBR), acrylic acid-modified SBR resin (SBR latex), gum arabic, etc. Rubbers; are exemplified.
  • a negative electrode active material layer is formed using a solvent-based liquid composition (a composition in which a dispersion medium of active material particles is mainly an organic solvent), polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC) ), Polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide-propylene oxide copolymer (PEO-PPO), and the like can be used.
  • a solvent-based liquid composition a composition in which a dispersion medium of active material particles is mainly an organic solvent
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PEO-PPO polyethylene oxide-propylene oxide copolymer
  • the polymer material illustrated above may be used as a thickener and other additives in the composition for forming a negative electrode active material layer, in addition to being used as a binder.
  • the proportion of these additives in the negative electrode active material layer is not particularly limited, but is about 1% by mass to 10% by mass (eg, about 1% by mass to 5% by mass, typically 1% by mass to 3% by mass). Preferably there is.
  • the method for producing the negative electrode as described above is not particularly limited, and a conventional method can be adopted.
  • it can be produced by the following method.
  • the negative electrode active material is mixed with the above-mentioned appropriate solvent (aqueous solvent, organic solvent and mixed solvent thereof) together with a binder or the like, and a paste-form or slurry-form composition for forming a negative electrode active material layer (hereinafter, (Also referred to as a paste-like composition).
  • a paste-like composition for forming a negative electrode active material layer
  • the paste-like composition thus prepared is applied to the negative electrode current collector, the solvent is volatilized and dried, and then compressed (pressed).
  • a negative electrode of a lithium ion secondary battery provided with a negative electrode active material layer formed using the paste-like composition on a negative electrode current collector is obtained.
  • conventionally well-known means can be used for the mixing, application
  • the basis weight per unit area of the negative electrode active material layer on the negative electrode current collector (the coating amount in terms of solid content of the negative electrode active material layer forming composition) is sufficient.
  • the conductive path is not particularly limited as long as it can be secured, but is 2.5 mg / cm 2 or more (for example, 3 mg / cm 2 or more, typically 5 mg / cm 2 or more). It is preferably 50 mg / cm 2 or less (for example, 25 mg / cm 2 or less, typically 15 mg / cm 2 or less).
  • the ratio B / A of the linseed oil absorption amount B (mL / 100 g) of the negative electrode active material to the DBP oil absorption amount A (mL / 100 g) of the positive electrode active material is 1.27 to 1. .79 is used.
  • the ratio B / A is preferably 1.30 or more (eg 1.44 or more, typically 1.53 or more), and 1.77 or less (eg 1.75 or less, typically 1.73 or less) is preferable.
  • the ratio B / A is within the above range, an increase in resistance due to repeated charge / discharge is suppressed, and in particular, an increase in internal resistance when high rate discharge is repeated is suppressed.
  • the nonaqueous electrolyte with a high supporting salt concentration does not enter the positive and negative electrodes, but remains in the external region of the positive and negative electrodes in the battery case, and the supporting salt concentration of the nonaqueous electrolyte in the positive and negative electrodes
  • the ratio B / A within the range of 1.27 to 1.79, the affinity between the positive electrode active material and the non-aqueous electrolyte and the affinity between the negative electrode active material and the non-aqueous electrolyte can be improved.
  • the relative relationship is optimized, and as a result, the unevenness of the supported salt concentration of the entire non-aqueous electrolyte inside and outside the positive and negative electrodes is suitably reduced (or eliminated), and the increase in internal resistance when repeated high-rate discharge is suppressed It is presumed that it works like this.
  • the total A + B of the DBP oil absorption amount A (mL / 100 g) of the positive electrode active material and the linseed oil absorption amount B (mL / 100 g) of the negative electrode active material is 87 (mL / 200 g) or more (eg, 91 or more, typically Is preferably 93 or more and 130 or less.
  • a + B is within the above range, the affinity between the positive electrode active material and the non-aqueous electrolyte and the affinity between the negative electrode active material and the non-aqueous electrolyte satisfy an appropriate relative relationship.
  • the affinity between the positive electrode active material and the negative electrode active material and the non-aqueous electrolyte is further improved, increasing the resistance due to repeated charge / discharge, particularly increasing the internal resistance of the non-aqueous electrolyte secondary battery when high-rate discharge is repeated. It can suppress suitably.
  • the formation of the positive electrode active material layer and the negative electrode active material layer is performed by the total mass C of the positive electrode active material contained in the positive electrode active material layer and the negative electrode active material contained in the negative electrode active material layer in the nonaqueous electrolyte secondary battery. It is preferable that the ratio C: D of the total mass D is about 90:10 to 10:90 (for example, 70:30 to 30:70, typically 65:35 to 50:50).
  • the affinity between the positive electrode active material and the negative electrode active material and the non-aqueous electrolyte is in a more appropriate range in the relative relationship of these active materials, and thus resistance increase due to repeated charge and discharge is suitably suppressed, In particular, an increase in internal resistance when repeating high-rate discharge is suitably suppressed.
  • the positive electrode sheet 30 and the negative electrode sheet 40 produced above are wound together with two separator sheets 50, wound, and crushed from the stacking direction so that the wound electrode body 20 is rolled. Molded into a flat shape.
  • the wound electrode body 20 obtained in this way is accommodated in a battery case 10 made of, for example, metal or a laminate film, and an electrolytic solution is injected. Then, a lid 14 is attached to the case opening 12 and sealed. In this way, the lithium ion secondary battery 100 can be constructed.
  • separator As a suitable example of the separator (separator sheet) used between the positive and negative electrode sheets, one composed of a porous polyolefin-based resin can be mentioned.
  • a porous separator sheet made of a synthetic resin for example, made of polyethylene, polypropylene, or a polyolefin having a structure of two or more layers combining these
  • This separator sheet may be provided with a heat-resistant layer or the like.
  • a separator is not necessary (that is, in this case, the electrolyte itself) Can function as a separator.
  • a non-aqueous electrolytic solution conventionally used for a lithium ion secondary battery can be used without any particular limitation.
  • a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent.
  • non-aqueous solvent examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane, 1,2 -Diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile, propionitrile, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane, ⁇ -butyrolactone These may be used alone or in combination of two or more.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMF N, N-dimethylformamide
  • Species or two or more species can be preferably used.
  • the supporting salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3 , 1 type or 2 types or more of lithium compounds (lithium salt), such as LiI, can be used.
  • concentration of support salt may be the same as that of the nonaqueous electrolyte solution used with the conventional lithium ion secondary battery, and there is no restriction
  • the contained nonaqueous electrolyte solution can be used.
  • the lithium ion secondary battery constructed in this manner is suitable as a power source for a motor (electric motor) mounted on a vehicle such as an automobile because an increase in resistance due to repeated charging and discharging is suppressed.
  • a vehicle 1 typically an automobile
  • a lithium ion secondary battery 100 typically, a battery pack formed by connecting a plurality of series-connected batteries
  • a vehicle including an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle is provided.
  • Example 1 to Example 21 (1) Preparation of positive electrode sheet A plurality of lithium nickel manganese cobaltate (Li [Ni 1/3 Mn 1/3 Co 1/3 O 2 ) powder was prepared as a positive electrode active material, and each positive electrode active material was described above. The DBP oil absorption was measured based on the measurement method. And each positive electrode active material which shows the DBP oil absorption amount shown in the said prepared Table 1, acetylene black as a electrically conductive agent, and carboxymethylcellulose (CMC) as a binder, The mass ratio of these materials is 88. : It mixed in ion-exchange water so that it might be set to 10: 2, and the paste-form composition for positive electrode active material layer formation was prepared.
  • This composition was uniformly applied to both sides of a long sheet-like aluminum foil (thickness 15 ⁇ m) so that the total basis weight was 16.8 mg / cm 2 (solid content basis), dried, and then compressed. (Pressing), a positive electrode active material layer was formed on the positive electrode current collector, and a sheet-like positive electrode (positive electrode sheet) was produced.
  • composition was uniformly applied to both sides of a long sheet-like copper foil (thickness 10 ⁇ m) so that the total basis weight was 9.6 mg / cm 2 (solid content basis), dried, and then compressed. (Pressing), a negative electrode active material layer was formed on the negative electrode current collector, and a sheet-like negative electrode (negative electrode sheet) was produced.
  • Lithium ion secondary batteries (theoretical capacity 223 mAh) according to Examples 1 to 21 were constructed by accommodating the wound electrode body together with the electrolyte in a cylindrical container.
  • Each lithium ion secondary battery prepared above was adjusted to SOC (State of Charge) 60%, discharged at a constant current of 30 C at a temperature of ⁇ 15 ° C., and the initial reaction resistance (m ⁇ ) was determined from the voltage drop. Asked. Next, each lithium ion secondary battery was adjusted to SOC 60% again, and charged and discharged with the following (I) to (IV) at a temperature of ⁇ 15 ° C .: (I) Discharge for 10 seconds at a constant current of 30C; (II) pause for 10 minutes; (III) Charge for 1 minute at a constant current of 5C; (IV) pause for 10 minutes; A high rate cycle test was repeated 3000 times.
  • the ratio B / A of the linseed oil absorption amount B (mL / 100 g) of the negative electrode active material to the DBP oil absorption amount A (mL / 100 g) of the positive electrode active material is 1.27 to 1.
  • the lithium ion secondary batteries according to Example 1, Example 2, Example 9 to Example 13, Example 19 and Example 20 in which the ratio B / A is less than 1.27 or more than 1.79 have a resistance increase rate due to a high rate cycle. was higher than 114%.
  • the lithium ion secondary batteries according to Examples 5 to 7, 15 and 16 in which the ratio B / A is 1.53 to 1.73 are high rate cycles. It can be seen that the rate of increase in resistance due to is less than 104%, and the increase in the internal resistance of the lithium ion secondary battery when high-rate discharge is repeated can be significantly suppressed.
  • the lithium ion secondary batteries according to Examples 1, 2 and 20 in which the linseed oil absorption amount B of the negative electrode active material is less than 45 mL / 100 g are increased in resistance due to the high rate cycle. The rate exceeded 124%. From this result, it can be seen that by using a negative electrode active material having a linseed oil absorption amount B of 45 mL / 100 g or more, an increase in internal resistance of the lithium ion secondary battery when high-rate discharge is repeated can be suppressed.
  • the lithium ion secondary batteries according to Examples 11, 12, and 20 in which the DBP oil absorption amount A of the positive electrode active material is less than 25 mL / 100 g are the resistance increase rate due to the high rate cycle. Exceeded 139%. From this result, it can be seen that by using a positive electrode active material having a DBP oil absorption amount A of 25 mL / 100 g or more, an increase in internal resistance of the lithium ion secondary battery when high-rate discharge is repeated can be suppressed.
  • the total A + B of the DBP oil absorption amount A (mL / 100 g) of the positive electrode active material and the linseed oil absorption amount B (mL / 100 g) of the negative electrode active material was 87 (mL / 200 g).
  • the lithium ion secondary batteries according to Example 1, Example 2, Example 11, Example 12 and Example 20 below the resistance increase rate due to the high rate cycle exceeded 124%. From this result, it can be seen that by setting A + B to 87 (mL / 200 g) or more, an increase in the internal resistance of the lithium ion secondary battery when high-rate discharge is repeated can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明により提供される非水電解液二次電池は、正極と負極とを備え、該正極が、正極活物質を主成分として含む正極活物質層を有し、該負極が、負極活物質を主成分として含む負極活物質層を有する非水電解液二次電池であって、前記正極活物質のDBP吸油量A(mL/100g)に対する前記負極活物質の亜麻仁油吸油量B(mL/100g)の比B/Aが、1.27~1.79である。

Description

非水電解液二次電池およびその利用
 本発明は、非水電解液二次電池に関する。
 近年、リチウムイオン二次電池やニッケル水素電池等の二次電池は、電気を駆動源とする車両搭載用電源、あるいはパソコンおよび携帯端末その他の電気製品等に搭載される電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池等の非水電解液二次電池は、車両搭載用高出力電源として好ましく用いられることが期待されている。かかる非水電解液二次電池の典型例であるリチウムイオン二次電池は、電荷担体となる化学種(リチウムイオン)を可逆的に吸蔵および放出し得る電極活物質(正極活物質および負極活物質)を主成分とする電極活物質層(正極活物質層および負極活物質層)を有する電極(正極および負極)を備え、プロピレンカーボネート、エチレンカーボネート等の非水溶媒にLiPF等の支持塩を含有させた組成を有する非水電解液を用いる。このようなリチウムイオン二次電池において、正極活物質または負極活物質の吸油量を開示している従来技術として特許文献1~4が挙げられる。
日本国特許公開公報第2005-285606号 日本国特許公開公報第2000-331672号 日本国特許公開公報第2010-92649号 日本国特許公開公報平成10-302774号
 ところで、非水電解液二次電池の用途の中には、ハイレートでの放電(急速放電)を繰り返す態様で使用されることが想定されるものがある。車両の動力源として用いられる非水電解液二次電池(例えば、動力源としてリチウムイオン二次電池と内燃機関等のように作動原理の異なる他の動力源とを併用するハイブリッド車両に搭載されるリチウムイオン二次電池)は、このような使用態様が想定される非水電解液二次電池の代表例である。しかし、従来の一般的な非水電解液二次電池は、ローレートでの充放電サイクルに対しては比較的高い耐久性を示すものであっても、ハイレート放電を伴う充放電サイクルに対しては性能劣化を起こしやすいことが知られていた。その原因の一つとして、ハイレート充放電の繰返しによって内部抵抗が増加することが挙げられる。
 そこで本発明は、上述した従来の問題を解決するために創出されたものであり、その目的は、充放電の繰返しによる抵抗増加が抑制された非水電解液二次電池を提供することである。また、そのような性能を有する非水電解液二次電池を備えた車両を提供することを他の目的とする。
 上記目的を実現するべく、本発明により、正極と負極とを備え、該正極が、正極活物質を主成分として含む正極活物質層を有し、該負極が、負極活物質を主成分として含む負極活物質層を有する非水電解液二次電池であって、前記正極活物質のDBP吸油量A(mL/100g)に対する前記負極活物質の亜麻仁油吸油量B(mL/100g)の比B/Aが1.27~1.79であることを特徴とする、非水電解液二次電池が提供される。
 本発明者らは、ハイレート放電サイクルにおける抵抗増加の原因を究明すべく鋭意検討していたところ、ハイレート放電を繰り返すと、支持塩濃度の高い非水電解液は正負極内に浸入し難くなり、正負極内における非水電解液の支持塩濃度が相対的に低下する結果、正負極の内外で支持塩濃度のムラが発生し、これが非水電解液二次電池の抵抗を増加させる要因になっている可能性があると推察した。そこで、正負極内外における非水電解液の支持塩濃度の差を最小限とするべくさらに検討を進めた結果、正極活物質および負極活物質と非水電解液との親和性(例えば、正負極活物質層への非水電解液の滲み込みやすさ)が特定の関係を満たすときに、ハイレート放電の繰返しによる抵抗増加を抑制できることを見出し、本発明を完成するに至った。すなわち、本発明では、正極活物質および負極活物質と非水電解液との親和性の指標として、吸油量(ジブチルフタレート(DBP)吸油量および亜麻仁油吸油量)を採用し、前記正極活物質のDBP吸油量A(mL/100g)に対する負極活物質の亜麻仁油吸油量B(mL/100g)の比B/Aが、1.27~1.79(好ましくは1.53~1.73)の範囲内となるように正極活物質と負極活物質とを選択して用いることで、得られる非水電解液二次電池は、充放電の繰返しによる抵抗増加(典型的にはハイレート放電を繰り返した場合の内部抵抗の増加)が抑制される。したがって、本発明によると、充放電の繰返しによる抵抗増加が抑制されたリチウムイオン二次電池その他の非水電解液二次電池を提供することができる。
 ここで開示される非水電解液二次電池の好適な一態様では、前記正極活物質のDBP吸油量Aが25mL/100g以上である。このように、正極活物質のDBP吸油量Aを所定値以上とすることによって、正極活物質と非水電解液との親和性および負極活物質と非水電解液との親和性が適切な相対的関係を満たす範囲内において、正極活物質と非水電解液との親和性がさらに向上し、その結果、充放電の繰返しによる抵抗増加(典型的にはハイレート放電を繰り返した場合の非水電解液二次電池の内部抵抗の増加)を好適に抑制することができる。
 ここで開示される非水電解液二次電池の好適な一態様では、前記負極活物質の亜麻仁油吸油量Bが45mL/100g以上である。このように、負極活物質の亜麻仁油吸油量Bを所定値以上とすることによって、正極活物質と非水電解液との親和性および負極活物質と非水電解液との親和性が適切な相対的関係を満たす範囲内において、負極活物質と非水電解液との親和性がさらに向上し、その結果、充放電の繰返しによる抵抗増加(典型的にはハイレート放電を繰り返した場合の非水電解液二次電池の内部抵抗の増加)を好適に抑制することができる。
 ここで開示される非水電解液二次電池の好適な一態様では、前記正極活物質のDBP吸油量A(mL/100g)および前記負極活物質の亜麻仁油吸油量B(mL/100g)の合計A+Bが87(mL/200g)以上である。このように、正極活物質および負極活物質の吸油量の合計を所定値以上とすることによって、正極活物質と非水電解液との親和性および負極活物質と非水電解液との親和性が適切な相対的関係を満たす範囲内において、正極活物質および負極活物質と非水電解液との親和性がさらに向上し、その結果、充放電の繰返しによる抵抗増加(典型的にはハイレート放電を繰り返した場合の非水電解液二次電池の内部抵抗の増加)を好適に抑制することができる。
 ここで開示される非水電解液二次電池の好適な一態様では、前記正極活物質がニッケル、コバルトおよびマンガンのうちの少なくとも1種を構成元素として含むリチウム遷移金属酸化物であり、前記負極活物質が黒鉛であるリチウムイオン二次電池として構築されている。このように、正極活物質と負極活物質を選定することによって、充放電の繰返しによる抵抗増加、特にハイレート放電を繰り返した場合のリチウムイオン二次電池の内部抵抗の増加を好適に抑制することができる。
 さらに、本発明によると、ここで開示されるいずれかに記載の非水電解液二次電池を備える車両が提供される。かかる非水電解液二次電池は、抵抗増加(典型的にはハイレート放電を繰り返した場合の非水電解液二次電池の内部抵抗の増加)が抑制されるので、ハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車等の車両に搭載されるモーター(電動機)用の電源として好適に使用され得る。
一実施形態に係るリチウムイオン二次電池の外形を模式的に示す斜視図である。 図1におけるII-II線における断面図である。 一実施形態に係る電極体を捲回して作製する状態を模式的に示す斜視図である。 一実施形態に係るリチウムイオン二次電池を備えた車両(自動車)を模式的に示す側面図である。 正極活物質のDBP吸油量A(mL/100g)に対する負極活物質の亜麻仁油吸油量B(mL/100g)の比B/Aと抵抗増加率(%)との関係を示すグラフである。 図5において、正極活物質のDBP吸油量A(mL/100g)に対する負極活物質の亜麻仁油吸油量B(mL/100g)の比B/Aが1.27~1.79である範囲を拡大したグラフである。 負極活物質の亜麻仁油吸油量B(mL/100g)と反応抵抗(mΩ)との関係を示すグラフである。 正極活物質のDBP吸油量A(mL/100g)と反応抵抗(mΩ)との関係を示すグラフである。 正極活物質のDBP吸油量A(mL/100g)および負極活物質の亜麻仁油吸油量B(mL/100g)の合計A+B(mL/200g)と反応抵抗(mΩ)との関係を示すグラフである。
 以下、図面を参照しながら、本発明による一実施形態を説明する。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製法、セパレータや電解液の構成および製法、電池(電池ケース)の形状等、電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。
 ここで開示される非水電解液二次電池に係る好適な一実施形態として、リチウムイオン二次電池を例にして説明するが、本発明の適用対象をかかる電池に限定することを意図したものではない。例えば、リチウムイオン以外の金属イオン(例えばナトリウムイオン)を電荷担体とする非水電解液二次電池に本発明を適用することも可能である。また、本明細書において「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウムイオン二次電池等の蓄電池(すなわち化学電池)のほか、電気二重層キャパシタ等のキャパシタ(すなわち物理電池)を包含する。さらに、本明細書において「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。
 図1および図2に示されるように、一実施形態に係るリチウムイオン二次電池100は、従来と同様の構成をとることができ、例えば、直方体形状の角型の電池ケース10と、該電池ケース10の開口部12を塞ぐ蓋体14とを備える。この開口部12より電池ケース10内部に扁平形状の電極体(捲回電極体20)および非水電解液を収容することができる。また、蓋体14には、外部接続用の外部正極集電端子38と外部負極集電端子48とが設けられており、それら端子38,48の一部は蓋体14の表面側に突出している。また、外部正極集電端子38と外部負極集電端子48の一部はケース内部で内部正極端子37または内部負極端子47にそれぞれ接続されている。
 図3に示されるように、捲回電極体20は、長尺状の正極集電体32の表面に正極活物質層34が形成されたシート状の正極シート30と、長尺シート状のセパレータ50と、長尺状の負極集電体42の表面に負極活物質層44が形成されたシート状の負極シート40とから構成される。正極シート30および負極シート40は、2枚のセパレータシート50を介して積層されており、正極シート30、セパレータシート50、負極シート40、セパレータシート50の順に積層されている。該積層物は、軸芯(図示しない)の周囲に筒状に捲回され、得られた捲回電極体20を側面方向から押しつぶして拉げさせることによって扁平形状に成形されている。
 捲回電極体20は、その捲回方向に対する幅方向の中心部に、正極集電体32の表面上に形成された正極活物質層34と、負極集電体42の表面上に形成された負極活物質層44とが重なり合って密に積層された部分が形成されている。また、捲回方向に対する幅方向の一方の端部において、正極活物質層34が形成されずに正極集電体32の露出した部分(正極活物質層非形成部36)がセパレータシート50および負極シート40(あるいは、正極活物質層34と負極活物質層44との密な積層部分)からはみ出た状態で積層されて構成されている。すなわち、捲回電極体20の端部には、正極集電体32における正極活物質層非形成部36が積層されて、正極集電体積層部35が形成されている。また、捲回電極体20の他方の端部も正極シート30と同様の構成であり、負極集電体42における負極活物質層非形成部46が積層されて、負極集電体積層部45が形成されている。なお、セパレータシート50は、ここでは正極活物質層34および負極活物質層44の積層部分の幅より大きく、該捲回電極体20の幅より小さい幅を備えるものが用いられ、正極集電体32と負極集電体42が互いに接触して内部短絡を生じさせないように正極活物質層34および負極活物質層44の積層部分に挟まれるように配されている。
 リチウムイオン二次電池の正極(典型的には正極シート30)は、長尺状の正極集電体32の上に正極活物質を含む正極活物質層34が形成された構成を備える。正極集電体32としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、アルミニウムまたはアルミニウムを主成分とする合金を用いることができる。正極集電体32の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。
 正極活物質層34を構成する正極活物質としては、後述する正極活物質のDBP吸油量A(mL/100g)に対する負極活物質の亜麻仁油吸油量B(mL/100g)の比B/Aが1.27~1.79を満たし得る正極活物質である限りにおいて、その組成や形状に特に制限はない。典型的な正極活物質として、リチウムおよび少なくとも1種の遷移金属元素(好ましくはニッケル、コバルトおよびマンガンのうちの少なくとも1種)を含む複合酸化物が挙げられる。例えば、コバルトリチウム複合酸化物(LiCoO)、ニッケルリチウム複合酸化物(LiNiO)、マンガンリチウム複合酸化物(LiMn)等の遷移金属元素を1種含むいわゆる一元系リチウム含有複合酸化物、あるいは、ニッケル・コバルト系のLiNiCo1-x(0<x<1)、コバルト・マンガン系のLiCoMn1-x(0<x<1)、ニッケル・マンガン系のLiNiMn1-x(0<x<1)やLiNiMn2-x(0<x<2)で表わされるような、遷移金属元素を2種含むいわゆる二元系リチウム含有複合酸化物、あるいは、一般式:
Li(LiMnCoNi)O
(前式中のa、x、y、zはa+x+y+z=1を満足する実数)
で表わされるような、遷移金属元素としてニッケル、コバルトおよびマンガンを構成元素として含む三元系リチウム遷移金属酸化物、あるいは、一般式:
xLi[Li1/3Mn2/3]O・(1-x)LiMeO
(前式中、Meは1種または2種以上の遷移金属であり、xは0<x≦1を満たす)
で表わされるような、いわゆる固溶型のリチウム過剰遷移金属酸化物等が好ましく用いられる。中でも、遷移金属元素としてニッケル、コバルトおよびマンガンを構成元素として含む三元系リチウム遷移金属酸化物がより好ましい。
 また、正極活物質として、一般式がLiMAO(ここでMは、Fe,Co,NiおよびMnからなる群から選択される少なくとも1種の金属元素であり、Aは、P,Si,SおよびVからなる群から選択される元素である。)で表記されるポリアニオン型化合物も好ましく用いられる。上記一般式においてAがPおよび/またはSiであるもの(例えば、LiFePO、LiFeSiO、LiCoPO、LiCoSiO、LiFe0.5Co0.5PO、LiFe0.5Co0.5SiO、LiMnPO、LiMnSiO、LiNiPO、LiNiSiO)が特に好ましいポリアニオン型化合物として挙げられる。
 上述したような正極活物質のDBP吸油量Aは、後述する正極活物質のDBP吸油量A(mL/100g)に対する負極活物質の亜麻仁油吸油量B(mL/100g)の比B/Aが1.27~1.79を満たし得る限りにおいて特に限定されないが、25mL/100g以上(例えば30mL/100g以上、典型的には34mL/100g以上)であり、また、55mL/100g以下(例えば50mL/100g以下、典型的には37mL/100g以下)であることが好ましい。正極活物質のDBP吸油量Aが上記の範囲内であることによって、正極活物質と非水電解液との親和性および負極活物質と非水電解液との親和性が所定の相対的関係を満たす範囲内において、正極活物質と非水電解液との親和性がさらに向上し、その結果、ハイレート放電を繰り返した場合の非水電解液二次電池の内部抵抗の増加を好適に抑制することができる。
 本明細書において、正極活物質の吸油量はDBP吸油量を基に評価する。DBP吸油量は、JIS K6217-4「ゴム用カーボンブラック‐基本特性‐第4部:オイル吸収量の求め方」に準拠して求める。ここでは、試薬液体としてDBP(ジブチルフタレート)を用い、検査対象粉末(正極活物質)に定速度ビュレットで滴定し、粘度特性の変化をトルク検出器によって測定する。そして、発生した最大トルクの70%のトルクに対応する、検査対象粉末の単位重量当りの試薬液体の添加量をDBP吸油量(mL/100g)とする。DBP吸油量の測定器としては、例えば、株式会社あさひ総研の吸収量測定装置を使用することができる。
 このような正極活物質を構成する化合物は、例えば、従来公知の方法で調製し、提供することができる。例えば、原子組成に応じて適宜選択されるいくつかの原料化合物を所定のモル比で混合し、当該混合物を適当な手段により所定温度で焼成することによって該酸化物を調製することができる。この焼成物を適当な手段で粉砕、造粒および分級することによって、所望する平均粒径および/または粒径分布を有する二次粒子で実質的に構成された粒状の正極活物質粉末を得ることができる。そして、得られた正極活物質粉末について、上述したJIS K6217-4に準拠した方法でDBP吸油量を測定することによって、本発明に係るリチウムイオン二次電池を構築するのに相応しい正極活物質を選定することができる。
 正極活物質層に占める正極活物質の割合は、凡そ50質量%を超え、凡そ70質量%~99質量%(例えば70質量%~95質量%、典型的には75質量%~90質量%)であることが好ましい。
 正極活物質層は、正極活物質の他に、一般的なリチウムイオン二次電池の正極活物質層に配合され得る1種または2種以上の導電材や結着材、その他の添加材等の添加材を必要に応じて含有することができる。かかる導電材としては、カーボン粉末やカーボンファイバー等の導電性粉末材料が好ましく用いられる。カーボン粉末としては、種々のカーボンブラック、例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック、グラファイト粉末等が好ましい。また、炭素繊維、金属繊維等の導電性繊維類、銅、ニッケル等の金属粉末類およびポリフェニレン誘導体等の有機導電性材料等を単独でまたはこれらの混合物として含ませることができる。
 結着材としては、一般的なリチウムイオン二次電池の正極に使用される結着材と同様のものを適宜採用することができる。例えば、使用する溶媒に溶解または分散可溶なポリマーを選択することが好ましい。水系溶媒を用いる場合においては、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)等のフッ素系樹脂;酢酸ビニル共重合体;スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)等のゴム類;等の水溶性または水分散性ポリマーを好ましく採用することができる。また、非水系溶媒を用いる場合においては、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等のポリマーを好ましく採用することができる。このような結着材は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、上記で例示したポリマー材料は、結着材としての機能の他に、上記組成物の増粘材その他の添加材としての機能を発揮する目的で使用されることもあり得る。
 正極活物質層に占めるこれら添加材の割合は、特に限定されないが、導電材の割合は、凡そ4質量%~25質量%(例えば凡そ9質量%~22質量%)であることが好ましく、結着材その他の添加材の割合は、凡そ1質量%~5質量%(例えば凡そ1質量%~3質量%)であることが好ましい。
 上述したような正極の作製方法は特に限定されず、従来の方法を採用することができ、例えば以下の方法によって作製することができる。まず、正極活物質と導電材と結着材等とを適当な溶媒(水系溶媒または非水系溶媒)で混合して、ペーストまたはスラリー状の正極活物質層形成用組成物(以下、ペースト状組成物ともいう)を調製する。混合操作は、例えば、適当な混練機(プラネタリーミキサー、ホモディスパー、クレアミックス、フィルミックス等)を用いて行うことができる。上記ペースト状組成物を調製するために用いられる溶媒としては、水系溶媒および非水系溶媒のいずれも使用可能である。水系溶媒は、上述したように、全体として水性を示すものであればよく、すなわち、水または水を主体とする混合溶媒を好ましく用いることができる。また、非水系溶媒の好適例としては、N-メチル-2-ピロリドン(NMP)、メチルエチルケトン、トルエン等が例示される。こうして調製したペースト状組成物を正極集電体に塗布し、溶媒を揮発させて乾燥させた後、圧縮(プレス)する。正極集電体に上記ペースト状組成物を塗布する方法としては、従来公知の方法と同様の技法を適宜採用することができる。例えば、スリットコーター、ダイコーター、グラビアコーター、コンマコーター等の適当な塗布装置を使用することにより、正極集電体に該組成物を好適に塗布することができる。また、溶媒を乾燥するにあたっては、自然乾燥、熱風、低湿風、真空、赤外線、遠赤外線および電子線を、単独でまたは組み合わせて用いることにより良好に乾燥し得る。さらに、圧縮方法としては、従来公知のロールプレス法、平板プレス法等の圧縮方法を採用することができる。かかる厚さを調整するにあたり、膜厚測定器で該厚さを測定し、プレス圧を調整して所望の厚さになるまで複数回圧縮してもよい。このようにして正極活物質層が正極集電体上に形成されたリチウムイオン二次電池の正極が得られる。
 例えば上記のようにして作製される正極において、正極集電体上への正極活物質層の単位面積当たりの目付量(正極活物質層形成用組成物の固形分換算の塗布量)は、充分な導電経路(導電パス)を確保することができる限りにおいて特に限定されるものではないが、5mg/cm以上(例えば7mg/cm以上、典型的には10mg/cm以上)であり、100mg/cm以下(例えば50mg/cm以下、典型的には25mg/cm以下)とすることが好ましい。
 負極(典型的には負極シート40)は、長尺状の負極集電体42の上に負極活物質を含む負極活物質層44が形成された構成を備える。上記負極の基材となる負極集電体42としては、従来のリチウムイオン二次電池と同様に、導電性の良好な金属からなる導電性部材が好ましく用いられ、例えば、銅または銅を主成分とする合金を用いることができる。負極集電体42の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。
 負極活物質層44には、電荷担体となるリチウムイオンを吸蔵および放出可能な負極活物質が含まれる。負極活物質としては、後述する正極活物質のDBP吸油量A(mL/100g)に対する負極活物質の亜麻仁油吸油量B(mL/100g)の比B/Aが1.27~1.79を満たし得る負極活物質である限りにおいて、その組成や形状に特に制限はなく、従来からリチウムイオン二次電池に用いられる物質の1種または2種以上を使用することができる。かかる負極活物質としては、例えば、典型的なリチウムイオン二次電池に用いられる炭素材料が挙げられる。負極活物質として用いられる炭素材料の代表例としては、グラファイトカーボン(黒鉛)、アモルファスカーボン等が挙げられる。中でも、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が好ましく用いられる。また、いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好適に使用され得る。その中でも天然黒鉛(もしくは人造黒鉛)を主成分とする炭素材料の使用が好ましい。かかる天然黒鉛(もしくは人造黒鉛)は鱗片状の黒鉛を球形化したものであり得る。上記球形化した黒鉛を含む黒鉛粒子として、例えば、レーザー散乱・回折法に基づく粒度分布測定装置に基づいて測定した粒度分布から導き出せるメジアン径(平均粒径D50:50%体積平均粒径)が凡そ5μm~30μmの範囲内にあるものを好ましく用いることができる。また、該黒鉛の表面にアモルファスカーボンがコートされた炭素質粉末を用いてもよい。その他、負極活物質として、チタン酸リチウム(LTO)等の酸化物、ケイ素材料、スズ材料等の単体、合金、化合物、上記材料を併用した複合材料を用いることも可能である。
 上述したような負極活物質の亜麻仁油吸油量Bは、後述する正極活物質のDBP吸油量A(mL/100g)に対する負極活物質の亜麻仁油吸油量B(mL/100g)の比B/Aが1.27~1.79を満たし得る限りにおいて特に限定されないが、45mL/100g以上(例えば50mL/100g以上、典型的には55mL/100g以上)であり、また、100mL/100g以下(例えば80mL/100g以下、典型的には75mL/100g以下)であることが好ましい。負極活物質の亜麻仁油吸油量Bが上記の範囲内であることによって、正極活物質と非水電解液との親和性および負極活物質と非水電解液との親和性が所定の相対的関係を満たす範囲内において、負極活物質と非水電解液との親和性がさらに向上し、その結果、ハイレート放電を繰り返した場合の非水電解液二次電池の内部抵抗の増加を好適に抑制することができる。
 本明細書において、負極活物質の吸油量は亜麻仁油の吸油量を基に評価する。亜麻仁油の吸油量(mL/100g)は、上記正極活物質のDBP吸油量Aの測定方法に準拠し、試薬液体としてDBPに変えて亜麻仁油を用い、検査対象粉末に定速度ビュレットで滴定し、粘度特性の変化をトルク検出器によって測定することができる。そして、発生した最大トルクの70%のトルクに対応する、検査対象粉末の単位重量当りの試薬液体の添加量を亜麻仁油の吸油量とする。得られた負極活物質について、上述した方法で亜麻仁油吸油量を測定することによって、本発明に係るリチウムイオン二次電池を構築するのに相応しい負極活物質を選定することができる。
 負極活物質層に占める負極活物質の割合は、凡そ50質量%を超え、凡そ90質量%~99質量%(例えば95質量%~99質量%、典型的には97質量%~99質量%)であることが好ましい。
 負極活物質層は、負極活物質の他に、一般的なリチウムイオン二次電池の負極活物質層に配合され得る1種または2種以上の結着材や増粘材、その他の添加材等の添加材を必要に応じて含有することができる。かかる結着材としては、各種のポリマー材料が挙げられる。例えば、水系の液状組成物(活物質粒子の分散媒として水または水を主成分とする混合溶媒を用いた組成物)を用いて負極活物質層を形成する場合には、結着材として水に溶解または分散するポリマー材料を好ましく採用し得る。水に溶解する(水溶性の)ポリマー材料としては、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)等のセルロース系ポリマー;ポリビニルアルコール(PVA);等が例示される。また、水に分散する(水分散性の)ポリマー材料としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂;酢酸ビニル共重合体;スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、アラビアゴム等のゴム類;が例示される。あるいは、溶剤系の液状組成物(活物質粒子の分散媒が主として有機溶媒である組成物)を用いて負極活物質層を形成する場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド-プロピレンオキサイド共重合体(PEO-PPO)等のポリマー材料を用いることができる。なお、上記で例示したポリマー材料は、結着材として用いられる他に、負極活物質層形成用組成物の増粘剤その他の添加剤として使用されることもあり得る。
 負極活物質層に占めるこれら添加材の割合は、特に限定されないが、凡そ1質量%~10質量%(例えば凡そ1質量%~5質量%、典型的には1質量%~3質量%)であることが好ましい。
 上述したような負極の作製方法は特に限定されず、従来の方法を採用することができ、例えば以下の方法によって作製することができる。まず、負極活物質を、結着材等と共に上記適当な溶媒(水系溶媒、有機溶媒およびこれらの混合溶媒)で混合して、ペースト状またはスラリー状の負極活物質層形成用組成物(以下、ペースト状組成物ともいう)を調製する。こうして調製したペースト状組成物を負極集電体に塗布し、溶媒を揮発させて乾燥させた後、圧縮(プレス)する。これによって該ペースト状組成物を用いて形成された負極活物質層を負極集電体上に備えるリチウムイオン二次電池の負極が得られる。なお、混合、塗布、乾燥および圧縮方法は、上述の正極の製造方法と同様に従来公知の手段を用いることができる。
 例えば上記のようにして作製される負極において、負極集電体上への負極活物質層の単位面積当たりの目付量(負極活物質層形成用組成物の固形分換算の塗布量)は、充分な導電経路(導電パス)を確保することができる限りにおいて特に限定されるものではないが、2.5mg/cm以上(例えば3mg/cm以上、典型的には5mg/cm以上)であり、50mg/cm以下(例えば25mg/cm以下、典型的には15mg/cm以下)とすることが好ましい。
 また、正極活物質および負極活物質は、正極活物質のDBP吸油量A(mL/100g)に対する負極活物質の亜麻仁油吸油量B(mL/100g)の比B/Aが1.27~1.79を満たすものを用いる。上記比B/Aは、1.30以上(例えば1.44以上、典型的には1.53以上)であることが好ましく、また、1.77以下(例えば1.75以下、典型的には1.73以下)であることが好ましい。上記比B/Aが、上記の範囲内であることによって、充放電の繰返しによる抵抗増加が抑制され、特にハイレート放電を繰り返した場合の内部抵抗の増加が抑制される。すなわち、ハイレート放電を繰り返すと、支持塩濃度の高い非水電解液は正負極内に浸入せず、電池ケース内において正負極の外部領域に留まり、正負極内における非水電解液の支持塩濃度が相対的に低下する結果、正負極の内外で支持塩濃度のムラが発生していると推察される。かかる状況において上記比B/Aを1.27~1.79の範囲内とすることにより、正極活物質と非水電解液との親和性および負極活物質と非水電解液との親和性の相対的関係が最適化され、その結果、正負極の内外における非水電解液全体の支持塩濃度のムラが好適に低減(あるいは解消)され、ハイレート放電を繰り返した場合の内部抵抗の増加を抑制するように作用するものと推察される。
 さらに、正極活物質のDBP吸油量A(mL/100g)および負極活物質の亜麻仁油吸油量B(mL/100g)の合計A+Bは、87(mL/200g)以上(例えば91以上、典型的には93以上130以下)であることが好ましい。上記A+Bが、上記の範囲内であることによって、正極活物質と非水電解液との親和性および負極活物質と非水電解液との親和性が適切な相対的関係を満たす範囲内において、正極活物質および負極活物質と非水電解液との親和性がさらに向上し、充放電の繰返しによる抵抗増加、特にハイレート放電を繰り返した場合の非水電解液二次電池の内部抵抗の増加を好適に抑制することができる。
 さらに、正極活物質層および負極活物質層の形成は、非水電解液二次電池中における正極活物質層に含まれる正極活物質の総質量Cおよび負極活物質層に含まれる負極活物質の総質量Dの比C:Dが、凡そ90:10~10:90(例えば70:30~30:70、典型的には65:35~50:50)となるように行うことが好ましい。これによって、正極活物質および負極活物質と非水電解液との親和性がこれら活物質の相対的な関係においてより適切な範囲となる結果、充放電の繰返しによる抵抗増加が好適に抑制され、特にハイレート放電を繰り返した場合の内部抵抗の増加が好適に抑制される。
 こうして作製した正極シートおよび負極シートを用いたリチウムイオン二次電池の構築について大まかな手順を説明する。図1および図2を参照して、上記作製した正極シート30および負極シート40を2枚のセパレータシート50と共に重ね合わせて捲回し、積層方向から押しつぶして拉げさせることによって捲回電極体20を扁平形状に成形する。こうして得られた捲回電極体20を、例えば金属製またはラミネートフィルム製の電池ケース10に収容して電解液を注入した後、該ケース開口部12に蓋体14を装着し、封止する。このようにして、リチウムイオン二次電池100を構築することができる。
 正負極シート間に使用されるセパレータ(セパレータシート)の好適例としては、多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。例えば、厚さ5μm~30μm程度の合成樹脂製(例えばポリエチレン、ポリプロピレン、またはこれらを組み合わせた二層以上の構造を有するポリオレフィン製)多孔質セパレータシートを好適に使用し得る。このセパレータシートには耐熱層等が設けられていてもよい。なお、電解液に替えて、例えば、かかる電解液にポリマーが添加された固体状(ゲル状)電解質等の電解質を使用する場合には、セパレータが不要になること(すなわちこの場合には電解質自体がセパレータとして機能し得る。)があり得る。
 また、電解液は、従来からリチウムイオン二次電池に用いられる非水電解液を特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン等が挙げられ、これらは単独でまたは2種以上を混合して用いることができる。中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、N,N-ジメチルホルムアミド(DMF)からなる群から選択される1種または2種以上を好ましく用いることができる。
 また、上記支持塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等のリチウム化合物(リチウム塩)の1種または2種以上を用いることができる。なお、支持塩の濃度は、従来のリチウムイオン二次電池で使用される非水電解液と同様でよく、特に制限はない。適当なリチウム化合物(支持塩)を凡そ0.1mol/L~5mol/L(例えば0.5mol/L~3mol/L、典型的には0.8mol/L~1.5mol/L)の濃度で含有させた非水電解液を使用することができる。
 このようにして構築されたリチウムイオン二次電池は、上述したように、充放電の繰返しによる抵抗増加が抑制されるので、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。したがって、本発明は、図4に模式的に示すように、かかるリチウムイオン二次電池100(典型的には複数直列接続してなる組電池)を電源として備える車両1(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供する。
 次に、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り質量基準である。
<例1~例21>
(1)正極シートの作製
 正極活物質として、複数のニッケルマンガンコバルト酸リチウム(Li[Ni1/3Mn1/3Co1/3)粉末を用意し、各正極活物質について、上述した測定法に基づいてDBP吸油量を測定した。そして、上記用意した表1に示されるDBP吸油量を示す各正極活物質と、導電剤としてのアセチレンブラックと、結着材としてのカルボキシメチルセルロース(CMC)とを、これらの材料の質量比が88:10:2となるようにイオン交換水中で混合して、ペースト状の正極活物質層形成用組成物を調製した。この組成物を、長尺シート状のアルミニウム箔(厚さ15μm)の両面に合計目付量が16.8mg/cm(固形分基準)となるように均一に塗布して乾燥させた後、圧縮(プレス)することで正極集電体上に正極活物質層を形成し、シート状の正極(正極シート)を作製した。
(2)負極シートの作製
 負極活物質として、複数種の天然黒鉛粉末を用意し、各負極活物質について上述した測定法に基づいて亜麻仁油吸油量を測定した。そして、上記用意した表1に示される亜麻仁油吸油量を示す各負極活物質と、結着剤としてのスチレン-ブタジエン共重合体(SBR)と、増粘材としてのカルボキシメチルセルロース(CMC)とを、これらの材料の質量比が98:1:1となるようにイオン交換水で混合して、ペースト状の負極活物質層形成用組成物を調製した。この組成物を、長尺シート状の銅箔(厚さ10μm)の両面に合計目付量が9.6mg/cm(固形分基準)となるように均一に塗布して乾燥させた後、圧縮(プレス)することで負極集電体上に負極活物質層を形成し、シート状の負極(負極シート)を作製した。
(3)リチウムイオン二次電池の構築
 作製した各正極シートと各負極シートとを二枚の長尺状ポリオレフィン系セパレータ(ここでは厚さが25μmの多孔質ポリエチレンシートを用いた。)とともに積層し、その積層シートを長尺方向に捲回して捲回電極体を作製した。この捲回電極体を電解液とともに円筒型の容器に収容することにより、例1~例21に係るリチウムイオン二次電池(理論容量223mAh)を構築した。電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との3:3:4(質量比)混合溶媒に支持塩として約1mol/LのLiPFを溶解させたものを用いた。また、得られた各リチウムイオン二次電池において、正極活物質層に含まれる正極活物質の総質量と負極活物質層に含まれる負極活物質の総質量の比は、いずれも61:39であった。
[ハイレートサイクルによる抵抗増加率]
 上記で作製した各リチウムイオン二次電池をSOC(State of Charge)60%に調整し、-15℃の温度下にて30Cの定電流で放電させ、その電圧降下から初期反応抵抗(mΩ)を求めた。次に、各リチウムイオン二次電池を再びSOC60%に調整し、-15℃の温度下にて、以下の(I)~(IV)からなる充放電サイクル:
(I)30Cの定電流で10秒間放電させる;
(II)10分間休止する;
(III)5Cの定電流で1分間充電する;
(IV)10分間休止する;
を3000回繰り返すハイレートサイクル試験を行った。その間、100サイクル毎に、SOCを60%に調整する操作を行った。上記試験後の各リチウムイオン二次電池につき、初期反応抵抗の測定と同様にして、ハイレートサイクル後の反応抵抗(mΩ)を測定し、ハイレートサイクル後の反応抵抗値を初期反応抵抗値で除すことにより、上記ハイレートサイクルによる抵抗増加率(%)を算出した。上記ハイレートサイクルによる抵抗増加率(%)を表1、図5および図6に示し、上記ハイレートサイクル後の反応抵抗(mΩ)を図7~図9に示す。
Figure JPOXMLDOC01-appb-T000001
 表1および図5に示されるように、正極活物質のDBP吸油量A(mL/100g)に対する負極活物質の亜麻仁油吸油量B(mL/100g)の比B/Aが1.27~1.79である例3~例8、例14~例18および例21に係るリチウムイオン二次電池は、-15℃におけるハイレートサイクル(3000回)による抵抗増加率がいずれも110%未満であった。一方、上記比B/Aが1.27未満または1.79を超える例1,例2,例9~例13,例19および例20に係るリチウムイオン二次電池は、ハイレートサイクルによる抵抗増加率が114%より高かった。このように、上記比B/Aを1.27~1.79の範囲内に調整することによって、ハイレート放電を繰り返した場合のリチウムイオン二次電池の内部抵抗の増加を抑制できることが判る。
 また、表1および図6に示されるように、上記比B/Aが1.53~1.73である例5~例7、例15および例16に係るリチウムイオン二次電池は、ハイレートサイクルによる抵抗増加率が104%未満であり、ハイレート放電を繰り返した場合のリチウムイオン二次電池の内部抵抗の増加を顕著に抑制できることが判る。
 さらに、表1および図7に示されるように、負極活物質の亜麻仁油吸油量Bが45mL/100g未満の例1,例2および例20に係るリチウムイオン二次電池は、ハイレートサイクルによる抵抗増加率が124%を超えた。この結果から、亜麻仁油吸油量Bが45mL/100g以上の負極活物質を用いることによって、ハイレート放電を繰り返した場合のリチウムイオン二次電池の内部抵抗の増加を抑制できることが判る。
 さらに、表1および図8に示されるように、正極活物質のDBP吸油量Aが25mL/100g未満の例11,例12および例20に係るリチウムイオン二次電池は、ハイレートサイクルによる抵抗増加率が139%を超えた。この結果から、DBP吸油量Aが25mL/100g以上の正極活物質を用いることによって、ハイレート放電を繰り返した場合のリチウムイオン二次電池の内部抵抗の増加を抑制できることが判る。
 さらに、表1および図9に示されるように、正極活物質のDBP吸油量A(mL/100g)および負極活物質の亜麻仁油吸油量B(mL/100g)の合計A+Bが87(mL/200g)未満の例1,例2,例11,例12および例20に係るリチウムイオン二次電池は、ハイレートサイクルによる抵抗増加率が124%を超えた。この結果から、上記A+Bを87(mL/200g)以上に設定することによって、ハイレート放電を繰り返した場合のリチウムイオン二次電池の内部抵抗の増加を抑制できることが判る。

Claims (7)

  1.  正極と負極とを備え、該正極が、正極活物質を主成分として含む正極活物質層を有し、該負極が、負極活物質を主成分として含む負極活物質層を有する非水電解液二次電池であって、
     前記正極活物質のDBP吸油量A(mL/100g)に対する前記負極活物質の亜麻仁油吸油量B(mL/100g)の比B/Aが1.27~1.79であることを特徴とする、非水電解液二次電池。
  2.  前記比B/Aが1.53~1.73である、請求項1に記載の非水電解液二次電池。
  3.  前記正極活物質のDBP吸油量Aが25mL/100g以上である、請求項1または2に記載の非水電解液二次電池。
  4.  前記負極活物質の亜麻仁油吸油量Bが45mL/100g以上である、請求項1または2に記載の非水電解液二次電池。
  5.  前記正極活物質のDBP吸油量A(mL/100g)および前記負極活物質の亜麻仁油吸油量B(mL/100g)の合計A+Bが87(mL/200g)以上である、請求項1または2に記載の非水電解液二次電池。
  6.  前記正極活物質がニッケル、コバルトおよびマンガンのうちの少なくとも1種を構成元素として含むリチウム遷移金属酸化物であり、前記負極活物質が黒鉛であるリチウムイオン二次電池として構築されている、請求項1から5のいずれかに記載の非水電解液二次電池。
  7.  請求項1から6のいずれかに記載の非水電解液二次電池を備える車両。
PCT/JP2011/074217 2011-10-20 2011-10-20 非水電解液二次電池およびその利用 WO2013057826A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180074287.7A CN103891030B (zh) 2011-10-20 2011-10-20 非水电解液二次电池及其利用
KR1020147013062A KR101579700B1 (ko) 2011-10-20 2011-10-20 비수 전해액 이차 전지 및 그 이용
US14/352,849 US9219278B2 (en) 2011-10-20 2011-10-20 Non-aqueous electrolyte secondary battery and use thereof
PCT/JP2011/074217 WO2013057826A1 (ja) 2011-10-20 2011-10-20 非水電解液二次電池およびその利用
JP2013539480A JP5818115B2 (ja) 2011-10-20 2011-10-20 非水電解液二次電池およびその利用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074217 WO2013057826A1 (ja) 2011-10-20 2011-10-20 非水電解液二次電池およびその利用

Publications (1)

Publication Number Publication Date
WO2013057826A1 true WO2013057826A1 (ja) 2013-04-25

Family

ID=48140503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074217 WO2013057826A1 (ja) 2011-10-20 2011-10-20 非水電解液二次電池およびその利用

Country Status (5)

Country Link
US (1) US9219278B2 (ja)
JP (1) JP5818115B2 (ja)
KR (1) KR101579700B1 (ja)
CN (1) CN103891030B (ja)
WO (1) WO2013057826A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252972A (zh) * 2013-06-26 2014-12-31 住友重机械工业株式会社 蓄电单体
JP2019149356A (ja) * 2018-02-28 2019-09-05 住友大阪セメント株式会社 電極材料、電極材料の製造方法、電極、及びリチウムイオン電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135856B2 (ja) * 2016-07-29 2022-09-13 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP6478122B2 (ja) * 2016-10-26 2019-03-06 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法
JP6880453B2 (ja) 2017-09-11 2021-06-02 トヨタ自動車株式会社 非水電解液二次電池
JP6883263B2 (ja) 2017-09-11 2021-06-09 トヨタ自動車株式会社 非水電解液二次電池
JP6399186B1 (ja) * 2017-09-29 2018-10-03 住友大阪セメント株式会社 リチウムイオン電池用電極材料及びリチウムイオン電池
JP6994157B2 (ja) * 2018-02-09 2022-01-14 トヨタ自動車株式会社 非水電解液二次電池および電池組立体
DE102019114806A1 (de) * 2019-06-03 2020-12-03 Value & Intellectual Properties Management Gmbh Verfahren zur Herstellung elektrischer oder elektronischer Bauteile oder Schaltungen auf einem flexiblen flächigen Träger
CN115188953A (zh) * 2022-09-08 2022-10-14 蜂巢能源科技股份有限公司 一种二次电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124958A (ja) * 1987-11-10 1989-05-17 Yuasa Battery Co Ltd 密閉形鉛蓄電池
JP2005285606A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 正極活物質及びその評価方法並びに非水電解質二次電池
JP2007095534A (ja) * 2005-09-29 2007-04-12 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法
JP2008174444A (ja) * 2006-12-22 2008-07-31 Matsushita Electric Ind Co Ltd ニッケル水酸化物、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用電極および非水電解質二次電池
JP2008204886A (ja) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd 負極活物質およびその評価方法ならびにそれを用いた非水電解液二次電池用負極板および非水電解液二次電池
JP2010092649A (ja) * 2008-10-06 2010-04-22 Nippon Carbon Co Ltd リチウムイオン二次電池用負極活物質及び負極
WO2011033707A1 (ja) * 2009-09-18 2011-03-24 パナソニック株式会社 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3605256B2 (ja) 1997-04-23 2004-12-22 東洋炭素株式会社 リチウムイオン二次電池負極用炭素材料及びその負極用炭素材料を用いたリチウムイオン二次電池
US6143448A (en) 1997-10-20 2000-11-07 Mitsubishi Chemical Corporation Electrode materials having carbon particles with nano-sized inclusions therewithin and an associated electrolytic and fabrication process
JP4968978B2 (ja) 1999-04-15 2012-07-04 アオイ電子株式会社 ナノサイズの混在物を含有する炭素粒子を有する電池用電極および電池ならびにそれらの製造方法および電解方法
JP4836415B2 (ja) * 2004-06-18 2011-12-14 株式会社東芝 非水電解質二次電池
JP4988169B2 (ja) 2005-05-16 2012-08-01 日立マクセルエナジー株式会社 リチウム二次電池
US9490499B2 (en) * 2006-07-19 2016-11-08 Nippon Carbon Co., Ltd. Negative electrode active material for lithium ion rechargeable battery and negative electrode using the same
JP5219422B2 (ja) 2007-07-31 2013-06-26 三洋電機株式会社 非水電解質二次電池
JP2009193805A (ja) 2008-02-14 2009-08-27 Panasonic Corp 非水電解質二次電池正極板用ペースト及び、これを用いた正極板と非水電解質二次電池
JP5229598B2 (ja) 2009-09-25 2013-07-03 トヨタ自動車株式会社 リチウム二次電池及びその製造方法
CN102282715B (zh) 2009-12-16 2014-03-19 丰田自动车株式会社 锂离子二次电池
KR101421860B1 (ko) * 2010-03-31 2014-07-22 신닛테츠스미킨 카부시키카이샤 개질 천연 흑연 입자 및 그 제조 방법
US9553310B2 (en) 2010-10-15 2017-01-24 Toyota Jidosha Kabushiki Kaisha Secondary battery
WO2012049778A1 (ja) 2010-10-15 2012-04-19 トヨタ自動車株式会社 二次電池
WO2013018179A1 (ja) 2011-07-29 2013-02-07 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124958A (ja) * 1987-11-10 1989-05-17 Yuasa Battery Co Ltd 密閉形鉛蓄電池
JP2005285606A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 正極活物質及びその評価方法並びに非水電解質二次電池
JP2007095534A (ja) * 2005-09-29 2007-04-12 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法
JP2008174444A (ja) * 2006-12-22 2008-07-31 Matsushita Electric Ind Co Ltd ニッケル水酸化物、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用電極および非水電解質二次電池
JP2008204886A (ja) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd 負極活物質およびその評価方法ならびにそれを用いた非水電解液二次電池用負極板および非水電解液二次電池
JP2010092649A (ja) * 2008-10-06 2010-04-22 Nippon Carbon Co Ltd リチウムイオン二次電池用負極活物質及び負極
WO2011033707A1 (ja) * 2009-09-18 2011-03-24 パナソニック株式会社 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252972A (zh) * 2013-06-26 2014-12-31 住友重机械工业株式会社 蓄电单体
JP2019149356A (ja) * 2018-02-28 2019-09-05 住友大阪セメント株式会社 電極材料、電極材料の製造方法、電極、及びリチウムイオン電池

Also Published As

Publication number Publication date
US20140255783A1 (en) 2014-09-11
CN103891030A (zh) 2014-06-25
KR20140083029A (ko) 2014-07-03
US9219278B2 (en) 2015-12-22
JP5818115B2 (ja) 2015-11-18
JPWO2013057826A1 (ja) 2015-04-02
KR101579700B1 (ko) 2015-12-22
CN103891030B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5818115B2 (ja) 非水電解液二次電池およびその利用
EP2894703B1 (en) Nonaqueous electrolyte secondary battery
JP6098878B2 (ja) 非水電解液二次電池
JP5229598B2 (ja) リチウム二次電池及びその製造方法
US9184442B2 (en) Secondary battery
KR101621646B1 (ko) 리튬 2차 전지, 리튬 2차 전지의 제조 방법, 및 리튬 2차 전지를 구비하는 차량
WO2013080379A1 (ja) リチウム二次電池とその製造方法
US9172083B2 (en) Lithium ion secondary battery
WO2011089701A1 (ja) リチウム二次電池
JP5598716B2 (ja) リチウム二次電池及びその製造方法
JP2016062860A (ja) 非水電解質二次電池用電極活物質およびそれを備えた非水電解質二次電池
JP5696904B2 (ja) リチウムイオン二次電池およびその製造方法
WO2012169030A1 (ja) リチウムイオン二次電池
JP2011090876A (ja) リチウム二次電池および該電池の製造方法
WO2012049778A1 (ja) 二次電池
CA2777377C (en) Non-aqueous electrolyte lithium ion secondary battery
JP5682793B2 (ja) リチウム二次電池およびその製造方法
JP5564872B2 (ja) 非水電解質二次電池
WO2011074083A1 (ja) リチウムイオン二次電池
JP5418828B2 (ja) リチウム二次電池とその製造方法
JP2013149387A (ja) リチウム二次電池
JP2013131471A (ja) 非水電解質二次電池
JPWO2013080379A1 (ja) リチウム二次電池とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539480

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14352849

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147013062

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11874374

Country of ref document: EP

Kind code of ref document: A1