WO2012039424A1 - フィルムコンデンサ用フィルムおよびフィルムコンデンサ - Google Patents

フィルムコンデンサ用フィルムおよびフィルムコンデンサ Download PDF

Info

Publication number
WO2012039424A1
WO2012039424A1 PCT/JP2011/071483 JP2011071483W WO2012039424A1 WO 2012039424 A1 WO2012039424 A1 WO 2012039424A1 JP 2011071483 W JP2011071483 W JP 2011071483W WO 2012039424 A1 WO2012039424 A1 WO 2012039424A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
group
resin
mol
tetrafluoroethylene
Prior art date
Application number
PCT/JP2011/071483
Other languages
English (en)
French (fr)
Inventor
明天 高
恵吏 向井
信之 小松
幸治 横谷
麻有子 立道
翔 英
隆宏 北原
琢磨 川部
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US13/825,476 priority Critical patent/US9156930B2/en
Priority to EP11826869.7A priority patent/EP2620963B1/en
Priority to KR1020137010026A priority patent/KR101449356B1/ko
Priority to CN201180045116.1A priority patent/CN103119671B/zh
Publication of WO2012039424A1 publication Critical patent/WO2012039424A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a film for a film capacitor and a film capacitor having high dielectric properties and electrical insulation properties, particularly improved electrical characteristics at high temperatures.
  • VDF vinylidene fluoride
  • a film-forming resin for a film capacitor film because of its high dielectric constant (Patent Literature). 1, 2). It is also known to blend various high dielectric complex oxide particles in order to achieve higher dielectric properties (Patent Documents 3 to 6).
  • the VDF resin used in these film capacitor films has a large content of VDF units in order to utilize the high dielectric properties of the VDF resin.
  • the present inventors have realized that it is necessary to further improve the electrical insulation properties, particularly the electrical characteristics at high temperatures, and have studied the improvement of the VDF resin itself, and have completed the present invention.
  • An object of the present invention is to provide a film for a film capacitor having improved electrical insulation properties, particularly electrical characteristics at high temperatures, while maintaining a high relative dielectric constant of a VDF resin.
  • the present invention relates to a film comprising a TFE resin (a1) containing vinylidene fluoride (VDF) units and tetrafluoroethylene (TFE) units in a range of 0/100 to 49/51 in terms of VDF units / TFE units (mole% ratio).
  • TFE tetrafluoroethylene
  • the present invention relates to a film for a film capacitor to be included as a forming resin (A).
  • the TFE resin (a1) may further contain an ethylenically unsaturated monomer unit.
  • TFE-type resin (a1) (A1-1) 55.0-90.0 mol% of TFE units, 5.0-44.9 mol% of VDF units, and formula (1):
  • CX 1 X 2 CX 3 (CF 2 ) n X 4 (Wherein X 1 , X 2 , X 3 and X 4 are the same or different and all are H, F or Cl; n is an integer of 0 to 8, except TFE and VDF)
  • CF 2 CF-ORf 1 (Wherein Rf 1 is an alkyl group or fluoroalkyl group having 1 to 3 carbon atoms) a TFE-VDF resin containing 0.1 to 0.8 mol% of an ethylenically unsaturated monomer unit; or ( a1-3
  • the TFE resin (a1) preferably has a storage elastic modulus (E ′) at 170 ° C. of 60 to 400 MPa as measured by dynamic viscoelasticity.
  • the film-forming resin (A) may contain a non-fluorine resin (a2) in addition to the TFE resin (a1).
  • Preferred examples of the non-fluorine resin (a2) include at least one selected from the group consisting of a cellulose resin and an acrylic resin.
  • the film for a film capacitor of the present invention may further contain inorganic oxide particles (B).
  • inorganic oxide particles (B), (B1) inorganic oxide particles of one metal element of Group 2, Group 3, Group 4, Group 12 or Group 13 of the periodic table, or a composite of these inorganic oxides Those containing at least particles are preferred.
  • Preferred inorganic oxide particles or these inorganic oxide composite particles (B1) are at least one selected from the group consisting of Al 2 O 3 , MgO, ZrO 2 , Y 2 O 3 , BeO, and MgO ⁇ Al 2 O 3. Examples of the particles include ⁇ -type Al 2 O 3 .
  • Examples of the inorganic oxide particles (B) include the following (B2) to (B5): (B2) Formula (B2): M 1 a1 N b1 O c1 (Wherein M 1 is a Group 2 metal element of the periodic table; N is a Group 4 metal element of the periodic table; a1 is 0.9 to 1.1; b1 is 0.9 to 1.1; c1 is 2.8.
  • the film for a film capacitor of the present invention can be produced by an extrusion method.
  • the present invention also relates to a film capacitor in which an electrode layer is laminated on at least one surface of the film for a film capacitor of the present invention.
  • the electrical insulation is improved while maintaining a high relative dielectric constant.
  • the film for film capacitor of the present invention comprises a film-forming resin (A) containing a TFE resin (a1) containing VDF units and TFE units in a range of 0/100 to 49/51 in terms of VDF units / TFE units (mole% ratio). Include as.
  • the film-forming resin (A) contains a TFE-based resin (a1) containing VDF units and TFE units in the range of 0/100 to 49/51 in terms of VDF units / TFE units (mole% ratio). .
  • the TFE resin (a1) used in the present invention has a high melting point because it contains many TFE units.
  • the electrical properties at high temperatures can be improved, and a film can be produced by an extrusion method.
  • the TFE resin (a1) may be a TFE homopolymer (TFE unit 100 mol%), but the VDF unit is included in the total of the VDF unit and the TFE unit from the viewpoint of effectively using the high dielectric property of VDF. It is preferable to contain 5 mol% or more, and it is preferable to contain 40 mol% or less.
  • CF 2 CFCl
  • CH 2 CFCF 3
  • CH 2 CH-C 4 F 9
  • CH 2 CH-C 6 F 13
  • CH 2 CF-C 3 F 7
  • CF 2 ⁇ CFCF 3 CH 2 ⁇ CF—C 3 F 6 H and the like
  • CF 2 ⁇ CFCl CH
  • CF 2 CF-OCF 3
  • CF 2 CF-OCF 2 CF 2 CF 3 group consisting of Is preferable from the viewpoint that the mechanical strength of the TFE resin at high temperature is good.
  • the TFE-VDF resin (a1-1) containing the ethylenically unsaturated monomer unit (1) represented by the formula (1) the TFE unit is 55.0 to 90.0 mol%, the VDF unit is 5 And a copolymer containing 0.1 to 44.9 mol% and 0.1 to 10.0 mol% of the ethylenically unsaturated monomer unit (1).
  • TFE-VDF resin (a1-1) is a TFE unit of 55.0 to 85.0 mol% and a VDF unit of 10.0 to 44.9 in view of good mechanical strength at high temperature.
  • the ethylenically unsaturated monomer (1) is CH 2 ⁇ CH—C 4 F 9 , CH 2 ⁇ CH—C 6 F. 13 and CH 2 ⁇ CF—C 3 F 6 H, at least one selected from the group consisting of 55.0 to 80.0 mol% of TFE units, 19.5 to 44.9 mol% of VDF units, A copolymer containing 0.1 to 0.6 mol% of ethylenically unsaturated monomer unit (1) is preferred.
  • the TFE-VDF resin (a1-2) containing the ethylenically unsaturated monomer unit (2) represented by the formula (2) has a TFE unit of 55.0 to 90.0 mol% and a VDF unit of 9 A copolymer containing 0.2 to 44.2 mol% and 0.1 to 0.8 mol% of the ethylenically unsaturated monomer unit (2) is preferable from the viewpoint of good mechanical strength at high temperature.
  • TFE-VDF resin (a1-2) is a TFE unit of 58.0 to 85.0 mol% and a VDF unit of 14.5 to 39.9 from the viewpoint of good mechanical strength at high temperature. And a copolymer containing 0.1 to 0.5 mol% of mol% and ethylenically unsaturated monomer units (2).
  • the TFE-VDF resin (a1-3) containing both ethylenically unsaturated monomer units (1) and (2) has a TFE unit of 55.0 to 90.0 mol% and a VDF unit of 5.0-44.8 mol%, ethylenically unsaturated monomer unit (1) 0.1-10.0 mol% and ethylenically unsaturated monomer unit (2) 0.1-0.
  • a copolymer containing 8 mol% is preferred from the viewpoint of good mechanical strength at high temperatures.
  • TFE-VDF resin (a1-3) is a TFE unit of 55.0 to 85.0 mol%, a VDF unit of 9.5 to 44.8 mol% from the viewpoint of good mechanical strength,
  • Examples include copolymers containing 0.1 to 5.0 mol% of ethylenically unsaturated monomer units (1) and 0.1 to 0.5 mol% of ethylenically unsaturated monomer units (2).
  • TFE units from the viewpoint of good mechanical strength at high temperature, 55.0 to 80.0 mol% of TFE units, 19.8 to 44.8 mol% of VDF units, ethylenically unsaturated monomer units
  • examples thereof include a copolymer containing 0.1 to 2.0 mol% of (1) and 0.1 to 0.3 mol% of ethylenically unsaturated monomer unit (2).
  • the TFE unit is 58.0 to 85.0 mol%
  • the VDF unit is 9.5 to 39.8.
  • the TFE resin (a1) used in the present invention preferably has a storage elastic modulus (E ′) at 170 ° C. of 60 to 400 MPa as measured by dynamic viscoelasticity.
  • E ′ storage elastic modulus
  • the storage elastic modulus (E ′) is preferably 80 to 350 MPa, more preferably 100 to 350 MPa from the viewpoint of good processability for film formation.
  • the storage elastic modulus (E ′) in the present invention is a value measured at 170 ° C. by dynamic viscoelasticity measurement, and more specifically, a dynamic viscoelasticity device DVA220 manufactured by IT Measurement Control Co., Ltd. has a length of 30 mm. , A value obtained by measuring a sample having a width of 5 mm and a thickness of 0.25 mm under the conditions of a tensile mode, a grip width of 20 mm, a measurement temperature of 25 ° C. to 250 ° C., a temperature increase rate of 2 ° C./min, and a frequency of 1 Hz.
  • the TFE resin (a1) used in the present invention preferably has a melt flow rate (MFR) of 0.1 to 50 g / 10 min from the viewpoint of good film forming workability.
  • MFR conforms to ASTM D3307-1 and uses a melt indexer (manufactured by Toyo Seiki Co., Ltd.), and the mass of the polymer flowing out from a nozzle with an inner diameter of 2 mm and a length of 8 mm under a load of 297 ° C. and 5 kg per 10 minutes. (G / 10 min).
  • the TFE resin (a1) used in the present invention preferably has a melting point of 180 ° C. or higher.
  • a high melting point improves electrical characteristics at high temperatures, particularly dielectric characteristics.
  • the melting point is more preferably 200 ° C. or more, and the upper limit is preferably 300 ° C., more preferably 250 ° C., particularly 220 ° C. from the viewpoint of workability.
  • the melting point corresponds to the peak of the endothermic curve obtained by 2nd run by performing thermal measurement at a heating rate of 10 ° C./min according to ASTM D-4591 using a differential operation calorimeter RDC220 (manufactured by Seiko Instrument). Temperature.
  • the TFE resin (a1) used in the present invention preferably has a thermal decomposition starting temperature (1% mass loss temperature) of 360 ° C. or higher.
  • a more preferable thermal decomposition starting temperature is 370 ° C. or higher, and the upper limit is not particularly limited.
  • the thermal decomposition start temperature is a temperature at which 1% by mass of the TFE resin subjected to the heating test using a differential / thermogravimetric measuring device (TG-DTA) decomposes.
  • TG-DTA thermogravimetric measuring device
  • the TFE resin (a1) used in the present invention can be produced according to conventionally known polymerization conditions by a conventionally known solution polymerization method, bulk polymerization method, emulsion polymerization method, and suspension polymerization method.
  • the film-forming resin (A) may be used in combination with a non-fluorine resin (a2) in addition to the TFE resin (a1).
  • non-fluorinated resin (a2) to be used in combination a cellulose resin and / or an acrylic resin is preferable from the viewpoint of good compatibility with the TFE resin.
  • the non-fluorine resin (a2) When the non-fluorine resin (a2) is used in combination, the effect of reducing the temperature dependency of the dielectric loss of the TFE resin (a1), particularly the temperature dependency at a high temperature, is exhibited.
  • cellulose resin examples include ester-substituted celluloses such as cellulose monoacetate, cellulose diacetate, cellulose triacetate, cellulose acetate propionate, and cellulose acetate butyrate; celluloses substituted with ethers such as methylcellulose, ethylcellulose, and hydroxypropylmethylcellulose. Etc. can be exemplified. Among these, cellulose acetate propionate and cellulose acetate butyrate are preferable from the viewpoint of good compatibility with the TFE resin.
  • acrylic resin examples include polymethyl methacrylate and styrene-methyl methacrylate copolymer. Among them, polymethyl methacrylate is preferable from the viewpoint of good compatibility with the TFE resin.
  • the TFE resin (a1) and the non-fluorine resin (a2) are 90/10 to 99.9 / 0.1, more preferably 95/5 to 98/2.
  • the inclusion by mass ratio is preferable from the viewpoint that the relative permittivity is large and the temperature dependence of dielectric loss at a frequency on the order of Hz is small.
  • the film for a film capacitor of the present invention may further contain inorganic oxide particles (B).
  • the inorganic oxide particles (B) that may be used in the present invention, the following inorganic oxide particles (B1) are preferably exemplified.
  • Inorganic oxide particles of one metal element of Group 2, Group 3, Group 4, Group 12 or Group 13 of the periodic table, or these inorganic oxide composite particles examples include Be, Mg, Ca, Sr, Ba, Y, Ti, Zr, Zn, and Al.
  • oxides of Al, Mg, Y, and Zn are versatile and inexpensive, and have a volume. This is preferable from the viewpoint of high resistivity.
  • At least one particle selected from the group consisting of Al 2 O 3 , MgO, ZrO 2 , Y 2 O 3 , BeO, and MgO ⁇ Al 2 O 3 is preferable from the viewpoint of high volume resistivity.
  • ⁇ -type Al 2 O 3 having a crystal structure is preferable because it has a large specific surface area and good dispersibility in the resin.
  • the inorganic oxide particles (B) that may be used in the present invention, instead of the inorganic oxide particles (B1) or in addition to the inorganic oxide particles (B1), the following inorganic oxide particles (B2) to At least one of (B5) can be used. However, in the inorganic oxide particles (B2) to (B5), the inorganic oxide particles or the inorganic oxide composite particles (B1) are excluded.
  • M 1 is a Group 2 metal element of the periodic table; N is a Group 4 metal element of the periodic table; a1 is 0.9 to 1.1; b1 is 0.9 to 1.1; c1 is 2.8.
  • M 1 and N may each be a plurality of inorganic composite oxide particles: For example, Ti and Zr are preferable as the Group 4 metal element, and Mg, Ca, Sr, and Ba are preferable as the Group 2 metal element.
  • At least one particle selected from the group consisting of BaTiO 3 , SrTiO 3 , CaTiO 3 , MgTiO 3 , BaZrO 3 , SrZrO 3 , CaZrO 3 and MgZrO 3 is preferable from the viewpoint of high volume resistivity.
  • the complex oxide (B3) specifically, magnesium stannate, calcium stannate, strontium stannate, barium stannate, magnesium antimonate, calcium antimonate, strontium antimonate, barium antimonate, magnesium zirconate, Examples thereof include calcium zirconate, strontium zirconate, barium zirconate, magnesium indium acid, calcium indium acid, strontium indium acid, and barium indium acid.
  • (B4) Complex oxide particles containing at least three metal elements selected from the group consisting of Group 2 metal elements and Group 4 metal elements of the periodic table:
  • specific examples of the Group 2 metal element of the periodic table include Be, Mg, Ca, Sr, Ba and the like.
  • Specific examples of the Group 4 metal element of the periodic table include, for example, , Ti, Zr, Hf and the like.
  • Preferred combinations of three or more selected from Group 2 metal elements and Group 4 metal elements of the periodic table include, for example, a combination of Sr, Ba, Ti, a combination of Sr, Ti, Zr, a combination of Sr, Ba, Zr, Ba, Ti, Zr combination, Sr, Ba, Ti, Zr combination, Mg, Ti, Zr combination, Ca, Ti, Zr combination, Ca, Ba, Ti combination, Ca, Ba, Zr combination, Ca, Ba, Ti, Zr combination, Ca, Sr, Zr combination, Ca, Sr, Ti, Zr combination, Mg, Sr, Zr combination, Mg, Sr, Ti, Zr combination, Mg, Ba, A combination of Ti, Zr, a combination of Mg, Ba, Zr and the like can be mentioned.
  • composite oxide (B4) include strontium zirconate titanate, barium zirconate titanate, barium strontium zirconate titanate, magnesium zirconate titanate, calcium zirconate titanate, and barium zirconate titanate. Examples include calcium.
  • Inorganic oxide composite particles of an oxide of a metal element of Group 2, 3, 4, 12, 12 or 13 of the periodic table and silicon oxide A composite particle of the inorganic oxide particles (B1) and silicon oxide, specifically, from 3Al 2 O 3 ⁇ 2SiO 2, 2MgO ⁇ SiO 2, ZrO 2 ⁇ SiO 2 and the group consisting of MgO ⁇ SiO 2 There may be mentioned at least one kind of particles selected.
  • composite oxide particles such as lead zirconate titanate, lead antimonate, zinc titanate, lead titanate, and titanium oxide may be used in combination.
  • the primary average particle diameter of the inorganic oxide particles (B) is preferably small, and so-called nanoparticles of 1 ⁇ m or less are particularly preferable. By uniformly dispersing such inorganic oxide nanoparticles, the electrical insulation of the film can be significantly improved with a small amount of blending.
  • a preferable primary average particle diameter is 300 nm or less, further 200 nm or less, and particularly 100 nm or less. Although a minimum is not specifically limited, It is preferable that it is 10 nm or more from the surface of the difficulty of manufacture, the difficulty of uniform dispersion
  • the primary average particle diameter is a value obtained by conversion from the BET method.
  • These inorganic oxide particles (B) include those not intended to improve dielectric properties, such as inorganic oxide particles (B1), and ferroelectric (relative dielectric constant ( Inorganic oxide particles (B2) to (B5) having 1 kHz, 25 ° C.) of 100 or more).
  • the inorganic oxide (B1) is not necessarily required to have a high dielectric property because it is intended to improve electrical insulation and thus volume resistivity. Therefore, even if Al 2 O 3 or MgO is used as one kind of general-purpose and inexpensive metal inorganic oxide particles (B1), the volume resistivity can be improved.
  • the relative dielectric constant (1 kHz, 25 ° C.) of these one kind of metal inorganic oxide particles (B1) is less than 100, and further 10 or less.
  • the blending amount may be small so that the effect of improving the dielectric property cannot be expected so much. From the viewpoint of particle size, it is also effective to use a material having a primary average particle size of 1 ⁇ m or less, which is difficult to uniformly disperse when mixed in a large amount.
  • Examples of the inorganic material constituting the ferroelectric inorganic oxide particles (B2) to (B5) include composite metal oxides, composites thereof, solid solutions, sol-gel bodies, etc., but are not limited thereto. Absent.
  • the inorganic oxide particles (B1) are contained in 100 parts by mass of the film-forming resin (A). Preferably they are 0.01 mass part or more and less than 20 mass parts. When the content exceeds 20 parts by mass, the electrical insulation (withstand voltage) tends to decrease, and it is easy to uniformly disperse the inorganic oxide particles (B1) in the film-forming resin (A). May not be.
  • a more preferable upper limit is 8 parts by mass, and further 6 parts by mass. Moreover, when there is too little content, the electrical insulation improvement effect will not be acquired, therefore a more preferable minimum is 0.1 mass part, Furthermore, 0.5 mass part, Especially 1 mass part.
  • the ferroelectric inorganic oxide particles (B2) to (B5) may be mixed in a relatively large amount.
  • 10 mass parts or more and 300 mass parts or less can be illustrated with respect to 100 mass parts of film forming resin (A).
  • the reinforcing filler is a component added to impart mechanical properties (tensile strength, hardness, etc.) and is a particle or fiber other than the inorganic oxide particles (B), such as silicon carbide and silicon nitride. And boron compound particles or fibers.
  • Silica silicon oxide
  • Silica may be blended as a processing improver or a reinforcing filler. However, from the viewpoint of the effect of improving insulation, the thermal conductivity is low, and the volume resistivity is greatly reduced particularly at high temperatures. Inferior to the inorganic oxide particles (B).
  • the affinity improver is a compound other than the film-forming resin (A), and examples thereof include functional group-modified polyolefin, styrene-modified polyolefin, functional group-modified polystyrene, polyacrylimide, cumylphenol, and the like. You may include in the range which does not impair the effect of invention. In addition, it is more preferable that these components are not included from the point of the insulation improvement effect.
  • the film for a film capacitor of the present invention can be formed into a film by an extrusion molding method, a compression molding method, a blow molding method or the like.
  • Examples of the method for forming a film by the extrusion molding method include a method of melt-kneading the film-forming resin (A), further, if necessary, inorganic oxide particles (B) and other components (C), and extruding with a flat die. it can.
  • a method of forming a film by compression molding for example, film-forming resin (A), if necessary, inorganic oxide particles (B), and other components (C) are melt-kneaded with a lab plast mill or the like, and heat The method of heat-compressing with a press etc. can be illustrated.
  • a film-forming resin (A) for example, a film-forming resin (A), and if necessary, inorganic oxide particles (B) and other components (C) can be melt-kneaded and inflation-molded. .
  • the film for film capacitor of the present invention can be produced, for example, by forming a coating composition containing, for example, a film-forming resin (A), and if necessary, inorganic oxide particles (B), other components (C) and a solvent (D). It can also be produced by coating to form a film and then peeling.
  • a coating composition containing, for example, a film-forming resin (A), and if necessary, inorganic oxide particles (B), other components (C) and a solvent (D). It can also be produced by coating to form a film and then peeling.
  • any solvent that dissolves the TFE resin (a1) and, if necessary, the non-fluorine resin (a2) can be used.
  • the polar organic solvent for example, ketone solvents, ester solvents, carbonate solvents, cyclic ether solvents, and amide solvents are preferable.
  • the total solid content concentration of the film-forming resin (A), inorganic oxide particles (B), and other optional components (C) is 5 to 30% by mass depending on the solvent (D). It is preferable that the coating operation is easy and the stability of the composition is good.
  • the coating composition can be prepared by dissolving or dispersing each of these components in a solvent.
  • the inorganic oxide particles (B) it is important to uniformly disperse the inorganic oxide particles (B) in the film-forming resin (A).
  • the blending amount of the inorganic oxide particles (B) is small, it is easy to disperse relatively uniformly.
  • a surfactant may be added to the coating composition in addition to using the affinity improver.
  • surfactants cationic, anionic, nonionic and amphoteric surfactants can be used as long as they do not impair electrical insulation.
  • nonionic surfactants particularly polymer-based nonionics, can be used.
  • a surfactant is preferred.
  • the polymeric nonionic surfactant include polyoxyethylene lauryl ether and sorbitan monostearate.
  • Coating methods for the coating composition include knife coating method, cast coating method, roll coating method, gravure coating method, blade coating method, rod coating method, air doctor coating method, curtain coating method, fakunrun coating method, kiss coating method Method, screen coating method, spin coating method, spray coating method, extrusion coating method, electrodeposition coating method, etc. can be used, but among these, operability is easy, film thickness variation is small, and productivity is excellent. From the point of view, a roll coating method, a gravure coating method, a cast coating method, particularly a cast coating method is preferable, and an excellent film for a film capacitor can be produced.
  • the coating composition when the coating composition is cast on the substrate surface, dried, and then peeled off from the substrate, the resulting film is excellent in terms of high electrical insulation and high withstand voltage, and is thin and flexible. It is excellent in that it has
  • the film for a film capacitor of the present invention thus obtained can have a film thickness of 250 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the lower limit of the film thickness is preferably about 2 ⁇ m from the viewpoint of maintaining mechanical strength.
  • the present invention also relates to a film capacitor in which an electrode layer is laminated on at least one surface of the film for a film capacitor of the present invention.
  • the structure of the film capacitor for example, a laminated type in which electrode layers and high dielectric films are alternately laminated (Japanese Patent Laid-Open Nos. 63-181411, 3-18113, etc.) or a tape-like high dielectric Winding type in which a body film and an electrode layer are wound (disclosed in Japanese Patent Application Laid-Open No. 60-262414 in which electrodes are not continuously laminated on a high dielectric film, or electrodes on a high dielectric film And the like disclosed in Japanese Patent Laid-Open No. 3-286514, etc.) are continuously laminated.
  • a wound film capacitor that has a simple structure and is relatively easy to manufacture
  • a wound film capacitor in which electrode layers are continuously laminated on a high dielectric film it is generally a high dielectric that has electrodes laminated on one side. Two films are rolled up so that the electrodes do not come into contact with each other. If necessary, the film is rolled and fixed so as not to be loosened.
  • an electrode layer is not specifically limited, Generally, it is a layer which consists of conductive metals, such as aluminum, zinc, gold
  • the vapor-deposited metal film is not limited to a single layer, and for example, a method of forming a semiconductor aluminum oxide layer on an aluminum layer to provide moisture resistance to form an electrode layer (for example, JP-A-2-250306) If necessary, it may be multilayered.
  • the thickness of the vapor-deposited metal film is not particularly limited, but is preferably in the range of 100 to 2,000 angstrom, more preferably 200 to 1,000 angstrom. When the thickness of the deposited metal film is within this range, the capacity and strength of the capacitor are balanced, which is preferable.
  • the method for forming the film is not particularly limited, and for example, a vacuum vapor deposition method, a sputtering method, an ion plating method, or the like can be employed. Usually, a vacuum deposition method is used.
  • Vacuum deposition methods include, for example, the batch method for molded products, the semi-continuous method used for long products, and the air-to-air method.
  • the semi-continuous method is the mainstay. Has been done.
  • the semi-continuous metal vapor deposition method is a method in which after vapor deposition and winding of a metal in a vacuum system, the vacuum system is returned to the atmospheric system, and the deposited film is taken out.
  • the semi-continuous method can be performed by the method described in Japanese Patent No. 3664342 with reference to FIG.
  • the film surface can be subjected in advance to treatment for improving adhesive properties such as corona treatment and plasma treatment.
  • the thickness of the metal foil is not particularly limited, but is usually in the range of 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 3 to 15 ⁇ m.
  • the fixing method is not particularly limited, and for example, fixing and protecting the structure may be performed simultaneously by sealing with resin or enclosing in an insulating case or the like.
  • the method for connecting the lead wires is not limited, and examples thereof include welding, ultrasonic pressure welding, heat pressure welding, and fixing with an adhesive tape.
  • a lead wire may be connected to the electrode before it is wound.
  • the opening may be sealed with a thermosetting resin such as urethane resin or epoxy resin to prevent oxidative degradation.
  • the film capacitor of the present invention thus obtained has improved electrical insulation properties, particularly at high temperatures, while maintaining high dielectric properties.
  • Aluminum is vapor-deposited on both sides of the composite film in a vacuum to prepare a sample. This sample is measured for its capacitance and dielectric loss tangent at frequencies of 100 Hz, 1 kHz, and 10 kHz at 30 ° C. and 90 ° C. using an impedance analyzer (HP4194A manufactured by Hewlett-Packard Company). The relative dielectric constant is calculated from each obtained capacitance.
  • volume resistivity The volume resistivity ( ⁇ ⁇ cm) is measured at 90 ° C. in a dry air atmosphere at DC 300 V with a digital superinsulator / microammeter.
  • CH 2 CHCF 2 CF 2 CF 2 CF 2 CF 2 CF 3 was simultaneously charged so as to be 1.21 parts by mass, and the system pressure was kept at 0.8 MPa.
  • TFE / VDF / CH 2 CHCF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 3 was simultaneously charged so as to be 1.21 parts by mass, and the system pressure was kept at 0.8 MPa.
  • the CF 2 CF 3 copolymer was washed with water and dried to obtain 10.4 kg of powder.
  • melt kneading was performed at a cylinder temperature of 290 ° C. using a ⁇ 20 mm single screw extruder to obtain pellets.
  • the pellet was heated at 150 ° C. for 12 hours.
  • the obtained pellets had the following composition and physical properties.
  • TFE / VDF / CH 2 CHCF 2 CF 2 CF 2 CF 2 CF 2 CF 3: 60.1 / 39.6 / 0.3 ( mol% ratio)
  • Perfluoro (propyl) vinyl ether was simultaneously charged to 0.9 parts by mass, and the system pressure was maintained at 0.9 MPa.
  • the polymerization was stopped when the added amount of the mixed gas monomer finally reached 8 kg, the pressure was released and the pressure was returned to atmospheric pressure, and the resulting TFE / VDF / perfluoro (propyl) vinyl ether copolymer was washed with water. And dried to obtain 7.5 kg of powder.
  • melt kneading was performed at a cylinder temperature of 280 ° C. using a ⁇ 20 mm single screw extruder to obtain pellets. The pellet was heated at 150 ° C. for 12 hours.
  • the obtained pellets had the following composition and physical properties.
  • TFE / VDF / perfluoro (propyl) vinyl ether 65.5 / 34.3 / 0.2 (molar ratio) Melting point: 228 ° C MFR: 1.6 g / 10 min (297 ° C., 5 kg) Storage elastic modulus at 170 ° C. (E ′): 87 MPa Thermal decomposition start temperature (1% mass loss temperature): 383 ° C.
  • CH 2 CHCF 2 CF 2 CF 2 CF 2 CF 2 CF 3 0.8 parts and perfluoro (propyl) vinyl ether were simultaneously charged to 0.3 parts, and the system pressure was kept at 0.8 MPa.
  • the obtained pellets had the following composition and physical properties.
  • TFE / VDF / CH 2 CHCF 2 CF 2 CF 2 CF 2 CF 2 CF 3 / perfluoro (propyl) vinyl ether: 59.8 / 39.9 / 0.2 / 0.1 (mole% ratio)
  • Example 1 The pellet resin obtained in Synthesis Example 1 was molded by heat press at 250 ° C. to obtain a film having a thickness of 207 ⁇ m.
  • Example 2 The pellet resin obtained in Synthesis Example 2 was molded by heat press at 250 ° C. to obtain a film having a thickness of 201 ⁇ m.
  • Example 3 The pellet resin obtained in Synthesis Example 3 was molded by a heat press at 250 ° C. to obtain a film having a thickness of 202 ⁇ m.
  • Example 4 After mixing 100 parts by mass of the pellet resin obtained in Synthesis Example 1 and 10 parts by mass of alumina (primary average particle diameter 100 nm), kneading at 250 ° C., molding by heat press at 250 ° C., thickness A 210 ⁇ m film was obtained.
  • Example 5 100 parts by mass of the pellet resin obtained in Synthesis Example 1 and 20 parts by mass of barium titanate (primary average particle diameter 100 nm) were mixed and kneaded at 250 ° C., and then molded by heat press at 250 ° C., A film having a thickness of 215 ⁇ m was obtained.
  • Comparative Example 1 A film for comparative film capacitor was obtained in the same manner as in Example 1 except that a VDF homopolymer (Neoflon VDF VP-832 manufactured by Daikin Industries, Ltd.) was used as the film-forming resin.
  • a VDF homopolymer Neoflon VDF VP-832 manufactured by Daikin Industries, Ltd.
  • the resin of the present invention has a particularly low dielectric loss tangent and a low frequency dependency.
  • Example 6 Electrodes were formed by vapor-depositing aluminum on both surfaces of the film produced in Example 1 with a target of 3 ⁇ / ⁇ using a vacuum deposition apparatus (VE-2030 manufactured by Vacuum Device Co., Ltd.). A voltage-applying lead wire was attached to these aluminum electrodes to produce stamp-type (for simple evaluation) film capacitors.
  • a vacuum deposition apparatus VE-2030 manufactured by Vacuum Device Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

フッ化ビニリデン系樹脂の高い比誘電率を維持したまま電気絶縁性、特に高温での電気特性が改善されたフィルムコンデンサ用フィルムを提供する。 フッ化ビニリデン単位およびテトラフルオロエチレン単位をフッ化ビニリデン単位/テトラフルオロエチレン単位(モル%比)で0/100~49/51の範囲で含むテトラフルオロエチレン系樹脂(a1)をフィルム形成樹脂(A)として含むフィルムコンデンサ用フィルム。

Description

フィルムコンデンサ用フィルムおよびフィルムコンデンサ
本発明は、高誘電性でかつ電気絶縁性、特に高温での電気特性が改善されたフィルムコンデンサ用フィルムおよびフィルムコンデンサに関する。
従来、フィルムコンデンサ用フィルムには、その比誘電率の高さから、フィルム形成樹脂としてフッ化ビニリデン(VDF)系樹脂(単独重合体や共重合体)を用いることが提案されている(特許文献1、2)。そして、さらに高誘電性を達成するために、各種の高誘電性複合酸化物粒子を配合することも知られている(特許文献3~6)。
また、高誘電性複合酸化物粒子に加えて、加工改良剤としてシリカを少量(VDF系樹脂100質量部に対して0.01~10質量部)配合することも知られている(特許文献7)。
特開昭60-199046号公報 国際公開第2008/090947号パンフレット 国際公開第2007/088924号パンフレット 国際公開第2009/017109号パンフレット 特開2009-38088号公報 特開2009-38089号公報 国際公開第2008/050971号パンフレット
しかし、これらのフィルムコンデンサ用フィルムに用いられているVDF系樹脂はVDF系樹脂の高誘電性を利用するべくVDF単位の含有量が多いものである。しかし、本発明者らは電気絶縁性、特に高温での電気特性をさらに改善する必要があることに気付き、VDF系樹脂自体の改良を検討し、本発明を完成するに至った。
本発明の目的は、VDF系樹脂の高い比誘電率を維持したまま電気絶縁性、特に高温での電気特性が改善されたフィルムコンデンサ用フィルムを提供することにある。
本発明は、フッ化ビニリデン(VDF)単位およびテトラフルオロエチレン(TFE)単位をVDF単位/TFE単位(モル%比)で0/100~49/51の範囲で含むTFE系樹脂(a1)をフィルム形成樹脂(A)として含むフィルムコンデンサ用フィルムに関する。
上記TFE系樹脂(a1)は、さらにエチレン性不飽和単量体単位を含んでいてもよい。
また、上記TFE系樹脂(a1)としては、
(a1-1)TFE単位を55.0~90.0モル%、VDF単位を5.0~44.9モル%、および式(1):
CX=CX(CF
(式中、X、X、XおよびXは同じかまたは異なり、いずれもH、FまたはCl;nは0~8の整数。ただし、TFEおよびVDFは除く)で示されるエチレン性不飽和単量体単位を0.1~10.0モル%含むTFE-VDF系樹脂;
(a1-2)TFE単位を55.0~90.0モル%、VDF単位を9.2~44.2モル%、および式(2):
CF=CF-ORf
(式中、Rfは炭素数1~3のアルキル基またはフルオロアルキル基)で示されるエチレン性不飽和単量体単位を0.1~0.8モル%含むTFE-VDF系樹脂;または
(a1-3)TFE単位を55.0~90.0モル%、VDF単位を5.0~44.8モル%、式(1):
CX=CX(CF
(式中、X、X、XおよびXは同じかまたは異なり、いずれもH、FまたはCl;nは0~8の整数。ただし、TFEおよびVDFは除く)で示されるエチレン性不飽和単量体単位を0.1~10.0モル%、および式(2):
CF=CF-ORf
(式中、Rfは炭素数1~3のアルキル基またはフルオロアルキル基)で示されるエチレン性不飽和単量体単位を0.1~0.8モル%含むTFE-VDF系樹脂
が好ましくあげられる。
また、上記TFE系樹脂(a1)は、動的粘弾性測定による170℃における貯蔵弾性率(E’)が60~400MPaであることが好ましい。
上記フィルム形成樹脂(A)は、上記TFE系樹脂(a1)のほかに非フッ素系樹脂(a2)を含んでいてもよい。
非フッ素系樹脂(a2)としては、セルロース系樹脂およびアクリル樹脂よりなる群から選ばれる少なくとも1種が好ましくあげられる。
本発明のフィルムコンデンサ用フィルムは、さらに無機酸化物粒子(B)を含んでいてもよい。
上記無機酸化物粒子(B)としては、(B1)周期表の2族、3族、4族、12族または13族の1種の金属元素の無機酸化物粒子、またはこれらの無機酸化物複合粒子を少なくとも含むものが好ましくあげられる。好ましい無機酸化物粒子またはこれらの無機酸化物複合粒子(B1)としては、Al、MgO、ZrO、Y、BeOおよびMgO・Alよりなる群から選ばれる少なくとも1種の粒子があげられ、特にγ型Alが好ましい。
また、上記無機酸化物粒子(B)としては、以下の(B2)~(B5):
(B2)式(B2):
 M a1b1c1
(式中、Mは周期表の2族金属元素;Nは周期表の4族金属元素;a1は0.9~1.1;b1は0.9~1.1;c1は2.8~3.2である;MとNはそれぞれ複数であってもよい)で示される複合酸化物粒子、
(B3)式(B3):
 M a2 b2c2
(式中、MとMは異なり、Mは周期表の2族金属元素、Mは周期表の第5周期の金属元素;a2は0.9~1.1;b2は0.9~1.1;c2は2.8~3.2である)で示される複合酸化物粒子、
(B4)周期表の2族金属元素および4族金属元素よりなる群から選ばれる少なくとも3種の金属元素を含む複合酸化物粒子、および
(B5)周期表の2族、3族、4族、12族または13族の金属元素の酸化物と酸化ケイ素との無機酸化物複合粒子
よりなる群から選ばれる少なくとも1種の高誘電性無機粒子(ただし、前記無機酸化物粒子またはこれらの無機酸化物複合粒子(B1)は除く)を少なくとも含んでいてもよい。
本発明のフィルムコンデンサ用フィルムは、押出成形法により製造することができる。
本発明はまた、本発明のフィルムコンデンサ用フィルムの少なくとも片面に電極層が積層されているフィルムコンデンサにも関する。
本発明のフィルムコンデンサ用フィルムによれば、高い比誘電率を維持したまま電気絶縁性、特に高温での電気特性が改善される。
本発明のフィルムコンデンサ用フィルムは、VDF単位およびTFE単位をVDF単位/TFE単位(モル%比)で0/100~49/51の範囲で含むTFE系樹脂(a1)をフィルム形成樹脂(A)として含む。
以下、各成分について説明する。
(A)フィルム形成樹脂
フィルム形成樹脂(A)は、VDF単位およびTFE単位をVDF単位/TFE単位(モル%比)で0/100~49/51の範囲で含むTFE系樹脂(a1)を含む。
本発明で用いるTFE系樹脂(a1)は、TFE単位を多く含有するため融点が高く、特に高温での電気特性が改善されると共に、押出成形法によりフィルムを製造することができる。
TFE系樹脂(a1)としては、TFEの単独重合体(TFE単位100モル%)でもよいが、VDFの高誘電性を有効に利用する点から、VDF単位をVDF単位とTFE単位の合計中に5モル%以上含むことが好ましく、40モル%以下含むことが好ましい。
また、TFE系樹脂(a1)は、さらにエチレン性不飽和単量体単位、特に式(1):
CX=CX(CF
(式中、X、X、XおよびXは同じかまたは異なり、いずれもH、FまたはCl;nは0~8の整数。ただし、TFEおよびVDFは除く)で示されるエチレン性不飽和単量体単位、および/または
式(2):
CF=CF-ORf
(式中、Rfは炭素数1~3のアルキル基またはフルオロアルキル基)で示されるエチレン性不飽和単量体単位を含んでいてもよい。
式(1)で示されるエチレン性不飽和単量体としては、たとえばCF=CFCl、CF=CFCFCF、式(3):
CH=CF-(CF
(式中、Xおよびnは式(1)と同じ)、および式(4):
CH=CH-(CF
(式中、Xおよびnは式(1)と同じ)
よりなる群から選ばれる少なくとも1種であることが、TFE系樹脂の機械的強度が良好な点から好ましい。
なかでも、TFE系樹脂の機械的強度が良好な点から、CF=CFCl、CH=CFCF、CH=CH-C、CH=CH-C13、CH=CF-C、CF=CFCF、CH=CF-CHなどが好ましくあげられ、特に、高温での機械的強度が良好な点からは、CF=CFCl、CH=CFCF、CH=CH-C、CH=CH-C13およびCH=CF-CHよりなる群から選ばれる少なくとも1種が好ましく挙げられる。
式(2)で示されるエチレン性不飽和単量体としては、たとえばCF=CF-OCF、CF=CF-OCFCFおよびCF=CF-OCFCFCFよりなる群から選ばれる少なくとも1種が、TFE系樹脂の高温での機械的強度が良好な点から好ましい。
式(1)で示されるエチレン性不飽和単量体単位(1)を含むTFE-VDF系樹脂(a1-1)としては、TFE単位を55.0~90.0モル%、VDF単位を5.0~44.9モル%、およびエチレン性不飽和単量体単位(1)を0.1~10.0モル%含む共重合体があげられる。
より好ましいTFE-VDF系樹脂(a1-1)としては、高温での機械的強度が良好な点から、TFE単位を55.0~85.0モル%、VDF単位を10.0~44.9モル%、およびエチレン性不飽和単量体単位(1)を0.1~5.0モル%含む共重合体があげられ、さらには、高温での機械的強度が良好な点から、TFE単位を55.0~85.0モル%、VDF単位を13.0~44.9モル%、およびエチレン性不飽和単量体単位(1)を0.1~2.0モル%含む共重合体があげられる。
また、TFE-VDF系樹脂の高温での機械的強度が良好であることから、エチレン性不飽和単量体(1)がCH=CH-C、CH=CH-C13およびCH=CF-CHよりなる群から選ばれる少なくとも1種であり、TFE単位を55.0~80.0モル%、VDF単位を19.5~44.9モル%、およびエチレン性不飽和単量体単位(1)を0.1~0.6モル%含む共重合体が好ましくあげられる。
式(2)で示されるエチレン性不飽和単量体単位(2)を含むTFE-VDF系樹脂(a1-2)としては、TFE単位を55.0~90.0モル%、VDF単位を9.2~44.2モル%、およびエチレン性不飽和単量体単位(2)を0.1~0.8モル%含む共重合体が、高温での機械的強度が良好な点から好ましい。
より好ましいTFE-VDF系樹脂(a1-2)としては、高温での機械的強度が良好な点から、TFE単位を58.0~85.0モル%、VDF単位を14.5~39.9モル%、およびエチレン性不飽和単量体単位(2)を0.1~0.5モル%含む共重合体があげられる。
また、エチレン性不飽和単量体単位(1)および(2)の両者を含むTFE-VDF系樹脂(a1-3)としては、TFE単位を55.0~90.0モル%、VDF単位を5.0~44.8モル%、エチレン性不飽和単量体単位(1)を0.1~10.0モル%およびエチレン性不飽和単量体単位(2)を0.1~0.8モル%含む共重合体が、高温での機械的強度が良好な点から好ましい。
より好ましいTFE-VDF系樹脂(a1-3)としては、機械的強度が良好な点から、TFE単位を55.0~85.0モル%、VDF単位を9.5~44.8モル%、エチレン性不飽和単量体単位(1)を0.1~5.0モル%およびエチレン性不飽和単量体単位(2)を0.1~0.5モル%含む共重合体があげられ、さらには、高温での機械的強度が良好な点から、TFE単位を55.0~80.0モル%、VDF単位を19.8~44.8モル%、エチレン性不飽和単量体単位(1)を0.1~2.0モル%およびエチレン性不飽和単量体単位(2)を0.1~0.3モル%含む共重合体があげられる。また、好ましいTFE-VDF系樹脂(a1-3)として、高温での機械的強度が良好な点から、TFE単位を58.0~85.0モル%、VDF単位を9.5~39.8モル%、エチレン性不飽和単量体単位(1)を0.1~5.0モル%およびエチレン性不飽和単量体単位(2)を0.1~0.5モル%含む共重合体であってもよい。
本発明で用いるTFE系樹脂(a1)は、動的粘弾性測定による170℃における貯蔵弾性率(E’)が60~400MPaであることが好ましい。貯蔵弾性率(E’)が60~400MPaであるとき、機械的強度が好ましい。好ましい貯蔵弾性率(E’)は、フィルム化の加工性が良好な点から80~350MPa、さらに好ましくは、100~350MPaである。
本発明における貯蔵弾性率(E’)は、動的粘弾性測定により170℃で測定する値であり、より具体的には、アイティー計測制御社製の動的粘弾性装置DVA220で長さ30mm、幅5mm、厚さ0.25mmのサンプルを引張モード、つかみ幅20mm、測定温度25℃から250℃、昇温速度2℃/min、周波数1Hzの条件にて測定して得られる値である。
本発明で用いるTFE系樹脂(a1)は、メルトフローレート(MFR)が0.1~50g/10minであることが、フィルム化の加工性が良好な点から好ましい。
MFRは、ASTM D3307-1に準拠し、メルトインデクサー(東洋精機(株)製)を用い、297℃、5kg荷重の下で内径2mm、長さ8mmのノズルから10分間あたり流出するポリマーの質量(g/10min)である。
本発明で用いるTFE系樹脂(a1)は、融点が180℃以上であることが好ましい。融点が高いことにより、高温での電気特性、特に、誘電特性などが向上する。より好ましい融点は200℃以上であり、上限は加工性の点から300℃、さらには250℃、特に220℃が好ましい。
融点は、示差操作熱量計RDC220(Seiko Instrument製)を用い、ASTMD-4591に準拠して、昇温速度10℃/minにて熱測定を行い、2ndランにて得られる吸熱曲線のピークに当る温度である。
本発明で用いるTFE系樹脂(a1)は、熱分解開始温度(1%質量減温度)が360℃以上であることが好ましい。より好ましい熱分解開始温度は370℃以上であり、上限には特に制限はないが、熱分解開始温度が470℃程度のものも使用できる。
熱分解開始温度は、示差・熱重量測定装置(TG-DTA)を用いて加熱試験に供したTFE系樹脂の1質量%が分解する温度である。
本発明で用いるTFE系樹脂(a1)は、従来公知の溶液重合法、塊状重合法、乳化重合法、懸濁重合法によって、従来公知の重合条件に従って製造することができる。
本発明において、フィルム形成樹脂(A)は、TFE系樹脂(a1)に加えて非フッ素系樹脂(a2)を併用してもよい。
併用する非フッ素系樹脂(a2)としては、セルロース系樹脂および/またはアクリル樹脂が、TFE系樹脂との相溶性がよい点から好ましい。
非フッ素系樹脂(a2)を併用する場合は、TFE系樹脂(a1)の誘電損失の温度依存性、特に高温での温度依存性を低減化するという効果が奏される。
セルロース系樹脂としては、たとえばモノ酢酸セルロース、ジ酢酸セルロース、トリ酢酸セルロース、酢酸セルロースプロピオネート、酢酸セルロースブチレートなどのエステル置換セルロース;メチルセルロース、エチルセルロース、ヒドロキシプロピルメチルセルロースなどのエーテルで置換されたセルロースなどが例示できる。これらの中でも、TFE系樹脂との相溶性がよい点から、酢酸セルロースプロピオネート、酢酸セルロースブチレートが好ましい。
アクリル樹脂としては、たとえばポリメタクリル酸メチル、スチレン-メタクリル酸メチル共重合体などが例示でき、なかでもポリメタクリル酸メチルがTFE系樹脂との相溶性がよい点から好ましい。
非フッ素系樹脂(a2)を併用する場合は、TFE系樹脂(a1)と非フッ素系樹脂(a2)を90/10~99.9/0.1、さらには95/5~98/2の質量比で含むことが、比誘電率が大きく、かつHzオーダーの周波数での誘電損失の温度依存性が小さい点から好ましい。
本発明のフィルムコンデンサ用フィルムは、さらに無機酸化物粒子(B)を含んでいてもよい。
本発明に用いてもよい無機酸化物粒子(B)としては、まず、つぎの無機酸化物粒子(B1)が好ましくあげられる。
(B1)周期表の2族、3族、4族、12族または13族の1種の金属元素の無機酸化物粒子、またはこれらの無機酸化物複合粒子:
金属元素としては、Be、Mg、Ca、Sr、Ba、Y、Ti、Zr、Zn、Alなどがあげられ、特に、Al、Mg、Y、Znの酸化物が汎用で安価であり、また体積抵抗率が高い点から好ましい。
具体的には、Al、MgO、ZrO、Y、BeOおよびMgO・Alよりなる群から選ばれる少なくとも1種の粒子が、体積抵抗率が高い点から好ましい。
なかでも、結晶構造がγ型のAlが、比表面積が大きく、樹脂への分散性が良好な点から好ましい。
また、本発明に用いてもよい無機酸化物粒子(B)として、無機酸化物粒子(B1)に代えて、または無機酸化物粒子(B1)に加えてつぎの無機酸化物粒子(B2)~(B5)の少なくとも1種を用いることができる。ただし、無機酸化物粒子(B2)~(B5)において、前記の無機酸化物粒子、またはこれらの無機酸化物複合粒子(B1)は除く。
(B2)式(B2):
 M a1b1c1
(式中、Mは周期表の2族金属元素;Nは周期表の4族金属元素;a1は0.9~1.1;b1は0.9~1.1;c1は2.8~3.2である;MとNはそれぞれ複数であってもよい)で示される無機複合酸化物粒子:
4族の金属元素としては、たとえばTi、Zrが好ましく、2族の金属元素としてはMg、Ca、Sr、Baが好ましい。
具体的には、BaTiO、SrTiO、CaTiO、MgTiO、BaZrO、SrZrO、CaZrOおよびMgZrOよりなる群から選ばれる少なくとも1種の粒子が、体積抵抗率が高い点から好ましい。
(B3)式(B3):
 M a2 b2c2
(式中、MとMは異なり、Mは周期表の2族金属元素、Mは周期表の第5周期の金属元素;a2は0.9~1.1;b2は0.9~1.1;c2は2.8~3.2である)で示される複合酸化物粒子:
複合酸化物(B3)としては、具体的には、スズ酸マグネシウム、スズ酸カルシウム、スズ酸ストロンチウム、スズ酸バリウム、アンチモン酸マグネシウム、アンチモン酸カルシウム、アンチモン酸ストロンチウム、アンチモン酸バリウム、ジルコン酸マグネシウム、ジルコン酸カルシウム、ジルコン酸ストロンチウム、ジルコン酸バリウム、インジウム酸マグネシウム、インジウム酸カルシウム、インジウム酸ストロンチウム、インジウム酸バリウムなどがあげられる。
(B4)周期表の2族金属元素および4族金属元素よりなる群から選ばれる少なくとも3種の金属元素を含む複合酸化物粒子:
複合酸化物(B4)において、周期表の2族金属元素の具体例としては、たとえばBe、Mg、Ca、Sr、Baなどがあげられ、周期表の4族金属元素の具体例としては、たとえば、Ti、Zr、Hfなどがあげられる。
周期表の2族金属元素と4族金属元素から選ばれる3種以上の好ましい組合せとしては、たとえば、Sr、Ba、Tiの組合せ、Sr、Ti、Zrの組合せ、Sr、Ba、Zrの組合せ、Ba、Ti、Zrの組合せ、Sr、Ba、Ti、Zrの組合せ、Mg、Ti、Zrの組合せ、Ca、Ti、Zrの組合せ、Ca、Ba、Tiの組合せ、Ca、Ba、Zrの組合せ、Ca、Ba、Ti、Zrの組合せ、Ca、Sr、Zrの組合せ、Ca、Sr、Ti、Zrの組合せ、Mg、Sr、Zrの組合せ、Mg、Sr、Ti、Zrの組合せ、Mg、Ba、Ti、Zrの組合せ、Mg、Ba、Zrの組合せなどがあげられる。
複合酸化物(B4)としては、具体的には、チタン酸ジルコン酸ストロンチウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸バリウムストロンチウム、チタン酸ジルコン酸マグネシウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸バリウムカルシウムなどがあげられる。
(B5)周期表の2族、3族、4族、12族または13族の金属元素の酸化物と酸化ケイ素との無機酸化物複合粒子:
無機酸化物粒子(B1)と酸化ケイ素との複合体粒子であり、具体的には、3Al・2SiO、2MgO・SiO、ZrO・SiOおよびMgO・SiOよりなる群から選ばれる少なくとも1種の粒子があげられる。
なお、これらの複合酸化物粒子に加えて、チタン酸ジルコン酸鉛、アンチモン酸鉛、チタン酸亜鉛、チタン酸鉛、酸化チタンなどの他の複合酸化物粒子を併用してもよい。
本発明においては、無機酸化物粒子(B)の一次平均粒子径は小さい方が好ましく、特に1μm以下のいわゆるナノ粒子が好ましい。このような無機酸化物ナノ粒子が均一分散することにより、少量の配合でフィルムの電気絶縁性を大幅に向上させることができる。好ましい一次平均粒子径は300nm以下、さらには200nm以下、特に100nm以下である。下限は特に限定されないが、製造の困難性や均一分散の困難性、価格の面から、10nm以上であることが好ましい。
一次平均粒子径は、BET法から換算して得られる値である。
これらの無機酸化物粒子(B)には、誘電性の向上を目的としないもの、たとえば無機酸化物粒子(B1)と、誘電性を向上させるために配合される強誘電性(比誘電率(1kHz、25℃)が100以上)の無機酸化物粒子(B2)~(B5)がある。
無機酸化物(B1)は、電気絶縁性、ひいては体積抵抗率の向上を目的としているので、必ずしも高誘電性である必要はない。したがって、汎用で安価な1種類の金属の無機酸化物粒子(B1)として、特にAlやMgOなどを使用しても、体積抵抗率の向上を図ることができる。これら1種類の金属の無機酸化物粒子(B1)の比誘電率(1kHz、25℃)は、100未満、さらには10以下である。
誘電性を向上させるために配合されている強誘電性(比誘電率(1kHz、25℃)が100以上)の無機酸化物粒子(B2)~(B5)を用いる場合、電気絶縁性、ひいては体積抵抗率の向上を目的とする場合は、その配合量は誘電性の向上効果がそれ程見込めない少量とすればよい。また、粒径の観点からも、多量に配合すると均一分散が困難である一次平均粒子径が1μm以下のものを用いることも有効である。
強誘電性の無機酸化物粒子(B2)~(B5)を構成する無機材料としては、複合金属酸化物、その複合体、固溶体、ゾルゲル体などが例示できるが、これらのみに限定されるものではない。
無機酸化物粒子(B)の含有量は、電気絶縁性、ひいては体積抵抗率の向上を目的とする場合は、フィルム形成樹脂(A)100質量部に対して、無機酸化物粒子(B1)が好ましくは0.01質量部以上20質量部未満である。含有量が20質量部以上になると却って電気絶縁性(耐電圧)が低下していく傾向にあるほか、無機酸化物粒子(B1)をフィルム形成樹脂(A)中に均一に分散させることが容易ではなくなることがある。より好ましい上限は8質量部、さらには6質量部である。また、含有量が少なすぎると電気絶縁性の向上効果が得られず、したがってより好ましい下限は、0.1質量部、さらには0.5質量部、特に1質量部である。
一方、誘電性を向上させる目的では、強誘電性の無機酸化物粒子(B2)~(B5)を比較的多量に配合してもよい。たとえばフィルム形成樹脂(A)100質量部に対して、10質量部以上、300質量部以下が例示できる。
(C)他の任意成分
本発明において、高誘電性フィルムの電気絶縁性を向上させるためには、上記の特定のフィルム形成樹脂(A)と無機酸化物粒子(B)で充分であるが、そのほか、他の補強用フィラーや親和性向上剤などの添加剤を、本発明の効果を損なわない範囲内で含ませてもよい。
補強用フィラーは機械的特性(引張強度、硬度など)を付与するために添加される成分であって、上記の無機酸化物粒子(B)以外の粒子または繊維であり、たとえば炭化ケイ素、窒化ケイ素、硼素化合物の粒子または繊維があげられる。なお、シリカ(酸化ケイ素)は、加工改良剤や補強用フィラーとして配合してもよいが、絶縁性向上効果の点からは、熱伝導率が低く、特に高温で体積抵抗率が大きく低下するため、上記無機酸化物粒子(B)よりも劣る。
親和性向上剤としては、上記フィルム形成樹脂(A)以外の化合物であり、たとえば官能基変性ポリオレフィン、スチレン改質ポリオレフィン、官能基変性ポリスチレン、ポリアクリル酸イミド、クミルフェノールなどがあげられ、本発明の効果を損なわない範囲内で含んでもよい。なお、絶縁性向上効果の点からはこれらの成分は含まないことがより好ましい。
本発明のフィルムコンデンサ用フィルムは、押出成形法や圧縮成形法、ブロー成形法などによってフィルム化することができる。
押出成形法によりフィルム化する方法としては、たとえばフィルム形成樹脂(A)、さらに要すれば無機酸化物粒子(B)、他の成分(C)を溶融混練し、フラットダイで押出す方法が例示できる。また、圧縮成形法によりフィルム化する方法としては、たとえばフィルム形成樹脂(A)、さらに要すれば無機酸化物粒子(B)、他の成分(C)をラボプラストミル等で溶融混練し、ヒートプレス等で加熱圧縮する方法が例示できる。さらにブロー成形法によりフィルム化する方法としては、たとえばフィルム形成樹脂(A)、さらに要すれば無機酸化物粒子(B)、他の成分(C)を溶融混練し、インフレーション成形する方法が例示できる。
本発明のフィルムコンデンサ用フィルムの製造は、もちろんたとえばフィルム形成樹脂(A)、さらに要すれば無機酸化物粒子(B)、他の成分(C)と溶剤(D)とを含むコーティング組成物をコーティングしてフィルムを形成し、ついで剥離することで作製することもできる。
コーティング組成物を調製するための溶剤(D)としては、TFE系樹脂(a1)、さらに要すれば非フッ素系樹脂(a2)を溶解する任意の溶媒を使用できるが、特に、極性有機溶媒が好ましい。なかでも極性有機溶媒としては、たとえばケトン系溶剤、エステル系溶媒、カーボネート系溶媒、環状エーテル系溶媒、アミド系溶剤が好ましい。具体的には、メチルエチルケトン、メチルイソブチルケトン、アセトン、ジエチルケトン、ジプロピルケトン、酢酸エチル、酢酸メチル、酢酸プロピル、酢酸ブチル、乳酸エチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミドなどが好ましくあげられる。
コーティング組成物では、溶剤(D)により、フィルム形成樹脂(A)、無機酸化物粒子(B)、その他の任意成分(C)のうちの固形分の合計の固形分濃度を5~30質量%とすることが、コーティング作業が容易で、組成物の安定性がよいことから好ましい。コーティング組成物は、これらの各成分を溶剤に溶解または分散させることにより調製できる。
本発明において、無機酸化物粒子(B)をフィルム形成樹脂(A)中に均一に分散させることが重要である。本発明においては、無機酸化物粒子(B)の配合量が少ないので、比較的均一に分散させることが容易である。ただ、必要に応じて、上記の親和性向上剤を使用するほか、界面活性剤をコーティング組成物に添加してもよい。
界面活性剤としては、電気絶縁性を損なわない範囲でカチオン性、アニオン性、非イオン性、両性の界面活性剤が使用できるが、なかでも非イオン性界面活性剤、特に高分子系の非イオン性界面活性剤が好ましい。高分子系非イオン性界面活性剤としては、たとえばポリオキシエチレンラウリルエーテル、ソルビタンモノステアレートなどが例示できる。
コーティング組成物のコーティング方法としては、ナイフコーティング法、キャストコーティング法、ロールコーティング法、グラビアコーティング法、ブレードコーティング法、ロッドコーティング法、エアドクタコーティング法、カーテンコーティング法、ファクンランコーティング法、キスコーティング法、スクリーンコーティング法、スピンコーティング法、スプレーコーティング法、押出コーティング法、電着コーティング法などが使用できるが、これらのうち操作性が容易な点、膜厚のバラツキが少ない点、生産性に優れる点からロールコーティング法、グラビアコーティング法、キャストコーティング法、特にキャストコーティング法が好ましく、優れたフィルムコンデンサ用フィルムを製造することができる。
たとえばコーティング組成物を基材表面にキャストし、乾燥した後、該基材から剥離するときは、得られるフィルムは、電気絶縁性が高く、耐電圧が高い点で優れ、また薄膜で可撓性を有する点で優れたものである。
かくして得られる本発明のフィルムコンデンサ用フィルムは、膜厚を250μm以下、好ましくは200μm以下、さらに好ましくは100μm以下、特に好ましくは10μm以下にすることができる。膜厚の下限は機械的強度の維持の点から約2μmが好ましい。
本発明はまた、本発明のフィルムコンデンサ用フィルムの少なくとも片面に電極層が積層されているフィルムコンデンサに関する。
フィルムコンデンサの構造としては、たとえば、電極層と高誘電体フィルムが交互に積層された積層型(特開昭63-181411号公報、特開平3-18113号公報など)や、テープ状の高誘電体フィルムと電極層を巻き込んだ巻回型(高誘電体フィルム上に電極が連続して積層されていない特開昭60-262414号公報などに開示されたものや、高誘電体フィルム上に電極が連続して積層されている特開平3-286514号公報などに開示されたものなど)などがあげられる。構造が単純で、製造も比較的容易な、高誘電体フィルム上に電極層が連続して積層されている巻回型フィルムコンデンサの場合は、一般的には片面に電極を積層した高誘電体フィルムを電極同士が接触しないように2枚重ねて巻き込んで、必要に応じて、巻き込んだ後に、ほぐれないように固定して製造される。
電極層は、特に限定されないが、一般的に、アルミニウム、亜鉛、金、白金、銅などの導電性金属からなる層であって、金属箔として、または蒸着金属被膜として用いる。本発明においては、金属箔と蒸着金属被膜のいずれでも、また、両者を併用しても構わない。電極層を薄くでき、その結果、体積に対して容量を大きくでき、誘電体との密着性に優れ、また、厚さのバラつきが小さい点で、通常は、蒸着金属被膜が好ましい。蒸着金属被膜は、一層のものに限らず、たとえば耐湿性を持たせるためにアルミニウム層にさらに半導体の酸化アルミニウム層を形成して電極層とする方法(たとえば特開平2-250306号公報など)など、必要に応じて多層にしてもよい。蒸着金属被膜の厚さも特に限定されないが、好ましくは100~2,000オングストローム、より好ましくは200~1,000オングストロームの範囲とする。蒸着金属被膜の厚さがこの範囲である時に、コンデンサの容量や強度がバランスされ好適である。
電極層として蒸着金属被膜を用いる場合、被膜の形成方法は特に限定されず、たとえば真空蒸着法、スパッタリング法、イオンプレーティング法などを採用することができる。通常は、真空蒸着法が用いられる。
真空蒸着法としては、たとえば成形品のバッチ方式と、長尺品で使用される半連続(セミコンテニアス)方式と連続(air to air)方式などがあり、現在は、半連続方式が主力として行われている。半連続方式の金属蒸着法は、真空系の中で金属蒸着、巻き取りした後、真空系を大気系に戻し、蒸着されたフィルムを取り出す方法である。
半連続方式については、具体的には、たとえば特許第3664342号明細書に図1を参照して記載されている方法で行うことができる。
フィルムコンデンサ用フィルム上に金属薄膜層を形成する場合、あらかじめフィルム表面に、コロナ処理、プラズマ処理など、接着性向上のための処理を施しておくこともできる。電極層として金属箔を用いる場合も、金属箔の厚さは特に限定されないが、通常は、0.1~100μm、好ましくは1~50μm、より好ましくは3~15μmの範囲である。
固定方法は、特に限定されず、たとえば樹脂で封止したり絶縁ケースなどに封入したりすることにより、固定と構造の保護とを同時に行えばよい。リード線の接続方法も限定されず、溶接、超音波圧接、熱圧接、粘着テープによる固定などが例示される。巻き込む前から電極にリード線を接続しておいてもよい。絶縁ケースに封入する場合など、必要に応じて、ウレタン樹脂、エポキシ樹脂などの熱硬化性樹脂で開口部などを封止して酸化劣化などを防止してもよい。
このようにして得られた本発明のフィルムコンデンサは、高誘電性を維持したまま、電気絶縁性、特に高温での電気特性が向上したものである。
つぎに本発明を実施例に基づいて具体的に説明するが、本発明はかかる例のみに限定されるものではない。
なお、本明細書で使用している特性値は、上記した以外の測定方法以外は、つぎの方法で測定したものである。
(共重合体組成)
19F-NMR分析と、適宜、元素分析を組み合わせて決定する。19F-NMR分析は、NMR装置(Bruker-Biospin社製)を用い、測定温度をポリマーの融点+20℃とする。
(膜厚)
デジタル測長機((株)仙台ニコン製のMF-1001)を用いて、基板に載せたフィルムを室温下にて測定する。
(誘電正接および比誘電率)
複合フィルムを真空中で両面にアルミニウムを蒸着しサンプルとする。このサンプルをインピーダンスアナライザ(ヒューレットパッカード社製のHP4194A)にて、30℃および90℃下で、周波数100Hz、1kHzおよび10kHzでの静電容量と誘電正接を測定する。得られた各静電容量から比誘電率を算出する。
(体積抵抗率)
デジタル超絶縁計/微小電流計にて、体積抵抗率(Ω・cm)を90℃、ドライエアー雰囲気下、DC300Vで測定する。
合成例1 TFE系樹脂Aの製造
174L容積のオートクレーブに蒸留水51.0Lを投入し、十分に窒素置換を行った後、パーフルオロシクロブタン55.0kgを仕込み、系内の温度を35℃、撹拌速度200rpmに保った。ついでCH=CHCFCFCFCFCFCF13g、TFE4.97kgおよびVDF1.37kgを順次仕込んだ後、重合開始剤ジ-n-プロピルパーオキシジカーボネート(NPP)の50質量%メタノール溶液を140g添加して重合を開始した。重合開始と同時に酢酸エチルを156g仕込んだ。重合の進行と共に系内圧力が低下するので、TFE/VDF混合ガスモノマー(TFE/VDF=60.2/39.8モル%比)を仕込み、また、追加する混合ガスモノマー100質量部に対してCH=CHCFCFCFCFCFCFを1.21質量部になるように同時に仕込み、系内圧力を0.8MPaに保った。最終的に混合ガスモノマーの追加仕込み量が11kgになった時点で重合を停止し、放圧して大気圧に戻した後、得られたTFE/VDF/CH=CHCFCFCFCFCFCF共重合体を水洗、乾燥して10.4kgの粉末を得た。
ついでφ20mm単軸押出機を用いてシリンダー温度290℃で溶融混練を行い、ペレットを得た。このペレットを150℃にて12時間加熱した。
得られたペレットは以下の組成および物性を有していた。
TFE/VDF/CH=CHCFCFCFCFCFCF:60.1/39.6/0.3(モル%比)
融点:218℃
MFR:1.7g/10min(297℃、5kg)
170℃における貯蔵弾性率(E’):153MPa
熱分解開始温度(1%質量減温度):372℃
合成例2 TFE系樹脂Bの製造 
174L容積のオートクレーブに蒸留水52.2Lを投入し、十分に窒素置換を行った後、パーフルオロシクロブタン39.1kgを仕込み、系内の温度を35℃、撹拌速度200rpmに保った。ついでパーフルオロ(プロピル)ビニルエーテル(CF=CF-OCFCFCF)0.34kg、TFE6.00kgおよびVDF1.08kgを順次仕込んだ後、重合開始剤ジ-n-プロピルパーオキシジカーボネート(NPP)の50質量%メタノール溶液を130g添加して重合を開始した。重合開始と同時に酢酸エチルを0.3kg仕込んだ。重合の進行と共に系内圧力が低下するので、TFE/VDF混合ガスモノマー(TFE/VDF=65.5/34.5モル%比)を仕込み、また、追加する混合ガスモノマー100質量部に対してパーフルオロ(プロピル)ビニルエーテルを0.9質量部になるように同時に仕込み、系内圧力を0.9MPaに保った。最終的に混合ガスモノマーの追加仕込み量が8kgになった時点で重合を停止し、放圧して大気圧に戻した後、得られたTFE/VDF/パーフルオロ(プロピル)ビニルエーテル共重合体を水洗、乾燥して7.5kgの粉末を得た。
ついでφ20mm単軸押出機を用いてシリンダー温度280℃で溶融混練を行い、ペレットを得た。このペレットを150℃にて12時間加熱した。
得られたペレットは以下の組成および物性を有していた。
TFE/VDF/パーフルオロ(プロピル)ビニルエーテル:65.5/34.3/0.2(モル%比)
融点:228℃
MFR:1.6g/10min(297℃、5kg)
170℃における貯蔵弾性率(E’):87MPa
熱分解開始温度(1%質量減温度):383℃
合成例3 TFE系樹脂Cの製造
174L容積のオートクレーブに蒸留水51.0Lを投入し、十分に窒素置換を行った後、パーフルオロシクロブタン55.0kgを仕込み、系内の温度を35℃、撹拌速度200rpmに保った。ついでCH=CHCFCFCFCFCFCF9g、パーフルオロ(プロピル)ビニルエーテル60g、TFE4.99kgおよびVDF1.37kgを順次仕込んだ後、重合開始剤ジ-n-プロピルパーオキシジカーボネート(NPP)の50質量%メタノール溶液を140g添加して重合を開始した。重合開始と同時に酢酸エチルを140g仕込んだ。重合の進行と共に系内圧力が低下するので、TFE/VDF混合ガスモノマー(TFE/VDF=60.0/40.0モル%比)を仕込み、また、追加する混合ガスモノマー100質量部に対して、CH=CHCFCFCFCFCFCF0.8部、パーフルオロ(プロピル)ビニルエーテルを0.3部になるように同時に仕込み、系内圧力を0.8MPaに保った。最終的に混合ガスモノマーの追加仕込み量が9kgになった時点で重合を停止し、放圧して大気圧に戻した後、得られたTFE/VDF/CH=CHCFCFCFCFCFCF/パーフルオロ(プロピル)ビニルエーテル共重合体を水洗、乾燥して8.6kgの粉末を得た。
ついでφ20mm単軸押出機を用いてシリンダー温度290℃で溶融混練を行い、ペレットを得た。このペレットを150℃にて12時間加熱した。
得られたペレットは以下の組成および物性を有していた。
TFE/VDF/CH=CHCFCFCFCFCFCF/パーフルオロ(プロピル)ビニルエーテル:59.8/39.9/0.2/0.1(モル%比)
融点:221℃
MFR:1.8g/10min(297℃、5kg)
170℃における貯蔵弾性率(E’):123MPa
熱分解開始温度(1%質量減温度):377℃
実施例1
合成例1で得られたペレット樹脂を250℃でヒートプレスにて成形し、厚さ207μmのフィルムを得た。
実施例2
合成例2で得られたペレット樹脂を250℃でヒートプレスにて成形し、厚さ201μmのフィルムを得た。
実施例3
合成例3で得られたペレット樹脂を250℃でヒートプレスにて成形し、厚さ202μmのフィルムを得た。
実施例4
合成例1で得られたペレット樹脂100質量部と、アルミナ(一次平均粒子径100nm)10質量部とを混合して、250℃で混練した後、250℃でヒートプレスにて成形し、厚さ210μmのフィルムを得た。
実施例5
合成例1で得られたペレット樹脂100質量部と、チタン酸バリウム(一次平均粒子径100nm)20質量部とを混合して、250℃で混練した後、250℃でヒートプレスにて成形し、厚さ215μmのフィルムを得た。
比較例1
実施例1において、フィルム形成樹脂としてVDFの単独重合体(ダイキン工業(株)製のネオフロンVDF VP-832)を用いたほかは同様にして比較用のフィルムコンデンサ用フィルムを得た。
得られた各フィルムについて、誘電正接、比誘電率および体積抵抗率を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
表1から、本発明の樹脂は、特に誘電正接が改善され低くなり、また周波数依存性も小さいということが分かる。
実施例6
実施例1で製造したフィルムの両面に、真空蒸着装置((株)真空デバイス製のVE-2030)により3Ω/□を目標にしてアルミニウムを蒸着して電極を形成した。これらのアルミニウム電極に電圧印加用のリード線を取り付け、スタンプ型(簡易評価用)のフィルムコンデンサを作製した。

Claims (14)

  1. フッ化ビニリデン単位およびテトラフルオロエチレン単位をフッ化ビニリデン単位/テトラフルオロエチレン単位(モル%比)で0/100~49/51の範囲で含むテトラフルオロエチレン系樹脂(a1)をフィルム形成樹脂(A)として含むフィルムコンデンサ用フィルム。
  2. 前記テトラフルオロエチレン系樹脂(a1)が、さらにエチレン性不飽和単量体単位を含む請求項1記載のフィルムコンデンサ用フィルム。
  3. 前記テトラフルオロエチレン系樹脂(a1)が、テトラフルオロエチレン単位を55.0~90.0モル%、フッ化ビニリデン単位を5.0~44.9モル%、および式(1):
    CX=CX(CF
    (式中、X、X、XおよびXは同じかまたは異なり、いずれもH、FまたはCl;nは0~8の整数。ただし、テトラフルオロエチレンおよびフッ化ビニリデンは除く)で示されるエチレン性不飽和単量体単位を0.1~10.0モル%含む請求項2記載のフィルムコンデンサ用フィルム。
  4. 前記テトラフルオロエチレン系樹脂(a1)が、テトラフルオロエチレン単位を55.0~90.0モル%、フッ化ビニリデン単位を9.2~44.2モル%、および式(2):
    CF=CF-ORf
    (式中、Rfは炭素数1~3のアルキル基またはフルオロアルキル基)で示されるエチレン性不飽和単量体単位を0.1~0.8モル%含む請求項2記載のフィルムコンデンサ用フィルム。
  5. 前記テトラフルオロエチレン系樹脂(a1)が、テトラフルオロエチレン単位を55.0~90.0モル%、フッ化ビニリデン単位を5.0~44.8モル%、式(1):
    CX=CX(CF
    (式中、X、X、XおよびXは同じかまたは異なり、いずれもH、FまたはCl;nは0~8の整数。ただし、テトラフルオロエチレンおよびフッ化ビニリデンは除く)で示されるエチレン性不飽和単量体単位を0.1~10.0モル%、および式(2):
    CF=CF-ORf
    (式中、Rfは炭素数1~3のアルキル基またはフルオロアルキル基)で示されるエチレン性不飽和単量体単位を0.1~0.8モル%含む請求項2記載のフィルムコンデンサ用フィルム。
  6. 前記テトラフルオロエチレン系樹脂(a1)が、動的粘弾性測定による170℃における貯蔵弾性率(E’)が60~400MPaである請求項1~5のいずれか1項に記載のフィルムコンデンサ用フィルム。
  7. フィルム形成樹脂(A)が、前記テトラフルオロエチレン系樹脂(a1)と非フッ素系樹脂(a2)を含む請求項1~6のいずれか1項に記載のフィルムコンデンサ用フィルム。
  8. 非フッ素系樹脂(a2)が、セルロース系樹脂およびアクリル樹脂よりなる群から選ばれる少なくとも1種である請求項7記載のフィルムコンデンサ用フィルム。
  9. さらに無機酸化物粒子(B)を含む請求項1~8のいずれか1項に記載のフィルムコンデンサ用フィルム。
  10. 前記無機酸化物粒子(B)が、(B1)周期表の2族、3族、4族、12族または13族の1種の金属元素の無機酸化物粒子、またはこれらの無機酸化物複合粒子を少なくとも含む請求項9記載のフィルムコンデンサ用フィルム。
  11. 前記無機酸化物粒子またはこれらの無機酸化物複合粒子(B1)が、Al、MgO、ZrO、Y、BeOおよびMgO・Alよりなる群から選ばれる少なくとも1種の粒子である請求項10記載のフィルムコンデンサ用フィルム。
  12. 前記無機酸化物粒子またはこれらの無機酸化物複合粒子(B1)が、γ型Alである請求項10記載のフィルムコンデンサ用フィルム。
  13. 前記無機酸化物粒子(B)が、以下の(B2)~(B5):
    (B2)式(B2):
     M a1b1c1
    (式中、Mは周期表の2族金属元素;Nは周期表の4族金属元素;a1は0.9~1.1;b1は0.9~1.1;c1は2.8~3.2である;MとNはそれぞれ複数であってもよい)で示される複合酸化物粒子、
    (B3)式(B3):
     M a2 b2c2
    (式中、MとMは異なり、Mは周期表の2族金属元素、Mは周期表の第5周期の金属元素;a2は0.9~1.1;b2は0.9~1.1;c2は2.8~3.2である)で示される複合酸化物粒子、
    (B4)周期表の2族金属元素および4族金属元素よりなる群から選ばれる少なくとも3種の金属元素を含む複合酸化物粒子、および
    (B5)周期表の2族、3族、4族、12族または13族の金属元素の酸化物と酸化ケイ素との無機酸化物複合粒子
    よりなる群から選ばれる少なくとも1種の高誘電性無機粒子(ただし、前記無機酸化物粒子またはこれらの無機酸化物複合粒子(B1)は除く)を少なくとも含む請求項9~12のいずれか1項に記載のフィルムコンデンサ用フィルム。
  14. 請求項1~13のいずれかに記載のフィルムコンデンサ用フィルムの少なくとも片面に電極層が積層されているフィルムコンデンサ。
PCT/JP2011/071483 2010-09-22 2011-09-21 フィルムコンデンサ用フィルムおよびフィルムコンデンサ WO2012039424A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/825,476 US9156930B2 (en) 2010-09-22 2011-09-21 Film for use in film capacitors, and film capacitors
EP11826869.7A EP2620963B1 (en) 2010-09-22 2011-09-21 Film for use in film capacitors, and film capacitors
KR1020137010026A KR101449356B1 (ko) 2010-09-22 2011-09-21 필름 콘덴서용 필름 및 필름 콘덴서
CN201180045116.1A CN103119671B (zh) 2010-09-22 2011-09-21 膜电容器用膜和膜电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-212812 2010-09-22
JP2010212812 2010-09-22

Publications (1)

Publication Number Publication Date
WO2012039424A1 true WO2012039424A1 (ja) 2012-03-29

Family

ID=45873908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071483 WO2012039424A1 (ja) 2010-09-22 2011-09-21 フィルムコンデンサ用フィルムおよびフィルムコンデンサ

Country Status (6)

Country Link
US (1) US9156930B2 (ja)
EP (1) EP2620963B1 (ja)
JP (1) JP5003838B2 (ja)
KR (1) KR101449356B1 (ja)
CN (1) CN103119671B (ja)
WO (1) WO2012039424A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014123A1 (ja) * 2015-07-17 2017-01-26 ダイキン工業株式会社 フィルム
WO2018062253A1 (ja) * 2016-09-28 2018-04-05 ダイキン工業株式会社 フィルム
WO2018142933A1 (ja) 2017-01-31 2018-08-09 ダイキン工業株式会社 フッ素樹脂フィルム
JP2018135482A (ja) * 2017-02-23 2018-08-30 ダイキン工業株式会社 フッ素樹脂フィルム
JP2021138901A (ja) * 2020-03-09 2021-09-16 株式会社豊田中央研究所 複合誘電体材料

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3323839B1 (en) * 2015-07-14 2020-11-11 Daikin Industries, Ltd. Fluororesin and molded article
JP6677358B2 (ja) * 2017-11-15 2020-04-08 株式会社村田製作所 フィルムコンデンサ、及び、フィルムコンデンサ用フィルム
US11037728B2 (en) 2017-12-22 2021-06-15 Samsung Electronics Co., Ltd. Dielectric and capacitor and electronic device
JP7286623B2 (ja) * 2018-03-30 2023-06-05 ダイキン工業株式会社 電波吸収材料および電波吸収シート
CN109910403B (zh) * 2019-04-12 2021-01-29 中国电子科技集团公司第三十八研究所 一种微波复合介质板的制备方法及制得的微波复合介质板

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199046A (ja) 1984-03-23 1985-10-08 Kureha Chem Ind Co Ltd フツ化ビニリデン樹脂組成物
JPS60262414A (ja) 1984-06-09 1985-12-25 松下電器産業株式会社 フイルムコンデンサ
JPS63181411A (ja) 1987-01-23 1988-07-26 日本ケミコン株式会社 積層フイルムコンデンサ
JPS649261A (en) * 1987-07-02 1989-01-12 Showa Denko Kk Vinylidene fluoride resin composition and oriented film prepared therefrom
JPH02250306A (ja) 1989-03-23 1990-10-08 Toray Ind Inc コンデンサ用金属化フイルムおよびその製造方法
JPH0318113A (ja) 1989-06-14 1991-01-25 Murata Mfg Co Ltd ノイズフィルタの取付け構造
JPH03286514A (ja) 1990-04-02 1991-12-17 Nitsuko Corp 金属化フィルムコンデンサのフィルム巻回方法
JP3664342B2 (ja) 1996-09-30 2005-06-22 日本ゼオン株式会社 高分子誘電体フィルム
WO2007088924A1 (ja) 2006-02-01 2007-08-09 Daikin Industries, Ltd. 高誘電性フィルム
WO2008050971A1 (en) 2006-10-25 2008-05-02 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
WO2008090947A1 (ja) 2007-01-26 2008-07-31 Daikin Industries, Ltd. 高耐電圧を有する高誘電体フィルム
WO2009017109A1 (ja) 2007-07-31 2009-02-05 Daikin Industries, Ltd. 高誘電性フィルム
JP2009038089A (ja) 2007-07-31 2009-02-19 Daikin Ind Ltd 高誘電性フィルム
JP2009038088A (ja) 2007-07-31 2009-02-19 Daikin Ind Ltd 高誘電性フィルム
WO2009116527A1 (ja) * 2008-03-19 2009-09-24 ダイキン工業株式会社 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100889B1 (de) 1982-07-20 1986-09-24 Hoechst Aktiengesellschaft Grundierungsmittel für Überzüge aus Fluorkohlenstoffpolymeren mit einem Gehalt an Polyarylensulfid-Harz, aromatischem Polyethersulfon-Harz oder aromatischem Polyetherketon-Harz und dessen Verwendung
JPS59226410A (ja) * 1983-06-04 1984-12-19 呉羽化学工業株式会社 高分子誘電体
JPS649621A (en) * 1987-07-01 1989-01-12 Fujitsu Ltd Surface treatment of semiconductor substrate
DE3832828A1 (de) * 1988-09-28 1990-04-12 Hoechst Ag Ueberzugszusammensetzung aus fluorpolymeren
JP3411714B2 (ja) * 1995-04-27 2003-06-03 旭硝子株式会社 フッ素ゴム組成物
US5856417A (en) * 1996-10-29 1999-01-05 Asahi Glass Company Ltd. Fluorine-containing copolymer
JP4266420B2 (ja) * 1998-12-10 2009-05-20 クレハエラストマー株式会社 カーボンシートおよびその製法
JP2001110678A (ja) * 1999-10-05 2001-04-20 Nippon Kodoshi Corp 電気二重層コンデンサ
JP5239111B2 (ja) 2000-04-07 2013-07-17 ダイキン工業株式会社 電極用添加剤
US7045571B2 (en) 2001-05-21 2006-05-16 3M Innovative Properties Company Emulsion polymerization of fluorinated monomers
AU2003244167A1 (en) * 2002-06-24 2004-01-06 Mitsubishi Plastics, Inc. Conductive resin film, collector and production methods therefore
JP2005075853A (ja) * 2003-08-28 2005-03-24 Daikin Ind Ltd フルオロポリマー製造方法
JP2011527375A (ja) * 2008-07-07 2011-10-27 アーケマ・インコーポレイテッド フッ化ビニリデン/2,3,3,3−テトラフルオロプロペンコポリマー
US8675345B2 (en) * 2008-12-22 2014-03-18 Daikin Industries, Ltd. Film for film capacitor and film capacitor
CN102666682A (zh) * 2010-01-20 2012-09-12 大金工业株式会社 高介电性膜
JP5853965B2 (ja) * 2011-02-18 2016-02-09 旭硝子株式会社 含フッ素共重合体ラテックスの製造方法、含フッ素共重合体ラテックス、電極製造用バインダー、蓄電デバイス用電極合剤および蓄電デバイス用電極

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199046A (ja) 1984-03-23 1985-10-08 Kureha Chem Ind Co Ltd フツ化ビニリデン樹脂組成物
JPS60262414A (ja) 1984-06-09 1985-12-25 松下電器産業株式会社 フイルムコンデンサ
JPS63181411A (ja) 1987-01-23 1988-07-26 日本ケミコン株式会社 積層フイルムコンデンサ
JPS649261A (en) * 1987-07-02 1989-01-12 Showa Denko Kk Vinylidene fluoride resin composition and oriented film prepared therefrom
JPH02250306A (ja) 1989-03-23 1990-10-08 Toray Ind Inc コンデンサ用金属化フイルムおよびその製造方法
JPH0318113A (ja) 1989-06-14 1991-01-25 Murata Mfg Co Ltd ノイズフィルタの取付け構造
JPH03286514A (ja) 1990-04-02 1991-12-17 Nitsuko Corp 金属化フィルムコンデンサのフィルム巻回方法
JP3664342B2 (ja) 1996-09-30 2005-06-22 日本ゼオン株式会社 高分子誘電体フィルム
WO2007088924A1 (ja) 2006-02-01 2007-08-09 Daikin Industries, Ltd. 高誘電性フィルム
WO2008050971A1 (en) 2006-10-25 2008-05-02 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
WO2008090947A1 (ja) 2007-01-26 2008-07-31 Daikin Industries, Ltd. 高耐電圧を有する高誘電体フィルム
WO2009017109A1 (ja) 2007-07-31 2009-02-05 Daikin Industries, Ltd. 高誘電性フィルム
JP2009038089A (ja) 2007-07-31 2009-02-19 Daikin Ind Ltd 高誘電性フィルム
JP2009038088A (ja) 2007-07-31 2009-02-19 Daikin Ind Ltd 高誘電性フィルム
WO2009116527A1 (ja) * 2008-03-19 2009-09-24 ダイキン工業株式会社 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014123A1 (ja) * 2015-07-17 2017-01-26 ダイキン工業株式会社 フィルム
KR20180030144A (ko) 2015-07-17 2018-03-21 다이킨 고교 가부시키가이샤 필름
US10745531B2 (en) 2015-07-17 2020-08-18 Daikin Industries, Ltd. Film
JPWO2017014123A1 (ja) * 2015-07-17 2018-04-05 ダイキン工業株式会社 フィルム
KR20190045245A (ko) 2016-09-28 2019-05-02 다이킨 고교 가부시키가이샤 필름
JPWO2018062253A1 (ja) * 2016-09-28 2019-06-24 ダイキン工業株式会社 フィルム
WO2018062253A1 (ja) * 2016-09-28 2018-04-05 ダイキン工業株式会社 フィルム
US11479647B2 (en) 2016-09-28 2022-10-25 Daikin Industries. Ltd. Film including a fluoropolymer
WO2018142933A1 (ja) 2017-01-31 2018-08-09 ダイキン工業株式会社 フッ素樹脂フィルム
US11352469B2 (en) 2017-01-31 2022-06-07 Daikin Industries. Ltd. Fluororesin film
JP2018135482A (ja) * 2017-02-23 2018-08-30 ダイキン工業株式会社 フッ素樹脂フィルム
JP7021427B2 (ja) 2017-02-23 2022-02-17 ダイキン工業株式会社 フッ素樹脂フィルム
JP2021138901A (ja) * 2020-03-09 2021-09-16 株式会社豊田中央研究所 複合誘電体材料
JP7443837B2 (ja) 2020-03-09 2024-03-06 株式会社豊田中央研究所 複合誘電体材料

Also Published As

Publication number Publication date
CN103119671A (zh) 2013-05-22
EP2620963A1 (en) 2013-07-31
KR20130081292A (ko) 2013-07-16
KR101449356B1 (ko) 2014-10-08
JP5003838B2 (ja) 2012-08-15
US20130188293A1 (en) 2013-07-25
EP2620963B1 (en) 2019-09-04
EP2620963A4 (en) 2015-04-01
JP2012089832A (ja) 2012-05-10
CN103119671B (zh) 2016-10-12
US9156930B2 (en) 2015-10-13

Similar Documents

Publication Publication Date Title
JP5003838B2 (ja) フィルムコンデンサ用フィルムおよびフィルムコンデンサ
JP5494676B2 (ja) 高誘電性フィルム
JP5246256B2 (ja) 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
JP5310744B2 (ja) フィルムコンデンサ用フィルムおよびフィルムコンデンサ
JP5679822B2 (ja) フィルムコンデンサ用高誘電性フィルム形成組成物
JP5135937B2 (ja) 高誘電性フィルム
JP5070976B2 (ja) 高誘電性フィルム
JP5338282B2 (ja) 積層型高誘電性フィルム
JP5472091B2 (ja) 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
JP5333456B2 (ja) 積層型高誘電性フィルム
JP5151588B2 (ja) 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
JP5733371B2 (ja) 積層フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045116.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011826869

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13825476

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137010026

Country of ref document: KR

Kind code of ref document: A