WO2018142933A1 - フッ素樹脂フィルム - Google Patents

フッ素樹脂フィルム Download PDF

Info

Publication number
WO2018142933A1
WO2018142933A1 PCT/JP2018/001180 JP2018001180W WO2018142933A1 WO 2018142933 A1 WO2018142933 A1 WO 2018142933A1 JP 2018001180 W JP2018001180 W JP 2018001180W WO 2018142933 A1 WO2018142933 A1 WO 2018142933A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
fluororesin
mass
copolymer
tetrafluoroethylene
Prior art date
Application number
PCT/JP2018/001180
Other languages
English (en)
French (fr)
Inventor
幸治 横谷
信之 小松
武史 硲
麻有子 立道
章夫 檜垣
達也 樋口
景子 山▲崎▼
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP18748116.3A priority Critical patent/EP3556798A4/en
Priority to US16/480,132 priority patent/US11352469B2/en
Priority to CN202210619256.5A priority patent/CN114933768A/zh
Priority to KR1020227000439A priority patent/KR102441991B1/ko
Priority to JP2018566034A priority patent/JP6760404B2/ja
Priority to KR1020197019127A priority patent/KR102349645B1/ko
Priority to CN201880008655.XA priority patent/CN110225938B/zh
Publication of WO2018142933A1 publication Critical patent/WO2018142933A1/ja
Priority to US17/734,213 priority patent/US20220267540A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/08Homopolymers or copolymers of vinylidene chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to a fluororesin film.
  • Vinylidene fluoride homopolymer films and copolymer films of vinylidene fluoride and other monomers are known to have a high dielectric constant.
  • Patent Document 1 describes a high dielectric film formed by using a fluororesin containing a total of 95 mol% or more of vinylidene fluoride units and tetrafluoroethylene units.
  • Patent Document 2 forms a film of a tetrafluoroethylene resin containing vinylidene fluoride units and tetrafluoroethylene units in the range of 0/100 to 49/51 in terms of vinylidene fluoride units / tetrafluoroethylene units (mole% ratio).
  • a film for a film capacitor contained as a resin is described.
  • Patent Document 3 discloses a polypropylene film made of a polypropylene resin mainly composed of propylene, and the polypropylene resin is a linear polypropylene and has a melt tension (MS) and a melt flow index measured at 230 ° C. (MFR) is a mixture of 0.1 to 1.5 wt% of branched polypropylene (H) satisfying the relational expression of log (MS)> ⁇ 0.56 log (MFR) +0.74, At least one surface of the film surface has a base layer composed of textured unevenness, the 10-point average roughness (Rz) of the surface is 0.50 to 1.50 ⁇ m, and the surface glossiness is 90 to 135%.
  • a biaxially oriented polypropylene film is described.
  • the fluororesin film used for film capacitors, etc. must have a low coefficient of static friction in order to improve the winding property of the film while having a high dielectric breakdown strength in addition to a high dielectric constant. Is required. However, a fluororesin film having a low coefficient of static friction while maintaining a high dielectric breakdown strength has not been obtained.
  • An object of the present invention is to provide a fluororesin film having a low coefficient of static friction and a high dielectric breakdown strength in view of the above situation.
  • the present invention is a fluororesin film containing a fluororesin, wherein at least one surface has a 10-point average roughness of 0.100 to 1.200 ⁇ m and an arithmetic average roughness of 0.010 to 0.050 ⁇ m.
  • the fluororesin is preferably a vinylidene fluoride / tetrafluoroethylene copolymer.
  • the fluororesin preferably further contains a copolymer unit based on an ethylenically unsaturated monomer (excluding tetrafluoroethylene and vinylidene fluoride).
  • the fluororesin film of the present invention preferably further contains inorganic particles.
  • the content of the inorganic particles is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the fluororesin.
  • the fluororesin film of the present invention is preferably embossed.
  • the fluororesin film of the present invention is surface-coated.
  • the fluororesin film of this invention contains 2 types of fluororesins as a fluororesin.
  • the fluororesin film of the present invention preferably contains an uncrosslinked fluororesin and a crosslinked fluororesin as the fluororesin.
  • the fluororesin film of this invention contains 2 types of fluororesins from which a melt flow rate differs as a fluororesin.
  • One of the fluororesins is a fluororesin having a melt flow rate of 2.0 to 30.0 g / 10 min, and the other is a fluororesin having a melt flow rate of 0.1 to 1.9 g / 10 min. preferable.
  • the fluororesin film of the present invention preferably contains two fluororesins having different composition ratios of polymerized units as the fluororesin.
  • One of the fluororesins is a vinylidene fluoride / tetrafluoroethylene copolymer having a vinylidene fluoride unit / tetrafluoroethylene unit molar ratio of 95.0 / 5.0 to 39.0 / 61.0, and the other is A vinylidene fluoride / tetrafluoroethylene copolymer having a molar ratio of vinylidene fluoride unit / tetrafluoroethylene unit of 38.9 / 61.1 to 5.0 / 95.0 is preferred.
  • the fluororesin film of the present invention is preferably a biaxially stretched film.
  • the fluororesin film of the present invention preferably has a thickness of 1 to 100 ⁇ m.
  • the present invention is also a film for a film capacitor comprising an electrode layer on at least one surface of the fluororesin film.
  • This invention is also a film capacitor provided with the said film for film capacitors.
  • the fluororesin film of the present invention has the above-described configuration, it has a low coefficient of static friction and a high dielectric breakdown strength.
  • the fluororesin film of the present invention contains fluororesin, has a 10-point average roughness of at least one surface of 0.100 to 1.200 ⁇ m, an arithmetic average roughness of 0.010 to 0.050 ⁇ m, and an insulating property.
  • the breaking strength is 400 V / ⁇ m or more, it has a low coefficient of static friction despite having a high dielectric breakdown strength. Thereby, the excellent winding-up property is also realized.
  • dielectric breakdown occurs when a fluororesin film is used as a high dielectric film for a film capacitor, gas is generated and the reliability is lowered.
  • the fluororesin film of the present invention has the above-described configuration.
  • the generated gas can be easily released and has excellent reliability (for example, long-term durability). Furthermore, since a fluororesin is included, a higher electric capacity can be obtained even if the thickness of the film is made thinner than when a resin having a low dielectric constant is used.
  • a vinylidene-based fluororesin is a high dielectric material as compared with a general-purpose resin, and is a resin that is easily charged (easily charged). Therefore, due to the action of static electricity, the films easily adhere to the rolls during film formation or during film formation, handling is difficult, and productivity is low. Furthermore, when the film surface is smooth (the larger the area in contact with it), van der Waals force (intermolecular force) also works, making it easier to handle the film and the roll, and handling becomes more difficult.
  • the fluorine film of the present invention has a specific dielectric breakdown strength and a specific surface property, even when a high dielectric material is used, the film slips without being in close contact with each other or each roll of a molding machine during film production. It is possible to provide a high-dielectric film that does not deteriorate the performance and film productivity.
  • the fluororesin film of the present invention has a 10-point average roughness of at least one surface of 0.100 to 1.200 ⁇ m and an arithmetic average roughness of 0.010 to 0.050 ⁇ m.
  • the 10-point average roughness is preferably 0.150 to 1.150 ⁇ m, more preferably 0.170 to 1.100 ⁇ m, from the viewpoint that the static friction coefficient of the fluororesin film is low and the reliability is excellent. Is more preferably 0.200 to 1.000 ⁇ m.
  • the arithmetic average roughness is preferably 0.011 to 0.048 ⁇ m, more preferably 0.012 to 0.045 ⁇ m, and still more preferably 0.013 to 0.045 ⁇ m.
  • the 10-point average roughness and arithmetic average roughness values are values measured based on JIS B-0601-2001. For example, it can be measured using “Laser Microscope” manufactured by Keyence Corporation.
  • the fluororesin film of the present invention has a dielectric breakdown strength of 400 V / ⁇ m or more, preferably 420 V / ⁇ m or more, more preferably 450 V / ⁇ m or more, and particularly preferably 500 V / ⁇ m or more.
  • the upper limit of the dielectric breakdown strength is not limited, but may be, for example, 1000 V / ⁇ m or less, or 800 V / ⁇ m or less.
  • 700 V / micrometer or less may be sufficient and 650 V / micrometer or less may be sufficient.
  • the dielectric breakdown strength is measured by placing the film on the lower electrode, placing a weight of ⁇ 25 mm and a weight of 500 g as the upper electrode, increasing the voltage at both ends at 100 V / sec, and measuring the breaking voltage.
  • the number of measurements is 50 points, the average value is calculated by removing the upper and lower 5 points, and the dielectric breakdown strength is obtained by the value divided by the thickness.
  • the fluororesin film of the present invention preferably has a crystallinity of 50% or more.
  • the crystallinity of the fluororesin film is within the above range, the fluororesin film having the dielectric breakdown strength can be produced.
  • As said crystallinity degree 60% or more is more preferable, and 70% or more is still more preferable.
  • the upper limit of the crystallinity is not particularly limited, but may be 100%.
  • a resin with high crystallinity is effective in setting the dielectric breakdown strength to 400 V / ⁇ m or more.
  • the crystallinity is measured using a peak separation method with an X-ray diffractometer.
  • a measurement sample obtained by superimposing a plurality of films so that the total thickness is 40 ⁇ m or more is set in a sample holder, and a crystalline portion and an amorphous portion of a diffraction spectrum obtained by an X-ray diffractometer The crystallinity is calculated from the area ratio of the part.
  • the present invention is a fluororesin film containing a fluororesin.
  • fluororesin examples include polytetrafluoroethylene, tetrafluoroethylene / ethylene copolymer, polyvinylidene fluoride, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, and the like.
  • fluororesin a melt processable fluororesin is more preferable.
  • Fluoropolymers containing vinylidene fluoride units are preferred because of their superior heat resistance and high dielectric properties.
  • the fluororesin preferably has a melt flow rate (MFR) of 0.1 to 100 g / 10 minutes, and more preferably 0.1 to 50 g / 10 minutes.
  • MFR melt flow rate
  • the MFR is a mass (g / 10 minutes) of a polymer flowing out per 10 minutes from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 5 kg at 297 ° C. in accordance with ASTM D3307-01.
  • the fluororesin preferably has a relative dielectric constant ( ⁇ ) of 8 or more at a frequency of 1 kHz and 30 ° C., more preferably 9 or more.
  • the upper limit of the relative dielectric constant is not particularly limited, but may be 15, for example.
  • the fluororesin preferably has a melting point of 180 ° C. or higher, and the upper limit may be 320 ° C. A more preferred lower limit is 190 ° C and an upper limit is 300 ° C.
  • the melting point is measured using a differential scanning calorimeter in accordance with ASTM D-4591 at a heating rate of 10 ° C./min, and the temperature corresponding to the peak of the obtained endothermic curve is taken as the melting point.
  • the fluororesin preferably has a thermal decomposition start temperature (1% mass loss temperature) of 360 ° C. or higher. A more preferred lower limit is 370 ° C. If the said thermal decomposition start temperature is in the said range, an upper limit can be 410 degreeC, for example.
  • the thermal decomposition starting temperature is a temperature at which 1% by mass of the copolymer subjected to the heating test is decomposed, and the temperature of the copolymer subjected to the heating test using a differential thermal / thermogravimetric measuring device [TG-DTA] It is a value obtained by measuring the temperature when the mass is reduced by 1% by mass.
  • the fluororesin preferably has a storage elastic modulus (E ′) at 170 ° C. of 60 to 400 MPa as measured by dynamic viscoelasticity.
  • the storage elastic modulus is a value measured at 170 ° C. by dynamic viscoelasticity measurement. More specifically, a sample having a length of 30 mm, a width of 5 mm, and a thickness of 0.25 mm with a dynamic viscoelasticity device is in tension mode. It is a value measured under the conditions of a grip width of 20 mm, a measurement temperature of 25 ° C. to 250 ° C., a heating rate of 2 ° C./min, and a frequency of 1 Hz.
  • the molding temperature is set to a temperature 50 to 100 ° C. higher than the melting point of the copolymer, and a film molded to a thickness of 0.25 mm at a pressure of 3 MPa is cut into a length of 30 mm and a width of 5 mm. Can be created.
  • the fluororesin is preferably a vinylidene fluoride / tetrafluoroethylene copolymer (VdF / TFE copolymer) from the viewpoints of excellent high dielectric properties, low static friction coefficient, and high dielectric breakdown strength.
  • VdF / TFE copolymer preferably has a vinylidene fluoride unit / tetrafluoroethylene unit molar ratio of 5/95 to 95/5, more preferably 10/90 to 90/10, and further Is preferably 10/90 to 49/51.
  • VdF unit is 20 mol% or more and TFE unit is 80 mol% or less with respect to 100 mol% in total of VdF unit and TFE unit), more preferably 45/55 or less
  • VdF unit More preferably, the VdF unit is 45 mol% or less and the TFE unit is 55 mol% or more with respect to the total of 100 mol% of the TFE unit and the TFE unit.
  • the VdF / TFE copolymer preferably further contains a copolymer unit of an ethylenically unsaturated monomer (excluding tetrafluoroethylene and vinylidene fluoride).
  • the content of the copolymerized unit of the ethylenically unsaturated monomer may be 0 to 50 mol%, may be 0 to 40 mol%, or may be 0 to 30 mol%, based on all copolymerized units. It may be 0 to 15 mol%, 0 to 10 mol%, or 0 to 5 mol%.
  • the content of the copolymer of ethylenically unsaturated monomers may be 0.1 mol% or more.
  • the ethylenically unsaturated monomer is not particularly limited as long as it is a monomer copolymerizable with tetrafluoroethylene and vinylidene fluoride, but is ethylenic represented by the following formulas (1) and (2). It is preferably at least one selected from the group consisting of unsaturated monomers.
  • CF 2 CF-ORf 1 (2)
  • Rf 1 represents an alkyl group having 1 to 3 carbon atoms or a fluoroalkyl group having 1 to 3 carbon atoms.
  • the VdF / TFE copolymer is 55.0-90.0 mol% tetrafluoroethylene, 5.0-44.9 mol% vinylidene fluoride, and 0.1-10.0 mol% of formula (1):
  • CX 1 X 2 CX 3 (CF 2 ) n X 4 (1)
  • X 1 , X 2 , X 3 and X 4 are the same or different and each represents H, F or Cl, and n represents an integer of 0 to 8, provided that tetrafluoroethylene and vinylidene fluoride are substituted. except.
  • the ethylenically unsaturated monomer represented by the formula (1) is CH 2 ⁇ CH—C 4 F 9 , CH 2 ⁇ . It is preferably at least one monomer selected from the group consisting of CH—C 6 F 13 and CH 2 ⁇ CF—C 3 F 6 H. More preferably, the ethylenically unsaturated monomer represented by formula (1) is CH 2 ⁇ CH—C 4 F 9 , CH 2 ⁇ CH—C 6 F 13 and CH 2 ⁇ CF—C 3 F 6 H.
  • Tetrafluoroethylene having at least one monomer selected from the group consisting of 55.0 to 80.0 mol% of a copolymer, 19.5 to 44.9 mol% vinylidene fluoride, and 0.1 to 0.6 mol% of an ethylenically unsaturated monomer represented by the formula (1), It is a copolymer containing the copolymer unit of this.
  • the VdF / TFE copolymer is 58.0-85.0 mol% tetrafluoroethylene, 10.0 to 41.9 mol% vinylidene fluoride, and 0.1 to 5.0 mol% of an ethylenically unsaturated monomer represented by the formula (1), A copolymer containing the copolymer unit may be used.
  • the VdF / TFE copolymer is 55.0-90.0 mol% tetrafluoroethylene, 9.2-44.2 mol% vinylidene fluoride, and 0.1 to 0.8 mol% of formula (2):
  • CF 2 CF-ORf 1 (2)
  • Rf 1 represents an alkyl group having 1 to 3 carbon atoms or a fluoroalkyl group having 1 to 3 carbon atoms
  • Rf 1 represents an alkyl group having 1 to 3 carbon atoms or a fluoroalkyl group having 1 to 3 carbon atoms
  • the VdF / TFE copolymer is 55.0-90.0 mol% tetrafluoroethylene, 5.0-44.8 mol% vinylidene fluoride, 0.1 to 10.0 mol% of an ethylenically unsaturated monomer represented by the formula (1), and 0.1 to 0.8 mol% of an ethylenically unsaturated monomer represented by the formula (2), It is also preferable that it is a copolymer containing these copolymer units.
  • the copolymer is 58.0-85.0 mol% tetrafluoroethylene, 9.5-39.8 mol% vinylidene fluoride, 0.1 to 5.0 mol% of an ethylenically unsaturated monomer represented by the formula (1), and 0.1 to 0.5 mol% of an ethylenically unsaturated monomer represented by the formula (2), A copolymer containing the copolymer unit may be used.
  • the fluororesin film of the present invention may be a film consisting essentially of a fluororesin or may contain other components other than the fluororesin.
  • the fluororesin film of the present invention preferably contains 50% by mass or more of fluororesin.
  • the fluororesin film of the present invention may further contain inorganic particles.
  • the fluororesin film having the 10-point average roughness and the arithmetic average roughness can be produced, and the winding property can be improved.
  • the mechanical strength characteristics are improved by including the inorganic particles.
  • the content of inorganic particles is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the fluororesin. More preferably, it is 0.05 to 4 parts by mass, and still more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the fluororesin.
  • examples of the inorganic particles include silica, highly dielectric inorganic particles, reinforcing filler, and the like.
  • the silica is preferable because it can improve the winding property of the film without impairing the mechanical strength of the film.
  • the content of silica is preferably 0.01 to 1 part by mass, more than 0.1 part by mass with respect to 100 parts by mass of the fluororesin, from the viewpoint of film winding property and dielectric breakdown strength. It is more preferable. Moreover, when there is too much addition amount, an interface with an additive will become large and there exists a possibility of leading to a defect.
  • the high dielectric inorganic particles include barium titanate oxide particles and strontium titanate oxide particles.
  • the content of the high dielectric inorganic particles is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the fluororesin. Moreover, when there is too much addition amount, an interface with an additive will become large and there exists a possibility of leading to a defect.
  • the dielectric constant is improved, but an increase in dielectric loss and a decrease in withstand voltage are observed. Therefore, the upper limit of the content of the barium titanate-based oxide particles is about 10 parts by mass with respect to 100 parts by mass of the fluororesin.
  • the content of the barium titanate-based oxide particles is preferably 0.1 parts by mass or more from the viewpoint of the effect of improving the winding property and the dielectric constant. Moreover, when there is too much addition amount, an interface with an additive will become large and there exists a possibility of leading to a defect.
  • the fluororesin film of the present invention is one of suitable forms that is embossed.
  • embossing a fluororesin film having the 10-point average roughness and the arithmetic average roughness can be produced, the static friction coefficient can be lowered, and the winding property can be improved. Further, by embossing, defects are reduced and reliability is improved by suppressing generation of wrinkles during film processing.
  • the embossing may be performed so that the fluororesin film satisfies the 10-point average roughness, arithmetic average roughness and dielectric breakdown strength, and normal embossing can be employed.
  • the film surface is embossed by pressing the embossing rolls with irregularities such as stripes, satin, squares, waves, trapezoids, diamonds, cloths, silks, diagonal lines, dots, etc. at room temperature and humidity. Can do.
  • embossing if a deep dent is added too much, the film thickness becomes thin, and the dielectric breakdown strength of that part decreases. Therefore, the dent in the embossing is preferably within 5% of the film thickness.
  • the fluororesin film of the present invention is one of suitable forms that is surface-coated.
  • a fluororesin film having the above 10-point average roughness and arithmetic average roughness can be produced, the static friction coefficient can be lowered, and winding properties can be improved.
  • the surface coating improves the dielectric strength characteristics.
  • the surface coating may be performed so as to satisfy the 10-point average roughness, arithmetic average roughness, and dielectric breakdown strength, and a conventional surface coating can be employed.
  • the film surface can be coated by coating the nanoparticle dispersion solution on the film surface and subjecting it to a drying treatment at a boiling point or higher of the solvent.
  • Nanoparticles preferably have a particle diameter of 500 nm or less, and include silica, alumina, zirconia, titanium oxide, zinc oxide and the like.
  • ether-type and ketone-type solvents which are difficult to repel on the fluororesin film are preferable because uniform coating on the surface of the film leads to unevenness.
  • the surface coating does not stick to the film surface only by using the nanoparticles and the solvent together, addition of a binder is also necessary.
  • the binder include polyvinylidene fluoride.
  • the fluororesin film of the present invention is one of the preferred forms that contains two fluororesins as the fluororesin.
  • two fluororesins By including two kinds of fluororesins, the fluororesin film having the above-mentioned 10-point average roughness and arithmetic average roughness can be produced, the static friction coefficient can be lowered, and winding properties can be improved.
  • the fluororesin film which is hard to tear when processed into a film and excellent in mechanical strength can be obtained.
  • the two fluororesins are preferably polymers that are compatible with each other. By using mutually compatible polymers, it is possible to obtain a fluororesin film that is more difficult to break and excellent in mechanical strength.
  • “compatible with each other” means that two kinds of fluororesins are melted and uniformly mixed.
  • the fluororesin preferably contains an uncrosslinked fluororesin and a crosslinked fluororesin.
  • an uncrosslinked fluororesin and a crosslinked fluororesin are included, since the same fluoromaterial is used instead of a composite of other materials, it is possible to obtain a film with less interface and less defects.
  • the crosslinked fluororesin can be produced, for example, by irradiating an uncrosslinked fluororesin with an electron beam. That is, the cross-linked fluororesin may be irradiated with an electron beam.
  • the crosslinking with an electron beam preferably has an absorbed dose in the range of 20 kGy to 100 kGy at room temperature.
  • Yield point stress and elastic modulus can be improved by forming a three-dimensional network between molecular chains by electron beam irradiation.
  • the cross-linked fluororesin can also be produced by adding a cross-linking agent and thermosetting or UV-curing.
  • the crosslinking agent include dialkyl peroxide, triallyl isocyanurate, peroxy ester and the like.
  • the uncrosslinked fluororesin and the crosslinked fluororesin are preferably fluororesins having the same polymerized unit, both of which have VdF units.
  • the fluororesin is more preferably a VdF / TFE copolymer.
  • the said uncrosslinked fluororesin and crosslinked fluororesin take the same composition ratio.
  • the composition ratio can be as described for the fluororesin.
  • crosslinking means a state in which molecular chains are connected to form a three-dimensional network.
  • the cross-linked fluororesin is preferably 0.01 to 10% by mass with respect to the total of the cross-linked fluororesin and the uncrosslinked fluororesin, from the viewpoint of the dielectric breakdown strength and mechanical strength of the fluororesin film. More preferably, it is 0.03 mass% or more, More preferably, it is 0.05 mass% or more, Most preferably, it is 0.1 mass% or more. Moreover, since an interface with an additive will become large when there is too much addition amount and it leads to a defect, 10 mass% or less is more preferable, 8 mass% or less is further more preferable, and 5 mass% or less is especially preferable.
  • the fluororesin film of the present invention is also one of suitable forms that includes two fluororesins having different melt flow rates as the fluororesin.
  • the above fluororesin has a melt flow rate of 2.0 to 30.0 g / 10 min, and the other has a melt flow rate of 0.1. It is preferably ⁇ 1.9 g / 10 min. Further, it is preferable that one melt flow rate is 2.0 to 20.0 g / 10 min and the other melt flow rate is 0.1 to 1.9 g / 10 min. More preferably, one melt flow rate is 2.1 to 10.0 g / 10 min and the other melt flow rate is 0.5 to 1.8 g / 10 min.
  • the fluororesin having a low melt flow rate relative to the other is 0.1 to 10% by mass relative to the total of 100% by mass of the fluororesin. It is preferably 0.5 to 8% by mass, more preferably 1 to 5% by mass.
  • the fluororesin film of the present invention includes, as the fluororesin, two fluororesins having different composition ratios of polymerized units.
  • the fluororesin preferably contains two types of polymers containing polymerized units based on VdF and different proportions of polymerized units based on VdF.
  • the content of the polymer having a small proportion of polymer units based on VdF is preferably 0.1 to 10% by mass, and 0.5 to 8% by mass with respect to the total of the fluororesin. It is more preferable.
  • one of the fluororesins is a vinylidene fluoride (VdF) unit / tetrafluoroethylene (TFE) unit in a molar ratio of 35.0 / 65.0-50.
  • VdF vinylidene fluoride
  • TFE tetrafluoroethylene
  • VdF unit and TFE unit VdF unit co-weight of VdF unit is 10.0 mol% or more and less than 35.0 mol%
  • TFE unit is 90.0 mol% or less and more than 65.0 mol%) More preferably, it is a coalescence.
  • One of the fluororesins is a vinylidene fluoride / tetrafluoroethylene copolymer having a vinylidene fluoride unit / tetrafluoroethylene unit molar ratio of 95.0 / 5.0 to 39.0 / 61.0.
  • the other is also preferably a vinylidene fluoride / tetrafluoroethylene copolymer having a vinylidene fluoride unit / tetrafluoroethylene unit molar ratio of 38.9 / 61.1 to 5.0 / 95.0.
  • One of the fluororesins is a vinylidene fluoride / tetrafluoroethylene copolymer having a molar ratio of vinylidene fluoride unit / tetrafluoroethylene unit of 50.0 / 50.0 to 39.0 / 61.0.
  • the other is also preferably a vinylidene fluoride / tetrafluoroethylene copolymer having a vinylidene fluoride unit / tetrafluoroethylene unit molar ratio of 38.9 / 61.1 to 10.0 / 90.0.
  • Each of the vinylidene fluoride / tetrafluoroethylene copolymers preferably further contains a copolymer unit of an ethylenically unsaturated monomer (excluding tetrafluoroethylene and vinylidene fluoride).
  • a copolymer unit of an ethylenically unsaturated monomer excluding tetrafluoroethylene and vinylidene fluoride.
  • content of the copolymerization unit of an unsaturated monomer 0.1 mol%-5.0 mol% are preferable with respect to all the copolymerization units.
  • the fluororesin film of the present invention preferably contains a vinylidene fluoride / tetrafluoroethylene copolymer and polyvinylidene fluoride as the fluororesin.
  • the polyvinylidene fluoride is preferably 0.1 to 10% by mass, more preferably 0.5% by mass or more, based on the total of the vinylidene fluoride / tetrafluoroethylene copolymer and the polyvinylidene fluoride. More preferably, it is 1 mass% or more. Moreover, 8 mass% or less is more preferable, and 6 mass% or less is especially preferable.
  • polyvinylidene fluoride means a polymer composed only of monomer units based on vinylidene fluoride.
  • the fluororesin film of the present invention preferably contains a vinylidene fluoride / tetrafluoroethylene copolymer and a hexafluoropropylene / tetrafluoroethylene copolymer (FEP) as the fluororesin.
  • FEP hexafluoropropylene / tetrafluoroethylene copolymer
  • the mechanical properties of the fluororesin film are further improved. If the amount of the hexafluoropropylene / tetrafluoroethylene copolymer is too large, the interface with the additive becomes large, leading to defects.
  • the vinylidene fluoride / tetrafluoroethylene copolymer and the hexafluoropropylene / tetra The content is preferably 0.1 to 10% by mass, more preferably 0.5% by mass or more, and still more preferably 1% by mass or more based on the total of the fluoroethylene copolymer. Moreover, 8 mass% or less is more preferable, and 6 mass% or less is especially preferable.
  • the hexafluoropropylene / tetrafluoroethylene copolymer includes tetrafluoroethylene (TFE) units and hexafluoropropylene (HFP) units.
  • the FEP preferably has a mass ratio (TFE / HFP) of TFE units to HFP units of 70 to 99/1 to 30 (mass%).
  • the mass ratio (TFE / HFP) is more preferably 85 to 95/5 to 15 (mass%).
  • the FEP is preferably a TFE / HFP / PAVE copolymer further containing a perfluoroalkyl vinyl ether (PAVE) unit in addition to the TFE unit and the HFP unit.
  • PAVE perfluoroalkyl vinyl ether
  • the general formula (5): CF 2 CFO (CF 2 CFY 1 O) p — (CF 2 CF 2 CF 2 O) q —R f (5) (Wherein Y 1 represents F or CF 3 , R f represents a perfluoroalkyl group having 1 to 5 carbon atoms, p represents an integer of 0 to 5 and q represents an integer of 0 to 5).
  • CFX CXOCF 2 OR 1 (6)
  • R 1 is a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, or cyclic having 5 or 6 carbon atoms
  • PAVE what has a bulky side chain is preferable, and specifically, PPVE is preferable.
  • the total of polymerized units based on TFE, HFP and PAVE is preferably 90 mol% or more, and more preferably 95 mol% or more, based on all polymerized units.
  • the FEP may be composed only of polymerized units based on TFE and HFP, or may be composed only of polymerized units based on TFE, HFP and PAVE.
  • the mass ratio (TFE / HFP / PAVE) is 70 to 99.8 / 0.1 to 25 / 0.1 to 25 (mass%). Is preferred. Within the above range, the heat resistance is more excellent.
  • the mass ratio (TFE / HFP / PAVE) is more preferably 75 to 98 / 1.0 to 15 / 1.0 to 10 (mass%).
  • the TFE / HFP / PAVE copolymer contains 1% by mass or more of HFP units and PAVE units in total.
  • the HFP unit is preferably 25% by mass or less based on the total monomer units.
  • the content of the HFP unit is more preferably 20% by mass or less, and further preferably 18% by mass or less. Especially preferably, it is 15 mass% or less.
  • 0.1 mass% or more is preferable and, as for content of a HFP unit, 1 mass% or more is more preferable. Especially preferably, it is 2 mass% or more.
  • the content of HFP units can be measured by 19F-NMR method.
  • the content of the PAVE unit is more preferably 20% by mass or less, and further preferably 10% by mass or less. Especially preferably, it is 3 mass% or less. Moreover, 0.1 mass% or more is preferable and, as for content of a PAVE unit, 1 mass% or more is more preferable.
  • the content of the PAVE unit can be measured by 19F-NMR method.
  • the FEP may further contain other ethylenic monomer ( ⁇ ) units.
  • ethylenic monomer ( ⁇ ) units in the case of TFE units and HFP units, and TFE / HFP / PAVE copolymers, monomer units that can be further copolymerized with PAVE units
  • fluorine-containing ethylenic monomers such as vinyl fluoride [VF], VdF, chlorotrifluoroethylene [CTFE], and non-fluorinated ethylenic monomers such as ethylene, propylene, and alkyl vinyl ether Etc.
  • the mass ratio (TFE / HFP / PAVE / other ethylenic monomer ( ⁇ )) is: 70 to 98 / 0.1 to 25 / 0.1 to 25 / 0.1 to 25 (mass%) is preferable, and 70 to 98 / 0.1 to 25 / 0.1 to 20 / 0.1. Is more preferably 15 to 15 (mass%), further preferably 70 to 98 / 0.1 to 20 / 0.1 to 10 / 0.1 to 5 (mass%).
  • the TFE / HFP copolymer contains 1% by mass or more of polymerization units other than TFE units.
  • the FEP preferably has a melting point of 200 to 300 ° C, more preferably 210 ° C or higher, and still more preferably 220 ° C or higher. Moreover, 280 degrees C or less is more preferable, and 270 degrees C or less is especially preferable.
  • the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
  • the FEP preferably has a glass transition temperature (Tg) of 60 to 110 ° C., more preferably 65 ° C. or more, and more preferably 100 ° C. or less.
  • Tg glass transition temperature
  • the glass transition temperature is a value obtained by measurement by dynamic viscoelasticity measurement.
  • the FEP can be produced by a conventionally known method such as emulsion polymerization, solution polymerization or suspension polymerization by appropriately mixing monomers as constituent units and additives such as a polymerization initiator. .
  • the FEP preferably has a melt flow rate (MFR) of 0.1 to 10, more preferably 0.5 or more, and still more preferably 1 or more. Moreover, 5 or less is more preferable and 3 or less is especially preferable.
  • MFR is a mass (g / 10 minutes) of a polymer flowing out per 10 minutes from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 5 kg at 297 ° C. in accordance with ASTM D3307-01.
  • the fluororesin film of this invention contains a vinylidene fluoride / tetrafluoroethylene copolymer and a perfluoroalkyl vinyl ether / tetrafluoroethylene copolymer (PFA) as a fluororesin.
  • PFA perfluoroalkyl vinyl ether / tetrafluoroethylene copolymer
  • the vinylidene fluoride / tetrafluoroethylene copolymer and the perfluoroalkyl vinyl ether /0.1 to 10% by mass with respect to the total of the tetrafluoroethylene copolymer preferably 0.3% by mass or more, and more preferably 0.5% by mass or more. .
  • 8 mass% or less is more preferable, and 6 mass% or less is especially preferable.
  • CF 2 CFO (CF 2 CFY 1 O) p — (CF 2 CF 2 CF 2 O) q —R f (5)
  • Y 1 represents F or CF 3
  • R f represents a perfluoroalkyl group having 1 to 5 carbon atoms
  • p represents an integer of 0 to 5
  • q represents an integer of 0 to 5).
  • CFX CXOCF 2 OR 1 (6)
  • R 1 is a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, or cyclic having 5 or 6 carbon atoms
  • the at least 1 sort (s) selected from the group which consists of can be mentioned. Specific examples include perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], perfluoro (butyl vinyl ether) [PBVE], and the like.
  • PAVE what has a bulky side chain is preferable, and specifically, PPVE is preferable.
  • the PFA preferably contains 1.0 to 10% by mass of PAVE-based polymer units based on the total polymer units.
  • the amount of the polymerized units based on the PAVE is more preferably 2.0% by mass or more, further preferably 3.5% by mass or more, particularly preferably 4.0% by mass or more, based on all polymerized units, and 5.0% by mass. % By mass or more is most preferable, 8.0% by mass or less is more preferable, 7.0% by mass or less is further preferable, 6.5% by mass or less is particularly preferable, and 6.0% by mass or less is most preferable.
  • the amount of polymerized units based on the above PAVE is measured by 19 F-NMR method.
  • the total of polymerized units based on TFE and PAVE is preferably 90 mol% or more, and more preferably 95 mol% or more, based on all polymerized units.
  • the PFA is also preferably composed of only polymerized units based on TFE and PAVE.
  • the PFA does not include an HFP unit.
  • the PFA may have 400 or less unstable terminal groups per 10 6 main chain carbon atoms.
  • the unstable terminal groups, -COF, -COOH, -CF 2 H , -COOCH 3, -CH 2 OH, -CONH 2, a -CF CF 2, etc., the number is of unstable terminal groups It is the total number.
  • the number may be 20 or less and may be 10 or less.
  • the lower limit may be zero.
  • PFA having 20 or less unstable terminal groups per 10 6 main chain carbon atoms is preferable in terms of low dielectric loss tangent in a high frequency region (10 GHz or more).
  • the number of unstable terminal groups can be measured by infrared spectroscopy.
  • the copolymer is melt-extruded to produce a film having a thickness of 0.25 to 0.3 mm.
  • the film is analyzed by Fourier transform infrared spectroscopy to obtain an infrared absorption spectrum of the copolymer, and a difference spectrum from a base spectrum that is completely fluorinated and does not have unstable end groups is obtained. From the absorption peaks of the specific unstable terminal groups appearing in the difference spectrum, in accordance with the following formula (A), it calculates the number of unstable terminal groups N the carbon intensity 10 per six in the copolymer.
  • N I ⁇ K / t (A)
  • the PFA preferably has a melting point of 280 to 322 ° C.
  • the melting point is more preferably 290 ° C. or higher, and more preferably 315 ° C. or lower.
  • the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
  • the PFA preferably has a glass transition temperature (Tg) of 70 to 110 ° C.
  • the glass transition temperature is more preferably 80 ° C. or higher, and more preferably 100 ° C. or lower.
  • the glass transition temperature is a value obtained by measurement by dynamic viscoelasticity measurement.
  • the PFA can be produced, for example, by a conventionally known method such as emulsion polymerization or suspension polymerization by appropriately mixing monomers as constituent units and additives such as a polymerization initiator.
  • the fluororesin film of the present invention may contain a polymer other than the fluororesin.
  • polymers include, for example, polycarbonate (PC), polyester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), silicone resin, polyether, polyvinyl acetate, polyethylene, polypropylene (PP) to increase flexibility.
  • poly (meth) acrylate epoxy resin, polyethylene oxide, polypropylene oxide, polyphenylene oxide (PPO), polyphenylene sulfide (PPS), polyamide (PA), polyimide (PI), polyamideimide (PAI), PC, polystyrene, polybenzimidazole (PBI) and the like, and from the viewpoint of supplementing high dielectric properties, such as odd polyamides, cyano pullulans, copper phthalocyanine polymers. And the like.
  • the mass ratio of the fluororesin and the other polymer is preferably 50/50 to 99/1, and more preferably 75/25 to 99/1.
  • the fluororesin film of the present invention may contain an affinity improver.
  • affinity improvers include coupling agents, functional group-modified polyolefins, styrene-modified polyolefins, functional group-modified polystyrenes, polyacrylic imides, cumylphenols, and the like, within a range that does not impair the effects of the present invention. But you can. It is more preferable that these components are not included from the point of withstand voltage.
  • the fluororesin film of the present invention preferably has a thickness of 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 30 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the thickness of the fluororesin film may be 1 ⁇ m or more. The thickness can be measured using a digital length measuring device.
  • the relative dielectric constant ( ⁇ ) at a frequency of 1 kHz and 30 ° C. is preferably 9 or more, and more preferably 10 or more.
  • the fluororesin film of the present invention preferably has a volume resistivity at 30 ° C. of 1E + 15 ⁇ ⁇ cm or more, more preferably 2E + 15 ⁇ ⁇ cm or more.
  • the volume resistivity is a sample obtained by depositing aluminum on one side of the film in a vacuum. Next, this sample was placed in a thermostatic chamber (30 ° C., 25% RH), and a voltage of 50 V / ⁇ m was applied to the sample with a digital superinsulator / microammeter, and the volume resistivity ( ⁇ ⁇ cm ).
  • the dielectric loss tangent at a frequency of 1 kHz and 150 ° C. is preferably 7% or less, and more preferably 6% or less.
  • the dielectric loss tangent is measured using an LCR meter.
  • the fluororesin film of the present invention preferably has a tensile elastic modulus at 25 ° C. in the longitudinal direction (MD) of 800 MPa or more, more preferably 900 MPa or more.
  • the tensile elastic modulus can be measured according to ASTM D1708.
  • the elastic resin film of the present invention may have an elastic modulus at 25 ° C. in the longitudinal direction (MD) of 800 MPa or more and a thickness of 100 ⁇ m or less.
  • the elastic modulus is more preferably 900 MPa or more.
  • the thickness is more preferably 30 ⁇ m or less, further preferably 10 ⁇ m or less, and preferably 1 ⁇ m or more.
  • the fluororesin film of the present invention can be produced, for example, by a production method including a step of embossing a pre-processing film containing a fluororesin or a step of surface coating.
  • the pre-processed film can be obtained, for example, by a step of obtaining a film by melt extrusion molding a fluororesin.
  • the film obtained by melt extrusion may be further stretched. The melt extrusion molding and stretching will be described later.
  • the fluororesin film of the present invention contains two fluororesins as the fluororesin
  • by mixing the two fluororesins to obtain a fluororesin mixture, and by melt extrusion molding the fluororesin mixture It can be manufactured by a manufacturing method including a step of obtaining a film and a step of obtaining a stretched film by stretching the obtained film.
  • the step of obtaining the fluororesin mixture and the step of obtaining the film may be performed separately or simultaneously. For example, mixing of two kinds of fluororesins and melt extrusion molding may be performed simultaneously with a melt extrusion molding machine.
  • the melt extrusion molding can be performed at 250 to 380 ° C.
  • the melt extrusion molding can also be performed using a melt extrusion molding machine, and the cylinder temperature is preferably 250 to 350 ° C and the die temperature is preferably 300 to 380 ° C.
  • the manufacturing method preferably includes a step of winding the film obtained by the extrusion molding with a roll.
  • the temperature of the roll is preferably 0 to 180 ° C.
  • the obtained film is stretched to obtain a stretched film.
  • the stretching may be uniaxial stretching or biaxial stretching.
  • the film is stretched in the same longitudinal direction (MD) as the direction in which the fluororesin is extruded in extrusion molding.
  • MD longitudinal direction
  • the stretching ratio in the uniaxial stretching is preferably 2 to 10 times, and more preferably 3 times or more.
  • the stretching temperature in the uniaxial stretching is preferably 0 to 180 ° C, more preferably 30 ° C or higher, and more preferably 120 ° C or lower.
  • the film is stretched in the transverse direction (TD) perpendicular to the longitudinal direction (MD).
  • the stretching ratio in the biaxial stretching is preferably 2 to 10 times, more preferably 3 times or more in each of MD and TD.
  • the stretching temperature in the biaxial stretching is preferably 0 to 200 ° C, more preferably 30 ° C or higher, and more preferably 120 ° C or lower.
  • the biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching.
  • methods such as tenter biaxial stretching and tubular biaxial stretching can be employed, and tenter biaxial stretching is preferred.
  • the stretching temperature in the biaxial stretching is preferably 0 to 200 ° C, more preferably 30 ° C or higher, and more preferably 120 ° C or lower.
  • the sequential biaxial stretching method the longitudinal stretching (MD direction) is generally stretched by utilizing the difference in rotation of the roll, and then in the lateral stretching, the end (TD side) of the roll film is gripped with a clip and stretched in the TD direction.
  • tension may be applied in the MD direction in the order of longitudinal stretching, lateral stretching, and longitudinal stretching.
  • the simultaneous biaxial stretching method is a method of stretching a film by grasping an end (TD side) of a roll-shaped film with a clip and extending the clip interval in both the MD direction and the TD direction.
  • the manufacturing method preferably includes a step of heat-setting the obtained stretched film after the stretching.
  • the heat setting temperature is preferably 100 to 250 ° C., more preferably 150 ° C. or more, and more preferably 200 ° C. or less.
  • the heat setting time may be short, and may be 5 minutes or less for continuous stretching.
  • the fluororesin film of the present invention is a biaxially stretched film because the fluororesin film having the above-mentioned 10-point average roughness, arithmetic average roughness and dielectric breakdown strength can be obtained and the volume resistivity can be improved.
  • the biaxially stretched film containing two kinds of fluororesins as the fluororesin described above is more preferable.
  • the fluororesin film of the present invention is suitable as a high dielectric film or a piezoelectric film.
  • the film of the present invention is a piezoelectric film
  • the film is preferably subjected to polarization treatment.
  • the polarization treatment can be performed by corona discharge.
  • the film is applied using a linear electrode; or the film is needle-shaped.
  • the application can be performed by using an electrode.
  • Heat treatment may be performed after the polarization treatment.
  • the fluororesin film of the present invention can also be suitably used for a film capacitor, an electrowetting device, or a piezoelectric panel.
  • the fluororesin film of the present invention has an excellent winding property by having a low coefficient of static friction, and further has an excellent dielectric breakdown strength, so that it can be particularly suitably used as a high dielectric film of a film capacitor.
  • a film for a film capacitor having an electrode layer on at least one surface of the fluororesin film is also one aspect of the present invention.
  • the film capacitor provided with the said film for film capacitors is also one of this invention.
  • the structure of the film capacitor for example, a laminated type in which electrode layers and high dielectric films are alternately laminated (Japanese Patent Laid-Open Nos. 63-181411, 3-18113, etc.) or a tape-like high dielectric Winding type in which a conductive film and an electrode layer are wound (disclosed in, for example, Japanese Patent Application Laid-Open No. 60-262414 in which electrodes are not continuously laminated on a high dielectric film, or electrodes on a high dielectric film And the like disclosed in Japanese Patent Laid-Open No. 3-286514, etc.) are continuously laminated.
  • a wound film capacitor that has a simple structure and is relatively easy to manufacture, and in which a wound film capacitor is formed by continuously laminating electrode layers on a highly dielectric film, it is generally highly dielectric with electrodes laminated on one side. Two films are rolled up so that the electrodes do not come into contact with each other. If necessary, the film is rolled and fixed so as not to be loosened.
  • an electrode layer is not specifically limited, Generally, it is a layer which consists of conductive metals, such as aluminum, zinc, gold
  • the vapor-deposited metal film is not limited to a single layer, and for example, a method of forming a semiconductor aluminum oxide layer on an aluminum layer to provide moisture resistance to form an electrode layer (for example, JP-A-2-250306) If necessary, it may be multilayered.
  • the thickness of the vapor-deposited metal film is not particularly limited, but is preferably in the range of 100 to 2,000 angstrom, more preferably 200 to 1,000 angstrom. When the thickness of the deposited metal film is within this range, the capacity and strength of the capacitor are balanced, which is preferable.
  • the method for forming the film is not particularly limited, and for example, a vacuum vapor deposition method, a sputtering method, an ion plating method, or the like can be employed. Usually, a vacuum deposition method is used.
  • Vacuum deposition methods include, for example, the batch method for molded products, the semi-continuous method used for long products, and the air-to-air method.
  • the semi-continuous method is the mainstay. Has been done.
  • the semi-continuous metal vapor deposition method is a method in which after vapor deposition and winding of a metal in a vacuum system, the vacuum system is returned to the atmospheric system, and the deposited film is taken out.
  • the film surface can also be pretreated with a treatment for improving adhesion, such as corona treatment or plasma treatment.
  • a treatment for improving adhesion such as corona treatment or plasma treatment.
  • the thickness of the metal foil is not particularly limited, but is usually in the range of 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 3 to 15 ⁇ m.
  • the fixing method is not particularly limited, and for example, fixing and protecting the structure may be performed simultaneously by sealing with resin or enclosing in an insulating case or the like.
  • the method for connecting the lead wires is not limited, and examples thereof include welding, ultrasonic pressure welding, heat pressure welding, and fixing with an adhesive tape.
  • a lead wire may be connected to the electrode before it is wound.
  • the opening may be sealed with a thermosetting resin such as urethane resin or epoxy resin to prevent oxidative degradation.
  • the fluororesin film of the present invention can be suitably used as a high dielectric film for electrowetting devices.
  • the electrowetting device includes a first electrode, a second electrode, a conductive liquid movably disposed between the first electrode and the second electrode, a first electrode, and the conductive liquid.
  • the film of the present invention (high dielectric film) disposed so as to insulate the first electrode from the second electrode may be included.
  • a water repellent layer may be provided on the film of the present invention.
  • an insulating liquid is held between the first electrode and the second electrode, and the conductive liquid and the insulating liquid may constitute two layers.
  • the electrowetting device includes an optical element, a display device (display), a variable focus lens, a light modulation device, an optical pickup device, an optical recording / reproducing device, a developing device, a droplet manipulation device, and an analytical instrument (eg, sample analysis). Therefore, it can be used for chemical, biochemical, and biological analytical instruments) in which a minute conductive liquid needs to be moved.
  • the fluororesin film of the present invention can also be suitably used as a piezoelectric film for piezoelectric panels.
  • the piezoelectric panel may include a first electrode, a fluororesin film (piezoelectric film) of the present invention, and a second electrode in this order.
  • the first electrode is arranged directly or indirectly on one main surface of the film, and the second electrode is arranged directly or indirectly on the other main surface of the film.
  • the piezoelectric panel can be used for a touch panel.
  • the touch panel can be used for an input device.
  • the input device having the touch panel can input based on the touch position, the touch pressure, or both.
  • the input device having the touch panel can include a position detection unit and a pressure detection unit.
  • the input device can be used for electronic devices (eg, mobile phones (eg, smart phones), personal digital assistants (PDAs), tablet PCs, ATMs, automatic ticket vending machines, and car navigation systems).
  • electronic devices eg, mobile phones (eg, smart phones), personal digital assistants (PDAs), tablet PCs, ATMs, automatic ticket vending machines, and car navigation systems.
  • An electronic device including the input device can be operated and operated based on a touch position, a touch pressure, or both.
  • ferroelectrics such as energy harvesting such as vibration power generation, touch sensors, touch panels, tactile sensors, dielectric bolometers, film speakers, tactile feedback (haptics), or electrostrictive actuators. it can.
  • the measurement temperature is set to (polymer melting point + 20) ° C., and 19 F-NMR measurement is performed. Depending on the integral value of each peak and the type of monomer, elemental analysis is appropriately combined. Asked.
  • a melting point differential scanning calorimeter was used to measure heat at a heating rate of 10 ° C./min in accordance with ASTM D-4591, and the melting point was obtained from the peak of the obtained endothermic curve.
  • the film placed on the substrate was measured at room temperature using a thickness digital length measuring machine.
  • Aluminum is vapor-deposited on both sides of the film in a relative dielectric constant vacuum to make a sample.
  • the capacitance of this sample is measured with an LCR meter at 30 ° C. and a frequency of 1 kHz.
  • the relative dielectric constant was calculated from each obtained capacitance.
  • Aluminum is vapor-deposited on one side of the film in a volume resistivity vacuum to obtain a sample.
  • this sample was placed in a thermostatic chamber (30 ° C., 25% RH), and a voltage of 50 V / ⁇ m was applied to the sample with a digital superinsulator / microammeter, and the volume resistivity ( ⁇ ⁇ cm ) was measured.
  • the dielectric breakdown strength is a value measured based on JISC2110.
  • the film was placed on the lower electrode, a weight of ⁇ 25 mm and weight of 500 g was placed as the upper electrode, and the voltage at which the voltage was increased at both ends at 100 V / sec was measured to measure the breakdown voltage.
  • the number of measurements was 50 points, the average value was calculated by removing the upper and lower 5 points, and the dielectric breakdown strength was obtained by the value divided by the thickness.
  • the values of 10-point average roughness and arithmetic average roughness are values measured based on JIS B-0601-2001.
  • the static friction coefficient was calculated
  • a film was also attached to the roller, and the coefficient of static friction between the two laminated films was measured. If the static friction coefficient cannot be measured without slipping, the evaluation result is x.
  • Crystallinity Crystallinity was measured using a peak separation method with an X-ray diffractometer. Specifically, a measurement sample obtained by superimposing a plurality of films so that the total thickness is 40 ⁇ m or more is set in a sample holder, and a crystalline portion and an amorphous portion of a diffraction spectrum obtained by an X-ray diffractometer The crystallinity was calculated from the area ratio of the part.
  • MFR 2.7 g / 10 min
  • melting point 216 ° C.
  • Additive B PVDF: MFR: 1 g / 10 min, melting point: 172 ° C.
  • Example 1 One part by weight of Additive A was added to 99 parts by weight of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. using a melt extrusion molding machine to obtain a film having a film thickness of 85 ⁇ m. The 85 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 9 ⁇ m.
  • Example 2 3 parts by mass of Additive A was added to 97 parts by mass of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 75 ⁇ m.
  • the 75 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 7 ⁇ m.
  • Example 3 5 parts by mass of additive A was added to 95 parts by mass of the pellet resin of the fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 80 ⁇ m.
  • the 80 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 8 ⁇ m.
  • Example 4 1 part by weight of additive B was added to 99 parts by weight of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 85 ⁇ m.
  • the 85 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 10 ⁇ m.
  • Example 5 3 parts by mass of additive B was added to 97 parts by mass of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 80 ⁇ m.
  • the 80 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 9 ⁇ m.
  • Example 6 5 parts by mass of additive B was added to 95 parts by mass of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 85 ⁇ m.
  • the 85 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 10 ⁇ m.
  • Example 7 1 part by weight of additive C was added to 99 parts by weight of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. using a melt extrusion molding machine to obtain a film having a film thickness of 80 ⁇ m. The 80 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 8 ⁇ m.
  • Example 8 3 parts by mass of additive C was added to 97 parts by mass of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 80 ⁇ m.
  • the 80 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 8 ⁇ m.
  • Example 9 5 parts by mass of additive C was added to 95 parts by mass of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 85 ⁇ m.
  • the 85 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 9 ⁇ m.
  • Example 10 1 part by mass of additive D was added to 99 parts by mass of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 75 ⁇ m.
  • the 75 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 7 ⁇ m.
  • Example 11 3 parts by mass of additive D was added to 97 parts by mass of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 75 ⁇ m.
  • the 75 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 7 ⁇ m.
  • Example 12 5 parts by mass of additive D was added to 95 parts by mass of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 85 ⁇ m.
  • the 85 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 9 ⁇ m.
  • Example 13 1 part by mass of additive E was added to 99 parts by mass of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 85 ⁇ m.
  • the 85 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 9 ⁇ m.
  • Example 14 1.5 parts by mass of additive E was added to 99 parts by mass of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 85 ⁇ m.
  • the 85 ⁇ m film was stretched 3.5 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 9 ⁇ m.
  • Example 15 1 part by mass of additive E was added to 99 parts by mass of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. by a melt extrusion molding machine to obtain a film having a film thickness of 85 ⁇ m.
  • the 85 ⁇ m film was stretched 4.0 times at 60 ° C. with a biaxial stretching machine to obtain a stretched film having a film thickness of 7 ⁇ m.
  • Comparative Example 1 A pellet resin of fluororesin (1) was formed into a film by a melt extrusion molding machine at 290 to 350 ° C., and then formed into a film by a T-die molding extruder to obtain a film having a film thickness of 85 ⁇ m. The 30 ⁇ m film was stretched 3.0 times at 60 ° C. by a uniaxial stretching machine to obtain a stretched film having a film thickness of 10 ⁇ m. The coefficient of static friction could not be measured without slipping.
  • Comparative Example 2 Additive B was added in an amount of 0.05 parts by mass to 99.95 parts by mass of the pellet resin of fluororesin (1), and a film was formed by a melt extrusion molding machine at 290 to 350 ° C. to obtain a film having a film thickness of 29 ⁇ m. .
  • the 29 ⁇ m film was stretched 3.0 times at 60 ° C. by a uniaxial stretching machine to obtain a stretched film having a film thickness of 10 ⁇ m.
  • the coefficient of static friction could not be measured without slipping.
  • Comparative Example 3 11 parts by weight of additive B was added to 89 parts by weight of the pellet resin of fluororesin (1), and a film was formed at 290 to 350 ° C. using a melt extrusion molding machine to obtain a film having a film thickness of 30 ⁇ m. The 30 ⁇ m film was stretched 3.0 times at 60 ° C. with a uniaxial stretching machine to obtain a stretched film having a film thickness of 11 ⁇ m.
  • Tables 1 and 2 show the physical properties of the films obtained in Examples and Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

低い静摩擦係数及び高い絶縁破壊強さを有するフッ素樹脂フィルムを提供する。フッ素樹脂を含むフッ素樹脂フィルムであって、少なくとも一方の表面の10点平均粗さが0.100~1.200μm、かつ、算術平均粗さが0.010~0.050μmであり、絶縁破壊強さが400V/μm以上であることを特徴とするフッ素樹脂フィルムである。

Description

フッ素樹脂フィルム
本発明は、フッ素樹脂フィルムに関する。
ビニリデンフルオライドの単独重合体のフィルムや、ビニリデンフルオライドと他のモノマーとからなる共重合体のフィルムは、高い比誘電率を有することが知られている。
特許文献1には、フッ化ビニリデン単位およびテトラフルオロエチレン単位を合計で95モル%以上含むフッ素樹脂を用いて形成される高誘電体フィルムが記載されている。
特許文献2には、フッ化ビニリデン単位およびテトラフルオロエチレン単位をフッ化ビニリデン単位/テトラフルオロエチレン単位(モル%比)で0/100~49/51の範囲で含むテトラフルオロエチレン系樹脂をフィルム形成樹脂として含むフィルムコンデンサ用フィルムが記載されている。
ところで、特許文献3には、プロピレンを主体とするポリプロピレン樹脂からなるポリプロピレンフィルムであって、該ポリプロピレン樹脂が、直鎖状ポリプロピレンに、230℃で測定したときの溶融張力(MS)と溶融流動指数(MFR)が、log(MS)>-0.56log(MFR)+0.74なる関係式を満たす分岐鎖状ポリプロピレン(H)が0.1~1.5重量%混合されたものであり、該フィルム表面の少なくとも一方の面が梨地調の凹凸からなる基層を有し、該表面の10点平均粗さ(Rz)が0.50~1.50μm、表面光沢度が90~135%であることを特徴とする二軸配向ポリプロピレンフィルムが記載されている。
国際公開第2008/090947号 国際公開第2012/039424号 特許第4940986号公報
しかし、フィルムコンデンサ等に使用されるフッ素樹脂フィルムには、高い比誘電率に加えて、高い絶縁破壊強さを有しながら、フィルムの巻き取り性等を改善するために低い静摩擦係数を有することが求められる。しかし、高い絶縁破壊強さを維持しながら、低い静摩擦係数を有するフッ素樹脂フィルムは得られていなかった。
本発明の目的は、上記現状に鑑み、低い静摩擦係数及び高い絶縁破壊強さを有するフッ素樹脂フィルムを提供することにある。
本発明は、フッ素樹脂を含むフッ素樹脂フィルムであって、少なくとも一方の表面の10点平均粗さが0.100~1.200μm、かつ、算術平均粗さが0.010~0.050μmであり、絶縁破壊強さが400V/μm以上であることを特徴とするフッ素樹脂フィルムである。
上記フッ素樹脂は、フッ化ビニリデン/テトラフルオロエチレン共重合体であることが好ましい。また、上記フッ素樹脂は、更に、エチレン性不飽和単量体(但し、テトラフルオロエチレン及びフッ化ビニリデンを除く。)に基づく共重合体単位を含むことも好ましい。
本発明のフッ素樹脂フィルムは、更に、無機粒子を含むことが好ましい。無機粒子の含有量は、フッ素樹脂100質量部に対して0.01~5質量部であることが好ましい。
本発明のフッ素樹脂フィルムは、エンボス加工されたものであることが好ましい。
本発明のフッ素樹脂フィルムは、表面コーティングされたものであることも好ましい。
本発明のフッ素樹脂フィルムは、フッ素樹脂として、2種のフッ素樹脂を含むことが好ましい。
本発明のフッ素樹脂フィルムは、フッ素樹脂として、未架橋フッ素樹脂と架橋フッ素樹脂とを含むことが好ましい。
また、本発明のフッ素樹脂フィルムは、フッ素樹脂として、メルトフローレートが異なる2種のフッ素樹脂を含むことも好ましい。フッ素樹脂の一方は、メルトフローレートが2.0~30.0g/10分のフッ素樹脂であり、他方は、メルトフローレートが0.1~1.9g/10分のフッ素樹脂であることが好ましい。
本発明のフッ素樹脂フィルムは、フッ素樹脂として、重合単位の組成比が異なる2種のフッ素樹脂を含むことが好ましい。フッ素樹脂の一方は、フッ化ビニリデン単位/テトラフルオロエチレン単位がモル比で95.0/5.0~39.0/61.0のフッ化ビニリデン/テトラフルオロエチレン共重合体であり、他方は、フッ化ビニリデン単位/テトラフルオロエチレン単位がモル比で38.9/61.1~5.0/95.0のフッ化ビニリデン/テトラフルオロエチレン共重合体であることが好ましい。
本発明のフッ素樹脂フィルムは、二軸延伸フィルムであることが好ましい。
本発明のフッ素樹脂フィルムは、厚みが1~100μmであることが好ましい。
本発明はまた、上記フッ素樹脂フィルムの少なくとも片面に電極層を備えるフィルムコンデンサ用フィルムでもある。
本発明は更に、上記フィルムコンデンサ用フィルムを備えるフィルムコンデンサでもある。
本発明のフッ素樹脂フィルムは、上記構成を有していることから、低い静摩擦係数及び高い絶縁破壊強さを有している。
以下、本発明を具体的に説明する。
本発明のフッ素樹脂フィルムは、フッ素樹脂を含み、少なくとも一方の表面の10点平均粗さが0.100~1.200μm、かつ、算術平均粗さが0.010~0.050μmであり、絶縁破壊強さが400V/μm以上であることによって、高い絶縁破壊強さを有するにも関わらず、低い静摩擦係数をも有する。これにより、優れた巻き取り性も実現される。
また、フッ素樹脂フィルムをフィルムコンデンサ用の高誘電性フィルムとして用いた場合に絶縁破壊が生じると、ガスが発生して信頼性が低下するが、本発明のフッ素樹脂フィルムは、上記構成を有することによって、発生したガスが抜けやすくなり優れた信頼性(例えば、長期耐久性等)をも有する。
更に、フッ素樹脂を含むことから、誘電率の低い樹脂を使用した場合と比較して、フィルムの厚みを薄くしても高い電気容量が得られる。
一般に、ビニリデン系フッ素樹脂は、汎用樹脂と比較して高誘電材料であり、静電気を帯びやすい(帯電しやすい)樹脂である。そのため、静電気の働きにより、フィルム同士や、フィルム成形中にもロールに対して密着しやすく、取扱い性が難しく、生産性が低い。さらに、フィルム表面が平滑であると(接する面積が大きいほど)、ファンデルワールス力(分子間力)も働き、フィルム同士、ロールに対して密着しやすくなる等、より取扱い性が難しくなる。
本発明のフッ素フィルムは、特定の絶縁破壊強さ、かつ特定の表面性状を有するため、高誘電材料でも、フィルム同士や、フィルム生産時に成形機の各ロールに密着することなく滑り、フィルムの取扱い性、フィルム生産性を落とすことのない高誘電性フィルムを提供することができる。
本発明のフッ素樹脂フィルムは、少なくとも一方の表面の10点平均粗さが0.100~1.200μm、かつ、算術平均粗さが0.010~0.050μmである。
フッ素樹脂フィルムの静摩係数が低くなること及び信頼性が優れる点から、上記10点平均粗さは、0.150~1.150μmであることが好ましく、0.170~1.100μmであることがより好ましく、0.200~1.000μmであることが更に好ましい。また、上記算術平均粗さは、0.011~0.048μmであることが好ましく、0.012~0.045μmであることがより好ましく、0.013~0.045μmであることが更に好ましい。
上記10点平均粗さ及び算術平均粗さの値は、JIS B-0601-2001に基づき測定した値である。例えば、株式会社キーエンス製「レーザー顕微鏡」を用いて測定することができる。
本発明のフッ素樹脂フィルムは、絶縁破壊強さが400V/μm以上であり、好ましくは420V/μm以上、さらに好ましくは450V/μm以上であり、特に好ましくは500V/μm以上である。上記絶縁破壊強さの上限は限定されないが、例えば、1000V/μm以下であってもよく、800V/μm以下であってもよい。また、700V/μm以下であってもよく、650V/μm以下であってもよい。
上記絶縁破壊強さは、上記フィルムを下部電極に置き、上部電極としてφ25mm、重さ500gの分銅を置いて、両端に電圧を100V/secで増加させて、破壊する電圧を測定する。測定数は50点とし、上下5点を削除して平均値を算出し、厚みで除した値で絶縁破壊強さを求める。
本発明のフッ素樹脂フィルムは、結晶化度が50%以上であることが好ましい。フッ素樹脂フィルムの結晶化度が上記範囲内であることによって、上記絶縁破壊強さを有するフッ素樹脂フィルムを製造することができる。上記結晶化度としては、60%以上がより好ましく、70%以上が更に好ましい。結晶化度の上限は特に限定されないが、100%であってよい。結晶性の高い樹脂は、絶縁破壊強さを400V/μm以上とするのに有効である。
上記結晶化度は、フィルムをX線回折装置にてピーク分離法を用いて測定する。具体的には、複数のフィルムを合計の厚みが40μm以上になるように重ねあわせた測定サンプルをサンプルホルダーにセットし、X線回折装置にて得られた回折スペクトルの結晶質部分と非晶質部分の面積比から結晶化度を算出する。
本発明は、フッ素樹脂を含むフッ素樹脂フィルムである。
上記フッ素樹脂としては、ポリテトラフルオロエチレン、テトラフルオロエチレン/エチレン共重合体、ポリフッ化ビニリデン、テトラフルオロエチレン/パーフロアルキルビニルエーテル共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体などが挙げられる。フッ素樹脂としては、溶融加工性のフッ素樹脂がより好ましい。
より優れた耐熱性、高誘電性を示すことから、フッ化ビニリデン単位を含むフルオロポリマーが好ましく、フッ化ビニリデン/テトラフルオロエチレン共重合体、フッ化ビニリデン/トリフルオロエチレン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、及び、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体からなる群より選択される少なくとも1種であることがより好ましい。
上記フッ素樹脂は、メルトフローレート(MFR)が0.1~100g/10分であることが好ましく、0.1~50g/10分であることがより好ましい。
上記MFRは、ASTM D3307-01に準拠し、297℃、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)である。
上記フッ素樹脂は、周波数1kHz、30℃での比誘電率(ε)が8以上であることが好ましく、9以上がより好ましい。上記比誘電率の上限は特に限定されないが、例えば、15であってよい。
上記比誘電率は、上記フッ素樹脂を成形したフィルムの表面にφ50mmのアルミ蒸着を実施し、その反対面にも全面にアルミ蒸着を実施してサンプルとし、LCRメーターを用いて容量(C)を測定し、容量、電極面積(S)、フィルムの厚み(d)から、式C=ε×ε×S/d(εは真空の誘電率)で算出する値である。
上記フッ素樹脂は、融点が180℃以上であることが好ましく、上限は320℃であってよい。より好ましい下限は190℃であり、上限は300℃である。
上記融点は、示差走査熱量計を用い、ASTM D-4591に準拠して、昇温速度10℃/分にて熱測定を行い、得られる吸熱曲線のピークにあたる温度を融点とする。
上記フッ素樹脂は、熱分解開始温度(1%質量減温度)が360℃以上であるものが好ましい。より好ましい下限は370℃である。上記熱分解開始温度は、上記範囲内であれば、上限を例えば410℃とすることができる。
上記熱分解開始温度は、加熱試験に供した共重合体の1質量%が分解する温度であり、示差熱・熱重量測定装置〔TG-DTA〕を用いて加熱試験に供した共重合体の質量が1質量%減少する時の温度を測定することにより得られる値である。
上記フッ素樹脂は、動的粘弾性測定による170℃における貯蔵弾性率(E’)が60~400MPaであることが好ましい。
上記貯蔵弾性率は、動的粘弾性測定により170℃で測定する値であり、より具体的には、動的粘弾性装置で長さ30mm、巾5mm、厚み0.25mmのサンプルを引張モード、つかみ巾20mm、測定温度25℃から250℃、昇温速度2℃/min、周波数1Hzの条件で測定する値である。170℃における好ましい貯蔵弾性率(E’)は80~350MPaであり、より好ましい貯蔵弾性率(E’)は100~350MPaである。
測定サンプルは、例えば、成形温度を共重合体の融点より50~100℃高い温度に設定し、3MPaの圧力で厚さ0.25mmに成形したフィルムを、長さ30mm、巾5mmにカットすることで作成することができる。
上記フッ素樹脂としては、優れた高誘電性、低い静摩擦係数、高い絶縁破壊強さの観点から、フッ化ビニリデン/テトラフルオロエチレン共重合体(VdF/TFE共重合体)が好ましい。
上記VdF/TFE共重合体は、フッ化ビニリデン単位/テトラフルオロエチレン単位がモル比で5/95~95/5であることが好ましく、10/90~90/10であることがより好ましく、さらには10/90~49/51であることが好ましい。20/80以上(VdF単位とTFE単位との合計100モル%に対して、VdF単位が20モル%以上、TFE単位が80モル%以下)であることがより好ましく、45/55以下(VdF単位とTFE単位との合計100モル%に対して、VdF単位が45モル%以下、TFE単位が55モル%以上)であることが更に好ましい。
上記VdF/TFE共重合体は、更に、エチレン性不飽和単量体(但し、テトラフルオロエチレン及びフッ化ビニリデンを除く。)の共重合単位を含むことが好ましい。
上記エチレン性不飽和単量体の共重合単位の含有量としては、全共重合単位に対して0~50モル%であってよく、0~40モル%であってよく、0~30モル%であってよく、0~15モル%であってよく、0~10モル%であってよく、0~5モル%であってよい。エチレン性不飽和単量体の共重合体の含有量は、0.1モル%以上であってよい。
上記エチレン性不飽和単量体としては、テトラフルオロエチレン及びフッ化ビニリデンと共重合可能な単量体であれば特に制限されないが、下記の式(1)及び(2)で表されるエチレン性不飽和単量体からなる群より選択される少なくとも1種であることが好ましい。
式(1): CX=CX(CF   (1)
(式中、X、X、X及びXは、同一又は異なって、H、F又はClを表し、nは0~8の整数を表す。但し、テトラフルオロエチレン及びフッ化ビニリデンを除く。)
式(2): CF=CF-ORf   (2)
(式中、Rfは炭素数1~3のアルキル基又は炭素数1~3のフルオロアルキル基を表す。)
式(1)で表されるエチレン性不飽和単量体としては、CF=CFCl、CF=CFCF、下記式(3):
CH=CF-(CF   (3)
(式中、X及びnは上記と同じ。)、及び、下記式(4):
CH=CH-(CF   (4)
(式中、X及びnは上記と同じ。)
からなる群より選択される少なくとも1種であることが好ましく、CF=CFCl、CH=CFCF、CH=CH-C、CH=CH-C13、CH=CF-CH及びCF=CFCFからなる群より選択される少なくとも1種であることがより好ましく、CF=CFCl、CH=CH-C13及びCH=CFCFから選択される少なくとも1種であることが更に好ましい。
式(2)で表されるエチレン性不飽和単量体としては、CF=CF-OCF、CF=CF-OCFCF及びCF=CF-OCFCFCFからなる群より選択される少なくとも1種であることが好ましい。
上記VdF/TFE共重合体は、
55.0~90.0モル%のテトラフルオロエチレン、
5.0~44.9モル%のフッ化ビニリデン、及び、
0.1~10.0モル%の式(1):
CX=CX(CF   (1)
(式中、X、X、X及びXは、同一又は異なって、H、F又はClを表し、nは0~8の整数を表す。但し、テトラフルオロエチレン及びフッ化ビニリデンを除く。)
で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体であることが好ましい。
より好ましくは、
55.0~85.0モル%のテトラフルオロエチレン、
10.0~44.9モル%のフッ化ビニリデン、及び、
0.1~5.0モル%の式(1)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体である。
更に好ましくは、
55.0~85.0モル%のテトラフルオロエチレン、
13.0~44.9モル%のフッ化ビニリデン、及び、
0.1~2.0モル%の式(1)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体である。
VdF/TFE共重合体の高温および低温での機械的強度を向上させる観点から、式(1)で表されるエチレン性不飽和単量体がCH=CH-C、CH=CH-C13及びCH=CF-CHからなる群より選択される少なくとも1種の単量体であることが好ましい。より好ましくは、式(1)で表されるエチレン性不飽和単量体がCH=CH-C、CH=CH-C13及びCH=CF-CHからなる群より選択される少なくとも1種の単量体であり、かつ、共重合体が
55.0~80.0モル%のテトラフルオロエチレン、
19.5~44.9モル%のフッ化ビニリデン、及び、
0.1~0.6モル%の式(1)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体であることである。
上記VdF/TFE共重合体は、
58.0~85.0モル%のテトラフルオロエチレン、
10.0~41.9モル%のフッ化ビニリデン、及び、
0.1~5.0モル%の式(1)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体であってもよい。
上記VdF/TFE共重合体は、
55.0~90.0モル%のテトラフルオロエチレン、
9.2~44.2モル%のフッ化ビニリデン、及び、
0.1~0.8モル%の式(2):
CF=CF-ORf   (2)
(式中、Rfは炭素数1~3のアルキル基又は炭素数1~3のフルオロアルキル基を表す。)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体であることも好ましい。
より好ましくは、
58.0~85.0モル%のテトラフルオロエチレン、
14.5~39.9モル%のフッ化ビニリデン、及び、
0.1~0.5モル%の式(2)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体である。
上記VdF/TFE共重合体は、
55.0~90.0モル%のテトラフルオロエチレン、
5.0~44.8モル%のフッ化ビニリデン、
0.1~10.0モル%の式(1)で表されるエチレン性不飽和単量体、及び、
0.1~0.8モル%の式(2)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体であることも好ましい。
より好ましくは、
55.0~85.0モル%のテトラフルオロエチレン、
9.5~44.8モル%のフッ化ビニリデン、
0.1~5.0モル%の式(1)で表されるエチレン性不飽和単量体、及び、
0.1~0.5モル%の式(2)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体である。
更に好ましくは、
55.0~80.0モル%のテトラフルオロエチレン、
19.8~44.8モル%のフッ化ビニリデン、
0.1~2.0モル%の式(1)で表されるエチレン性不飽和単量体、及び、
0.1~0.3モル%の式(2)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体である。上記共重合体がこの組成を有する場合、低透過性に特に優れる。
上記共重合体は、
58.0~85.0モル%のテトラフルオロエチレン、
9.5~39.8モル%のフッ化ビニリデン、
0.1~5.0モル%の式(1)で表されるエチレン性不飽和単量体、及び、
0.1~0.5モル%の式(2)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体であってもよい。
本発明のフッ素樹脂フィルムは、実質的にフッ素樹脂のみからなるフィルムであってもよいし、フッ素樹脂以外の他の成分を含むものであってもよい。本発明のフッ素樹脂フィルムは、フッ素樹脂を50質量%以上含むものであることが好ましい。
以下、本発明のより好適な形態について説明する。
本発明のフッ素樹脂フィルムは、更に、無機粒子を含んでもよい。フッ素樹脂フィルムに無機粒子を配合することによって、上記10点平均粗さ及び算術平均粗さを有するフッ素樹脂フィルムを製造することができ、巻き取り性を改善することができる。また、無機粒子を含むことによって、機械強度の特性が向上する。
上記10点平均粗さ及び算術平均粗さを有するフッ素樹脂フィルムを得る観点から、無機粒子の含有量は、フッ素樹脂100質量部に対して0.01~5質量部であることが好ましい。より好ましくは、フッ素樹脂100質量部に対して、0.05~4質量部であり、更に好ましくは、0.1~3質量部である。
上記無機粒子としては、シリカ、高誘電性無機粒子、補強用フィラー等が挙げられる。
上記シリカは、フィルムの機械的強度を損なわずにフィルムの巻き取り性を改善できる点から好ましい。シリカの含有量は、フィルムの巻き取り性及び絶縁破壊強さの点から、フッ素樹脂100質量部に対して、0.01~1質量部であることが好ましく、0.1質量部以上であることがより好ましい。また、添加量が多すぎると、添加剤との界面が大きくなり、欠陥につながるおそれがある。
上記高誘電性無機粒子としては、チタン酸バリウム系酸化物粒子、チタン酸ストロンチウム系酸化物粒子等が挙げられる。フィルムの巻き取り性及び絶縁破壊強さの点から、高誘電性無機粒子の含有量は、フッ素樹脂100質量部に対して0.1~10質量部であることが好ましい。また、添加量が多すぎると、添加剤との界面が大きくなり、欠陥につながるおそれがある。
上記チタン酸バリウム系酸化物粒子を含有すると誘電率は向上するが、誘電損失の増大、耐電圧の低下が見られる。よって、上記チタン酸バリウム系酸化物粒子の含有量は、フッ素樹脂100質量部に対して10質量部程度が上限となる。また、巻き取り性、誘電率向上の改善効果の点から、チタン酸バリウム系酸化物粒子の含有量は0.1質量部以上が好ましい。また、添加量が多すぎると、添加剤との界面が大きくなり、欠陥につながるおそれがある。
本発明のフッ素樹脂フィルムは、エンボス加工されたものであることも好適な形態の一つである。エンボス加工することによって、上記10点平均粗さ及び算術平均粗さを有するフッ素樹脂フィルムを製造することができ、静摩擦係数を低くし、ひいては巻き取り性を改善することができる。また、エンボス加工することによって、フィルム加工時のシワ発生を抑制することにより欠陥を低減し信頼性が向上する。上記エンボス加工は、フッ素樹脂フィルムが上記10点平均粗さ、算術平均粗さ及び絶縁破壊強さを満足するように行えばよく、通常のエンボス加工を採用できる。
具体的には、フィルムにストライプや梨地、スクエア、ウェーブ、台形、菱形、布目、絹目、斜線、ドットなどの凸凹のあるエンボスロールを常温常湿で圧接させることによりフィルム表面にエンボス加工することができる。
エンボス加工において、深い凹みを付けすぎると膜厚が薄くなり、その部分の絶縁破壊強さが低下する。従って、エンボス加工における凹みは、膜厚の5%以内であることが好ましい。
本発明のフッ素樹脂フィルムは、表面コーティングされたものであることも好適な形態の一つである。表面コーティングすることによって、上記10点平均粗さ及び算術平均粗さを有するフッ素樹脂フィルムを製造することができ、静摩擦係数を低くし、ひいては巻き取り性を改善することができる。また、表面コーティングすることによって、絶縁破壊強さの特性が向上する。上記表面コーティングは、上記10点平均粗さ、算術平均粗さ及び絶縁破壊強さを満足するように行えばよく、従来の表面コーティングを採用できる。
具体的には、ナノ粒子分散溶液をフィルム表面にコーティングし、溶媒の沸点以上で乾燥処理をすることでフィルム表面にコーティングすることができる。ナノ粒子としては粒子径500nm以下が好ましく、シリカ、アルミナ、ジルコニア、酸化チタン、酸化亜鉛などが挙げられる。また溶媒の制約はないが、均一にフィルム表面上にコーティングできないと、ムラにつながるため、フッ素樹脂フィルム上ではじきにくいエーテル系、ケトン系の溶媒が好ましい。また、ナノ粒子と溶媒とを併用するだけでは、表面コーティングがフィルム表面にくっつかないことから、バインダーの添加も必要である。バインダーの例としては、ポリフッ化ビニリデンが挙げられる。
本発明のフッ素樹脂フィルムは、フッ素樹脂として、2種のフッ素樹脂を含むことが好適な形態の一つである。2種のフッ素樹脂を含むことによって、上記10点平均粗さ及び算術平均粗さを有するフッ素樹脂フィルムを製造することができ、静摩擦係数を低くし、ひいては巻き取り性を改善することができる。また、2種のフッ素樹脂を含む場合、フィルムに加工する際に破れにくく、機械的強度に優れたフッ素樹脂フィルムを得ることができる。
2種のフッ素樹脂は、互いに相溶する重合体であることが好ましい。互いに相溶する重合体を用いることによって、より破れにくく、機械的強度に優れたフッ素樹脂フィルムが得られる。
本明細書において、「互いに相溶する」とは、2種のフッ素樹脂が溶融し均一に混ざり合う状態になることを意味する。
上記フッ素樹脂は、未架橋フッ素樹脂と架橋フッ素樹脂とを含むことが好ましい。未架橋フッ素樹脂と架橋フッ素樹脂とを含む場合、他素材の複合体ではなく、同じフッ素材料であるため、界面ができにくく欠陥が少ないフィルムを得ることができる。
上記架橋フッ素樹脂は、例えば、未架橋フッ素樹脂に、電子線を照射することによって製造することができる。すなわち、上記架橋フッ素樹脂は、電子線を照射されたものであってよい。電子線による架橋としては、吸収線量として常温で20kGy~100kGyの範囲が好ましい。電子線照射することによって分子鎖間で三次元ネットワークを形成することで、降伏点応力、弾性率を向上させることができる。
また、架橋フッ素樹脂は、架橋剤を添加し熱硬化、紫外線硬化させることによっても製造することができる。架橋剤としては、ジアルキルパーオキサイド、トリアリルイソシアヌレート、パーオキシエステルなどが挙げられる。
互いに相溶しやすく、機械的強度に優れたフッ素樹脂フィルムが得られることから、上記未架橋フッ素樹脂及び架橋フッ素樹脂は、同じ重合単位を有するフッ素樹脂であることが好ましく、いずれもVdF単位を有するフッ素樹脂であることがより好ましく、いずれもVdF/TFE共重合体であることが好ましい。また、上記未架橋フッ素樹脂及び架橋フッ素樹脂は、同じ組成比を取ることが好ましい。上記組成比は、上記フッ素樹脂について述べた通りのものをとることができる。
本明細書において、「架橋」とは分子鎖が繋がれ三次元ネットワークを形成した状態であることを意味する。
架橋フッ素樹脂は、フッ素樹脂フィルムの絶縁破壊強さ、機械的強度の点から、架橋フッ素樹脂と未架橋フッ素樹脂の合計に対して、0.01~10質量%であることが好ましい。より好ましくは、0.03質量%以上であり、更に好ましくは、0.05質量%以上であり、特に好ましくは、0.1質量%以上である。また、添加量が多すぎると、添加剤との界面が大きくなり、欠陥につながることから、10質量%以下がより好ましく、8質量%以下が更に好ましく、5質量%以下が特に好ましい。
本発明のフッ素樹脂フィルムは、フッ素樹脂として、メルトフローレートが異なる2種のフッ素樹脂を含むことも好適な形態の一つである。
フッ素樹脂フィルムの絶縁破壊強さ、機械的強度の点から、上記フッ素樹脂は、一方のメルトフローレートが2.0~30.0g/10分であり、他方は、メルトフローレートが0.1~1.9g/10分であることが好ましい。また、一方のメルトフローレートが2.0~20.0g/10分であり、他方のメルトフローレートが0.1~1.9g/10分であることが好ましい。より好ましくは、一方のメルトフローレートが2.1~10.0g/10分であり、他方のメルトフローレートが0.5~1.8g/10分である。
フッ素樹脂フィルムの絶縁破壊強さ、機械的強度の点から、他方に対して小さいメルトフローレートを有するフッ素樹脂は、フッ素樹脂の合計100質量%に対して、0.1~10質量%であることが好ましく、0.5~8質量%であることがより好ましく、1~5質量%であることが更に好ましい。
本発明のフッ素樹脂フィルムは、フッ素樹脂として、重合単位の組成比が異なる2種のフッ素樹脂を含むことも好適な形態の一つである。
フッ素樹脂フィルムの絶縁破壊強さ、機械的強度の点から、フッ素樹脂としては、VdFに基づく重合単位を含み、VdFに基づく重合単位の割合が異なる2種の重合体を含むことが好ましい。
VdFに基づく重合単位の割合が異なるフッ素樹脂を含む場合、フッ素樹脂フィルムの絶縁破壊強さ、機械的強度の点、及び、添加量が多すぎると、添加剤との界面が大きくなり、欠陥につながることから、VdFに基づく重合単位の割合が少ない重合体の含有量は、フッ素樹脂の合計に対して、0.1~10質量%であることが好ましく、0.5~8質量%であることがより好ましい。
フッ素樹脂フィルムの絶縁破壊強さ、機械的強度の点から、フッ素樹脂の一方が、フッ化ビニリデン(VdF)単位/テトラフルオロエチレン(TFE)単位がモル比で35.0/65.0~50.0/50.0のVdF/TFE共重合体であり、他方が、VdF単位/TFE単位がモル比で10.0/90.0以上35.0/65.0未満(VdF単位とTFE単位との合計100モル%に対して、VdF単位が10.0モル%以上35.0モル%未満、TFE単位が90.0モル%以下65.0モル%超である)のVdF/TFE共重合体であることがより好ましい。
また、上記フッ素樹脂の一方は、フッ化ビニリデン単位/テトラフルオロエチレン単位がモル比で95.0/5.0~39.0/61.0のフッ化ビニリデン/テトラフルオロエチレン共重合体であり、他方が、フッ化ビニリデン単位/テトラフルオロエチレン単位がモル比で38.9/61.1~5.0/95.0のフッ化ビニリデン/テトラフルオロエチレン共重合体であることも好ましい。
また、上記フッ素樹脂の一方は、フッ化ビニリデン単位/テトラフルオロエチレン単位がモル比で50.0/50.0~39.0/61.0のフッ化ビニリデン/テトラフルオロエチレン共重合体であり、他方が、フッ化ビニリデン単位/テトラフルオロエチレン単位がモル比で38.9/61.1~10.0/90.0のフッ化ビニリデン/テトラフルオロエチレン共重合体であることも好ましい。
上記フッ化ビニリデン/テトラフルオロエチレン共重合体はいずれも、さらにエチレン性不飽和単量体(但し、テトラフルオロエチレン及びフッ化ビニリデンを除く。)の共重合単位を含むことが好ましく、上記エチレン性不飽和単量体の共重合単位の含有量としては、全共重合単位に対して0.1モル%から5.0モル%が好ましい。
本発明のフッ素樹脂フィルムは、フッ素樹脂として、フッ化ビニリデン/テトラフルオロエチレン共重合体とポリフッ化ビニリデンとを含むことも好ましい。フッ化ビニリデン/テトラフルオロエチレン共重合体とポリフッ化ビニリデンを併用した場合、フッ素樹脂フィルムの機械特性がより向上する。
ポリフッ化ビニリデンは、フッ化ビニリデン/テトラフルオロエチレン共重合体とポリフッ化ビニリデンの合計に対して、0.1~10質量%であることが好ましく、より好ましくは0.5質量%以上であり、更に好ましくは、1質量%以上である。また、8質量%以下がより好ましく、6質量%以下が特に好ましい。
本明細書において、ポリフッ化ビニリデンは、フッ化ビニリデンに基づく単量体単位のみからなる重合体を意味する。
本発明のフッ素樹脂フィルムは、フッ素樹脂として、フッ化ビニリデン/テトラフルオロエチレン共重合体とヘキサフルオロプロピレン/テトラフルオロエチレン共重合体(FEP)とを含むことも好ましい。フッ化ビニリデン/テトラフルオロエチレン共重合体とヘキサフルオロプロピレン/テトラフルオロエチレン共重合体を併用した場合、フッ素樹脂フィルムの機械特性がより向上する。
ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体は、添加量が多すぎると、添加剤との界面が大きくなり、欠陥につながることから、フッ化ビニリデン/テトラフルオロエチレン共重合体とヘキサフルオロプロピレン/テトラフルオロエチレン共重合体の合計に対して、0.1~10質量%であることが好ましく、より好ましくは0.5質量%以上であり、更に好ましくは、1質量%以上である。また、8質量%以下がより好ましく、6質量%以下が特に好ましい。
上記ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体(FEP)は、テトラフルオロエチレン(TFE)単位及びヘキサフルオロプロピレン(HFP)単位を含む。
上記FEPは、TFE単位とHFP単位との質量比(TFE/HFP)が70~99/1~30(質量%)であることが好ましい。上記質量比(TFE/HFP)は、85~95/5~15(質量%)がより好ましい。
上記FEPは、TFE単位及びHFP単位に加え、更にパーフルオロアルキルビニルエーテル(PAVE)単位を含むTFE/HFP/PAVE共重合体であることも好ましい。上記FEPに含まれるPAVE単位としては、一般式(5):
CF=CFO(CFCFYO)-(CFCFCFO)-R  (5)
(式中、YはF又はCFを表し、Rは炭素数1~5のパーフルオロアルキル基を表す。pは0~5の整数を表し、qは0~5の整数を表す。)、及び、一般式(6):
CFX=CXOCFOR   (6)
(式中、Xは、同一又は異なり、F又はCFを表し、Rは、直鎖又は分岐した、炭素数が1~6のパーフルオロアルキル基、若しくは、炭素数が5又は6の環状パーフルオロアルキル基を表す。)
からなる群より選択される少なくとも1種に基づく単位を挙げることができる。
具体的には、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、パーフルオロ(ブチルビニルエーテル)〔PBVE〕等が挙げられる。
なかでも、上記PAVEとしては、バルキーな側鎖を有するものが好ましく、具体的には、PPVEが好ましい。
上記FEPは、全重合単位に対して、TFE、HFP及びPAVEに基づく重合単位の合計が90モル%以上であることが好ましく、95モル%以上であることが更に好ましい。上記FEPは、TFE及びHFPに基づく重合単位のみからなってもよいし、TFE、HFP及びPAVEに基づく重合単位のみからなってもよい。
上記FEPが、TFE/HFP/PAVE共重合体である場合、質量比(TFE/HFP/PAVE)が70~99.8/0.1~25/0.1~25(質量%)であることが好ましい。上記範囲内であると、より耐熱性に優れる。
上記質量比(TFE/HFP/PAVE)は、75~98/1.0~15/1.0~10(質量%)であることがより好ましい。
上記TFE/HFP/PAVE共重合体は、HFP単位及びPAVE単位を合計で1質量%以上含む。
上記TFE/HFP/PAVE共重合体は、HFP単位が全単量体単位の25質量%以下であることが好ましい。HFP単位の含有量が上述の範囲内であると、より耐熱性に優れる。HFP単位の含有量は、20質量%以下がより好ましく、18質量%以下が更に好ましい。特に好ましくは15質量%以下である。また、HFP単位の含有量は、0.1質量%以上が好ましく、1質量%以上がより好ましい。特に好ましくは、2質量%以上である。
なお、HFP単位の含有量は、19F-NMR法により測定することができる。
上記TFE/HFP/PAVE共重合体において、PAVE単位の含有量は、20質量%以下がより好ましく、10質量%以下が更に好ましい。特に好ましくは3質量%以下である。また、PAVE単位の含有量は、0.1質量%以上が好ましく、1質量%以上がより好ましい。なお、PAVE単位の含有量は、19F-NMR法により測定することができる。
上記FEPは、更に、他のエチレン性単量体(α)単位を含んでいてもよい。
他のエチレン性単量体(α)単位としては、TFE単位及びHFP単位、並びに、TFE/HFP/PAVE共重合体の場合には、更にPAVE単位と共重合可能な単量体単位であれば特に限定されず、例えば、フッ化ビニル〔VF〕、VdF、クロロトリフルオロエチレン〔CTFE〕等の含フッ素エチレン性単量体や、エチレン、プロピレン、アルキルビニルエーテル等の非フッ素化エチレン性単量体等が挙げられる。
上記共重合体がTFE/HFP/PAVE/他のエチレン性単量体(α)共重合体である場合、質量比(TFE/HFP/PAVE/他のエチレン性単量体(α))は、70~98/0.1~25/0.1~25/0.1~25(質量%)であることが好ましく、70~98/0.1~25/0.1~20/0.1~15(質量%)であることがより好ましく、70~98/0.1~20/0.1~10/0.1~5(質量%)であることが更に好ましい。
上記TFE/HFP共重合体は、TFE単位以外の重合単位を合計で1質量%以上含む。
上記FEPは、融点が200~300℃であることが好ましく、より好ましくは210℃以上であり、更に好ましくは、220℃以上である。また、280℃以下がより好ましく、270℃以下が特に好ましい。
上記融点は、示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度である。
上記FEPは、ガラス転移温度(Tg)が60~110℃であることが好ましく、65℃以上であることがより好ましく、100℃以下であることがより好ましい。上記ガラス転移温度は、動的粘弾性測定により測定して得られる値である。
上記FEPは、例えば、その構成単位となるモノマーや、重合開始剤等の添加剤を適宜混合して、乳化重合、溶液重合や懸濁重合を行う等の従来公知の方法により製造することができる。
上記FEPは、メルトフローレート(MFR)が0.1~10であることが好ましく、より好ましくは0.5以上であり、更に好ましくは、1以上である。また、5以下がより好ましく、3以下が特に好ましい。
上記MFRは、ASTM D3307-01に準拠し、297℃、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)である。
また、本発明のフッ素樹脂フィルムは、フッ素樹脂として、フッ化ビニリデン/テトラフルオロエチレン共重合体とパーフルオロアルキルビニルエーテル/テトラフルオロエチレン共重合体(PFA)とを含むことも好ましい。フッ化ビニリデン/テトラフルオロエチレン共重合体とパーフルオロアルキルビニルエーテル/テトラフルオロエチレン共重合体を併用した場合、フィルムの表面粗さが大きくなり、摩擦係数が低下することで、フィルムのハンドリング性が向上する。
パーフルオロアルキルビニルエーテル/テトラフルオロエチレン共重合体は、添加量が多すぎると、添加剤との界面が大きくなり、欠陥につながることから、フッ化ビニリデン/テトラフルオロエチレン共重合体とパーフルオロアルキルビニルエーテル/テトラフルオロエチレン共重合体の合計に対して、0.1~10質量%であることが好ましく、より好ましくは0.3質量%以上であり、更に好ましくは、0.5質量%以上である。また、8質量%以下がより好ましく、6質量%以下が特に好ましい。
上記PFAを構成するPAVEとしては、一般式(5):
CF=CFO(CFCFYO)-(CFCFCFO)-R  (5)
(式中、YはF又はCFを表し、Rは炭素数1~5のパーフルオロアルキル基を表す。pは0~5の整数を表し、qは0~5の整数を表す。)、及び、一般式(6):
CFX=CXOCFOR   (6)
(式中、Xは、同一又は異なり、F又はCFを表し、Rは、直鎖又は分岐した、炭素数が1~6のパーフルオロアルキル基、若しくは、炭素数が5又は6の環状パーフルオロアルキル基を表す。)
からなる群より選択される少なくとも1種を挙げることができる。
具体的には、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、パーフルオロ(ブチルビニルエーテル)〔PBVE〕等が挙げられる。
なかでも、上記PAVEとしては、バルキーな側鎖を有するものが好ましく、具体的には、PPVEが好ましい。
上記PFAは、PAVEに基づく重合単位を全重合単位に対して1.0~10質量%含むことが好ましい。
上記PAVEに基づく重合単位の量は、全重合単位に対して、2.0質量%以上がより好ましく、3.5質量%以上が更に好ましく、4.0質量%以上が特に好ましく、5.0質量%以上が最も好ましく、8.0質量%以下がより好ましく、7.0質量%以下が更に好ましく、6.5質量%以下が特に好ましく、6.0質量%以下が最も好ましい。なお、上記PAVEに基づく重合単位の量は、19F-NMR法により測定する。
上記PFAは、全重合単位に対して、TFE及びPAVEに基づく重合単位の合計が90モル%以上であることが好ましく、95モル%以上であることが更に好ましい。上記PFAは、TFE及びPAVEに基づく重合単位のみからなることも好ましい。なお、上記PFAはHFP単位を含まない。
上記PFAは、主鎖炭素数10個当たり400個以下の不安定末端基を有していてもよい。上記不安定末端基は、-COF、-COOH、-CFH、-COOCH、-CHOH、-CONH、-CF=CF等であり、上記個数は、これら不安定末端基の総数である。上記個数は、20個以下であってよく、10個以下であってもよい。下限は0個であってよい。特に、主鎖炭素数10個当たり20個以下の不安定末端基を有するPFAは、高周波領域(10GHz以上)での低誘電正接の点で好ましい。
上記不安定末端基数は、赤外分光分析法により測定することができる。
まず、上記共重合体を溶融押出成形して、厚さ0.25~0.3mmのフィルムを作製する。このフィルムをフーリエ変換赤外分光分析により分析して、上記共重合体の赤外吸収スペクトルを得、完全にフッ素化処理されて不安定末端基が存在しないベーススペクトルとの差スペクトルを得る。この差スペクトルに現れる特定の不安定末端基の吸収ピークから、下記式(A)に従って、上記共重合体における炭素原10個あたりの不安定末端基数Nを算出する。
N=I×K/t  (A)
I:吸光度
K:補正係数
t:フィルムの厚さ(mm)
上記PFAは、融点が280~322℃であることが好ましい。
上記融点は、290℃以上であることがより好ましく、315℃以下であることがより好ましい。
上記融点は、示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度である。
上記PFAは、ガラス転移温度(Tg)が70~110℃であることが好ましい。ガラス転移温度は、80℃以上がより好ましく、100℃以下がより好ましい。
上記ガラス転移温度は、動的粘弾性測定により測定して得られる値である。
上記PFAは、例えば、その構成単位となるモノマーや、重合開始剤等の添加剤を適宜混合して、乳化重合、懸濁重合を行う等の従来公知の方法により製造することができる。
本発明のフッ素樹脂フィルムは、フッ素樹脂以外の他のポリマーを含んでもよい。他のポリマーとしては、たとえば可撓性を高めるためにはポリカーボネート(PC)、ポリエステル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シリコーン樹脂、ポリエーテル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン(PP)などが好ましく、強度を高めるためにはポリ(メタ)アクリレート、エポキシ樹脂、ポリエチレンオキシド、ポリプロピレンオキシド、ポリフェニレンオキシド(PPO)、ポリフェニレンサルファイド(PPS)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、PC、ポリスチレン、ポリベンゾイミダゾール(PBI)などがあげられ、また高誘電性を補足する点から奇数ポリアミド、シアノプルラン、銅フタロシアニン系ポリマーなどがあげられる。
上記フッ素樹脂と他のポリマーとの質量比は、50/50~99/1であることが好ましく、75/25~99/1であることがより好ましい。
本発明のフッ素樹脂フィルムは、親和性向上剤を含むものであってもよい。親和性向上剤としては、カップリング剤、官能基変性ポリオレフィン、スチレン改質ポリオレフィン、官能基変性ポリスチレン、ポリアクリル酸イミド、クミルフェノールなどがあげられ、本発明の効果を損なわない範囲内で含んでもよい。尚、耐電圧の点からはこれらの成分は含まないことがより好ましい。
本発明のフッ素樹脂フィルムは、厚みが100μm以下であることが好ましく、50μm以下であることがより好ましく、30μm以下であることが更に好ましく、10μm以下であることが特に好ましい。フッ素樹脂フィルムの厚みは、1μm以上であってよい。上記厚みは、デジタル測長機を用いて測定できる。
本発明のフッ素樹脂フィルムは、周波数1kHz、30℃での比誘電率(ε)が9以上であることが好ましく、10以上がより好ましい。
上記比誘電率は、上記フィルムの表面にφ50mmのアルミ蒸着を実施し、その反対面にも全面にアルミ蒸着を実施してサンプルとし、LCRメーターを用いて容量(C)を測定し、容量、電極面積(S)、フィルムの厚み(d)から、式C=ε×ε×S/d(εは真空の誘電率)で算出する値である。
本発明のフッ素樹脂フィルムは、30℃での体積抵抗率が1E+15Ω・cm以上であることが好ましく、より好ましくは、2E+15Ω・cm以上である。
上記体積抵抗率は、真空中で上記フィルムの片面にアルミニウムを蒸着しサンプルとする。次に、このサンプルを恒温槽内(30℃、25%RH)に設置してデジタル超絶縁計/微小電流計にて、50V/μmの電圧をサンプルに印加し、体積抵抗率(Ω・cm)を測定する。
本発明のフッ素樹脂フィルムは、周波数1kHz、150℃での誘電正接が7%以下であることが好ましく、6%以下であることがより好ましい。
上記誘電正接は、LCRメーターを用いて測定する。
本発明のフッ素樹脂フィルムは、長手方向(MD)の25℃での引張弾性率が800MPa以上であることが好ましく、900MPa以上であることがより好ましい。
上記引張弾性率は、ASTM D1708に準拠して測定できる。
本発明のフッ素樹脂フィルムは、長手方向(MD)の25℃での弾性率が800MPa以上であって、かつ、厚みが100μm以下であってよい。上記弾性率は、900MPa以上であることがより好ましい。また、上記厚みは、30μm以下であることがより好ましく、10μm以下であることが更に好ましく、1μm以上であることが好ましい。
本発明のフッ素樹脂フィルムは、例えば、フッ素樹脂を含む加工前フィルムにエンボス加工を施す工程又は表面コーティング加工を施す工程を含む製造方法により製造することができる。上記加工前フィルムは、例えば、フッ素樹脂を溶融押出成形することによりフィルムを得る工程により得ることができる。また、溶融押出成形により得られたフィルムは、更に、延伸されたものであってもよい。溶融押出成形及び延伸については後述する。
また、本発明のフッ素樹脂フィルムがフッ素樹脂として2種のフッ素樹脂を含む場合、2種のフッ素樹脂を混合してフッ素樹脂混合物を得る工程、及び、該フッ素樹脂混合物を溶融押出成形することによりフィルムを得る工程、及び、得られたフィルムを延伸することにより、延伸フィルムを得る工程を含む製造方法により製造することができる。
上記フッ素樹脂混合物を得る工程及びフィルムを得る工程は、別々に行ってもよいし、同時に行うものであってもよい。例えば、2種のフッ素樹脂の混合及び溶融押出成形を溶融押出成形機にて同時に行ってもよい。
上記溶融押出成形は、250~380℃で行うことができる。
上記溶融押出成形は、また、溶融押出成形機を使用して行うことができ、シリンダー温度を250~350℃、ダイ温度を300~380℃とすることが好ましい。
上記製造方法は、上記押出成形で得られたフィルムをロールにより巻き取る工程を含むことも好ましい。上記ロールの温度は、0~180℃とすることが好ましい。
上記押出成形の後、得られたフィルムを延伸して延伸フィルムを得る。上記延伸は、一軸延伸であっても、二軸延伸であってもよい。
上記一軸延伸では、押出成形において上記フッ素樹脂を押し出した方向と同じ縦方向(MD)にフィルムを延伸する。
上記一軸延伸における延伸倍率は、2~10倍であることが好ましく、3倍以上であることがより好ましい。
上記一軸延伸における延伸温度は、0~180℃であることが好ましく、30℃以上であることがより好ましく、120℃以下であることがより好ましい。
上記二軸延伸では、縦方向(MD)と垂直な横方向(TD)にフィルムを延伸する。
上記二軸延伸における延伸倍率は、MDおよびTDの各倍率で2~10倍であることが好ましく、3倍以上であることがより好ましい。
上記二軸延伸における延伸温度は、0~200℃であることが好ましく、30℃以上であることがより好ましく、120℃以下であることがより好ましい。
上記二軸延伸は、逐次二軸延伸であっても、同時二軸延伸であってもよい。
上記二軸延伸の方法としては、テンター式二軸延伸、チューブラー式二軸延伸等の方法が採用でき、テンター式二軸延伸が好ましい。
上記二軸延伸における延伸温度は、0~200℃であることが好ましく、30℃以上であることがより好ましく、120℃以下であることがより好ましい。
逐次二軸延伸法は、一般に縦延伸(MD方向)をロールの回転差を利用して延伸し、続いて横延伸ではロール状フィルムの端部(TD側)をクリップで掴みTD方向に延伸する方法である。場合によっては、縦延伸、横延伸、縦延伸の順にMD方向に引張を加える場合もある。
同時二軸延伸法は、ロール状フィルムの端部(TD側)をクリップで掴み、そのクリップ間隔がMD方向、TD方向の両方に広がることでフィルムを延伸する方法である。
上記製造方法は、上記延伸の後、得られた延伸フィルムを熱固定する工程を含むことも好ましい。熱固定をすることにより、熱等の影響によるフィルムの収縮を抑制したり、耐久性が向上したりする効果が得られる。
上記熱固定の温度は、100~250℃であることが好ましく、150℃以上であることがより好ましく、200℃以下であることがより好ましい。熱固定時間は短時間で良く、連続延伸では5分以下で良い。
上述した10点平均粗さ、算術平均粗さ及び絶縁破壊強さを有するフッ素樹脂フィルムを得ることができるとともに、体積抵抗率を向上できる点から、本発明のフッ素樹脂フィルムは、二軸延伸フィルムであることが好ましく、上述したフッ素樹脂として2種のフッ素樹脂を含む二軸延伸フィルムであることがより好ましい。
本発明のフッ素樹脂フィルムは、高誘電性フィルム又は圧電フィルムとして好適である。
本発明のフィルムを圧電フィルムとする場合、フィルムを分極処理することが好ましい。上記分極処理は、コロナ放電により行うことができ、例えば;特開2011-181748号公報に記載のようにフィルムに対して線状電極を用いて印加を実施すること;又はフィルムに対して針状電極を用いて印加を実施すること;により行うことができる。上記分極処理をした後、熱処理してもよい。
本発明のフッ素樹脂フィルムは、また、フィルムコンデンサ、エレクトロウェッティングデバイス、又は、圧電パネルに好適に使用できる。
本発明のフッ素樹脂フィルムは、低い静摩擦係数を有することによって優れた巻き取り性を有し、更に、絶縁破壊強さに優れることから、フィルムコンデンサの高誘電性フィルムとして特に好適に使用できる。
上記フッ素樹脂フィルムの少なくとも片面に電極層を備えるフィルムコンデンサ用フィルムも本発明の一つである。また、上記フィルムコンデンサ用フィルムを備えるフィルムコンデンサも本発明の一つである。
フィルムコンデンサの構造としては、たとえば、電極層と高誘電性フィルムが交互に積層された積層型(特開昭63-181411号公報、特開平3-18113号公報など)や、テープ状の高誘電性フィルムと電極層を巻き込んだ巻回型(高誘電性フィルム上に電極が連続して積層されていない特開昭60-262414号公報などに開示されたものや、高誘電性フィルム上に電極が連続して積層されている特開平3-286514号公報などに開示されたものなど)などがあげられる。構造が単純で、製造も比較的容易な、高誘電性フィルム上に電極層が連続して積層されている巻回型フィルムコンデンサの場合は、一般的には片面に電極を積層した高誘電性フィルムを電極同士が接触しないように2枚重ねて巻き込んで、必要に応じて、巻き込んだ後に、ほぐれないように固定して製造される。
電極層は、特に限定されないが、一般的に、アルミニウム、亜鉛、金、白金、銅などの導電性金属からなる層であって、金属箔として、または蒸着金属被膜として用いる。金属箔と蒸着金属被膜のいずれでも、また、両者を併用しても構わない。電極層を薄くでき、その結果、体積に対して容量を大きくでき、誘電体との密着性に優れ、また、厚さのバラつきが小さい点で、通常は、蒸着金属被膜が好ましい。蒸着金属被膜は、一層のものに限らず、たとえば耐湿性を持たせるためにアルミニウム層にさらに半導体の酸化アルミニウム層を形成して電極層とする方法(たとえば特開平2-250306号公報など)など、必要に応じて多層にしてもよい。蒸着金属被膜の厚さも特に限定されないが、好ましくは100~2,000オングストローム、より好ましくは200~1,000オングストロームの範囲とする。蒸着金属被膜の厚さがこの範囲である時に、コンデンサの容量や強度がバランスされ好適である。
電極層として蒸着金属被膜を用いる場合、被膜の形成方法は特に限定されず、たとえば真空蒸着法、スパッタリング法、イオンプレーティング法などを採用することができる。通常は、真空蒸着法が用いられる。
真空蒸着法としては、たとえば成形品のバッチ方式と、長尺品で使用される半連続(セミコンテニアス)方式と連続(air to air)方式などがあり、現在は、半連続方式が主力として行われている。半連続方式の金属蒸着法は、真空系の中で金属蒸着、巻き取りした後、真空系を大気系に戻し、蒸着されたフィルムを取り出す方法である。
半連続方式については、具体的には、たとえば特許第3664342号明細書の図1を参照して記載されている方法で行うことができる。
フィルム上に金属薄膜層を形成する場合、あらかじめフィルム表面に、コロナ処理、プラズマ処理など、接着性向上のための処理を施しておくこともできる。電極層として金属箔を用いる場合も、金属箔の厚さは特に限定されないが、通常は、0.1~100μm、好ましくは1~50μm、より好ましくは3~15μmの範囲である。
固定方法は、特に限定されず、たとえば樹脂で封止したり絶縁ケースなどに封入したりすることにより、固定と構造の保護とを同時に行えばよい。リード線の接続方法も限定されず、溶接、超音波圧接、熱圧接、粘着テープによる固定などが例示される。巻き込む前から電極にリード線を接続しておいてもよい。絶縁ケースに封入する場合など、必要に応じて、ウレタン樹脂、エポキシ樹脂などの熱硬化性樹脂で開口部などを封止して酸化劣化などを防止してもよい。
本発明のフッ素樹脂フィルムは、エレクトロウェッティングデバイスの高誘電性フィルムとして好適に使用できる。
上記エレクトロウェッティングデバイスは、第1電極と、第2電極と、第1電極と第2電極との間に、移動可能に配置された導電性液体と、第1電極と前記導電性液体との間に、第1電極を前記第2電極から絶縁するように配置された、本発明のフィルム(高誘電性フィルム)と、を有するものであってよい。本発明のフィルムの上には、撥水層を設けてもよい。第1電極と第2電極との間には、導電性液体に加えて、絶縁性液体が保持されており、導電性液体と絶縁性液体が2層を構成していてよい。
上記エレクトロウェッティングデバイスは、光学素子、表示装置(ディスプレイ)、可変焦点レンズ、光変調装置、光ピックアップ装置、光記録再生装置、現像装置、液滴操作装置、分析機器(例、試料の分析のため微小の導電性液体を移動させる必要がある、化学、生化学、および生物学的分析機器)に使用できる。
本発明のフッ素樹脂フィルムは、圧電パネルの圧電フィルムとしても好適に使用できる。
上記圧電パネルは、第1電極と、本発明のフッ素樹脂フィルム(圧電フィルム)と、第2電極と、をこの順で有するものであってよい。第1電極は、フィルムの一方の主面上に直接又は間接的に配置され、第2電極はフィルムの他方の主面上に直接又は間接的に配置される。
上記圧電パネルは、タッチパネルに使用することができる。上記タッチパネルは、入力装置に用いることができる。上記タッチパネルを有する入力装置は、タッチ位置、タッチ圧、又はその両方に基づく入力が可能である。上記タッチパネルを有する入力装置は、位置検出部及び圧力検出部を有することができる。
上記入力装置は、電子機器(例、携帯電話(例、スマートフォン)、携帯情報端末(PDA)、タブレットPC、ATM、自動券売機、及びカーナビゲーションシステム)に用いることができる。当該入力装置を有する電子機器は、タッチ位置、タッチ圧又はその両方に基づく操作及び動作が可能である。
また振動発電などの環境発電、タッチセンサー、タッチパネル、触感センサー、誘電ボロメーター、フィルムスピーカー、触覚フィードバック(ハプティクス)、などの強誘電体用途、あるいは電歪アクチュエーターなどでのフィルムとしても使用することができる。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
実施例の各数値は以下の方法により測定した。
フルオロポリマーの単量体組成
核磁気共鳴装置を用い、測定温度を(ポリマーの融点+20)℃として19F-NMR測定を行い、各ピークの積分値およびモノマーの種類によっては元素分析を適宜組み合わせて求めた。
融点
示差走査熱量計を用い、ASTM D-4591に準拠して、昇温速度10℃/分にて、熱測定を行い、得られた吸熱曲線のピークから融点を求めた。
厚み
デジタル測長機を用いて、基板に載せたフィルムを室温下にて測定した。
比誘電率
真空中でフィルムの両面にアルミニウムを蒸着しサンプルとする。このサンプルをLCRメーターにて、30℃で、周波数1kHzでの静電容量を測定する。得られた各静電容量から比誘電率を算出した。
体積抵抗率
真空中でフィルムの片面にアルミニウムを蒸着しサンプルとする。次に、このサンプルを恒温槽内(30℃、25%RH)に設置してデジタル超絶縁計/微小電流計にて、50V/μmの電圧をサンプルに印加し、体積抵抗率(Ω・cm)を測定した。
絶縁破壊強さは、JISC2110に基づき測定した値である。
フィルムを下部電極に置き、上部電極としてφ25mm、重さ500gの分銅を置いて両端に電圧を100V/secで増加させて破壊する電圧を測定した。測定数は50点とし、上下5点を削除して平均値を算出し、厚みで除した値で絶縁破壊強さを求めた。
10点平均粗さ及び算術平均粗さの値は、JIS B-0601-2001に基づき測定した値である。
静摩擦係数
表面性測定機を用いて、速度:150mm/min、測定長さ:15.0mm、ローラー荷重100g、ローラー(幅60mm直径30mm)の測定条件で静摩擦係数を求めた。測定時はローラーにもフィルムを張り付け、2枚重ね合わせたフィルム間の静摩擦係数を測定した。滑らず静摩擦係数を測定できない場合、評価結果は×とする。
結晶化度
結晶化度は、フィルムをX線回折装置にてピーク分離法を用いて測定した。具体的には、複数のフィルムを合計の厚みが40μm以上になるように重ねあわせた測定サンプルをサンプルホルダーにセットし、X線回折装置にて得られた回折スペクトルの結晶質部分と非晶質部分の面積比から結晶化度を算出した。
実施例及び比較例で使用した各成分は以下の通りである。
フッ素樹脂(1):VdF/TFE共重合体、VdF/TFE=40.0/60.0(モル比)、MFR:2.7g/10分、融点:216℃(VdF及びTFE以外のエチレン性不飽和単量体の構成単位は1重量%以下)
添加剤
添加剤A:架橋フッ素樹脂:VdF/TFE共重合体(VdF/TFE=40.0/60.0(モル比)、VdF及びTFE以外のエチレン性不飽和単量体の構成単位は1重量%以下、MFR:0.8g/10分、融点:216℃)に20kGyの電子線を照射し、架橋フッ素樹脂を得た。
添加剤B:PVDF:MFR:1g/10分、融点:172℃
添加剤C:VdF系ポリマー1:VdF/TFE共重合体、VdF/TFE=31.0/69.0(モル比)、MFR:1.5g/10分、融点:240℃(VdF及びTFE以外のエチレン性不飽和単量体の構成単位は1重量%以下)
添加剤D:VdF系ポリマー2:VdF/TFE共重合体、VdF/TFE=22.0/78.0(モル比)、MFR:1.6g/10分、融点:270℃(VdF及びTFE以外のエチレン性不飽和単量体の構成単位は1重量%以下)
添加剤E:FEP(ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体)、MFR:1g/10分、融点:260℃
実施例1
フッ素樹脂(1)のペレット樹脂99質量部に対し、添加剤Aを1質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚85μmのフィルムを得た。その85μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚9μmの延伸フィルムを得た。
実施例2
フッ素樹脂(1)のペレット樹脂97質量部に対し、添加剤Aを3質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚75μmのフィルムを得た。その75μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚7μmの延伸フィルムを得た。
実施例3
フッ素樹脂(1)のペレット樹脂95質量部に対し、添加剤Aを5質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚80μmのフィルムを得た。その80μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚8μmの延伸フィルムを得た。
実施例4
フッ素樹脂(1)のペレット樹脂99質量部に対し、添加剤Bを1質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚85μmのフィルムを得た。その85μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚10μmの延伸フィルムを得た。
実施例5
フッ素樹脂(1)のペレット樹脂97質量部に対し、添加剤Bを3質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚80μmのフィルムを得た。その80μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚9μmの延伸フィルムを得た。
実施例6
フッ素樹脂(1)のペレット樹脂95質量部に対し、添加剤Bを5質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚85μmのフィルムを得た。その85μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚10μmの延伸フィルムを得た。
実施例7
フッ素樹脂(1)のペレット樹脂99質量部に対し、添加剤Cを1質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚80μmのフィルムを得た。その80μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚8μmの延伸フィルムを得た。
実施例8
フッ素樹脂(1)のペレット樹脂97質量部に対し、添加剤Cを3質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚80μmのフィルムを得た。その80μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚8μmの延伸フィルムを得た。
実施例9
フッ素樹脂(1)のペレット樹脂95質量部に対し、添加剤Cを5質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚85μmのフィルムを得た。その85μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚9μmの延伸フィルムを得た。
実施例10
フッ素樹脂(1)のペレット樹脂99質量部に対し、添加剤Dを1質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚75μmのフィルムを得た。その75μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚7μmの延伸フィルムを得た。
実施例11
フッ素樹脂(1)のペレット樹脂97質量部に対し、添加剤Dを3質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚75μmのフィルムを得た。その75μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚7μmの延伸フィルムを得た。
実施例12
フッ素樹脂(1)のペレット樹脂95質量部に対し、添加剤Dを5質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚85μmのフィルムを得た。その85μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚9μmの延伸フィルムを得た。
実施例13
フッ素樹脂(1)のペレット樹脂99質量部に対し、添加剤Eを1質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚85μmのフィルムを得た。その85μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚9μmの延伸フィルムを得た。
実施例14
フッ素樹脂(1)のペレット樹脂99質量部に対し、添加剤Eを1.5質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚85μmのフィルムを得た。その85μmのフィルムを、二軸延伸機にて60℃で3.5倍延伸し、フィルム厚9μmの延伸フィルムを得た。
実施例15
フッ素樹脂(1)のペレット樹脂99質量部に対し、添加剤Eを1質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚85μmのフィルムを得た。その85μmのフィルムを、二軸延伸機にて60℃で4.0倍延伸し、フィルム厚7μmの延伸フィルムを得た。
比較例1
フッ素樹脂(1)のペレット樹脂を290~350℃で溶融押出成形機にて製膜し、Tダイ成形押出機にて製膜し、フィルム厚85μmのフィルムを得た。その30μmのフィルムを、一軸延伸機にて60℃で3.0倍延伸し、フィルム厚10μmの延伸フィルムを得た。静摩擦係数は滑らず測定できなかった。
比較例2
フッ素樹脂(1)のペレット樹脂99.95質量部に対し、添加剤Bを0.05質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚29μmのフィルムを得た。その29μmのフィルムを、一軸延伸機にて60℃で3.0倍延伸し、フィルム厚10μmの延伸フィルムを得た。静摩擦係数は滑らず測定できなかった。
比較例3
フッ素樹脂(1)のペレット樹脂89質量部に対し、添加剤Bを11質量部加え、290~350℃で溶融押出成形機にて製膜し、フィルム厚30μmのフィルムを得た。その30μmのフィルムを、一軸延伸機にて60℃で3.0倍延伸し、フィルム厚11μmの延伸フィルムを得た。
表1及び2に実施例及び比較例で得られたフィルムの物性を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (17)

  1. フッ素樹脂を含むフッ素樹脂フィルムであって、
    少なくとも一方の表面の10点平均粗さが0.100~1.200μm、かつ、算術平均粗さが0.010~0.050μmであり、絶縁破壊強さが400V/μm以上であることを特徴とするフッ素樹脂フィルム。
  2. フッ素樹脂は、フッ化ビニリデン/テトラフルオロエチレン共重合体である請求項1記載のフッ素樹脂フィルム。
  3. フッ素樹脂は、更に、エチレン性不飽和単量体(但し、テトラフルオロエチレン及びフッ化ビニリデンを除く。)に基づく共重合体単位を含む請求項2記載のフッ素樹脂フィルム。
  4. 更に、無機粒子を含む請求項1、2又は3記載のフッ素樹脂フィルム。
  5. 無機粒子の含有量は、フッ素樹脂100質量部に対して0.01~5質量部である請求項4記載のフッ素樹脂フィルム。
  6. エンボス加工された請求項1、2、3、4又は5記載のフッ素樹脂フィルム。
  7. 表面コーティングされた請求項1、2、3、4、5又は6記載のフッ素樹脂フィルム。
  8. フッ素樹脂として、2種のフッ素樹脂を含む請求項1、2、3、4、5、6又は7記載のフッ素樹脂フィルム。
  9. フッ素樹脂として、未架橋フッ素樹脂と架橋フッ素樹脂とを含む請求項8記載のフッ素樹脂フィルム。
  10. フッ素樹脂として、メルトフローレートが異なる2種のフッ素樹脂を含む請求項8又は9記載のフッ素樹脂フィルム。
  11. 一方は、メルトフローレートが2.0~30.0g/10分のフッ素樹脂であり、他方は、メルトフローレートが0.1~1.9g/10分のフッ素樹脂である
    請求項8、9又は10記載のフッ素樹脂フィルム。
  12. フッ素樹脂として、重合単位の組成比が異なる2種のフッ素樹脂を含む請求項8、9、10又は11記載のフッ素樹脂フィルム。
  13. 一方が、フッ化ビニリデン単位/テトラフルオロエチレン単位がモル比で95.0/5.0~39.0/61.0のフッ化ビニリデン/テトラフルオロエチレン共重合体であり、他方が、フッ化ビニリデン単位/テトラフルオロエチレン単位がモル比で38.9/61.1~5.0/95.0のフッ化ビニリデン/テトラフルオロエチレン共重合体である
    請求項8、9、10、11又は12記載のフッ素樹脂フィルム。
  14. 二軸延伸フィルムである請求項1、2、3、4、5、6、7、8、9、10、11、12又は13記載のフッ素樹脂フィルム。
  15. 厚みが1~100μmである請求項1、2、3、4、5、6、7、8、9、10、11、12、13又は14記載のフッ素樹脂フィルム。
  16. 請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14又は15記載のフッ素樹脂フィルムの少なくとも片面に電極層を備えるフィルムコンデンサ用フィルム。
  17. 請求項16記載のフィルムコンデンサ用フィルムを備えるフィルムコンデンサ。
PCT/JP2018/001180 2017-01-31 2018-01-17 フッ素樹脂フィルム WO2018142933A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP18748116.3A EP3556798A4 (en) 2017-01-31 2018-01-17 FLUORINE RESIN FILM
US16/480,132 US11352469B2 (en) 2017-01-31 2018-01-17 Fluororesin film
CN202210619256.5A CN114933768A (zh) 2017-01-31 2018-01-17 氟树脂膜
KR1020227000439A KR102441991B1 (ko) 2017-01-31 2018-01-17 불소 수지 필름
JP2018566034A JP6760404B2 (ja) 2017-01-31 2018-01-17 フッ素樹脂フィルム
KR1020197019127A KR102349645B1 (ko) 2017-01-31 2018-01-17 불소 수지 필름
CN201880008655.XA CN110225938B (zh) 2017-01-31 2018-01-17 氟树脂膜
US17/734,213 US20220267540A1 (en) 2017-01-31 2022-05-02 Fluororesin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017016033 2017-01-31
JP2017-016033 2017-01-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/480,132 A-371-Of-International US11352469B2 (en) 2017-01-31 2018-01-17 Fluororesin film
US17/734,213 Continuation US20220267540A1 (en) 2017-01-31 2022-05-02 Fluororesin film

Publications (1)

Publication Number Publication Date
WO2018142933A1 true WO2018142933A1 (ja) 2018-08-09

Family

ID=63039549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001180 WO2018142933A1 (ja) 2017-01-31 2018-01-17 フッ素樹脂フィルム

Country Status (7)

Country Link
US (2) US11352469B2 (ja)
EP (1) EP3556798A4 (ja)
JP (1) JP6760404B2 (ja)
KR (2) KR102441991B1 (ja)
CN (2) CN114933768A (ja)
TW (1) TWI703183B (ja)
WO (1) WO2018142933A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021160856A (ja) * 2020-03-31 2021-10-11 Agc株式会社 フッ素樹脂フィルム及びその製法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111295413A (zh) 2017-11-08 2020-06-16 大金工业株式会社
CN108948390A (zh) * 2018-07-24 2018-12-07 电子科技大学 一种pvdf基聚合物薄膜的一步流延制备方法
EP3904048A4 (en) * 2018-12-27 2022-09-28 Oji Holdings Corporation AMORPHOUS THERMOPLASTIC RESIN FILM, METALLIZED CAPACITOR FILM, FILM ROLL AND CAPACITOR

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940986B1 (ja) 1970-08-20 1974-11-06
JPS606220B2 (ja) * 1979-04-11 1985-02-16 三菱油化株式会社 ポリ弗化ビニリデンもしくは弗化ビニリデン共重合体の延伸薄膜製造法
JPS60262414A (ja) 1984-06-09 1985-12-25 松下電器産業株式会社 フイルムコンデンサ
JPS63181411A (ja) 1987-01-23 1988-07-26 日本ケミコン株式会社 積層フイルムコンデンサ
JPS649261A (en) * 1987-07-02 1989-01-12 Showa Denko Kk Vinylidene fluoride resin composition and oriented film prepared therefrom
JPH02250306A (ja) 1989-03-23 1990-10-08 Toray Ind Inc コンデンサ用金属化フイルムおよびその製造方法
JPH0318113A (ja) 1989-06-14 1991-01-25 Murata Mfg Co Ltd ノイズフィルタの取付け構造
JPH03286514A (ja) 1990-04-02 1991-12-17 Nitsuko Corp 金属化フィルムコンデンサのフィルム巻回方法
JP3664342B2 (ja) 1996-09-30 2005-06-22 日本ゼオン株式会社 高分子誘電体フィルム
WO2008090947A1 (ja) 2007-01-26 2008-07-31 Daikin Industries, Ltd. 高耐電圧を有する高誘電体フィルム
WO2009116527A1 (ja) * 2008-03-19 2009-09-24 ダイキン工業株式会社 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
WO2011089948A1 (ja) * 2010-01-20 2011-07-28 ダイキン工業株式会社 高誘電性フィルム
JP2011181748A (ja) 2010-03-02 2011-09-15 Daikin Industries Ltd 分極化樹脂フィルムの製造方法
WO2012039424A1 (ja) 2010-09-22 2012-03-29 ダイキン工業株式会社 フィルムコンデンサ用フィルムおよびフィルムコンデンサ
JP2012089609A (ja) * 2010-10-18 2012-05-10 Shin Etsu Polymer Co Ltd フィルムキャパシタ用フィルムの製造方法
JP2012089608A (ja) * 2010-10-18 2012-05-10 Shin Etsu Polymer Co Ltd フィルムキャパシタ用フィルム
JP2014156581A (ja) * 2012-10-16 2014-08-28 Daikin Ind Ltd 高誘電性フィルム
EP3031848A1 (en) * 2014-12-09 2016-06-15 ABB Technology Ltd Dielectric material and dielectric film

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606220A (ja) * 1983-06-27 1985-01-12 Sumitomo Heavy Ind Ltd 回転式連続金属押出装置
JP4533115B2 (ja) * 2004-12-03 2010-09-01 三井・デュポンフロロケミカル株式会社 フッ素樹脂成形方法及びフッ素樹脂成形品
CN101374891B (zh) * 2006-02-17 2011-11-30 东丽株式会社 双轴取向聚丙烯薄膜
JP4940986B2 (ja) 2006-02-17 2012-05-30 東レ株式会社 二軸配向ポリプロピレンフィルム
US9029477B2 (en) * 2006-03-03 2015-05-12 3M Innovative Properties Company Compositions comprising melt-processable thermoplastic fluoropolymers and methods of making the same
JP5263298B2 (ja) * 2008-10-21 2013-08-14 旭硝子株式会社 農業用光散乱フッ素樹脂フィルム及びその製造方法
EP2450395B1 (en) * 2009-07-03 2014-06-11 Daikin Industries, Ltd. Crosslinkable fluorine rubber composition, fluorine rubber molded article, and method for producing the same
US20110228442A1 (en) * 2010-03-16 2011-09-22 Strategic Polymer Sciences, Inc. Capacitor having high temperature stability, high dielectric constant, low dielectric loss, and low leakage current
KR101249021B1 (ko) 2010-10-15 2013-04-25 (주)세아메카닉스 동력 전달 장치
KR20140107427A (ko) * 2011-12-16 2014-09-04 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. 가교성 비닐리덴 플루오라이드 및 트리플루오로에틸렌 중합체
JP5878033B2 (ja) * 2012-02-07 2016-03-08 住友電気工業株式会社 フッ素樹脂フィルム製圧電素子
KR101942630B1 (ko) * 2013-10-29 2019-01-25 다이낑 고오교 가부시키가이샤 필름 및 그 제조 방법
JP6691868B2 (ja) * 2014-08-29 2020-05-13 ダウ・東レ株式会社 フッ素含有重合体−フッ素含有オルガノポリシロキサン複合材料、その製造方法、その用途、及びその製造方法に用いる前駆体組成物
DK3327068T3 (da) 2015-07-17 2021-10-11 Daikin Ind Ltd Film
CN109923158B (zh) * 2017-01-25 2021-09-28 株式会社吴羽 偏氟乙烯系树脂膜

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940986B1 (ja) 1970-08-20 1974-11-06
JPS606220B2 (ja) * 1979-04-11 1985-02-16 三菱油化株式会社 ポリ弗化ビニリデンもしくは弗化ビニリデン共重合体の延伸薄膜製造法
JPS60262414A (ja) 1984-06-09 1985-12-25 松下電器産業株式会社 フイルムコンデンサ
JPS63181411A (ja) 1987-01-23 1988-07-26 日本ケミコン株式会社 積層フイルムコンデンサ
JPS649261A (en) * 1987-07-02 1989-01-12 Showa Denko Kk Vinylidene fluoride resin composition and oriented film prepared therefrom
JPH02250306A (ja) 1989-03-23 1990-10-08 Toray Ind Inc コンデンサ用金属化フイルムおよびその製造方法
JPH0318113A (ja) 1989-06-14 1991-01-25 Murata Mfg Co Ltd ノイズフィルタの取付け構造
JPH03286514A (ja) 1990-04-02 1991-12-17 Nitsuko Corp 金属化フィルムコンデンサのフィルム巻回方法
JP3664342B2 (ja) 1996-09-30 2005-06-22 日本ゼオン株式会社 高分子誘電体フィルム
WO2008090947A1 (ja) 2007-01-26 2008-07-31 Daikin Industries, Ltd. 高耐電圧を有する高誘電体フィルム
WO2009116527A1 (ja) * 2008-03-19 2009-09-24 ダイキン工業株式会社 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
WO2011089948A1 (ja) * 2010-01-20 2011-07-28 ダイキン工業株式会社 高誘電性フィルム
JP2011181748A (ja) 2010-03-02 2011-09-15 Daikin Industries Ltd 分極化樹脂フィルムの製造方法
WO2012039424A1 (ja) 2010-09-22 2012-03-29 ダイキン工業株式会社 フィルムコンデンサ用フィルムおよびフィルムコンデンサ
JP2012089832A (ja) * 2010-09-22 2012-05-10 Daikin Ind Ltd フィルムコンデンサ用フィルムおよびフィルムコンデンサ
JP2012089609A (ja) * 2010-10-18 2012-05-10 Shin Etsu Polymer Co Ltd フィルムキャパシタ用フィルムの製造方法
JP2012089608A (ja) * 2010-10-18 2012-05-10 Shin Etsu Polymer Co Ltd フィルムキャパシタ用フィルム
JP2014156581A (ja) * 2012-10-16 2014-08-28 Daikin Ind Ltd 高誘電性フィルム
EP3031848A1 (en) * 2014-12-09 2016-06-15 ABB Technology Ltd Dielectric material and dielectric film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3556798A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021160856A (ja) * 2020-03-31 2021-10-11 Agc株式会社 フッ素樹脂フィルム及びその製法

Also Published As

Publication number Publication date
KR102349645B1 (ko) 2022-01-12
US11352469B2 (en) 2022-06-07
KR20220009489A (ko) 2022-01-24
CN110225938B (zh) 2022-06-21
TWI703183B (zh) 2020-09-01
CN114933768A (zh) 2022-08-23
JPWO2018142933A1 (ja) 2019-11-07
US20220267540A1 (en) 2022-08-25
EP3556798A1 (en) 2019-10-23
KR102441991B1 (ko) 2022-09-13
TW201842035A (zh) 2018-12-01
US20190382544A1 (en) 2019-12-19
CN110225938A (zh) 2019-09-10
EP3556798A4 (en) 2020-08-12
KR20190086767A (ko) 2019-07-23
JP6760404B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6760404B2 (ja) フッ素樹脂フィルム
JP6838609B2 (ja) フィルム
US10745531B2 (en) Film
JP7376810B2 (ja) フィルム
JP7021427B2 (ja) フッ素樹脂フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566034

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197019127

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018748116

Country of ref document: EP

Effective date: 20190718

NENP Non-entry into the national phase

Ref country code: DE