WO2009116527A1 - 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム - Google Patents

高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム Download PDF

Info

Publication number
WO2009116527A1
WO2009116527A1 PCT/JP2009/055162 JP2009055162W WO2009116527A1 WO 2009116527 A1 WO2009116527 A1 WO 2009116527A1 JP 2009055162 W JP2009055162 W JP 2009055162W WO 2009116527 A1 WO2009116527 A1 WO 2009116527A1
Authority
WO
WIPO (PCT)
Prior art keywords
high dielectric
film
dielectric film
coating composition
resin
Prior art date
Application number
PCT/JP2009/055162
Other languages
English (en)
French (fr)
Inventor
明天 高
麻有子 立道
恵吏 向井
美晴 太田
幸治 横谷
信之 小松
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2010503880A priority Critical patent/JP5246256B2/ja
Priority to CN2009801098413A priority patent/CN101978446B/zh
Priority to US12/933,341 priority patent/US8576540B2/en
Priority to EP09722609.6A priority patent/EP2256760B1/en
Publication of WO2009116527A1 publication Critical patent/WO2009116527A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/185Substances or derivates of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • H01G4/206Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06 inorganic and synthetic material

Definitions

  • the present invention relates to a coating composition for forming a high dielectric film suitable for a film capacitor and a high dielectric film.
  • PVdF vinylidene fluoride
  • Tan ⁇ dielectric loss tangent
  • 80 high temperature
  • Patent Document 1 describes that by blending PVdF with a polyether such as polyoxymethylene at a certain ratio, the dielectric loss of PVdF can be reduced and the dielectric loss can be made lower than PVdF itself. .
  • Patent Document 1 also describes mixing polyvinyl acetate, acrylic resin, and the like with PVdF as a thermoplastic resin composition for molding and coating.
  • PVdF mixed composition it is also known to mix a hydrophilic polymer such as cellulose acetate (Patent Document 2), which is a semipermeable membrane for ultrafiltration or a semipermeable membrane for microfiltration. It is a porous membrane used for a membrane.
  • a hydrophilic polymer such as cellulose acetate (Patent Document 2), which is a semipermeable membrane for ultrafiltration or a semipermeable membrane for microfiltration. It is a porous membrane used for a membrane.
  • the present invention provides a non-porous high dielectric film capable of improving withstand voltage, insulation and dielectric constant, particularly reducing dielectric loss at high temperatures and capable of being thinned, and formation of the high dielectric film It is an object of the present invention to provide a coating composition.
  • the present invention (A) vinylidene fluoride resin,
  • the present invention relates to a coating composition for forming a high dielectric film containing (B) a cellulose-based resin and (C) a solvent.
  • the vinylidene fluoride resin (A) / cellulose resin (B) may have a mass ratio of 0.1 / 99.9 to 99.9 / 0.1. It is preferable for reducing the dielectric loss of vinylidene and for improving the dielectric constant of cellulose.
  • the cellulose resin (B) is preferably cellulose acetate or ether-substituted cellulose from the viewpoint of good mechanical properties of the film.
  • the vinylidene fluoride resin (A) is a polymer containing 60 to 100 mol% of vinylidene fluoride units, 0 to 40 mol% of tetrafluoroethylene units and 0 to 40 mol% of hexafluoropropylene. Is preferable from the viewpoint of high.
  • composition of the present invention may contain rubber particles (D).
  • the mechanical strength, particularly elongation, of the resulting film is improved, and properties such as rubber elasticity can be imparted.
  • the present invention also relates to a method for producing a non-porous high dielectric film, wherein the coating composition of the present invention is cast on the surface of a non-porous substrate, dried and then peeled off from the substrate. .
  • the present invention further includes a vinylidene fluoride resin (A) and a cellulose resin (B), and when (A) + (B) is 100 parts by mass, (A) is 2 to 98 parts by mass. It also relates to porous high dielectric films.
  • the rubber particles (D) When the rubber particles (D) are blended, it is preferably contained in an amount of 1 to 30 parts by mass with respect to 100 parts by mass of the vinylidene fluoride resin (A).
  • the present invention further relates to a non-porous high dielectric film obtained by the production method of the present invention.
  • These non-porous high dielectric films are suitable as films for film capacitors.
  • the present invention relates to a film capacitor in which an electrode layer is laminated on at least one surface of the high dielectric film of the present invention.
  • a non-porous high-dielectric film suitable for a film capacitor that can improve withstand voltage, insulation, dielectric constant, particularly reduce dielectric loss at high temperatures and can be thinned.
  • a coating composition for forming the high dielectric film a coating composition for forming the high dielectric film.
  • the coating composition of the present invention contains (A) a vinylidene fluoride (VdF) resin, (B) a cellulose resin, and (C) a solvent.
  • VdF vinylidene fluoride
  • VdF resin in addition to a VdF homopolymer (PVdF), a copolymer with one or more of other monomers copolymerizable with VdF can be exemplified, and among these, dielectric constant Is preferably 4 or more, more preferably 6 or more, and particularly preferably 7 or more, and particularly preferably 7.5 or more from the viewpoint of improvement in withstand voltage, insulation, and dielectric constant.
  • dielectric constant Is preferably 4 or more, more preferably 6 or more, and particularly preferably 7 or more, and particularly preferably 7.5 or more from the viewpoint of improvement in withstand voltage, insulation, and dielectric constant.
  • the VdF resin (A) may be a homopolymer of vinylidene fluoride (VdF) (PVdF) or a copolymer with other monomers copolymerizable with VdF. Further, it may be a blend of a VdF homopolymer and a VdF copolymer, or a blend of VdF copolymers.
  • VdF examples include tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), trifluoroethylene (TrFE), monofluoroethylene, hexafluoropropylene (HFP), Fluorinated olefins such as fluoro (alkyl vinyl ether) (PAVE); fluorinated acrylates, functional group-containing fluorinated monomers, and the like.
  • TFE tetrafluoroethylene
  • CTFE chlorotrifluoroethylene
  • TrFE trifluoroethylene
  • HFP hexafluoropropylene
  • Fluorinated olefins such as fluoro (alkyl vinyl ether) (PAVE); fluorinated acrylates, functional group-containing fluorinated monomers, and the like.
  • TFE, CTFE, and HFP are preferred from the viewpoint of good solvent solubility.
  • VdF is 50 mol% or more, preferably 60 mol% or more from the viewpoint of
  • a polymer containing 60 to 100 mol% of VdF units, 0 to 40 mol% of TFE units and 0 to 40 mol% of HFP is preferable because the dielectric constant is 6 or more.
  • VdF homopolymer PVdF
  • VdF / TFE copolymer VdF / TFE / HFP copolymer
  • VdF / HFP copolymer VdF / CTFE copolymer, etc.
  • PVdF, VdF / TFE copolymers, and VdF / HFP copolymers are preferred from the viewpoint of high dielectric constant and good solvent solubility.
  • the composition ratio is such that the VdF unit is 60 to 95 mol% and the TFE unit is 5 to 40 mol%, particularly the VdF unit is 70 to 90 mol% and the TFE unit is A content of 10 to 30 mol% is preferable from the viewpoint of increasing the withstand voltage.
  • the relative dielectric constant (1 kHz, 25 ° C.) of the VdF resin itself is preferably 5 or more, preferably 6 or more, and more preferably 7.5 or more from the viewpoint of further increasing the dielectric constant of the film.
  • the upper limit is not particularly limited, but is usually 15 and preferably 13.
  • VdF-based resin (A) Cellulose-based resin
  • the VdF-based resin (A) is blended to reduce the temperature dependence of the dielectric loss, particularly the temperature dependence at high temperatures.
  • cellulose-based resin examples include ester-substituted celluloses such as cellulose monoacetate, cellulose diacetate, cellulose triacetate, and cellulose acetate propionate; and celluloses substituted with ethers such as methylcellulose, ethylcellulose, and hydroxypropylmethylcellulose.
  • ester-substituted celluloses such as cellulose monoacetate, cellulose diacetate, cellulose triacetate, and cellulose acetate propionate
  • ethers such as methylcellulose, ethylcellulose, and hydroxypropylmethylcellulose.
  • (mono, di, tri) cellulose acetate and methyl cellulose are preferable from the viewpoint of low temperature coefficient of dielectric loss.
  • the ratio (mass ratio) of the VdF-based resin (A) and the cellulose-based resin (B) is 0.1 / 99.9 or more from the viewpoint of high dielectric constant and low dielectric loss, and 20 from the viewpoint of excellent mechanical characteristics. / 80 or more is preferable.
  • (A) / (B) is 99.9 / 0.1 or less from the viewpoint of low dielectric loss, good mechanical properties and high dielectric constant, and 98/2 or less from the point of low temperature dependence of dielectric loss. Is preferred.
  • solvent any solvent that dissolves the VdF-based resin (A) and the cellulose-based resin (B) can be used, and a polar organic solvent is particularly preferable.
  • polar organic solvent for example, ketone solvents, ester solvents, carbonate solvents, cyclic ether solvents, and amide solvents are preferable.
  • the total solid content concentration of the VdF resin (A), the cellulose resin (B), and other optional components is 5 to 30% by mass depending on the solvent (C). It is preferable that the coating operation is easy and the stability of the composition is good.
  • the rubber particles (D) have a role of imparting mechanical strength, particularly elongation, to the film and further imparting properties such as rubber elasticity.
  • Suitable rubber particles for fulfilling such a role include, but are not limited to, acrylic rubber, butadiene rubber, silicone rubber, silicone acrylic composite rubber, natural rubber, nitrile rubber, urethane rubber, styrene-butadiene rubber, isoprene.
  • examples include diene rubbers such as rubber; fluorine rubbers such as VdF-tetrafluoroethylene (TFE) rubber.
  • acrylic rubber, butadiene rubber, and silicone rubber are preferred because of their high relative dielectric constant and good dispersibility.
  • so-called core-shell rubber particles in which the surfaces of these rubber particles are coated with at least one selected from the group consisting of polymethyl methacrylate and acrylonitrile / styrene copolymer may be used.
  • the core-shell rubber particles are used, the compatibility with the vinylidene fluoride resin is excellent.
  • the rubber particles may be uncrosslinked rubber (raw rubber) particles or crosslinked rubber particles, but crosslinked rubber particles are preferred from the viewpoint of good solvent resistance.
  • the rubber may be crosslinked according to a known method.
  • the particle diameter of the rubber particles (D) is about 0.1 to 2.0 ⁇ m in average primary particle diameter, more preferably about 0.15 to 1.5 ⁇ m, and particularly about 0.2 to 1.0 ⁇ m. It is preferable from the viewpoint that both dispersibility and improvement in film strength can be achieved.
  • the compounding amount of the rubber particles (D) is 1 part by mass or more, preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more with respect to 100 parts by mass of the vinylidene fluoride resin (A). If the amount is too small, the effect of improving the mechanical strength, particularly elongation, of the film tends to be small.
  • the upper limit is 30 parts by mass. If the amount is too large, the dispersibility in the resin tends to be poor. A preferable upper limit is 20 parts by mass.
  • additives such as other reinforcing fillers and affinity improvers may be included as optional components within a range not impairing the effects of the present invention. Good.
  • Examples of the reinforcing filler include silica, silicon carbide, silicon nitride, magnesium oxide, potassium titanate, glass, alumina, and boron compound particles or fibers.
  • Examples of the affinity improver include functional group-modified polyolefin and styrene. Examples thereof include modified polyolefin, functional group-modified polystyrene, polyacrylimide, cumylphenol, and the like, and may be included within a range not impairing the effects of the present invention. In addition, it is more preferable that these components are not included from the point of withstand voltage.
  • high dielectric inorganic particles that are often blended in high dielectric film capacitors can reduce the temperature dependence of dielectric loss, particularly at high temperatures, even if not blended in the present invention. .
  • Such high dielectric inorganic particles include strontium titanate, barium titanate, lead zirconate titanate oxide (PZT), barium zirconate titanate, barium zirconate, strontium zirconate, calcium titanate, calcium zirconate. Etc. can be exemplified.
  • the coating composition of the present invention can be prepared by dissolving or dispersing these components in a solvent.
  • knife coating method, cast coating method, roll coating method, gravure coating method, blade coating method, rod coating method, air doctor coating method, curtain coating method, fakunlan coating method Kiss coating method, screen coating method, spin coating method, spray coating method, extrusion coating method, electrodeposition coating method, etc. can be used, but among these, it is easy to operate, there are few variations in film thickness, production
  • the roll coating method, the gravure coating method, the cast coating method, particularly the cast coating method are preferable from the viewpoint of excellent properties, and an excellent film for a film capacitor can be produced.
  • the coating composition of the present invention When the coating composition of the present invention is cast on the surface of a non-porous substrate, dried and then peeled off from the substrate, the resulting non-porous high dielectric film has a high withstand voltage and electrical insulation. It is excellent in terms of high points, excellent in that it is thin and flexible, and has a low temperature dependence of dielectric loss.
  • the non-porous substrate used for the cast coating is not particularly limited as long as it is a material capable of forming a dense film surface.
  • a resin film such as a polyester film, a polycarbonate film, or a polyimide film; an aluminum foil, a copper foil, or the like Metal foil etc. can be illustrated.
  • what performed the mold release process is preferable.
  • the film thickness should be 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 6 ⁇ m or less, and particularly preferably 5 ⁇ m or less. it can.
  • the lower limit of the film thickness is preferably about 2 ⁇ m from the viewpoint of maintaining mechanical strength.
  • the present invention also includes a VdF-based resin (A) and a cellulose-based resin (B).
  • A VdF-based resin
  • B cellulose-based resin
  • (A) + (B) is 100 parts by mass
  • (A) is 2 to 98 parts by mass. Also related to high dielectric films.
  • the non-porous high dielectric film produced using the coating composition of the present invention has a VdF resin (A) of 0.1 to 99 when (A) + (B) is 100 parts by mass. .9 parts by mass, preferably 2 to 98 parts by mass.
  • This non-porous high dielectric film also has excellent characteristics as described above. Among them, when (A) + (B) is 100 parts by mass, the VdF resin (A) is 2 to 40%.
  • the non-porous high dielectric film of 5 parts by mass, more preferably 5 to 30 parts by mass has a dielectric constant lower than that of the VdF resin alone but higher than that of the cellulose resin alone, and the temperature dependence of dielectric loss. The resistance can be greatly reduced, and the withstand voltage is also improved.
  • the non-porous high dielectric film in which the VdF resin (A) is 60 to 98 parts by mass, more preferably 70 to 95 parts by mass, The rate has a high dielectric constant derived from the VdF resin, and the temperature dependence of dielectric loss can be reduced, and the withstand voltage is also improved.
  • the present invention also relates to a film capacitor in which an electrode layer is laminated on at least one surface of the non-porous high dielectric film of the present invention.
  • the structure of the film capacitor for example, a laminated type in which electrode layers and high dielectric films are alternately laminated (Japanese Patent Laid-Open Nos. 63-181411, 3-18113, etc.) or a tape-like high dielectric Winding type in which a body film and an electrode layer are wound (disclosed in Japanese Patent Application Laid-Open No. 60-262414 in which electrodes are not continuously laminated on a high dielectric film, or electrodes on a high dielectric film And the like disclosed in JP-A-3-286514, etc.) are continuously laminated.
  • Japanese Patent Application Laid-Open No. 60-262414 in which electrodes are not continuously laminated on a high dielectric film, or electrodes on a high dielectric film And the like disclosed in JP-A-3-286514, etc.
  • a wound film capacitor that has a simple structure and is relatively easy to manufacture
  • a wound film capacitor in which electrode layers are continuously laminated on a high dielectric film it is generally a high dielectric that has electrodes laminated on one side. Two films are rolled up so that the electrodes do not come into contact with each other. If necessary, the film is rolled and fixed so as not to be loosened.
  • the electrode layer is not particularly limited, but is generally a layer made of a conductive metal such as aluminum, zinc, gold, platinum, or copper, and is used as a metal foil or a deposited metal film.
  • a metal foil or a vapor-deposited metal film, or both may be used in combination.
  • a vapor-deposited metal film is preferable in that the electrode layer can be thinned, and as a result, the capacity can be increased with respect to the volume, the adhesiveness with the dielectric is excellent, and the thickness variation is small.
  • the vapor-deposited metal film is not limited to a single layer.
  • a method of forming an aluminum oxide layer of a semiconductor on an aluminum layer to form an electrode layer for example, JP-A-2-250306)
  • multiple layers may be used as necessary.
  • the thickness of the vapor-deposited metal film is not particularly limited, but is preferably in the range of 100 to 2,000 angstrom, more preferably 200 to 1,000 angstrom. When the thickness of the deposited metal film is within this range, the capacity and strength of the capacitor are balanced, which is preferable.
  • the method for forming the film is not particularly limited, and for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like can be employed. Usually, a vacuum deposition method is used.
  • the semi-continuous metal vapor deposition method is a method in which after vapor deposition and winding of a metal in a vacuum system, the vacuum system is returned to the atmospheric system, and the deposited film is taken out.
  • the semi-continuous method can be specifically performed by the method described in Japanese Patent No. 3664342 with reference to FIG.
  • the surface of the high dielectric film can be subjected in advance to treatment for improving adhesive properties such as corona treatment or plasma treatment.
  • the thickness of the metal foil is not particularly limited, but is usually in the range of 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 3 to 15 ⁇ m.
  • the fixing method is not particularly limited, and for example, fixing and protecting the structure may be performed simultaneously by sealing with resin or enclosing in an insulating case.
  • the connection method of the lead wire is not limited, and examples thereof include welding, ultrasonic pressure welding, heat pressure welding, and fixing with an adhesive tape.
  • a lead wire may be connected to the electrode before it is wound.
  • the opening may be sealed with a thermosetting resin such as urethane resin or epoxy resin to prevent oxidative degradation.
  • the film capacitor of the present invention thus obtained has high dielectric properties, high withstand voltage, and low temperature dependence of dielectric loss.
  • a high dielectric film is used as a sample by depositing aluminum on both sides in a vacuum. This sample is measured for impedance and dielectric loss tangent at frequencies of 100 Hz, 1 kHz, 10 kHz, and 100 kHz at room temperature (20 ° C.) and 80 ° C. using an impedance analyzer (HP4194A manufactured by Hewlett-Packard Co., Ltd.). The relative dielectric constant and dielectric loss (%) are calculated from the measured values of the obtained capacitances and dielectric loss tangents.
  • the volume resistivity ( ⁇ ) at 20 ° C. is measured with DC100V in a dry air atmosphere with a digital superinsulator / microammeter.
  • the tensile strength at break (MPa) is measured using a tensile tester (RTC-1225A manufactured by ORIENTEC Co., Ltd.).
  • Example 1 In a 1 L separable flask, 800 parts by mass of dimethylacetamide (DMAc) (manufactured by Kishida Chemical Co., Ltd.) and 200 parts by mass of polyvinylidene fluoride (PVdF) (KAYNAR761 manufactured by ARKEMA) were placed, and a mechanical stirrer at 60 ° C. for 3 hours. To obtain a PVdF solution having a concentration of 20% by mass.
  • DMAc dimethylacetamide
  • PVdF polyvinylidene fluoride
  • DMAc dimethylacetamide
  • AC cellulose acetate
  • This coating composition was cast on a non-porous polyester (PET) film having a thickness of 38 ⁇ m and subjected to a release treatment using a micro gravure coater (OS-750 manufactured by Yasui Seiki Co., Ltd.).
  • a laminated film in which a cast film having a film thickness of 8 ⁇ m was formed on a PET film was obtained by passing through a 6 m drying furnace followed by a 6 m drying furnace at 180 ° C. Subsequently, the highly dielectric film of the present invention having a film thickness of 8.3 ⁇ m was obtained by peeling from the PET film.
  • Examples 2-4 A coating composition and a non-porous high dielectric film of the present invention were produced in the same manner as in Example 1 except that the mass ratio of PVdF and cellulose acetate was changed to the ratio shown in Table 1 in Example 1.
  • Comparative Example 1 In Example 1, a comparative coating composition and a non-porous high dielectric film were produced in the same manner as in Example 1 except that only PVdF was used without blending cellulose acetate.
  • Examples 5-8 A coating composition and a non-porous high dielectric film of the present invention were produced in the same manner as in Example 1 except that the mass ratio of PVdF and cellulose acetate was changed to the ratio shown in Table 2 in Example 1.
  • Comparative Example 2 A comparative coating composition and a non-porous high dielectric film were prepared in the same manner as in Example 1 except that in Example 1, only cellulose acetate was used without blending PVdF.
  • Example 9 A coating composition and a non-porous high dielectric film of the present invention were produced in the same manner as in Example 2 except that VdF / TFE (80/20 mol%) was used as the VdF resin in Example 2.
  • Example 10 In Example 2, a coating composition and a non-porous high dielectric film of the present invention were produced in the same manner as in Example 2 except that VdF / HFP (88/12 mol%) was used as the VdF resin.
  • Example 11 the coating composition and non-porous material of the present invention were used in the same manner as in Example 2 except that hydroxypropyl methylcellulose (60SH03 manufactured by Shin-Etsu Chemical Co., Ltd.), which is an ether-substituted cellulose, was used as the cellulose resin. A high dielectric film was prepared.
  • hydroxypropyl methylcellulose 60SH03 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Examples 12-15 In each of Examples 1 to 4, the coating composition of the present invention and the non-porous coating were similarly obtained except that cellulose acetate having different acetylation degree (L-70 manufactured by Daicel Chemical Industries, Ltd.) was used as cellulose acetate. A dielectric film was prepared.
  • Comparative Example 3 A coating composition for comparison and a non-porous high dielectric constant in the same manner as in Example 12, except that only cellulose acetate (L-70 manufactured by Daicel Chemical Industries, Ltd.) was used without blending PVdF. A conductive film was prepared.
  • Example 16 Rubber particle No. was further added to the total amount (100 parts by mass) of PVdF and cellulose acetate. 1 (Excluding the addition of 20 parts by mass of rubber particles (EXL2313 manufactured by Rohm and Haas Japan Co., Ltd., average primary particle size 0.6 ⁇ m) whose core is acrylic rubber and whose shell is polymethyl methacrylate)
  • the coating composition of the present invention and a non-porous high dielectric film were prepared in the same manner as in Example 3.
  • Example 16 instead of rubber particle No. 1, rubber particle No. 1 shown in Table 5 was used. 2 (Example 17) and the example (Example 18) in which the blending amount of the rubber particles N0.1 was changed to 10 parts by mass, was carried out in the same manner as in Example 16 and the coating composition and non-porous material A high-quality dielectric film was produced.
  • Rubber particle No. 1 Rubber particles whose core is acrylic rubber and whose shell is polymethyl methacrylate (EXL2313 manufactured by Rohm and Haas Japan Co., Ltd., average primary particle diameter 0.6 ⁇ m)
  • Rubber particle No. 2 Rubber particles whose core is butadiene rubber and whose shell is polymethylmethacrylate (KCA801N manufactured by Rohm and Haas Japan Co., Ltd., average primary particle size 0.2 ⁇ m)
  • Example 19 Electrodes were formed on both surfaces of the non-porous high dielectric film produced in Example 1 by depositing aluminum with a vacuum deposition apparatus (VE-2030 manufactured by Vacuum Device Co., Ltd.) with a target of 3 ⁇ / ⁇ . A voltage-applying lead wire was attached to these aluminum electrodes to produce stamp-type (for simple evaluation) film capacitors.
  • a vacuum deposition apparatus VE-2030 manufactured by Vacuum Device Co., Ltd.

Abstract

 本発明は、耐電圧、絶縁性、誘電率の向上、特に高温での誘電損失の低減化を可能にし、かつ薄膜化が可能である非多孔質高誘電性フィルム、および(A)フッ化ビニリデン系樹脂、(B)セルロース系樹脂、および(C)溶剤を含む該高誘電性フィルム形成用のコーティング組成物を提供する。

Description

高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
 本発明は、フィルムコンデンサ用に適した高誘電性フィルム形成用のコーティング組成物および高誘電性フィルムに関する。
 従来、フィルムコンデンサ用フィルムには、その誘電率の高さから、ビニリデンフルオライド(PVdF)を用いることが提案されているが、PVdFは誘電正接(tanδ)の温度依存性が高く、高温(80℃以上)では急激に上昇してしまうことが知られている(特許文献1など)。誘電正接が大きくなる、すなわち誘電損失が大きくなるとコンデンサが不安定になり、回路の信頼性が損なわれることになる。
 そこで、特許文献1には、PVdFに一定の割合でポリオキシメチレンなどのポリエーテルを配合することにより、PVdFの誘電損失を小さくし、しかもPVdF自体よりも誘電損失を低くできることが記載されている。
 しかし、ポリエーテルを配合する場合は、誘電損失の温度依存性が高い点などに改善の余地がある。
 ところで、PVdFに種々の他の樹脂を混合して得られる多種多様な特性を利用することは一般的に行われている。たとえば成形用や塗料用の熱可塑性樹脂組成物としてPVdFにポリ酢酸ビニル、アクリル樹脂などを混合することなどは特許文献1にも記載されている。
 そうしたPVdF混合組成物として、ポリ酢酸セルロースなどの親水性重合体を混合することも知られているが(特許文献2)、このものは限外濾過用の半透膜や微小濾過用の半透膜に用いる多孔質膜である。
特開昭60-199046号公報 特開平02-078425号公報
 本発明は、耐電圧、絶縁性、誘電率の向上、特に高温での誘電損失の低減化を可能にし、かつ薄膜化が可能である非多孔質高誘電性フィルム、および該高誘電性フィルム形成用のコーティング組成物を提供することを目的とする。
 本発明は、
(A)フッ化ビニリデン系樹脂、
(B)セルロース系樹脂、および
(C)溶剤
を含む高誘電性フィルム形成用コーティング組成物に関する。
 本発明の組成物において、前記フッ化ビニリデン系樹脂(A)/セルロース系樹脂(B)が、質量比で0.1/99.9~99.9/0.1であることが、フッ化ビニリデンの誘電損失の低減を図るうえで、また、セルロースの誘電率を向上させるうえで好ましい。
 前記セルロース系樹脂(B)としては、酢酸セルロースまたはエーテル置換セルロースであることが、フィルムの機械特性が良好な点から好ましい。
 フッ化ビニリデン系樹脂(A)としては、フッ化ビニリデン単位60~100モル%、テトラフルオロエチレン単位0~40モル%およびヘキサフルオロプロピレン0~40モル%を含む重合体であることが、誘電率が高い点から好ましい。
 また、本発明の組成物はゴム粒子(D)を含んでいてもよい。ゴム粒子(D)が含まれることにより、得られるフィルムの機械的強度、特に伸びが改善され、また、ゴム弾性などの性質を付与することができる。
 本発明はまた、本発明のコーティング組成物を非多孔質基材表面にキャストし、乾燥した後、該基材から剥離することを特徴とする非多孔質高誘電性フィルムの製造方法にも関する。
 本発明はさらに、フッ化ビニリデン系樹脂(A)とセルロース系樹脂(B)を含み、(A)+(B)を100質量部としたとき、(A)が2~98質量部である非多孔質高誘電性フィルムにも関する。
 ゴム粒子(D)を配合する場合は、フッ化ビニリデン系樹脂(A)100質量部に対して1~30質量部含まれていることが好ましい。
 本発明はさらにまた、本発明の製造方法で得られた非多孔質高誘電性フィルムにも関する。
 これらの非多孔質高誘電性フィルムはフィルムコンデンサ用のフィルムとして好適である。
 さらに本発明は、本発明の高誘電性フィルムの少なくとも片面に電極層が積層されているフィルムコンデンサにも関する。
 本発明によれば、耐電圧、絶縁性、誘電率の向上、特に高温での誘電損失の低減化を可能にし、かつ薄膜化が可能であるフィルムコンデンサ用として好適な非多孔質高誘電性フィルム、および該高誘電性フィルム形成用のコーティング組成物を提供することができる。
 まず、本発明の高誘電性フィルム形成用コーティング組成物について説明する。
 本発明のコーティング組成物は、(A)フッ化ビニリデン(VdF)系樹脂、(B)セルロース系樹脂、および(C)溶剤を含む。
 以下、各成分について説明する。
(A)VdF系樹脂
 VdFの単独重合体(PVdF)のほか、VdFと共重合可能な他の単量体の1種または2種以上との共重合体が例示でき、これらのうち、誘電率が4以上、さらには6以上、なかでも7以上、特に7.5以上のものが、耐電圧、絶縁性、誘電率の向上の点から好ましい。
 VdF系樹脂(A)としては、フッ化ビニリデン(VdF)の単独重合体(PVdF)でも、VdFと共重合可能な他の単量体との共重合体であってもよい。また、VdFの単独重合体とVdF共重合体とのブレンド、またはVdF共重合体同士のブレンドであってもよい。
 VdFと共重合可能な他の単量体としては、たとえば、テトラフルオロエチレン(TFE)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン(TrFE)、モノフルオロエチレン、ヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)などの含フッ素オレフィン類;含フッ素アクリレート、官能基含有含フッ素単量体などがあげられる。これらのうち、溶剤溶解性が良好な点から、TFE、CTFE、HFPが好ましい。共重合割合は、VdFが50モル%以上、好ましくは60モル%以上であることが、誘電率が高い点、溶剤溶解性が高い点から好ましい。
 なかでも、VdF単位60~100モル%、TFE単位0~40モル%およびHFP0~40モル%を含む重合体であることが、誘電率が6以上であり好ましい。
 具体的には、VdFの単独重合体(PVdF)、VdF/TFE系共重合体、VdF/TFE/HFP系共重合体、VdF/HFP系共重合体、VdF/CTFE系共重合体などが例示でき、特に誘電率が高い点、溶剤溶解性が良好な点から、PVdF、VdF/TFE系共重合体、VdF/HFP系共重合体が好ましい。
 VdF/TFE系共重合体の場合、その組成比は、VdF単位が60~95モル%でTFE単位が5~40モル%であることが、特にVdF単位が70~90モル%でTFE単位が10~30モル%であることが、耐電圧が高くなる点から好ましい。また、VdF系樹脂自体の誘電損失を下げるために、エチレン、プロピレン、アルキルビニルエーテル、酢酸ビニル、塩化ビニル、塩化ビニリデン、CH2=CHCF3、CH2=CFCF3などと共重合することも好ましい。この場合、VdFとは直接反応しにくいので、TFEのような上記の共重合可能な他の単量体とともに共重合することもできる。また、VdF系樹脂自体の比誘電率(1kHz、25℃)は5以上、好ましくは6以上、さらには7.5以上であることが、フィルムの誘電率をさらに高める点から好ましい。なお、上限値はとくに制限はないが、通常15、好ましくは13である。
(B)セルロース系樹脂
 VdF系樹脂(A)の誘電損失の温度依存性、特に高温での温度依存性を低減化するために配合する。
 セルロース系樹脂としては、たとえばモノ酢酸セルロース、ジ酢酸セルロース、トリ酢酸セルロース、酢酸セルロースプロピオネートなどのエステル置換セルロース;メチルセルロース、エチルセルロース、ヒドロキシプロピルメチルセルロースなどのエーテルで置換されたセルロースなどが例示できる。これらの中でも、誘電損失の温度係数が低い点から、(モノ、ジ、トリ)酢酸セルロース、メチルセルロースが好ましい。
 VdF系樹脂(A)とセルロース系樹脂(B)の比率(質量比)は、誘電率が高く、誘電損失が低い点から0.1/99.9以上、さらに機械特性が良好な点から20/80以上が好ましい。また、(A)/(B)は、誘電損失が低く機械特性が良好で誘電率が高い点から99.9/0.1以下、さらに誘電損失の温度依存性が低い点から98/2以下が好ましい。
(C)溶剤
 溶剤としては、VdF系樹脂(A)およびセルロース系樹脂(B)を溶解する任意の溶媒を使用できるが、特に、極性有機溶媒が好ましい。なかでも極性有機溶媒としては、たとえばケトン系溶剤、エステル系溶媒、カーボネート系溶媒、環状エーテル系溶媒、アミド系溶剤が好ましい。具体的には、メチルエチルケトン、メチルイソブチルケトン、アセトン、ジエチルケトン、ジプロピルケトン、酢酸エチル、酢酸メチル、酢酸プロピル、酢酸ブチル、乳酸エチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミドなどが好ましくあげられる。
 本発明のコーティング組成物では、溶剤(C)により、VdF系樹脂(A)およびセルロース系樹脂(B)、その他の任意成分のうちの固形分の合計の固形分濃度を5~30質量%とすることが、コーティング作業が容易で、組成物の安定性がよいことから好ましい。
(D)ゴム粒子
 本発明において、ゴム粒子(D)はフィルムに機械的強度、特に伸びを与え、さらにゴム弾性などの性質を付与する役割をもっている。
 そうした役割を果たすのに好適なゴム粒子のゴムとしては、限定的ではないが、アクリルゴム、ブタジエンゴム、シリコーンゴム、シリコンアクリル複合ゴム、天然ゴム、ニトリルゴム、ウレタンゴム、スチレン-ブタジエンゴム、イソプレンゴムなどのジエン系ゴム;VdF-テトラフルオロエチレン(TFE)系ゴムなどのフッ素系ゴムなどが例示できる。
 これらのうち比誘電率が高く、分散性が良好な点から、アクリルゴム、ブタジエンゴムおよびシリコーンゴムが好ましい。
 また、これらのゴム粒子の表面をポリメタクリル酸メチル、およびアクリロニトリル/スチレン共重合体よりなる群から選ばれる少なくとも1種で被覆した、いわゆるコア-シェルゴム粒子であってもよい。このコア-シェルゴム粒子を用いるときは、フッ化ビニリデン系樹脂との相溶性の点で優れている。
 また、ゴム粒子は未架橋ゴム(生ゴム)粒子でもよいし、架橋されたゴム粒子でもよいが、耐溶剤性が良好な点から、架橋ゴム粒子が好ましい。ゴムの架橋は公知の定法に従って行えばよい。
 ゴム粒子(D)の粒子径は、平均一次粒子径で0.1~2.0μm、さらには0.15~1.5μm、特に0.2~1.0μm程度であることが、樹脂への分散性とフィルムの強度向上を両立させることができる点から好ましい。
 ゴム粒子(D)の配合量は、フッ化ビニリデン系樹脂(A)100質量部に対して、1質量部以上、好ましくは5質量部以上、特に好ましくは10質量部以上である。少なすぎるとフィルムの機械的強度、特に伸びの向上効果が小さくなる傾向にある。上限は30質量部である。多くなりすぎると樹脂への分散性が不良となる傾向にある。好ましい上限は20質量部である。
(E)他の任意成分
 本発明のコーティング組成物には、任意成分として、他の補強用フィラーや親和性向上剤などの添加剤を、本発明の効果を損なわない範囲内で含ませてもよい。
 補強用フィラーとしては、たとえばシリカ、炭化ケイ素、窒化ケイ素、酸化マグネシウム、チタン酸カリウム、ガラス、アルミナ、硼素化合物の粒子または繊維があげられ、親和性向上剤としては、たとえば官能基変性ポリオレフィン、スチレン改質ポリオレフィン、官能基変性ポリスチレン、ポリアクリル酸イミド、クミルフェノールなどがあげられ、本発明の効果を損なわない範囲内で含んでもよい。なお、耐電圧の点からはこれらの成分は含まないことがより好ましい。
 しかし、高誘電性フィルムコンデンサによく配合される高誘電性無機粒子は、本発明においては配合しなくても、誘電損失の温度依存性、特に高温での温度依存性を低減化することができる。
 そうした高誘電性無機粒子としては、チタン酸ストロンチウム、チタン酸バリウム、チタン酸ジルコン酸鉛系酸化物(PZT)、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸ストロンチウム、チタン酸カルシウム、ジルコン酸カルシウムなどが例示できる。
 本発明のコーティング組成物は、これらの各成分を溶剤に溶解または分散させることにより調製できる。
 本発明のコーティング組成物のコーティング方法としては、ナイフコーティング法、キャストコーティング法、ロールコーティング法、グラビアコーティング法、ブレードコーティング法、ロッドコーティング法、エアドクタコーティング法、カーテンコーティング法、ファクンランコーティング法、キスコーティング法、スクリーンコーティング法、スピンコーティング法、スプレーコーティング法、押出コーティング法、電着コーティング法などが使用できるが、これらのうち操作性が容易な点、膜厚のバラツキが少ない点、生産性に優れる点からロールコーティング法、グラビアコーティング法、キャストコーティング法、特にキャストコーティング法が好ましく、優れたフィルムコンデンサ用フィルムを製造することができる。
 本発明のコーティング組成物を非多孔質基材表面にキャストし、乾燥した後、該基材から剥離するときは、得られる非多孔質高誘電性フィルムは、耐電圧が高く、電気絶縁性が高い点で優れ、また薄膜で可撓性を有する点で優れ、誘電損失の温度依存性が小さいものである。
 キャストコーティングに使用する非多孔質基材としては、緻密なフィルム表面を形成できる材料であれば特に限定されず、たとえばポリエステルフィルム、ポリカーボネートフィルム、ポリイミドフィルムなどの樹脂フィルム;アルミニウム箔、銅箔などの金属箔などが例示できる。また、離型処理を施したものが好ましい。
 かくして得られる本発明の非多孔質高誘電性フィルムは、フィルムコンデンサ用のフィルムとする場合、膜厚を20μm以下、好ましくは10μm以下、さらに好ましくは6μm以下、特に好ましくは5μm以下にすることができる。膜厚の下限は機械的強度の維持の点から約2μmが好ましい。
 本発明はまた、VdF系樹脂(A)とセルロース系樹脂(B)を含み、(A)+(B)を100質量部としたとき、(A)が2~98質量部である非多孔質高誘電性フィルムにも関する。
 本発明のコーティング組成物を使用して製造される非多孔質高誘電性フィルムには、(A)+(B)を100質量部としたとき、VdF系樹脂(A)が0.1~99.9質量部、好ましくは2~98質量部含まれ得る。この非多孔質高誘電性フィルムも上記のとおり優れた特性を有しているが、なかでも、(A)+(B)を100質量部としたとき、VdF系樹脂(A)が2~40質量部、さらに好ましくは5~30質量部である非多孔質高誘電性フィルムは、誘電率はVdF系樹脂単独に比べると低いがセルロース系樹脂単独に比べて高くなるうえ、誘電損失の温度依存性を大幅に小さくでき、また耐電圧も向上している。また、(A)+(B)を100質量部としたとき、VdF系樹脂(A)が60~98質量部、さらに好ましくは70~95質量部である非多孔質高誘電性フィルムは、誘電率はVdF系樹脂由来の高い誘電率をもち、しかも誘電損失の温度依存性を小さくでき、また耐電圧も向上している。
 本発明はまた、本発明の非多孔質高誘電性フィルムの少なくとも片面に電極層が積層されているフィルムコンデンサに関する。
 フィルムコンデンサの構造としては、たとえば、電極層と高誘電体フィルムが交互に積層された積層型(特開昭63-181411号公報、特開平3-18113号公報など)や、テープ状の高誘電体フィルムと電極層を巻き込んだ巻回型(高誘電体フィルム上に電極が連続して積層されていない特開昭60-262414号公報などに開示されたものや、高誘電体フィルム上に電極が連続して積層されている特開平3-286514号公報などに開示されたものなど)などが挙げられる。構造が単純で、製造も比較的容易な、高誘電体フィルム上に電極層が連続して積層されている巻回型フィルムコンデンサの場合は、一般的には片面に電極を積層した高誘電体フィルムを電極同士が接触しないように2枚重ねて巻き込んで、必要に応じて、巻き込んだ後に、ほぐれないように固定して製造される。
 電極層は、特に限定されないが、一般的に、アルミニウム、亜鉛、金、白金、銅などの導電性金属からなる層であって、金属箔として、または蒸着金属被膜として用いる。本発明においては、金属箔と蒸着金属被膜のいずれでも、また、両者を併用しても構わない。電極層を薄くでき、その結果、体積に対して容量を大きくでき、誘電体との密着性に優れ、また、厚さのバラつきが小さい点で、通常は、蒸着金属被膜が好ましい。蒸着金属被膜は、一層のものに限らず、例えば、耐湿性を持たせるためにアルミニウム層にさらに半導体の酸化アルミニウム層を形成して電極層とする方法(例えば特開平2-250306号公報など)など、必要に応じて多層にしてもよい。蒸着金属被膜の厚さも特に限定されないが、好ましくは100~2,000オングストローム、より好ましくは200~1,000オングストロームの範囲とする。蒸着金属被膜の厚さがこの範囲である時に、コンデンサの容量や強度がバランスされ好適である。
 電極層として蒸着金属被膜を用いる場合、被膜の形成方法は特に限定されず、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などを採用することができる。通常は、真空蒸着法が用いられる。
 真空蒸着法としては、例えば、成形品のバッチ方式と、長尺品で使用される半連続(セミコンテニアス)方式と連続(air to air)方式などがあり、現在は、半連続方式が主力として行われている。半連続方式の金属蒸着法は、真空系の中で金属蒸着、巻き取りした後、真空系を大気系に戻し、蒸着されたフィルムを取り出す方法である。
 半連続方式については、具体的にはたとえば、特許第3664342号明細書に図1を参照して記載されている方法で行うことができる。
 高誘電体フィルム上に金属薄膜層を形成する場合、あらかじめ高誘電体フィルム表面に、コロナ処理、プラズマ処理など、接着性向上のための処理を施しておくこともできる。電極層として金属箔を用いる場合も、金属箔の厚さは特に限定されないが、通常は、0.1~100μm、好ましくは1~50μm、より好ましくは3~15μmの範囲である。
 固定方法は、特に限定されず、例えば、樹脂で封止したり絶縁ケースなどに封入することにより、固定と構造の保護とを同時に行えばよい。リード線の接続方法も限定されず、溶接、超音波圧接、熱圧接、粘着テープによる固定などが例示される。巻き込む前から電極にリード線を接続しておいてもよい。絶縁ケースに封入する場合など、必要に応じて、ウレタン樹脂、エポキシ樹脂などの熱硬化性樹脂で開口部などを封止して酸化劣化などを防止してもよい。
 このようにして得られた本発明のフィルムコンデンサは、高誘電性、高耐電圧でかつ誘電損失の温度依存性が小さい。
 つぎに本発明を実施例などをあげて具体的に説明するが、本発明はかかる例のみに限定されるものではない。
 なお、本明細書で使用している特性値は、つぎの方法で測定したものである。
(膜厚)
 デジタル測長機((株)仙台ニコン製のMF-1001)を用いて、基板に載せたフィルムを室温下にて測定する。
(誘電損失および比誘電率)
 高誘電性フィルムを真空中で両面にアルミニウムを蒸着しサンプルとする。このサンプルをインピーダンスアナライザ(ヒューレットパッカード(株)製のHP4194A)にて、室温(20℃)および80℃下で、周波数100Hz、1kHz、10kHzおよび100kHzでの静電容量と誘電正接を測定する。得られた各静電容量と誘電正接の測定値から比誘電率および誘電損失(%)を算出する。
(耐電圧)
 耐電圧・絶縁抵抗試験器(菊水電子工業(株)TOS9201)を用いて、基板に載せたフィルムをドライエアー雰囲気下にて測定する。昇圧速度は100V/sで測定する。
(電気絶縁性)
 デジタル超絶縁計/微小電流計にて、20℃での体積抵抗率(Ω)をドライエアー雰囲気下、DC100Vで測定する。
(引張破断強度)
 引張試験機(ORIENTEC(株)製のRTC-1225A)を用いて、引張破断強度(MPa)を測定する。
(引張破断伸度)
 引張試験機(ORIENTEC(株)製のRTC-1225A)を用いて、引張破断伸度(%)を測定する。
実施例1
 1Lセパラブルフラスコ中にジメチルアセトアミド(DMAc)(キシダ化学(株)製)800質量部とポリフッ化ビニリデン(PVdF)(ARKEMA社製KAYNAR761)を200質量部入れ、60℃にて3時間、メカニカルスターラーにて攪拌し、20質量%濃度のPVdF溶液を得た。
 別途、1Lセパラブルフラスコ中にジメチルアセトアミド(DMAc)(キシダ化学(株)製)800質量部と酢酸セルロース(AC)(ダイセル化学工業(株)製のL-20)を200質量部入れ、60℃にて3時間、メカニカルスターラーにて攪拌し、20質量%濃度の酢酸セルロース溶液を得た。
 これらの2つの溶液をPVdFとACの質量比が95/5となるように混合し、希釈溶液としてテトラヒドロフラン(THF)を任意の量添加し、本発明のコーティング組成物を製造した。
 このコーティング組成物をマイクログラビアコーター((株)康井精機製のOS-750)を用いて、離型処理を施した38μm厚の非多孔質ポリエステル(PET)フィルム上にキャストし、150℃の6mの乾燥炉、続いて180℃の6mの乾燥炉に通すことにより、PETフィルム上に膜厚8μmのキャストフィルムが形成された積層フィルムを得た。ついで、PETフィルムから剥離することにより、膜厚8.3μmの本発明の高誘電性フィルムを得た。
 得られたフィルムについて、耐電圧、体積抵抗率、引張破断強度を測定し、また、20℃および80℃における各周波数(100Hz、1kHz、10kHzおよび100kHz)での誘電損失および比誘電率を算出した。結果を表1に示す。
実施例2~4
 実施例1において、PVdFと酢酸セルロースとの質量比を表1に示す比率にしたほかは実施例1と同様にして本発明のコーティング組成物および非多孔質高誘電性フィルムを作製した。
 これらの非多孔質高誘電性フィルムについて、実施例1と同様にして耐電圧、体積抵抗率、引張破断強度を測定し、また、20℃および80℃における各周波数での誘電損失および比誘電率を算出した。結果を表1に示す。
比較例1
 実施例1において、酢酸セルロースを配合せずにPVdFのみを使用したほかは実施例1と同様にして比較用のコーティング組成物および非多孔質高誘電性フィルムを作製した。
 これらの非多孔質高誘電性フィルムについて、実施例1と同様にして耐電圧、体積抵抗率、引張破断強度を測定し、また、20℃および80℃における各周波数での誘電損失および比誘電率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、PVdFと酢酸セルロースとを併用することにより、高温での誘電損失の低減化、およびPVdF単独使用に比して耐電圧の向上が図れており、電気絶縁性も向上し、機械的強度も改善されていることが分かる。
実施例5~8
 実施例1において、PVdFと酢酸セルロースとの質量比を表2に示す比率にしたほかは実施例1と同様にして本発明のコーティング組成物および非多孔質高誘電性フィルムを作製した。
 これらの非多孔質高誘電性フィルムについて、実施例1と同様にして耐電圧、体積抵抗率、引張破断強度を測定し、また、20℃および80℃における各周波数での誘電損失および比誘電率を算出した。結果を表2に示す。
比較例2
 実施例1において、PVdFを配合せずに酢酸セルロースのみを使用したほかは実施例1と同様にして比較用のコーティング組成物および非多孔質高誘電性フィルムを作製した。
 これらの非多孔質高誘電性フィルムについて、実施例1と同様にして耐電圧、体積抵抗率、引張破断強度を測定し、また、20℃および80℃における各周波数での誘電損失および比誘電率を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、PVdFと酢酸セルロースとを併用することにより、高温での誘電損失の低減化、およびPVdF単独使用に比して耐電圧の向上が図れていることが分かる。
実施例9
 実施例2において、VdF系樹脂としてVdF/TFE(80/20モル%)を用いたほかは実施例2と同様にして本発明のコーティング組成物および非多孔質高誘電性フィルムを作製した。
 これらの非多孔質高誘電性フィルムについて、実施例2と同様にして耐電圧、20℃および80℃における各周波数での誘電損失および比誘電率を算出した。結果を表3に示す。
実施例10
 実施例2において、VdF系樹脂としてVdF/HFP(88/12モル%)を用いたほかは実施例2と同様にして本発明のコーティング組成物および非多孔質高誘電性フィルムを作製した。
 これらの非多孔質高誘電性フィルムについて、実施例2と同様にして耐電圧、20℃および80℃における各周波数での誘電損失および比誘電率を算出した。結果を表3に示す。
実施例11
 実施例2において、セルロース系樹脂としてエーテル置換セルロースであるヒドロキシプロピルメチルセルロース(信越化学工業(株)製の60SH03)を用いたほかは実施例2と同様にして本発明のコーティング組成物および非多孔質高誘電性フィルムを作製した。
 これらの非多孔質高誘電性フィルムについて、実施例2と同様にして耐電圧、、体積抵抗率、引張破断強度を測定し、また、20℃および80℃における各周波数での誘電損失および比誘電率を算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、VdF系樹脂をVdF/TFEまたはVdF/HFPに変更しても、またセルロース系樹脂としてエーテル置換セルロースを使用しても、高温での誘電損失の低減化、および耐電圧の向上が図れていることが分かる。
実施例12~15
 実施例1~4のそれぞれにおいて、酢酸セルロースとしてアセチル化度の異なる酢酸セルロース(ダイセル化学工業(株)製L-70)を用いたほかは同様にして本発明のコーティング組成物および非多孔質高誘電性フィルムを作製した。
 これらの非多孔質高誘電性フィルムについて、実施例1と同様にして耐電圧、20℃および80℃における各周波数での誘電損失および比誘電率を算出した。結果を表4に示す。
比較例3
 実施例12において、PVdFを配合せずに酢酸セルロース(ダイセル化学工業(株)製L―70)のみを使用したほかは実施例12と同様にして比較用のコーティング組成物および非多孔質高誘電性フィルムを作製した。
 これらの非多孔質高誘電性フィルムについて、実施例12と同様にして耐電圧、20℃および80℃における各周波数での誘電損失および比誘電率を算出した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、PVdFを併用することによりセルロース単独使用よりも誘電率が向上し、PVdF単独使用に比して、PVdFと酢酸セルロースとを併用することにより、高温での誘電損失の低減化、および耐電圧の向上が図れていることが分かる。
実施例16
 実施例3において、PVdFと酢酸セルロースの合計量(100質量部)に対し、さらにゴム粒子No.1(コアがアクリルゴムでシェルがポリメタクリル酸メチルであるゴム粒子(ローム・アンド・ハース・ジャパン(株)製のEXL2313。平均1次粒子径0.6μm)を20質量部配合したほかは実施例3と同様にして本発明のコーティング組成物および非多孔質高誘電性フィルムを作製した。
 この非多孔質高誘電性フィルムについて、実施例1と同様にして耐電圧、体積抵抗率、引張破断強度、引張破断伸度を測定し、また、20℃および80℃における各周波数での誘電損失および比誘電率を算出した。結果を表5に示す。
実施例17~18
 実施例16において、ゴム粒子No.1に代えて表5に示すゴム粒子No.2を用いた例(実施例17)およびゴム粒子N0.1の配合量を10質量部に変更した例(実施例18)について、実施例16と同様にして本発明のコーティング組成物および非多孔質高誘電性フィルムを作製した。
 この非多孔質高誘電性フィルムについて、実施例1と同様にして耐電圧、体積抵抗率、引張破断強度、引張破断伸度を測定し、また、20℃および80℃における各周波数での誘電損失および比誘電率を算出した。結果を表5に示す。
 表5に示すゴム粒子はつぎのものである。
ゴム粒子No.1:
 コアがアクリルゴムでシェルがポリメタクリル酸メチルであるゴム粒子(ローム・アンド・ハース・ジャパン(株)製のEXL2313。平均1次粒子径0.6μm)
ゴム粒子No.2:
 コアがブタジエンゴムでシェルがポリメタクリル酸メチルであるゴム粒子(ローム・アンド・ハース・ジャパン(株)製のKCA801N。平均1次粒子径0.2μm)
Figure JPOXMLDOC01-appb-T000005
 表5の結果から、ゴム粒子を添加することにより、PVdF単独使用に比して耐電圧、体積抵抗率、および伸びの向上が図れていることが分かる。
実施例19
 実施例1で製造した非多孔質高誘電性フィルムの両面に、真空蒸着装置((株)真空デバイス製のVE-2030)により3Ω/□を目標にしてアルミニウムを蒸着して電極を形成した。これらのアルミニウム電極に電圧印加用のリード線を取り付け、スタンプ型(簡易評価用)のフィルムコンデンサを作製した。

Claims (11)

  1.  (A)フッ化ビニリデン系樹脂、
    (B)セルロース系樹脂、および
    (C)溶剤
    を含む高誘電性フィルム形成用コーティング組成物。
  2.  前記フッ化ビニリデン系樹脂(A)/セルロース系樹脂(B)が、質量比で0.1/99.9~99.9/0.1である請求項1記載のコーティング組成物。
  3.  前記セルロース系樹脂(B)が、酢酸セルロースまたはエーテル置換セルロースである請求項1または2記載のコーティング組成物。
  4.  フッ化ビニリデン系樹脂(A)が、フッ化ビニリデン単位60~100モル%、テトラフルオロエチレン単位0~40モル%およびヘキサフルオロプロピレン0~40モル%を含む重合体である請求項1~3のいずれかに記載のコーティング組成物。
  5.  さらにゴム粒子(D)を含む請求項1~4のいずれかに記載のコーティング組成物。
  6.  請求項1~5のコーティング組成物を非多孔質基材表面にキャストし、乾燥した後、該基材から剥離することを特徴とする非多孔質高誘電性フィルムの製造方法。
  7.  フッ化ビニリデン系樹脂(A)とセルロース系樹脂(B)を含み、(A)+(B)を100質量部としたとき、(A)が2~98質量部である非多孔質高誘電性フィルム。
  8.  フッ化ビニリデン系樹脂(A)100質量部に対してゴム粒子(D)が1~30質量部含まれている請求項7記載の非多孔質高誘電性フィルム。
  9.  請求項6記載の製造方法で得られた非多孔質高誘電性フィルム。
  10.  フィルムコンデンサ用である請求項7~9のいずれかに記載の非多孔質高誘電性フィルム。
  11.  請求項7~10のいずれかに記載の高誘電性フィルムの少なくとも片面に電極層が積層されているフィルムコンデンサ。
PCT/JP2009/055162 2008-03-19 2009-03-17 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム WO2009116527A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010503880A JP5246256B2 (ja) 2008-03-19 2009-03-17 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
CN2009801098413A CN101978446B (zh) 2008-03-19 2009-03-17 高介电性薄膜形成用的涂层组合物和高介电性薄膜
US12/933,341 US8576540B2 (en) 2008-03-19 2009-03-17 Coating composition for forming highly dielectric film and highly dielectric film
EP09722609.6A EP2256760B1 (en) 2008-03-19 2009-03-17 Coating composition for forming high dielectric film and high dielectric film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-071764 2008-03-19
JP2008071764 2008-03-19

Publications (1)

Publication Number Publication Date
WO2009116527A1 true WO2009116527A1 (ja) 2009-09-24

Family

ID=41090928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055162 WO2009116527A1 (ja) 2008-03-19 2009-03-17 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム

Country Status (6)

Country Link
US (1) US8576540B2 (ja)
EP (1) EP2256760B1 (ja)
JP (1) JP5246256B2 (ja)
KR (1) KR101152463B1 (ja)
CN (1) CN101978446B (ja)
WO (1) WO2009116527A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039424A1 (ja) * 2010-09-22 2012-03-29 ダイキン工業株式会社 フィルムコンデンサ用フィルムおよびフィルムコンデンサ
CN102666682A (zh) * 2010-01-20 2012-09-12 大金工业株式会社 高介电性膜
JP2013221151A (ja) * 2012-04-13 2013-10-28 Xerox Corp 物質の組成物
WO2014057933A1 (ja) * 2012-10-10 2014-04-17 電気化学工業株式会社 フッ化ビニリデン系樹脂組成物、樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
WO2018142933A1 (ja) * 2017-01-31 2018-08-09 ダイキン工業株式会社 フッ素樹脂フィルム
JPWO2018139264A1 (ja) * 2017-01-25 2019-08-08 株式会社クレハ フッ化ビニリデン系樹脂フィルム

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623174B (zh) * 2012-04-17 2014-06-25 电子科技大学 一种高能量密度电容器的制备方法
CN104798153A (zh) * 2012-11-20 2015-07-22 大金工业株式会社 层积膜
TWI450759B (zh) 2012-12-07 2014-09-01 Ind Tech Res Inst 有機分散液及其製法及應用其之塗層組成物
KR101674081B1 (ko) 2015-06-03 2016-11-22 주식회사 지엘머티리얼즈 고유전성 필름컨덴서용 조성물, 이의 제조방법 및 이를 포함하는 필름컨덴서용 고유전성 필름
CN105085964A (zh) * 2015-08-03 2015-11-25 铜陵市胜达电子科技有限责任公司 一种膜电容器用掺混纳米羟基磷灰石的防静电聚丙烯基复合介电薄膜及其制备方法
CN105037775A (zh) * 2015-08-03 2015-11-11 铜陵市胜达电子科技有限责任公司 一种膜电容器用掺混纳米陶瓷粉的聚丙烯基复合介电薄膜及其制备方法
CN105086655A (zh) * 2015-08-03 2015-11-25 铜陵市胜达电子科技有限责任公司 一种膜电容器用掺混纳米氧化铟锡的高介电聚丙烯基复合介电薄膜及其制备方法
CN105037776A (zh) * 2015-08-03 2015-11-11 铜陵市胜达电子科技有限责任公司 一种膜电容器用掺混纳米碳溶胶的聚丙烯基复合介电薄膜及其制备方法
CN105038433A (zh) * 2015-08-03 2015-11-11 铜陵市胜达电子科技有限责任公司 一种膜电容器用掺混纳米二氧化钛的聚丙烯基复合介电薄膜及其制备方法
CN105037777A (zh) * 2015-08-03 2015-11-11 铜陵市胜达电子科技有限责任公司 一种膜电容器用掺混纳米钛酸钡的聚丙烯基复合介电薄膜及其制备方法
CN105037774A (zh) * 2015-08-03 2015-11-11 铜陵市胜达电子科技有限责任公司 一种膜电容器用掺混纳米铜的聚丙烯基复合介电薄膜及其制备方法
CN105111482A (zh) * 2015-08-03 2015-12-02 铜陵市胜达电子科技有限责任公司 一种膜电容器用掺混乙炔黑的聚丙烯基复合介电薄膜及其制备方法
CN105038434A (zh) * 2015-08-03 2015-11-11 铜陵市胜达电子科技有限责任公司 一种膜电容器用掺混气相三氧化二铝的聚丙烯基复合介电薄膜及其制备方法
CN106432820A (zh) * 2016-09-29 2017-02-22 铜陵市超越电子有限公司 一种电容器薄膜的材料配方
CN108878177A (zh) * 2018-07-18 2018-11-23 清华大学 高能量密度及高充放电效率的高温电容器薄膜制备方法
DE102020107286A1 (de) * 2019-03-28 2020-10-01 Taiyo Yuden Co., Ltd. Mehrschichtiger Keramikkondensator und Verfahren zu dessen Herstellung
CN109910403B (zh) * 2019-04-12 2021-01-29 中国电子科技集团公司第三十八研究所 一种微波复合介质板的制备方法及制得的微波复合介质板
US20230079561A1 (en) * 2020-03-27 2023-03-16 Toray Industries, Inc. Film for film capacitor, metal layer laminated film for film capcitor, and film capacitor
CN111548515B (zh) * 2020-04-15 2023-05-09 哈尔滨理工大学 一种非氧化物陶瓷/聚偏氟乙烯复合薄膜的后处理工艺
CN116063717B (zh) * 2023-03-16 2023-06-13 西南交通大学 一种高度有序排列的纤维素薄膜及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199046A (ja) 1984-03-23 1985-10-08 Kureha Chem Ind Co Ltd フツ化ビニリデン樹脂組成物
JPS60262414A (ja) 1984-06-09 1985-12-25 松下電器産業株式会社 フイルムコンデンサ
JPS6318141A (ja) 1986-07-09 1988-01-26 Toshiba Corp ガスタ−ビン用減温器
JPH01204959A (ja) * 1988-02-10 1989-08-17 Toray Ind Inc ポリエステル組成物及びそれからなる二軸延伸ポリエステルフイルム
JPH0278425A (ja) 1987-06-26 1990-03-19 Rhone Poulenc Rech ポリ弗化ビニリデンに基づく親水性かつ乾燥性の半透膜
JPH02250306A (ja) 1989-03-23 1990-10-08 Toray Ind Inc コンデンサ用金属化フイルムおよびその製造方法
JPH0318113A (ja) 1989-06-14 1991-01-25 Murata Mfg Co Ltd ノイズフィルタの取付け構造
JPH03286514A (ja) 1990-04-02 1991-12-17 Nitsuko Corp 金属化フィルムコンデンサのフィルム巻回方法
JP2001261959A (ja) * 2000-03-21 2001-09-26 Toray Ind Inc 二軸配向フィルム、金属化フィルムおよびフィルムコンデンサー
WO2001078171A1 (en) * 2000-04-07 2001-10-18 Daikin Industries, Ltd. Additive for electrode
JP3664342B2 (ja) 1996-09-30 2005-06-22 日本ゼオン株式会社 高分子誘電体フィルム
JP2008034189A (ja) * 2006-07-27 2008-02-14 Daikin Ind Ltd コーティング組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851363A (en) * 1971-12-27 1974-12-03 Mallory & Co Inc P R Method of making a capacitor utilizing bonded discrete polymeric film dielectrics
JPS6044820B2 (ja) * 1978-02-01 1985-10-05 松下電器産業株式会社 金属化フィルムコンデンサの製造方法
JPS59226409A (ja) * 1983-06-04 1984-12-19 呉羽化学工業株式会社 高分子誘電体
JP3075797B2 (ja) * 1991-10-08 2000-08-14 大塚化学株式会社 高誘電性樹脂組成物
JPH05217800A (ja) * 1992-02-03 1993-08-27 Nitto Denko Corp フィルムコンデンサー部品の製造方法
JP5211695B2 (ja) * 2006-02-01 2013-06-12 ダイキン工業株式会社 高誘電性フィルム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199046A (ja) 1984-03-23 1985-10-08 Kureha Chem Ind Co Ltd フツ化ビニリデン樹脂組成物
JPS60262414A (ja) 1984-06-09 1985-12-25 松下電器産業株式会社 フイルムコンデンサ
JPS6318141A (ja) 1986-07-09 1988-01-26 Toshiba Corp ガスタ−ビン用減温器
JPH0278425A (ja) 1987-06-26 1990-03-19 Rhone Poulenc Rech ポリ弗化ビニリデンに基づく親水性かつ乾燥性の半透膜
JPH01204959A (ja) * 1988-02-10 1989-08-17 Toray Ind Inc ポリエステル組成物及びそれからなる二軸延伸ポリエステルフイルム
JPH02250306A (ja) 1989-03-23 1990-10-08 Toray Ind Inc コンデンサ用金属化フイルムおよびその製造方法
JPH0318113A (ja) 1989-06-14 1991-01-25 Murata Mfg Co Ltd ノイズフィルタの取付け構造
JPH03286514A (ja) 1990-04-02 1991-12-17 Nitsuko Corp 金属化フィルムコンデンサのフィルム巻回方法
JP3664342B2 (ja) 1996-09-30 2005-06-22 日本ゼオン株式会社 高分子誘電体フィルム
JP2001261959A (ja) * 2000-03-21 2001-09-26 Toray Ind Inc 二軸配向フィルム、金属化フィルムおよびフィルムコンデンサー
WO2001078171A1 (en) * 2000-04-07 2001-10-18 Daikin Industries, Ltd. Additive for electrode
JP2008034189A (ja) * 2006-07-27 2008-02-14 Daikin Ind Ltd コーティング組成物

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666682A (zh) * 2010-01-20 2012-09-12 大金工业株式会社 高介电性膜
JP2014082523A (ja) * 2010-01-20 2014-05-08 Daikin Ind Ltd 高誘電性フィルム
US9156930B2 (en) 2010-09-22 2015-10-13 Daikin Industries, Ltd. Film for use in film capacitors, and film capacitors
JP2012089832A (ja) * 2010-09-22 2012-05-10 Daikin Ind Ltd フィルムコンデンサ用フィルムおよびフィルムコンデンサ
WO2012039424A1 (ja) * 2010-09-22 2012-03-29 ダイキン工業株式会社 フィルムコンデンサ用フィルムおよびフィルムコンデンサ
CN103119671B (zh) * 2010-09-22 2016-10-12 大金工业株式会社 膜电容器用膜和膜电容器
KR101449356B1 (ko) 2010-09-22 2014-10-08 다이킨 고교 가부시키가이샤 필름 콘덴서용 필름 및 필름 콘덴서
JP2013221151A (ja) * 2012-04-13 2013-10-28 Xerox Corp 物質の組成物
WO2014057933A1 (ja) * 2012-10-10 2014-04-17 電気化学工業株式会社 フッ化ビニリデン系樹脂組成物、樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
JPWO2018139264A1 (ja) * 2017-01-25 2019-08-08 株式会社クレハ フッ化ビニリデン系樹脂フィルム
US11136440B2 (en) 2017-01-25 2021-10-05 Kureha Corporation Vinylidene fluoride resin film
WO2018142933A1 (ja) * 2017-01-31 2018-08-09 ダイキン工業株式会社 フッ素樹脂フィルム
KR20190086767A (ko) * 2017-01-31 2019-07-23 다이킨 고교 가부시키가이샤 불소 수지 필름
JPWO2018142933A1 (ja) * 2017-01-31 2019-11-07 ダイキン工業株式会社 フッ素樹脂フィルム
KR102349645B1 (ko) 2017-01-31 2022-01-12 다이킨 고교 가부시키가이샤 불소 수지 필름

Also Published As

Publication number Publication date
EP2256760B1 (en) 2019-08-07
CN101978446B (zh) 2013-03-20
EP2256760A4 (en) 2018-03-14
US20110013343A1 (en) 2011-01-20
EP2256760A1 (en) 2010-12-01
KR20100109942A (ko) 2010-10-11
JP5246256B2 (ja) 2013-07-24
CN101978446A (zh) 2011-02-16
KR101152463B1 (ko) 2012-06-01
US8576540B2 (en) 2013-11-05
JPWO2009116527A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5246256B2 (ja) 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
JP5494676B2 (ja) 高誘電性フィルム
JP5310744B2 (ja) フィルムコンデンサ用フィルムおよびフィルムコンデンサ
EP2378529B1 (en) Composition for forming high-dielectric film for film capacitor
JP4952793B2 (ja) 高誘電性フィルム
JP5003838B2 (ja) フィルムコンデンサ用フィルムおよびフィルムコンデンサ
JP2009038089A (ja) 高誘電性フィルム
JP5070976B2 (ja) 高誘電性フィルム
JP5472091B2 (ja) 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
JP5338282B2 (ja) 積層型高誘電性フィルム
JP5333456B2 (ja) 積層型高誘電性フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109841.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722609

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503880

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107017155

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009722609

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12933341

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE