WO2012026009A1 - 電池用電極の製造方法 - Google Patents

電池用電極の製造方法 Download PDF

Info

Publication number
WO2012026009A1
WO2012026009A1 PCT/JP2010/064418 JP2010064418W WO2012026009A1 WO 2012026009 A1 WO2012026009 A1 WO 2012026009A1 JP 2010064418 W JP2010064418 W JP 2010064418W WO 2012026009 A1 WO2012026009 A1 WO 2012026009A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
material layer
polymer
current collector
Prior art date
Application number
PCT/JP2010/064418
Other languages
English (en)
French (fr)
Inventor
匠 玉木
橋本 達也
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012530475A priority Critical patent/JP5594548B2/ja
Priority to CN201080068708.0A priority patent/CN103081185B/zh
Priority to KR1020137007359A priority patent/KR101583120B1/ko
Priority to US13/818,441 priority patent/US8900747B2/en
Priority to PCT/JP2010/064418 priority patent/WO2012026009A1/ja
Publication of WO2012026009A1 publication Critical patent/WO2012026009A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method of manufacturing a battery electrode, and more particularly to a method of manufacturing a battery electrode having a configuration in which an electrode mixture layer containing an electrode active material is held by a current collector.
  • a lithium secondary battery that is lightweight and has a high energy density is expected to be preferably used as a high-output power source for mounting on a vehicle.
  • an electrode having a configuration in which a material (electrode active material) capable of reversibly occluding and releasing lithium ions is held in a conductive member (electrode current collector) is used.
  • the electrode active material (negative electrode active material) used for the negative electrode carbon-based materials such as graphite carbon and amorphous carbon are exemplified.
  • a typical example of the electrode current collector (negative electrode current collector) used for the negative electrode is a sheet-like or foil-like member mainly composed of copper or a copper alloy.
  • a powder of a negative electrode active material and a binder are dispersed in an appropriate medium.
  • a method of forming a layer (negative electrode active material layer) containing a negative electrode active material by applying a paste for forming an active material layer to a negative electrode current collector (copper foil or the like), passing it through a hot air dryer or the like, and drying the paste.
  • the binder contained in the negative electrode active material layer plays a role of binding between the negative electrode active materials and between the negative electrode active material and the current collector.
  • Patent documents 1 to 6 can be cited as technical documents relating to this type of binder and the like.
  • an active material layer forming paste containing the negative electrode active material 1, the binder 2, and the thickener 3 is applied to the current collector 5 and dried rapidly. Then, convection occurs during the drying of the paste applied product 4, and a migration phenomenon occurs in which the thickener 3 near the current collector 5 floats on the surface layer portion of the paste applied product 4 with the binder 2. As a result of this migration phenomenon, the amount of the binder 2 and the thickener 3 in the vicinity of the current collector 5 decreases, and the adhesion between the active material layer 7 and the current collector 5 decreases. Such a decrease in adhesion can be a factor that decreases battery performance (cycle durability, etc.).
  • This invention is made
  • a battery electrode manufacturing method having a structure in which an active material layer containing an active material is held on a current collector, wherein the active material and a polymer material (for example, a binder and a thickener) are used as a solvent.
  • the polymer fiber which carried out the fibrillation process is used, It is characterized by the above-mentioned.
  • the fibrillation treatment referred to in the present invention refers to a treatment for finely dividing a polymer fiber, and can be performed using, for example, mechanical shearing force.
  • the polymer fiber thus fibrillated is loosened on the surface and a large number of fine fibers (fibrils) are generated. Therefore, compared with polymer fibers that have not been fibrillated, surface irregularities are increased, frictional resistance with the solvent is increased, and mobility in the solvent (ease of movement of the polymer fibers in the solvent) is increased. Decreases.
  • the paste coated product is being dried. Even if convection occurs, the polymer material in the vicinity of the current collector is less likely to float on the surface layer portion of the paste application. Thereby, the amount of the polymer material in the vicinity of the current collector is ensured, and the adhesion between the active material layer and the current collector can be enhanced. That is, according to the present invention, the segregation of the polymer material due to the migration phenomenon is eliminated or alleviated, and an electrode including an active material layer having good adhesion to the current collector can be manufactured.
  • the polymer materials for example, the binder and the thickener
  • the polymer material contains a first polymer that functions as a binder in the active material layer, and a second polymer that functions as a thickener of the paste, and at least The fibrillated polymer fiber is used as the second polymer.
  • the thickener since the mobility of the thickener (second polymer) is reduced by the fibrillation treatment, even if convection occurs during the drying of the paste coating product, the thickener near the current collector becomes a binder ( The phenomenon of floating on the surface layer portion of the paste coating product with the first polymer) is suppressed. Thereby, the amount of the binder and the thickener in the vicinity of the current collector is ensured, and the adhesion between the active material layer and the current collector can be improved.
  • the fiber diameter of the fine fibers (fibrils) developed on the surface of the polymer fiber by the fibrillation treatment is generally about 0.3 ⁇ m to 1.0 ⁇ m. If it is larger than this range, the surface unevenness cannot be sufficiently obtained, so that the migration phenomenon during drying cannot be suppressed, and the adhesion between the active material layer and the current collector may be lowered. On the other hand, if it is less than this range, the viscosity of the paste for forming the active material layer will increase too much, so that bubbles mixed in the preparation of the paste cannot be completely removed until dry, causing a pinhole inside the electrode. Can be.
  • the fiber diameter of the fibril (that is, the fine fibers generated on the surface of the polymer fiber) of the polymer fiber subjected to the fibrillation treatment is suitably about 0.3 ⁇ m to 1.0 ⁇ m, and usually 0.4 ⁇ m to about 0.00 ⁇ m. It is preferably 9 ⁇ m, and more preferably 0.5 ⁇ m to 0.8 ⁇ m, for example.
  • a cellulose fiber for example, carboxymethyl cellulose
  • Cellulosic fibers are preferably used as a thickener for the paste, and are preferable in that they can be easily fibrillated.
  • the solvent in the paste coating can be volatilized at a high speed of 1.6 g / s or more per 1 cm 2 of liquid surface area (that is, 1.6 g / s ⁇ cm 2 or more), and the productivity of the electrode is drastically increased. To improve.
  • a battery for example, a lithium secondary battery constructed using an electrode manufactured by any of the manufacturing methods disclosed herein.
  • a battery exhibits excellent battery performance because it is constructed using an electrode having good adhesion between the current collector and the active material layer as at least one electrode (for example, the negative electrode) as described above.
  • a battery satisfying at least one of excellent output characteristics, high cycle durability, and good production efficiency can be provided.
  • Such a battery is suitable as a battery mounted on a vehicle such as an automobile. Therefore, according to the present invention, there is provided a vehicle including any of the batteries disclosed herein (which may be in the form of an assembled battery in which a plurality of batteries are connected).
  • the battery is a lithium secondary battery (typically a lithium ion battery), and the lithium secondary battery is used as a power source (typically a hybrid vehicle or an electric vehicle).
  • a vehicle for example, an automobile
  • a power source of the vehicle is preferable.
  • FIG. 1 is a cross-sectional view schematically showing an electrode according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a fibrillated polymer fiber according to an embodiment of the present invention.
  • FIG. 3 is a process cross-sectional view schematically showing an electrode manufacturing process according to an embodiment of the present invention.
  • FIG. 4 is a process cross-sectional view schematically showing an electrode manufacturing process according to an embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a battery according to an embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing a wound electrode body according to an embodiment of the present invention.
  • FIG. 7 is a side view schematically showing a vehicle equipped with a battery according to an embodiment of the present invention.
  • FIG. 8 is a diagram schematically showing a conventional electrode manufacturing process.
  • the electrode manufacturing method disclosed herein is a method for manufacturing an electrode 30 having a configuration in which an active material layer 20 including an active material 22 and polymer materials 24 and 26 is held by a current collector 10. It is.
  • an active material layer forming paste 40 containing an active material 22 and polymer materials 24 and 26 in a solvent (for example, water) 42 is applied to the current collector 10
  • FIG. 4 the step of forming the active material layer 20 on the current collector 10 by drying the applied paste applied material 40 is included.
  • polymer fibers 26 subjected to fibrillation treatment are used as at least one of the polymer materials.
  • the polymer material contains a first polymer 24 that functions as a binder in the active material layer 20 and a second polymer 26 that functions as a thickener of the paste 40.
  • the polymer fiber 26 which carried out the fibrillation treatment is used as said 2nd polymer (thickener).
  • the surface of the polymer fiber 26 (thickening agent here) subjected to the fibrillation treatment is loosened to generate a lot of beard-like fine fibers (fibrils) 26a. Therefore, compared with polymer fibers not subjected to fibrillation treatment, surface irregularities are large, frictional resistance with the solvent is increased, and mobility in the solvent (ease of movement of polymer fibers in the solvent 42) is increased. Decreases. In FIG. 2, only one fibril 26a is shown for simplification.
  • the mobility of the thickener (second polymer) 26 is reduced by the fibrillation treatment. Therefore, even if convection occurs during the drying of the paste application 40, the current collector The phenomenon that the thickening agent 26 in the vicinity of 10 floats on the surface layer portion of the paste application 40 with the binder (first polymer) 24 is suppressed. Thereby, the amount of the binder and the thickener near the current collector 10 is ensured, and the adhesion between the active material layer 20 and the current collector 10 can be enhanced. That is, according to this configuration, the segregation of the binder and the thickener due to migration is eliminated or alleviated, and the electrode 30 including the active material layer 20 having good adhesion to the current collector 10 can be manufactured.
  • a negative electrode for a lithium secondary battery typically a lithium ion battery
  • the negative electrode current collector 10 used in the present embodiment one made of a metal having good conductivity (for example, a metal such as aluminum, nickel, copper, stainless steel or an alloy containing the metal as a main component) is preferably used. be able to.
  • a current collector made of copper which is composed of copper or an alloy containing copper as a main component (copper alloy)).
  • the paste 40 for forming an active material layer used in the present embodiment suitably includes a negative electrode active material (typically powdery) 22, a binder (first polymer) 24, and a thickener (second polymer) 26. It can be prepared by mixing in a suitable solvent 42.
  • the use of an aqueous solvent is preferable from various viewpoints such as reduction of environmental burden, reduction of material cost, simplification of equipment, reduction of waste, and improvement of handling property.
  • the aqueous medium water or a mixed solvent mainly composed of water is preferably used.
  • a solvent component other than water constituting such a mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • a particularly preferred example is an aqueous solvent substantially consisting of water.
  • the solvent is not limited to an aqueous solvent, and may be a non-aqueous solvent (the dispersion medium of the active material is mainly an organic solvent).
  • the non-aqueous solvent for example, N-methylpyrrolidone (NMP) can be used.
  • the negative electrode active material 22 used in the present embodiment is not particularly limited as long as it is the same as that used in a typical lithium ion secondary battery.
  • Representative examples of the negative electrode active material 22 used for the negative electrode include carbon-based materials such as graphite carbon and amorphous carbon, lithium transition metal composite oxides (lithium titanium composite oxides, etc.), lithium transition metal composite nitrides, and the like.
  • the binder (first polymer) 24 used in the present embodiment is not particularly limited as long as it is the same as the binder (binder) used in a conventional general lithium secondary battery electrode.
  • a water-soluble or water-dispersible polymer such as styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), polytetrafluoroethylene (PTFE), polyethylene (PE), polyacid (PAA), or the like can be used.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • PTFE polytetrafluoroethylene
  • PE polyethylene
  • PAA polyacid
  • an organic solvent-based polymer such as polyvinylidene fluoride (PVDF) or polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP) can be used.
  • the thickener (second polymer) 26 used in this embodiment is not particularly limited as long as it is a fibrous polymer that functions as a thickener for the paste and can be fibrillated.
  • cellulose polymer fibers such as carboxymethylcellulose (CMC), methylcellulose (MC), hydroxypropylmethylcellulose (HPMC), and hydroxyethylmethylcellulose (HEMC) can be preferably used.
  • polymer fibers such as polyvinyl alcohol (PVA) and ethylene-vinyl alcohol copolymer (EVOH) may be used.
  • PVA polyvinyl alcohol
  • EVOH ethylene-vinyl alcohol copolymer
  • Examples of the method for fibrillating the polymer fiber include a method of pulverizing a polymer fiber aggregate (agglomerate) using a jet mill, a rotary mill, an attritor (for example, a mass collider), a refiner, a high-pressure homogenizer, or the like. .
  • the polymer fiber is mainly torn in a direction parallel to the fiber axis, and is loosened to develop fine fibers (fibrils) 26a on the surface.
  • the presence of the fine fibers (fibrils) 26a increases the frictional resistance with the solvent and decreases the mobility in the solvent.
  • the conditions for such pulverization vary depending on each machine. For example, when a jet mill is used, conditions of a pulverization pressure of 0.015 MPa to 3.5 MPa and a pulverization frequency of 1 to 5 can be employed. Such pulverization may be carried out dry or wet.
  • the fiber diameter d (FIG. 2) of the fine fibers (fibrils) 26a developed on the surface of the polymer fibers 26 by the fibrillation treatment is generally about 0.3 ⁇ m to 1.0 ⁇ m. If it is larger than this range, the surface unevenness cannot be sufficiently obtained, so that the migration phenomenon during drying cannot be suppressed, and the adhesion between the active material layer 20 and the current collector 10 may be lowered. On the other hand, if it is smaller than this range, the viscosity of the paste 40 for forming the active material layer will increase too much, so that air bubbles mixed in the preparation of the paste 40 cannot be removed until dry, and there are pinholes inside the electrode 30. It can be a factor that occurs.
  • the fiber diameter d (FIG. 2) of the fibril 26a (that is, fine fibers generated on the surface of the polymer fiber) 26a of the polymer fiber subjected to the fibrillation treatment is suitably about 0.3 ⁇ m to 1.0 ⁇ m.
  • the thickness is preferably 0.4 ⁇ m to 0.9 ⁇ m, and more preferably 0.5 ⁇ m to 0.8 ⁇ m, for example.
  • the fiber diameter of the fibril 26a can be grasped by, for example, image analysis using a scanning electron microscope (SEM).
  • the fiber diameter (thickness) of the polymer fiber backbone 26b is about 3 ⁇ m to 20 ⁇ m, for example, 3 ⁇ m to 10 ⁇ m (for example, about 5 ⁇ m). It is more preferable.
  • the fiber length of the backbone portion 26b is suitably about 0.1 ⁇ m to 5 ⁇ m, and more preferably 0.3 ⁇ m to 2 ⁇ m, for example.
  • the solid content of the negative electrode active material layer forming paste is preferably about 30% or more (typically 30% to 90%), preferably about 40% to 60%. Is preferred.
  • the proportion of the negative electrode active material in the paste solid content is preferably about 50% by mass or more (typically 50% to 99.5% by mass), and preferably about 70% to 99% by mass. Is preferred.
  • the ratio of the binder in the paste solid content can be, for example, 10% by mass or less, and is preferably about 0.5% by mass to 6% by mass (for example, 1% by mass to 3% by mass).
  • the proportion of the thickener in the paste solid content can be, for example, 10% by mass or less, and is preferably about 0.5% by mass to 6% by mass (eg, 1% by mass to 5% by mass).
  • the operation of applying such a negative electrode active material layer forming paste 40 to the negative electrode current collector 10 can be performed in the same manner as the production of a conventional negative electrode for a lithium secondary battery. For example, by applying a predetermined amount of the active material layer forming paste 40 to the negative electrode current collector 10 to a uniform thickness using an appropriate coating apparatus (die coater or the like), the paste coated product 40 is obtained. Can be formed (see FIG. 3).
  • the paste applied product 40 is dried by an appropriate drying means to obtain the negative electrode 30 in which the negative electrode active material layer 20 is formed on the negative electrode current collector 10 (see FIG. 4).
  • a method for drying the paste application product 40 it can be carried out in the same manner as the production of a conventional negative electrode for a lithium secondary battery.
  • the paste coating 40 can be dried by passing it through a suitable drying furnace and applying hot air from both sides of the current collector 10.
  • the hot air temperature is not particularly limited. For example, when an aqueous solvent is used, about 70 ° C. to 160 ° C. is appropriate, and for example, 80 ° C. to 120 ° C. is more preferable.
  • a fibrillated polymer fiber (thickener) 26 is used.
  • Such a fibrillated polymer fiber 26 has a large number of fine fibers (fibrils) on its surface, and therefore has higher adhesion to the active material 22 than a polymer fiber that has not been fibrillated, and a solvent.
  • the frictional resistance with 42 is increased, and the mobility (easy to move) in the paste coating 40 is reduced. Therefore, even if convection occurs during the drying of the paste application 40, the phenomenon that the polymer fiber (thickener) 26 near the current collector 10 floats on the surface layer portion of the paste application 40 together with the binder 24 is suppressed. Thus, the amount of binder in the vicinity of the current collector 10 is appropriately secured.
  • the paste application 40 can be made at high speed. Can be dried.
  • the solvent in the paste coating can be volatilized at a high speed of 1.6 g / s or more per 1 cm 2 of liquid surface area (that is, 1.6 g / s ⁇ cm 2 or more), and the productivity of the electrode is drastically increased. To improve.
  • the battery negative electrode 30 having a structure in which the negative electrode active material layer 20 is held on the negative electrode current collector 10 can be manufactured.
  • an appropriate press treatment for example, various conventionally known press methods such as a roll press method and a flat plate press method can be employed
  • Thickness and density can be adjusted.
  • FIG. 4 schematically shows a cross-sectional structure of a negative electrode 30 for a lithium secondary battery that is preferably manufactured by applying the electrode manufacturing method disclosed herein.
  • the negative electrode 30 has a configuration in which an active material layer 20 including an active material 22, a binder 24, and a thickener 26 is held by a current collector 10.
  • the active material layer 20 includes an active material layer forming paste 40 containing an active material 22, a binder 24, and a thickener (a polymer fiber subjected to fibrillation treatment) 26 in a solvent.
  • the active material layer 20 is formed on the current collector 10 by drying the applied paste applied product 40.
  • the segregation of the binder 24 and the thickener 26 on the surface layer portion of the active material layer 20 is suppressed, and the adhesion between the active material layer 20 and the current collector 10 can be improved. Furthermore, since the binder 24 and the thickener 26 do not segregate on the surface layer portion of the active material layer 20, the reaction resistance of the active material layer surface layer portion can be lowered, and output characteristics (particularly, input / output characteristics for a large current). Excellent electrode characteristics can be obtained.
  • the electrode for example, the negative electrode obtained in this way is excellent in the adhesion between the active material layer and the current collector as described above, it is a constituent element of the battery of various forms or an electrode body incorporated in the battery. It can be preferably used as a component (for example, negative electrode).
  • a negative electrode manufactured by any of the methods disclosed herein, a positive electrode (which may be a positive electrode manufactured by applying the present invention), an electrolyte disposed between the positive and negative electrodes, Can be preferably used as a component of a lithium secondary battery including a separator that separates the positive and negative electrodes (can be omitted in a battery using a solid or gel electrolyte).
  • Structure for example, a metal housing or laminate film structure
  • size of an outer container constituting such a battery or an electrode body structure (for example, a wound structure or a laminated structure) having a positive / negative electrode current collector as a main component
  • a lithium secondary battery constructed using the negative electrode (negative electrode sheet) 30 manufactured by applying the above-described method will be described with reference to schematic diagrams shown in FIGS. 5 and 6.
  • a lithium secondary battery lithium ion battery
  • a wound electrode body wound electrode body
  • a non-aqueous electrolyte are contained in a cylindrical container
  • the lithium secondary battery 100 includes an electrode body 80 (winding electrode body) 80 in which a long positive electrode sheet 50 and a long negative electrode sheet 30 are wound through a long separator 60. It has the structure accommodated in the container 70 of the shape (cylindrical type) which can accommodate this winding electrode body 80 with the nonaqueous electrolyte solution which is not shown in figure.
  • the container 70 includes a bottomed cylindrical container body 72 having an open upper end and a lid 74 that closes the opening.
  • a metal material such as aluminum, steel, or Ni-plated SUS is preferably used (Ni-plated SUS in the present embodiment).
  • a positive electrode terminal 76 that is electrically connected to the positive electrode 50 of the wound electrode body 80 is provided on the upper surface (that is, the lid body 74) of the container 70.
  • a negative electrode terminal 78 also serving as the container main body 72 in this embodiment
  • the wound electrode body 80 is accommodated together with a non-aqueous electrolyte (not shown).
  • the wound electrode body 80 is the same as the wound electrode body of a normal lithium secondary battery except for the configuration of the layer (negative electrode active material layer) 20 containing the active material provided in the negative electrode sheet 30. As shown in FIG. 6, it has a long (strip-shaped) sheet structure before the wound electrode body 80 is assembled.
  • the positive electrode sheet 50 has a structure in which a positive electrode active material layer 54 containing a positive electrode active material is held on both surfaces of a long sheet-like foil-shaped positive electrode current collector 52. However, the positive electrode active material layer 54 is not attached to one side edge (the lower side edge portion in the figure) along the side edge in the width direction of the positive electrode sheet 50, and the positive electrode current collector 52 has a constant width. An exposed positive electrode active material layer non-forming portion is formed.
  • the negative electrode sheet 30 has a structure in which a negative electrode active material layer 20 containing a negative electrode active material is held on both surfaces of a long sheet-like foil-like negative electrode current collector 10.
  • the negative electrode active material layer 20 is not attached to one side edge (upper side edge portion in the drawing) along the edge in the width direction of the negative electrode sheet 30, and the negative electrode current collector 10 is exposed with a certain width.
  • a negative electrode active material layer non-formed portion is formed.
  • the positive electrode sheet 50 and the negative electrode sheet 30 are laminated via the separator sheet 60. At this time, the positive electrode sheet 50 and the negative electrode sheet 30 are placed so that the positive electrode active material non-formation part of the positive electrode sheet 50 and the negative electrode active material layer non-formation part of the negative electrode sheet 30 protrude from both sides of the separator sheet 60 in the width direction. Laminate slightly shifted in the width direction.
  • the wound electrode body 80 can be manufactured by winding the laminated body thus superposed.
  • a wound core portion 82 (that is, the positive electrode active material layer 54 of the positive electrode sheet 50, the negative electrode active material layer 20 of the negative electrode sheet 30, and the separator sheet 60 is densely arranged in the central portion of the wound electrode body 80 in the winding axis direction. Laminated portions) are formed. Moreover, the active material layer non-formation part of the positive electrode sheet 50 and the negative electrode sheet 30 has protruded outward from the winding core part 82 in the both ends of the winding axis direction of the winding electrode body 80, respectively.
  • the positive electrode lead terminal 62 and the negative electrode lead terminal 64 are respectively provided on the positive electrode side protruding portion (that is, the portion where the positive electrode active material layer 54 is not formed) 84 and the negative electrode side protruding portion (that is, the portion where the negative electrode active material layer 20 is not formed) 86. Attached and electrically connected to the above-described positive electrode terminal 76 and negative electrode terminal 78 (here, the container body 72 also serves).
  • the components constituting the wound electrode body 80 may be the same as those of the conventional wound electrode body of the lithium secondary battery except for the negative electrode sheet 30, and are not particularly limited.
  • the positive electrode sheet 50 can be formed by applying a positive electrode active material layer 54 mainly composed of a positive electrode active material for a lithium secondary battery on a long positive electrode current collector 52.
  • a positive electrode active material layer 54 mainly composed of a positive electrode active material for a lithium secondary battery on a long positive electrode current collector 52.
  • an aluminum foil or other metal foil suitable for the positive electrode is preferably used.
  • the positive electrode active material one kind or two or more kinds of substances conventionally used in lithium secondary batteries can be used without any particular limitation.
  • Preferable examples include oxides containing lithium and a transition metal element as constituent metal elements such as lithium nickel oxide (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), and lithium manganese oxide (LiNiO 2 ). And a positive electrode active material mainly composed of a lithium transition metal oxide).
  • a suitable separator sheet 60 used between the positive and negative electrode sheets 50 and 30 examples include those made of a porous polyolefin resin.
  • a synthetic resin (for example, polypropylene) porous separator sheet can be suitably used.
  • a separator is unnecessary (that is, in this case, the electrolyte itself can function as a separator).
  • the wound electrode body 80 having such a configuration is accommodated in the container main body 72, and an appropriate nonaqueous electrolytic solution is disposed (injected) into the container main body 72.
  • an appropriate nonaqueous electrolytic solution is disposed (injected) into the container main body 72.
  • the non-aqueous electrolyte accommodated in the container main body 72 together with the wound electrode body 80 the same non-aqueous electrolyte as used in the conventional lithium secondary battery can be used without any particular limitation.
  • Such a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent.
  • LiPF 6, LiBF 4, LiAsF 6, LiCF 3 SO 3 can be preferably used a lithium salt of LiClO 4 and the like.
  • a nonaqueous electrolytic solution in which LiPF 6 as a supporting salt is contained at a concentration of about 1 mol / liter in a mixed solvent containing EC, EMC, and DMC at a volume ratio of 3: 4: 3 can be preferably used.
  • the non-aqueous electrolyte is housed in the container main body 72 together with the wound electrode body 80, and the opening of the container main body 72 is sealed with the lid body 74, thereby constructing (assembling) the lithium secondary battery 100 according to the present embodiment. ) Is completed.
  • positioning (injection) process of electrolyte solution can be performed similarly to the method currently performed by manufacture of the conventional lithium secondary battery. Thereafter, the battery is conditioned (initial charge / discharge). You may perform processes, such as degassing and a quality inspection, as needed.
  • the shear force and the compressive force applied to the CMC are appropriately changed and pulverized, classified by an MDS-1 type air classifier (manufactured by Nippon Pneumatic Industry Co., Ltd.), and the fiber diameter d of the fibril 26a (FIG. 2).
  • MDS-1 type air classifier manufactured by Nippon Pneumatic Industry Co., Ltd.
  • Table 1 shows the fiber diameter d of the fibril of each sample.
  • Negative electrode active material layer pastes were prepared using the fibrillated CMCs (Thickeners) of Samples 1 to 6, respectively. Specifically, flaky graphite powder as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and fibrillated CMC as a thickener have a mass ratio of these materials of 96: 2. : 2 and a solid content concentration of about 52% by mass was dispersed in water to prepare a negative electrode active material layer paste 40. For comparison, a negative electrode active material layer paste was prepared using CMC that was not fibrillated (Sample 7).
  • SBR styrene butadiene rubber
  • a negative electrode active material layer paste was prepared under the same conditions as Samples 1 to 6 except that CMC not subjected to fibrillation treatment was used.
  • Table 1 shows the viscosity [mPa ⁇ s] of the negative electrode active material layer pastes of Samples 1 to 7, respectively.
  • the paste viscosity tended to increase as the fiber diameter d of the fibrils decreased. In particular, when the fiber diameter d of the fibril was 0.3 ⁇ m or less, the paste viscosity was 4500 mPa ⁇ s or more.
  • the viscosity was measured using a BH viscometer (manufactured by TOKIMEC), adjusting the liquid temperature to 25 ° C., and rotating the rotor at 20 rpm.
  • ⁇ Preparation of negative electrode sheet> A total of seven types of pastes for negative electrode active material layers obtained above were applied to both sides of a long sheet-like copper foil (negative electrode current collector; thickness 10 ⁇ m) and dried, and negative electrode active material layers were applied to both sides of copper foil 10.
  • a negative electrode sheet 30 provided with 20 was prepared. The coating amount of the negative electrode active material layer forming paste was adjusted to be about 6 mg / cm 2 (solid content basis) for both surfaces. After drying, the negative electrode active material layer was pressed to a thickness of about 0.2 mm.
  • ⁇ Peel strength test> The adhesion between the negative electrode current collector 10 and the negative electrode active material layer 20 of each sample 1 to 7 was evaluated by a 90 ° peel test.
  • the 90 ° peel test was performed in accordance with JIS-C6481-1995. Specifically, the surface on the negative electrode active material layer side is fixed on a table with double-sided tape, the negative electrode current collector is pulled in a direction perpendicular to the surface of the negative electrode active material layer, and continuously at a speed of 50 mm per minute. About 50 mm. And the minimum value of the load in the meantime was measured as peel strength [N / m], and the adhesion between the negative electrode current collector and the negative electrode active material layer was evaluated. The result is shown in the corresponding part of Table 1.
  • the fiber diameter d of the fibril is preferably about 0.2 ⁇ m to 1.2 ⁇ m, more preferably 0.3 ⁇ m to 1.0 ⁇ m, and 0.5 ⁇ m to 0.8 ⁇ m. It is particularly preferable to do this.
  • the fiber diameter of the fibril is more preferably 0.5 ⁇ m to 0.8 ⁇ m.
  • the test lithium secondary battery was produced as follows.
  • Lithium nickel manganese cobaltate (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) powder as a positive electrode active material, acetylene black (AB) as a conductive additive, and polyvinylidene fluoride (PVdF) as a binder are mixed in N-methylpyrrolidone (NMP) so that the mass ratio of these materials is 90: 8: 2 and the solid content concentration is about 48% by mass to obtain a positive electrode active material layer forming paste.
  • NMP N-methylpyrrolidone
  • the positive electrode active material layer forming paste is applied in a strip shape on both sides of a long sheet-like aluminum foil (positive electrode current collector 52; thickness 15 ⁇ m) and dried, whereby the positive electrode active material is formed on both sides of the positive electrode current collector 52.
  • the positive electrode sheet 50 provided with the layer 54 was produced.
  • the coating amount of the positive electrode active material layer forming paste was adjusted to be about 8.4 mg / cm 2 (solid content basis) for both surfaces. Further, after drying, pressing was performed so that the thickness of the positive electrode active material layer 54 was about 150 ⁇ m.
  • the wound electrode body 80 was produced by winding the positive electrode sheet 50 and the negative electrode sheet 30 through two separator sheets (porous polypropylene) 60.
  • the wound electrode body 80 obtained in this way was accommodated in a cylindrical battery container 70 (diameter 17 mm ⁇ height 50 mm) together with a non-aqueous electrolyte, and the opening of the battery container 70 was hermetically sealed.
  • a non-aqueous electrolyte LiPF 6 as a supporting salt in a mixed solvent containing ethylene carbonate (EC), diethyl carbonate (DEC), and methyl propionate in a volume ratio of 3: 5: 2 at a concentration of about 1 mol / liter.
  • the contained non-aqueous electrolyte was used.
  • the lithium secondary battery 100 was assembled. Thereafter, an initial charge / discharge treatment (conditioning) was performed by a conventional method to obtain a test lithium secondary battery.
  • Samples 1 to 4 having a fibril fiber diameter d of 0.3 ⁇ m to 1.0 ⁇ m achieved a very high capacity retention rate of 96% or more.
  • the fiber diameter d of the fibril is preferably about 0.2 ⁇ m to 1.2 ⁇ m, more preferably 0.3 ⁇ m to 1.0 ⁇ m, and more preferably 0.5 ⁇ m to 0.8 ⁇ m. It is particularly preferable that In view of paste viscosity (paste applicability, etc.), the fiber diameter of the fibril is more preferably 0.5 ⁇ m to 0.8 ⁇ m.
  • the battery according to the present invention (for example, a lithium secondary battery) has excellent battery performance as described above, it can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Accordingly, as shown in FIG. 7, the present invention provides a vehicle 1000 (typically a car, particularly a hybrid car, an electric car, a fuel cell car, etc.) having such a battery 100 (which may be in the form of an assembled battery) as a power source. A motor vehicle equipped with a simple electric motor).
  • the present invention is not limited thereto.
  • a polymer fiber that has been fibrillated may be used as the first polymer that functions as a binder in the active material layer.
  • the binder in the vicinity of the current collector remains on the surface layer portion of the paste coating product. It becomes difficult to lift up. As a result, the amount of binder in the vicinity of the current collector is secured, and the adhesion between the active material layer and the current collector can be improved.
  • the matter disclosed in this specification is a battery electrode having a configuration in which an active material layer including an active material and a binder is held by a current collector, and the active material layer is disposed at the center in the thickness direction.
  • the amount of the binder contained in the divided part (lower layer side) disposed on the current collector side of the active material layer is divided into the opposite side to the current collector when the part is divided into two (that is, the thickness is divided into two equal parts)
  • the battery electrode is characterized in that it is larger than the amount of binder contained in the arranged divided portion (upper layer side).
  • the electrode having such a configuration can be suitably realized, for example, by applying any of the manufacturing methods disclosed herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の主な目的は、マイグレーション現象を抑制して集電体と活物質層の密着性のよい電池用電極の製造方法を提供することである。本発明の電池用電極の製造方法は、活物質22を含む活物質層20が集電体10上に保持された構造を有する電池用電極30の製造方法であって、活物質22とポリマー材24、26とを溶媒中に含む活物質層形成用ペーストを集電体10に塗布する工程と、その塗布されたペースト塗布物を乾燥させることにより集電体10上に活物質層20を形成する工程とを包含する。そして、ポリマー材24、26の少なくとも一種として、フィブリル化処理したポリマー繊維26を使用する。

Description

電池用電極の製造方法
 本発明は、電池用電極を製造する方法に関し、特に電極活物質を含む電極合剤層が集電体に保持された構成を有する電池用電極の製造方法に関する。
 近年、リチウムイオン電池、ニッケル水素電池その他の二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。この種の二次電池の一つの典型的な構成では、リチウムイオンを可逆的に吸蔵および放出し得る材料(電極活物質)が導電性部材(電極集電体)に保持された構成の電極を備える。例えば、負極に用いられる電極活物質(負極活物質)の代表例としては、グラファイトカーボン、アモルファスカーボン等の炭素系材料が例示される。また、負極に用いられる電極集電体(負極集電体)の代表例としては、銅または銅合金を主体とするシート状または箔状の部材が挙げられる。
 かかる構成を有する負極を製造するにあたって負極集電体に負極活物質を保持させる代表的な方法の一つとして、負極活物質の粉末とバインダ(結着材)とを適当な媒体に分散させた活物質層形成用ペーストを負極集電体(銅箔等)に塗布し、これを熱風乾燥機等に通過させて乾燥させることにより負極活物質を含む層(負極活物質層)を形成する方法が挙げられる。負極活物質層中に含まれるバインダは、負極活物質間および負極活物質と集電体とを結着させる役割を果たしている。この種のバインダ等に関する技術文献としては特許文献1~6が挙げられる。
国際公開第2006/061940号 日本国特許出願公開平10-251301号公報 日本国特許出願公開平02-235901号公報 日本国特許出願公開平10-152501号公報 日本国特許出願公開平09-065890号公報 日本国特許出願公開2005-340071号公報
 しかしながら、図8に示すように、上記負極を製造するにあたって、負極活物質1とバインダ2と増粘剤3とを含有する活物質層形成用ペーストを集電体5に塗布し、急激に乾燥させると、ペースト塗布物4の乾燥中に対流が起こり、集電体5近傍の増粘剤3がバインダ2を伴ってペースト塗布物4の表層部に浮き上がるマイグレーション現象が発生する。このマイグレーション現象の結果、集電体5近傍のバインダ2及び増粘剤3の量が少なくなり、活物質層7と集電体5の密着性が低下する。このような密着性の低下は、電池性能(サイクル耐久性等)を低下させる要因となり得る。本発明はかかる点に鑑みてなされたものであり、その主な目的は、上記マイグレーション現象を抑制して集電体と活物質層の密着性のよい電池用電極の製造方法を提供することである。
 本発明によると、活物質を含む活物質層が集電体上に保持された構造を有する電池用電極の製造方法であって、活物質とポリマー材(例えばバインダ及び増粘剤)とを溶媒中に含む活物質層形成用ペーストを集電体に塗布する工程と、その塗布されたペースト塗布物を乾燥させることにより前記集電体上に活物質層を形成する工程とを包含する。そして、上記ポリマー材の少なくとも一種として、フィブリル化処理したポリマー繊維を使用することを特徴とする。
 ここで、本発明にいうフィブリル化処理とは、ポリマー繊維を細化分割する処理をいい、例えば機械的な剪断力等を用いて行うことができる。このようにフィブリル化処理したポリマー繊維は、その表面がほぐされて微細繊維(フィブリル)が多数発生する。そのため、フィブリル化処理していないポリマー繊維に比べて、表面の凹凸が大きくなり、溶媒との摩擦抵抗が増大し、溶媒中での易動性(溶媒中におけるポリマー繊維の移動のしやすさ)が低下する。
 本発明の製造方法によれば、上記ポリマー材(例えばバインダ及び増粘剤)の少なくとも一種として、上記フィブリル化処理によって易動性が低下したポリマー繊維を使用するので、ペースト塗布物の乾燥中に対流が発生したとしても、集電体近傍のポリマー材がペースト塗布物の表層部に浮き上がりにくくなる。このことによって、集電体近傍のポリマー材の量が確保され、活物質層と集電体との密着性を高めることができる。即ち、本発明によれば、マイグレーション現象によるポリマー材の偏析が解消または緩和され、集電体に対して密着性のよい活物質層を備えた電極を製造することができる。
 ここに開示される製造方法の好ましい一態様では、上記ポリマー材は、上記活物質層においてバインダとして機能する第一ポリマーと、上記ペーストの増粘剤として機能する第二ポリマーとを含有し、少なくとも上記第二ポリマーとして上記フィブリル化処理したポリマー繊維を使用する。この場合、上記フィブリル化処理によって増粘剤(第二ポリマー)の易動性が低下するので、ペースト塗布物の乾燥中に対流が発生したとしても、集電体近傍の増粘剤がバインダ(第一ポリマー)を伴ってペースト塗布物の表層部に浮き上がる現象が抑制される。このことによって、集電体近傍のバインダ及び増粘剤の量が確保され、活物質層と集電体との密着性を高めることができる。
 上記フィブリル化処理によってポリマー繊維の表面に発現した微細繊維(フィブリル)の繊維径は、概ね0.3μm~1.0μmが適当である。この範囲よりも大きすぎると、表面の凹凸が十分に得られないため、乾燥時のマイグレーション現象を抑制できず、活物質層と集電体との密着性が低下する場合があり得る。一方、この範囲よりも小さすぎると、活物質層形成用ペーストの粘度が増大しすぎるため、該ペーストを作製する際に混入した気泡が乾燥時まで抜けきらず、電極内部にピンホールが発生する要因になり得る。従って、上記フィブリル化処理したポリマー繊維が有するフィブリル(即ちポリマー繊維の表面に発生した微細繊維)の繊維径は、概ね0.3μm~1.0μmが適当であり、通常は0.4μm~0.9μmにすることが好ましく、例えば0.5μm~0.8μmにすることがより好ましい。
 ここに開示される製造方法の好ましい一態様では、上記フィブリル化処理したポリマー繊維として、セルロース系繊維(例えばカルボキシメチルセルロース)を使用する。セルロース系繊維は、上記ペーストの増粘剤として好ましく用いられるとともに、容易にフィブリル化処理できる点で好ましい。
 なお、本発明によれば、ペースト塗布物の乾燥速度を設定するにあたってマイグレーションによるポリマー材(バインダ及び/又は増粘剤)の偏在を考慮しなくてもよいため、ペースト塗布物を高速で乾燥することができる。例えば、上記ペースト塗布物中の溶媒を液面面積1cm当たり1.6g/s以上(すなわち1.6g/s・cm以上)の高速で揮発させることができ、電極の生産性が飛躍的に向上する。
 また、本発明によると、ここに開示される何れかの製造方法により製造された電極を用いて構築された電池(例えばリチウム二次電池)が提供される。かかる電池は、上記のように集電体と活物質層の密着性がよい電極を少なくとも一方の電極(例えば負極)に用いて構築されていることから、優れた電池性能を示すものである。例えば、上記電極を用いて電池を構築することにより、出力特性に優れる、サイクル耐久性が高い、生産効率がよい、のうちの少なくとも一つを満たす電池を提供することができる。
 このような電池は、例えば自動車等の車両に搭載される電池として好適である。したがって本発明によると、ここに開示されるいずれかの電池(複数の電池が接続された組電池の形態であり得る。)を備える車両が提供される。特に、軽量で高出力が得られることから、上記電池がリチウム二次電池(典型的にはリチウムイオン電池)であって、該リチウム二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が好適である。
図1は、本発明の一実施形態に係る電極を模式的に示す断面図である。 図2は、本発明の一実施形態に係るフィブリル化処理したポリマー繊維を模式的に示す図である。 図3は、本発明の一実施形態に係る電極製造工程を模式的に示す工程断面図である。 図4は、本発明の一実施形態に係る電極製造工程を模式的に示す工程断面図である。 図5は、本発明の一実施形態に係る電池を模式的に示す図である。 図6は、本発明の一実施形態に係る捲回電極体を模式的に示す図である。 図7は、本発明の一実施形態に係る電池を搭載した車両を模式的に示す側面図である。 図8は、従来の電極製造工程を模式的に示す図である。
 以下、図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製法、セパレータや電解質の構成および製法、電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。
 ここに開示される電極製造方法は、図1に示すように、活物質22とポリマー材24、26とを含む活物質層20が集電体10に保持された構成を有する電極30の製造方法である。この方法は、図3に示すように、活物質22とポリマー材24、26とを溶媒(例えば水)42中に含む活物質層形成用ペースト40を集電体10に塗布する工程と、図4に示すように、その塗布されたペースト塗布物40を乾燥させることにより集電体10上に活物質層20を形成する工程とを包含する。
 ここで、本実施形態においては、上記ポリマー材の少なくとも一種として、フィブリル化処理したポリマー繊維26を使用する。この実施形態では、上記ポリマー材は、活物質層20においてバインダとして機能する第一ポリマー24と、ペースト40の増粘剤として機能する第二ポリマー26とを含有する。そして、上記第二ポリマー(増粘剤)として、フィブリル化処理したポリマー繊維26を使用する。
 このようにフィブリル化処理したポリマー繊維(ここでは増粘剤)26は、図2に示すように、その表面がほぐされてヒゲ状の微細繊維(フィブリル)26aが多数発生する。そのため、フィブリル化処理していないポリマー繊維に比べて、表面の凹凸が大きく、溶媒との摩擦抵抗が増大し、溶媒中での易動性(溶媒42中におけるポリマー繊維の移動のしやすさ)が低下する。なお、図2では簡略化のためフィブリル26aを1本だけ示してある。
 本構成の製造方法によれば、上記フィブリル化処理によって増粘剤(第二ポリマー)26の易動性が低下するので、ペースト塗布物40の乾燥中に対流が発生したとしても、集電体10近傍の増粘剤26がバインダ(第一ポリマー)24を伴ってペースト塗布物40の表層部に浮き上がる現象が抑制される。このことによって、集電体10近傍のバインダ及び増粘剤の量が確保され、活物質層20と集電体10との密着性を高めることができる。即ち、本構成によれば、マイグレーションによるバインダ及び増粘剤の偏析が解消または緩和され、集電体10に対して密着性のよい活物質層20を備えた電極30を製造することができる。
 特に限定することを意図したものではないが、以下では主としてリチウム二次電池(典型的にはリチウムイオン電池)用の負極を製造する場合を例として、本実施形態を詳細に説明する。
 本実施形態に用いられる負極集電体10としては、導電性の良好な金属(例えば、アルミニウム、ニッケル、銅、ステンレス等の金属または該金属を主成分とする合金)からなるものを好ましく使用することができる。例えばリチウム二次電池用負極を製造する場合には、銅製(銅または銅を主成分とする合金(銅合金)から構成されることをいう。)の集電体の使用が好ましい。
 本実施形態に用いられる活物質層形成用ペースト40は、負極活物質(典型的には粉末状)22と、バインダ(第一ポリマー)24と、増粘剤(第二ポリマー)26とを適当な溶媒42中で混合することにより調製され得る。
 上記ペーストに用いられる溶媒42の好適例としては、環境負荷の軽減、材料費の低減、設備の簡略化、廃棄物の減量、取扱性の向上等の種々の観点から、水系溶媒の使用が好ましい。水系媒体としては、水または水を主体とする混合溶媒が好ましく用いられる。かかる混合溶媒を構成する水以外の溶媒成分としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。例えば、該水系溶媒の50質量%以上(より好ましくは80質量%以上、さらに好ましくは90質量%以上)が水である水系溶媒の使用が好ましい。特に好ましい例として、実質的に水からなる水系溶媒が挙げられる。あるいは、溶媒は水系溶媒に限定されず、非水系溶媒(活物質の分散媒が主として有機溶剤)であってもよい。非水系溶媒としては、例えばN-メチルピロリドン(NMP)等を用いることができる。
 本実施形態に用いられる負極活物質22としては、典型的なリチウムイオン二次電池に用いられるものと同じであればよく特に限定されない。負極に用いられる負極活物質22の代表例としては、グラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム遷移金属複合酸化物(リチウムチタン複合酸化物等)、リチウム遷移金属複合窒化物等が例示される。
 本実施形態に用いられるバインダ(第一ポリマー)24としては、従来の一般的なリチウム二次電池用電極に用いられているバインダ(結着材)と同じものであればよく特に制限されない。例えば、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン(PE)、ポリ酸(PAA)、等の水溶性または水分散性のポリマーを用いることができる。あるいは、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、等の有機溶剤系のポリマーを用いることができる。
 本実施形態に用いられる増粘剤(第二ポリマー)26としては、上記ペーストの増粘剤として機能し、かつ、フィブリル化処理できる繊維状のポリマーであれば特に制限されない。例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシエチルメチルセルロース(HEMC)等のセルロース系のポリマー繊維を好ましく用いることができる。あるいは、ポリビニルアルコール(PVA)、エチレン‐ビニルアルコール共重合体(EVOH)等のポリマー繊維を用いてもよい。上述したポリマー繊維はそれぞれ単独であるいは適宜組み合わせて使用することができる。
 上記ポリマー繊維をフィブリル化する方法としては、例えば、ポリマー繊維の凝集物(塊状)をジェットミル、回転ミル、磨砕機(例えばマスコロイダー)、リファイナー、高圧ホモジナイザー等を用いて粉砕する方法が挙げられる。これらを使用してポリマー繊維に機械的な剪断力および圧縮力を加えることにより、ポリマー繊維が主として繊維軸と平行な方向に引き裂かれ、ほぐされて表面に微細繊維(フィブリル)26aが発現する。この微細繊維(フィブリル)26aがあることにより、溶媒との摩擦抵抗が大きくなり、溶媒中での易動性が低下する。かかる粉砕の条件は、それぞれの機械によっても異なるが、例えば、ジェットミルを用いる場合、粉砕圧力0.015MPa~3.5MPa、粉砕回数1回~5回の条件を採用することができる。かかる粉砕は乾式で行ってもよいし、湿式で行ってもよい。
 上記フィブリル化処理によってポリマー繊維26の表面に発現した微細繊維(フィブリル)26aの繊維径d(図2)は、概ね0.3μm~1.0μmが適当である。この範囲よりも大きすぎると、表面の凹凸が十分に得られないため、乾燥時のマイグレーション現象を抑制できず、活物質層20と集電体10との密着性が低下する場合があり得る。一方、この範囲よりも小さすぎると、活物質層形成用ペースト40の粘度が増大しすぎるため、該ペースト40を作製する際に混入した気泡が乾燥時まで抜けきらず、電極30内部にピンホールが発生する要因になり得る。従って、上記フィブリル化処理したポリマー繊維が有するフィブリル(即ちポリマー繊維の表面に発生した微細繊維)26aの繊維径d(図2)は、概ね0.3μm~1.0μmが適当であり、通常は0.4μm~0.9μmにすることが好ましく、例えば0.5μm~0.8μmにすることがより好ましい。上記フィブリル26aの繊維径は、例えば走査型電子顕微鏡(SEM)による画像解析により把握することができる。
 なお、特に限定されるものではないが、ポリマー繊維の基幹部分26bの繊維径(太さ)は、概ね3μm~20μm程度にすることが適当であり、例えば3μm~10μm(例えば5μm程度)にすることがより好ましい。また、基幹部分26bの繊維長は、概ね0.1μm~5μmにすることが適当であり、例えば0.3μm~2μmにすることがより好ましい。例えば、ポリマー繊維の基幹部分26bの繊維径(太さ)が3μm~10μm程度であり、繊維長が1μm~5μm程度のものを使用することができる。
 特に限定するものではないが、負極活物質層形成用ペーストの固形分率は凡そ30%以上(典型的には30%~90%)であることが好ましく、凡そ40%~60%であることが好ましい。また、ペースト固形分中の負極活物質の割合は凡そ50質量%以上(典型的には50質量%~99.5質量%)であることが好ましく、凡そ70質量%~99質量%であることが好ましい。また、ペースト固形分中のバインダの割合は、例えば10質量%以下とすることができ、凡そ0.5質量%~6質量%(例えば1質量%~3質量%)であることが好ましい。また、ペースト固形分中の増粘剤の割合は、例えば10質量%以下とすることができ、凡そ0.5質量%~6質量%(例えば1質量%~5質量%)であることが好ましい。
 このような負極活物質層形成ペースト40を負極集電体10に塗布する操作としては、従来の一般的なリチウム二次電池用負極の作製と同様にして行うことができる。例えば、適当な塗布装置(ダイコーター等)を使用して、上記負極集電体10に所定量の上記活物質層形成用ペースト40を均一な厚さに塗布することにより、ペースト塗布物40が形成され得る(図3参照)。
 塗布後、適当な乾燥手段でペースト塗布物40を乾燥させることにより、負極集電体10上に負極活物質層20が形成された負極30が得られる(図4参照)。ペースト塗布物40の乾燥方法としては、従来の一般的なリチウム二次電池用負極の作製と同様にして行うことができる。例えば、適当な乾燥炉に通過させ、該集電体10の両面から熱風を当てることにより、ペースト塗布物40を乾燥することができる。上記熱風温度は特に限定するものではないが、例えば、水系溶媒を用いる場合、凡そ70℃~160℃が適当であり、例えば80℃~120℃がより好ましい。
 本構成によれば、フィブリル化処理したポリマー繊維(増粘剤)26を使用する。かかるフィブリル化処理したポリマー繊維26は、表面に多数の微細繊維(フィブリル)を持っているため、フィブリル化処理していないポリマー繊維に比べて、活物質22との接着性に富み、且つ、溶媒42との摩擦抵抗が大きくなり、ペースト塗布物40中での易動性(移動しやすさ)が低下する。そのため、ペースト塗布物40の乾燥中に対流が発生したとしても、集電体10近傍のポリマー繊維(増粘剤)26がバインダ24とともにペースト塗布物40の表層部に浮き上がる現象(マイグレーション)が抑制され、集電体10近傍のバインダ量が適切に確保される。
 ここに開示される技術では、ペースト塗布物40の乾燥速度を設定するにあたってマイグレーションによるポリマー材(バインダ24及び増粘剤26)の偏在を考慮しなくてもよいため、ペースト塗布物40を高速で乾燥することができる。例えば、上記ペースト塗布物中の溶媒を液面面積1cm当たり1.6g/s以上(すなわち1.6g/s・cm以上)の高速で揮発させることができ、電極の生産性が飛躍的に向上する。
 このようにして、負極集電体10上に負極活物質層20が保持された構造の電池用負極30を製造することができる。なお、乾燥後、必要に応じて適当なプレス処理(例えば、ロールプレス法、平板プレス法等の従来公知の各種プレス方法を採用することができる。)を施すことによって、負極活物質層20の厚みや密度を調整することができる。
 ここに開示される電極製造方法を適用して好ましく製造されるリチウム二次電池用の負極30の断面構造を図4に模式的に示す。この負極30は、活物質22とバインダ24と増粘剤26とを含む活物質層20が集電体10に保持された構成を有する。この活物質層20は、図3に示すように、活物質22とバインダ24と増粘剤(フィブリル化処理したポリマー繊維)26とを溶媒中に含む活物質層形成用ペースト40を集電体10に塗布し、その塗布されたペースト塗布物40を乾燥させることにより集電体10上に活物質層20が形成されたものである。そのため、活物質層20の表層部へのバインダ24及び増粘剤26の偏析が抑制され、活物質層20と集電体10の密着性を良好にすることができる。さらに、活物質層20の表層部にバインダ24及び増粘剤26が偏析しないため、活物質層表層部の反応抵抗を下げることができ、出力特性(特に大電流に対しての入出力特性)に優れた電極特性を得ることができる。
 このようにして得られた電極(例えば負極)は、上記のように活物質層と集電体の密着性に優れることから、種々の形態の電池の構成要素または該電池に内蔵される電極体の構成要素(例えば負極)として好ましく利用され得る。例えば、ここに開示されるいずれかの方法により製造された負極と、正極(本発明を適用して製造された正極であり得る。)と、該正負極間に配置される電解質と、典型的には正負極間を離隔するセパレータ(固体状またはゲル状の電解質を用いた電池では省略され得る。)と、を備えるリチウム二次電池の構成要素として好ましく使用され得る。かかる電池を構成する外容器の構造(例えば金属製の筐体やラミネートフィルム構造物)やサイズ、あるいは正負極集電体を主構成要素とする電極体の構造(例えば捲回構造や積層構造)等について特に制限はない。
 以下、上述した方法を適用して製造された負極(負極シート)30を用いて構築されるリチウム二次電池の一実施形態につき、図5及び図6に示す模式図を参照しつつ説明する。特に限定することを意図したものではないが、以下では捲回された電極体(捲回電極体)と非水電解液とを円筒型の容器に収容した形態のリチウム二次電池(リチウムイオン電池)を例として説明する。
 このリチウム二次電池100は、長尺状の正極シート50と長尺状の負極シート30が長尺状のセパレータ60を介して捲回された形態の電極体(捲回電極体)80が、図示しない非水電解液とともに、該捲回電極体80を収容し得る形状(円筒型)の容器70に収容された構成を有する。
 容器70は、上端が開放された有底円筒状の容器本体72と、その開口部を塞ぐ蓋体74とを備える。容器70を構成する材質としては、アルミニウム、スチール、NiめっきSUS等の金属材料が好ましく用いられる(本実施形態ではNiめっきSUS)。あるいは、PPS、ポリイミド樹脂等の樹脂材料を成形してなる容器70であってもよい。容器70の上面(すなわち蓋体74)には、捲回電極体80の正極50と電気的に接続する正極端子76が設けられている。容器70の下面には、捲回電極体80の負極30と電気的に接続する負極端子78(この実施形態では容器本体72が兼ねる。)が設けられている。容器70の内部には、捲回電極体80が図示しない非水電解液とともに収容される。
 本実施形態に係る捲回電極体80は、負極シート30に具備される活物質を含む層(負極活物質層)20の構成を除いては通常のリチウム二次電池の捲回電極体と同様であり、図6に示すように、捲回電極体80を組み立てる前段階において長尺状(帯状)のシート構造を有している。
 正極シート50は、長尺シート状の箔状の正極集電体52の両面に正極活物質を含む正極活物質層54が保持された構造を有している。ただし、正極活物質層54は正極シート50の幅方向の端辺に沿う一方の側縁(図では下側の側縁部分)には付着されず、正極集電体52を一定の幅にて露出させた正極活物質層非形成部が形成されている。
 負極シート30も正極シート50と同様に、長尺シート状の箔状の負極集電体10の両面に負極活物質を含む負極活物質層20が保持された構造を有している。ただし、負極活物質層20は負極シート30の幅方向の端辺に沿う一方の側縁(図では上側の側縁部分)には付着されず、負極集電体10を一定の幅にて露出させた負極活物質層非形成部が形成されている。
 捲回電極体80を作製するに際しては、正極シート50と負極シート30とがセパレータシート60を介して積層される。このとき、正極シート50の正極活物質非形成部分と負極シート30の負極活物質層非形成部分とがセパレータシート60の幅方向の両側からそれぞれはみ出すように、正極シート50と負極シート30とを幅方向にややずらして重ね合わせる。このように重ね合わせた積層体を捲回することによって捲回電極体80が作製され得る。
 捲回電極体80の捲回軸方向における中央部分には、捲回コア部分82(即ち正極シート50の正極活物質層54と負極シート30の負極活物質層20とセパレータシート60とが密に積層された部分)が形成される。また、捲回電極体80の捲回軸方向の両端部には、正極シート50および負極シート30の活物質層非形成部分がそれぞれ捲回コア部分82から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極活物質層54の非形成部分)84および負極側はみ出し部分(すなわち負極活物質層20の非形成部分)86には、正極リード端子62および負極リード端子64がそれぞれ付設されており、上述の正極端子76および負極端子78(ここでは容器本体72が兼ねる。)とそれぞれ電気的に接続される。
 かかる捲回電極体80を構成する構成要素は、負極シート30を除いて、従来のリチウム二次電池の捲回電極体と同様でよく、特に制限はない。例えば、正極シート50は、長尺状の正極集電体52の上にリチウム二次電池用正極活物質を主成分とする正極活物質層54が付与されて形成され得る。正極集電体52にはアルミニウム箔その他の正極に適する金属箔が好適に使用される。正極活物質は従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、リチウムニッケル酸化物(LiMn)、リチウムコバルト酸化物(LiCoO)、リチウムマンガン酸化物(LiNiO)等の、リチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)を主成分とする正極活物質が挙げられる。
 正負極シート50、30間に使用される好適なセパレータシート60としては多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。例えば、合成樹脂製(例えばポリプロピレン製)多孔質セパレータシートが好適に使用し得る。なお、電解質として固体電解質若しくはゲル状電解質を使用する場合には、セパレータが不要な場合(即ちこの場合には電解質自体がセパレータとして機能し得る。)があり得る。
 かかる構成の捲回電極体80を容器本体72に収容し、その容器本体72内に適当な非水電解液を配置(注液)する。容器本体72内に上記捲回電極体80と共に収容される非水電解液としては、従来のリチウム二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiAsF、LiCFSO、LiClO等のリチウム塩を好ましく用いることができる。例えば、ECとEMCとDMCとを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させた非水電解液を好ましく用いることができる。
 上記非水電解液を捲回電極体80とともに容器本体72に収容し、容器本体72の開口部を蓋体74で封止することにより、本実施形態に係るリチウム二次電池100の構築(組み立て)が完成する。なお、容器本体72の封止プロセスや電解液の配置(注液)プロセスは、従来のリチウム二次電池の製造で行われている手法と同様にして行うことができる。その後、該電池のコンディショニング(初期充放電)を行う。必要に応じてガス抜きや品質検査等の工程を行ってもよい。
 以下、本発明を実施例に基づいてさらに詳細に説明する。
<フィブリル化処理したCMC(増粘剤)の作製>
 増粘剤としてのカルボキシメチルセルロース(CMC;繊維長1.2μm)の凝集物(塊状)をPJMジェットミル機(日本ニューマチック工業株式会社製;粉砕圧力0.9MPa、粉砕回数1回)及びスーパーマスコロイダー機(増幸産業株式会社製;回転数3000rpm、砥石間のクリアランス5μm)を用いて粉砕処理を行い、フィブリル化処理したCMCを作製した。その際、CMCに加わる剪断力および圧縮力を適当に変化させて粉砕し、MDS-1型気流分級機(日本ニューマチック工業株式会社製)で分級し、フィブリル26aの繊維径d(図2)が異なる6種類のCMC(サンプル1~6)を得た。各サンプルのフィブリルの繊維径dを表1に示す。
Figure JPOXMLDOC01-appb-T000001
<負極活物質層用ペーストの調製>
 サンプル1~6のフィブリル化処理したCMC(増粘剤)をそれぞれ用いて負極活物質層用ペーストを調製した。具体的には、負極活物質としての鱗片状黒鉛粉末と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのフィブリル化処理したCMCとを、これらの材料の質量比が96:2:2となり且つ固形分濃度が約52質量%となるように水に分散させて負極活物質層用ペースト40を調製した。また、比較のために、フィブリル化処理していないCMCを用いて負極活物質層用ペーストを調製した(サンプル7)。フィブリル化処理していないCMCを用いたこと以外はサンプル1~6と同じ条件で負極活物質層用ペーストを調製した。
 表1にサンプル1~7の負極活物質層用ペーストの粘度[mPa・s]をそれぞれ示す。フィブリルの繊維径dが小さくなるほどペースト粘度は増加傾向となった。特にフィブリルの繊維径dが0.3μm以下になると、ペースト粘度は4500mPa・s以上となった。なお、上記粘度はBH型粘度計(TOKIMEC製)を用い、液温を25℃に調整してからロータの回転を20rpmにして測定した。
<負極シートの作製>
 上記得られた計7種類の負極活物質層用ペーストを長尺シート状の銅箔(負極集電体;厚み10μm)の両面に塗布して乾燥し、銅箔10の両面に負極活物質層20が設けられた負極シート30を作製した。なお、負極活物質層形成用ペーストの塗布量は、両面合わせて約6mg/cm(固形分基準)となるように調節した。乾燥後、負極活物質層の厚みが約0.2mmとなるようにプレスした。
 そして、上記得られた計7種類の負極シートの表面を電子顕微鏡(SEM)によって観察した。その結果を表1に示す。フィブリルの繊維径dを0.2μmとしたサンプル5については、負極活物質層の表面にピンホールが多数(負極シート1000cm当たり456個)認められた。このピンホールは、負極活物質層形成用ペーストを作製する際に混入した気泡が乾燥後まで抜けきらず、負極活物質層内に残存したものと考えられる。また、フィブリルの繊維径dを1.2μmとしたサンプル6については、負極活物質層の表面に、ミクロゲルと呼ばれるフィブリル化処理したCMCの不溶解成分の凝集物が多数(負極シート1000cm当たり12個)認められた。
 他方、フィブリルの繊維径dを0.3μm~1.0μmとしたサンプル1~4については、上述したピンホールや凝集物はほとんど観察されなかった。
<剥離強度試験>
 各サンプル1~7の負極シートの集電体10と負極活物質層20の密着性を90°剥離試験にて評価した。90°剥離試験は、JIS-C6481-1995に準拠して行った。具体的には、負極活物質層側の面を台上に両面テープで固定し、負極集電体を負極活物質層の面に対して垂直となる方向に引っ張り、毎分50mmの速度で連続的に約50mm剥がした。そして、この間の荷重の最低値を剥離強度[N/m]として測定し、負極集電体と負極活物質層の密着性を評価した。その結果を表1の該当箇所に示す。
 表1から分かるように、フィブリル化処理したCMCを用いたサンプル1~6では、フィブリル化処理していないCMCを用いたサンプル7に比べて、剥離強度が明らかに向上した。ここで供試した負極シートの場合、フィブリルの繊維径dを1.2μmとしたサンプル6は、ミクロゲル(凝集物)が多く発生したため、該ミクロゲルを起点として負極活物質の脱落が生じ、剥離強度が若干低下した。また、フィブリルの繊維径dを0.2μmとしたサンプル5は、ピンホールが多く発生したため、該ピンホールを起点として負極活物質の脱落が生じ、剥離強度が若干低下した。これに対し、フィブリルの繊維径dを0.3μm~1.0μmとしたサンプル1~4については、6.8N/m以上という極めて高い剥離強度を実現できた。剥離強度向上の観点からは、フィブリルの繊維径dは凡そ0.2μm~1.2μmとすることが好ましく、0.3μm~1.0μmとすることがより好ましく、0.5μm~0.8μmとすることが特に好ましい。また、ペースト粘度(ペーストの塗布性等)を考慮すると、フィブリルの繊維径は0.5μm~0.8μmとすることがより好ましい。
 次に、上記サンプル1~7に係る負極シートを用いて試験用のリチウム二次電池を作製した。試験用リチウム二次電池は、以下のようにして作製した。
<正極シートの作製>
 正極活物質としてのニッケルマンガンコバルト酸リチウム(LiNi1/3Co1/3Mn1/3)粉末と、導電助剤としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、これらの材料の質量比が90:8:2となり且つ固形分濃度が約48質量%となるようにN-メチルピロリドン(NMP)中で混合して、正極活物質層形成用ペーストを調製した。この正極活物質層形成用ペーストを長尺シート状のアルミニウム箔(正極集電体52;厚み15μm)の両面に帯状に塗布して乾燥することにより、正極集電体52の両面に正極活物質層54が設けられた正極シート50を作製した。正極活物質層形成用ペーストの塗布量は、両面合わせて約8.4mg/cm(固形分基準)となるように調節した。また、乾燥後、正極活物質層54の厚みが約150μmとなるようにプレスした。
<リチウム二次電池の作製>
 そして、正極シート50及び負極シート30を2枚のセパレータシート(多孔質ポリプロピレン)60を介して捲回することによって捲回電極体80を作製した。このようにして得られた捲回電極体80を非水電解液とともに円筒型の電池容器70(直径17mm×高さ50mm)に収容し、電池容器70の開口部を気密に封口した。非水電解液としてはエチレンカーボネート(EC)とジエチルカーボネート(DEC)とプロピオン酸メチルとを3:5:2の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させた非水電解液を使用した。このようにしてリチウム二次電池100を組み立てた。その後、常法により初期充放電処理(コンディショニング)を行って試験用のリチウム二次電池を得た。
<充放電サイクル試験>
 以上のように得られた試験用リチウム二次電池(サンプル1~7)のそれぞれに対し、20℃において1500mAの定電流で電圧4.1Vまで充電を行い、さらに4.1Vの定電圧方式で合計充電時間が2時間となるまで充電し、10分間の休止後、かかる充電後の電池を20℃において7200mAの定電流で電圧3Vまで放電する充放電サイクルを500回連続して繰り返した。そして、1サイクル目における放電容量と500サイクル目における放電容量とから、充放電サイクル試験後における容量維持率(=[500サイクル目の放電容量/1サイクル目の放電容量]×100)を算出した。その結果を表1の該当箇所に示す。
 表1から分かるように、フィブリル化処理したCMCを用いたサンプル1~6では、フィブリル化処理していないCMCを用いたサンプル7に比べて、充放電サイクル試験後における容量維持率が明らかに向上した。ここで供試した電池の場合、フィブリルの繊維径dを1.2μmとしたサンプル6は、ミクロゲル(凝集物)が多く発生したため、該ミクロゲルの存在により電極表面での反応が不均一となり、容量維持率が若干低下した。また、フィブリルの繊維径dを0.2μmとしたサンプル5は、ピンホールが多く発生したため、該ピンホールの存在により電極表面での反応が不均一となり、容量維持率が若干低下した。これに対し、フィブリルの繊維径dを0.3μm~1.0μmとしたサンプル1~4については、96%以上という極めて高い容量維持率を達成できた。容量維持率向上の観点からは、フィブリルの繊維径dは凡そ0.2μm~1.2μmとすることが好ましく、0.3μm~1.0μmとすることがより好ましく、0.5μm~0.8μmとすることが特に好ましい。また、ペースト粘度(ペーストの塗布性等)を考慮すると、フィブリルの繊維径は0.5μm~0.8μmとすることがより好ましい。
 本発明に係る電池(例えばリチウム二次電池)は、上記のとおり電池性能に優れることから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。したがって本発明は、図7に示すように、かかる電池100(組電池の形態であり得る。)を電源として備える車両1000(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供する。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
 例えば、上述した実施形態では、ペーストの増粘剤として機能する第二ポリマーとしてフィブリル化処理したポリマー繊維を使用する場合を例示したが、これに限定されない。例えば、活物質層においてバインダとして機能する第一ポリマーとしてフィブリル化処理したポリマー繊維を使用してもよい。この場合、フィブリル化処理によってバインダ(第1ポリマー)の易動性が低下するので、ペースト塗布物の乾燥中に対流が発生したとしても、集電体近傍のバインダがペースト塗布物の表層部に浮き上がりにくくなる。このことによって、集電体近傍のバインダ量が確保され、活物質層と集電体との密着性を高めることができる。
 なお、この明細書により開示される事項には、活物質とバインダとを含む活物質層が集電体に保持された構成を有する電池用電極であって、上記活物質層を厚み方向の中央部で2分割(すなわち、厚みを二等分)したときに、該活物質層の集電体側に配された分割部分(下層側)に含まれるバインダ量が、集電体とは反対側に配された分割部分(上層側)に含まれるバインダ量よりも多いことを特徴とする電池用電極が含まれる。かかる構成の電極は、例えば、ここに開示されるいずれかの製造方法を適用することにより好適に実現され得る。

Claims (7)

  1.  活物質を含む活物質層が集電体上に保持された構造を有する電池用電極の製造方法であって、
     活物質とポリマー材とを溶媒中に含む活物質層形成用ペーストを集電体に塗布する工程と、
     その塗布されたペースト塗布物を乾燥させることにより前記集電体上に活物質層を形成する工程と
     を包含し、
     ここで、前記ポリマー材の少なくとも一種として、フィブリル化処理したポリマー繊維を使用することを特徴とする、電池用電極の製造方法。
  2.  前記ポリマー材は、前記活物質層においてバインダとして機能する第一ポリマーと、前記ペーストの増粘剤として機能する第二ポリマーとを含有し、
     少なくとも前記第二ポリマーとして前記フィブリル化処理したポリマー繊維を使用する、請求項1に記載の製造方法。
  3.  前記フィブリル化処理したポリマー繊維が有するフィブリルの繊維径が0.3μm~1.0μmである、請求項1または2に記載の製造方法。
  4.  前記ポリマー繊維として、セルロース系繊維を使用する、請求項1から3の何れか一つに記載の製造方法。
  5.  前記ペースト塗布物中の溶媒を1.6g/s・cm以上の速度で揮発させる、請求項1から4の何れか一つに記載の製造方法。
  6.  前記電極は負極であり、
     前記活物質層形成用ペーストの溶媒は水である、請求項1から5の何れか一つに記載の製造方法。
  7.  請求項1から6の何れか一つに記載の製造方法により製造された電池用電極を備えた、電池。
PCT/JP2010/064418 2010-08-25 2010-08-25 電池用電極の製造方法 WO2012026009A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012530475A JP5594548B2 (ja) 2010-08-25 2010-08-25 電池用電極の製造方法
CN201080068708.0A CN103081185B (zh) 2010-08-25 2010-08-25 电池用电极的制造方法
KR1020137007359A KR101583120B1 (ko) 2010-08-25 2010-08-25 전지용 전극의 제조 방법
US13/818,441 US8900747B2 (en) 2010-08-25 2010-08-25 Method for producing battery electrode
PCT/JP2010/064418 WO2012026009A1 (ja) 2010-08-25 2010-08-25 電池用電極の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064418 WO2012026009A1 (ja) 2010-08-25 2010-08-25 電池用電極の製造方法

Publications (1)

Publication Number Publication Date
WO2012026009A1 true WO2012026009A1 (ja) 2012-03-01

Family

ID=45723037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064418 WO2012026009A1 (ja) 2010-08-25 2010-08-25 電池用電極の製造方法

Country Status (5)

Country Link
US (1) US8900747B2 (ja)
JP (1) JP5594548B2 (ja)
KR (1) KR101583120B1 (ja)
CN (1) CN103081185B (ja)
WO (1) WO2012026009A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779538A (zh) * 2012-10-19 2014-05-07 丰田自动车株式会社 用于二次电池电极的制造方法和电极制造装置
US20140255780A1 (en) * 2013-03-05 2014-09-11 Sion Power Corporation Electrochemical cells comprising fibril materials, such as fibril cellulose materials
WO2014157422A1 (ja) * 2013-03-26 2014-10-02 日産自動車株式会社 非水電解質二次電池
WO2015141464A1 (ja) * 2014-03-19 2015-09-24 日本ゼオン株式会社 電気化学素子電極用複合粒子
KR20150122122A (ko) * 2013-02-27 2015-10-30 제온 코포레이션 전기 화학 소자 전극용 복합 입자, 전기 화학 소자 전극용 복합 입자의 제조 방법, 전기 화학 소자 전극 및 전기 화학 소자
US20160149208A1 (en) * 2013-06-28 2016-05-26 Toyota Jidosha Kabushiki Kaisha Electrode for secondary battery
DE102019102023A1 (de) 2019-01-28 2020-07-30 Volkswagen Aktiengesellschaft Herstellung von Elektroden für Batteriezellen
WO2020240746A1 (ja) * 2019-05-29 2020-12-03 株式会社ダイセル スラリー
US11005090B2 (en) 2016-12-08 2021-05-11 Panasonic Intellectual Property Management Co., Ltd. Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
DE102022105662A1 (de) 2022-03-10 2023-09-14 Volkswagen Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung einer Batterieelektrode
DE102022105656A1 (de) 2022-03-10 2023-09-14 Volkswagen Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung einer Batterieelektrode

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012061273A2 (en) 2010-11-03 2012-05-10 Ramu, Inc. High power density srm
KR101546010B1 (ko) * 2013-03-06 2015-08-20 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
JP6485359B2 (ja) * 2013-12-26 2019-03-20 日本ゼオン株式会社 電気化学素子電極用複合粒子
EP3147972B1 (en) * 2014-05-20 2018-09-05 Zeon Corporation Composite particles for electrochemical device electrode and method for manufacturing composite particles for electrochemical device electrode
JP6659214B2 (ja) 2014-10-17 2020-03-04 トヨタ自動車株式会社 電池用セパレータ、積層セパレータ、リチウムイオン二次電池および組電池
JP6264320B2 (ja) * 2015-04-14 2018-01-24 トヨタ自動車株式会社 非水電解液二次電池およびその製造方法
KR20170020032A (ko) * 2015-08-13 2017-02-22 주식회사 엘지화학 이차전지용 캐소드 및 그의 제조방법
WO2018048277A2 (ko) * 2016-09-09 2018-03-15 주식회사 엘지화학 이차전지용 전극의 제조방법 및 이로부터 제조된 전극
KR102255530B1 (ko) * 2017-03-31 2021-05-25 주식회사 엘지에너지솔루션 리튬 이차전지용 전극의 제조방법, 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
US20190393464A1 (en) * 2017-12-12 2019-12-26 Hollingsworth & Vose Company Pasting papers and capacitance layers for batteries comprising multiple fiber types and/or particles
JP7261864B2 (ja) * 2019-03-18 2023-04-20 株式会社ダイセル スラリー
US20220109136A1 (en) * 2020-10-01 2022-04-07 GM Global Technology Operations LLC Electrode assembly and method of making the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074505A (ja) * 1996-08-30 1998-03-17 Hitachi Maxell Ltd リチウム二次電池の製造方法
JPH113709A (ja) * 1997-06-10 1999-01-06 Hitachi Maxell Ltd リチウム二次電池の製造方法
JP2000100439A (ja) * 1998-09-24 2000-04-07 Daicel Chem Ind Ltd 結着剤、それを用いた積層体並びにリチウム二次電池
JP2008103098A (ja) * 2006-10-17 2008-05-01 Matsushita Electric Ind Co Ltd 非水電解液二次電池用電極板の製造方法およびその製造装置
JP2009193932A (ja) * 2008-02-18 2009-08-27 Asahi Kasei E-Materials Corp 電極の製造方法
WO2010008058A1 (ja) * 2008-07-17 2010-01-21 旭硝子株式会社 非水電解質電池用負極コンポジット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235901A (ja) 1986-05-01 1990-09-18 Dow Chem Co:The 高分子量,高粘度セルロースエーテルの粒度を低下させる方法
US4820813A (en) 1986-05-01 1989-04-11 The Dow Chemical Company Grinding process for high viscosity cellulose ethers
JP3708591B2 (ja) 1995-08-30 2005-10-19 ノボザイムス アクティーゼルスカブ セルロース誘導体の製造法
DE19641781A1 (de) 1996-10-10 1998-04-16 Clariant Gmbh Verfahren und Vorrichtung zum gleichzeitigen Mahlen und Trocknen eines feuchten Celluloseether enthaltenden Mahlgutes
JP4055914B2 (ja) 1997-03-07 2008-03-05 日本製紙株式会社 セルロース誘導体とその製法
JP4135074B2 (ja) * 2002-10-25 2008-08-20 ソニー株式会社 負極の製造方法および電池の製造方法
JP2005340071A (ja) 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd 非水系二次電池用正極板の製造方法
CN100481582C (zh) 2004-12-10 2009-04-22 松下电器产业株式会社 锂离子二次电池和其负极的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074505A (ja) * 1996-08-30 1998-03-17 Hitachi Maxell Ltd リチウム二次電池の製造方法
JPH113709A (ja) * 1997-06-10 1999-01-06 Hitachi Maxell Ltd リチウム二次電池の製造方法
JP2000100439A (ja) * 1998-09-24 2000-04-07 Daicel Chem Ind Ltd 結着剤、それを用いた積層体並びにリチウム二次電池
JP2008103098A (ja) * 2006-10-17 2008-05-01 Matsushita Electric Ind Co Ltd 非水電解液二次電池用電極板の製造方法およびその製造装置
JP2009193932A (ja) * 2008-02-18 2009-08-27 Asahi Kasei E-Materials Corp 電極の製造方法
WO2010008058A1 (ja) * 2008-07-17 2010-01-21 旭硝子株式会社 非水電解質電池用負極コンポジット

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779538A (zh) * 2012-10-19 2014-05-07 丰田自动车株式会社 用于二次电池电极的制造方法和电极制造装置
JPWO2014133067A1 (ja) * 2013-02-27 2017-02-02 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
KR102292957B1 (ko) 2013-02-27 2021-08-23 제온 코포레이션 전기 화학 소자 전극용 복합 입자, 전기 화학 소자 전극용 복합 입자의 제조 방법, 전기 화학 소자 전극 및 전기 화학 소자
KR20150122122A (ko) * 2013-02-27 2015-10-30 제온 코포레이션 전기 화학 소자 전극용 복합 입자, 전기 화학 소자 전극용 복합 입자의 제조 방법, 전기 화학 소자 전극 및 전기 화학 소자
US10461333B2 (en) 2013-03-05 2019-10-29 Sion Power Corporation Electrochemical cells comprising fibril materials
CN105190953A (zh) * 2013-03-05 2015-12-23 赛昂能源有限公司 包含原纤维材料如原纤维纤维素材料的电化学电池
US9490478B2 (en) * 2013-03-05 2016-11-08 Sion Power Corporation Electrochemical cells comprising fibril materials
US20140255780A1 (en) * 2013-03-05 2014-09-11 Sion Power Corporation Electrochemical cells comprising fibril materials, such as fibril cellulose materials
WO2014157422A1 (ja) * 2013-03-26 2014-10-02 日産自動車株式会社 非水電解質二次電池
US20160149208A1 (en) * 2013-06-28 2016-05-26 Toyota Jidosha Kabushiki Kaisha Electrode for secondary battery
WO2015141464A1 (ja) * 2014-03-19 2015-09-24 日本ゼオン株式会社 電気化学素子電極用複合粒子
JPWO2015141464A1 (ja) * 2014-03-19 2017-04-06 日本ゼオン株式会社 電気化学素子電極用複合粒子
US11005090B2 (en) 2016-12-08 2021-05-11 Panasonic Intellectual Property Management Co., Ltd. Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
DE102019102023A1 (de) 2019-01-28 2020-07-30 Volkswagen Aktiengesellschaft Herstellung von Elektroden für Batteriezellen
WO2020240746A1 (ja) * 2019-05-29 2020-12-03 株式会社ダイセル スラリー
JPWO2020240746A1 (ja) * 2019-05-29 2020-12-03
JP7271660B2 (ja) 2019-05-29 2023-05-11 株式会社ダイセル スラリー
DE102022105656A1 (de) 2022-03-10 2023-09-14 Volkswagen Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung einer Batterieelektrode
DE102022105662A1 (de) 2022-03-10 2023-09-14 Volkswagen Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung einer Batterieelektrode

Also Published As

Publication number Publication date
JP5594548B2 (ja) 2014-09-24
KR101583120B1 (ko) 2016-01-07
JPWO2012026009A1 (ja) 2013-10-28
CN103081185A (zh) 2013-05-01
CN103081185B (zh) 2016-04-27
US8900747B2 (en) 2014-12-02
US20130157130A1 (en) 2013-06-20
KR20130058054A (ko) 2013-06-03

Similar Documents

Publication Publication Date Title
JP5594548B2 (ja) 電池用電極の製造方法
CN111969214B (zh) 一种异型结构的正极片及包括该正极片的锂离子电池
JP5812364B2 (ja) 非水電解液型二次電池
JP5561567B2 (ja) 電池の製造方法
WO2012124033A1 (ja) 非水電解質二次電池とその製造方法
KR101543937B1 (ko) 리튬 이온 2차 전지와 그 제조 방법
US9012078B2 (en) Method for producing battery electrode
JP6094805B2 (ja) 二次電池
JP5818078B2 (ja) 非水電解質二次電池の製造方法
JP5828342B2 (ja) 非水電解質二次電池
JP5704405B2 (ja) 二次電池
KR20080008247A (ko) 비수전해질 이차 전지용 정극 및 그 제조 방법과, 비수전해질 이차 전지 및 이를 이용한 조전지와, 비수전해질 이차 전지 또는 조전지를 탑재한 수송 기관
JP2010282873A (ja) リチウム二次電池およびその製造方法
JP2012138217A (ja) 電池の製造方法
JP5483092B2 (ja) 電池と電池用電極およびその製造方法
JP2011253684A (ja) 電池の製造方法
JP5605614B2 (ja) リチウム二次電池の製造方法
JP2023538082A (ja) 負極およびこれを含む二次電池
JP5679206B2 (ja) リチウムイオン二次電池用負極の製造方法およびリチウムイオン二次電池の製造方法
JP2010211975A (ja) 二次電池用の電極の製造方法
CN115050919A (zh) 二次电池用电极的制造方法及二次电池的制造方法
JP2014143064A (ja) 二次電池およびその製造方法
JP2014154295A (ja) 二次電池
WO2015072141A1 (ja) 電池電極用下地層、これを用いた集電体、電極およびリチウムイオン二次電池
CN117712281A (zh) 一种干电极膜和制备其的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068708.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856415

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012530475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13818441

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137007359

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10856415

Country of ref document: EP

Kind code of ref document: A1