WO2012020680A1 - 分離膜エレメントおよび複合半透膜の製造方法 - Google Patents

分離膜エレメントおよび複合半透膜の製造方法 Download PDF

Info

Publication number
WO2012020680A1
WO2012020680A1 PCT/JP2011/067772 JP2011067772W WO2012020680A1 WO 2012020680 A1 WO2012020680 A1 WO 2012020680A1 JP 2011067772 W JP2011067772 W JP 2011067772W WO 2012020680 A1 WO2012020680 A1 WO 2012020680A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional layer
reagent
polyamide
separation functional
separation
Prior art date
Application number
PCT/JP2011/067772
Other languages
English (en)
French (fr)
Inventor
貴史 小川
将弘 木村
佐々木 崇夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2012507742A priority Critical patent/JP5895838B2/ja
Priority to US13/816,062 priority patent/US20130126419A1/en
Priority to SG2013010285A priority patent/SG187809A1/en
Priority to EP11816346.8A priority patent/EP2604333A4/en
Priority to CN2011800393306A priority patent/CN103025412A/zh
Priority to KR1020137003387A priority patent/KR20130143548A/ko
Priority to AU2011290275A priority patent/AU2011290275A1/en
Publication of WO2012020680A1 publication Critical patent/WO2012020680A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/10Specific pressure applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/40Details relating to membrane preparation in-situ membrane formation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/50Control of the membrane preparation process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Definitions

  • the present invention relates to a separation membrane element useful for selective separation of a liquid mixture.
  • the separation membrane element obtained by the present invention can be suitably used for desalination of, for example, seawater or brine.
  • membrane separation method As an energy saving and resource saving process has been expanded.
  • membranes used in the membrane separation method include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, and reverse osmosis membranes. Separation membrane elements using these membranes are used, for example, when drinking water is obtained from seawater, brine, or water containing harmful substances, for the production of industrial ultrapure water, wastewater treatment, recovery of valuable materials, etc. ing.
  • composite semipermeable membranes Most of the reverse osmosis membranes and nanofiltration membranes currently on the market are composite semipermeable membranes.
  • composite semipermeable membranes There are two types of composite semipermeable membranes: those having a gel layer and an active layer obtained by crosslinking a polymer on a microporous support, and those having an active layer obtained by polycondensing monomers on a microporous support.
  • composite semipermeable membranes obtained by coating a microporous support with a separation functional layer made of a crosslinked polyamide obtained by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide are permeable and selective. It is widely used as a separation membrane with high separability.
  • Patent Documents 1 and 2 disclose various means for improving the boron removal performance of the composite semipermeable membrane.
  • Patent Document 1 discloses a method of improving the performance by heat-treating a composite semipermeable membrane formed by interfacial polymerization.
  • Patent Document 2 discloses a method in which a composite semipermeable membrane formed by interfacial polymerization is brought into contact with a bromine-containing free chlorine aqueous solution.
  • the membranes described in the Examples of these documents are converted into membranes when seawater having a temperature of 25 ° C., a pH of 6.5, a boron concentration of 5 ppm, and a TDS concentration of 3.5 wt% is permeated at an operating pressure of 5.5 MPa. It is considered that the permeation flux is 0.5 m 3 / m 2 / day or less and the boron removal rate is at most about 91 to 92%. Therefore, development of a composite semipermeable membrane having higher boron blocking performance has been desired.
  • An object of the present invention is to provide a separation membrane element having a small amount of eluate and high boron removal performance and high water permeability.
  • the present invention comprises any one of the following configurations.
  • a separation membrane element comprising a composite semipermeable membrane having a polyamide separation functional layer on a microporous support composed of a substrate and a porous support layer, wherein the polyamide separation functional layer has a yellowness of 10
  • a separation membrane element having a concentration of eluate from the base material of 1.0 ⁇ 10 ⁇ 3 wt% or less of 40 ⁇ 40 or less.
  • the functional group ratios of the surface on the porous support layer side and the surface on the opposite side of the porous support layer are expressed as (mole equivalent of azo group + mole equivalent of phenolic hydroxyl group + amino
  • (Mole equivalent of group) / (Mole equivalent of amide group) (functional group ratio on the surface opposite to the porous support layer) / (functional group ratio on the surface on the porous support layer side) is 1.
  • the separation membrane element according to (1) which is 1 or more.
  • a polyfunctional amine aqueous solution and a polyfunctional acid halide-containing solution are brought into contact with each other to form a polyamide separation functional layer having a primary amino group
  • the polyamide separation functional layer is contacted with a reagent (A) that reacts with the primary amino group to produce a diazonium salt or a derivative thereof and a reagent (B) that reacts with the diazonium salt or a derivative thereof.
  • a method for producing a composite semipermeable membrane wherein the reagent (A) is brought into contact with the surface of the polyamide separation functional layer at a pressure of 0.2 MPa or more, and the concentration of the reagent (B) and the reagent (B)
  • the product of the contact time between the polyamide separation functional layer and the polyamide separation functional layer (ppm ⁇ min) is 200,000 ppm ⁇ min or less.
  • a polyamide separation functional layer having a primary amino group by contacting a polyfunctional amine aqueous solution and a polyfunctional acid halide-containing solution on a microporous support comprising a substrate and a porous support layer.
  • the reagent (C) having a primary amino group and the reagent (D) that reacts with the primary amino group to form a diazonium salt or a derivative thereof are contacted on the polyamide separation functional layer.
  • the product with the time of contact with the polyamide separation functional layer (ppm ⁇ min) is 200,000 ppm ⁇ min or less.
  • the reagents (A) to (D) in the present invention include simple substances, compounds, and mixtures of simple substances and / or compounds.
  • the present invention it is possible to obtain a separation membrane element with a small amount of eluate and excellent boron removal performance and water permeability. And by using this separation membrane element, improvement of energy saving and quality improvement of permeated water is expected.
  • the separation membrane element supplies raw fluid to one side of the separation membrane and obtains permeate fluid from the other side.
  • the separation membrane element is configured such that a large number of permeation fluids can be obtained per unit element by bundling a large number of separation membranes having various shapes to increase the membrane area.
  • Various elements such as a spiral type, a hollow fiber type, a plate-and-frame type, a rotating flat membrane type, and a flat membrane integrated type can be cited according to the application and purpose.
  • spiral separation membrane elements are frequently used in that pressure can be applied to the raw fluid and a large amount of permeated fluid can be taken out.
  • Spiral type separation membrane element is a supply-side channel material that supplies raw fluid to the surface of the separation membrane, a separation membrane that separates a plurality of components contained in the raw fluid, and a specific membrane that is separated from the original fluid through the separation membrane.
  • a member made of a permeate-side channel material for guiding the component as a permeate fluid to the central tube is wound around the central tube.
  • the supply-side channel material a polymer net or the like is mainly used.
  • a composite functional layer composed of a crosslinked polymer of polyamide, a porous support layer composed of a polymer such as polysulfone, and a base material composed of a polymer such as polyethylene terephthalate are laminated from the supply side to the permeation side, respectively.
  • a semipermeable membrane is preferably used.
  • a permeation-side channel material a woven member called a tricot, which is capable of forming a permeation-side channel while preventing the film from dropping, is called a tricot with an unevenness smaller than that of the supply-side channel material. Furthermore, you may laminate
  • the microporous support composed of the base material and the porous support layer has substantially no separation performance of ions or the like, and gives strength to the separation functional layer having the separation performance substantially.
  • the size and distribution of the holes are not particularly limited.For example, uniform and fine holes, or fine holes having a diameter gradually increasing from the surface on the side where the separation functional layer is formed to the other surface, A microporous support having a micropore size of 0.1 nm or more and 100 nm or less on the surface on which the separation functional layer is formed is preferable.
  • the material used for the microporous support and its shape are not particularly limited.
  • the base material include a fabric mainly composed of at least one selected from polyester or aromatic polyamide. Among them, a polyester fabric having high mechanical and thermal stability is particularly preferable.
  • a long fiber nonwoven fabric, a short fiber nonwoven fabric, or a woven or knitted fabric can be preferably used.
  • the polymer solution for forming a porous support layer is cast on a substrate, the polymer solution is broken through by permeation, the porous support layer is peeled off, and the substrate is fluffed.
  • a long-fiber nonwoven fabric that can prevent the occurrence of defects such as film non-uniformity and pinholes.
  • the long fiber nonwoven fabric it is possible to suppress non-uniformity at the time of casting a polymer solution caused by fluffing and film defects that occur when the short fiber nonwoven fabric is used.
  • a membrane having no membrane defects is required, and therefore, a long fiber nonwoven fabric is more preferable as the substrate.
  • polysulfone As the material of the porous support layer, polysulfone, cellulose acetate, polyvinyl chloride, or a mixture thereof is preferably used, and polysulfone having high chemical, mechanical and thermal stability is used. Particularly preferred.
  • polysulfone composed of repeating units represented by the following chemical formula because the pore diameter is easy to control and the dimensional stability is high.
  • the thickness of the microporous support affects the strength of the composite semipermeable membrane and the packing density when it is used as an element. In order to obtain sufficient mechanical strength and packing density, it is preferably in the range of 30 to 300 ⁇ m, more preferably in the range of 50 to 250 ⁇ m.
  • the thickness of the porous support layer constituting the microporous support is preferably in the range of 10 to 200 ⁇ m, more preferably in the range of 20 to 100 ⁇ m.
  • the form of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic microscope.
  • a scanning electron microscope For example, if the cross section is observed with a scanning electron microscope, the porous support layer is peeled off from the substrate, and then cut by the freeze cleaving method to obtain a sample for cross section observation.
  • the sample is thinly coated with platinum, platinum-palladium, or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high-resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 6 kV.
  • UHR-FE-SEM high-resolution field emission scanning electron microscope
  • Hitachi S-900 electron microscope can be used as the high-resolution field emission scanning electron microscope.
  • the film thickness of the porous support layer and the projected area equivalent circle diameter are determined from the obtained electron micrograph.
  • the thickness and the pore diameter of the porous support layer are average values, and the thickness of the porous support layer is an average value of 20 points measured at intervals of 20 ⁇ m in a direction perpendicular to the thickness direction by cross-sectional observation.
  • the hole diameter is an average value of the diameters corresponding to the projected area circles by counting 200 holes.
  • the polyamide separation functional layer can be formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide. Therefore, the separation functional layer has a primary amino group as a partial structure or terminal functional group of the polyamide that forms the separation functional layer.
  • the thickness of the polyamide separation functional layer is usually in the range of 0.01 to 1 ⁇ m, preferably in the range of 0.1 to 0.5 ⁇ m, in order to obtain sufficient separation performance and permeated water amount.
  • the yellowness of the polyamide separation functional layer is 10 or more and 40 or less. Even within the above yellowness range, when the yellowness is 10 or more and 25 or less, a membrane having a particularly large amount of water can be obtained among high performance membranes. On the other hand, when the yellowness is 25 or more and 40 or less, a film having a particularly high removal rate can be obtained among high-performance films.
  • Yellowness is the degree to which the hue of a polymer is specified in Japanese Industrial Standards JIS K7373: 2006 and is separated from colorless or white to yellow, and is expressed as a positive amount.
  • the yellowness of the polyamide separation functional layer can be measured with a color meter.
  • a color meter By attaching and peeling a colorless cellophane tape on the separation functional layer surface of the dried composite semipermeable membrane, the polyamide separation functional layer can be collected on the cellophane tape. Only the cellophane tape can be used as a blank, and the cellophane tape to which the polyamide separation functional layer is attached can be measured by transmission measurement.
  • SM color computer SM-7 manufactured by Suga Test Instruments Co., Ltd. can be used as a color meter.
  • Examples of the polyamide separation functional layer having a yellowness of 10 or more include a polyamide separation functional layer having a structure having an electron donating group and an electron withdrawing group in an aromatic ring and / or a structure extending a conjugated system. By having these structures, the polyamide separation functional layer exhibits a yellowness of 10 or more. However, when the amount of these structures is increased, the yellowness tends to be larger than 40. Moreover, when these structures are combined in multiple, the structure part becomes large, it exhibits red, and yellowness tends to become larger than 40. The greater the yellowness, the greater the amount of the structure, the larger the structure, and the pores on the surface and inside of the polyamide separation functional layer, so that the boron removal rate increases but the water permeability decreases greatly. . If the yellowness is 10 or more and 40 or less, the boron removal rate can be increased without excessively reducing the water permeability.
  • Examples of the electron donating group include a hydroxyl group, an amino group, and an alkoxy group.
  • Examples of the electron withdrawing group include a carboxyl group, a sulfonic acid group, an aldehyde group, an acyl group, an aminocarbonyl group, an aminosulfonyl group, a cyano group, a nitro group, and a nitroso group.
  • Examples of structures extending the conjugated system include polycyclic aromatic rings, polycyclic heterocycles, ethenylene groups, ethynylene groups, azo groups, imino groups, arylene groups, heteroarylene groups, and combinations of these structures. Among these, an azo group is preferable from the viewpoint of simplicity of the structure imparting operation.
  • the structure having an electron donating group and an electron withdrawing group on the aromatic ring and / or a structure extending the conjugated system is a polyamide separation functional layer having a structure on the opposite side of the porous support layer from the surface of the porous support layer. It is preferable to exist in a large amount on the surface (the surface of the composite semipermeable membrane). By being present more on the surface on the side opposite to the porous support layer, the boron removal rate can be increased while maintaining the water permeability.
  • a structure having an electron donating group and an electron withdrawing group on an aromatic ring or a structure extending a conjugated system is used as a porous support layer.
  • a structure having an electron donating group and an electron withdrawing group on an aromatic ring or a structure extending a conjugated system is used as a porous support layer.
  • the functional group ratio of the surface on the porous support layer side and the surface on the opposite side of the porous support layer is (molar equivalent of azo group + phenol
  • the surface functional group ratio) is preferably 1.1 or more.
  • the upper limit of the ratio of the functional group ratio is preferably 5 or less.
  • the amount of functional groups such as amide groups in the polyamide separation functional layer can be analyzed using, for example, X-ray photoelectron spectroscopy (XPS). Specifically, “Journal of Polymer Science”, Vol. 26, 559-572 (1988) and “Journal of the Adhesion Society of Japan”, Vol. 27, no. 4 (1991), X-ray photoelectron spectroscopy (XPS) can be used.
  • XPS X-ray photoelectron spectroscopy
  • the C1s peak position of neutral carbon (CHx) is adjusted to 284.6 eV.
  • the ratio of the carbon to which the nitrogen atom or oxygen atom is bonded to the carbonyl carbon is determined by peak splitting.
  • the carbon to which the nitrogen atom is bonded and the carbonyl carbon appear in a ratio of 1: 1.
  • the value obtained by subtracting the ratio of carbonyl carbon from the ratio of carbon bonded to nitrogen atom or oxygen atom is the ratio of (molar equivalent of azo group + molar equivalent of phenolic hydroxyl group + molar equivalent of amino group) Become.
  • the ratio of the ratio between this numerical value and the carbonyl carbon is defined as “(molar equivalent of azo group + molar equivalent of phenolic hydroxyl group + molar equivalent of amino group) / molar equivalent of amide group”.
  • the polyamide separation functional layer has a yellowness of 10 or more and 40 or less, the concentration of eluate from the substrate is small.
  • the eluate refers to a component that elutes from the separation membrane into the permeate when passed through the separation membrane.
  • Eluates include unreacted polyfunctional amines and hydrolysates of polyfunctional acid halides, oligomers of polyfunctional amines and polyfunctional acid halides, or compounds used when chemically treating polyamide separation functional layers. And a product obtained by reacting the eluate with a chemical treatment.
  • Substances that can be eluted from the separation membrane are considered to be contained in the porous support layer and the base material. However, since the substances in the base material are easily eluted in the permeate, the base material contains a large amount of the eluate. If used, it may become a problem when used as a separation membrane element. Therefore, in the present invention, it is necessary to reduce the amount of eluate contained in the substrate.
  • the measuring method of the eluate contained in the base material is as follows.
  • the substrate is peeled from the composite semipermeable membrane, the peeled substrate is immersed in a solvent that does not dissolve the substrate, and the immersion is continued until the eluate is sufficiently extracted into the solvent.
  • the substrate is taken out from the solvent, heated and dried, cooled to room temperature in a desiccator, and then weighed.
  • the extract is concentrated to calculate the weight of the eluate, or the extracted components are measured with an ultraviolet-visible spectrophotometer, high-performance liquid chromatography, gas chromatography or the like that has previously obtained a calibration curve, and the eluate from the substrate. Calculate the weight. From the following formula, the concentration of the effluent from the substrate is determined.
  • Eluate concentration (wt%) 100 ⁇ eluate weight / dry substrate weight
  • the eluate is extracted by immersing the substrate in ethanol for 8 hours. It is considered that the eluate is almost extracted into ethanol by immersing the substrate in ethanol for 8 hours.
  • the concentration of the effluent from the substrate is 1.0 ⁇ 10 ⁇ 3 wt% or less.
  • the lower limit is preferably 0%, but is practically about 1.0 ⁇ 10 ⁇ 5 wt%.
  • microporous support is prepared.
  • the microporous support can be selected from various commercially available materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha. Also, “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).
  • an N, N-dimethylformamide (DMF) solution of the above polysulfone is cast on a densely woven polyester fabric or non-woven fabric (base material) to a certain thickness, and the solution is submerged in water. What is necessary is just to obtain the microporous support body which has the porous support layer which is a micropore with a diameter of several tens of nm or less on the base material by carrying out wet solidification.
  • DMF N, N-dimethylformamide
  • a polyamide separation functional layer is formed on the microporous support.
  • an interfacial polycondensation is performed on the surface of the microporous support using an aqueous solution containing a polyfunctional amine and a water-immiscible organic solvent solution containing a polyfunctional acid halide. .
  • the skeleton of the separation functional layer can be formed.
  • the polyfunctional amine refers to an amine having at least two amino groups in one molecule and at least one of which is a primary amino group.
  • Aromatic polyfunctional amines such as triaminobenzene, 3,5-diaminobenzoic acid, 3-aminobenzylamine and 4-aminobenzylamine, aliphatic amines such as ethylenediamine and propylenediamine, 1,2-diaminocyclohexane, 1 , 4-diaminocyclohexane, 4-aminopiperidine, 4-aminoethylpiperazine, and the like.
  • an aromatic polyfunctional amine having 2 to 4 amino groups in one molecule is preferable.
  • M-phenylenediamine, p-phenylenediamine, and 1,3,5-triaminobenzene are preferably used.
  • m-phenylenediamine hereinafter referred to as mPDA
  • mPDA is more preferred from the standpoint of availability and ease of handling.
  • polyfunctional amines may be used alone or in combination of two or more.
  • the said amines may be combined and the said amine and the amine which has at least 2 secondary amino group in 1 molecule may be combined.
  • Examples of the amine having at least two secondary amino groups in one molecule include piperazine and 1,3-bispiperidylpropane.
  • the polyfunctional acid halide refers to an acid halide having at least two carbonyl halide groups in one molecule.
  • trifunctional acid halides include trimesic acid chloride, 1,3,5-cyclohexanetricarboxylic acid trichloride, 1,2,4-cyclobutanetricarboxylic acid trichloride, and the like.
  • Bifunctional diacid halides such as biphenyl dicarboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, naphthalenedicarboxylic acid chloride, and other aromatic bifunctional acid halides, adipoyl chloride, sebacoyl chloride, and the like
  • alicyclic bifunctional acid halides such as group difunctional acid halides, cyclopentanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.
  • polyfunctional acid halides are preferably polyfunctional acid chlorides, and in view of selective separation of the membrane and heat resistance, 2 to 4 per molecule are considered.
  • the polyfunctional aromatic acid chloride having a carbonyl chloride group is preferred.
  • trimesic acid chloride is more preferable from the viewpoint of availability and ease of handling.
  • These polyfunctional acid halides may be used alone or in combination of two or more.
  • At least one of the polyfunctional amine or the polyfunctional acid halide contains a trifunctional or higher functional compound.
  • an aqueous polyfunctional amine solution is brought into contact with the microporous support.
  • the contact is preferably performed uniformly and continuously on the microporous support.
  • a method of coating a polyfunctional amine aqueous solution on the surface of the microporous support and a method of immersing the microporous support in the polyfunctional amine aqueous solution can be exemplified.
  • the contact time between the microporous support and the polyfunctional amine aqueous solution is preferably in the range of 1 second to 10 minutes, and more preferably in the range of 10 seconds to 3 minutes.
  • the concentration of the polyfunctional amine in the polyfunctional amine aqueous solution is preferably within a range of 0.1 to 20% by weight, and more preferably within a range of 0.5 to 15% by weight. In this range, sufficient salt removal performance and water permeability can be obtained.
  • the aqueous polyfunctional amine solution may contain a surfactant, an organic solvent, an alkaline compound, an antioxidant, or the like as long as it does not interfere with the reaction between the polyfunctional amine and the polyfunctional acid halide.
  • the surfactant has the effect of improving the wettability of the surface of the microporous support and reducing the interfacial tension between the aqueous amine solution and the nonpolar solvent.
  • the organic solvent may act as a catalyst for the interfacial polycondensation reaction, and when added to the polyfunctional amine aqueous solution, the interfacial polyconjugate reaction may be efficiently performed.
  • the liquid After the polyfunctional amine aqueous solution is brought into contact with the microporous support, the liquid is sufficiently drained so that no droplets remain on the membrane. By sufficiently draining the liquid, it is possible to prevent the remaining portion of the liquid droplet from becoming a film defect after the film is formed and deteriorating the film performance.
  • a method for draining for example, as described in Japanese Patent Application Laid-Open No. 2-78428, the microporous support after contacting with the polyfunctional amine aqueous solution is vertically held to allow the excess aqueous solution to flow down naturally.
  • a method or a method of forcibly draining an air stream such as nitrogen from an air nozzle can be used.
  • the membrane surface after draining, the membrane surface can be dried to partially remove water from the aqueous solution.
  • an organic solvent solution containing a polyfunctional acid halide is brought into contact with the microporous support after contacting with the polyfunctional amine aqueous solution, and a skeleton of the crosslinked polyamide separation functional layer is formed by interfacial polycondensation.
  • the method of contacting the polyfunctional acid halide organic solvent solution with the polyfunctional amine compound aqueous solution phase may be performed in the same manner as the method for coating the polyfunctional amine aqueous solution on the microporous support.
  • the concentration of the polyfunctional acid halide in the organic solvent solution is preferably in the range of 0.01 to 10% by weight, and more preferably in the range of 0.02 to 2.0% by weight. This is because a sufficient reaction rate can be obtained when the content is 0.01% by weight or more, and the occurrence of side reactions can be suppressed when the content is 10% by weight or less. Further, it is more preferable to include an acylation catalyst such as DMF in the organic solvent solution, since interfacial polycondensation is promoted.
  • the organic solvent that dissolves the polyfunctional acid halide is preferably one that is immiscible with water and that dissolves the polyfunctional acid halide and does not destroy the microporous support. Any material that is inert to halides may be used. Preferred examples include hydrocarbon compounds such as n-hexane, n-octane, and n-decane.
  • a polyfunctional amine aqueous solution and a polyfunctional acid halide organic solvent solution are brought into contact with the microporous support to perform interfacial polycondensation to form a separation functional layer containing a crosslinked polyamide on the microporous support.
  • the excess solvent may be drained.
  • a method for draining for example, a method in which a film is held in a vertical direction and excess organic solvent is allowed to flow down and removed can be used.
  • the holding time in the vertical direction is preferably between 1 second and 5 minutes, and more preferably between 10 seconds and 3 minutes. If it is too short, the separation functional layer will not be completely formed, and if it is too long, the organic solvent will be overdried and defects will easily occur and performance will be deteriorated.
  • the separation membrane in which the separation functional layer is formed on the microporous support is in the range of 40 to 100 ° C., preferably in the range of 60 to 100 ° C., for 1 to 10 minutes, more preferably 2 to 8
  • the solute blocking performance and water permeability of the composite semipermeable membrane can be further improved.
  • the separation membrane is wound around the central tube together with the supply side channel material and the permeation side channel material.
  • a method of holding the compound having the structure in the polyamide separation functional layer by adsorption and / or the like, and / or chemically treating the polyamide separation functional layer examples thereof include a covalent bond method.
  • a method of chemically treating the polyamide separation functional layer and covalently bonding the structure is preferable.
  • a polyfunctional amine aqueous solution and a polyfunctional acid halide-containing solution are brought into contact with each other on a microporous support comprising a substrate and a porous support layer.
  • a reagent (B) that reacts with the reagent.
  • a diazonium salt or a derivative thereof is produced and converted to a phenolic hydroxyl group by reacting with water. Further, it reacts with an aromatic ring having a structure forming a microporous support or a separation functional layer, or an aromatic ring of a compound held in the separation functional layer to form an azo group. Thereby, improvement of boron removal rate can be expected.
  • a primary amino group is formed by bringing a polyfunctional amine aqueous solution and a polyfunctional acid halide-containing solution into contact with each other on a microporous support comprising a substrate and a porous support layer.
  • a reagent (C) having a primary amino group reacts with the primary amino group on the polyamide separation functional layer to produce a diazonium salt or a derivative thereof ( And D).
  • the primary amino group of reagent (C) reacts with reagent (D) to produce a diazonium salt or derivative thereof on or within the polyamide separation functional layer, which is retained in the separation functional layer.
  • the compound having an azo group reacts with the aromatic ring of the formed compound, and is formed and adsorbed on the surface or inside of the composite semipermeable membrane. Thereby, improvement of boron removal rate can be expected.
  • each reagent is dissolved in a solvent to form a solution, and the solution is passed through the element.
  • the conjugated system is extended by the azo group imparted to the polyamide separation functional layer, the polyamide separation functional layer exhibits yellow to orange color, and the yellowness is 10 or more.
  • the reagent (B) may be contacted before the reagent (A) is brought into contact with the separation functional layer, or after the reagent (A) is brought into contact with the separation functional layer. It does n’t matter.
  • the separation functional layer may be contacted both before and after contacting the reagent (A). And you may make a reagent (A) and a reagent (B) contact a separation function layer simultaneously.
  • the reagent (C) may be contacted before the reagent (D) is brought into contact with the separation functional layer, or after the reagent (D) is brought into contact with the separation functional layer. You may make it contact.
  • the separation functional layer may be contacted both before and after contacting the reagent (D).
  • the reagent (C) and the reagent (D) may be brought into contact with the separation function layer at the same time.
  • the method (i) and the method (ii) may be employed simultaneously. In that case, the primary amino group of the polyamide separation functional layer is converted into an azo group, the azo group is covalently bonded to the polyamide separation functional layer, and a compound having an azo group is separately produced. It will be adsorbed on the separation functional layer.
  • Reagents (A) and (D) are those that react with the primary amino group of the polyamide separation functional layer to produce a diazonium salt or the like, or mainly the primary amino group of the reagent (C).
  • symbol different from reagent (A) and (D) is attached
  • the reagent (B) and the reagent (C) function differently, they may be the same compound as a result.
  • as each reagent only 1 type may be used independently, or multiple types may be mixed and used, and you may make it contact with a different reagent in multiple times.
  • examples of the reagents (A) and (D) that react with a primary amino group to produce a diazonium salt or a derivative thereof include aqueous solutions of nitrous acid and salts thereof, nitrosyl compounds, and the like. Since an aqueous solution of nitrous acid or a nitrosyl compound easily generates gas and decomposes, it is preferable to sequentially generate nitrous acid by, for example, a reaction between nitrite and an acidic solution. In general, nitrite reacts with hydrogen ions to produce nitrous acid (HNO 2 ), but it is efficiently produced when the pH of the aqueous solution is 7 or less, preferably 5 or less, more preferably 4 or less. Among these, an aqueous solution of sodium nitrite reacted with hydrochloric acid or sulfuric acid in an aqueous solution is particularly preferable because of easy handling.
  • Examples of the reagent (B) that reacts with a diazonium salt or a derivative thereof include compounds having an electron-rich aromatic ring or heteroaromatic ring.
  • Examples of the compound having an electron-rich aromatic ring or heteroaromatic ring include aromatic amine derivatives, heteroaromatic amine derivatives, phenol derivatives, and hydroxyheteroaromatic ring derivatives.
  • Specific examples of the above compounds include, for example, aniline, methoxyaniline bonded to the benzene ring in any positional relationship of ortho position, meta position, and para position, and two amino groups in the ortho position, meta position, and para position.
  • Examples of the reagent (C) to be converted into a diazonium salt or a derivative thereof include an aliphatic amine derivative, a cyclic aliphatic amine derivative, an aromatic amine derivative, a heteroaromatic amine, and the like. From the viewpoint of the stability of the diazonium salt to be produced or a derivative thereof, an aromatic amine derivative or a heteroaromatic amine derivative is preferred. Specific examples of the aromatic amine derivative and heteroaromatic amine derivative include, for example, aniline, methoxyaniline bonded to the benzene ring in any of the ortho-position, meta-position, and para-position, and two amino groups.
  • the reagent (A) and the reagent (B) are contacted, or In contacting the reagent (C) and the reagent (D), it is preferable to satisfy the following conditions. That is, the product (ppm ⁇ min) of the concentration of the reagent (B) and the contact time between the reagent (B) and the polyamide separation functional layer is 200,000 ppm ⁇ min or less, and the reagent (A) is set to 0. It is preferable to contact the surface of the polyamide separation functional layer with a pressure of 2 MPa or more.
  • the product (ppm ⁇ min) of the concentration of the reagent (C) and the contact time between the reagent (C) and the polyamide separation functional layer is 200,000 ppm ⁇ min or less, and the reagent (D) is set to 0. It is preferable to contact the surface of the polyamide separation functional layer with a pressure of 2 MPa or more. Thereby, the yellowness of the separation functional layer and the concentration of the eluate of the base material are in the above ranges, and the ratio of the functional group ratio is easily 1.1 or more.
  • the pressure at which the reagents (B) and (C) are brought into contact with the polyamide separation functional layer may be normal pressure or under pressure.
  • the product of the concentration of the reagent (B) and the contact time between the reagent (B) and the polyamide separation functional layer (ppm ⁇ min)
  • the product (ppm ⁇ min) of the concentration of the reagent (C) and the contact time between the reagent (C) and the polyamide separation functional layer is preferably 200,000 ppm ⁇ min or less.
  • Such a product is preferably 150,000 ppm ⁇ min or less.
  • 10 ppm * min is preferable.
  • the reagents (B) and (C) In order to improve the boron removal rate while further increasing the water permeability, it is preferable to contact the reagents (B) and (C) from the surface side of the polyamide separation functional layer (the side opposite to the porous support layer).
  • any solvent may be used as long as the reagents (B) and (C) are dissolved and the separation membrane is not eroded.
  • the solution in which these reagents are dissolved may contain a surfactant, an acidic compound, an alkaline compound, an antioxidant, and the like as long as they do not interfere with the action of these reagents.
  • the temperature of the solution in which these reagents are dissolved is preferably 10 to 90 ° C.
  • the temperature is lower than 10 ° C., the reaction is difficult to proceed and the desired effect cannot be obtained.
  • the temperature is higher than 90 ° C., the polymer shrinks and the permeated water amount decreases.
  • any solvent such as water may be used as long as the reagent is dissolved and the composite semipermeable membrane is not eroded.
  • the solution may contain a surfactant, an acidic compound, an alkaline compound, or the like as long as it does not interfere with the reaction between the primary amino group and the reagent.
  • the concentration of the reagents (A) and (D) in the solution in which the compounds (A) and (D) are dissolved is preferably in the range of 0.001 to 1% by weight. When the concentration is lower than 0.001% by weight, a sufficient effect cannot be obtained, and when the concentration is higher than 1%, it becomes difficult to handle the solution.
  • the temperature of the solution in which the reagents (A) and (D) are dissolved is preferably 15 ° C to 45 ° C. If the temperature is lower than 15 ° C, the reaction takes time. If the temperature is higher than 45 ° C, the reagents (A) and (D) are rapidly decomposed and difficult to handle.
  • the contact time between the reagents (A) and (D) and the separation membrane may be a time for forming a diazonium salt and / or a derivative thereof. Processing at a high concentration is possible in a short time, and processing at a low concentration is necessary for long-time processing.
  • the solution having the above concentration is preferably within 240 minutes, more preferably within 120 minutes, from the viewpoint of stability of the solution.
  • the pressure at which the reagents (A) and (D) are brought into contact with the separation functional layer surface is preferably 0.2 MPa or more.
  • a pressure By applying a pressure, the part which the fluid processed with a separation membrane contacts can be made to react efficiently. Furthermore, by performing the treatment under pressure, the reagent solution can reversely permeate into the separation functional layer, and the permeate can wash the substrate.
  • the pressure is less than 0.2 MPa, the difference from the osmotic pressure of the reagent solution is small, so that reverse osmosis is small and the cleaning effect is small.
  • the concentration of the effluent from the substrate can be made to be 1.0 ⁇ 10 ⁇ 3 wt% or less.
  • the upper limit is preferably 10 MPa or less.
  • Separate reagents are used to invalidate the remaining reagents (A) and (D) after the treatment (i) or (ii) described above, or to convert functional groups of the remaining diazonium salts or derivatives thereof. Can be contacted with.
  • the reagent used here include chloride ion, bromide ion, cyanide ion, iodide ion, fluorinated boronic acid, hypophosphorous acid, sodium bisulfite, thiocyanic acid and the like.
  • the separation membrane element produced in this way can be used singly, or a composite semipermeable membrane module in which the separation membrane elements are connected in series or in parallel and stored in a pressure vessel.
  • the separation membrane element and the separation membrane module can be combined with a pump for supplying raw water to them, a device for pretreating the raw water, or the like to constitute a fluid separation device.
  • a separation device By using this separation device, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
  • the higher the operating pressure of the fluid separator the higher the salt removal rate.
  • the operating pressure when the treated water permeates the composite semipermeable membrane is 1.0 MPa or more and 10 MPa or less. preferable.
  • the salt removal rate decreases, but as the feed water temperature decreases, the membrane permeation flux also decreases. Therefore, 5 degreeC or more and 45 degrees C or less are preferable.
  • scales such as magnesium may be generated in the case of feed water with a high salt concentration such as seawater, and there is a concern about deterioration of the membrane due to high pH operation. Is preferred.
  • the raw water treated by the composite semipermeable membrane includes a liquid mixture containing 500 mg / L to 100 g / L TDS (Total Dissolved Solids) such as seawater, brine, drainage, etc. .
  • TDS Total Dissolved Solids
  • mass ⁇ volume or “weight ratio”.
  • the solution filtered with a 0.45 micron filter can be calculated from the weight of the residue by evaporating at a temperature of 39.5 to 40.5 ° C, but more simply converted from practical salt (S) To do.
  • the concentration of eluate from the base material, the yellowness of the polyamide separation functional layer, the ratio of the functional group ratio of the polyamide separation functional layer, and various characteristics of the elements were measured as follows.
  • the ratio of the eluate concentration from the base material, the yellowness, and the functional group ratio of the polyamide separation functional layer was measured at five different sites and determined as an average value.
  • the separation membrane element is disassembled and the composite semipermeable membrane is taken out.
  • the composite semipermeable membrane was removed, the composite semipermeable membrane was cut 10 ⁇ 10 cm, and the substrate was peeled off.
  • UV-visible spectrophotometer UV-2450, manufactured by Shimadzu Corporation
  • the substrate is taken out of ethanol, heated at 60 ° C. for 4 hours, dried, cooled to room temperature in a desiccator, weighed, and the concentration of eluate from the substrate is calculated from the following equation. Asked.
  • Eluate concentration (wt%) 100 ⁇ eluate weight / dry substrate weight (yellowness)
  • the separation membrane element is disassembled and the composite semipermeable membrane is taken out. After drying the composite semipermeable membrane for 8 hours at room temperature, a cellophane tape (CT405AP-18 manufactured by Nichiban Co., Ltd.) is applied to the surface of the polyamide separation functional layer, the cellophane tape is slowly peeled off, and the polyamide separation functional layer is attached to the cellophane tape. I let you. The peeled cellophane tape was fixed on a glass plate and measured with an SM color computer SM-7 manufactured by Suga Test Instruments Co., Ltd., and the yellowness of the polyamide separation functional layer was calculated.
  • CT405AP-18 manufactured by Nichiban Co., Ltd.
  • the base material is peeled and removed from the composite semipermeable membrane dried as described above, and the separation functional layer / porous support layer is fixed on the silicon wafer, with the separation functional layer or porous support layer as the surface, and dichloromethane. Then, the porous support layer was dissolved and removed to prepare samples of the surface corresponding to the surface of the composite semipermeable membrane (surface opposite to the porous support layer) and the surface on the porous support layer side.
  • Functional group ratio (Mole equivalent of azo group + Mole equivalent of phenolic hydroxyl group + Mole equivalent of amino group) / (Mole equivalent of amide group)
  • Functional group ratio (functional group ratio on the surface opposite to the porous support layer) / (functional group ratio on the surface on the porous support layer side)
  • Excited X-ray Aluminum K ⁇ 1,2 line (1486.6 eV)
  • the separation membrane element was placed in a pressure vessel, and operated for 3.5 hours at a temperature of 25 ° C., pH 6.5, operating pressure 5.5 MPa (recovery rate 8%) using 3.5 wt% saline containing 5 ppm of boron. The following characteristics were determined by measuring the amount of permeated water along with the quality of the permeated water
  • TDS removal rate 100 ⁇ ⁇ 1 ⁇ (TDS concentration in permeated water / TDS concentration in feed water) ⁇ (Water production)
  • the membrane permeation amount of the feed water was expressed as the amount of water produced (m 3 / day) per day (per cubic meter) per membrane element.
  • n-decane solution was applied so that the surface was completely wetted.
  • excess solution was removed from the membrane by air blow, and washed with hot water at 90 ° C. for 2 minutes to obtain a roll of a composite semipermeable membrane having a separation functional layer on a microporous support.
  • the obtained composite semipermeable membrane was folded and cut to produce 26 leaf-like materials. These 26 leaf-like objects were laminated so that the folded side was shifted in the overlapping direction, and joined to the adjacent leaf-like objects on three sides other than the folded side. At this time, the effective area of the separation membrane element was set to 37 m 2 .
  • a net thickness: 900 ⁇ m, pitch: 3 mm ⁇ 3 mm
  • a tricot thickness: 300 ⁇ m, groove width
  • a transmission-side channel material 200 ⁇ m
  • ridge width 300 ⁇ m
  • groove depth 105 ⁇ m
  • this leaf-shaped laminate is wound in a spiral shape to produce a separation membrane element, a film is wound around the outer periphery and fixed with tape, then edge cutting, end plate mounting, filament winding are performed, and an 8-inch element is formed. Produced.
  • Example 1 The separation membrane element obtained in Reference Example 1 was placed in a pressure vessel, an mPDA 500 ppm aqueous solution was passed through the element as step (a), allowed to stand for 60 minutes, and then flushed with 30 ° C. pure water. Next, a 250 ppm sodium nitrite aqueous solution adjusted to pH 3 with sulfuric acid in step (b) was passed through for 30 minutes at room temperature (30 ° C.) under a pressure of 1.0 MPa, and then flushed with pure water. Thereafter, a 0.1% by weight aqueous sodium sulfite solution was passed through and allowed to stand for 10 minutes.
  • the separation membrane element thus obtained was evaluated.
  • Examples 2 to 7, Comparative Examples 1 to 6 The process (a), the process (b), and the order of these processes were processed and evaluated in the same manner as in Example 1 except that the conditions described in Table 1 were changed. The results are shown in Table 2.
  • Reference Example 2 A separation membrane element was produced in the same manner as in Reference Example 1 except that a long-fiber polyester nonwoven fabric was used as the substrate.
  • Example 8 The separation membrane element obtained in Reference Example 2 was used and treated in the same manner as in Example 1 except that the steps (a), (b), and the order of these steps were changed to the conditions described in Table 2. ,evaluated. The results are shown in Table 2.
  • the yellowness of the polyamide separation functional layer is in the range of 10 or more and 40 or less, the amount of elution from the substrate is small, the amount of water produced, the amount of boron It is a high-performance separation membrane element with a high removal rate.
  • step i) since step i) was not performed and step ii) was performed under atmospheric pressure instead of under pressure, the obtained separation membrane element had a yellowness of less than 10 and a large amount of eluate. In other words, it is not suitable as a separation membrane element.
  • the yellowness is in the range of 10 or more and 40 or less, and the performance is high.
  • step ii) is not performed under pressure, the amount of eluate is large and is not suitable as a separation membrane element. is there.
  • step i) since step i) is not performed, the boron removal rate is low and it is not suitable as a separation membrane element.
  • Comparative Example 7 Although the amount of effluent is low, the performance is low and it is not suitable as a separation membrane element.
  • the separation membrane element of the present invention can be particularly suitably used for brine or seawater desalination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

溶出物が少なく、高いホウ素除去性能と高い透水性能を有する分離膜エレメントを提供することを目的とし、基材と多孔性支持層とからなる微多孔性支持体上にポリアミド分離機能層を有する複合半透膜を備えた分離膜エレメントであって、該ポリアミド分離機能層の黄色度が10以上40以下であり、該基材からの溶出物濃度が1.0×10-3重量%以下である分離膜エレメントとする。

Description

分離膜エレメントおよび複合半透膜の製造方法
 本発明は、液状混合物の選択的分離に有用な分離膜エレメントに関する。本発明によって得られる分離膜エレメントは、例えば海水やかん水の淡水化に好適に用いることができる。
 溶媒(例えば水)に溶解した物質(例えば塩類)を除くための技術には様々なものがある。近年、省エネルギーおよび省資源のためのプロセスとして膜分離法の利用が拡大している。膜分離法に使用される膜には、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などがある。これらの膜を利用した分離膜エレメントは、例えば海水、かん水、有害物を含んだ水などから飲料水を得る場合や、工業用超純水の製造、排水処理、有価物の回収などに用いられている。
 現在市販されている逆浸透膜およびナノろ過膜の大部分は複合半透膜である。複合半透膜には、微多孔性支持体上にゲル層とポリマーを架橋した活性層とを有するものと、微多孔性支持体上でモノマーを重縮合した活性層を有するものとの2種類がある。なかでも、多官能アミンと多官能酸ハロゲン化物との重縮合反応によって得られる架橋ポリアミドからなる分離機能層を微多孔性支持体上に被覆して得られる複合半透膜は、透過性や選択分離性の高い分離膜として広く用いられている。
 ところで、ホウ素は、人体及び動植物に対して神経障害の発症や成長阻害を引き起こすなどの毒性を持つが、海水に多く含まれている。そのため、海水淡水化においてホウ素除去は重要である。そこで、複合半透膜のホウ素除去性能を向上させる手段が種々提案されてきている(特許文献1,2)。特許文献1では、界面重合により製膜された複合半透膜を熱処理して性能向上させる方法が開示されている。特許文献2では、界面重合により製膜された複合半透膜を臭素含有遊離塩素水溶液に接触させる方法が開示されている。しかしこれら文献の実施例に記載される膜は、25℃、pH6.5、ホウ素濃度5ppm、TDS濃度3.5重量%の海水を、5.5MPaの操作圧力で透過させたとして換算すると、膜透過流束が0.5m/m/日以下、ホウ素除去率が高くても91~92%程度と考えられる。そのため、さらに高いホウ素阻止性能を有する複合半透膜の開発が望まれていた。
 また、逆浸透膜を用いる造水プラントではランニングコストの一層の低減を図るため、より高い透水性能が求められている。このような要求に対し、分離機能層として架橋ポリアミド重合体を設けた複合半透膜に亜硝酸を含む水溶液に接触処理させる方法が知られている(特許文献3)。この処理により、処理前のホウ素除去率を維持しつつ、透水性能を向上させることができる。しかしながら、さらなる高ホウ素除去率、高透水性能が望まれている。
 さらに、従来の半透膜を使用し、実際に透過液あるいは非透過液として濃縮あるいは精製された目的物質を得ようとすると、膜あるいは膜モジュールを構成する部材から溶出、流出する低分子量成分により、目的物質の純度が低下したり、初期透過水を廃棄せざるを得ずコスト増を招くという問題があった。この問題に対しては、微多孔性支持体の含水量を減らすことにより、重合モノマーであるアミンの含浸を最小限にし、残存アミン量を減らす方法が開示されている(特許文献4)。しかしながら、このようにして製造される膜では、性能が十分ではなく、さらなる高性能化が求められている。
特開平11-19493号公報 特開2001-259388号公報 特開2007-90192号公報 特開2006-122886号公報
 本発明は、溶出物が少なく、高いホウ素除去性能と高い透水性能を有する分離膜エレメントを提供することを目的とする。
 上記目的を達成するための本発明は、以下のいずれかの構成からなるものである。
(1) 基材と多孔性支持層とからなる微多孔性支持体上にポリアミド分離機能層を有する複合半透膜を備えた分離膜エレメントであって、該ポリアミド分離機能層の黄色度が10以上40以下であり、該基材からの溶出物濃度が1.0×10-3重量%以下である分離膜エレメント。
(2) 前記ポリアミド分離機能層において、多孔性支持層側の面および該多孔性支持層とは反対側の面それぞれの官能基比率を(アゾ基のモル当量+フェノール性水酸基のモル当量+アミノ基のモル当量)/(アミド基のモル当量)と表したとき、(多孔性支持層とは反対側の面の官能基比率)/(多孔質支持層側の面の官能基比率)が1.1以上である、前記(1)記載の分離膜エレメント。
(3) 前記基材がポリエステルの長繊維不織布である、前記(1)または(2)記載の分離膜エレメント。
(4) 基材と多孔性支持層とからなる微多孔性支持体上で、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させて第一級アミノ基を有するポリアミド分離機能層を形成した後に、該ポリアミド分離機能層に、前記第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬(A)および前記ジアゾニウム塩またはその誘導体と反応する試薬(B)を接触させ、複合半透膜を製造する方法であって、前記試薬(A)を0.2MPa以上の圧力でポリアミド分離機能層表面に接触させ、かつ、前記試薬(B)の濃度と前記試薬(B)と前記ポリアミド分離機能層との接触時間の積(ppm・min)を200,000ppm・min以下とすることを特徴とする複合半透膜の製造方法。
(5) 基材と多孔性支持層とからなる微多孔性支持体上で、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させて第一級アミノ基を有するポリアミド分離機能層を形成した後に、該ポリアミド分離機能層上で、第一級アミノ基を有する試薬(C)と該第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬(D)とを接触させて複合半透膜を製造する方法であって、前記試薬(D)を0.2MPa以上の圧力でポリアミド分離機能層表面に接触させ、かつ、前記試薬(C)の濃度と前記試薬(C)が前記ポリアミド分離機能層へ接触する時間との積(ppm・min)を200,000ppm・min以下とすることを特徴とする複合半透膜の製造方法。
 なお、本発明における試薬(A)~(D)には、単体、化合物、並びに単体及び/又は化合物の混合物等も含まれる。
 本発明によれば、溶出物が少なく、かつ、ホウ素除去性能および透水性能に優れた分離膜エレメントを得ることができる。そして、この分離膜エレメントを用いることで、省エネルギー化、透過水の高品質化という改善が期待される。
 本発明において分離膜エレメントは、分離膜の一方の面に原流体を供給し、他方の面から透過流体を得るものである。分離膜エレメントは、様々な形状からなる分離膜を多数束ねて膜面積を大きくし、単位エレメントあたりで多くの透過流体を得ることができるように構成されている。用途や目的にあわせて、スパイラル型、中空糸型、プレート・アンド・フレーム型、回転平膜型、平膜集積型などの各種エレメントが挙げられる。中でも、原流体に圧力を付与し、透過流体を多く取り出すことができる点で、スパイラル型分離膜エレメントが多用されている。
 スパイラル型分離膜エレメントは、原流体を分離膜表面へ供給する供給側流路材、原流体に含まれる複数の成分を分離する分離膜、及び分離膜を透過し原流体から分離された特定の成分を透過流体として中心管へと導くための透過側流路材からなる部材が、中心管の周りに巻き付けられてなる。供給側流路材としては、主に高分子製のネットなどが使用される。分離膜としては、ポリアミドの架橋高分子からなる分離機能層、ポリスルホンなどの高分子からなる多孔性支持層、ポリエチレンテレフタレートなどの高分子からなる基材がそれぞれ供給側から透過側にかけて積層された複合半透膜が好ましく使用される。透過側流路材としては、膜の落ち込みを防ぎつつ透過側の流路を形成できる、凹凸の間隔が供給側流路材よりも細かいトリコットと呼ばれる織物部材等が使用される。さらに必要に応じて耐圧性を高めるためのフィルムをトリコットに積層してもよい。
 分離膜において、基材と多孔性支持層とからなる微多孔性支持体は、実質的にイオン等の分離性能を有さず、実質的に分離性能を有する分離機能層に強度を与えるためのものである。孔のサイズや分布は特に限定されないが、例えば、均一で微細な孔、あるいは分離機能層が形成される側の表面からもう一方の面までの間で径が徐々に大きくなる微細孔をもち、かつ、分離機能層が形成される側の表面で微細孔の大きさが0.1nm以上100nm以下であるような微多孔性支持体が好ましい。
 微多孔性支持体に使用する材料やその形状は特に限定されない。基材としては、ポリエステルまたは芳香族ポリアミドから選ばれる少なくとも一種を主成分とする布帛が例示される。中でも、機械的、熱的に安定性の高いポリエステルの布帛が特に好ましい。布帛の形態としては、長繊維不織布や短繊維不織布、さらには織編物を好ましく用いることができる。中でも、基材に多孔性支持層を形成するための高分子重合体溶液を流延した際にそれが過浸透により裏抜けしたり、多孔性支持層が剥離したり、さらには基材の毛羽立ち等により膜の不均一化やピンホール等の欠点が生じたりするのを防ぐことができる長繊維不織布をより好ましく用いることができる。長繊維不織布を用いることで、短繊維不織布を用いたときに起こる、毛羽立ちによって生じる高分子溶液流延時の不均一化や、膜欠点を抑制することができる。特に高性能な分離膜エレメントを製造するには、膜欠点のない膜が必要であるから、基材としては長繊維不織布がより好ましい。
 一方、多孔性支持層の素材としては、ポリスルホンや酢酸セルロースやポリ塩化ビニル、あるいはそれらを混合したものが好ましく使用され、化学的、機械的、熱的に安定性の高いポリスルホンを使用するのが特に好ましい。
 具体的には、次の化学式に示す繰り返し単位からなるポリスルホンを用いると、孔径が制御しやすく、寸法安定性が高いため好ましい。
Figure JPOXMLDOC01-appb-C000001
 微多孔性支持体の厚みは、複合半透膜の強度およびそれをエレメントにしたときの充填密度に影響を与える。十分な機械的強度および充填密度を得るためには、30~300μmの範囲内にあることが好ましく、より好ましくは50~250μmの範囲内である。また、該微多孔性支持体を構成する多孔性支持層の厚みは、10~200μmの範囲内にあることが好ましく、より好ましくは20~100μmの範囲内である。
 なお、多孔性支持層の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば走査型電子顕微鏡で断面観察するのであれば、基材から多孔性支持層を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金-パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3~6kVの加速電圧で、高分解能電界放射型走査電子顕微鏡(UHR-FE-SEM)で観察する。高分解能電界放射型走査電子顕微鏡は、日立製S-900型電子顕微鏡などが使用できる。得られた電子顕微鏡写真から多孔性支持層の膜厚や表面の投影面積円相当径を決定する。
 上記多孔性支持層の厚み、孔径は、平均値であり、多孔性支持層の厚みは、断面観察で厚み方向に直交する方向に20μm間隔で測定し、20点測定の平均値である。また、孔径は、孔を200個カウントし、各投影面積円相当径の平均値である。
 本発明において、ポリアミド分離機能層は、多官能アミンと多官能酸ハロゲン化物との界面重縮合により形成することができるものである。そのため、該分離機能層は、該分離機能層を形成するポリアミドの部分構造または末端官能基として第一級アミノ基を有する。
 ポリアミド分離機能層の厚みは、十分な分離性能および透過水量を得るために、通常0.01~1μmの範囲内、好ましくは0.1~0.5μmの範囲内である。
 このようなポリアミド分離機能層に関して、本発明者らは鋭意検討を行った結果、ポリアミド分離機能層の黄色度とホウ素除去率に密接な関係があることを見出した。その結果、本発明においては、ポリアミド分離機能層の黄色度が10以上40以下である。また、上記黄色度の範囲内でも、黄色度が10以上25以下の場合には、高性能な膜のなかでも特に造水量の大きな膜が得られる。一方、黄色度が25以上40以下の場合には、高性能な膜のなかでも特に除去率の高い膜が得られる。
 黄色度とは、日本工業規格JIS K7373:2006に規定されている、ポリマーの色相が無色または白色から黄方向に離れる度合いのことで、プラスの量として表される。
 ポリアミド分離機能層の黄色度は、カラーメーターにより測定できる。乾燥した複合半透膜の分離機能層面に無色のセロハンテープを貼り付け、剥離することにより、ポリアミド分離機能層をセロハンテープに採取することができる。セロハンテープのみをブランクとし、そのポリアミド分離機能層が付着したセロハンテープを透過測定によって測定することができる。カラーメーターとしては、スガ試験器株式会社製SMカラーコンピュータSM-7などが使用できる。
 黄色度10以上のポリアミド分離機能層としては、芳香環に電子供与基と電子吸引基を有する構造および/または共役系を延長する構造を持つポリアミド分離機能層が挙げられる。これらの構造を持つことにより、ポリアミド分離機能層は黄色度10以上を呈する。ただし、これらの構造の量を多くした場合、黄色度は40より大きくなり易い。また、これら構造を多重に組み合わせた場合、その構造部位が大きくなり、赤色を呈し、黄色度が40より大きくなり易い。黄色度が40より大きくなる程、その構造の量が多く、また、構造部位が大きくなり、ポリアミド分離機能層表面・内部の孔を塞ぐため、ホウ素除去率が高くなるものの透水量が大きく低下する。黄色度が10以上40以下であれば、透水量を低下しすぎることなく、ホウ素除去率を高めることができる。
 電子供与基としては、例えば、ヒドロキシル基、アミノ基、アルコキシ基が挙げられる。電子吸引基としては、例えば、カルボキシル基、スルホン酸基、アルデヒド基、アシル基、アミノカルボニル基、アミノスルホニル基、シアノ基、ニトロ基、ニトロソ基が挙げられる。共役系を延長する構造としては、例えば、多環芳香環、多環複素環、エテニレン基、エチニレン基、アゾ基、イミノ基、アリーレン基、ヘテロアリーレン基およびこれらの構造の組み合わせが挙げられる。これらの中でも、構造付与操作の簡便さの点から、アゾ基が好ましい。
 上記の芳香環に電子供与基と電子吸引基を有する構造および/または共役系を延長する構造は、ポリアミド分離機能層において、多孔性支持層側の面よりも該多孔性支持層と反対側の面(複合半透膜の表面)に多く存在することが好ましい。多孔性支持層とは反対側の面により多く存在することにより、より透水量を維持しつつ、ホウ素除去率を高めることができる。
 また、より透水量を維持しつつホウ素除去率を高めるためには、ポリアミド分離機能層において、芳香環に電子供与基と電子吸引基を有する構造や共役系を延長する構造が多孔性支持層とは反対側(複合半透膜の表面側)の面に多く、多孔性支持層側に少ないことが好ましい。
 具体的に前記構造がアゾ基の場合は、ポリアミド分離機能層において、多孔性支持層側の面および該多孔性支持層と反対側の面それぞれの官能基比率が(アゾ基のモル当量+フェノール性水酸基のモル当量+アミノ基のモル当量)/(アミド基のモル当量)と表されるとき、(多孔性支持層とは反対側の面の官能基比率)/(多孔質支持層側の面の官能基比率)が1.1以上であることが好ましい。なお、該官能基比率の比の上限は、5以下が好ましい。
 ポリアミド分離機能層のアミド基等の官能基量は、例えば、X線光電子分光法(XPS)を用いて分析することができる。具体的には、「Journal of Polymer Science」,Vol.26,559-572(1988)および「日本接着学会誌」,Vol.27,No.4(1991)で例示されているX線光電子分光法(XPS)を用いることにより求めることができる。
 データ処理は中性炭素(CHx)のC1sピーク位置を284.6eVに合わせる。ピーク分割により窒素原子または酸素原子が結合した炭素とカルボニル炭素の比率を求める。アミド基では窒素原子が結合した炭素とカルボニル炭素が1:1の比率であらわれる。芳香族ポリアミドにおいては、窒素原子または酸素原子に結合した炭素の比率からカルボニル炭素の比率を差し引いた数値が(アゾ基のモル当量+フェノール性水酸基のモル当量+アミノ基のモル当量)の比率となる。この数値とカルボニル炭素の比率の比を「(アゾ基のモル当量+フェノール性水酸基のモル当量+アミノ基のモル当量)/アミド基のモル当量」とする。
 本発明においては、ポリアミド分離機能層の黄色度が10以上40以下であるにも関わらず、基材からの溶出物濃度が少ない。
 溶出物とは、分離膜に通液したとき、分離膜から透過液に溶出してくる成分のことを指す。溶出物としては、未反応の多官能アミンや多官能酸ハロゲン化物の加水分解物、多官能アミンや多官能酸ハロゲン化物のオリゴマー、またはポリアミド分離機能層を化学的に処理する際に使用した化合物や上記溶出物が化学的処理により反応した生成物が挙げられる。分離膜から溶出されうる物質は、多孔性支持層中および基材中に含まれると考えられるが、基材中の物質は透過液に溶出しやすいため、基材中に溶出物が多量に含まれていると分離膜エレメントとして使用する上で問題となる可能性がある。よって、本発明においては、基材に含まれる溶出物の量を少なくする必要がある。
 基材に含まれる溶出物の計量方法は、次のとおりである。複合半透膜から基材を剥離し、基材を溶解しない溶媒に剥離した基材を浸漬し、溶出物が十分に溶媒中に抽出されるまで浸漬を継続する。溶媒中から基材を取り出し、加熱して乾燥させ、デシケータ内で室温まで冷却させた後、重量測定を行う。次いで、抽出液を濃縮し溶出物重量を算出、または抽出された成分をあらかじめ検量線を得た紫外可視分光光度計、高速液体クロマトグラフィーまたはガスクロマトグラフィー等で測定し、基材からの溶出物重量を算出する。次の式から、基材からの溶出物濃度を求める。
    溶出物濃度(wt%)=100×溶出物重量/乾燥基材重量
 溶出物の抽出は、エタノール中に基材を8時間浸漬させることによって行う。エタノール中に基材を8時間浸漬させることによって、溶出物がほぼエタノールに抽出されると考えられる。
 基材からの溶出物が多いということは、分離膜または分離膜エレメントを使用する際にも溶出物が透過液へ溶出し、透過液の純度が低下する可能性がある。純度が低下するのを回避するため、分離膜または分離膜エレメントを洗浄する必要が生じ、洗浄に用いる薬品による性能低下、洗浄コスト増加等問題が生じる。よって、本発明において、該基材からの溶出物濃度は1.0×10-3重量%以下である。なお、下限としては0%が好ましいが、現実的には1.0×10-5重量%程度である。
 次に、上述した複合半透膜ならびに分離膜エレメントを製造する方法の一例を説明する。なお、以下においては、分離膜をエレメント化した後に該分離膜に特定の処理を施すことで、ポリアミド分離機能層の黄色度、基材からの溶出物濃度を特定範囲にする例を説明するが、分離膜をエレメント化する前に同様の処理を行っても勿論よい。
 まず、微多孔性支持体を用意する。微多孔性支持体は、ミリポア社製“ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製“ウルトラフィルターUK10”(商品名)のような各種市販材料から選択することができる。また“オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って製造することができる。具体的には、例えば、上記ポリスルホンのN,N-ジメチルホルムアミド(DMF)溶液を、密に織ったポリエステル布あるいは不織布(基材)の上に一定の厚さに注型し、それを水中で湿式凝固させることによって、基材上に表面の大部分が直径数10nm以下の微細な孔である多孔性支持層を有する微多孔性支持体を得ればよい。
 次に、微多孔性支持体上にポリアミド分離機能層を形成する。この工程では、例えば、多官能アミンを含有する水溶液と、多官能酸ハロゲン化物を含有する、水と非混和性の有機溶媒溶液とを用い、微多孔性支持体の表面で界面重縮合を行う。これにより分離機能層の骨格を形成できる。
 ここで、多官能アミンとは、一分子中に少なくとも2個のアミノ基を有し、かつ、その内の少なくとも1つが第一級アミノ基であるアミンをいう。例えば、2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼン環に結合したフェニレンジアミン、キシリレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、3-アミノベンジルアミン、4-アミノベンジルアミンなどの芳香族多官能アミン、エチレンジアミン、プロピレンジアミンなどの脂肪族アミン、1,2-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、4-アミノピペリジン、4-アミノエチルピペラジンなどの脂環式多官能アミン等を挙げることができる。中でも、膜の選択分離性や透過性、耐熱性を考慮すると、一分子中に2~4個のアミノ基を有する芳香族多官能アミンであることが好ましく、このような芳香族多官能アミンとしては、m-フェニレンジアミン、p-フェニレンジアミン、1,3,5-トリアミノベンゼンが好適に用いられる。中でも、入手の容易性や取り扱いのしやすさから、m-フェニレンジアミン(以下、mPDAと記す)を用いることがより好ましい。
 これらの多官能アミンは、単独で用いても、2種以上を同時に用いてもよい。2種以上を同時に用いる場合、上記アミン同士を組み合わせてもよく、上記アミンと一分子中に少なくとも2個の第二級アミノ基を有するアミンとを組み合わせてもよい。一分子中に少なくとも2個の第二級アミノ基を有するアミンとして、例えば、ピペラジン、1,3-ビスピペリジルプロパン等を挙げることができる。
 多官能酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する酸ハロゲン化物をいう。例えば、3官能酸ハロゲン化物では、トリメシン酸クロリド、1,3,5-シクロヘキサントリカルボン酸トリクロリド、1,2,4-シクロブタントリカルボン酸トリクロリドなどを挙げることができる。2官能酸ハロゲン化物では、ビフェニルジカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸クロリドなどの芳香族2官能酸ハロゲン化物、アジポイルクロリド、セバコイルクロリドなどの脂肪族2官能酸ハロゲン化物、シクロペンタンジカルボン酸ジクロリド、シクロヘキサンジカルボン酸ジクロリド、テトラヒドロフランジカルボン酸ジクロリドなどの脂環式2官能酸ハロゲン化物を挙げることができる。多官能アミンとの反応性を考慮すると、多官能酸ハロゲン化物は多官能酸塩化物であることが好ましく、また、膜の選択分離性、耐熱性を考慮すると、一分子中に2~4個の塩化カルボニル基を有する多官能芳香族酸塩化物であることが好ましい。中でも、入手の容易性や取り扱いのしやすさの観点から、トリメシン酸クロリドがより好ましい。これらの多官能酸ハロゲン化物は、単独で用いても、2種以上を同時に用いてもよい。
 なお、多官能アミンまたは多官能酸ハロゲン化物の少なくとも一方が3官能以上の化合物を含んでいることが好ましい。
 界面重縮合を微多孔性支持体上で行うためには、まず、多官能アミン水溶液を微多孔性支持体に接触させる。接触は、微多孔性支持体上に均一にかつ連続的に行うことが好ましい。具体的には、例えば、多官能アミン水溶液を微多孔性支持体表面にコーティングする方法や微多孔性支持体を多官能アミン水溶液に浸漬する方法を挙げることができる。微多孔性支持体と多官能アミン水溶液との接触時間は、1秒~10分間の範囲内であることが好ましく、10秒~3分間の範囲内であるとさらに好ましい。
 また、多官能アミン水溶液における多官能アミンの濃度は0.1~20重量%の範囲内であることが好ましく、より好ましくは0.5~15重量%の範囲内である。この範囲であると十分な塩除去性能および透水性を得ることができる。
 多官能アミン水溶液には、多官能アミンと多官能酸ハロゲン化物との反応を妨害しないものであれば、界面活性剤や有機溶媒、アルカリ性化合物、酸化防止剤などが含まれていてもよい。界面活性剤は、微多孔性支持体表面の濡れ性を向上させ、アミン水溶液と非極性溶媒との間の界面張力を減少させる効果がある。有機溶媒は界面重縮合反応の触媒として働くことがあり、多官能アミン水溶液に添加することにより界面重宿合反応を効率よく行える場合がある。
 多官能アミン水溶液を微多孔性支持体に接触させた後は、膜上に液滴が残らないように十分に液切りする。十分に液切りすることで、膜形成後に液滴残存部分が膜欠点となって膜性能が低下することを防ぐことができる。液切りの方法としては、例えば、特開平2-78428号公報に記載されているように、多官能アミン水溶液接触後の微多孔性支持体を垂直方向に把持して過剰の水溶液を自然流下させる方法や、エアーノズルから窒素などの気流を吹き付け、強制的に液切りする方法などを用いることができる。また、液切り後、膜面を乾燥させて水溶液の水分を一部除去することもできる。
 次いで、多官能アミン水溶液接触後の微多孔性支持体に、多官能酸ハロゲン化物を含む有機溶媒溶液を接触させ、界面重縮合により架橋ポリアミド分離機能層の骨格を形成させる。多官能酸ハロゲン化物の有機溶媒溶液の多官能アミン化合物水溶液相への接触の方法は、多官能アミン水溶液の微多孔性支持体への被覆方法と同様に行えばよい。
 有機溶媒溶液中の多官能酸ハロゲン化物の濃度は、0.01~10重量%の範囲内であると好ましく、0.02~2.0重量%の範囲内であるとさらに好ましい。0.01重量%以上とすることで十分な反応速度が得られ、また、10重量%以下とすることで副反応の発生を抑制することができるためである。さらに、この有機溶媒溶液にDMFのようなアシル化触媒を含有させると、界面重縮合が促進され、さらに好ましい。
 多官能酸ハロゲン化物を溶解する有機溶媒は、水と非混和性であり、かつ多官能酸ハロゲン化物を溶解し、微多孔性支持体を破壊しないものが望ましく、多官能アミン化合物および多官能酸ハロゲン化物に対して不活性であるものであればよい。好ましい例として、n-ヘキサン、n-オクタン、n-デカンなどの炭化水素化合物が挙げられる。
 このように、微多孔性支持体に多官能アミン水溶液および多官能酸ハロゲン化物の有機溶媒溶液を接触させて界面重縮合を行い、微多孔性支持体上に架橋ポリアミドを含む分離機能層を形成したあとは、余剰の溶媒を液切りするとよい。液切りの方法は、例えば、膜を垂直方向に把持して過剰の有機溶媒を自然流下して除去する方法を用いることができる。この場合、垂直方向に把持する時間としては、1秒~5分の間にあることが好ましく、10秒~3分間であるとより好ましい。短すぎると分離機能層が完全に形成せず、長すぎると有機溶媒が過乾燥となり欠点が発生しやすく、性能低下を起こしやすい。
 さらに、微多孔性支持体上に分離機能層が形成された分離膜は、40~100℃の範囲内、好ましくは60~100℃の範囲内で、1~10分間、より好ましくは2~8分間熱水処理することで、複合半透膜の溶質阻止性能や透水性をより一層向上させることができる。
 次にこの分離膜を用い、エレメントを形成する。例えば、スパイラル型分離膜エレメントとする場合には、分離膜を供給側流路材および透過側流路材とともに、中心管の周りに巻き付ける。
 その後、エレメントに組み込まれた分離膜のポリアミド分離機能層に、芳香環に電子供与基と電子吸引基を有する構造および/または共役系を延長する構造を付与する。
 ポリアミド分離機能層に上記構造を付与するためには、上記構造を持つ化合物をポリアミド分離機能層に吸着等により保持させる方法、および/または、ポリアミド分離機能層を化学的に処理し、上記構造を共有結合等させる方法が挙げられる。長期にわたって上記構造を保持させるためには、ポリアミド分離機能層を化学的に処理し、上記構造を共有結合させる方法が好ましい。また、黄色度を高くする場合、上記構造を吸着等により保持させる方法と共有結合させる方法を組み合わせることが好ましい。
 例えば構造付与操作の観点から好ましいアゾ基をポリアミド分離機能層に付与するにあたっては、(i)第一級アミノ基を有するポリアミド分離機能層の当該第一級アミノ基をアゾ基へと変換し、該アゾ基をポリアミド分離機能層に共有結合させる方法が挙げられる。また、(ii)アゾ基を有する化合物を複合半透膜の表面もしくは内部で生成させ、生成した該アゾ基をポリアミド分離機能層に吸着させる方法も挙げられる。
 より具体的に、(i)の方法としては、基材と多孔性支持層とからなる微多孔性支持体上で、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させて第一級アミノ基を有するポリアミド分離機能層を形成した後に、該ポリアミド分離機能層に、前記第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬(A)および前記ジアゾニウム塩またはその誘導体と反応する試薬(B)を接触させる方法が挙げられる。第一級アミノ基を有するポリアミド分離機能層に試薬(A)を接触させることにより、ジアゾニウム塩またはその誘導体が生成され、それが水と反応することにより、フェノール性水酸基へと変換される。また、微多孔性支持体や分離機能層を形成する構造の芳香環、または分離機能層に保持されている化合物の芳香環とも反応し、アゾ基を形成する。それによりホウ素除去率の向上が望める。
 一方(ii)の方法としては、基材と多孔性支持層とからなる微多孔性支持体上で、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させて第一級アミノ基を有するポリアミド分離機能層を形成した後に、該ポリアミド分離機能層上で、第一級アミノ基を有する試薬(C)と第一級アミノ基とを反応してジアゾニウム塩またはその誘導体を生成する試薬(D)とを接触させる方法が挙げられる。この方法においては、試薬(C)の第一級アミノ基と試薬(D)とが反応し、ポリアミド分離機能層上もしくはその内部でジアゾニウム塩またはその誘導体が生成され、それが分離機能層に保持されている化合物の芳香環と反応し、アゾ基を持つ化合物が複合半透膜の表面もしくは内部で形成・吸着される。それによりホウ素除去率の向上が望める。
 エレメントに組み込まれた分離膜に対して(i)、(ii)の処理を施すためには、各試薬を溶媒に溶かして溶液にし、該溶液をエレメントに通液すればよい。
 このようにしてポリアミド分離機能層に付与されたアゾ基により共役系が延長され、ポリアミド分離機能層は黄色~橙色を呈し、黄色度が10以上となる。
 なお、ポリアミド分離機能層の黄色度を上記範囲内にして透水量・ホウ素除去率が共に優れた膜にするためには、分離機能層上に一方の試薬を接触させてから他方の試薬を接触させるまでの間に、該分離機層を熱水などで処理しないことが好ましい。
 また、(i)の方法の場合、試薬(B)は、分離機能層に試薬(A)を接触させる前に接触させても構わないし、分離機能層に試薬(A)を接触させた後に接触させても構わない。あるいは、分離機能層に試薬(A)を接触させる前と接触させた後の両方で接触させても構わない。そして試薬(A)と試薬(B)を同時に分離機能層に接触させても構わない。(ii)の方法の場合も同様に、試薬(C)は、分離機能層に試薬(D)を接触させる前に接触させても構わないし、分離機能層に試薬(D)を接触させた後に接触させても構わない。あるいは、分離機能層に試薬(D)を接触させる前と接触させた後の両方で接触させても構わない。そして試薬(C)と試薬(D)は同時に分離機能層に接触させても構わない。さらに、(i)の方法と(ii)の方法を同時に採用してもよい。その場合、ポリアミド分離機能層の第一級アミノ基がアゾ基に変換されて、該アゾ基がポリアミド分離機能層に共有結合されるとともに、アゾ基を有する化合物が別途生成され、該化合物がポリアミド分離機能層に吸着されることになる。
 試薬(A)、(D)に関しては、ポリアミド分離機能層の第一級アミノ基と反応してジアゾニウム塩等を生成するものであるか、主に試薬(C)の第一級アミノ基とを反応してジアゾニウム塩等を生成するものであるかということを区別するために、試薬(A)、(D)と異なる符号を付しているが、両者は実質的に同じ化合物を指す。さらに、試薬(B)と試薬(C)とは、異なる働きをするものの、結果的に同一の化合物であっても構わない。また、各試薬としては、一種のみを単独で用いても、複数種を混合して用いてよく、さらには異なる試薬に複数回接触させてもよい。
 具体的に、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬(A)、(D)としては、亜硝酸およびその塩、ニトロシル化合物などの水溶液が挙げられる。亜硝酸やニトロシル化合物の水溶液は気体を発生して分解しやすいので、例えば、亜硝酸塩と酸性溶液との反応によって亜硝酸を逐次生成するのが好ましい。一般に、亜硝酸塩は水素イオンと反応して亜硝酸(HNO)を生成するが、水溶液のpHが7以下、好ましくは5以下、さらに好ましくは4以下で効率よく生成する。中でも、取り扱いの簡便性から水溶液中で塩酸または硫酸と反応させた亜硝酸ナトリウムの水溶液が特に好ましい。
 ジアゾニウム塩またはその誘導体と反応する試薬(B)としては、電子リッチな芳香環または複素芳香環を持つ化合物が挙げられる。電子リッチな芳香環または複素芳香環を持つ化合物としては、芳香族アミン誘導体、複素芳香族アミン誘導体、フェノール誘導体、ヒドロキシ複素芳香環誘導体が挙げられる。上記化合物の具体的な例としては、例えば、アニリン、オルト位やメタ位、パラ位のいずれかの位置関係でベンゼン環に結合したメトキシアニリン、2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼン環に結合したフェニレンジアミン、アミノ基とヒドロキシ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼン環に結合したアミノフェノール、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、3-アミノベンジルアミン、4-アミノベンジルアミン、スルファニル酸、3,3’-ジヒドロキシベンジジン、1-アミノナフタレン、2-アミノナフタレン、1-アミノ-2-ナフトール-4-スルホン酸、2-アミノ-8-ナフトール-6-スルホン酸、2-アミノ-5-ナフトール-7-スルホン酸、またはそのN-アルキル化物、およびその塩類、フェノール、オルト位やメタ位、パラ位のいずれかのクレゾール、カテコール、レゾルシノール、ヒドロキノン、フロログルシノール、ヒドロキシキノール、ピロガロール、チロシン、1-ナフトール、2-ナフトールおよびその塩等が挙げられる。
 ジアゾニウム塩またはその誘導体へ変換される試薬(C)としては、脂肪族アミン誘導体、環状脂肪族アミン誘導体、芳香族アミン誘導体、複素芳香族アミンなどが挙げられる。生成するジアゾニウム塩またはその誘導体の安定性の観点から、芳香族アミン誘導体、複素芳香族アミン誘導体が好ましい。芳香族アミン誘導体、複素芳香族アミン誘導体の具体的な例としては、例えば、アニリン、オルト位やメタ位、パラ位のいずれかの位置関係でベンゼン環に結合したメトキシアニリン、2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼン環に結合したフェニレンジアミン、アミノ基とヒドロキシ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼン環に結合したアミノフェノール、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、3-アミノベンジルアミン、4-アミノベンジルアミン、スルファニル酸、3,3’-ジヒドロキシベンジジン、1-アミノナフタレン、2-アミノナフタレン、1-アミノ-2-ナフトール-4-スルホン酸、2-アミノ-8-ナフトール-6-スルホン酸、2-アミノ-5-ナフトール-7-スルホン酸、およびその塩等が挙げられる。
 そして、分離機能層の黄色度が上記範囲内であるにも関わらず溶出物濃度を上記のとおり低くするには、例えば前述の試薬(A)と試薬(B)とを接触させる際、または、試薬(C)と試薬(D)とを接触させる際に、以下の条件を満足するようにすることが好ましい。すなわち、試薬(B)の濃度と試薬(B)とポリアミド分離機能層との接触時間の積(ppm・min)が、200,000ppm・min以下となるようにし、かつ、試薬(A)を0.2MPa以上の圧力でポリアミド分離機能層表面に接触させることが好ましい。また、試薬(C)の濃度と試薬(C)とポリアミド分離機能層との接触時間の積(ppm・min)が、200,000ppm・min以下となるようにし、かつ、試薬(D)を0.2MPa以上の圧力でポリアミド分離機能層表面に接触させることが好ましい。これにより、分離機能層の黄色度、基材の溶出物濃度が上記範囲のとおりになり、また、前記官能基比率の比も1.1以上となり易い。
 試薬(B)、(C)をポリアミド分離機能層に接触させる圧力は常圧でも加圧下でもよい。しかしながら、透水性および除去率の向上と基材からの溶出物低減を両立させるために、試薬(B)の濃度と試薬(B)とポリアミド分離機能層との接触時間の積(ppm・min)、そして、試薬(C)の濃度と試薬(C)とポリアミド分離機能層との接触時間の積(ppm・min)が200,000ppm・min以下となるようにすることが好ましい。かかる積は、好ましくは150,000ppm・min以下である。なお、下限としては、各試薬による反応を実行するために、10ppm・minが好ましい。
 さらに透水性を高めつつホウ素除去率を向上するためには、ポリアミド分離機能層の表面側(多孔性支持層とは反対側)から試薬(B)、(C)を接触させることが好ましい。
 試薬(B)、(C)を溶かす溶媒は、該試薬(B)、(C)が溶解し、分離膜が侵食されなければ、いかなる溶媒を用いてもかまわない。また、それら試薬を溶解した溶液には、それら試薬の作用を妨害しないものであれば、界面活性剤や酸性化合物、アルカリ性化合物、酸化防止剤などが含まれていてもよい。
 それら試薬を溶解した溶液の温度は10~90℃が望ましい。10℃未満の時には反応が進みにくく、望む効果が得られない。90℃より高温ではポリマーの収縮がおこり透過水量が低下してしまう。
 一方、試薬(A)、(D)を溶かす溶媒としても、該試薬が溶解し、該複合半透膜が侵食されなければ、水など、いかなる溶媒を用いてもかまわない。また、溶液には、第一級アミノ基と試薬との反応を妨害しないものであれば、界面活性剤や酸性化合物、アルカリ性化合物などが含まれていてもよい。
 化合物(A)、(D)を溶かした溶液におけるにおけるその試薬(A)、(D)の濃度は、0.001~1重量%の範囲が好ましい。0.001重量%よりも低い濃度では十分な効果が得られず、1%よりも高いと溶液の取扱いが困難となる。試薬(A)、(D)を溶かした溶液の温度は15℃~45℃が好ましい。15℃未満の温度であると反応に時間がかかり、45℃を超える温度であると試薬(A)、(D)の分解が早く取り扱いが困難である。
 試薬(A)、(D)と分離膜との接触時間は、ジアゾニウム塩および/またはその誘導体が生成する時間であればよい。高濃度では短時間で処理が可能であり、低濃度であると長時間処理に必要である。上記濃度の溶液では、該溶液の安定性の問題から240分間以内であることが好ましく、120分間以内であることがさらに好ましい。
 試薬(A)、(D)を分離機能層表面に接触させる圧力は、0.2MPa以上であることが好ましい。圧力をかけることにより、分離膜で処理する流体が接触する部分を効率的に反応させることができる。さらには、加圧下で処理することにより、該試薬の溶液が分離機能層に対し逆浸透し、透過液が基材を洗浄することができる。圧力が0.2MPa未満では、該試薬の溶液の浸透圧との差が小さいため逆浸透が少なく、洗浄効果が小さい。このように、圧力を0.2MPa以上にすることにより、好ましくは0.3MPa以上にすることにより、基材からの溶出物濃度を1.0×10-3重量%以下にすることができる。なお、上限としては10MPa以下が好ましい。
 上記した(i)または(ii)の処理を施したあと、残存する試薬(A)、(D)を無効化するためや、残存するジアゾニウム塩またはその誘導体の官能基変換のために、別途試薬と接触させることができる。ここで用いる試薬とは、塩化物イオン、臭化物イオン、シアン化物イオン、ヨウ化物イオン、フッ化ホウ素酸、次亜リン酸、亜硫酸水素ナトリウム、チオシアン酸等が挙げられる。なお、亜硫酸水素ナトリウム、および亜硫酸イオンと反応させると、残存する試薬(A)、(D)を無効化でき、さらに置換反応が起こり、アミノ基がスルホ基に置換される。
 このように製造される分離膜エレメントは、単一で用いることもできるし、この分離膜エレメントを直列または並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。
 また、上記分離膜エレメント、分離膜モジュールは、それらに原水を供給するポンプや、その原水を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。
 流体分離装置の操作圧力は、高い方が塩除去率は向上する。しかし、運転に必要なエネルギーが増加すること、また、複合半透膜の耐久性を考慮すると、複合半透膜に被処理水を透過する際の操作圧力は、1.0MPa以上、10MPa以下が好ましい。供給水温度は、高くなると塩除去率が低下するが、低くなるにしたがい膜透過流束も減少する。そのため、5℃以上、45℃以下が好ましい。また、供給水pHは、高くなると海水などの高塩濃度の供給水の場合、マグネシウムなどのスケールが発生する恐れがあり、また、高pH運転による膜の劣化が懸念されるため、中性領域での運転が好ましい。
 本発明において、複合半透膜によって処理される原水としては、海水、かん水、排水等の500mg/L~100g/LのTDS(Total Dissolved Solids:総溶解固形分)を含有する液状混合物が挙げられる。一般に、TDSは総溶解固形分量を指し、「質量÷体積」あるいは「重量比」で表される。定義によれば、0.45ミクロンのフィルターで濾過した溶液を39.5~40.5℃の温度で蒸発させ残留物の重さから算出できるが、より簡便には実用塩分(S)から換算する。
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
 実施例、比較例における基材からの溶出物濃度、ポリアミド分離機能層の黄色度、ポリアミド分離機能層の官能基比率の比、エレメントの各種特性は以下のように測定した。基材からの溶出物濃度、黄色度、ポリアミド分離機能層の官能基比率の比は、異なる部位5点について測定し、平均値として求めた。
 (基材からの溶出物濃度)
 分離膜エレメントを解体し、複合半透膜を取り出す。複合半透膜の液滴を除き、複合半透膜を10×10cm切り出して、基材を剥離した。これを、エタノール50gに8時間浸漬し、エタノールに抽出された成分をあらかじめ検量線を得た紫外可視分光光度計(島津製作所製 UV-2450)で測定し、基材からの溶出物重量を算出した。次いで、エタノール中から、基材を取り出し、60℃で4時間加熱して乾燥させ、デシケータ内で室温まで冷却させた後、重量測定を行い、次の式から、基材からの溶出物濃度を求めた。
    溶出物濃度(wt%)=100×溶出物重量/乾燥基材重量
 (黄色度)
 分離膜エレメントを解体し、複合半透膜を取り出す。複合半透膜を室温で8時間乾燥したのち、ポリアミド分離機能層表面にセロハンテープ(ニチバン株式会社製 CT405AP-18)を貼り付け、セロハンテープをゆっくり剥離し、ポリアミド分離機能層をセロハンテープに付着させた。剥したセロハンテープをガラス板上に固定し、スガ試験器株式会社製SMカラーコンピュータSM-7により測定し、ポリアミド分離機能層の黄色度を算出した。
 (ポリアミド分離機能層の官能基比率の比)
 上記のように乾燥させた複合半透膜から基材を剥離・除去し、分離機能層・多孔性支持層をシリコンウェハ上に、分離機能層または多孔性支持層を表面にして固定し、ジクロロメタンにより多孔性支持層を溶解・除去し、それぞれ複合半透膜表面に相当する面(多孔性支持層とは反対側の面)および多孔性支持層側の面のサンプルとした。それらサンプルについてXPS測定し、(アゾ基のモル当量+フェノール性水酸基のモル当量+アミノ基のモル当量)、(アミド基のモル当量)を求め、以下の式で表される官能基比率、そしてそれら官能基比率の比を求めた。
官能基比率=(アゾ基のモル当量+フェノール性水酸基のモル当量+アミノ基のモル当量)/(アミド基のモル当量)
官能基比率比=(多孔性支持層とは反対側の面の官能基比率)/(多孔質支持層側の面の官能基比率)
    装置:ESCALAB220iXL(英国 VG Scientific社製)
    励起X線:アルミニウム K α 1、2線(1486.6eV)
    X線出力:10kV 20mV
    光電子脱出角度:90°
 (エレメントの各種特性)
 分離膜エレメントを圧力容器に入れ、ホウ素を5ppm含む3.5重量%食塩水を用い、温度25℃、pH6.5、操作圧力5.5MPaで3時間運転(回収率8%)した。その時の透過水、供給水の水質とともに膜透過水量を測定することにより、以下の特性を求めた。
 (脱塩率(TDS除去率))
TDS除去率(%)=100×{1-(透過水中のTDS濃度/供給水中のTDS濃度)}
 (造水量)
 供給水(海水)の膜透過水量を、膜エレメントあたり、1日あたりの透水量(立方メートル)を造水量(m/日)として表した。
 (ホウ素除去率)
 供給水と透過水中のホウ素濃度をICP発光分析装置(日立製作所製 P-4010)で分析し、次の式から求めた。
ホウ素除去率(%)=100×{1-(透過水中のホウ素濃度/供給水中のホウ素濃度)}。
 (参考例1)
 短繊維ポリエステル抄紙不織布(通気度1cc/cm/sec)上にポリスルホンの15.7重量%DMF溶液を200μmの厚みで室温(25℃)でキャストし、ただちに純水中に浸漬して5分間放置することによって微多孔性支持体(厚さ210~215μm)のロールを作製した。得られた微多孔性支持体に、mPDAの4.0重量%水溶液を塗布し、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.165重量%を含むn-デカン溶液を表面が完全に濡れるように塗布した。次に、膜から余分な溶液をエアーブローで除去し、90℃の熱水で2分間洗浄して、微多孔性支持体上に分離機能層を有する複合半透膜のロールを得た。
 得られた複合半透膜を折り畳むとともに裁断し、26枚のリーフ状物を作製した。それら26枚のリーフ状物を、折り畳まれている側の辺が重ね合わせ方向にずれるように積層するとともに、折り畳まれている側の辺以外の3辺で隣接するリーフ状物と接合した。このとき、分離膜エレメントでの有効面積が37mになるようにした。また、該積層体において隣接する分離膜の間には、供給側流路材としてのネット(厚み:900μm、ピッチ:3mm×3mm)および透過側流路材としてのトリコット(厚み:300μm、溝幅:200μm、畦幅:300μm、溝深さ:105μm)を交互に配置した。そして、このリーフ状物の積層体をスパイラル状に巻き付けて分離膜エレメントを作製し、外周にフィルムを巻き付け、テープで固定した後に、エッジカット、端板取りつけ、フィラメントワインディングを行い、8インチエレメントを作製した。
 (実施例1)
 参考例1で得られた分離膜エレメントを圧力容器に入れ、該エレメントに、工程(a)としてmPDA500ppmの水溶液を通液し、60分間静置した後、30℃の純水でフラッシングした。次に工程(b)、硫酸によりpH3に調整した250ppmの亜硝酸ナトリウム水溶液を、室温(30℃)、1.0MPaの加圧下で30分間通液処理した後、純水でフラッシングした。その後0.1重量%の亜硫酸ナトリウム水溶液を通液し、10分間静置した。
 このようにして得られた分離膜エレメントを評価した。
 分離膜エレメントの製造条件を表1に、この分離膜エレメントの評価結果を表2にそれぞれ示す。
 (実施例2~7、比較例1~6)
 工程(a)、工程(b)、およびそれら工程の順序を表1に記載した条件に変更した以外は実施例1と同様にして処理して、評価した。結果を表2に示す。
 (参考例2)
 基材として長繊維ポリエステル不織布を用いた以外は、参考例1と同様にして、分離膜エレメントを作製した。
 (実施例8)
 参考例2で得られた分離膜エレメントを用い、工程(a)、工程(b)、およびそれら工程の順序を表2に記載した条件に変更した以外は実施例1と同様にして処理して、評価した。結果を表2に示す。
 (比較例7)
 次亜塩素酸ナトリウム(塩素20ppm)と臭化ナトリウム10ppmの溶液(pH6)を調整した。参考例1で得られた分離膜エレメントを圧力容器に入れ、該エレメントに、調整した溶液を室温(30℃)、1.5MPaの加圧下で30分間通液処理した後、純水でフラッシングした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2から読み取れるとおり、実施例1~8で得られた分離膜エレメントはポリアミド分離機能層の黄色度は10以上40以下の範囲内であり、基材からの溶出物も少なく、造水量、ホウ素除去率の高い高性能な分離膜エレメントである。
 比較例1では、工程i)を行わず、かつ、工程ii)を加圧下ではなく大気圧下で行ったため、得られた分離膜エレメントの黄色度が10未満であり、溶出物は多く、性能も低く、分離膜エレメントとしては不適である。
 比較例2、4では、黄色度が10以上40以下の範囲内であり、高性能であるが、工程ii)を加圧下で行っていないため、溶出物が多く、分離膜エレメントとしては不適である。
 比較例3では、黄色度が40より大きく、ホウ素除去率は高いものの造水量が低く、さらには工程ii)を加圧下で行っていないため、溶出物が多く、分離膜エレメントとしては不適である。
 比較例5では、工程i)を行っていないため、ホウ素除去率が低く分離膜エレメントとしては不適である。
 比較例6では、黄色度が40より大きく、ホウ素除去率は高いものの造水量が低く、分離膜エレメントとしては不適である。
 比較例7では、溶出物量が低いものの、性能が低く、分離膜エレメントとしては不適である。
 本発明の分離膜エレメントは、特に、かん水や海水の脱塩に好適に用いることができる。

Claims (5)

  1.  基材と多孔性支持層とからなる微多孔性支持体上にポリアミド分離機能層を有する複合半透膜を備えた分離膜エレメントであって、該ポリアミド分離機能層の黄色度が10以上40以下であり、該基材からの溶出物濃度が1.0×10-3重量%以下である分離膜エレメント。
  2.  前記ポリアミド分離機能層において、多孔性支持層側の面および該多孔性支持層とは反対側の面それぞれの官能基比率を(アゾ基のモル当量+フェノール性水酸基のモル当量+アミノ基のモル当量)/(アミド基のモル当量)と表したとき、(多孔性支持層とは反対側の面の官能基比率)/(多孔質支持層側の面の官能基比率)が1.1以上である、請求項1記載の分離膜エレメント。
  3.  前記基材がポリエステルの長繊維不織布である、請求項1または2記載の分離膜エレメント。
  4.  基材と多孔性支持層とからなる微多孔性支持体上で、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させて第一級アミノ基を有するポリアミド分離機能層を形成した後に、該ポリアミド分離機能層に、前記第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬(A)および前記ジアゾニウム塩またはその誘導体と反応する試薬(B)を接触させ、複合半透膜を製造する方法であって、前記試薬(A)を0.2MPa以上の圧力でポリアミド分離機能層表面に接触させ、かつ、前記試薬(B)の濃度と前記試薬(B)と前記ポリアミド分離機能層との接触時間の積(ppm・min)を200,000ppm・min以下とすることを特徴とする複合半透膜の製造方法。
  5.  基材と多孔性支持層とからなる微多孔性支持体上で、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させて第一級アミノ基を有するポリアミド分離機能層を形成した後に、該ポリアミド分離機能層上で、第一級アミノ基を有する試薬(C)と該第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬(D)とを接触させて複合半透膜を製造する方法であって、前記試薬(D)を0.2MPa以上の圧力でポリアミド分離機能層表面に接触させ、かつ、前記試薬(C)の濃度と前記試薬(C)が前記ポリアミド分離機能層へ接触する時間との積(ppm・min)を200,000ppm・min以下とすることを特徴とする複合半透膜の製造方法。
PCT/JP2011/067772 2010-08-11 2011-08-03 分離膜エレメントおよび複合半透膜の製造方法 WO2012020680A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012507742A JP5895838B2 (ja) 2010-08-11 2011-08-03 分離膜エレメントおよび複合半透膜の製造方法
US13/816,062 US20130126419A1 (en) 2010-08-11 2011-08-03 Separation membrane element and method for producing composite semipermeable membrane
SG2013010285A SG187809A1 (en) 2010-08-11 2011-08-03 Separation membrane element and method for producing composite semipermeable membrane
EP11816346.8A EP2604333A4 (en) 2010-08-11 2011-08-03 Separation membrane element and method for producing composite semipermeable membrane
CN2011800393306A CN103025412A (zh) 2010-08-11 2011-08-03 分离膜元件以及制造复合半透膜的方法
KR1020137003387A KR20130143548A (ko) 2010-08-11 2011-08-03 분리막 엘리멘트 및 복합 반투막의 제조 방법
AU2011290275A AU2011290275A1 (en) 2010-08-11 2011-08-03 Separation membrane element and method for producing composite semipermeable membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010179967 2010-08-11
JP2010-179967 2010-08-11

Publications (1)

Publication Number Publication Date
WO2012020680A1 true WO2012020680A1 (ja) 2012-02-16

Family

ID=45567649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067772 WO2012020680A1 (ja) 2010-08-11 2011-08-03 分離膜エレメントおよび複合半透膜の製造方法

Country Status (8)

Country Link
US (1) US20130126419A1 (ja)
EP (1) EP2604333A4 (ja)
JP (1) JP5895838B2 (ja)
KR (1) KR20130143548A (ja)
CN (1) CN103025412A (ja)
AU (1) AU2011290275A1 (ja)
SG (1) SG187809A1 (ja)
WO (1) WO2012020680A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133130A1 (ja) * 2013-02-28 2014-09-04 東レ株式会社 複合半透膜およびその製造方法
US8968828B2 (en) 2011-01-24 2015-03-03 Dow Global Technologies Llc Composite polyamide membrane
CN104470624A (zh) * 2012-07-31 2015-03-25 东丽株式会社 分离膜及分离膜元件
US9051417B2 (en) 2013-03-16 2015-06-09 Dow Global Technologies Llc Method for solubilizing carboxylic acid-containing compound in hydrocarbon solvent
US9051227B2 (en) 2013-03-16 2015-06-09 Dow Global Technologies Llc In-situ method for preparing hydrolyzed acyl halide compound
US9073015B2 (en) 2012-01-06 2015-07-07 Dow Global Technologies Llc Composite polyamide membrane
EP2821126A4 (en) * 2012-02-29 2015-10-21 Toray Industries COMPLEX SEMIPERMEABLE MEMBRANE
KR20160012148A (ko) * 2013-05-30 2016-02-02 도레이 카부시키가이샤 복합 반투막
US9289729B2 (en) 2013-03-16 2016-03-22 Dow Global Technologies Llc Composite polyamide membrane derived from carboxylic acid containing acyl halide monomer
CN105561803A (zh) * 2015-12-29 2016-05-11 合肥创想能源环境科技有限公司 一种大通量、高精度高温凝结水除油除铁用陶瓷超滤膜的制备方法
EP2885067A4 (en) * 2012-08-15 2016-06-01 Univ Nanyang Tech REINFORCED MEMBRANES FOR GENERATING OSMOTIC ENERGY IN PRESSURE-REDUCED OSMOSIS
CN105709608A (zh) * 2014-08-31 2016-06-29 海南立昇净水科技实业有限公司 一种具有高抗污染性的含氯聚合物基中空纤维过滤膜及其制备方法
WO2016104781A1 (ja) * 2014-12-26 2016-06-30 東レ株式会社 複合半透膜
CN105873665A (zh) * 2013-12-02 2016-08-17 陶氏环球技术有限责任公司 用亚硝酸后处理的复合聚酰胺膜
JP2017515667A (ja) * 2014-05-14 2017-06-15 ダウ グローバル テクノロジーズ エルエルシー 亜硝酸で後処理される複合ポリアミド膜
JP2017515666A (ja) * 2014-05-14 2017-06-15 ダウ グローバル テクノロジーズ エルエルシー 亜硝酸で後処理される複合ポリアミド膜
JP2017518174A (ja) * 2014-05-14 2017-07-06 ダウ グローバル テクノロジーズ エルエルシー 亜硝酸で後処理される複合ポリアミド膜
US10137418B2 (en) 2013-01-14 2018-11-27 Dow Global Technologies Llc Composite polyamide membrane made via interfacial polymerization using a blend of non-polar solvents
US10981144B2 (en) 2015-12-17 2021-04-20 Singapore University Of Technology And Design Method of removing borate ions from an aqueous solution

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032586A1 (en) 2011-08-31 2013-03-07 Dow Global Technologies Llc Composite polyamide membrane derived from monomer including amine-reactive and phosphorous-containing functional groups
US9029600B2 (en) 2011-09-29 2015-05-12 Dow Global Technologies Llc Method for preparing high purity mono-hydrolyzed acyl halide compound
CN104470628A (zh) 2012-07-19 2015-03-25 陶氏环球技术有限责任公司 源自于四官能酰卤单体的薄膜复合膜
CN104918688B (zh) 2013-01-14 2016-12-14 陶氏环球技术有限责任公司 包含经取代苯甲酰胺单体的复合聚酰胺膜
WO2014179024A1 (en) 2013-05-03 2014-11-06 Dow Global Technologies Llc Composite polyamide membrane derived from an aliphatic acyclic tertiary amine compound
WO2015084512A1 (en) 2013-12-02 2015-06-11 Dow Global Technologies Llc Composite polyamide membrane treated with dihyroxyaryl compounds and nitrous acid
JP6535011B2 (ja) 2014-01-09 2019-06-26 ダウ グローバル テクノロジーズ エルエルシー アゾ含有量及び高酸含有量を有する複合ポリアミド皮膜
AU2014376253B2 (en) 2014-01-09 2018-07-26 Dow Global Technologies Llc Composite polyamide membrane having preferred azo content
WO2015105637A1 (en) 2014-01-09 2015-07-16 Dow Global Technologies Llc Composite polyamide membrane having high acid content and low azo content
US9776141B2 (en) 2014-04-28 2017-10-03 Dow Global Technologies Llc Composite polyamide membrane post-treated with nitrous acid
CN106457165B (zh) * 2014-06-30 2020-07-07 东丽株式会社 复合半透膜
US20170136422A1 (en) * 2014-06-30 2017-05-18 Toray Industries, Inc. Composite semipermeable membrane
JP7427190B2 (ja) * 2020-03-31 2024-02-05 株式会社Lixil 複合半透膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278428A (ja) 1988-06-07 1990-03-19 Toray Ind Inc 複合半透膜およびその製造方法
JPH1119493A (ja) 1997-07-03 1999-01-26 Nitto Denko Corp 逆浸透膜モジュ−ル及び海水の処理方法
JP2001259388A (ja) 2000-03-23 2001-09-25 Nitto Denko Corp 複合逆浸透膜およびその製造方法
JP2006122886A (ja) 2004-10-01 2006-05-18 Nitto Denko Corp 複合半透膜及びその製造方法
JP2007090192A (ja) 2005-09-28 2007-04-12 Toray Ind Inc 複合半透膜の処理方法および製造方法
JP2009011913A (ja) * 2007-07-03 2009-01-22 Nitto Denko Corp 膜分離方法及び膜分離装置
JP2009255075A (ja) * 2008-03-28 2009-11-05 Toray Ind Inc 複合半透膜の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835207A (en) * 1972-05-03 1974-09-10 Westinghouse Electric Corp Method for forming reverse osmosis membranes composed of polyamic acid salts
US4673504A (en) * 1980-10-27 1987-06-16 Cuno Inc. Charge modified microporous membrane
US4888116A (en) * 1987-01-15 1989-12-19 The Dow Chemical Company Method of improving membrane properties via reaction of diazonium compounds or precursors
JPH05267273A (ja) * 1992-03-17 1993-10-15 Nec Corp 浸漬式ウェット処理装置
JP3489922B2 (ja) * 1994-12-22 2004-01-26 日東電工株式会社 高透過性複合逆浸透膜の製造方法
US6406626B1 (en) * 1999-01-14 2002-06-18 Toray Industries, Inc. Composite semipermeable membrane, processfor producing the same, and method of purifying water with the same
JP4525296B2 (ja) * 2003-12-03 2010-08-18 東レ株式会社 複合半透膜の製造方法
JP2008246419A (ja) * 2007-03-30 2008-10-16 Nitto Denko Corp 複合半透膜の製造方法
AU2010336627A1 (en) * 2009-12-22 2012-05-31 Toray Industries, Inc. Semipermeable membrane and manufacturing method therefor
CN102665881B (zh) * 2009-12-24 2013-08-14 东丽株式会社 复合半透膜及其制造方法
WO2011105278A1 (ja) * 2010-02-23 2011-09-01 東レ株式会社 複合半透膜およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278428A (ja) 1988-06-07 1990-03-19 Toray Ind Inc 複合半透膜およびその製造方法
JPH1119493A (ja) 1997-07-03 1999-01-26 Nitto Denko Corp 逆浸透膜モジュ−ル及び海水の処理方法
JP2001259388A (ja) 2000-03-23 2001-09-25 Nitto Denko Corp 複合逆浸透膜およびその製造方法
JP2006122886A (ja) 2004-10-01 2006-05-18 Nitto Denko Corp 複合半透膜及びその製造方法
JP2007090192A (ja) 2005-09-28 2007-04-12 Toray Ind Inc 複合半透膜の処理方法および製造方法
JP2009011913A (ja) * 2007-07-03 2009-01-22 Nitto Denko Corp 膜分離方法及び膜分離装置
JP2009255075A (ja) * 2008-03-28 2009-11-05 Toray Ind Inc 複合半透膜の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POLYMER SCIENCE, vol. 26, 1988, pages 559 - 572
NIHON SETCHAKU GAKKAI-SHI, vol. 27, no. 4, 1991
OFFICE OF SALINE WATER RESEARCH AND DEVELOPMENT PROGRESS REPORT, 1968
See also references of EP2604333A4

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968828B2 (en) 2011-01-24 2015-03-03 Dow Global Technologies Llc Composite polyamide membrane
US9073015B2 (en) 2012-01-06 2015-07-07 Dow Global Technologies Llc Composite polyamide membrane
EP2821126A4 (en) * 2012-02-29 2015-10-21 Toray Industries COMPLEX SEMIPERMEABLE MEMBRANE
CN104470624A (zh) * 2012-07-31 2015-03-25 东丽株式会社 分离膜及分离膜元件
EP2885067A4 (en) * 2012-08-15 2016-06-01 Univ Nanyang Tech REINFORCED MEMBRANES FOR GENERATING OSMOTIC ENERGY IN PRESSURE-REDUCED OSMOSIS
US10137418B2 (en) 2013-01-14 2018-11-27 Dow Global Technologies Llc Composite polyamide membrane made via interfacial polymerization using a blend of non-polar solvents
EP2962748A4 (en) * 2013-02-28 2017-01-04 Toray Industries, Inc. Composite semipermeable membrane and production thereof
JPWO2014133130A1 (ja) * 2013-02-28 2017-02-02 東レ株式会社 複合半透膜およびその製造方法
KR20150121006A (ko) * 2013-02-28 2015-10-28 도레이 카부시키가이샤 복합 반투막 및 그 제조 방법
WO2014133130A1 (ja) * 2013-02-28 2014-09-04 東レ株式会社 複合半透膜およびその製造方法
KR102155533B1 (ko) 2013-02-28 2020-09-14 도레이 카부시키가이샤 복합 반투막 및 그 제조 방법
US10427109B2 (en) 2013-02-28 2019-10-01 Toray Industries, Inc. Composite semipermeable membrane and production thereof
US9051417B2 (en) 2013-03-16 2015-06-09 Dow Global Technologies Llc Method for solubilizing carboxylic acid-containing compound in hydrocarbon solvent
US9289729B2 (en) 2013-03-16 2016-03-22 Dow Global Technologies Llc Composite polyamide membrane derived from carboxylic acid containing acyl halide monomer
US9051227B2 (en) 2013-03-16 2015-06-09 Dow Global Technologies Llc In-situ method for preparing hydrolyzed acyl halide compound
US10974206B2 (en) * 2013-05-30 2021-04-13 Toray Industries, Inc. Composite semipermeable membrane
KR102066571B1 (ko) 2013-05-30 2020-01-15 도레이 카부시키가이샤 복합 반투막
US20160129401A1 (en) * 2013-05-30 2016-05-12 Toray Industries, Inc. Composite semipermeable membrane
KR20160012148A (ko) * 2013-05-30 2016-02-02 도레이 카부시키가이샤 복합 반투막
JP2016539787A (ja) * 2013-12-02 2016-12-22 ダウ グローバル テクノロジーズ エルエルシー 亜硝酸で後処理される複合ポリアミド膜
CN105873665A (zh) * 2013-12-02 2016-08-17 陶氏环球技术有限责任公司 用亚硝酸后处理的复合聚酰胺膜
CN105873665B (zh) * 2013-12-02 2019-01-01 陶氏环球技术有限责任公司 用亚硝酸后处理的复合聚酰胺膜
JP2017518174A (ja) * 2014-05-14 2017-07-06 ダウ グローバル テクノロジーズ エルエルシー 亜硝酸で後処理される複合ポリアミド膜
JP2017515666A (ja) * 2014-05-14 2017-06-15 ダウ グローバル テクノロジーズ エルエルシー 亜硝酸で後処理される複合ポリアミド膜
JP2017515667A (ja) * 2014-05-14 2017-06-15 ダウ グローバル テクノロジーズ エルエルシー 亜硝酸で後処理される複合ポリアミド膜
CN105709608A (zh) * 2014-08-31 2016-06-29 海南立昇净水科技实业有限公司 一种具有高抗污染性的含氯聚合物基中空纤维过滤膜及其制备方法
JPWO2016104781A1 (ja) * 2014-12-26 2017-11-30 東レ株式会社 複合半透膜
WO2016104781A1 (ja) * 2014-12-26 2016-06-30 東レ株式会社 複合半透膜
US10981144B2 (en) 2015-12-17 2021-04-20 Singapore University Of Technology And Design Method of removing borate ions from an aqueous solution
US11224855B2 (en) 2015-12-17 2022-01-18 Singapore University Of Technology And Design Method of removing boric acid from an aqueous solution
CN105561803A (zh) * 2015-12-29 2016-05-11 合肥创想能源环境科技有限公司 一种大通量、高精度高温凝结水除油除铁用陶瓷超滤膜的制备方法

Also Published As

Publication number Publication date
JPWO2012020680A1 (ja) 2013-10-28
EP2604333A1 (en) 2013-06-19
CN103025412A (zh) 2013-04-03
KR20130143548A (ko) 2013-12-31
US20130126419A1 (en) 2013-05-23
EP2604333A4 (en) 2017-04-12
SG187809A1 (en) 2013-03-28
AU2011290275A1 (en) 2013-03-07
JP5895838B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5895838B2 (ja) 分離膜エレメントおよび複合半透膜の製造方法
JP5741431B2 (ja) 複合半透膜およびその製造方法
JP5807547B2 (ja) 半透膜およびその製造方法
EP1488846B1 (en) Composite semipermeable membrane, and production process thereof
JP6136266B2 (ja) 複合半透膜
KR101149122B1 (ko) 복합 반투막, 이의 제조방법, 및 이를 사용한 엘리먼트,유체 분리장치 및 수처리 방법
KR102198401B1 (ko) 방향족 탄화수소를 이용한 우수한 용질 제거 성능을 가진 분리막 제조 기술
KR102293090B1 (ko) 복합 반투막
CN112870995A (zh) 复合半透膜
JP2010094641A (ja) 複合半透膜の処理方法
WO2017073698A1 (ja) 複合半透膜およびその製造方法
JP2005186059A (ja) 半透膜の処理方法ならびに改質半透膜およびその製造方法
JP7342528B2 (ja) 複合半透膜および複合半透膜の製造方法
JP2013223861A (ja) 複合半透膜
JP6702181B2 (ja) 複合半透膜
JP2009262089A (ja) 複合半透膜の製造方法
JP2010234284A (ja) 複合半透膜
JP5062136B2 (ja) 複合半透膜の製造方法
JP4872800B2 (ja) 複合半透膜の処理方法及び塩処理済み複合半透膜の製造方法
JP2016010771A (ja) 複合半透膜
JP2008260009A (ja) 複合半透膜の製造方法
JP2009220023A (ja) 複合半透膜の製造方法
JP2024007836A (ja) 複合半透膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039330.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012507742

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137003387

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13816062

Country of ref document: US

Ref document number: 2011816346

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011290275

Country of ref document: AU

Date of ref document: 20110803

Kind code of ref document: A