WO2012008029A1 - 車両用シフト制御装置 - Google Patents

車両用シフト制御装置 Download PDF

Info

Publication number
WO2012008029A1
WO2012008029A1 PCT/JP2010/061927 JP2010061927W WO2012008029A1 WO 2012008029 A1 WO2012008029 A1 WO 2012008029A1 JP 2010061927 W JP2010061927 W JP 2010061927W WO 2012008029 A1 WO2012008029 A1 WO 2012008029A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
control
lock
state
electric motor
Prior art date
Application number
PCT/JP2010/061927
Other languages
English (en)
French (fr)
Inventor
淳史 鎌田
野崎 芳信
直樹 板津
祐介 中出
和美 遠藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012524371A priority Critical patent/JP5392409B2/ja
Priority to PCT/JP2010/061927 priority patent/WO2012008029A1/ja
Priority to US13/810,084 priority patent/US9366339B2/en
Publication of WO2012008029A1 publication Critical patent/WO2012008029A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • F16H63/3416Parking lock mechanisms or brakes in the transmission
    • F16H63/3458Parking lock mechanisms or brakes in the transmission with electric actuating means, e.g. shift by wire
    • F16H63/3466Parking lock mechanisms or brakes in the transmission with electric actuating means, e.g. shift by wire using electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • H02K15/125Heating or drying of machines in operational state, e.g. standstill heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20012Multiple controlled elements
    • Y10T74/20018Transmission control
    • Y10T74/2003Electrical actuator

Definitions

  • the present invention relates to a control technology for an electric motor constituting a shift-by-wire system.
  • a vehicular shift control device that employs a so-called shift-by-wire (SBW) system that electrically operates a motor based on a control signal to electrically switch a shift position related to vehicle travel is well known.
  • SBW shift-by-wire
  • this is a transmission control device for a motorcycle disclosed in Patent Document 1.
  • the motorcycle transmission control apparatus performs a clutch operation and a shift operation of a motorcycle using the power of an electric motor based on a shift command from a driver.
  • the motorcycle transmission control apparatus determines that the shift command is abnormal and cancels the shift command.
  • the electric motor constituting the SBW system includes a coil for generating a rotational force (torque), and the lower the temperature of the electric motor, the lower the internal resistance of the coil. If the voltage applied to the coil does not change, the lower the internal resistance of the coil, the greater the current that is supplied to the coil. Therefore, the magnetic force generated by the coil increases and the output torque of the motor (motor torque) becomes growing. That is, if the motor is driven at a very low temperature by voltage control similar to that at room temperature, the durability of the mechanical member to which the motor torque is transmitted may be impaired.
  • Patent Document 1 since Patent Document 1 does not describe countermeasures for extremely low temperatures, the transmission control device for a motorcycle in this way impairs the durability of a mechanical member to which electric motor torque is transmitted at such extremely low temperatures. It is considered possible.
  • a current limiting circuit that increases the strength of the mechanical member to which the motor torque is transmitted, or limits the current supplied to the motor to a predetermined limit value or less in accordance with the motor torque at the extremely low temperature.
  • the present invention has been made against the background of the above circumstances.
  • the object of the present invention is to reduce the durability of a mechanical member to which the output torque of an electric motor constituting the shift-by-wire system is transmitted.
  • An object of the present invention is to provide a vehicle shift control device capable of suppressing the above-mentioned problem.
  • the gist of the present invention is that: (a) parking that is selectively switched between a locked position that restricts the rotation of a wheel and an unlocked position that does not restrict the rotation of the wheel by driving an electric motor; A lock device and an electronic control device for controlling the electric motor, and a parking lock switching control for selectively switching the parking lock device between the lock position and the non-lock position when the electronic control device is activated.
  • the electronic control device In the vehicle shift control device, (b) when the temperature of the electric motor is lower than a predetermined low-temperature determination value, the electronic control device is switched from a non-activated state to an activated state and Before starting the execution of parking lock switching control, executing motor heat generation control for energizing the motor so as not to rotate the motor.
  • the electric motor when the temperature of the electric motor is lower than the low temperature determination value, the electric motor is energized by the execution of the electric motor heat generation control to generate heat, so before the execution of the parking lock switching control is started.
  • the internal resistance of the motor increases to some extent, and the motor torque based on the supply current to the motor is suppressed according to the internal resistance. Therefore, the motor torque during execution of the parking lock switching control is suppressed to an acceptable level, and it is possible to suppress a decrease in durability of the mechanical member to which the motor torque is transmitted. Further, it is not necessary to provide a current limiting circuit that limits the current supplied to the motor to a predetermined limit value or less, and the machine is adapted to the motor torque when the temperature of the motor is lower than the low temperature determination value.
  • not to rotate the electric motor is not limited to not rotating the electric motor at all. This also corresponds to energizing the motor so that the motor is not rotated if the rotation does not continue during the execution of the motor heat generation control.
  • the parking lock device is mechanically moved by the electric motor before the parking lock switching control is started.
  • the wall contact control for driving to the displacement end is executed, and (b) the electric motor heat generation control is executed before the execution of the wall contact control is started.
  • the electric motor includes a stator having a plurality of salient poles wound with windings, and a rotor having a plurality of salient poles arranged rotatably with respect to the stator, and the rotational position of the rotor.
  • the electric motor is, for example, a switched reluctance motor (SR motor) or a stepping motor.
  • initial drive control for energizing the motor to recognize the relative positional relationship between the rotor and the stator of the motor.
  • the motor heat generation control is executed. In this way, since it is clarified by execution of the initial drive control that which coil provided in the stator of the motor does not rotate when the current is energized, the energization pattern to the motor in the motor heat generation control is determined. Easy to determine.
  • energizing the electric motor so as not to rotate the electric motor means energizing the electric motor in an electric current pattern that locks the rotor of the electric motor.
  • the possibility that the electric motor rotates carelessly during the execution of the electric motor heat generation control can be reduced.
  • the possibility that the electric motor rotates with a large electric motor torque can be reduced.
  • the motor is energized over a predetermined heat generation control time, and (b) the heat generation is lower as the temperature of the motor is lower before the execution of the motor heat generation control is started. Increase the control time.
  • the internal resistance of the electric motor after the execution of the electric motor heat generation control from varying greatly even if the temperature of the electric motor is different. For example, if the electric motor is at a very low temperature, sufficient heat generation is achieved. On the other hand, if the electric motor temperature is close to the low temperature determination value, the electric motor heat generation control can be completed early.
  • the motor heat generation control is not executed when the temperature of the motor is equal to or higher than the low temperature determination value. In this way, when the execution of the electric motor heat generation control is unnecessary, the execution of the parking lock switching control can be started early after the electronic control unit is switched from the non-starting state to the starting state. It is possible to avoid wasting power.
  • the temperature detected by the drive device that drives the wheel is regarded as the temperature of the electric motor. In this way, it is possible to determine whether or not to execute the electric motor heat generation control without providing a device such as a temperature sensor in order to detect the temperature of the electric motor, and thus it is possible to reduce costs. .
  • the electric motor is provided with an electric motor temperature sensor, and the electric motor temperature sensor detects the temperature of the electric motor. In this way, since the temperature of the electric motor can be detected with high accuracy, the necessity of the electric motor heat generation control can be accurately determined.
  • the vehicle having the vehicle shift control device includes a vehicle power transmission device in a power transmission path from a power source to driving wheels, for example.
  • a power source for example, a gasoline engine such as an internal combustion engine that generates power by combustion of fuel, a diesel engine, or the like is preferably used.
  • other prime movers such as an electric motor may be employed alone or in combination with the engine. it can. That is, for example, the vehicle is powered by an engine-driven vehicle that uses only the engine as a power source, an electric vehicle that uses only the motor as a power source, a hybrid vehicle that uses both the engine and the motor as power sources, and a prime mover other than the engine and motor.
  • the vehicle includes a vehicle provided as a source, or a vehicle including three or more prime movers.
  • the vehicle power transmission device includes, for example, a transmission alone, a torque converter, a transmission having a plurality of transmission ratios, or a reduction mechanism section and a differential mechanism section in addition to the transmission.
  • the transmission includes a reduction gear such as a planetary gear device to which the electric motor is connected in the electric vehicle, and a plurality of gear stages by selectively connecting rotation elements of a plurality of sets of planetary gear devices by an engagement device.
  • (Speed stage) can be achieved alternatively, for example, various planetary gear type automatic transmissions having four forward speeds, five forward speeds, six forward speeds, and more, etc.
  • a synchronous mesh type parallel two-shaft automatic transmission capable of automatically switching gears by a synchronizer, a transmission belt functioning as a power transmission member is wound around a pair of variable pulleys having variable effective diameters
  • a so-called belt-type continuously variable transmission in which the gear ratio is continuously changed steplessly, a pair of cones rotated around a common shaft center, and a plurality of rollers that can rotate around the shaft center and rotate around the shaft center.
  • a so-called traction type continuously variable transmission in which the transmission ratio is variable by changing the crossing angle between the rotation center of the roller and the shaft center by being pinched between a pair of cones.
  • a differential mechanism constituted by, for example, a planetary gear device that distributes to the output shaft, and a second electric motor provided on the output shaft of the differential mechanism. Electricity that changes the gear ratio electrically by mechanically transmitting the main part to the drive wheel side and electrically transmitting the remaining power from the engine using the electric path from the first motor to the second motor.
  • Continuously variable transmission Automatic transmission which functions as, or composed of an automatic transmission capable of transmitting power to the electric motor is mounted on a so-called parallel hybrid vehicle provided in such an engine shaft and the output shaft.
  • the parking lock device is in a locked state by meshing a lock tooth with a rotating tooth that rotates together with the wheel at the locked position, and the unlocked state in which the locked state is released at the unlocked position. It becomes.
  • the said rotation tooth is fixed to the output rotation member of the transmission connected with the said wheel, for example, it can also be fixed to the other rotation member of the direct connection range with respect to the wheel.
  • FIG. 1 is a diagram for explaining a schematic configuration of a power transmission path from an engine to a drive wheel constituting a vehicle to which the present invention is applied, and also shows a main part of a control system provided in the vehicle for controlling a parking lock device and the like. It is a block diagram to explain. It is a figure which shows an example of the shift operation apparatus as a switching apparatus (operation apparatus) which switches a multiple types of shift position by manual operation in the transmission with which the vehicle of FIG. 1 is equipped.
  • FIG. 2 is a diagram illustrating a configuration of a parking lock device that mechanically blocks rotation of drive wheels in the vehicle of FIG. 1. It is sectional drawing which showed typically the cross-section of the P lock drive motor provided in the parking lock apparatus of FIG.
  • FIG. 4 is a diagram for explaining the correspondence between the rotation amount of a P lock drive motor provided in the parking lock device, that is, the encoder count and the shift position, in the parking lock device of FIG. 3.
  • FIG. 4 is a diagram for explaining the correspondence between the rotation amount of a P lock drive motor provided in the parking lock device, that is, the encoder count and the shift position, in the parking lock device of FIG. 3.
  • FIG. 2 is a diagram for explaining a control method for detecting a P wall position in P wall position detection control executed by a P-ECU of FIG. 1;
  • FIG. 7 is a diagram for explaining a control method for detecting a non-P wall position in the non-P wall position detection control executed by the P-ECU of FIG. 1.
  • FIG. 2 is a functional block diagram illustrating a main part of a control function provided in the P-ECU of FIG.
  • FIG. 2 is a diagram conceptually showing a relationship between a motor initial temperature and a heat generation control time in the motor heat generation control executed by the P-ECU of FIG. 1 and an effect exerted on the motor torque by the execution of the motor heat generation control.
  • FIG. 2 is a flowchart for explaining a first main part of a control operation of the P-ECU of FIG. 1, that is, a control operation for executing electric motor heat generation control after activation of the P-ECU.
  • 3 is a flowchart for illustrating a second main part of the control operation of the P-ECU of FIG. 1, that is, a control operation for executing parking lock switching control.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power transmission path from an engine 12 to a drive wheel 14 constituting a vehicle 10 to which the present invention is applied, and also for the vehicle 10 to control a parking lock device 16 and the like. It is a block diagram explaining the principal part of the provided control system.
  • a vehicle 10 includes a parking lock device 16, a transmission 18, a shift operation device 30, and the like, and the shift position P SH related to travel of the vehicle 10, that is, the shift position (shift range) P SH of the transmission 18 is electrically A shift-by-wire (SBW) system that switches automatically is adopted.
  • the parking lock device 16, the shift operation device 30, and the vehicle control device 100 constitute a vehicle shift control device 50 that performs shift control of the transmission 18.
  • the transmission 18 is preferably used for, for example, an FF (front engine / front drive) type vehicle that is placed horizontally in the vehicle 10, and uses the power of the engine 12, which is an internal combustion engine as a driving power source for traveling, as a counter gear.
  • FF front engine / front drive
  • From an output gear 22 as an output rotating member of the transmission 18 constituting one of the pair 20, a counter gear pair 20, a final gear pair 24, a differential gear device (differential gear) 26 as a power transmission device, and a pair of axles (Drive shaft (D / S)) 28 and the like are sequentially transmitted to the pair of drive wheels 14.
  • the transmission 18, the counter gear pair 20, the final gear pair 24, the differential gear device (differential gear) 26, and the like constitute a transaxle (T / A).
  • the engine 12, the traveling motor M, the transmission 18, the counter gear pair 20, the final gear pair 24, and the differential gear device 26 constitute a vehicle drive device 29 that drives the drive wheels (wheels) 14.
  • a vehicle to which the present invention is applied is a shift-by-wire system. If it is adopted, any type of vehicle such as a normal engine vehicle, a hybrid vehicle, an electric vehicle, or a fuel cell vehicle may be used.
  • the vehicle control device 100 included in the vehicle 10 includes, for example, a so-called microcomputer including a CPU, a RAM, a ROM, an input / output interface, and the like.
  • a so-called microcomputer including a CPU, a RAM, a ROM, an input / output interface, and the like.
  • hybrid drive control such as output control of the engine 12 and drive control of the electric motor M for traveling, shift control of the transmission 18, shift of the transmission 18 using a shift-by-wire system Control for switching the position PSH , switching control for the operating state of the parking lock device 16, and the like are executed.
  • the vehicle control apparatus 100 corresponds to the operation position P OPE from the shift sensor 36 and the select sensor 38 (see FIG. 2), which are position sensors for detecting the operation position (operation position) P OPE of the shift lever 32, for example.
  • signals representing the motor temperature TMP MR detected by the motor temperature sensor 45 a signal representing the cooling water temperature TMP W of the engine 12 detected by the cooling water temperature sensor 46, and a transmission oil temperature sensor 48. that signals representing the working oil temperature TMP AT hydraulic circuits, such as transmission 18, the charge current or discharge current I of the power storage device 52 Signal representative of the D, signals representative of the voltage V BAT of the storage device 52, the signal and representing the state of charge (remaining charge) SOC of power storage device 52, are supplied.
  • the vehicle control device 100 receives, for example, an engine output control command signal for output control of the engine 12, a motor control command signal for drive control of the traveling motor M in the transmission 18, and a shift control of the transmission 18.
  • hybrid control command signal such as the shift control command signal for the shift position switching control command signal for switching the shift position P SH of the transmission 18, as a display device for indicating vehicle information related to vehicle travel to the user
  • a vehicle speed display control command signal for displaying a current vehicle speed V by operating a speedometer 58 provided in a known combination meter 56, and a shift position indicator (shift position display device) 60 provided in the combination meter 56 to display the switching state of the shift position P SH of the transmission 18 by actuating the Shift position display control command signal for, during operation of the P-lock (parking lock state, the P lock state) P position indicator lamp as lock indicator lamp for or shift position P SH is evidenced by lighting it is in P position
  • a parking lock display control command signal P lock display control command signal for displaying the P lock state by operating 62
  • the vehicle control apparatus 100 includes a power control and hybrid control computer (hereinafter referred to as “PM-HV-ECU”) 104, a parking control computer (hereinafter referred to as “P-ECU”) 106, A meter control computer (hereinafter, referred to as “meter ECU”) 108 is provided.
  • the P-ECU 106 corresponds to the electronic control device of the present invention.
  • the PM-HV-ECU 104 switches the power supply switching state of the vehicle 10 based on, for example, a power switch signal from the vehicle power switch 40 operated by the user.
  • the power supply switching state of the vehicle 10 is, for example, a power off state (ALL-OFF state, IG / ACC-OFF state) for disabling vehicle travel, or vehicle travel impossibility.
  • Partial power-on state (ACC-ON state, IG-OFF state) so that only a part of the functions of the vehicle 10 can be operated with the combination meter 56 turned off, and the power source for driving the vehicle by turning on the combination meter 56 Is turned on (IG-ON state) and the vehicle can be controlled by a hybrid control command signal related to vehicle running, and the vehicle 10 can start and run when the accelerator is turned on. Transition to either (READY-ON state) is possible.
  • Making only a part of the functions of the vehicle 10 operable is, for example, energization for enabling operation of the navigation system or the audio system 64, or energization of a battery power outlet socket (not shown).
  • the IG-ON state is the power-on state, but other functions can be controlled (for example, the shift position PSH of the transmission 18 can be switched and controlled) other than controlling the vehicle travel by the hybrid control command signal.
  • the vehicle 10 cannot start and run even when the engine 12 is not started and the traveling motor M cannot be driven, that is, the accelerator is on.
  • the initial of the P-ECU 106 itself executed prior to switching to the READY-ON state
  • the condition is that no failure occurs in the process (initial process) or the initial drive control in the parking lock device 16. That is, even if the vehicle power switch 40 that switches to the READY-ON state is operated, if such a failure occurs, the vehicle switches to the other switching state such as the IG-ON state without switching to the READY-ON state. .
  • the PM-HV-ECU 104 detects the input of the power switch signal in the brake-on state B ON when in the P position, the power supply switching state of the vehicle 10 is changed to the READY-ON state from any state. Switch to. Further, when the PM-HV-ECU 104 is in the P position and the vehicle speed V is less than the predetermined stop vehicle speed V ′ in the IG-ON state or the READY-ON state and the input of the power switch signal is detected, Switch the power supply switching state to the ALL-OFF state.
  • the PM-HV-ECU 104 detects the input of the power switch signal in the P position when the brake on state B is not ON , the power supply switching state of the vehicle 10 is changed from the ALL-OFF state to the ACC-ON. It changes every time the power switch signal is input in the order of state ⁇ IG-ON state ⁇ ALL-OFF state ⁇ . Further, when the PM-HV-ECU 104 is in the non-P position and the vehicle speed V is less than the predetermined stop vehicle speed V ′ in the IG-ON state and the input of the power switch signal is detected, the PM-HV-ECU 104 operates the parking lock device 16.
  • Te switches the auto-P lock switching request signal for automatically P position to the shift position P SH and outputs to the P-ECU 106, the status of power supply of the vehicle 10 after confirmation of the P position to the ALL-OFF state (This series of operations is referred to as “auto P operation”).
  • the predetermined stop vehicle speed V ′ is, for example, a vehicle stop determination vehicle speed that is experimentally obtained and stored in advance for determining that the vehicle is in a stopped state.
  • the PM-HV-ECU 104 controls, for example, the operation of the transmission 18 in an integrated manner. For example, when the PM-HV-ECU 104 switches the power supply switching state of the vehicle 10 to the READY-ON state, the PM-HV-ECU 104 activates a hybrid system for enabling the vehicle to travel and issues a hybrid control command relating to the vehicle traveling to the engine 12. The vehicle is controlled by outputting to the traveling motor M and the transmission 18. Further, the PM-HV-ECU 104 outputs a shift position switching control command to the transmission 18 based on the shift lever position signal corresponding to the operation position P OPE from the shift sensor 36 and the select sensor 38 to set the shift position P SH . Switch.
  • the PM-HV-ECU 104 changes the shift position P SH of the transmission 18 from the P position to the non-P position based on the shift lever position signal.
  • a P release switching request signal for switching to is output to the P-ECU 106.
  • PM-HV-ECU 104 the output of the P lock switching request signal for switching the shift position P SH of the transmission 18 on the basis of the P switch signal from the P switch 34 from the non-P position to the P position to the P-ECU 106 To do.
  • PM-HV-ECU104 outputs a shift position display signal for displaying the state of the shift position P SH to the meter ECU108.
  • the PM-HV-ECU 104 displays a parking lock display control command signal (P) for displaying the P lock state (P position) based on the P lock state signal indicating the P position from the P-ECU 106.
  • P lock display control command signal is output to the P switch 34, and the P position indicator lamp 62 in the P switch 34 is lit to clearly indicate that the P lock state is established.
  • the power storage device 52 is a DC power source that can be charged and discharged, and is composed of, for example, a secondary battery such as nickel metal hydride or lithium ion.
  • a secondary battery such as nickel metal hydride or lithium ion.
  • the stored electric power is supplied to the traveling motor M through the inverter 54.
  • the electric power generated by the traveling motor M is stored in the power storage device 52 through the inverter 54.
  • P-ECU 106 for example PM-HV-ECU 104 auto P lock switching request signal and P switching request signal from the (P lock switching request signal, P release switching request signal) shift position based on the P SH of P position and the non-P In order to switch between positions, the driving of the parking lock device 16 is controlled to activate or cancel the parking lock.
  • P-ECU 106 includes a shift position P SH of the transmission 18 on the basis of the P position signal representing the operating state of the parking lock from the parking lock device 16 determines whether the non-P position or a P position, The result of the determination is output to the PM-HV-ECU 104 or the like as a P lock state signal.
  • the P-ECU 106 when the power supply switching state of the vehicle 10 is switched from the ALL-OFF state or the ACC-ON state to the IG-ON state or the READY-ON state, the P-ECU 106, as will be described later, The initial drive control at 16 is executed, and the detection control of the P wall position and the non-P wall position for appropriately obtaining the P position signal and the non-P position signal is executed. Further, the P-ECU 106 performs a series of initial control in the parking lock device 16 when the power supply switching state of the vehicle 10 is switched from the ALL-OFF state or the ACC-ON state to the IG-ON state or the READY-ON state. Is executed, the initial process (initial process) of the P-ECU 106 itself is executed.
  • the P-ECU 106 is not activated when the power supply switching state of the vehicle 10 is the ALL-OFF state or the ACC-ON state, while the power supply switching state of the vehicle 10 is IG. If it is in the -ON state or READY-ON state, it is activated.
  • the non-activated state of the P-ECU 106 is, for example, a state where the power source of the P-ECU 106 is cut off, and the activated state of the P-ECU 106 is a state where the power source of the P-ECU 106 is turned on.
  • the meter ECU 108 outputs a vehicle speed display control command signal for displaying the current vehicle speed V to the speedometer 58 in the combination meter 56 and displays the current vehicle speed V.
  • the meter ECU 108 determines the meter display vehicle speed signal V by counting (counting) a rectangular waveform of the vehicle speed pulse signal based on the wheel speed pulse signal output from the wheel speed sensor 42. Then, the meter ECU 108 operates the speedometer 58 based on the determined meter display vehicle speed signal V to turn on the corresponding segment and display the current vehicle speed V.
  • the meter ECU108 is, PM-HV-ECU 104 to shift position display control command signal for displaying the state of the shift position P SH based on the shift position display signal output from the shift position indicator 60 in the combination meter 56 output, display the current state of the shift position P SH of the shift position indicator 60. For example, to turn on the representation position of the shift position P SH of the shift position indicator 60 appropriate.
  • FIG. 2 is a diagram illustrating an example of a shift operation device 30 as a switching device, which is manually operated multiple kinds of shift positions P SH in transmission 18 (operation device).
  • the shift operating device 30 is disposed, for example, in the vicinity of the driver's seat, and automatically returns to the original position (initial position) when the momentary type operator operated to a plurality of operation positions POPE , that is, the operating force is released.
  • a shift lever 32 is provided as an automatic return type operator.
  • the shift operating device 30 of this embodiment in the vicinity of the P switch 34 the shift lever 32 of the shift position P SH of the transmission 18 as a momentary-type operation element for parking lock as a parking position (P position) It is provided as a separate switch.
  • the shift lever 32 has three operation positions P OPE arranged in the front-rear direction or the up-down direction, that is, the vertical direction of the vehicle, an R operation position (R operation position), and an N operation position (N operation position). , The D operation position (D operation position), and the M operation position (M operation position) and B operation position (B operation position) arranged in parallel with each other, the operation position P OPE A shift lever position signal corresponding to the above is output to the PM-HV-ECU 104.
  • the shift lever 32 can be operated in the vertical direction between the R operation position, the N operation position, and the D operation position, and can be operated in the vertical direction between the M operation position and the B operation position.
  • the vehicle can be operated in the lateral direction of the vehicle perpendicular to the longitudinal direction between the N operation position and the B operation position.
  • the P switch 34 is, for example, a momentary push button switch, and outputs a P switch signal to the PM-HV-ECU 104 every time the user performs a push operation. For example, if the P switch 34 is pressed when the shift position PSH of the transmission 18 is in the non-P position, PM ⁇ if the predetermined condition such that the vehicle speed V is equal to or less than the P lock permission vehicle speed Vp is satisfied.
  • shift position P SH is the P position by P-ECU 106 based on the P lock switching request signal from HV-ECU 104.
  • the P position is a parking position where the power transmission path in the transmission 18 is interrupted and the parking lock is executed by the parking lock device 16 to mechanically prevent the drive wheels 14 from rotating.
  • the P switch 34 has a built-in P position indicator lamp 62. If the P lock state signal from the P-ECU 106 indicates that the P position is indicated, the P-position indicator is indicated by the PM-HV-ECU 104. The lamp 62 is turned on.
  • the M operation position of the shift operating device 30 is the initial position (home position) of the shift lever 32, even if the shift operation is performed to an operation position P OPE (R, N, D, B operation position) other than the M operation position.
  • P OPE operation position P OPE
  • the shift lever 32 is returned to the M operation position by a mechanical mechanism such as a spring.
  • the R position selected by shifting the shift lever 32 to the R operation position is a reverse travel position in which a driving force for moving the vehicle backward is transmitted to the drive wheels 14.
  • the neutral position (N position) selected by shifting the shift lever 32 to the N operation position is a neutral position for setting the neutral state in which the power transmission path in the transmission 18 is interrupted.
  • the D position selected when the shift lever 32 is shifted to the D operation position is a forward travel position where a driving force for moving the vehicle forward is transmitted to the drive wheels 14.
  • PM-HV-ECU 104 when the shift position P SH is the P position, the movement preventing the vehicle based on the shift lever position signal to a predetermined operating position P OPE (specifically releasing the (parking lock) the , R operation position, N operation position, or D operation position), the parking lock is released if a predetermined condition such as the brake-on state B ON is satisfied.
  • a release switching request signal is output to P-ECU 106.
  • the P-ECU 106 outputs a P switching control command signal for releasing the parking lock to the parking lock device 16 based on the P release switching request signal from the PM-HV-ECU 104 to release the parking lock.
  • PM-HV-ECU104 switches to the shift position P SH corresponding to the operation position P OPE after the shift operation.
  • the B position selected by the shift lever 32 being shifted to the B operation position causes the engine wheel effect to be exerted by the regenerative braking that causes the traveling motor M to generate regenerative torque in the D position.
  • This is a decelerating forward travel position (engine brake range) that decelerates the rotation of the engine. Therefore, PM-HV-ECU 104 is also shifted lever 32 when the current shift position P SH is the shift position P SH of the non-D position is shifting to the B operating position and disable the shift operation, the D position Only when is the shift operation to the B operation position is valid. For example, even if the driver performs a shift operation to the B operation position when in the P position, the shift position PSH is maintained at the P position.
  • the shift operation device 30 when the external force acting on the shift lever 32 is lost, the shift operation device 30 is returned to the M operation position, so that the shift position P SH being selected is recognized only by visually confirming the operation position P OPE of the shift lever 32. I can't do it. Therefore, the shift position indicator 60 is provided at a position that is easy for the driver to see, and is displayed on the shift position indicator 60 even when the currently selected shift position PSH is the P position.
  • a so-called shift-by-wire (SBW) method is employed, and the shift operation device 30 is a first direction P1 that is the vertical direction and a first direction that intersects the direction P1 (orthogonal in FIG. 2). Since the shift operation is two-dimensionally performed in two directions P2, in order to output the operation position P OPE as a detection signal of the position sensor to the vehicle control device 100, the first shift operation in the first direction P1 is detected.
  • a shift sensor 36 as a direction detection unit and a select sensor 38 as a second direction detection unit for detecting the shift operation in the second direction P2 are provided.
  • Both the shift sensor 36 and the select sensor 38 output a voltage as a detection signal (shift lever position signal) corresponding to the operation position P OPE to the vehicle control device 100, and the vehicle control device 100 is based on the detection signal voltage.
  • the operation position P OPE is recognized (determined). That is, the first direction detection unit (shift sensor 36) and the second direction detection unit (select sensor 38) constitute an operation position detection unit that detects the operation position P OPE of the shift operation device 30 as a whole. It can be said.
  • the detection signal voltage V SF of the shift sensor 36 is the first direction first position P1_1 indicating the R operation position, the first direction second indicating the M operation position or the N operation position.
  • the voltage level (for example, each voltage in the low range, mid range, and high range) corresponding to each position of the position P1_2 and the first direction third position P1_3 indicating the B operation position or the D operation position is obtained.
  • the detection signal voltage V SL of the select sensor 38 is a second direction first position P2_1 indicating the M operation position or the B operation position, and a second direction second indicating the R operation position, the N operation position, or the D operation position.
  • the voltage level corresponds to each position of the position P2_2 (for example, each voltage in the low range and the high range).
  • the PM-HV-ECU 104 detects the detection signal voltages V SF and V SL that change in this way, thereby operating positions P OPE (R, N, D, M, and B operating positions) according to combinations of the respective voltage levels. Recognize
  • FIG. 3 is a diagram for explaining the configuration of the parking lock device 16 that mechanically blocks the rotation of the drive wheels 14.
  • the parking lock device 16 includes a P lock mechanism (parking lock mechanism) 66, a P lock drive motor (parking lock drive motor) 68 that is an electric actuator, a P lock reducer 69, an encoder 70, and the like. It operates to prevent movement of the vehicle 10 based on a control signal from the vehicle control device 100.
  • the P lock drive motor 68 is connected to the shaft 72 via a P lock reducer 69, and receives a command (control signal) from the P-ECU 106 to drive the P lock mechanism 66 by a shift-by-wire system.
  • the P lock drive motor 68 corresponds to the electric motor of the present invention, and includes a stator 174 having a plurality of salient poles 172 around which windings 170 are wound, and a plurality of salient poles 176a that are rotatably arranged with respect to the stator 174.
  • salient poles 176 (hereinafter referred to as salient poles 176 unless otherwise specified), and sequentially supplies current to the winding 170 based on the rotational position information (rotational angle) of the rotor 178.
  • This is a motor that rotates the rotor 178.
  • the type of the P lock drive motor 68 is not particularly limited, but the P lock drive motor 68 of the present embodiment is a switched reluctance motor (SR motor). Therefore, there is a merit that the motor structure is simple, inexpensive and mechanical reliability is high, and the rotor 178 has no windings, so that the heat generation problem of the rotor 178 does not occur.
  • FIG. 4 is a cross-sectional view schematically showing a cross-sectional structure of the P-lock drive motor 68.
  • the stator 174 is a non-rotating member fixed to a vehicle body or the like, and the rotor 178 can rotate about the axis of the stator 174 relative to the stator 174, and rotates integrally with the rotor 178.
  • the rotation of the motor output shaft 180 is transmitted to the shaft 72 via the P lock reducer 69.
  • the stator 174 and the rotor 178 shown in FIG.
  • a magnetic force is generated when the winding 170 at the U, U ′ position (U, U ′ phase) is energized, and the salient poles 176 a, 176 c of the rotor 178. Is attracted to the salient poles 172 of the stator 174 at the U and U ′ positions, and the rotor 178 rotates in the direction of the arrow AR01.
  • the P-ECU 106 can rotationally drive the P-lock drive motor 68 by sequentially switching energization to the winding 170 based on the rotation angle of the rotor 178 with respect to the stator 174.
  • the P-ECU 106 acquires the rotation angle of the rotor 178 relative to the stator 174, that is, the rotation position information of the rotor 178 based on a signal from the encoder 70 during the rotation driving.
  • a predetermined applied voltage V MR is applied to the winding 170 so that an appropriate motor torque (output torque) TSR is output from the P-lock drive motor 68 at room temperature.
  • Runode current supplied to the winding 170 is determined by the relationship between the resistance value of the winding 170 and the applied voltage V MR.
  • the applied voltage V MR is set to a constant value or a substantially constant value. Accordingly, the motor torque TSR based on the current supplied to the winding 170 tends to increase as the resistance value of the winding 170 decreases.
  • the P lock speed reducer 69 is a speed reducer that decelerates the rotation of the P lock drive motor 68 and transmits it to the shaft 72.
  • the P-lock speed reducer 69 is a cycloid speed reducer, and has a speed reduction ratio that causes the shaft 72 to rotate 1/60 times per rotation of the P-lock drive motor 68.
  • the encoder 70 is a rotary encoder that outputs, for example, A-phase, B-phase, and Z-phase signals.
  • the encoder 70 rotates integrally with the P-lock drive motor 68, detects the rotation status of the SR motor, and represents the rotation status.
  • a signal that is, a pulse signal for obtaining a count value (encoder count) corresponding to the movement amount (rotation amount) of the P lock drive motor 68 is supplied to the P-ECU 106.
  • the P-ECU 106 obtains a signal supplied from the encoder 70, grasps the rotation status of the SR motor, that is, the rotational position information of the rotor 178, and controls energization for driving the SR motor.
  • the P lock mechanism 66 is linked to the shaft 72 rotated by the P lock drive motor 68, the detent plate 74 that rotates as the shaft 72 rotates, the rod 76 that operates as the detent plate 74 rotates, and the drive wheel 14.
  • parking gear 78 to rotate, with the parking lock pole 80, the detent spring 82 for fixing the shift position P SH to limit rotation of the detent plate 74, and rollers 84 for rotating prevent the parking gear 78 (lock) ing.
  • the parking gear 78 is not limited in the location provided if the drive wheel 14 is also locked when the parking gear 78 is locked.
  • the parking gear 78 is concentrically fixed to the output gear 22 of the transmission 18. (See FIG. 1).
  • the detent plate 74 is operatively connected to the drive shaft of the P-lock drive motor 68 via the shaft 72 and the P-lock speed reducer 69.
  • the detent plate 74 is driven by the P-lock drive motor 68 together with the rod 76, the detent spring 82, the rollers 84, and the like. It functions as a parking lock positioning member for switching between a parking lock position corresponding to the P position when driven and a non-parking lock position corresponding to each shift position P SH (non-P position) other than the P position.
  • the shaft 72, the detent plate 74, the rod 76, the detent spring 82, and the roller 84 serve as a parking lock switching mechanism.
  • FIG. 3 shows a state when the non-parking lock position, that is, the shift position PSH is the non-P position.
  • the parking lock pole 80 does not lock the parking gear 78, the rotation of the drive wheel 14 is not hindered by the P lock mechanism 66.
  • the shaft 72 is rotated in the direction of arrow C shown in FIG. 3 by the P lock drive motor 68, the rod 76 is pushed in the direction of arrow A shown in FIG.
  • the parking lock pole 80 is pushed up in the direction of arrow B shown in FIG. 3 by the taper member 86 provided at the tip.
  • the detent spring 82 is in one of the two valleys provided at the top of the detent plate 74, that is, in the non-parking lock position 90 (hereinafter, non-P position 90 (see FIG. 5)).
  • the roller 84 moves over the mountain 88 and moves to the other valley, that is, the parking lock position 92 (hereinafter referred to as the P position 92 (see FIG. 5)).
  • the roller 84 is provided on the detent spring 82 so as to be rotatable about its axis.
  • the rotation of the drive wheel 14 that rotates in conjunction with the parking gear 78 is mechanically blocked, and the shift position PSH is switched to the P position.
  • the P lock mechanism 66 such as a detent plate 74, detent spring 82
  • the shaft 72 during the shift position P SH switching between the P position and the non-P position for example, P-
  • the ECU 106 controls the rotation amount of the P lock drive motor 68 so that the impact when the roller 84 of the detent spring 82 falls over the mountain 88 is reduced.
  • the switching position where the roller 84 is in the P position 92 is the locking position (P position) that restrains the rotation of the drive wheel (wheel) 14, and the switching position where the roller 84 is in the non-P position 90.
  • P position the locking position
  • non-P position the non-lock position
  • the parking lock device 16 selectively switches the switching position of the parking lock device 16 between the locked position and the unlocked position by driving the P lock drive motor 68 based on a command from the P-ECU 106. It is done.
  • the parking lock device 16 has a parking gear 78 as a rotating tooth that rotates the vehicle 10 together with the wheels (drive wheels 14) based on the driver's operation, and a parking lock pole 80 as a locking tooth. It selectively switches between a locked state (P-locked state) that engages and an unlocked state (non-P-locked state) in which the locked state is released.
  • FIG. 5 is a diagram for explaining the configuration of the detent plate 74.
  • the surface located on the side away from the mountain 88 is called a wall. That is, the wall exists at a position where the roller 84 of the detent spring 82 collides with the roller 84 when the roller 84 of the detent spring 82 climbs over the mountain 88 and falls into the valley without performing the following control by the P-ECU 106.
  • the wall at the P position 92 is called “P wall”
  • the wall at the non-P position 90 is called “non-P wall”.
  • the P-ECU 106 controls the P lock drive motor 68 so that the non-P wall 94 does not collide with the roller 84. Specifically, the P-ECU 106 stops the rotation of the P lock drive motor 68 at a position before the non-P wall 94 collides with the roller 84. This position is referred to as “non-P target rotation position”. Further, when the roller 84 moves from the non-P position 90 to the P position 92, the P-ECU 106 controls the P lock drive motor 68 so that the P wall 96 does not collide with the roller 84.
  • the P-ECU 106 stops the rotation of the P lock drive motor 68 at a position before the P wall 96 collides with the roller 84. This position is referred to as “P target rotation position”.
  • P target rotation position The control of the P-lock drive motor 68 by P-ECU 106, the detent plate 74 at the time of the shift position P SH switch, detent spring 82, the load applied to the P-lock mechanism 66, such as the shaft 72 can be significantly reduced. By reducing the load, the P lock mechanism 66 can be reduced in weight and cost.
  • FIG. 6 is a diagram for explaining the correspondence between the rotation amount of the P lock drive motor 68, that is, the encoder count, and the shift position PSH .
  • the P lock drive motor 68 rotationally drives the detent plate 74, and the rotation amount of the P lock drive motor 68 is regulated by the non-P wall 94 and the P wall 96.
  • FIG. 6 conceptually shows the position of the P wall 96 (P wall position) and the position of the non-P wall 94 (non-P wall position) when the rotation control of the P lock drive motor 68 is performed.
  • the range from the P wall position to the non-P wall position is referred to as the movable rotation amount of the P lock drive motor 68.
  • the range from the P determination position to the P wall position is the P position range
  • the range from the non-P determination position to the non-P wall position is the non-P position range.
  • the P target rotational position is set within the P position range
  • the non-P target rotational position is set within the non-P position range.
  • the P target rotation position is a position where the P wall 96 does not collide with the roller 84 of the detent spring 82 when switching from the non-P position to the P position, and is determined with a predetermined margin from the P wall position.
  • This predetermined margin is set with a margin in consideration of a backlash due to a change with time. As a result, if the number of times of use is a certain number of times, the change with time can be absorbed, and the collision with the P wall 96 and 84 when the shift position PSH is switched from the non-P position to the P position can be avoided.
  • the non-P target rotational position is a position where the non-P wall 94 does not collide with the roller 84 of the detent spring 82 when switching from the P position to the non-P position, and is determined with a predetermined margin from the non-P wall position.
  • This predetermined margin is set with a margin in consideration of looseness due to changes over time, etc., so long as it is used to some extent, changes over time can be absorbed, and the shift position P SH is switched from the P position to the non-P position. A collision with the non-P wall 94 at the time 84 can be avoided.
  • the margin from the non-P wall position and the margin from the P wall position need not be the same, and may differ depending on the shape of the detent plate 74 and the like.
  • the P-ECU 106 acquires an encoder count corresponding to the rotation amount of the P lock drive motor 68 based on the pulse signal output from the encoder 70. For example, the P-ECU 106 sets the encoder count to zero when the power supply switching state of the vehicle 10 is the ALL-OFF state or the ACC-ON state, and from the ALL-OFF state or the ACC-ON state to the IG-ON state or When the state is switched to the READY-ON state, the encoder count is sequentially updated based on the signal output from the encoder 70 thereafter. In this embodiment, the encoder count by rotation in the direction of the P wall position (rotation in the direction of arrow C in FIG. 3) is set as negative.
  • the P-ECU 106 controls the P lock drive motor 68 so that the acquired encoder count matches a preset target encoder count (target count value, target count value).
  • the target count value is, for example, a target value that is experimentally obtained and set in advance for stopping the P lock drive motor 68 at the P target rotational position or the non-P target rotational position.
  • the encoder 70 is a relative position sensor, and the P-ECU 106 loses information on the absolute position of the P lock drive motor 68 such as the P wall position and the non-P wall position in the non-activated state.
  • the encoder 70 loses information on the absolute position of the P lock drive motor 68 such as the P wall position and the non-P wall position in the non-activated state.
  • a method for controlling the position of the P lock drive motor 68 using the encoder 70 that detects relative position information will be specifically described below.
  • FIG. 7 shows that the vehicle power switch 40 is switched from the ALL-OFF state or the ACC-ON state to the IG-ON state and the P-ECU 106 is activated from the non-activated state to the activated state.
  • It is a state transition diagram explaining a series of initial control in the parking lock apparatus 16 at the time of switching to.
  • the PM-HV-ECU 104 switches the power supply switching state of the vehicle 10 from the ALL-OFF state or the ACC-ON state to the IG-ON state [State A]
  • the P-ECU 106 is moved from the non-activated state.
  • the system is switched to the activated state, and an initial standby is performed as a period of waiting for the relay of the P lock drive motor 68 (P motor power relay) to be connected [state B].
  • the P-ECU 106 performs an initial process of the P-ECU 106 itself.
  • the P-ECU 106 performs initial drive control of the P lock drive motor 68 such as excitation matching (phase alignment) of the P lock drive motor 68 in order to appropriately control the rotation of the P lock drive motor 68 [state] C].
  • the P-ECU 106 detects the P wall position or the non-P wall position of the P lock drive motor 68 and sets a reference position [state D].
  • the P-ECU 106 After setting the reference position, the P-ECU 106 performs normal control for executing the operation and release of the parking lock based on, for example, the operation of the P switch 34 or the shift operation by the user [state E].
  • the vehicle power switch 40 is switched from the ALL-OFF state or the ACC-ON state to the READY-ON state, and the P-ECU 106 is switched from the non-activated state to the activated state.
  • the series of initial control in the parking lock device 16 is the same as that in FIG. 7 described above. However, after each control or process is normally completed until the state E in FIG. Is switched to READY-ON state.
  • the motor heat generation control according to the present invention may be executed during the transition from the state C to the state D in FIG. 7. For this, the function block diagram in FIG. 10 and the flowchart in FIG. 12 are used. Will be described later.
  • the initial drive control of the P lock drive motor 68 executed in the state C of FIG. 7 will be described.
  • the initial drive control of the P lock drive motor 68 is a control that is executed by the P-ECU 106 when the P-ECU 106 is switched from the non-activated state to the activated state.
  • the rotor 178 and the stator 174 of the P lock drive motor 68 are In order for the P-ECU 106 to recognize the relative positional relationship, the P lock drive motor 68 is energized.
  • Various specific control methods are conceivable as the initial drive control. For example, in the initial drive control, the P-ECU 106 first turns both the U and U ′ phases and the V and V ′ phases shown in FIG.
  • the line 170 is energized for a certain period of time, and then the energization of the U and U ′ phases is continued for a certain period of time while the energization of the V and V ′ phases is interrupted.
  • the rotor 178 is moved to a rotational position where the salient poles 176 of the rotor 178 are opposed to the salient poles 172 of the stator 174 in the U and U ′ phases, so that the P-ECU 106 is connected to the rotor 178 and the stator 174.
  • a control method for detecting the P wall position and the non-P wall position in the state D of FIG. 7 will be described.
  • FIG. 8 is a diagram for explaining a control method for detecting the P wall position.
  • the P-ECU 106 first drives the P lock drive motor 68 to move the detent plate 74 in the direction of the arrow C shown in FIG. 3, that is, the direction in which the P wall 96 faces the roller 84 of the detent spring 82.
  • the roller 84 and the P wall 96 are brought into contact with each other.
  • the P wall 96 functions as a regulating member that regulates the rotation of the P lock drive motor 68 in the direction of the arrow C shown in FIG. 3 as a predetermined direction at the P position 92, that is, the P position as the predetermined shift position PSH . .
  • the P wall 96 may constitute a restricting member in cooperation with the detent spring 82 and the roller 84.
  • an arrow F ⁇ b> 1 indicates a rotational force by the P-lock drive motor 68
  • an arrow F ⁇ b> 2 indicates a spring force by the detent spring 82
  • an arrow F ⁇ b> 3 indicates a push-back force by the rod 76.
  • a detent plate 74 ′ indicated by a dotted line indicates a position where the P wall 96 and 84 are in contact with each other. Therefore, detecting the position of the detent plate 74 ′ corresponds to detecting the position of the P wall 96.
  • the detent plate 74 resists the spring force of the detent spring 82 from the position indicated by the dotted line in the direction of arrow C shown in FIG. And rotated. As a result, the detent spring 82 is bent, the spring force F2 is increased, and the pushing back force F3 by the rod 76 is also increased. When the rotational force F1 is balanced with the spring force F2 and the pushing back force F3, the rotation of the detent plate 74 is stopped.
  • the P-ECU 106 determines the rotation stop of the detent plate 74 based on the acquired encoder count. For example, the P-ECU 106 determines to stop the rotation of the detent plate 74 and the P lock drive motor 68 when the minimum value or the maximum value of the encoder count does not change for a predetermined time. Whether the minimum value or the maximum value of the encoder count is monitored may be set according to the encoder 70. In any case, if the minimum value or the maximum value does not change for a predetermined time, the detent plate 74 does not move. Indicates the state.
  • the P-ECU 106 detects the position of the detent plate 74 when the rotation is stopped as a temporary P wall position (hereinafter referred to as “provisional P wall position”), and further calculates the deflection amount or the deflection angle of the detent spring 82. To do.
  • This bend amount or bend angle is calculated using, for example, a map indicating the relationship between the bend amount or bend angle corresponding to the voltage applied to the P lock drive motor 68 (supply voltage V MR ) stored in advance in the P-ECU 106.
  • P-ECU 106 calculates the deflection amount or deflection angle corresponding to the applied voltage V MR from the map to the P lock drive motor 68 at the time of the provisional P wall position detection.
  • the P-ECU 106 corrects the temporary P wall position based on the deflection amount or deflection angle calculated using this map, and determines the map corrected position as the P wall position. At this time, the P-ECU 106 sets the encoder count to CNTP at the determined P wall position. Then, the P-ECU 106 drives the P lock drive motor 68 so that the encoder count becomes zero, and moves the detent plate 74 in the direction of the arrow D shown in FIG. 3, that is, the P wall 96 extends from the roller 84 of the detent spring 82. The detent plate 74 is rotated in the direction of separation, and the position of the detent plate 74 is set to a predetermined P position.
  • the predetermined P position is a predetermined position set in advance in the P position range, and is set such that the encoder count difference from the determined P wall position is CNTP.
  • the predetermined P position may be set as the P target rotation position.
  • the P target rotation position can be set by determining the P wall position.
  • the map showing the relation to the amount of deflection or flexure angle corresponding to the applied voltage may be a map showing the relationship of the flexure amount or flexure angle corresponding to an output torque T SR of the P-lock drive motor 68
  • a sensor for detecting the amount of deflection or the angle of deflection may be provided to detect it.
  • FIG. 9 is a diagram for explaining a control method for detecting a non-P wall position.
  • the P-ECU 106 first drives the P lock drive motor 68 to move the detent plate 74 in the direction of the arrow D shown in FIG. 3, that is, the non-P wall 94 moves to the roller 84 of the detent spring 82.
  • the roller 84 and the non-P wall 94 are brought into contact with each other.
  • the non-P wall 94 is a regulating member that regulates the rotation of the P lock drive motor 68 in the direction of the arrow D shown in FIG. 3 as the predetermined direction at the non-P position 90, that is, at the non-P position as the predetermined shift position PSH . Function as.
  • the non-P wall 94 may constitute a restricting member in cooperation with the detent spring 82 and the roller 84.
  • an arrow F ⁇ b> 1 indicates a rotational force by the P-lock drive motor 68
  • an arrow F ⁇ b> 2 indicates a spring force by the detent spring 82
  • an arrow F ⁇ b> 3 indicates a pulling force by the rod 76.
  • a detent plate 74 ′′ indicated by a dotted line indicates a position where the non-P wall 94 and 84 are in contact with each other. Therefore, detecting the position of the detent plate 74 ′′ corresponds to detecting the position of the non-P wall 94. .
  • the P-ECU 106 determines the rotation stop of the detent plate 74 based on the acquired encoder count. For example, the P-ECU 106 determines to stop the rotation of the detent plate 74 and the P lock drive motor 68 when the minimum value or the maximum value of the encoder count does not change for a predetermined time.
  • the P-ECU 106 detects the position of the detent plate 74 when rotation is stopped as a temporary non-P wall position (hereinafter referred to as “provisional non-P wall position”), and further calculates the amount of extension of the detent spring 82. .
  • the calculation of the extension amount is performed using, for example, a map indicating the relationship of the extension amount corresponding to the voltage applied to the P lock drive motor 68 stored in advance in the P-ECU 106.
  • the P-ECU 106 calculates the amount of elongation corresponding to the voltage applied to the P lock drive motor 68 when the temporary non-P wall position is detected from the map.
  • the P-ECU 106 corrects the temporary non-P wall position based on the amount of extension calculated using this map, and determines the map-corrected position as the non-P wall position. At this time, the P-ECU 106 sets the encoder count to CNTCP at the determined non-P wall position. Then, the P-ECU 106 drives the P lock drive motor 68 so that the encoder count CP is obtained by reducing the encoder count by a predetermined count value, and moves the detent plate 74 in the direction of the arrow C shown in FIG. The wall 94 is rotated in a direction away from the roller 84 of the detent spring 82, and the position of the detent plate 74 is set to a predetermined non-P position.
  • the predetermined non-P position is a predetermined position set in advance in the non-P position range, and is set so that the encoder count difference from the determined non-P wall position becomes a predetermined count value.
  • the predetermined non-P position may be set as the non-P target rotation position.
  • the non-P target rotational position can be set by determining the non-P wall position.
  • the map showing the extension amount of relationship corresponding to the applied voltage may be a map indicating the amount of elongation relationship corresponding to the output torque T SR of the P-lock drive motor 68, is calculated using the map Instead of this, a sensor for detecting the amount of elongation may be provided to detect it.
  • the P lock drive motor 68 is moved in a direction in which the movement (rotation) of the P lock drive motor 68 is restricted.
  • the wall position of the P lock drive motor 68 corresponding to the predetermined shift position PSH can be detected based on the acquired encoder count, and the reference position can be set.
  • both the non-P wall 94 and the P wall 96 correspond to the mechanical displacement end (stroke end) of the parking lock device 16, so that the P wall position detection control and the non-P wall position detection are performed.
  • the control corresponds to the wall contact control of the present invention in which the parking lock device 16 is driven to the mechanical displacement end by the P lock drive motor 68.
  • the switch operation of the vehicle power switch 40 that switches the power supply switching state of the vehicle 10 to the IG-ON state or the READY-ON state is performed, that is, the P-ECU 106 is changed from the non-activated state to the activated state.
  • initial processing of the P-ECU 106 itself is executed, and then initial control in the parking lock device 16 is executed to detect the wall position. That is, as the initial control in the parking lock device 16, the initial drive control of the P lock drive motor 68 is performed, and then the P wall position and the non-P wall position of the P lock drive motor 68 are detected and the reference position is set. Is done.
  • the actual movable rotation amount (actual movable rotation amount) of the P lock drive motor 68 based on the detected P wall position and non-P wall position is a range between two wall positions, and one shift position. After detecting the wall position by performing a wall position detection control in P SH, it can be measured by detecting the other wall position by performing a wall position detection control in the other shift position P SH. Since the absolute position of the P lock drive motor 68 can be grasped by detecting the wall position, the target rotation position can be set.
  • V MR applied voltage
  • V MR motor applied voltage
  • the supply current to the winding 170 increases as the internal resistance decreases.
  • motor torque T SR based on the supply current to the 170 increases as the internal resistance of the winding 170 is lowered. Therefore, for example, when the vehicle 10 is placed in an extremely low temperature state, the P lock drive motor 68 generates a large torque TSR until it is warmed up by its driving or the like.
  • FIG. 10 is a functional block diagram for explaining a main part of the control function provided in the P-ECU 106.
  • the P-ECU 106 includes an activation determination unit 130 as an activation determination unit, an electric motor temperature determination unit 132 as an electric motor temperature determination unit, an initial drive control unit 134 as an initial drive control unit, a wall A wall position detection control unit 136 as a position detection control unit, a parking lock switching control unit 137 as a parking lock switching control unit, and an electric motor heat generation control unit 138 as an electric motor heat generation control unit are provided.
  • the activation determining means 130 determines whether or not the P-ECU 106 has been switched from the non-activated state to the activated state. For example, when the vehicle power switch 40 is operated to switch the power supply switching state of the vehicle 10 from the ALL-OFF state or the ACC-ON state to the IG-ON state or the READY-ON state, the activation determination unit 130 is operated. , It is determined that the P-ECU 106 has been switched from the non-activated state to the activated state. In short, the activation determining unit 130 determines that the P-ECU 106 has been switched from the non-activated state to the activated state when the state A in FIG.
  • the motor temperature determining means 132 determines whether or not the temperature TMP MR of the P lock drive motor 68, that is, the motor temperature (motor temperature) TMP MR is lower than a predetermined low temperature determination value TMPmin.
  • the motor temperature determination means 132 detects the motor temperature TMP MR by, for example, the motor temperature sensor 45, but in a vehicle in which the motor temperature sensor 45 is not provided, the temperature detected by the vehicle drive device 29, for example, the cooling water temperature. TMP W or hydraulic fluid temperature TMP AT may be judged as motor temperature TMP MR .
  • the low-temperature determination value TMPmin is determined that there is a possibility that the motor temperature TMP MR increases as impairing the durability of the P-lock mechanism 66 by lowering the motor torque T SR is an internal resistance of the windings 170 is lower than that So that it is experimentally set.
  • the low temperature determination value TMPmin is obtained by the P-lock drive motor 68 in the wall contact control (see state D in FIG. 7) or the normal control (see state E in FIG. 7).
  • motor torque T SR is set to the permissible lowest possible motor temperature TMP MR does not exceed the upper limit value of the torque of the P-lock mechanism 66 when driving.
  • the initial drive control unit 134 performs the initial drive control of the P lock drive motor 68 when the activation determination unit 130 determines that the P-ECU 106 has been switched from the non-activated state to the activated state (state C in FIG. 7). reference). Thereby, the relative positional relationship between the rotor 178 of the P lock drive motor 68 and the stator 174 is recognized.
  • the wall position detection control unit 136 (wall contact control unit 136) is configured to perform the initial drive control by the initial drive control unit 134 when the activation determination unit 130 determines that the P-ECU 106 has been switched from the non-activated state to the activated state. After the execution of is completed, the P wall position detection control and the non-P wall position detection control are executed to detect the P wall position and the non-P wall position (see state D in FIG. 7). However, when the motor heat generation control unit 138 described later executes the motor heat generation control, that is, before the start of the motor heat generation control, the motor temperature determination unit 132 determines that the motor temperature TMP MR is lower than the low temperature determination value TMPmin. In such a case, the execution of the P wall position detection control and the non-P wall position detection control is started after completion of the electric motor heat generation control.
  • the parking lock switching control means 137 moves the parking lock device 16 to the locked position (P position) and the unlocked position (non-P position) in accordance with a command signal from the PM-HV-ECU 104 when the P-ECU 106 is activated.
  • a parking lock switching control for selectively switching is executed. Specifically, wall position detection is performed after completion of execution of the P wall position detection control and the non-P wall position detection control by the wall position detection control means 136, that is, after the P wall position and the non-P wall position are detected. The information on the P wall position and the non-P wall position is received from the control means 136, thereby recognizing the absolute position of the P lock drive motor 68, and then executing the parking lock switching control.
  • the parking lock switching control means 137 first issues a command signal (P motor driving command signal) for operating the P lock driving motor 68, for example, the auto P lock switching request signal or the P switching. It is determined whether a request signal is received from PM-HV-ECU 104.
  • the parking lock switching control unit 137 receives the P motor drive command signal from the PM-HV-ECU 104, the parking lock switching control unit 137 sequentially reads the signal from the encoder 70 and recognizes the current position of the P lock drive motor 68.
  • the P lock drive motor 68 is rotated according to the P motor drive command signal, and the P lock drive motor 68 is stopped when the P target rotation position or the non-P target rotation position according to the P motor drive command signal is reached.
  • the parking lock switching control means 137 operates the P lock driving motor 68 by the parking lock switching control
  • the P motor drive command signal from the PM-HV-ECU 104 is changed to the P lock switching request signal (non-P ⁇ P position)
  • the P lock drive motor 68 is rotated until it reaches the P target rotation position.
  • the P lock drive motor 68 is rotated until it reaches the non-P target rotational position.
  • the parking lock switching control is executed in the state E of FIG. 7, and is included in the normal control shown in the state E of FIG.
  • the motor heat generation control unit 138 is configured after the P-ECU 106 is switched from the non-starting state to the starting state and Before starting the execution of the P wall position detection control and the non-P wall position detection control, electric motor heat generation control for energizing the P lock drive motor 68 so as not to rotate the P lock drive motor 68 is executed.
  • motor heat generation control unit 138 if the motor temperature TMP MR by the motor temperature determining means 132 is not determined to be lower than the low temperature determination value TMPmin, that is, when the motor temperature TMP MR is low judgment value TMPmin more However, the motor heat generation control is not executed.
  • the term “after the P-ECU 106 has been switched from the non-activated state to the activated state” means that the activation determining unit 130 has determined that the P-ECU 106 has been switched from the non-activated state to the activated state.
  • the electric motor heat generation control means 138 energizes the P lock drive motor 68, specifically, the winding 170 of the P lock drive motor 68 for a predetermined heat generation control time TIME HEAT .
  • the motor applied voltage V MR at the time of motor heat generation control is used when the P-lock drive motor 68 is rotationally driven by the wall contact control (see state D in FIG. 7) or the normal control (see state E in FIG. 7).
  • the voltage when the P-lock drive motor 68 is rotationally driven by the wall contact control or the normal control is used.
  • the energized winding 170 is sequentially switched to rotationally drive the P lock drive motor 68.
  • the P lock drive motor 68 is not rotationally driven.
  • the energization method in the motor heat generation control is the same as the energization method in the wall contact control or the normal control except that the energized windings 170 are sequentially switched.
  • the heat generation control time TIME HEAT is such that the internal resistance of all the windings 170 in the motor heat generation control is so large that the strength needs to be increased with respect to the strength required during normal temperature operation of the P-lock mechanism 66 and the like.
  • the energization time is experimentally set so as to increase to a resistance value that does not generate the torque TSR .
  • the heat generation control time TIME HEAT may be a constant value, in the present embodiment, as shown in the graph of FIG. 11A, the motor heat generation control means 138 performs the motor temperature before starting the execution of the motor heat generation control. The lower the TMP MR, that is, the motor initial temperature (motor initial temperature) TMP 0 , the longer the heat generation control time TIME HEAT is set.
  • FIG. 11 is a diagram conceptually showing the relationship between the motor initial temperature TMP 0 and the heat generation control time TIME HEAT in the electric motor heat generation control, and the effect given to the motor torque TSR by the execution of the electric motor heat generation control. .
  • the heat generation control time TIME HEAT is set longer as the motor initial temperature TMP 0 is lower in the motor heat generation control, the heating to the P lock drive motor 68 by energization of the winding 170 is performed. The amount increases. Therefore, if the motor heat generation control is not executed, the lower the motor initial temperature TMP 0 is, the lower the internal resistance of the winding 170 is, and the motor torque TSR when driving the P-lock drive motor 68 is the broken line in FIG.
  • the upper limit value of the allowable torque of the P-lock mechanism (detent mechanism) 66 is exceeded in the low temperature range, so that the internal resistance of the winding 170 is reduced by the motor temperature TMP by the execution of the motor heat generation control. Since the motor torque TSR increases as MR increases, the motor torque TSR after execution of the motor heat generation control is reduced to a torque lower than the upper limit value of the allowable torque as shown by a solid line L02 in FIG.
  • the motor heat generation control means 138 may execute the motor heat generation control together with the execution of the initial drive control by the initial drive control means 134 when executing the motor heat generation control.
  • the electric motor heat generation control is executed after the execution of the initial drive control is completed. For example, if the electric motor heat generation control means 138 executes the electric motor heat generation control together with the execution of the initial drive control, the electric motor heat generation control means 138 determines that the total time during which the winding 170 is energized in the initial drive control is The initial drive control unit 134 is caused to execute the initial drive control so that the heat generation control time TIME HEAT or longer.
  • the motor heat generation control means 138 may be energized to any winding 170 as long as it is energized so as not to rotate the P lock drive motor 68 in the motor heat generation control. Since the purpose is to heat the drive motor 68 and not to rotate the P-lock drive motor 68, the motor heat generation control means 138 performs P-lock with an energization pattern that locks the rotor 178 of the P-lock drive motor 68. The drive motor 68 is energized. The energization pattern that locks the rotor 178 is an energization pattern that prevents the rotor 178 from rotating.
  • the salient poles 172 of the stator 174 and the salient poles 176b and 176d of the rotor 178 are opposed to each other at the W and W ′ positions (W, W ′ phase) in FIG.
  • the energization pattern that locks the rotor 178 is to energize only the W and W ′ phase windings 170.
  • FIG. 12 is a flowchart for explaining a first main part of the control operation of the P-ECU 106, that is, a control operation for executing the motor heat generation control after the P-ECU 106 is started. This flowchart is executed alone or in parallel with other control operations.
  • step it is determined whether or not the P-ECU 106 has been switched from the non-activated state to the activated state. For example, when the switch operation of the vehicle power switch 40 that switches the power supply switching state of the vehicle 10 from the ALL-OFF state or the ACC-ON state to the IG-ON state or the READY-ON state is performed, the P-ECU 106 It is determined that the active state has been switched to the active state. If the determination of SA1 is affirmative, that is, if the P-ECU 106 is switched from the non-activated state to the activated state, the process proceeds to SA2. On the other hand, if the determination of SA1 is negative, this flowchart ends.
  • the motor temperature TMP MR to be compared with the low temperature judgment value TMPmin in SA3 may be the motor temperature TMP MR (motor initial temperature TMP 0 ) before the start of the motor heat generation control, but after the completion of the initial drive control is completed.
  • the motor temperature is preferably TMP MR . If the determination of SA3 is affirmative, that is, if the motor temperature TMP MR is lower than the low temperature determination value TMPmin, the process proceeds to SA4. On the other hand, if the determination at SA3 is negative, the operation goes to SA8.
  • the heat generation control time TIME HEAT in the electric motor heat generation control is determined. Specifically, the heat generation control time TIME HEAT is determined as a low temperature by, for example, SA3 from a preset relationship (map) between the motor initial temperature TMP 0 and the heat generation control time TIME HEAT as shown in FIG. It is read and determined based on the motor initial temperature TMP 0 which is the motor temperature TMP MR compared with the value TMPmin. After SA4, the process proceeds to SA5.
  • the timer t representing the elapsed time starts from zero and its value starts to increase.
  • SA4 to SA7 correspond to the motor heat generation control means 138.
  • the P wall position detection control and the non-P wall position detection control are executed. After the completion of the P wall position detection control and the non-P wall position detection control, the P position 92 and the non-P position 90 are determined in the P-ECU 106. Therefore, the P wall position detection control and the non-P wall position detection control are combined with each other. It can be called position determination control.
  • FIG. 13 is a flowchart for explaining a second main part of the control operation of the P-ECU 106, that is, a control operation for executing the parking lock switching control. This flowchart is executed alone or in parallel with other control operations, and is executed in the state E of FIG.
  • SB1 it is determined whether or not the P-ECU 106 recognizes the absolute position of the P lock drive motor 68. That is, it is determined whether the P wall position detection control and the non-P wall position detection control are completed. If the determination at SB1 is affirmative, that is, if the absolute position of the P lock drive motor 68 is recognized, the process proceeds to SB2. On the other hand, when the determination of SB1 is negative, this flowchart ends.
  • SB2 it is determined whether or not the P motor drive command signal is received from the PM-HV-ECU 104. If the determination of SB2 is affirmed, that is, if the P motor drive command signal is received, the process proceeds to SB3. On the other hand, when the determination of SB2 is negative, this flowchart ends.
  • SB3 the signal from the encoder 70 is read, and thereby the current position (absolute position) of the P lock drive motor 68 is recognized. After SB3, the process proceeds to SB4.
  • the P lock drive motor 68 is driven to rotate toward the P target rotation position or the non-P target rotation position according to the P motor drive command signal. After SB4, the process proceeds to SB5.
  • SB5 whether or not the P lock drive motor 68 has reached the P target rotation position or the non-P target rotation position according to the P motor drive command signal, that is, the target rotation position of the P lock drive motor 68. Is judged. If the determination at SB5 is affirmative, that is, if the P lock drive motor 68 has reached the target rotational position, the process proceeds to SB6. On the other hand, when the determination of SB5 is denied, the process returns to SB3, and SB3 and SB4 are repeatedly executed until the determination of SB5 is affirmed.
  • the SB1 to SB6 correspond to the parking lock switching control means 137. That is, in the parking lock switching control, SB2 to SB6 are executed.
  • the motor heat generation control unit 138 determines that the P-ECU 106 After switching from the activated state to the activated state, and before the execution of the wall contact control (P wall position detection control and non-P wall position detection control), that is, before the execution of the parking lock switching control, P lock The electric motor heat generation control for energizing the P lock drive motor 68 so as not to rotate the drive motor 68 is executed.
  • the P lock drive motor 68 is energized by the execution of the electric motor heat generation control to generate heat, so that before the parking lock switching control is started.
  • the internal resistance of the P lock drive motor 68 that is, the internal resistance of the winding 170 is increased to some extent, and the motor torque TSR based on the current supplied to the P lock drive motor 68 is suppressed according to the internal resistance. Therefore, the motor torque TSR during execution of the parking lock switching control is suppressed to an allowable level.
  • the motor torque TSR is set to the allowable torque of the P lock mechanism 66.
  • the motor heat generation control means 138 executes the motor heat generation control before the execution of the wall contact control (P wall position detection control and non-P wall position detection control).
  • the structural members of the parking lock device 16 such as the shaft 72, the detent plate 74, the detent spring 82, and the rollers 84 constituting the P lock mechanism 66, are used in the P wall position detection control and the non-P wall position detection control. It is necessary to receive the motor torque T SR mechanical displacement end (non-P wall 94 and P wall 96). Therefore, the intensity of the components of the parking lock device 16, the motor temperature TMP MR does not need to increase to match the motor torque T SR i.e.
  • the cost of the parking lock device 16 can be suppressed. Further, the execution of the P wall position detection control and the non-P wall position detection control makes it possible to recognize the absolute position of the P lock drive motor 68 using the encoder 70 which is a relative position sensor. Compared to the case of the position sensor, the cost of the parking lock device 16 can be suppressed.
  • the P-lock drive motor 68 includes a stator 174 having a plurality of salient poles 172 around which windings 170 are wound, and a plurality of salient poles 176 that are rotatably arranged with respect to the stator 174. And a rotor that rotates the rotor 178 by sequentially supplying current to the winding 170 based on rotational position information (rotation angle) of the rotor 178. Accordingly, since the P lock drive motor 68 has a simple structure, the vehicle shift control device 50 can be made inexpensive and highly mechanically reliable.
  • the initial drive control means 134 is configured so that the relative position between the rotor 178 and the stator 174 of the P lock drive motor 68 when the P-ECU 106 is switched from the non-activated state to the activated state.
  • the initial drive control for energizing the P lock drive motor 68 is executed.
  • the electric motor heat generation control means 138 executes the electric motor heat generation control after the completion of the initial drive control. Accordingly, the execution of the initial drive control makes it clear that the P lock drive motor 68 does not rotate when energized to any of the windings (coils) 170 provided on the stator 174 of the P lock drive motor 68.
  • An energization pattern capable of energizing the P lock drive motor 68 without rotating the P lock drive motor 68 by the electric motor heat generation control can be easily determined.
  • energizing the P lock drive motor 68 so as not to rotate the P lock drive motor 68 means that the energization pattern for locking the rotor 178 of the P lock drive motor 68.
  • the P lock drive motor 68 is energized. Accordingly, since the rotation of the rotor 178 of the P lock drive motor 68 is positively suppressed, the possibility that the P lock drive motor 68 rotates inadvertently during the execution of the electric motor heat generation control can be reduced. For example, when the motor temperature TMP MR is extremely low, the possibility that the motor torque TSR is generated exceeding the upper limit value of the allowable torque of the P lock mechanism 66 (see FIG. 11B) can be reduced. .
  • the motor heat generation control means 138 energizes the P lock drive motor 68 over the heat generation control time TIME HEAT in the motor heat generation control, and the motor temperature TMP before the execution of the motor heat generation control is started.
  • the motor heat generation control means 138 does not execute the motor heat generation control when the motor temperature TMP MR is equal to or higher than the low temperature determination value TMPmin, and therefore it is not necessary to execute the motor heat generation control.
  • the execution of the wall contact control see state D in FIG. 7
  • the execution of the parking lock switching control can be started at an early stage. It is possible to avoid unnecessary consumption.
  • the temperature detected by the vehicle drive device 29, for example, the cooling water temperature TMP W or the hydraulic oil temperature TMP AT may be regarded as the motor temperature TMP MR, and it has been done so.
  • the motor temperature sensor 45 is not necessary, and costs can be reduced.
  • the motor temperature sensor 45 is provided in the P lock drive motor 68, and the motor temperature TMP MR is detected by the motor temperature sensor 45. Therefore, the motor temperature TMP MR is detected with high accuracy, Thereby, it is possible to accurately determine the necessity of the motor heat generation control.
  • the salient pole 172 of the stator 174 and the salient poles 176b and 176d of the rotor 178 are opposed to each other in the W and W ′ phases. Therefore, in the electric motor heat generation control, only the W and W ′ phase windings 170 are energized, but not one pair of windings 170 respectively provided on the salient poles 172 facing each other. Alternatively, three or more windings 170 may be energized. Further, it is not necessary that the energized windings 170 form a pair.
  • the motor temperature TMP MR (motor initial temperature TMP 0 ) shown on the horizontal axis of FIGS. 11A and 11B is detected by the motor temperature sensor 45, but the cooling water temperature TMP W or the operation
  • the oil temperature TMP AT may be regarded as the motor temperature TMP MR, and the heat generation control time TIME HEAT may be set.
  • FIG. 4 of the above-described embodiment there are six salient poles 172 of the stator 174 and four salient poles 176 of the rotor 178, but the number of poles of the P lock drive motor 68 is not particularly limited. There may be more salient poles 172 than six salient poles 176.
  • the initial drive control is executed when the P-ECU 106 is switched from the non-start state to the start state, but the electric motor heat generation control is executed without executing the initial drive control. You can also think about that.
  • the switch operation of the vehicle power switch 40 is exemplified as the case where the P-ECU 106 is switched from the non-start state to the start state.
  • the ECU 106 may be switched from the non-activated state to the activated state.
  • the P-ECU 106 is not activated when the remote engine start operation is performed. Switch from state to start-up state.
  • the vehicle 10 is a so-called plug-in hybrid vehicle capable of charging the power storage device 52 from an external power source, P is detected when it is detected that a charging connector from the external power source is connected to the vehicle 10.
  • the -ECU 106 is switched from a non-activated state to an activated state.
  • the activation determination unit 130 changes the P-ECU 106 from the deactivated state to the activated state. Judge that it has been switched.
  • the encoder 70 is a relative position sensor, but it may be an absolute position sensor that detects the absolute position of the P lock drive motor 68.
  • the encoder 70 is such an absolute position sensor, the P wall position detection control and the non-P wall position detection control are unnecessary, and SB1 is unnecessary in the flowchart of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 シフトバイワイヤシステムを構成する電動機の出力トルクが伝達される機械部材の耐久性低下を抑制することができる車両用シフト制御装置を提供する。 電動機発熱制御手段138は、モータ温度TMPMRが低温判定値TMPminよりも低い場合には、P-ECU106が非起動状態から起動状態に切り替えられた後で且つパーキングロック切替制御の実行開始前に、Pロック駆動モータ68を回転させないようにPロック駆動モータ68に通電する電動機発熱制御を実行する。この電動機発熱制御の実行によりPロック駆動モータ68が加熱されその内部抵抗が上昇し、Pロック駆動モータ68への供給電流に基づくモータトルクTSRが抑えられる。従って、そのモータトルクTSRが伝達される機械部材であるPロック機構66の耐久性低下を抑えることが可能である。

Description

車両用シフト制御装置
 本発明は、シフトバイワイヤシステムを構成する電動機の制御技術に関するものである。
 制御信号に基づき電動機を作動させて車両の走行に関わるシフトポジションを電気的に切り替える所謂シフトバイワイヤ(SBW)システムを採用した車両用シフト制御装置が良く知られている。例えば、特許文献1に開示されている自動2輪車用変速機制御装置がそれである。具体的に、その自動2輪車用変速機制御装置は、運転者の変速指令に基づき、自動2輪車のクラッチ操作及び変速操作を電動機の動力を用いて行うものである。その自動2輪車用変速機制御装置は、運転者が手元スイッチの操作で無用な変速指令を高頻度で生成した場合には、変速指令異常と判断して変速指令を取り消す。これにより、高頻度の電動機通電に起因した電動機の温度上昇やバッテリの過放電を防ぐことができる。
特開2006-200603号公報 特開2009-528488号公報 特開2004-166332号公報 特開2003-130217号公報
 ところで、SBWシステムを構成する前記電動機には回転力(トルク)を発生させるためにコイルが含まれており、電動機の温度が低いほどそのコイルの内部抵抗は低くなる。そして、コイルに印加する電圧が変わらなければ、そのコイルの内部抵抗が低くなるほどそのコイルに通電される電流は大きくなるので、そのコイルが発生する磁力は強くなり電動機の出力トルク(電動機トルク)は大きくなる。すなわち、常温時と同様の電圧制御で極低温時に上記電動機を駆動すれば、電動機トルクが伝達される機械部材の耐久性を損なう可能性があった。例えば、特許文献1には極低温時の対策に関して記載されていないので、前記自動2輪車用変速機制御装置では、そのように極低温時に電動機トルクが伝達される機械部材の耐久性を損なう可能性があるものと考えられる。これに対し、上記極低温時の電動機トルクに合わせて、その電動機トルクが伝達される機械部材の強度を高めたり、上記電動機に供給される電流を所定の制限値以下に制限する電流制限回路を設けるなどの対策が考えられるが、何れもコストが嵩む。なお、このような課題は未公知である。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、シフトバイワイヤシステムにおいて、そのシフトバイワイヤシステムを構成する電動機の出力トルクが伝達される機械部材の耐久性低下を抑制することができる車両用シフト制御装置を提供することにある。
 前記目的を達成するための本発明の要旨とするところは、(a)車輪の回転を拘束するロック位置とその車輪の回転を拘束しない非ロック位置とに電動機の駆動により選択的に切り替えられるパーキングロック装置と前記電動機を制御する電子制御装置とを備えており、その電子制御装置の起動状態でパーキングロック装置を前記ロック位置と前記非ロック位置とに選択的に切り替えるパーキングロック切替制御を実行する車両用シフト制御装置であって、(b)前記電動機の温度が予め定められた低温判定値よりも低い場合には、前記電子制御装置が非起動状態から起動状態に切り替えられた後で且つ前記パーキングロック切替制御の実行開始前に、前記電動機を回転させないようにその電動機に通電する電動機発熱制御を実行することにある。
 このようにすれば、前記電動機の温度が前記低温判定値よりも低い場合には、上記電動機は、前記電動機発熱制御の実行により通電されて発熱させられるので、前記パーキングロック切替制御の実行開始前において、その電動機の内部抵抗がある程度大きくなり、その内部抵抗に応じて、電動機への供給電流に基づく電動機トルクが抑えられる。従って、上記パーキングロック切替制御の実行中の電動機トルクが許容できる程度に抑えられ、その電動機トルクが伝達される機械部材の耐久性低下を抑えることが可能である。また、上記電動機に供給される電流を所定の制限値以下に制限する電流制限回路を設ける必要がなく、また、前記電動機の温度が前記低温判定値よりも低い場合の電動機トルクに合わせて上記機械部材の強度を高める必要がないので、車両用シフト制御装置のコスト上昇を抑制できる。なお、前記電動機発熱制御において「電動機を回転させないように」とは、その電動機を全く回転させないことに限定されるのではなく、上記電動機への通電開始時にその電動機が多少回転することがあっても上記電動機発熱制御の実行中にその回転が継続しなければ、その電動機を回転させないようにその電動機に通電することに該当する。
 ここで、好適には、(a)前記電子制御装置が非起動状態から起動状態に切り替えられた場合には、前記パーキングロック切替制御の実行開始前に、前記電動機で前記パーキングロック装置を機械的変位端にまで駆動する壁当て制御を実行し、(b)その壁当て制御の実行開始前に前記電動機発熱制御を実行する。このようにすれば、上記パーキングロック装置の構成部材が上記壁当て制御において上記機械的変位端で電動機トルクを受け止める必要があるところ、上記壁当て制御に関わる構成部材の強度を、前記電動機の温度が前記低温判定値よりも低い場合の電動機トルクに合わせて高める必要がないので、上記パーキングロック装置のコストを抑制できる。
 また、好適には、前記電動機は、巻線が巻かれた複数の突極を有するステータとそのステータに対し回転可能に配設され複数の突極を有するロータとを備え、そのロータの回転位置情報に基づいて前記巻線に電流を順次供給することにより前記ロータを回転させるモータである。このようにすれば、電動機を簡単な構造にできるので、安価で且つ機械的な信頼性の高い車両用シフト制御装置を提供することが可能である。上記電動機は、例えば、スイッチトリラクタンスモータ(SRモータ)、またはステッピングモータなどである。
 また、好適には、前記電子制御装置が非起動状態から起動状態に切り替えられた場合に、前記電動機のロータとステータとの相対的な位置関係を認識するためにその電動機に通電する初期駆動制御を実行し、その初期駆動制御の実行後に前記電動機発熱制御を実行する。このようにすれば、電動機のステータに設けられた何れのコイルに通電すれば電動機が回転しないかが、上記初期駆動制御の実行により明らかになるので、前記電動機発熱制御における電動機への通電パターンを容易に決定できる。
 また、好適には、前記電動機発熱制御において、前記電動機を回転させないようにその電動機に通電することとは、その電動機のロータをロックする通電パターンでその電動機に通電することである。このようにすれば、その電動機のロータは積極的に回転が抑止されるので、上記電動機発熱制御の実行中に上記電動機が不用意に回転する可能性を低減することができる。例えば、上記電動機の温度が通電により十分に高められていないときに、上記電動機が大きな電動機トルクを伴って回転する可能性を低減することができる。
 また、好適には、(a)前記電動機発熱制御では、予め定められた発熱制御時間にわたって前記電動機に通電し、(b)その電動機発熱制御の実行開始前における前記電動機の温度が低いほど前記発熱制御時間を長くする。このようにすれば、電動機発熱制御の実行後における上記電動機の内部抵抗が、上記電動機の温度が異なってもあまりばらつかないようにすることが可能である。例えば電動機が極低温であれば十分な発熱が図られる一方で、上記電動機の温度が前記低温判定値に近ければ電動機発熱制御を早期に完了することが可能である。
 また、好適には、前記電動機の温度が前記低温判定値以上である場合には前記電動機発熱制御を実行しない。このようにすれば、前記電動機発熱制御の実行が不要である場合には、前記電子制御装置が非起動状態から起動状態に切り替えられた後に早期に前記パーキングロック切替制御の実行を開始できると共に、電力を無駄に消費することを回避できる。
 また、好適には、前記車輪を駆動する駆動装置で検出される温度を前記電動機の温度とみなす。このようにすれば、その電動機の温度を検出するために温度センサ等の機器を設けずに、前記電動機発熱制御を実行するか否かを判断できるので、コストの抑制を図ることが可能である。
 また、好適には、前記電動機に電動機温度センサが設けられており、その電動機温度センサによってその電動機の温度を検出する。このようにすれば、精度良く電動機の温度を検出することができるので、前記電動機発熱制御の必要性を精度良く判断できる。
 また、好適には、前記車両用シフト制御装置を有する車両は、例えば動力源から駆動輪までの動力伝達経路に車両用動力伝達装置を備えている。この動力源としては、例えば燃料の燃焼によって動力を発生する内燃機関等のガソリンエンジンやディーゼルエンジン等が好適に用いられるが、電動機等の他の原動機を単独で或いはエンジンと組み合わせて採用することもできる。つまり、前記車両は、例えばエンジンのみを動力源とするエンジン駆動車両や、電動機のみを動力源とする電気自動車、エンジンおよび電動機の両方を動力源とするハイブリッド車両、エンジンや電動機以外の原動機を動力源として備えている車両、或いは3つ以上の原動機を備えている車両などにより構成される。
 また、好適には、前記車両用動力伝達装置は、例えば変速機単体、トルクコンバータ及び複数の変速比を有する変速機、或いはこの変速機等に加え減速機構部やディファレンシャル機構部により構成される。この変速機は、例えば前記電気自動車において前記電動機が連結される遊星歯車装置等の減速機、複数組の遊星歯車装置の回転要素が係合装置によって選択的に連結されることにより複数のギヤ段(変速段)が択一的に達成される例えば前進4段、前進5段、前進6段、更にはそれ以上の変速段を有する等の種々の遊星歯車式自動変速機、常時噛み合う複数対の変速ギヤを2軸間に備えてそれら複数対の変速ギヤのいずれかを同期装置によって択一的に動力伝達状態とする同期噛合型平行2軸式変速機ではあるが、油圧アクチュエータにより駆動される同期装置によって変速段が自動的に切換られることが可能な同期噛合型平行2軸式自動変速機、動力伝達部材として機能する伝動ベルトが有効径が可変である一対の可変プーリに巻き掛けられ変速比が無段階に連続的に変化させられる所謂ベルト式無段変速機、共通の軸心まわりに回転させられる一対のコーンとその軸心と交差する回転中心回転可能な複数個のローラがそれら一対のコーンの間で挟圧されそのローラの回転中心と軸心との交差角が変化させられることによって変速比が可変とされた所謂トラクション型無段変速機、エンジンからの動力を第1電動機および出力軸へ分配する例えば遊星歯車装置で構成される差動機構とその差動機構の出力軸に設けられた第2電動機とを備えてその差動機構の差動作用によりエンジンからの動力の主部を駆動輪側へ機械的に伝達しエンジンからの動力の残部を第1電動機から第2電動機への電気パスを用いて電気的に伝達することにより電気的に変速比が変更される電気式無段変速機として機能する自動変速機、或いはエンジン軸や出力軸などに動力伝達可能に電動機が備えられる所謂パラレル式のハイブリッド車両に搭載される自動変速機などにより構成される。
 また、好適には、前記パーキングロック装置は、前記ロック位置では前記車輪と共に回転する回転歯にロック歯を噛み合わせることによりロック状態となり、前記非ロック位置ではそのロック状態が解除された非ロック状態となる。そして、上記回転歯は、例えば上記車輪に連結された変速機の出力回転部材に固定されるが、その車輪に対して直結範囲の他の回転部材に固定することもできる。
本発明が適用される車両を構成するエンジンから駆動輪までの動力伝達経路の概略構成を説明する図であると共に、パーキングロック装置などを制御するために車両に設けられた制御系統の要部を説明するブロック線図である。 図1の車両が備える変速機において複数種類のシフトポジションを人為的操作により切り換える切換装置(操作装置)としてのシフト操作装置の一例を示す図である。 図1の車両において、駆動輪の回転を機械的に阻止するパーキングロック装置の構成を説明する図である。 図3のパーキングロック装置に設けられたPロック駆動モータの断面構造を模式的に示した断面図である。 図3のパーキングロック装置が備えるディテントプレートの構成を説明するための図である。 図3のパーキングロック装置において、そのパーキングロック装置が備えるPロック駆動モータの回転量すなわちエンコーダカウントとシフトポジションとの対応関係を説明するための図である。 図1の車両の電源供給の切替状態がALL-OFF状態やACC-ON状態からIG-ON状態とされて、P-ECUが非起動状態から起動状態へ切り替えられた際のパーキングロック装置における一連の初期制御を説明するための状態遷移図である。 図1のP-ECUが実行するP壁位置検出制御において、P壁位置を検出する制御方法を説明するための図である。 図1のP-ECUが実行する非P壁位置検出制御において、非P壁位置を検出する制御方法を説明するための図である。 図1のP-ECUに備えられた制御機能の要部を説明する機能ブロック線図である。 図1のP-ECUが実行する電動機発熱制御におけるモータ初期温度と発熱制御時間との関係と、その電動機発熱制御の実行によりモータトルクに与える効果とを概念的に表した図である。 図1のP-ECUの制御作動の第1の要部、すなわち、P-ECUの起動後に電動機発熱制御を実行する制御作動を説明するためのフローチャートである。 図1のP-ECUの制御作動の第2の要部、すなわち、パーキングロック切替制御を実行する制御作動を説明するためのフローチャートである。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。
 図1は、本発明が適用される車両10を構成するエンジン12から駆動輪14までの動力伝達経路の概略構成を説明する図であると共に、パーキングロック装置16などを制御するために車両10に設けられた制御系統の要部を説明するブロック線図である。図1において、車両10は、パーキングロック装置16、変速機18、シフト操作装置30などを備え、車両10の走行に関わるシフトポジションPSHすなわち変速機18のシフトポジション(シフトレンジ)PSHを電気的に切り替えるシフトバイワイヤ(SBW)方式を採用している。そして、パーキングロック装置16とシフト操作装置30と車両制御装置100とが、変速機18のシフト制御を行う車両用シフト制御装置50を構成する。
 変速機18は、例えば車両10において横置きされるFF(フロントエンジン・フロントドライブ)型車両に好適に用いられるものであり、走行用駆動力源としての内燃機関であるエンジン12の動力をカウンタギヤ対20の一方を構成する変速機18の出力回転部材としての出力歯車22から、動力伝達装置としてのカウンタギヤ対20、ファイナルギヤ対24、差動歯車装置(ディファレンシャルギヤ)26、及び一対の車軸(ドライブシャフト(D/S))28等を順次介して一対の駆動輪14へ伝達する。これら変速機18、カウンタギヤ対20、ファイナルギヤ対24、差動歯車装置(ディファレンシャルギヤ)26等によりトランスアクスル(T/A)が構成される。そして、エンジン12、走行用電動機M、変速機18、カウンタギヤ対20、ファイナルギヤ対24、および差動歯車装置26は、駆動輪(車輪)14を駆動する車両用駆動装置29を構成する。尚、以下においては、駆動力源としてのエンジン12及び走行用電動機Mを備えたハイブリッド車両に本発明が適用された場合の例について説明するが、本発明が適用される車両は、シフトバイワイヤ方式を採用しておれば、通常のエンジン車両、ハイブリッド車両、電動車両、燃料電池車両などどのような形式の車両であっても構わない。
 また、車両10が備える車両制御装置100は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより、エンジン12の出力制御や走行用電動機Mの駆動制御等のハイブリッド駆動制御、変速機18の変速制御、シフトバイワイヤ方式を用いた変速機18のシフトポジションPSHの切替制御、パーキングロック装置16の作動状態の切替制御などを実行する。
 車両制御装置100には、例えばシフトレバー32の操作位置(操作ポジション)POPEを検出する為の位置センサであるシフトセンサ36及びセレクトセンサ38(図2参照)からの操作ポジションPOPEに応じたシフトレバー位置信号、ユーザにより操作されて変速機18のシフトポジションPSHをパーキングポジション(Pポジション)以外の非PポジションからPポジションへ切り替える為のPスイッチ34におけるスイッチ操作を表すPスイッチ信号、パーキングロック(Pロック)を作動或いは解除して変速機18のシフトポジションPSHをPポジションと非Pポジションとの間で切り替える為のパーキングロック装置16におけるPロックの作動状態を表すP位置信号、ユーザにより操作されて車両10の電源供給の切替状態を切り替える為の車両電源スイッチ40におけるスイッチ操作を表すパワースイッチ信号、回転速度センサとしての車輪速センサ42からの各車輪(駆動輪14及び従動輪)の回転速度Nを表す車速Vに対応する車輪速パルス信号、常用ブレーキの作動を検出する為の不図示のフットブレーキペダルが操作されたことを示すブレーキスイッチ44からのブレーキオン状態BONを表すブレーキ操作信号、Pロック駆動モータ68(図3参照)に設けられた電動機温度センサ45により検出される電動機温度TMPMRを表す信号、冷却水温センサ46により検出されるエンジン12の冷却水温TMPを表す信号、変速機油温センサ48により検出される変速機18等の油圧回路の作動油温TMPATを表す信号、蓄電装置52の充電電流または放電電流ICDを表す信号、蓄電装置52の電圧VBATを表す信号、蓄電装置52の充電状態(充電残量)SOCを表す信号などが、それぞれ供給される。
 また、車両制御装置100からは、例えばエンジン12の出力制御の為のエンジン出力制御指令信号や変速機18内の走行用電動機Mの駆動制御の為のモータ制御指令信号や変速機18の変速制御の為の変速制御指令信号などのハイブリッド制御指令信号、変速機18のシフトポジションPSHを切り替える為のシフトポジション切換制御指令信号、車両走行に関わる車両情報をユーザに明示する為の表示装置としての公知のコンビネーションメータ56内に設けられたスピードメータ58を作動させて現在の車速Vを表示する為の車速表示制御指令信号、コンビネーションメータ56内に設けられたシフトポジションインジケータ(シフトポジション表示装置)60を作動させて変速機18におけるシフトポジションPSHの切替状態を表示する為のシフトポジション表示制御指令信号、Pロックの作動中(パーキングロック状態、Pロック状態)すなわちシフトポジションPSHがPポジションにあることを点灯により明示する為のロック表示ランプとしてのPポジションインジケータランプ62を作動させてPロック状態を表示する為のパーキングロック表示制御指令信号(Pロック表示制御指令信号)、パーキングロック装置16の切換制御の為のP切替制御指令信号等が、それぞれ出力される。尚、Pポジションインジケータランプ62は、コンビネーションメータ56の作動(点灯/消灯)とは連動せずに作動させられる表示ランプであって、例えばPスイッチ34に設けられている。
 具体的には、車両制御装置100は、電源制御及びハイブリッド制御用コンピュータ(以下、「PM-HV-ECU」と表す)104、パーキング制御用コンピュータ(以下、「P-ECU」と表す)106、メータ制御用コンピュータ(以下、「メータECU」と表す)108などを備えている。なお、上記P-ECU106が本発明の電子制御装置に対応する。
 PM-HV-ECU104は、例えばユーザにより操作される車両電源スイッチ40からのパワースイッチ信号に基づいて車両10の電源供給の切替状態を切り替える。ここで、本実施例では、車両10の電源供給の切替状態として、例えば車両走行を不能とする為の電源オフ状態(ALL-OFF状態、IG/ACC-OFF状態)、車両走行不能ではあるがコンビネーションメータ56を消灯したまま車両10の一部の機能のみ稼働可能とする為の電源一部オン状態(ACC-ON状態、IG-OFF状態)、コンビネーションメータ56を点灯して車両走行に係わる電源がオンにされた電源オン状態(IG-ON状態)、及び、車両走行に関わるハイブリッド制御指令信号により車両走行を制御できる状態であって、アクセルオンすれば車両10が発進・走行できる走行可能状態(READY-ON状態)の何れかに遷移可能である。上記車両10の一部の機能のみ稼働可能とすることは、例えばナビやオーディオ類64を稼働可能とする為の通電であったり、不図示のバッテリ電源取出ソケットへの通電などである。尚、上記IG-ON状態は、前記電源オン状態であるが、ハイブリッド制御指令信号により車両走行を制御する以外の他の機能は制御できる状態(例えば変速機18のシフトポジションPSHを切替制御できる状態等)であって、エンジン12が起動せず且つ走行用電動機Mを駆動できない状態すなわちアクセルオンとしても車両10が発進・走行できない状態である。また、上記車両電源スイッチ40の操作によってREADY-ON状態となるためには、その車両電源スイッチ40の操作以外に、READY-ON状態に切り替えられることに先立って実行されるP-ECU106自体のイニシャル処理(初期処理)や、パーキングロック装置16における初期駆動制御などでフェイルが発生しないことが条件となる。すなわち、READY-ON状態に切り替える車両電源スイッチ40の操作がなされたとしても、そのようなフェイルが発生した場合には、READY-ON状態に切り替わらずそれ以外の切替状態たとえばIG-ON状態に切り替わる。
 例えば、PM-HV-ECU104は、Pポジションにあるときに、ブレーキオン状態BONで前記パワースイッチ信号の入力を検知すると、車両10の電源供給の切替状態を何れの状態からもREADY-ON状態へ切り替える。また、PM-HV-ECU104は、Pポジションにあるときに、IG-ON状態又はREADY-ON状態で車速Vが所定停止車速V’未満であり且つパワースイッチ信号の入力を検知すると、車両10の電源供給の切替状態をALL-OFF状態へ切り替える。また、PM-HV-ECU104は、Pポジションにあるときに、ブレーキオン状態BONでない状態でパワースイッチ信号の入力を検知すると、車両10の電源供給の切替状態をALL-OFF状態→ACC-ON状態→IG-ON状態→ALL-OFF状態→・・・の順でパワースイッチ信号の入力毎に切り替える。また、PM-HV-ECU104は、非Pポジションにあるときに、IG-ON状態で車速Vが所定停止車速V’未満であり且つパワースイッチ信号の入力を検知すると、パーキングロック装置16を作動させてシフトポジションPSHを自動的にPポジションとする為のオートPロック切替要求信号をP-ECU106へ出力すると共に、Pポジションの確定後に車両10の電源供給の切替状態をALL-OFF状態へ切り替える(この一連の作動を「オートP作動」という)。上記所定停止車速V’は、例えば車両停止状態であると判断する為の予め実験的に求められて記憶された車両停止判定車速である。
 また、PM-HV-ECU104は、例えば変速機18の作動を統括的に制御する。例えば、PM-HV-ECU104は、車両10の電源供給の切替状態をREADY-ON状態へ切り替えると、車両走行を可能とする為のハイブリッドシステムを起動し、車両走行に関わるハイブリッド制御指令をエンジン12、走行用電動機M、及び変速機18へ出力して車両走行を制御する。また、PM-HV-ECU104は、シフトセンサ36及びセレクトセンサ38からの操作ポジションPOPEに応じたシフトレバー位置信号に基づいてシフトポジション切換制御指令を変速機18へ出力してシフトポジションPSHを切り替える。この際、変速機18のシフトポジションPSHがPポジションにある場合には、PM-HV-ECU104は、上記シフトレバー位置信号に基づいて変速機18のシフトポジションPSHをPポジションから非Pポジションへ切り替える為のP解除切替要求信号をP-ECU106へ出力する。また、PM-HV-ECU104は、Pスイッチ34からのPスイッチ信号に基づいて変速機18のシフトポジションPSHを非PポジションからPポジションへ切り替える為のPロック切替要求信号をP-ECU106へ出力する。また、PM-HV-ECU104は、シフトポジションPSHの状態を表示する為のシフトポジション表示信号をメータECU108へ出力する。また、PM-HV-ECU104は、P-ECU106からのPポジションであることを示すPロック状態信号に基づいてPロック状態(Pポジション)であることを表示する為のパーキングロック表示制御指令信号(Pロック表示制御指令信号)をPスイッチ34へ出力し、Pスイッチ34内のPポジションインジケータランプ62を点灯してPロック状態にあることを明示する。
 ここで、蓄電装置52は、充放電可能な直流電源であり、例えばニッケル水素やリチウムイオン等の二次電池から成る。例えば、車両加速走行時やモータ走行時には、蓄電された電力がインバータ54を通して走行用電動機Mへ供給される。また、車両減速走行時の回生制動の際には、走行用電動機Mにより発電された電力がインバータ54を通して蓄電装置52に蓄電される。
 P-ECU106は、例えばPM-HV-ECU104からのオートPロック切替要求信号やP切替要求信号(Pロック切替要求信号、P解除切替要求信号)に基づいてシフトポジションPSHをPポジションと非Pポジションとの間で切り替える為に、パーキングロック装置16の駆動を制御してパーキングロックを作動させるか或いは解除させる。また、P-ECU106は、パーキングロック装置16からのパーキングロックの作動状態を表すP位置信号に基づいて変速機18のシフトポジションPSHがPポジションであるか非Pポジションであるかを判断し、その判断した結果をPロック状態信号としてPM-HV-ECU104等へ出力する。
 また、P-ECU106は、車両10の電源供給の切替状態がALL-OFF状態やACC-ON状態からIG-ON状態又はREADY-ON状態へ切り替えられる際には、後述するように、パーキングロック装置16における初期駆動制御を実行し、P位置信号や非P位置信号が適切に得られる為のP壁位置及び非P壁位置の検出制御を実行する。また、P-ECU106は、車両10の電源供給の切替状態がALL-OFF状態やACC-ON状態からIG-ON状態又はREADY-ON状態へ切り替えられる際の上記パーキングロック装置16における一連の初期制御を実行する前に、P-ECU106自体のイニシャル処理(初期処理)を実行する。なお、P-ECU106は、車両10の電源供給の切替状態がALL-OFF状態またはACC-ON状態である場合には非起動状態とされる一方で、その車両10の電源供給の切替状態がIG-ON状態またはREADY-ON状態である場合には起動状態とされる。P-ECU106の前記非起動状態とは例えばP-ECU106の電源が遮断されている状態であり、P-ECU106の前記起動状態とはP-ECU106の電源が投入されている状態である。
 メータECU108は、現在の車速Vを表示する為の車速表示制御指令信号をコンビネーションメータ56内のスピードメータ58へ出力して、現在の車速Vを表示する。例えば、メータECU108は、車輪速センサ42から出力される車輪速パルス信号に基づいた車速パルス信号の矩形波形をカウント(計数)することによりメータ表示用車速信号Vを決定する。そして、メータECU108は、その決定したメータ表示用車速信号Vに基づいてスピードメータ58を作動させることにより該当するセグメントを点灯させて現在の車速Vを表示する。また、メータECU108は、PM-HV-ECU104から出力されるシフトポジション表示信号に基づいたシフトポジションPSHの状態を表示する為のシフトポジション表示制御指令信号をコンビネーションメータ56内のシフトポジションインジケータ60へ出力し、現在のシフトポジションPSHの状態をシフトポジションインジケータ60に表示する。例えば、該当するシフトポジションインジケータ60上のシフトポジションPSHの表記位置を点灯させる。
 図2は、変速機18において複数種類のシフトポジションPSHを人為的操作により切り換える切換装置(操作装置)としてのシフト操作装置30の一例を示す図である。このシフト操作装置30は、例えば運転席の近傍に配設され、複数の操作ポジションPOPEへ操作されるモーメンタリ式の操作子すなわち操作力を解くと元位置(初期位置)へ自動的に復帰する自動復帰式の操作子としてのシフトレバー32を備えている。また、本実施例のシフト操作装置30は、変速機18のシフトポジションPSHをパーキングポジション(Pポジション)としてパーキングロックする為のモーメンタリ式の操作子としてのPスイッチ34をシフトレバー32の近傍に別スイッチとして備えている。
 シフトレバー32は、図2に示すように車両の前後方向または上下方向すなわち縦方向に配列された3つの操作ポジションPOPEであるR操作ポジション(R操作位置)、N操作ポジション(N操作位置)、D操作ポジション(D操作位置)と、それに平行に配列されたM操作ポジション(M操作位置)、B操作ポジション(B操作位置)とへそれぞれ操作されるようになっており、操作ポジションPOPEに応じたシフトレバー位置信号をPM-HV-ECU104へ出力する。また、シフトレバー32は、R操作ポジションとN操作ポジションとD操作ポジションとの相互間で縦方向に操作可能とされ、M操作ポジションとB操作ポジションとの相互間で縦方向に操作可能とされ、更に、N操作ポジションとB操作ポジションとの相互間で上記縦方向に直交する車両の横方向に操作可能とされている。
 Pスイッチ34は、例えばモーメンタリ式の押しボタンスイッチであって、ユーザにより押込み操作される毎にPスイッチ信号をPM-HV-ECU104へ出力する。例えば変速機18のシフトポジションPSHが非PポジションにあるときにPスイッチ34が押されると、車速VがPロック許可車速Vp以下であるなどの所定の条件が満たされていれば、PM-HV-ECU104からのPロック切替要求信号に基づいてP-ECU106によりシフトポジションPSHがPポジションとされる。このPポジションは、変速機18内の動力伝達経路が遮断され、且つ、パーキングロック装置16により駆動輪14の回転を機械的に阻止するパーキングロックが実行される駐車ポジションである。また、このPスイッチ34にはPポジションインジケータランプ62が内蔵されており、P-ECU106からのPロック状態信号がPポジションであることを示すものであれば、PM-HV-ECU104によりPポジションインジケータランプ62が点灯される。
 シフト操作装置30のM操作ポジションはシフトレバー32の初期位置(ホームポジション)であり、M操作ポジション以外の操作ポジションPOPE(R,N,D,B操作ポジション)へシフト操作されていたとしても、運転者がシフトレバー32を解放すればすなわちシフトレバー32に作用する外力が無くなれば、バネなどの機械的機構によりシフトレバー32はM操作ポジションへ戻るようになっている。シフト操作装置30が各操作ポジションPOPEへシフト操作された際には、PM-HV-ECU104により操作ポジションPOPEに対応したシフトレバー位置信号に基づいてそのシフト操作後の操作ポジションPOPEに対応したシフトポジションPSHに切り替えられると共に、現在の操作ポジションPOPEすなわち変速機18のシフトポジションPSHの状態がシフトポジションインジケータ60に表示される。
 各シフトポジションPSHについて説明すると、シフトレバー32がR操作ポジションへシフト操作されることにより選択されるRポジションは、車両を後進させる駆動力が駆動輪14に伝達される後進走行ポジションである。また、シフトレバー32がN操作ポジションへシフト操作されることにより選択されるニュートラルポジション(Nポジション)は、変速機18内の動力伝達経路が遮断されるニュートラル状態とするための中立ポジションである。また、シフトレバー32がD操作ポジションへシフト操作されることにより選択されるDポジションは、車両を前進させる駆動力が駆動輪14に伝達される前進走行ポジションである。例えば、PM-HV-ECU104は、シフトポジションPSHがPポジションであるときに、シフトレバー位置信号に基づいて車両の移動防止(パーキングロック)を解除する所定の操作ポジションPOPE(具体的には、R操作ポジション、N操作ポジション、又はD操作ポジション)へシフト操作されたと判断した場合には、ブレーキオン状態BONであるなどの所定の条件が満たされていれば、パーキングロックを解除させるP解除切替要求信号をP-ECU106へ出力する。P-ECU106は、PM-HV-ECU104からのP解除切替要求信号に基づいてパーキングロック装置16に対してパーキングロックを解除するP切換制御指令信号を出力してパーキングロックを解除させる。そして、PM-HV-ECU104は、そのシフト操作後の操作ポジションPOPEに対応したシフトポジションPSHへ切り換える。
 また、シフトレバー32がB操作ポジションへシフト操作されることにより選択されるBポジションは、Dポジションにおいて例えば走行用電動機Mに回生トルクを発生させる回生制動などによりエンジンブレーキ効果を発揮させ駆動輪14の回転を減速させる減速前進走行ポジション(エンジンブレーキレンジ)である。従って、PM-HV-ECU104は、現在のシフトポジションPSHがDポジション以外のシフトポジションPSHであるときにシフトレバー32がB操作ポジションへシフト操作されてもそのシフト操作を無効とし、DポジションであるときのみB操作ポジションへのシフト操作を有効とする。例えば、Pポジションであるときに運転者がB操作ポジションへシフト操作したとしてもシフトポジションPSHはPポジションのまま継続される。
 本実施例のシフト操作装置30では、シフトレバー32に作用する外力が無くなればM操作ポジションへ戻されるので、シフトレバー32の操作ポジションPOPEを視認しただけでは選択中のシフトポジションPSHを認識することは出来ない。そのため、運転者の見易い位置にシフトポジションインジケータ60が設けられており、選択中のシフトポジションPSHがPポジションである場合も含めてシフトポジションインジケータ60に表示されるようになっている。
 本実施例では所謂シフトバイワイヤ(SBW)方式を採用しており、シフト操作装置30は上記縦方向である第1方向P1とその方向P1と交差する(図2では直交する)横方向である第2方向P2とに2次元的にシフト操作されるので、その操作ポジションPOPEを位置センサの検出信号として車両制御装置100に出力するために、上記第1方向P1のシフト操作を検出する第1方向検出部としてのシフトセンサ36と上記第2方向P2のシフト操作を検出する第2方向検出部としてのセレクトセンサ38とを備えている。シフトセンサ36とセレクトセンサ38との何れも操作ポジションPOPEに応じた検出信号(シフトレバー位置信号)としての電圧を車両制御装置100に対し出力し、その検出信号電圧に基づき車両制御装置100は操作ポジションPOPEを認識(判定)する。すなわち、上記第1方向検出部(シフトセンサ36)と第2方向検出部(セレクトセンサ38)とが全体として、シフト操作装置30の操作ポジションPOPEを検出する操作ポジション検出部を構成していると言える。
 操作ポジションPOPEの認識について一例を示せば、シフトセンサ36の検出信号電圧VSFは、R操作ポジションを示す第1方向第1位置P1_1、M操作ポジションもしくはN操作ポジションを示す第1方向第2位置P1_2、及びB操作ポジションもしくはD操作ポジションを示す第1方向第3位置P1_3の各位置に対応する電圧レベル(例えばlow範囲、mid範囲、high範囲内の各電圧)になる。また、セレクトセンサ38の検出信号電圧VSLは、M操作ポジションもしくはB操作ポジションを示す第2方向第1位置P2_1、及びR操作ポジション、N操作ポジション、もしくはD操作ポジションを示す第2方向第2位置P2_2の各位置に対応する電圧レベル(例えばlow範囲、high範囲内の各電圧)になる。PM-HV-ECU104は、このように変化する上記検出信号電圧VSF,VSLを検出することにより、各電圧レベルの組み合わせによって操作ポジションPOPE(R、N、D、M、B操作ポジション)を認識する。
 図3は、駆動輪14の回転を機械的に阻止するパーキングロック装置16の構成を説明する図である。図3において、パーキングロック装置16は、Pロック機構(パーキングロック機構)66、電動のアクチュエータであるPロック駆動モータ(パーキングロック駆動モータ)68、Pロック減速機69、及びエンコーダ70などを備え、車両制御装置100からの制御信号に基づき車両10の移動を防止するために作動する。
 Pロック駆動モータ68は、Pロック減速機69を介してシャフト72に連結されており、P-ECU106からの指令(制御信号)を受けてシフトバイワイヤシステムによってPロック機構66を駆動する。Pロック駆動モータ68は、本発明の電動機に対応しており、巻線170が巻かれた複数の突極172を有するステータ174とそのステータ174に対し回転可能に配設され複数の突極176a,176b,176c,176d(以下、特に区別しないときは突極176と表す)を有するロータ178とを備え、そのロータ178の回転位置情報(回転角度)に基づいて巻線170に電流を順次供給することによりロータ178を回転させるモータである。Pロック駆動モータ68の形式に特に限定はないが、本実施例のPロック駆動モータ68はスイッチトリラクタンスモータ(SRモータ)である。そのため、モータ構造が簡単であり安価かつ機械的な信頼性が高く、ロータ178に巻線が無いのでロータ178の発熱問題が生じないというメリットがある。図4は、そのPロック駆動モータ68の断面構造を模式的に示した断面図である。Pロック駆動モータ68では、上記ステータ174は車体等に固定された非回転部材であり、ロータ178はステータ174に対しそのステータ174の軸心まわりに回転可能であり、そのロータ178と一体回転するモータ出力軸180の回転がPロック減速機69を介してシャフト72に伝達される。例えば、図4に示すステータ174とロータ178との位置関係においてU,U’位置(U,U’相)の巻線170に通電されると磁力が発生し、ロータ178の突極176a,176cがU,U’位置のステータ174の突極172に吸引されて、ロータ178が矢印AR01方向に回転する。そして、U,U’位置でステータ174の突極172とロータ178の突極176a,176cとが相対向したロータ回転位置又はそれに近いロータ回転位置にまでロータ178が回転したところで、巻線170への通電がU,U’位置からV,V’位置(V,V’相)へと切り替えられる。そうすると、ロータ178の突極176b,176dがV,V’位置のステータ174の突極172に吸引されて矢印AR01方向へのロータ178の回転が継続する。このようにして、P-ECU106は、ステータ174に対するロータ178の回転角度に基づいて巻線170への通電を順次切り替えることにより、Pロック駆動モータ68を回転駆動できる。P-ECU106は、その回転駆動の際、ステータ174に対するロータ178の回転角度すなわちロータ178の前記回転位置情報をエンコーダ70からの信号に基づいて取得する。また、巻線170への通電時には、例えば常温時にPロック駆動モータ68から適切なモータトルク(出力トルク)TSRが出力されるように予め定められた印加電圧VMRが巻線170に印加されるので、その巻線170への供給電流は巻線170の抵抗値とその印加電圧VMRとの関係で定まる。そして、上記印加電圧VMRは一定値または略一定値とされている。従って、巻線170への供給電流に基づくモータトルクTSRは、巻線170の抵抗値が低くなるほど大きくなる傾向にある。
 図3に戻り、Pロック減速機69は、Pロック駆動モータ68の回転を減速してシャフト72に伝達する減速機である。例えば、Pロック減速機69はサイクロイド減速機であり、Pロック駆動モータ68の1回転当たりシャフト72を1/60回転させる程度の減速比を有する。
 エンコーダ70は、例えばA相、B相及びZ相の信号を出力するロータリエンコーダであって、Pロック駆動モータ68と一体的に回転し、SRモータの回転状況を検知してその回転状況を表す信号すなわちPロック駆動モータ68の移動量(回転量)に応じた計数値(エンコーダカウント)を取得するためのパルス信号をP-ECU106へ供給する。P-ECU106は、エンコーダ70から供給される信号を取得してSRモータの回転状況すなわちロータ178の回転位置情報を把握し、SRモータを駆動するための通電の制御を行う。
 Pロック機構66は、Pロック駆動モータ68により回転駆動されるシャフト72、シャフト72の回転に伴って回転するディテントプレート74、ディテントプレート74の回転に伴って動作するロッド76、駆動輪14と連動して回転するパーキングギヤ78、パーキングギヤ78を回転阻止(ロック)するためのパーキングロックポール80、ディテントプレート74の回転を制限してシフトポジションPSHを固定するディテントスプリング82、及びころ84を備えている。パーキングギヤ78は、それがロック状態とされれば駆動輪14もロック状態とされる関係にあれば設けられる場所に制限は無いが、例えば変速機18の出力歯車22に同心上に固定されている(図1参照)。
 ディテントプレート74は、シャフト72及びPロック減速機69を介してPロック駆動モータ68の駆動軸に作動的に連結されており、ロッド76、ディテントスプリング82、ころ84などと共にPロック駆動モータ68により駆動されてPポジションに対応するパーキングロックポジションとPポジション以外の各シフトポジションPSH(非Pポジション)に対応する非パーキングロックポジションとを切り替えるためのパーキングロック位置決め部材として機能する。シャフト72、ディテントプレート74、ロッド76、ディテントスプリング82、及びころ84は、パーキングロック切替機構の役割を果たす。
 図3は、非パーキングロックポジションすなわちシフトポジションPSHが非Pポジションであるときの状態を示している。この状態では、パーキングロックポール80がパーキングギヤ78をロック状態としていないので、駆動輪14の回転はPロック機構66によっては妨げられない。この状態から、Pロック駆動モータ68によりシャフト72を図3に示す矢印Cの方向に回転させると、ディテントプレート74を介してロッド76が図3に示す矢印Aの方向に押され、ロッド76の先端に設けられたテーパー部材86によりパーキングロックポール80が図3に示す矢印Bの方向に押し上げられる。ディテントプレート74の回転に伴って、ディテントプレート74の頂部に設けられた2つの谷のうち一方、すなわち非パーキングロックポジション90(以下、非P位置90(図5参照))にあったディテントスプリング82のころ84は、山88を乗り越えて他方の谷、すなわちパーキングロックポジション92(以下、P位置92(図5参照))へ移る。ころ84は、その軸心を中心として回転可能にディテントスプリング82に設けられている。ころ84がP位置92に来るまでディテントプレート74が回転したとき、パーキングロックポール80は、パーキングギヤ78と噛み合う位置まで押し上げられる。これにより、パーキングギヤ78と連動して回転する駆動輪14の回転が機械的に阻止され、シフトポジションPSHがPポジションに切り替わる。パーキングロック装置16では、Pポジションと非Pポジションとの間のシフトポジションPSH切替時にディテントプレート74、ディテントスプリング82、シャフト72などのPロック機構66にかかる負荷を低減する為に、例えばP-ECU106はディテントスプリング82のころ84が山88を乗り越えて落ちるときの衝撃が少なくなるようにPロック駆動モータ68の回転量を制御する。なお、パーキングロック装置16では、ころ84がP位置92にある切替位置が駆動輪(車輪)14の回転を拘束するロック位置(P位置)であり、ころ84が非P位置90にある切替位置が駆動輪(車輪)14の回転を拘束しない非ロック位置(非P位置)であると言うことができる。
 このように、パーキングロック装置16は、P-ECU106からの指令に基づくPロック駆動モータ68の駆動により、そのパーキングロック装置16の切替位置が前記ロック位置と前記非ロック位置とに選択的に切り替えられる。言い換えれば、パーキングロック装置16は、運転者の操作に基づいて車両10を、車輪(駆動輪14)と共に回転する回転歯としてのパーキングギヤ78をパーキングギヤ78にロック歯としてのパーキングロックポール80が噛み合うロック状態(Pロック状態)とそのロック状態が解除される非ロック状態(非Pロック状態)とに選択的に切り替える。
 図5は、ディテントプレート74の構成を説明する図である。それぞれの谷において、山88から離れた側に位置する面を壁と言う。すなわち壁は、P-ECU106による以下に示す制御を行わない状態で、ディテントスプリング82のころ84が山88を乗り越えて谷に落ちるときに、ころ84とぶつかる位置に存在する。P位置92における壁を「P壁」と呼び、非P位置90における壁を「非P壁」と呼ぶ。ころ84がP位置92から非P位置90に移動する場合、P-ECU106は、非P壁94がころ84に衝突しないようにPロック駆動モータ68を制御する。具体的には、P-ECU106は、非P壁94がころ84に衝突する手前の位置でPロック駆動モータ68の回転を停止する。この位置を「非P目標回転位置」と言う。また、ころ84が非P位置90からP位置92に移動する場合、P-ECU106は、P壁96がころ84に衝突しないようにPロック駆動モータ68を制御する。具体的には、P-ECU106は、P壁96がころ84に衝突する手前の位置でPロック駆動モータ68の回転を停止する。この位置を「P目標回転位置」と言う。P-ECU106によるPロック駆動モータ68の制御により、シフトポジションPSH切替時においてディテントプレート74、ディテントスプリング82、シャフト72などのPロック機構66にかかる負荷を大幅に低減することができる。負荷を低減することにより、Pロック機構66の軽量化、低コスト化を図ることもできる。
 図6は、Pロック駆動モータ68の回転量すなわちエンコーダカウントとシフトポジションPSHとの対応関係を説明する図である。Pロック駆動モータ68はディテントプレート74を回転駆動し、そのPロック駆動モータ68の回転量は非P壁94及びP壁96により規制される。図6に、Pロック駆動モータ68の回転制御を行う上でのP壁96の位置(P壁位置)及び非P壁94の位置(非P壁位置)を概念的に示した。このP壁位置から非P壁位置までをPロック駆動モータ68の可動回転量と言う。また、図6に示したP判定位置および非P判定位置は、いずれもシフトポジションPSHの切替えが判定されるディテントプレート74の所定位置である。すなわち、P判定位置からP壁位置までがPポジション範囲であり、非P判定位置から非P壁位置までが非Pポジション範囲である。エンコーダ70で検出したPロック駆動モータ68の回転量がPポジション範囲にあるときには、シフトポジションPSHがPポジションであることが判定される一方で、Pロック駆動モータ68の回転量が非Pポジション範囲にあるときには、シフトポジションPSHが非Pポジションであることが判定される。尚、Pロック駆動モータ68の回転量がP判定位置から非P判定位置の間にあるときには、シフトポジションPSHが不定、またはシフトポジションPSHが切替中であることが判定される。以上の判定は、P-ECU106により実行される。
 また、図6に示すように、Pポジション範囲内にP目標回転位置が設定され、非Pポジション範囲内に非P目標回転位置が設定される。P目標回転位置は、非PポジションからPポジションへの切替時に、P壁96がディテントスプリング82のころ84に衝突しない位置であり、P壁位置から所定のマージンをもって定められる。この所定のマージンは、経時変化などによるガタを考慮して余裕をもって設定される。これにより、ある程度の使用回数であれば、経時変化を吸収することができ、非PポジションからPポジションへのシフトポジションPSH切替時におけるP壁96ところ84との衝突を回避できる。同様に、非P目標回転位置は、Pポジションから非Pポジションへの切替時に、非P壁94がディテントスプリング82のころ84に衝突しない位置であり、非P壁位置から所定のマージンをもって定められる。この所定のマージンは、経時変化などによるガタを考慮して余裕をもって設定され、ある程度の使用回数であれば、経時変化を吸収することができ、Pポジションから非PポジションへのシフトポジションPSH切替時における非P壁94ところ84との衝突を回避することができる。尚、非P壁位置からのマージンとP壁位置からのマージンとは同一である必要はなく、ディテントプレート74の形状などに依存して異なってもよい。
 このように構成されたパーキングロック装置16において、P-ECU106はエンコーダ70により出力されたパルス信号に基づいてPロック駆動モータ68の回転量に応じたエンコーダカウントを取得する。また、P-ECU106は、例えば車両10の電源供給の切替状態がALL-OFF状態やACC-ON状態ではエンコーダカウントを零に設定し、ALL-OFF状態やACC-ON状態からIG-ON状態又はREADY-ON状態へ切り替えられたときには、その後のエンコーダ70からの信号出力に基づいて順次エンコーダカウントを更新する。尚、本実施例では、P壁位置方向への回転(図3の矢印C方向への回転)によるエンコーダカウントを負として設定する。また、P-ECU106は、取得したエンコーダカウントを予め設定された目標エンコーダカウント(目標カウント値、目標計数値)に一致させるようにPロック駆動モータ68を制御する。この目標カウント値は、例えばPロック駆動モータ68をP目標回転位置や非P目標回転位置に停止させる為の予め実験的に求められて設定された目標値である。
 以上、Pロック駆動モータ68の回転量とシフトポジションPSHとの対応関係を説明した。ところで、エンコーダ70は相対位置センサでありP-ECU106は前記非起動状態ではPロック駆動モータ68の絶対位置たとえば前記P壁位置および前記非P壁位置の情報を喪失するので、P-ECU106が非起動状態から起動状態へ切り替えられた際にはPロック駆動モータ68の絶対位置を把握する必要がある。以下に、相対的な位置情報を検出するエンコーダ70を用いて、Pロック駆動モータ68の位置制御を行う方法を具体的に説明する。
 図7は、車両10の電源供給の切替状態をALL-OFF状態やACC-ON状態からIG-ON状態に切り替える車両電源スイッチ40のスイッチ操作がなされて、P-ECU106が非起動状態から起動状態へ切り替えられた際のパーキングロック装置16における一連の初期制御を説明する状態遷移図である。図7において、PM-HV-ECU104により車両10の電源供給の切替状態がALL-OFF状態やACC-ON状態からIG-ON状態に切り替えられると[状態A]、P-ECU106は非起動状態から起動状態へ切り替えられ、Pロック駆動モータ68のリレー(Pモータ電源リレー)が繋がるのを待つ期間として初期待機を行う[状態B]。この状態Bでは、例えばP-ECU106はP-ECU106自体のイニシャル処理を行う。続いて、P-ECU106は、Pロック駆動モータ68の回転を適切に制御する為に、Pロック駆動モータ68の励磁合わせ(位相合わせ)などのPロック駆動モータ68の初期駆動制御を行う[状態C]。続いて、P-ECU106は、Pロック駆動モータ68の前記P壁位置、または非P壁位置を検出して、基準位置を設定する[状態D]。P-ECU106は、基準位置を設定した後は、例えばユーザによるPスイッチ34の操作またはシフト操作に基づくパーキングロックの作動や解除を実行する通常制御を行う[状態E]。なお、車両10の電源供給の切替状態をALL-OFF状態やACC-ON状態からREADY-ON状態に切り替える車両電源スイッチ40のスイッチ操作がなされて、P-ECU106が非起動状態から起動状態へ切り替えられた場合も、パーキングロック装置16における一連の初期制御は上述した図7と同様であるが、図7の状態Eに至るまで各制御または処理が正常に終了した後に、上記電源供給の切替状態がREADY-ON状態に切り替えられる。また、図7の状態Cから状態Dに遷移する間で、本発明に係る電動機発熱制御が実行されることがあるが、それについては、図10の機能ブロック線図および図12のフローチャートを用いて後述する。以下に、図7の状態Cにおいて実行されるPロック駆動モータ68の初期駆動制御について説明する。
 Pロック駆動モータ68の上記初期駆動制御は、P-ECU106が非起動状態から起動状態に切り替えられた場合にP-ECU106が実行する制御であり、Pロック駆動モータ68のロータ178とステータ174との相対的な位置関係をP-ECU106が認識するためにPロック駆動モータ68に通電するものである。上記初期駆動制御として種々の具体的な制御方法が考えられるが、例えば、P-ECU106は上記初期駆動制御において、先ず、図4に示すU,U’相およびV,V’相の両方の巻線170に一定時間通電し、その後、V,V’相の通電を遮断する一方でU,U’相の通電を一定時間継続する。これにより、ロータ178はそのロータ178の突極176がU,U’相にてステータ174の突極172と相対向する回転位置にまで移動させられるので、P-ECU106は、ロータ178とステータ174との相対的な位置関係を認識することができる。次に、前記図7の状態DにおけるP壁位置及び非P壁位置を検出する制御方法を説明する。
 図8は、P壁位置を検出する制御方法を説明するための図である。P-ECU106は、P壁位置検出制御では、先ず、Pロック駆動モータ68を駆動させてディテントプレート74を図3に示す矢印Cの方向、すなわちP壁96がディテントスプリング82のころ84に向かう方向に回転させ、ころ84とP壁96とを接触させる。P壁96は、P位置92においてすなわち所定のシフトポジションPSHとしてのPポジションにおいて、Pロック駆動モータ68の所定方向としての図3に示す矢印Cの方向の回転を規制する規制部材として機能する。尚、P壁96は、ディテントスプリング82及びころ84と協同して規制部材を構成してもよい。図8において、矢印F1はPロック駆動モータ68による回転力、矢印F2はディテントスプリング82によるバネ力、矢印F3はロッド76による押し戻し力を示す。点線で示すディテントプレート74’は、P壁96ところ84とが接触した位置を示す。従って、ディテントプレート74’の位置を検出することが、P壁96の位置を検出することに相当する。
 ディテントプレート74は、P壁96ところ84との接触後も、点線で示す位置から、Pロック駆動モータ68の回転力F1により図3に示す矢印Cの方向に、ディテントスプリング82のバネ力に抗して回転される。これによりディテントスプリング82に撓みが生じて、バネ力F2が増加し、またロッド76による押し戻し力F3も増加する。回転力F1が、バネ力F2及び押し戻し力F3と釣り合ったところで、ディテントプレート74の回転が停止する。
 P-ECU106は、取得したエンコーダカウントに基づいてディテントプレート74の回転停止を判定する。例えば、P-ECU106は、エンコーダカウントの最小値又は最大値が所定時間変化しない場合に、ディテントプレート74及びPロック駆動モータ68の回転停止を判定する。エンコーダカウントの最小値又は最大値の何れを監視するかは、エンコーダ70に応じて設定されればよく、何れにしても最小値又は最大値が所定時間変化しないことは、ディテントプレート74が動かなくなった状態を示す。
 P-ECU106は、回転停止時のディテントプレート74の位置を暫定的なP壁位置(以下、「暫定P壁位置」と言う)として検出し、更に、ディテントスプリング82の撓み量又は撓み角を算出する。この撓み量又は撓み角の算出は、例えばP-ECU106に予め記憶されているPロック駆動モータ68への印加電圧(供給電圧VMR)に対応する撓み量又は撓み角の関係を示すマップを用いて行われる。P-ECU106は、そのマップから暫定P壁位置検出時のPロック駆動モータ68への印加電圧VMRに対応する撓み量又は撓み角を算出する。
 P-ECU106は、このマップを用いて算出した撓み量又は撓み角から暫定P壁位置をマップ補正し、マップ補正した位置をP壁位置として確定する。このとき、P-ECU106は、確定したP壁位置において、エンコーダカウントをCNTPに設定する。そして、P-ECU106は、エンコーダカウントを零にするように、Pロック駆動モータ68を駆動させてディテントプレート74を図3に示す矢印Dの方向、すなわちP壁96がディテントスプリング82のころ84から離反する方向に回転させ、ディテントプレート74の位置を所定のP位置とする。この所定のP位置は、Pポジション範囲において予め設定された所定位置であって、確定されたP壁位置とのエンコーダカウント差がCNTPとなるように設定されている。また、この所定のP位置をP目標回転位置としても良い。このように、P壁位置を確定することによりP目標回転位置を設定することができる。尚、印加電圧に対応する撓み量又は撓み角の関係を示すマップの代わりに、Pロック駆動モータ68の出力トルクTSRに対応する撓み量又は撓み角の関係を示すマップであってもよいし、マップを用いて算出する代わりに、撓み量又は撓み角を検出するセンサを設け、それにより検出するようにしてもよい。
 図9は、非P壁位置を検出する制御方法を説明するための図である。P-ECU106は、非P壁位置検出制御では、先ず、Pロック駆動モータ68を駆動させてディテントプレート74を図3に示す矢印Dの方向、すなわち非P壁94がディテントスプリング82のころ84に向かう方向に回転させ、ころ84と非P壁94とを接触させる。非P壁94は、非P位置90においてすなわち所定のシフトポジションPSHとしての非Pポジションにおいて、Pロック駆動モータ68の所定方向としての図3に示す矢印Dの方向の回転を規制する規制部材として機能する。尚、非P壁94は、ディテントスプリング82及びころ84と協同して規制部材を構成してもよい。図9において、矢印F1はPロック駆動モータ68による回転力、矢印F2はディテントスプリング82によるバネ力、矢印F3はロッド76による引っ張り力を示す。点線で示すディテントプレート74”は、非P壁94ところ84とが接触した位置を示す。従って、ディテントプレート74”の位置を検出することが、非P壁94の位置を検出することに相当する。
 ディテントプレート74は、非P壁94ところ84との接触後も、点線で示す位置から、Pロック駆動モータ68の回転力F1により図3に示す矢印Dの方向に、ディテントスプリング82の引っ張り力に抗して回転される。これによりディテントスプリング82に伸びが生じて、バネ力F2が増加し、またロッド76による引っ張り力F3も増加する。回転力F1が、バネ力F2及び引っ張り力F3と釣り合ったところで、ディテントプレート74の回転が停止する。
 P-ECU106は、取得したエンコーダカウントに基づいてディテントプレート74の回転停止を判定する。例えば、P-ECU106は、エンコーダカウントの最小値又は最大値が所定時間変化しない場合に、ディテントプレート74及びPロック駆動モータ68の回転停止を判定する。
 P-ECU106は、回転停止時のディテントプレート74の位置を暫定的な非P壁位置(以下、「暫定非P壁位置」と言う)として検出し、更に、ディテントスプリング82の伸び量を算出する。この伸び量の算出は、例えばP-ECU106に予め記憶されているPロック駆動モータ68への印加電圧に対応する伸び量の関係を示すマップを用いて行われる。P-ECU106は、そのマップから暫定非P壁位置検出時のPロック駆動モータ68への印加電圧に対応する伸び量を算出する。
 P-ECU106は、このマップを用いて算出した伸び量から暫定非P壁位置をマップ補正し、マップ補正した位置を非P壁位置として確定する。このとき、P-ECU106は、確定した非P壁位置において、エンコーダカウントをCNTCPに設定する。そして、P-ECU106は、エンコーダカウントを所定計数値だけ減少させたエンコーダカウントCPとするように、Pロック駆動モータ68を駆動させてディテントプレート74を図3に示す矢印Cの方向、すなわち非P壁94がディテントスプリング82のころ84から離反する方向に回転させ、ディテントプレート74の位置を所定の非P位置とする。この所定の非P位置は、非Pポジション範囲において予め設定された所定位置であって、確定された非P壁位置とのエンコーダカウント差が所定計数値となるように設定されている。また、この所定の非P位置を非P目標回転位置としても良い。このように、非P壁位置を確定することにより非P目標回転位置を設定することができる。尚、印加電圧に対応する伸び量の関係を示すマップの代わりに、Pロック駆動モータ68の出力トルクTSRに対応する伸び量の関係を示すマップであってもよいし、マップを用いて算出する代わりに、伸び量を検出するセンサを設け、それにより検出するようにしてもよい。
 このように、車両10の電源供給の切替状態がIG-ON状態とされたP-ECU106の起動状態では、Pロック駆動モータ68の移動(回転)が規制される方向にPロック駆動モータ68を移動するとき、取得されたエンコーダカウントに基づいて所定のシフトポジションPSHに対応したPロック駆動モータ68の壁位置を検出して、基準位置を設定することができる。図8,9に示すように非P壁94及びP壁96は何れもパーキングロック装置16の機械的変位端(ストロークエンド)に相当するので、前記P壁位置検出制御および前記非P壁位置検出制御は、Pロック駆動モータ68でパーキングロック装置16を上記機械的変位端にまで駆動する本発明の壁当て制御に対応する。
 以上のように、車両10の電源供給の切替状態をIG-ON状態またはREADY-ON状態に切り替える車両電源スイッチ40のスイッチ操作がなされたときには、すなわちP-ECU106の非起動状態から起動状態への切替え時には、P-ECU106自体のイニシャル処理が実行された後、パーキングロック装置16における初期制御が実行されて壁位置が検出される。すなわち、パーキングロック装置16における初期制御として、Pロック駆動モータ68の初期駆動制御が行われ、続いて、Pロック駆動モータ68の前記P壁位置及び非P壁位置が検出されて基準位置が設定される。つまり、検出された前記P壁位置及び非P壁位置に基づくPロック駆動モータ68の実可動回転量(実際の可動回転量)は2つの壁位置の間の範囲であって、一方のシフトポジションPSHにおける壁位置検出制御を行って壁位置を検出した後、他方のシフトポジションPSHにおける壁位置検出制御を行って他方の壁位置を検出することで測定することができる。そして、壁位置を検出することでPロック駆動モータ68の絶対位置が把握できるので、目標回転位置を設定することができる。
 ところで、Pロック駆動モータ68に含まれる巻線170の温度が低いほどその巻線170の内部抵抗は低くなる。そして、その巻線170への印加電圧VMR(以下、「電動機印加電圧VMR」という)は略一定であるので、巻線170への供給電流は上記内部抵抗が低くなるほど大きくなり、巻線170への供給電流に基づくモータトルクTSRは巻線170の内部抵抗が低くなるほど大きくなる。従って、例えば車両10が極低温状態に置かれている場合には、Pロック駆動モータ68はそれの駆動等により暖機されるまで大トルクTSRを発生するので、例えば図8で説明した前記P壁位置検出制御または図9で説明した前記非P壁位置検出制御において、上記極低温状態におけるモータトルクTSRに合わせてPロック機構66等の強度を高めておく必要があるものと考えられる。しかし、稀に生じる上記極低温状態を想定してそのようにPロック機構66等の強度を高めることはパーキングロック装置16のコスト上昇につながるので、これを回避するための制御が実行される。次に、その制御機能の要部について説明する。
 図10は、P-ECU106に備えられた制御機能の要部を説明する機能ブロック線図である。図10に示すように、P-ECU106は、起動判断部としての起動判断手段130と、電動機温度判断部としての電動機温度判断手段132と、初期駆動制御部としての初期駆動制御手段134と、壁位置検出制御部としての壁位置検出制御手段136と、パーキングロック切替制御部としてのパーキングロック切替制御手段137と、電動機発熱制御部としての電動機発熱制御手段138とを備えている。
 起動判断手段130は、P-ECU106が非起動状態から起動状態に切り替えられたか否かを判断する。例えば、起動判断手段130は、車両10の電源供給の切替状態をALL-OFF状態またはACC-ON状態からIG-ON状態またはREADY-ON状態に切り替える車両電源スイッチ40のスイッチ操作がなされた場合に、P-ECU106が非起動状態から起動状態に切り替えられたと判断する。要するに、起動判断手段130は、図7で状態Aになった場合に、P-ECU106が非起動状態から起動状態に切り替えられたと判断する。
 電動機温度判断手段132は、Pロック駆動モータ68の温度TMPMRすなわち電動機温度(モータ温度)TMPMRが予め定められた低温判定値TMPminよりも低いか否かを判断する。電動機温度判断手段132は、例えば電動機温度センサ45によってモータ温度TMPMRを検出するが、上記電動機温度センサ45が設けられていない車両では、車両用駆動装置29で検出される温度、例えば前記冷却水温TMPまたは作動油温TMPATをモータ温度TMPMRとみなして判断しても差し支えない。上記低温判定値TMPminは、モータ温度TMPMRがそれよりも低ければモータトルクTSRが巻線170の内部抵抗の低下によってPロック機構66等の耐久性を損なうほど大きくなるおそれがあると判断されるように、実験的に設定されている。例えば、低温判定値TMPminは、後述の図11(b)に示すように、前記壁当て制御(図7の状態D参照)または前記通常制御(図7の状態E参照)でPロック駆動モータ68を駆動するときのモータトルクTSRがPロック機構66の許容トルクの上限値を超えることのない可及的に低いモータ温度TMPMRに設定されている。
 初期駆動制御手段134は、P-ECU106が非起動状態から起動状態に切り替えられたと起動判断手段130により判断された場合に、Pロック駆動モータ68の前記初期駆動制御を行う(図7の状態C参照)。これにより、Pロック駆動モータ68のロータ178とステータ174との相対的な位置関係が認識される。
 壁位置検出制御手段136(壁当て制御手段136)は、P-ECU106が非起動状態から起動状態に切り替えられたと起動判断手段130により判断された場合において、初期駆動制御手段134による前記初期駆動制御の実行完了後に、前記P壁位置検出制御および前記非P壁位置検出制御を実行し、前記P壁位置と前記非P壁位置とを検出する(図7の状態D参照)。但し、後述する電動機発熱制御手段138が電動機発熱制御を実行する場合、すなわち、その電動機発熱制御の実行開始前に電動機温度判断手段132によってモータ温度TMPMRが低温判定値TMPminよりも低いと判断された場合には、その電動機発熱制御の実行完了後に上記P壁位置検出制御および上記非P壁位置検出制御の実行を開始する。
 パーキングロック切替制御手段137は、P-ECU106の起動状態で、PM-HV-ECU104からの指令信号に従ってパーキングロック装置16を前記ロック位置(P位置)と前記非ロック位置(非P位置)とに選択的に切り替えるパーキングロック切替制御を実行する。詳細には、壁位置検出制御手段136による前記P壁位置検出制御および前記非P壁位置検出制御の実行完了後、すなわち前記P壁位置および前記非P壁位置が検出された後に、壁位置検出制御手段136からそのP壁位置および非P壁位置の情報を受け取り、それによりPロック駆動モータ68の絶対位置を認識した上で、上記パーキングロック切替制御を実行する。具体的に、パーキングロック切替制御手段137は、そのパーキングロック切替制御では、先ず、Pロック駆動モータ68を作動させる指令信号(Pモータ駆動指令信号)例えば前記オートPロック切替要求信号や前記P切替要求信号をPM-HV-ECU104から受けたか否かを判断する。そして、パーキングロック切替制御手段137は、PM-HV-ECU104から上記Pモータ駆動指令信号を受けた場合には、エンコーダ70からの信号を逐次読み込んでPロック駆動モータ68の現在位置を認識すると共に上記Pモータ駆動指令信号に従ってPロック駆動モータ68を回転させ、そのPモータ駆動指令信号に応じた前記P目標回転位置または前記非P目標回転位置に到達したところでPロック駆動モータ68を停止させる。例えば、パーキングロック切替制御手段137は、前記パーキングロック切替制御でPロック駆動モータ68を作動させる際には、PM-HV-ECU104からのPモータ駆動指令信号が前記Pロック切替要求信号(非P→Pポジション)であれば、Pロック駆動モータ68を前記P目標回転位置に到達するまで回転させる。一方、PM-HV-ECU104からのPモータ駆動指令信号が前記P解除切替要求信号(P→非Pポジション)であれば、Pロック駆動モータ68を前記非P目標回転位置に到達するまで回転させる。なお、前記パーキングロック切替制御は、図7の状態Eにおいて実行されるものであり、その図7の状態Eに示した前記通常制御に含まれる。
 電動機発熱制御手段138は、電動機温度判断手段132によってモータ温度TMPMRが低温判定値TMPminよりも低いと判断された場合には、P-ECU106が非起動状態から起動状態に切り替えられた後で且つ前記P壁位置検出制御および前記非P壁位置検出制御の実行開始前に、Pロック駆動モータ68を回転させないようにPロック駆動モータ68に通電する電動機発熱制御を実行する。一方で、電動機発熱制御手段138は、電動機温度判断手段132によってモータ温度TMPMRが低温判定値TMPminよりも低いと判断されなかった場合、すなわちそのモータ温度TMPMRが低温判定値TMPmin以上である場合には、上記電動機発熱制御を実行しない。上記P-ECU106が非起動状態から起動状態に切り替えられた後とは、P-ECU106が非起動状態から起動状態に切り替えられたと起動判断手段130により判断された後ということである。例えば、電動機発熱制御手段138は、前記電動機発熱制御では、Pロック駆動モータ68へ、詳細にはそのPロック駆動モータ68の巻線170へ、予め定められた発熱制御時間TIMEHEATにわたって通電する。このとき、電動機発熱制御時の電動機印加電圧VMRは、前記壁当て制御(図7の状態D参照)または前記通常制御(図7の状態E参照)でPロック駆動モータ68を回転駆動するときのそれぞれの電圧と異なっていても差し支えないが、本実施例では、電動機発熱制御を簡潔なものにするため、その壁当て制御またはその通常制御でPロック駆動モータ68を回転駆動するときの電圧の少なくとも何れかと同一である。例えば、上記壁当て制御または上記通常制御では、通電される巻線170がPロック駆動モータ68を回転駆動ために順次切り替えられるところ、上記電動機発熱制御ではPロック駆動モータ68を回転駆動しないので、その電動機発熱制御における通電方法は、通電される巻線170が順次切り替えられることを除いて、上記壁当て制御または上記通常制御における通電方法と同様である。
 ここで、前記発熱制御時間TIMEHEATは、前記電動機発熱制御において全ての巻線170の内部抵抗が、Pロック機構66等の常温作動時に必要な強度に対して強度アップを必要とするほど大きなモータトルクTSRを発生させない抵抗値にまで高まるように実験的に設定された通電時間である。この発熱制御時間TIMEHEATは一定値であってもよいが、本実施例では図11(a)のグラフに示すように、電動機発熱制御手段138は、前記電動機発熱制御の実行開始前のモータ温度TMPMRすなわちモータ初期温度(電動機初期温度)TMP0が低いほど発熱制御時間TIMEHEATを長く設定する。図11は、前記電動機発熱制御における上記モータ初期温度TMP0と発熱制御時間TIMEHEATとの関係と、前記電動機発熱制御の実行によりモータトルクTSRに与える効果とを概念的に表した図である。図11(a)に示すように、前記電動機発熱制御において発熱制御時間TIMEHEATはモータ初期温度TMP0が低いほど長く設定されるので、巻線170への通電によるPロック駆動モータ68への加熱量が増加する。従って、前記電動機発熱制御が実行されなければモータ初期温度TMP0が低いほど巻線170の内部抵抗が低く、Pロック駆動モータ68を駆動するときのモータトルクTSRが図11(b)の破線L01に示すように大きくなり、低温域ではPロック機構(ディテント機構)66の許容トルクの上限値を超えることになるところ、前記電動機発熱制御の実行によって、巻線170の内部抵抗がモータ温度TMPMRの上昇に伴い高まるので、その電動機発熱制御の実行後のモータトルクTSRは図11(b)の実線L02に示すように上記許容トルクの上限値を下回るトルクにまで低減される。
 また、電動機発熱制御手段138は、前記電動機発熱制御を実行する際に、初期駆動制御手段134による前記初期駆動制御の実行と共にその電動機発熱制御を実行しても差し支えないが、本実施例では上記初期駆動制御の実行完了後に上記電動機発熱制御を実行する。例えば、仮に電動機発熱制御手段138が上記初期駆動制御の実行と共に上記電動機発熱制御を実行するのであれば、電動機発熱制御手段138は、上記初期駆動制御において巻線170に通電される延べ時間が前記発熱制御時間TIMEHEAT又はそれ以上になるように、初期駆動制御手段134に上記初期駆動制御を実行させる。
 また、電動機発熱制御手段138は、前記電動機発熱制御においてPロック駆動モータ68を回転させないように通電するのであれば何れの巻線170に通電しても差し支えないが、上記電動機発熱制御はPロック駆動モータ68を加熱することを目的としPロック駆動モータ68を回転駆動することを目的とはしないので、電動機発熱制御手段138は、Pロック駆動モータ68のロータ178をロックする通電パターンでPロック駆動モータ68に通電する。そのロータ178をロックする通電パターンとは、ロータ178の回転を阻止する通電パターンであり、例えば、ロータ178の何れかの突極176に最も近いステータ174の突極172に設けられた巻線170または何れかの突極176に相対向するステータ174の突極172に設けられた巻線170に通電し、その通電する巻線170を電動機発熱制御の実行中に変更しない通電パターンである。図4を用いて説明すれば、図4においてW,W’位置(W,W’相)でステータ174の突極172とロータ178の突極176b,176dとが相対向しているので、上記ロータ178をロックする通電パターンとはW,W’相の巻線170だけに通電することである。
 図12は、P-ECU106の制御作動の第1の要部、すなわち、P-ECU106の起動後に前記電動機発熱制御を実行する制御作動を説明するためのフローチャートである。このフローチャートは、単独で或いは他の制御作動と並列的に実行されるものである。
 先ず、起動判断手段130に対応するステップ(以下、「ステップ」を省略する)SA1においては、P-ECU106が非起動状態から起動状態に切り替えられたか否かが判断される。例えば、車両10の電源供給の切替状態をALL-OFF状態またはACC-ON状態からIG-ON状態またはREADY-ON状態に切り替える車両電源スイッチ40のスイッチ操作がなされた場合に、P-ECU106が非起動状態から起動状態に切り替えられたと判断される。このSA1の判断が肯定された場合、すなわち、P-ECU106が非起動状態から起動状態に切り替えられた場合には、SA2に移る。一方、このSA1の判断が否定された場合には、本フローチャートは終了する。
 初期駆動制御手段134に対応するSA2においては、Pロック駆動モータ68の前記初期駆動制御が実行される。その初期駆動制御が完了するとSA3に移る。
 電動機温度判断手段132に対応するSA3においては、モータ温度TMPMRが前記低温判定値TMPminよりも低いか否かが判断される。SA3で低温判定値TMPminと比較されるモータ温度TMPMRは前記電動機発熱制御の実行開始前のモータ温度TMPMR(モータ初期温度TMP0)であればよいが、前記初期駆動制御の実行完了後のモータ温度TMPMRであることが好ましい。このSA3の判断が肯定された場合、すなわち、モータ温度TMPMRが低温判定値TMPminよりも低い場合には、SA4に移る。一方、このSA3の判断が否定された場合には、SA8に移る。
 SA4においては、前記電動機発熱制御における前記発熱制御時間TIMEHEATが決定される。具体的には、発熱制御時間TIMEHEATが、図11(a)に示すようなモータ初期温度TMP0と発熱制御時間TIMEHEATとの予め設定された関係(マップ)から、例えば前記SA3で低温判定値TMPminと比較されたモータ温度TMPMRであるモータ初期温度TMP0に基づいて読み込まれ決定される。SA4の次はSA5に移る。
 SA5においては、経過時間を表すタイマーtが零から開始されその値が増加し始める。続くSA6ではそのタイマーtが発熱制御時間TIMEHEATよりも大きくなったか否かが判断される。そして、タイマーtが発熱制御時間TIMEHEAT以下である間は、SA7にて前記電動機発熱制御が実行される一方で、タイマーtが発熱制御時間TIMEHEATよりも大きくなった場合には、前記電動機発熱制御の実行が終了しSA8に移る。なお、SA4~SA7は電動機発熱制御手段138に対応する。
 壁位置検出制御手段136に対応するSA8においては、前記P壁位置検出制御および前記非P壁位置検出制御が実行される。そのP壁位置検出制御および非P壁位置検出制御の完了後にはP位置92および非P位置90がP-ECU106において確定するので、P壁位置検出制御および非P壁位置検出制御を併せてP位置確定制御と呼んでも差し支えない。
 図13は、P-ECU106の制御作動の第2の要部、すなわち、前記パーキングロック切替制御を実行する制御作動を説明するためのフローチャートである。このフローチャートは、単独で或いは他の制御作動と並列的に実行され、図7の状態Eにて実行される。
 先ず、SB1においては、Pロック駆動モータ68の絶対位置がP-ECU106に認識されているか否かが判断される。すなわち、前記P壁位置検出制御および前記非P壁位置検出制御が完了したか否かが判断される。このSB1の判断が肯定された場合、すなわち、Pロック駆動モータ68の絶対位置が認識されている場合には、SB2に移る。一方、このSB1の判断が否定された場合には、本フローチャートは終了する。
 SB2においては、PM-HV-ECU104から前記Pモータ駆動指令信号を受けたか否かが判断される。このSB2の判断が肯定された場合、すなわち、上記Pモータ駆動指令信号を受けた場合には、SB3に移る。一方、このSB2の判断が否定された場合には、本フローチャートは終了する。
 SB3においては、エンコーダ70からの信号が読み込まれ、それによりPロック駆動モータ68の現在位置(絶対位置)が認識される。SB3の次はSB4に移る。
 SB4においては、Pロック駆動モータ68が、上記Pモータ駆動指令信号に応じた前記P目標回転位置または前記非P目標回転位置に向けて回転駆動される。SB4の次はSB5に移る。
 SB5においては、Pロック駆動モータ68が上記Pモータ駆動指令信号に応じた前記P目標回転位置または前記非P目標回転位置、すなわち、そのPロック駆動モータ68の目標回転位置に到達したか否かが判断される。このSB5の判断が肯定された場合、すなわち、Pロック駆動モータ68が目標回転位置に到達した場合には、SB6に移る。一方、このSB5の判断が否定された場合にはSB3に戻り、SB5の判断が肯定されるまでSB3とSB4とが繰り返し実行される。
 SB6においては、Pロック駆動モータ68が停止される。なお、前記SB1~SB6はパーキングロック切替制御手段137に対応する。すなわち、前記パーキングロック切替制御ではSB2~SB6が実行される。
 上述のように、本実施例によれば、電動機発熱制御手段138は、電動機温度判断手段132によってモータ温度TMPMRが低温判定値TMPminよりも低いと判断された場合には、P-ECU106が非起動状態から起動状態に切り替えられた後で、且つ、前記壁当て制御(P壁位置検出制御および非P壁位置検出制御)の実行開始前すなわち前記パーキングロック切替制御の実行開始前に、Pロック駆動モータ68を回転させないようにPロック駆動モータ68に通電する前記電動機発熱制御を実行する。これにより、モータ温度TMPMRが低温判定値TMPminよりも低い場合には、Pロック駆動モータ68は、前記電動機発熱制御の実行により通電されて発熱させられるので、前記パーキングロック切替制御の実行開始前において、Pロック駆動モータ68の内部抵抗すなわち巻線170の内部抵抗がある程度大きくなり、その内部抵抗に応じて、Pロック駆動モータ68への供給電流に基づくモータトルクTSRが抑えられる。従って、上記パーキングロック切替制御の実行中のモータトルクTSRが許容できる程度に抑えられ、具体的には図11(b)に示すように、そのモータトルクTSRがPロック機構66の許容トルクの上限値以下に抑えられ、そのモータトルクTSRが伝達される機械部材であるPロック機構66の耐久性低下を抑えることが可能である。また、Pロック駆動モータ68への供給電流を所定の制限値以下に制限する電流制限回路を設ける必要がなく、また、モータ温度TMPMRが低温判定値TMPminよりも低い場合のモータトルクTSRに合わせてPロック機構66の強度を高める必要がないので、車両用シフト制御装置50のコスト上昇を抑制できる。
 また、本実施例によれば、電動機発熱制御手段138は、前記壁当て制御(P壁位置検出制御および非P壁位置検出制御)の実行開始前に前記電動機発熱制御を実行する。ここで、パーキングロック装置16の構成部材、例えばPロック機構66を構成するシャフト72、ディテントプレート74、ディテントスプリング82、及びころ84等が上記P壁位置検出制御および非P壁位置検出制御において前記機械的変位端(非P壁94及びP壁96)でモータトルクTSRを受け止める必要がある。従って、そのパーキングロック装置16の構成部材の強度を、モータ温度TMPMRが低温判定値TMPminよりも低い場合のモータトルクTSRすなわち極低温時のモータトルクTSRに合わせて高める必要がないので、パーキングロック装置16のコストを抑制できる。また、上記P壁位置検出制御および非P壁位置検出制御の実行により、相対位置センサであるエンコーダ70を用いてPロック駆動モータ68の絶対位置を認識できるようになるので、そのエンコーダ70が絶対位置センサである場合と比較して、パーキングロック装置16のコストを抑制できる。
 また、本実施例によれば、Pロック駆動モータ68は、巻線170が巻かれた複数の突極172を有するステータ174とそのステータ174に対し回転可能に配設され複数の突極176を有するロータ178とを備えており、そのロータ178の回転位置情報(回転角度)に基づいて巻線170に電流を順次供給することによりロータ178を回転させるモータである。従って、Pロック駆動モータ68は簡単な構造であるので、車両用シフト制御装置50を安価で且つ機械的な信頼性の高いものとすることが可能である。
 また、本実施例によれば、初期駆動制御手段134は、P-ECU106が非起動状態から起動状態に切り替えられた場合に、Pロック駆動モータ68のロータ178とステータ174との相対的な位置関係をP-ECU106が認識するためにPロック駆動モータ68に通電する前記初期駆動制御を実行する。そして、電動機発熱制御手段138は、その初期駆動制御の実行完了後に前記電動機発熱制御を実行する。従って、上記初期駆動制御の実行により、Pロック駆動モータ68のステータ174に設けられた何れの巻線(コイル)170に通電すればPロック駆動モータ68が回転しないかが明らかになるので、上記電動機発熱制御でPロック駆動モータ68を回転させずにPロック駆動モータ68に通電できる通電パターンを容易に決定できる。
 また、本実施例によれば、前記電動機発熱制御において、Pロック駆動モータ68を回転させないようにPロック駆動モータ68に通電することとは、Pロック駆動モータ68のロータ178をロックする通電パターンでPロック駆動モータ68に通電することである。従って、Pロック駆動モータ68のロータ178は積極的に回転が抑止されるので、上記電動機発熱制御の実行中にPロック駆動モータ68が不用意に回転する可能性を低減することができる。例えば、モータ温度TMPMRが極低温であるときに、モータトルクTSRがPロック機構66の許容トルクの上限値(図11(b)参照)を超えて発生する可能性を低減することができる。
 また、本実施例によれば、電動機発熱制御手段138は、前記電動機発熱制御では、Pロック駆動モータ68へ前記発熱制御時間TIMEHEATにわたって通電し、上記電動機発熱制御の実行開始前のモータ温度TMPMR(モータ初期温度TMP0)が低いほど発熱制御時間TIMEHEATを長く設定する。従って、その電動機発熱制御の実行後におけるPロック駆動モータ68の内部抵抗すなわち巻線170の内部抵抗が、上記モータ初期温度TMP0が異なってもあまりばらつかないようにすることが可能である。例えばPロック駆動モータ68が極低温であれば十分な発熱が図られる一方で、モータ初期温度TMP0が低温判定値TMPminに近ければ電動機発熱制御を早期に完了することが可能である。
 また、本実施例によれば、電動機発熱制御手段138は、モータ温度TMPMRが低温判定値TMPmin以上である場合には前記電動機発熱制御を実行しないので、その電動機発熱制御の実行が不要である場合には、P-ECU106が非起動状態から起動状態に切り替えられた後に早期に前記壁当て制御(図7の状態D参照)の実行および前記パーキングロック切替制御の実行を開始できると共に、電力を無駄に消費することを回避できる。
 また、本実施例によれば、車両用駆動装置29で検出される温度、例えば前記冷却水温TMPまたは作動油温TMPATがモータ温度TMPMRとみなされても差し支えなく、そのようにしたとすれば、電動機温度センサ45が不要となり、コストの抑制を図ることが可能である。
 また、本実施例によれば、Pロック駆動モータ68に電動機温度センサ45が設けられており、電動機温度センサ45によってモータ温度TMPMRが検出されるので、精度良くモータ温度TMPMRが検出され、それにより、前記電動機発熱制御の必要性を精度良く判断できる。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
 例えば、前述の実施例の図4に示すステータ174とロータ178との位置関係では、W,W’相でステータ174の突極172とロータ178の突極176b,176dとが相対向しているので、前記電動機発熱制御においてW,W’相の巻線170だけが通電されるが、相対向する突極172にそれぞれ設けられた1対の巻線170に通電されるのではなく、1つ又は3つ以上の巻線170に通電されても差し支えない。また、通電される巻線170が1対をなす必要もない。
 また、前述の実施例において、図11(a)(b)の横軸に示すモータ温度TMPMR(モータ初期温度TMP0)は電動機温度センサ45によって検出されるが、前記冷却水温TMPまたは作動油温TMPATをモータ温度TMPMRとみなして発熱制御時間TIMEHEATが設定されても差し支えない。
 また、前述の実施例の図4において、ステータ174の突極172は6つであり、ロータ178の突極176は4つであるが、Pロック駆動モータ68の極数に特に限定はなく、突極172が6つよりも多く突極176が4つよりも多くても差し支えない。
 また、前述の実施例では、P-ECU106が非起動状態から起動状態に切り替えられると前記初期駆動制御が実行されるが、その初期駆動制御が実行されずに、前記電動機発熱制御が実行されることも考え得る。
 また、前述の実施例において、P-ECU106が非起動状態から起動状態に切り替えられる場合として、車両電源スイッチ40のスイッチ操作が例示されているが、車両電源スイッチ40のスイッチ操作以外で、P-ECU106が非起動状態から起動状態に切り替えられても差し支えない。例えば、車両10が、運転者が車外からリモコン操作でエンジン12を始動するリモートエンジンスタート操作を受け付ける機能を有していれば、そのリモートエンジンスタート操作が実施された場合にP-ECU106は非起動状態から起動状態に切り替えられる。また、車両10が、外部電源から蓄電装置52への充電が可能な所謂プラグインハイブリッド車両であれば、その外部電源からの充電コネクタが車両10に接続されたことが検出された場合に、P-ECU106は非起動状態から起動状態に切り替えられる。そのように上記リモートエンジンスタート操作や上記充電コネクタの接続によりP-ECU106が非起動状態から起動状態に切り替えられた場合にも、起動判断手段130は、P-ECU106が非起動状態から起動状態に切り替えられたと判断する。
 また、前述の実施例において、エンコーダ70は相対位置センサであるが、Pロック駆動モータ68の絶対位置を検出する絶対位置センサであっても差し支えない。例えば、そのようにエンコーダ70が絶対位置センサであれば、前記P壁位置検出制御および前記非P壁位置検出制御は不要となり、図13のフローチャートではSB1が不要となる。
 なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
14:駆動輪(車輪)
16:パーキングロック装置
29:車両用駆動装置(駆動装置)
45:電動機温度センサ
50:車両用シフト制御装置
68:Pロック駆動モータ(電動機)
106:P-ECU(電子制御装置)
170:巻線
172:ステータの突極
174:ステータ
176a,176b,176c,176d:ロータの突極
178:ロータ
 

Claims (9)

  1.  車輪の回転を拘束するロック位置と該車輪の回転を拘束しない非ロック位置とに電動機の駆動により選択的に切り替えられるパーキングロック装置と前記電動機を制御する電子制御装置とを備えており、該電子制御装置の起動状態でパーキングロック装置を前記ロック位置と前記非ロック位置とに選択的に切り替えるパーキングロック切替制御を実行する車両用シフト制御装置であって、
     前記電動機の温度が予め定められた低温判定値よりも低い場合には、前記電子制御装置が非起動状態から起動状態に切り替えられた後で且つ前記パーキングロック切替制御の実行開始前に、前記電動機を回転させないように該電動機に通電する電動機発熱制御を実行する
     ことを特徴とする車両用シフト制御装置。
  2.  前記電子制御装置が非起動状態から起動状態に切り替えられた場合には、前記パーキングロック切替制御の実行開始前に、前記電動機で前記パーキングロック装置を機械的変位端にまで駆動する壁当て制御を実行し、
     該壁当て制御の実行開始前に前記電動機発熱制御を実行する
     ことを特徴とする請求項1に記載の車両用シフト制御装置。
  3.  前記電動機は、巻線が巻かれた複数の突極を有するステータと該ステータに対し回転可能に配設され複数の突極を有するロータとを備え、該ロータの回転位置情報に基づいて前記巻線に電流を順次供給することにより前記ロータを回転させるモータである
     ことを特徴とする請求項1又は2に記載の車両用シフト制御装置。
  4.  前記電子制御装置が非起動状態から起動状態に切り替えられた場合に、前記電動機のロータとステータとの相対的な位置関係を認識するために該電動機に通電する初期駆動制御を実行し、該初期駆動制御の実行後に前記電動機発熱制御を実行する
     ことを特徴とする請求項3に記載の車両用シフト制御装置。
  5.  前記電動機発熱制御において、前記電動機を回転させないように該電動機に通電することとは、該電動機のロータをロックする通電パターンで該電動機に通電することである
     ことを特徴とする請求項3又は4に記載の車両用シフト制御装置。
  6.  前記電動機発熱制御では、予め定められた発熱制御時間にわたって前記電動機に通電し、
     該電動機発熱制御の実行開始前における前記電動機の温度が低いほど前記発熱制御時間を長くする
     ことを特徴とする請求項1乃至5の何れか1項に記載の車両用シフト制御装置。
  7.  前記電動機の温度が前記低温判定値以上である場合には前記電動機発熱制御を実行しない
     ことを特徴とする請求項1乃至6の何れか1項に記載の車両用シフト制御装置。
  8.  前記車輪を駆動する駆動装置で検出される温度を前記電動機の温度とみなす
     ことを特徴とする請求項1乃至7の何れか1項に記載の車両用シフト制御装置。
  9.  前記電動機に電動機温度センサが設けられており、該電動機温度センサによって該電動機の温度を検出する
     ことを特徴とする請求項1乃至7の何れか1項に記載の車両用シフト制御装置。
     
PCT/JP2010/061927 2010-07-14 2010-07-14 車両用シフト制御装置 WO2012008029A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012524371A JP5392409B2 (ja) 2010-07-14 2010-07-14 車両用シフト制御装置
PCT/JP2010/061927 WO2012008029A1 (ja) 2010-07-14 2010-07-14 車両用シフト制御装置
US13/810,084 US9366339B2 (en) 2010-07-14 2010-07-14 Vehicle shift control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061927 WO2012008029A1 (ja) 2010-07-14 2010-07-14 車両用シフト制御装置

Publications (1)

Publication Number Publication Date
WO2012008029A1 true WO2012008029A1 (ja) 2012-01-19

Family

ID=45469054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061927 WO2012008029A1 (ja) 2010-07-14 2010-07-14 車両用シフト制御装置

Country Status (3)

Country Link
US (1) US9366339B2 (ja)
JP (1) JP5392409B2 (ja)
WO (1) WO2012008029A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089775A (ja) * 2015-11-11 2017-05-25 トヨタ自動車株式会社 車両用パーキングロック機構の制御装置
JP2020200878A (ja) * 2019-06-10 2020-12-17 株式会社デンソー シフトレンジ制御装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137297A1 (ja) * 2011-04-05 2012-10-11 トヨタ自動車株式会社 車両および車両用制御方法
JP6015699B2 (ja) * 2014-03-24 2016-10-26 トヨタ自動車株式会社 車両の制御装置
JP6525146B2 (ja) * 2015-04-24 2019-06-05 三菱自動車工業株式会社 シフト制御装置
JP6950545B2 (ja) * 2018-01-19 2021-10-13 株式会社デンソー シフトレンジ制御装置
JP6881350B2 (ja) * 2018-02-28 2021-06-02 トヨタ自動車株式会社 スイッチトリラクタンスモータの制御装置
CN110345243B (zh) * 2019-06-26 2020-11-27 江铃汽车股份有限公司 汽车档位控制方法、系统、车载终端及存储介质
KR102238146B1 (ko) * 2019-12-13 2021-04-08 주식회사 현대케피코 전동식 변속 레버 시스템의 제어 장치 및 그 제어 방법
CN112963526B (zh) * 2021-03-26 2022-07-08 中国第一汽车股份有限公司 一种变速器系统低温换挡预控制方法、变速器系统及车辆
CN114035393A (zh) * 2021-10-14 2022-02-11 浙江大华技术股份有限公司 一种镜头加热控制系统、方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278752A (ja) * 2003-03-18 2004-10-07 Calsonic Kansei Corp 自動変速機のセレクトアシスト装置
JP2007330674A (ja) * 2006-06-19 2007-12-27 Toshiba Corp 洗濯乾燥機
JP2008058513A (ja) * 2006-08-30 2008-03-13 Brother Ind Ltd 画像形成装置
JP2008511800A (ja) * 2004-08-28 2008-04-17 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 自動車のオートマチックマニュアルトランスミッション用セレクター駆動部
JP2009095101A (ja) * 2007-10-05 2009-04-30 Denso Corp モータ制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972629B2 (ja) 2001-10-23 2007-09-05 アイシン・エィ・ダブリュ株式会社 車輌のレンジ切り替え装置
JP4213946B2 (ja) * 2002-08-19 2009-01-28 日本電産シンポ株式会社 電動式ろくろ装置
JP4188665B2 (ja) 2002-11-11 2008-11-26 株式会社日立製作所 ブラシレスアクチュエータ装置、及びそれを用いた電動ブレーキ、トランスミッション駆動装置
JP4158925B2 (ja) 2005-01-19 2008-10-01 三菱電機株式会社 自動2輪車用変速機制御装置
JP2007170545A (ja) * 2005-12-22 2007-07-05 Denso Corp シフトレンジ切換装置
JP5010836B2 (ja) * 2006-02-27 2012-08-29 日立オートモティブシステムズ株式会社 モータ駆動装置,モータ駆動方法、及び電動ブレーキ装置
DE102006009606A1 (de) 2006-03-02 2007-09-06 Zf Friedrichshafen Ag Elektromagnetische Schalteinrichtung mit Linearmotor
JP4305556B2 (ja) * 2007-11-28 2009-07-29 トヨタ自動車株式会社 車両の制御装置
JP4341717B2 (ja) * 2008-01-31 2009-10-07 トヨタ自動車株式会社 車両の駆動装置およびその制御方法
JP2013096436A (ja) * 2011-10-28 2013-05-20 Denso Corp シフトバイワイヤシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278752A (ja) * 2003-03-18 2004-10-07 Calsonic Kansei Corp 自動変速機のセレクトアシスト装置
JP2008511800A (ja) * 2004-08-28 2008-04-17 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 自動車のオートマチックマニュアルトランスミッション用セレクター駆動部
JP2007330674A (ja) * 2006-06-19 2007-12-27 Toshiba Corp 洗濯乾燥機
JP2008058513A (ja) * 2006-08-30 2008-03-13 Brother Ind Ltd 画像形成装置
JP2009095101A (ja) * 2007-10-05 2009-04-30 Denso Corp モータ制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089775A (ja) * 2015-11-11 2017-05-25 トヨタ自動車株式会社 車両用パーキングロック機構の制御装置
CN107023676A (zh) * 2015-11-11 2017-08-08 丰田自动车株式会社 用于车辆的控制装置
JP2020200878A (ja) * 2019-06-10 2020-12-17 株式会社デンソー シフトレンジ制御装置
JP7211270B2 (ja) 2019-06-10 2023-01-24 株式会社デンソー シフトレンジ制御装置

Also Published As

Publication number Publication date
US20140318294A1 (en) 2014-10-30
US9366339B2 (en) 2016-06-14
JPWO2012008029A1 (ja) 2013-09-05
JP5392409B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5392409B2 (ja) 車両用シフト制御装置
JP5310871B2 (ja) 車両用のシフト制御装置
JP5240172B2 (ja) 車両用シフト制御装置
JP5321728B2 (ja) 車両用シフト制御装置
JP6696856B2 (ja) 車両のシフト制御装置
US8035934B2 (en) Shift switching device and shift switching method
JP5035475B2 (ja) 車両のシフト切替制御装置
JP5375253B2 (ja) 車両用シフト制御装置
US20100256880A1 (en) Vehicle control apparatus
JP5267270B2 (ja) 車両のシフト制御装置
JP6575250B2 (ja) パーキングロック装置の制御装置
JP5195710B2 (ja) 車両の制御装置
JP6626585B2 (ja) 車両の制御装置及び車両の制御方法
JP6583074B2 (ja) 車両用パーキングロック機構の制御装置
JP2005069407A (ja) 動力伝達機構の制御装置
JP4465996B2 (ja) 自動変速機のシフトレンジ切替装置
JP2009097581A (ja) シフト装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854713

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012524371

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13810084

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10854713

Country of ref document: EP

Kind code of ref document: A1