WO2011161726A1 - 有機el素子、表示装置および発光装置 - Google Patents
有機el素子、表示装置および発光装置 Download PDFInfo
- Publication number
- WO2011161726A1 WO2011161726A1 PCT/JP2010/004212 JP2010004212W WO2011161726A1 WO 2011161726 A1 WO2011161726 A1 WO 2011161726A1 JP 2010004212 W JP2010004212 W JP 2010004212W WO 2011161726 A1 WO2011161726 A1 WO 2011161726A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- hole injection
- injection layer
- irradiation
- ups
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 202
- 238000002347 injection Methods 0.000 claims abstract description 161
- 239000007924 injection Substances 0.000 claims abstract description 161
- 238000001228 spectrum Methods 0.000 claims abstract description 81
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims abstract description 61
- 229910001930 tungsten oxide Inorganic materials 0.000 claims abstract description 61
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 39
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 29
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 27
- 239000002346 layers by function Substances 0.000 claims abstract description 24
- 125000004429 atom Chemical group 0.000 claims abstract description 18
- 239000011368 organic material Substances 0.000 claims abstract description 11
- 238000005259 measurement Methods 0.000 claims description 29
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims description 17
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 16
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 16
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- 239000002156 adsorbate Substances 0.000 description 64
- 239000001301 oxygen Substances 0.000 description 51
- 229910052760 oxygen Inorganic materials 0.000 description 51
- 238000000034 method Methods 0.000 description 47
- 238000004402 ultra-violet photoelectron spectroscopy Methods 0.000 description 47
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 43
- 238000004140 cleaning Methods 0.000 description 33
- 230000007547 defect Effects 0.000 description 30
- 229910044991 metal oxide Inorganic materials 0.000 description 29
- 150000004706 metal oxides Chemical class 0.000 description 29
- 230000000694 effects Effects 0.000 description 24
- 238000004519 manufacturing process Methods 0.000 description 23
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 22
- -1 argon ion Chemical class 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 22
- 230000008859 change Effects 0.000 description 20
- 239000010408 film Substances 0.000 description 20
- 239000000758 substrate Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- 238000001179 sorption measurement Methods 0.000 description 14
- 239000013067 intermediate product Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 229920006395 saturated elastomer Polymers 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 6
- 229910001507 metal halide Inorganic materials 0.000 description 6
- 150000005309 metal halides Chemical class 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052788 barium Inorganic materials 0.000 description 5
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 238000000992 sputter etching Methods 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 229920000620 organic polymer Polymers 0.000 description 4
- 238000002186 photoelectron spectrum Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 150000004696 coordination complex Chemical class 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000005546 reactive sputtering Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000001420 photoelectron spectroscopy Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- BIXMBBKKPTYJEK-UHFFFAOYSA-N 1,3-benzoxazin-2-one Chemical class C1=CC=C2OC(=O)N=CC2=C1 BIXMBBKKPTYJEK-UHFFFAOYSA-N 0.000 description 1
- TWZYORZPYCRVAX-UHFFFAOYSA-N 2-(2h-thiopyran-1-ylidene)propanedinitrile Chemical class N#CC(C#N)=S1CC=CC=C1 TWZYORZPYCRVAX-UHFFFAOYSA-N 0.000 description 1
- KYGSXEYUWRFVNY-UHFFFAOYSA-N 2-pyran-2-ylidenepropanedinitrile Chemical class N#CC(C#N)=C1OC=CC=C1 KYGSXEYUWRFVNY-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- WDECIBYCCFPHNR-UHFFFAOYSA-N Chrysene Natural products C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- YNPNZTXNASCQKK-UHFFFAOYSA-N Phenanthrene Natural products C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Natural products C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- BBEAQIROQSPTKN-UHFFFAOYSA-N antipyrene Natural products C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- 229960005057 canrenone Drugs 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 125000000332 coumarinyl group Chemical class O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000002219 fluoranthenes Chemical class 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 150000002220 fluorenes Chemical class 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical class O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- VPUGDVKSAQVFFS-UHFFFAOYSA-N hexabenzobenzene Natural products C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000007644 letterpress printing Methods 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 229910003443 lutetium oxide Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910000487 osmium oxide Inorganic materials 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 150000002916 oxazoles Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- JIWAALDUIFCBLV-UHFFFAOYSA-N oxoosmium Chemical compound [Os]=O JIWAALDUIFCBLV-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical class C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- RQGPLDBZHMVWCH-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole Chemical class C1=NC2=CC=NC2=C1 RQGPLDBZHMVWCH-UHFFFAOYSA-N 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical class C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 229910003452 thorium oxide Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
Definitions
- the present invention relates to an organic electroluminescent element (hereinafter referred to as “organic EL element”), which is an electroluminescent element, and a display device and a light emitting device provided with the organic electroluminescent element.
- organic EL element organic electroluminescent element
- the organic EL element is a current-driven light emitting element and has a configuration in which a functional layer including a light emitting layer made of an organic material is provided between a pair of electrodes made of an anode and a cathode. Then, a voltage is applied between the electrode pair to recombine holes injected from the anode into the functional layer and electrons injected from the cathode into the functional layer, and light is emitted by the electroluminescence phenomenon generated thereby. Since organic EL elements perform self-light emission and are highly visible and are completely solid elements, and are excellent in impact resistance, they are attracting attention as light emitting elements and light sources in various display devices.
- the organic EL element In order for the organic EL element to emit light with high luminance, it is important to efficiently inject carriers (holes and electrons) from the electrode to the functional layer. In general, in order to inject carriers efficiently, it is effective to provide an injection layer for lowering the energy barrier during injection between each electrode and the functional layer.
- an organic substance such as copper phthalocyanine or PEDOT (conductive polymer), or a metal oxide such as molybdenum oxide or tungsten oxide is used for the hole injection layer disposed between the functional layer and the anode.
- an organic substance such as a metal complex or oxadiazole, or a metal such as barium is used for the electron injection layer disposed between the functional layer and the cathode.
- Patent Document 1 Regard an organic EL element using a metal oxide such as molybdenum oxide or tungsten oxide as a hole injection layer, improvement of hole injection efficiency and improvement of life have been reported (Patent Document 1, Non-Patent Document 1). There is a report that the improvement is influenced by the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer (Non-patent Document 2).
- an adsorbate mainly containing carbon derived from molecules contained in the atmosphere such as carbon dioxide, water, and organic substances and molecules of impurities generated during the process will be a problem. It is done. Specifically, in the stacking process of each layer constituting the organic EL element such as the electrode and the hole injection layer, when the upper layer is stacked on the lower layer surface with the adsorbed material adsorbed, the adsorbed material is interposed between these layers. As a result, the drive voltage of the element may increase or the lifetime may decrease.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide an organic EL element, a display device, and a light emitting device that emit light with high luminance and are driven at a low voltage.
- an organic EL device includes a hole injection layer and a functional layer that includes an organic material and into which holes are injected from the hole injection layer, between an anode and a cathode.
- the hole injection layer includes tungsten oxide, and has a shape protruding near the Fermi surface in a binding energy region lower than the upper end of the valence band in a UPS spectrum based on UPS measurement. Then, the ratio of the number density of the atoms other than the tungsten atom and the oxygen atom to the tungsten atom of the tungsten oxide based on XPS measurement is 0.83 or less.
- the hole injection layer includes tungsten oxide
- the shape is raised near the Fermi surface in the binding energy region lower than the upper end of the valence band.
- the ratio of the number density of atoms other than the tungsten atom and oxygen atom to the tungsten atom of the tungsten oxide based on XPS measurement is 0.83 or less.
- the adsorbate is removed from the surface while maintaining an electron level formed by a structure similar to an oxygen defect of an object, and emits light with high brightness and is driven at a low voltage.
- FIG. 1 is a diagram illustrating an entire configuration of a display device according to one embodiment of the present invention.
- 2A and 2B are diagrams illustrating a light-emitting device according to one embodiment of the present invention, in which FIG. It is a figure for demonstrating the principal part of the manufacturing method of the organic EL element which concerns on embodiment. It is a figure which shows the UPS spectrum of tungsten oxide. It is a figure which shows the UPS spectrum of tungsten oxide. It is a figure which shows the XPS spectrum of tungsten oxide. It is a figure which shows the UPS spectrum of tungsten oxide. It is a figure which shows the XPS spectrum of tungsten oxide. It is a figure which shows the XPS spectrum of tungsten oxide.
- An organic EL element is an organic EL element in which a hole injection layer and a functional layer containing an organic material and injecting holes from the hole injection layer are provided between an anode and a cathode.
- the hole injection layer contains tungsten oxide and has a shape raised in the vicinity of the Fermi surface in the binding energy region lower than the upper end of the valence band in the UPS spectrum based on the UPS measurement, based on the XPS measurement.
- the ratio of the number density of atoms other than the tungsten atom and oxygen atom to the tungsten atom of the tungsten oxide is 0.83 or less.
- the raised shape in the UPS spectrum, is in a binding energy region lower by 1.8 to 3.6 eV than the upper end of the valence band. Located in.
- the ratio of the number density of the other atoms to the tungsten atoms of the tungsten oxide is 0.62 or less. In this case, since the adsorbate removal effect is considered to be saturated, a sufficient adsorbate removal effect can be expected.
- the other atom is a carbon atom.
- the hole injection layer protrudes in the vicinity of the Fermi surface in the binding energy region lower than the upper end of the valence band in the UPS spectrum based on the UPS measurement. Irradiated with ultraviolet rays so that the ratio of the number density of atoms other than the tungsten atom and oxygen atom to the tungsten atom of the tungsten oxide based on XPS measurement is 0.83 or less. It is configured.
- An organic EL device includes an organic EL element in which a hole injection layer and a functional layer containing an organic material and into which holes are injected from the hole injection layer are provided between an anode and a cathode.
- the hole injection layer includes tungsten oxide, has a shape raised in the vicinity of the Fermi surface in a binding energy region lower than the upper end of the valence band in a UPS spectrum based on UPS measurement, It has a peak shape at an energy of 4.5 to 5.4 eV.
- the raised shape in the UPS spectrum, has a binding energy that is 1.8 to 3.6 eV lower than an upper end of the valence band. Located in the area.
- the hole injection layer is located near a Fermi surface in a binding energy region lower than the upper end of the valence band in a UPS spectrum based on UPS measurement. It has a raised shape and is irradiated with ultraviolet rays so as to have a peak shape at a binding energy of 4.5 to 5.4 eV.
- An organic EL device is an organic EL device in which a hole injection layer and a functional layer containing an organic material and injecting holes from the hole injection layer are provided between an anode and a cathode.
- the hole injection layer includes molybdenum oxide, and has a raised shape in the vicinity of the Fermi surface in a binding energy region lower than the upper end of the valence band in a UPS spectrum based on UPS measurement, and It has a peak shape at a binding energy of 3.7 to 5.2 eV.
- the raised shape in the UPS spectrum, has a coupling lower by 1.2 to 3.0 eV than the upper end of the valence band. Located in the energy region.
- the hole injection layer has a Fermi surface vicinity in a binding energy region lower than the upper end of the valence band in the UPS spectrum based on the UPS measurement. It is configured by being irradiated with ultraviolet rays so as to have a peak shape at a binding energy of 3.7 to 5.2 eV.
- the present inventor has conceived to provide a process for removing adsorbate on the surface of each layer by washing after the formation of each layer in the manufacturing process in order to prevent an increase in driving voltage of the organic EL element and a decrease in the lifetime of the element. .
- the present inventors As a process for removing the adsorbate, the present inventors have focused on UV ozone cleaning and oxygen plasma cleaning, which are widely used for cleaning glass substrates and electrodes, because they have a strong cleaning power. As a result of the present inventors diligently examining these methods, in an organic EL element having a hole injection layer made of a metal oxide such as molybdenum oxide or tungsten oxide, UV ozone cleaning and oxygen plasma cleaning are performed for cleaning the hole injection layer. I found that it is not suitable.
- UV ozone cleaning and oxygen plasma cleaning utilize the strong oxidizing action of the generated oxygen radicals by decomposing oxygen molecules, and this oxidizing action compensates for oxygen atoms in the structure similar to the oxygen defect. Therefore, in the hole injection layer made of a metal oxide, it is considered that the electron level formed by the structure similar to the oxygen defect disappears and the hole injection efficiency may be lowered. Specifically, it was confirmed by experiments as will be described later that the electron levels formed by the structure similar to oxygen defects disappeared by UV ozone cleaning.
- the present inventor prevents an increase in the driving voltage of the organic EL element or decreases the lifetime of the element in the organic EL element having the hole injection layer made of a metal oxide.
- the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer does not disappear, and the adsorbate is removed from the surface of the hole injection layer. Recognized the importance of.
- Non-Patent Document 1 in which UV ozone cleaning is performed after forming a hole injection layer made of tungsten oxide.
- This non-patent document 1 does not mention the influence of device characteristics on UV ozone cleaning, and does not describe that the conditions for UV ozone cleaning are optimized.
- Non-Patent Document 1 describes what the inventor has clarified through specific examination, and is not suitable for cleaning a hole injection layer made of tungsten oxide as it is, and its technical reason. It has not been.
- the adsorbate removing effect and the electron level increasing effect by the sputter etching process last only in the vacuum vessel. This is because the surface of the hole injection layer that has been sputter-etched in a vacuum is extremely unstable because the bonds between atoms are forcibly cut by an ion beam, and it is easy to get out of the vacuum vessel once. This is because the surrounding gas molecules are adsorbed and stabilized. Thereby, the structure similar to the oxygen defect of the metal oxide forcibly formed in vacuum is complemented in an instant, and the removed adsorbate is adsorbed again in an instant.
- a part or all of the processes after the sputter etching process may be performed continuously in a vacuum vessel.
- the process in the vacuum vessel can be applied to a small organic EL panel, but for a large-sized organic EL panel of, for example, 50 inches, a vacuum vessel suitable for the size is required. Therefore, application is extremely difficult. Also, the process in the vacuum vessel is not suitable for mass production because of its low throughput.
- a method of blocking the adsorption of the adsorbate itself is also conceivable. For example, if some or all of the steps after the formation of each layer are continuously performed in a vacuum container so that each layer is not exposed to the atmosphere or impurity molecules after the formation, the adsorbate is not adsorbed. However, since a vacuum container is required as described above, it is extremely difficult to apply to a large organic EL panel.
- a method of performing the process in a container filled with an inert gas is also conceivable.
- application to a large organic EL panel is also possible.
- impurity molecules and the like are still present in the container, and it is difficult to completely remove them.
- the organic level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer has not disappeared, and the adsorbate is removed from the surface of the hole injection layer. It is very difficult to obtain an element.
- the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer has not disappeared. Injection can be performed efficiently, and as a result, light can be emitted with low power consumption and high luminance.
- the adsorbate is removed from the surface of the hole injection layer, the adsorbate is not buried between the hole injection layer and the functional layer, and as a result, the driving voltage of the device is not increased and the adsorption is not performed. Since carrier traps such as impurities derived from objects are not formed, the device has a long life and good device characteristics.
- FIG. 1 is a schematic cross-sectional view showing the configuration of the organic EL element 1 in the present embodiment.
- the organic EL element 1 is, for example, a coating type that is manufactured by applying a functional layer by a wet process, and includes a hole injection layer 3 and various functional layers (here, buffer layers) containing an organic material having a predetermined function. 4 and the light-emitting layer 5) are disposed between the electrode pair composed of the anode 2 and the cathode 6 in a state where the light-emitting layer 4 and the light-emitting layer 5) are stacked on each other.
- a coating type that is manufactured by applying a functional layer by a wet process, and includes a hole injection layer 3 and various functional layers (here, buffer layers) containing an organic material having a predetermined function. 4 and the light-emitting layer 5) are disposed between the electrode pair composed of the anode 2 and the cathode 6 in a state where the light-emitting layer 4 and the light-emitting layer 5) are stacked on each other.
- the organic EL element 1 includes an anode 2, a hole injection layer 3, a buffer layer 4, a light emitting layer 5, and a cathode 6 (barium layer 6 a and aluminum) with respect to one side main surface of a substrate 7.
- Layers 6b) are stacked in the same order.
- the hole injection layer 3 is made of, for example, a thin film (layer) of tungsten oxide, which is a metal oxide, with a thickness of 30 nm. Tungsten oxide is a real number in the range of 2 ⁇ x ⁇ 3 in the composition formula (WOx).
- the hole injection layer 3 is preferably composed of tungsten oxide as much as possible, but may contain a trace amount of impurities to such an extent that it can be mixed at a normal level.
- the hole injection layer 3 has an electron level in which a structure similar to an oxygen defect of a metal oxide is formed on the surface of the hole injection layer 3 when formed under a predetermined film formation condition.
- the presence of this electron level enables good hole injection.
- the hole injection layer 3 is irradiated with ultraviolet light having a predetermined wavelength in the atmosphere after film formation. Thereby, the adsorbate is removed from the surface of the hole injection layer 3 while maintaining the electron level formed by the structure similar to the oxygen defect of the metal oxide, and the amount thereof is smaller than that before irradiation.
- the irradiation time and irradiation intensity of the ultraviolet light are set so that the change in the shape of a predetermined binding energy region in the photoelectron spectrum of the hole injection layer 3 converges. Thereby, the adsorbate is removed to the maximum under the minimum irradiation conditions.
- the buffer layer 4 may be, for example, TFB (poly (9,9-di-n-octylfluorene-alt- (1,4-phenylene-((4-sec-butylphenyl) imino), which is an amine organic polymer having a thickness of 20 nm. ) -1,4-phenylene)).
- TFB poly (9,9-di-n-octylfluorene-alt- (1,4-phenylene-((4-sec-butylphenyl) imino
- the light emitting layer 5 is made of, for example, F8BT (poly (9,9-di-n-octylfluorene-alt-benzothiadiazole)), which is an organic polymer having a thickness of 70 nm.
- F8BT poly (9,9-di-n-octylfluorene-alt-benzothiadiazole)
- the light emitting layer 5 is not limited to the structure made of this material, and can be configured to include a known organic material.
- the functional layer in the present invention includes any one of a hole transport layer that transports holes, a light emitting layer that emits light by recombination of injected holes and electrons, a buffer layer that is used for optical property adjustment or electronic block application, etc. Or a combination of two or more layers, or all layers.
- the organic EL element has layers that perform the required functions, such as the hole transport layer and the light emitting layer described above, in addition to the hole injection layer.
- the functional layer means a layer necessary for the organic EL element other than the hole injection layer which is an object of the present invention.
- the anode 2 is made of, for example, an ITO thin film having a thickness of 50 nm.
- the cathode 6 is formed by, for example, stacking a barium layer 6a having a thickness of 5 nm and an aluminum layer 6b having a thickness of 100 nm.
- a DC power supply 8 is connected to the anode 2 and the cathode 6 so that power is supplied to the organic EL element 1 from the outside.
- the substrate 7 is, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphoric acid glass, boric acid glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicon resin. Or an insulating material such as alumina.
- the organic EL element 1 In the organic EL element 1 having the above configuration, the surface of the hole injection layer 3 made of tungsten oxide, which is a metal oxide, is irradiated with ultraviolet light having a predetermined wavelength. The adsorbate is removed from the surface to the maximum while the electron level formed by the similar structure is maintained. Thus, the organic EL element has a low driving voltage and a long life.
- FIG. 2 illustrates an overall structure of a display device according to one embodiment of the present invention.
- the display device 100 includes a display panel 110 using an organic EL element manufactured by the method for manufacturing an organic EL element according to one embodiment of the present invention, and a drive control unit 120 connected thereto. It is used for displays, televisions, mobile phones and the like.
- the drive control unit 120 is composed of four drive circuits 121 to 124 and a control circuit 125. In the actual display device 100, the arrangement and connection relationship of the drive control unit 120 with respect to the display panel 110 are not limited to this.
- the display device 100 having the above configuration is excellent in image quality because it uses an organic EL element having good light emission characteristics.
- the light-emitting device 200 includes an organic EL element 210 manufactured by the method for manufacturing an organic EL element according to one embodiment of the present invention, a base 220 on which the organic EL element 210 is mounted, The base 220 is provided with a pair of reflecting members 230 attached so as to sandwich the organic EL element 210 therebetween, and is used as a lighting device or a light source.
- Each organic EL element 210 is electrically connected to a conductive pattern (not shown) formed on the base 220, and emits light by driving power supplied by the conductive pattern. The light distribution of a part of the light emitted from each organic EL element 210 is controlled by the reflecting member 230.
- the light emitting device 200 having the above configuration is excellent in image quality because it uses an organic EL element having good light emission characteristics.
- FIG. 4 is a diagram for explaining a main part of the method for manufacturing the organic EL element according to the embodiment.
- the substrate 7 is placed in the chamber of the sputter deposition apparatus. Then, a predetermined sputtering gas is introduced into the chamber, and the anode 2 made of ITO having a thickness of 50 nm is formed based on the reactive sputtering method.
- the hole injection layer 3 is formed by reactive sputtering. Specifically, the target is replaced with metallic tungsten, and a reactive sputtering method is performed. Argon gas is introduced into the chamber as a sputtering gas, and oxygen gas is introduced into the chamber as a reactive gas. In this state, argon is ionized by a high voltage and collides with the target. At this time, the metal tungsten released by the sputtering phenomenon reacts with oxygen gas to become tungsten oxide, and the hole injection layer 3 is formed on the anode 2 of the substrate 7, and the intermediate product 9 as shown in FIG. Is obtained.
- the film formation conditions are as follows: the substrate temperature is not controlled, the gas pressure (total pressure) is 2.3 Pa, the ratio of the oxygen gas partial pressure to the total pressure is 50%, and the input power per unit area (input power density) was set to 1.2 W / cm 2 .
- the hole injection layer 3 made of tungsten oxide formed under these conditions has an electron level formed on its surface by a structure similar to an oxygen defect.
- the substrate 7 after film formation is taken out from the chamber to the atmosphere.
- gas molecules and the like are adsorbed on the surface.
- impurity molecules in the chamber are adsorbed after film formation and before removal.
- the surface of the hole injection layer 3 is irradiated with ultraviolet light in the atmosphere.
- the ultraviolet light irradiation apparatus 20 including a metal halide lamp (model number UVL-3000M2-N) manufactured by Ushio Electric Co., Ltd. as the light source 21 was used. Details of the ultraviolet light irradiation device 20 will be described later. Irradiation conditions are separately determined by another experiment using photoelectron spectroscopy, which will be described later, so that changes in the shape of a predetermined binding energy region in the photoelectron spectrum converge.
- the irradiation intensity is 155 mW / cm 2 and the irradiation time is 10 minutes.
- a composition ink containing an amine-based organic molecular material is dropped on the surface of the hole injection layer 3 by, for example, a wet process using a spin coating method or an inkjet method, and the solvent is volatilized and removed. Thereby, the buffer layer 4 is formed, and the intermediate product 10 as shown in FIG. 4C is obtained.
- a composition ink containing an organic light emitting material is dropped on the surface of the buffer layer 4 by the same method, and the solvent is volatilized and removed. Thereby, the light emitting layer 5 is formed.
- the formation method of the buffer layer 4 and the light emitting layer 5 is not limited to this, It is well-known methods, such as methods other than a spin coat method and an inkjet method, for example, gravure printing method, dispenser method, nozzle coating method, intaglio printing, letterpress printing, etc.
- the ink may be dropped and applied by a method.
- a barium layer 6a and an aluminum layer 6b are formed on the surface of the light emitting layer 5 by vacuum deposition. Thereby, the cathode 6 is formed.
- a sealing layer is further provided on the surface of the cathode 6 or the entire element 1 is spatially externally provided. Sealing cans can be provided that are isolated from each other.
- the sealing layer can be formed of a material such as SiN (silicon nitride) or SiON (silicon oxynitride), and is provided so as to internally seal the element 1.
- the sealing can can be formed of the same material as that of the substrate 7, for example, and a getter that adsorbs moisture and the like is provided in the sealed space.
- the organic EL element 1 is completed through the above steps.
- the manufacturing method of the organic EL element 1 includes a step of irradiating ultraviolet light having a predetermined wavelength after the formation of the hole injection layer 3 made of tungsten oxide.
- the adsorbate can be removed from the surface of the hole injection layer 3 while maintaining the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer.
- the electron level is continuously maintained in the atmosphere from the cleaning of the hole injection layer 3 to the step of forming the buffer layer 4, and therefore the hole injection capability is also stably maintained. . Thereby, it becomes possible to stably manufacture the organic EL element 1 having a low driving voltage and a long lifetime.
- the irradiation time and irradiation intensity of the ultraviolet light in the above-described ultraviolet light irradiation step are obtained from the condition that the change in the shape of the predetermined binding energy region in the photoelectron spectrum of the hole injection layer 3 converges, and is the minimum necessary It is set to remove adsorbate to the maximum under the limited irradiation conditions. Thereby, a very stable hole injection efficiency can be realized with a minimum cleaning process.
- the anode 2 made of ITO and the hole injection layer 3 made of tungsten oxide were laminated on the substrate 7 in the chamber of the sputter deposition apparatus. Then, it took out to air
- the irradiation intensity was 155 mW / cm 2 .
- non-irradiated sample a sample that is not irradiated with ultraviolet light
- irradiated n-minute sample a sample that has been irradiated for n minutes
- XPS X-ray photoelectron spectroscopy
- the XPS spectrum generally reflects the elemental composition in the depth of several nanometers from the surface of the measurement object, and the electronic state such as the bonding state and valence. For this reason, if an element that is not originally contained in tungsten oxide is observed, there is a high possibility that it is an adsorbate.
- molecules adsorbed by exposure to the atmosphere or adsorbed during the manufacturing process are mainly molecules containing carbon in addition to water molecules and oxygen molecules. Therefore, the adsorbate removal effect can be known by observing a change in the concentration of carbon in the surface layer of the hole injection layer 3 due to ultraviolet light irradiation.
- XPS measurement conditions are as follows. During the measurement, no charge up occurred.
- Table 1 shows the composition ratio of W and C of each sample.
- the UPS (ultraviolet photoelectron spectroscopy) measurement was performed on the aforementioned non-irradiated sample, irradiated 1 minute sample, and irradiated 10 minute sample.
- the UPS spectrum reflects the electronic state from the valence band to the Fermi surface (Fermi level) from the surface of the measurement object to a depth of several nm.
- tungsten oxide or molybdenum oxide has a structure similar to oxygen vacancies on the surface, a raised spectral shape near the Fermi surface on the side of lower binding energy than the upper end of the valence band (hereinafter referred to as “protrusion near the Fermi surface”).
- Non-Patent Documents 2 and 3 Non-Patent Documents 2 and 3. Therefore, by observing the change of the raised structure in the vicinity of the Fermi surface due to ultraviolet light irradiation, it is possible to investigate the influence of the ultraviolet light irradiation on the structure similar to the surface oxygen defect.
- the raised structure in the vicinity of the Fermi surface is located in a binding energy region that is 1.8 to 3.6 eV lower than the upper end of the valence band (the lowest binding energy in the valence band).
- UPS measurement conditions are as follows. Note that no charge-up occurred during the measurement.
- FIG. 5 shows a UPS spectrum in the vicinity of the Fermi surface of each sample.
- the origin of the binding energy on the horizontal axis is taken to the Fermi surface, and the left direction is set to a positive direction.
- the raised structure near the Fermi surface shown by (I) in the figure can be clearly confirmed. Therefore, it can be seen that a structure similar to an oxygen defect that affects the hole injection capability is maintained even when irradiated with ultraviolet light.
- UV ozone cleaning was performed. Specifically, the anode 2 made of ITO and the hole injection layer 3 made of tungsten oxide are laminated on the substrate 7 in the chamber of the sputter film forming apparatus, and then taken out from the chamber to the atmosphere, and the UV ozone apparatus. The surface of the hole injection layer 3 was cleaned with UV ozone, and the presence of a raised structure near the Fermi surface was confirmed by UPS measurement.
- FIG. 6 shows a UPS spectrum in the vicinity of the Fermi surface of the hole injection layer 3 made of tungsten oxide subjected to UV ozone cleaning for 3 minutes.
- the UPS spectrum of the non-irradiated sample in FIG. 5 is also shown.
- the raised structure near the Fermi surface cannot be confirmed at all. That is, it can be seen that the structure similar to the oxygen defect on the surface of the hole injection layer 3 has been almost lost by the UV ozone cleaning.
- the cleaning by ultraviolet light irradiation according to the present embodiment does not lose the structure similar to the oxygen defect like the UV ozone cleaning, that is, the structure similar to the oxygen defect that acts on the hole injection ability is the ultraviolet light. It is clear that it is maintained even after irradiation.
- the intensities of the C1s spectra are almost the same in the samples with an irradiation time of 1 minute or longer, and therefore, it is considered that the adsorbate removal effect is almost saturated after the irradiation time of 1 minute or longer.
- the C1s spectrum of the adsorbed material has a low absolute intensity as shown in FIG. Therefore, there is a possibility that it is not very suitable for determining the saturation of the adsorbate removal effect. Therefore, another method for judging the saturation of the adsorbate removal effect using a relatively strong spectrum will be described.
- the first method is to make a determination based on a change in the shape of the region corresponding to the vicinity of the upper end of the valence band in the UPS spectrum, that is, a change in the shape of the region having a binding energy of 4.5 to 5.4 eV in the UPS spectrum.
- the peak or shoulder structure present in this region corresponds to a 2p orbital unshared electron pair of oxygen atoms constituting tungsten oxide.
- FIG. 8 shows the UPS spectrum. UPS measurement was performed on each of the non-irradiated sample, the irradiated 1 minute sample, and the irradiated 10 minute sample. The photoelectron intensity was normalized with a gentle peak near a binding energy of 6.5 eV. According to FIG. 8, the irradiation 1 minute sample and the irradiation 10 minute sample have clear peaks as shown in (II) in the figure which do not exist in the region of the binding energy of 4.5 to 5.4 eV. Is recognized. Further, the peak shapes of the irradiated 1 minute sample and the irradiated 10 minute sample are substantially the same.
- the second is a change in the shape of the W4f spectrum of XPS measurement due to irradiation with ultraviolet light.
- FIG. 9 shows W4f spectra of the non-irradiated sample, the irradiated 1 minute sample, the irradiated 10 minute sample, the irradiated 60 minute sample, and the irradiated 120 minute sample. It is standardized by the maximum and minimum values of the spectrum.
- the peak shape is sharper (the half width of the peak is narrower) in the irradiated sample than in the non-irradiated sample. Furthermore, the peak shape is slightly sharper for the irradiated 10 minute sample than for the irradiated 1 minute sample, whereas the irradiated 10 minute sample, irradiated 60 minute sample, and irradiated 120 minute sample are almost completely overlapped. It can be seen that the change in the shape of the spectrum almost converged after 10 minutes of irradiation.
- the change in the shape of the W4f spectrum depending on the irradiation time can be explained as follows, for example.
- W4f of the inner shell orbit shifts accordingly to the low binding energy side.
- a part of hexavalent tungsten atoms in the surface layer of tungsten oxide is changed to a low valence such as pentavalent by the influence of adsorbate.
- the irradiation conditions when the metal oxide is tungsten oxide can be determined as follows.
- the irradiation intensity is arbitrarily determined until the change in the shape of the narrow scan spectrum of W4f or O1s by XPS measurement or the shape of the binding energy 4.5 to 5.4 eV in the UPS spectrum converges. Time is measured and this time is defined as the irradiation time.
- the electron level formed by the structure similar to the oxygen defect that affects the hole injection capability is continuously maintained at least after the surface cleaning until the upper layer is stacked on the surface.
- the grounds are as follows.
- the UPS spectrum shown in FIG. 5 was measured two days after the irradiation with ultraviolet light. That is, there is no difference in the raised structure in the vicinity of the Fermi surface in the UPS spectrum between the non-irradiated sample and the sample of each irradiation time that passed in the atmosphere for 2 days after irradiation, and the raised structure is clear in both cases. .
- the measurement was performed 2 hours and 1 day after the irradiation with ultraviolet light, and in this case, the raised structure near the Fermi surface was clear as in FIG. That is, it was confirmed that an electron level formed by a structure similar to an oxygen defect was maintained in the atmosphere for at least two days after irradiation.
- This period of 2 days is sufficiently longer than the period (usually within several hours) until the step of laminating the buffer layer 4 on the surface after cleaning the hole injection layer 3 by ultraviolet light irradiation. Unless the formation time of the layer 4 is delayed, the buffer layer 4 cannot be formed even after this period.
- the organic EL element 1 according to the present embodiment in which the hole injection layer 3 is cleaned by ultraviolet light irradiation has better element characteristics than an organic EL element manufactured without irradiation. This was confirmed by the following experiment.
- a hole-only element is used as an evaluation device. It was supposed to be manufactured.
- the carriers for forming a current are both holes and electrons, and the electric current of the organic EL element is reflected in addition to the hole current.
- the hole-only device the injection of electrons from the cathode is obstructed, so the electron current hardly flows, the total current is almost composed only of the hole current, and the carrier can be regarded as almost the hole only. It is suitable for.
- the specifically produced hole-only device 1A is obtained by replacing the cathode 6 in the organic EL device 1 of FIG. 1 with gold (Au) like the cathode 6A shown in FIG. That is, according to the method of manufacturing the organic EL element 1 of the present embodiment, as shown in FIG. 10, the anode 2 made of an ITO thin film having a thickness of 50 nm is formed on the substrate 7 by the sputtering film formation method.
- a hole injection layer 3 made of tungsten oxide having a thickness of 30 nm is formed on the surface by a predetermined sputtering film formation method so as to have an electron level formed by a structure similar to an oxygen defect, and has a thickness of 20 nm.
- the ultraviolet light according to the present embodiment
- the former hole-only element 1A is referred to as “irradiated HOD”, and the latter hole-only element 1A is referred to as “irradiation-less HOD”.
- Each produced Hall-only element 1A was connected to a DC power source 8 and a voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
- the “drive voltage” here is an applied voltage at a current density of 0.4 mA / cm 2 .
- the manufacturing method of each part other than the surface of the hole injection layer 3 is the same, and therefore, hole injection between two adjacent layers excluding the interface between the hole injection layer 3 and the buffer layer 4
- the barrier is considered constant. Therefore, the difference in drive voltage depending on whether or not the surface of the hole injection layer 3 is irradiated with ultraviolet light strongly reflects the difference in hole injection efficiency from the hole injection layer 3 to the buffer layer 4.
- Table 2 shows values of drive voltages of the respective hall-only elements 1A obtained by the experiment.
- FIG. 11 is a current density-applied voltage curve of each hole-only element 1A.
- the vertical axis represents current density (mA / cm 2 )
- the horizontal axis represents applied voltage (V).
- the HOD with irradiation has a lower driving voltage and the rise of the current density-applied voltage curve is faster than the HOD without irradiation, and a high current density is obtained with a lower applied voltage. Yes. That is, the HOD with irradiation has better hole injection efficiency than the HOD without irradiation.
- the above is the verification regarding the hole injection efficiency of the hole injection layer 3 in the hole-only device 1A.
- the hole-only device 1A has the same configuration as the organic EL device 1 of FIG. 1 except for the cathode 6A. Therefore, the effect of the removal of the adsorbate by ultraviolet light irradiation on the hole injection efficiency from the hole injection layer 3 to the buffer layer 4 is essentially the same in the organic EL element 1 as in the hole-only element 1A.
- the organic EL element 1 was produced using the hole injection layer 3 that was irradiated with ultraviolet light and the hole injection layer 3 that was not irradiated with ultraviolet light.
- the former organic EL element 1 is referred to as “irradiated BPD”
- the latter organic EL element 1 is referred to as “irradiated BPD”.
- the manufacturing method is the same as in the present embodiment except that the hole injection layer 3 of the non-irradiated BPD is not irradiated with ultraviolet light.
- Each produced organic EL element 1 was connected to a DC power source 8 and a voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
- the “drive voltage” here is an applied voltage at a current density of 10 mA / cm 2 .
- Table 3 shows drive voltage values of the organic EL elements 1 obtained by the experiment.
- FIG. 12 is a current density-applied voltage curve of each organic EL element 1.
- the vertical axis represents current density (mA / cm 2 )
- the horizontal axis represents applied voltage (V).
- the irradiated BPD has a lower drive voltage, the rise of the current density-applied voltage curve is faster, and a higher current density is obtained at a lower applied voltage than the non-irradiated BPD. Yes. This is the same tendency as HOD with irradiation and HOD without irradiation.
- the organic EL element 1 when the predetermined ultraviolet light irradiation is performed after the formation of the hole injection layer 3 based on the present embodiment, the adsorbate on the surface of the hole injection layer 3 is removed to the maximum extent, In addition, the electron levels formed by the structure similar to oxygen defects are not lost by irradiation, and therefore, adsorbates that cause an increase in driving voltage and a decrease in lifetime can be removed without impairing the hole injection capability. It was confirmed that the hole injection efficiency into the buffer layer 4 was improved, thereby realizing excellent device characteristics.
- the adsorbate of the hole injection layer 3 is removed by irradiating ultraviolet light having a predetermined wavelength in the atmosphere after the hole injection layer 3 is formed, and the removed hole injection layer 3 is removed.
- the organic EL element 1 using the material realizes lower voltage driving than the organic EL element that is not removed.
- the wavelength of the ultraviolet light was defined by the following consideration.
- the wavelength of ultraviolet light for generating ozone (O 3 ) in a gas atmosphere containing oxygen molecules (O 2 ) such as in the air is 184.9 nm.
- Oxygen molecules are decomposed by ultraviolet light having a wavelength of 184.9 nm by the following reaction, and the generated oxygen radicals (O) and other oxygen molecules are combined to generate ozone.
- the wavelength of ultraviolet light for further decomposition of ozone and generation of oxygen radicals is 253.7 nm.
- UV ozone cleaning oxygen radicals are generated by ultraviolet light having these wavelengths of 184.9 nm and 253.7 nm, and their strong oxidizing action is used to remove adsorbates. For this reason, there is a possibility that the electron level formed by the structure similar to the oxygen defect is almost lost, as in the hole injection layer 3 subjected to the UV ozone cleaning in the above-described experiment.
- ultraviolet light having a wavelength region of more than 184.9 nm is used, which has a low possibility of decomposing oxygen molecules and generating oxygen radicals. Furthermore, in order to prevent generation of oxygen radicals due to decomposition of a slight amount of ozone present in the atmosphere, it is desirable to use ultraviolet light having a wavelength range of more than 253.7 nm.
- the actually used metal halide lamp has a spectral distribution as shown in FIG.
- ramp which does not contain the wavelength below 253.7nm as much as possible was employ
- the intensity of a wavelength of 253.7 nm or less with respect to the maximum intensity of this metal halide lamp (wavelength of around 380 nm) is suppressed to a few percent level at most.
- the adsorbate in the case of chemical adsorption, is considered to be mainly a single bond with the oxygen atom of tungsten oxide, but the energy of the single bond with this adsorbate is at most an OH bond. Since it is about 463 kJ / mol (corresponding to a wavelength of 258 nm), it can be seen that cutting with ultraviolet light in the wavelength region of the present embodiment is possible. Further, in the case of physical adsorption, the bond is much weaker than that of chemical adsorption, so that it is also easily removed by irradiation with ultraviolet light.
- the removal efficiency of adsorbate by ultraviolet light irradiation of the present embodiment is essentially worse than that by UV ozone cleaning. This is because in the UV ozone cleaning, the adsorbed material whose bond has been broken is immediately oxidized to oxygen radicals and easily released as molecules such as CO 2 and H 2 O. However, as described above, UV ozone cleaning is not suitable for cleaning the hole injection layer 3 made of a metal oxide such as tungsten oxide.
- the possibility that the interatomic bond of the metal oxide is broken by the energy of ultraviolet light in the wavelength region of the present embodiment is low.
- the binding energy between oxygen atoms and tungsten atoms in tungsten oxide is 672 kJ / mol (corresponding to a wavelength of 178 nm), and it is difficult to cut with ultraviolet light in the wavelength region of this embodiment. .
- This is in contrast to the aforementioned sputter etching with argon ions in vacuum. That is, by using the ultraviolet light of the present embodiment, a chemically stable state can be obtained without breaking and chemically activating the interatomic bond of the hole injection layer 3 made of a metal oxide such as tungsten oxide. The adsorbate can be removed as it is.
- ultraviolet light having a wavelength of more than 184.9 nm, preferably, a wavelength of more than 253.7 nm is used.
- ultraviolet light (wavelength of 380 nm or less) is used instead of visible light.
- the 5d orbitals of tungsten atoms are more stable when the adsorbate is chemically adsorbed than when they exist as bonding orbitals between 5d orbitals or 5d orbitals of single atoms. But not necessarily.
- a raised structure near the Fermi surface corresponding to the electron level is confirmed.
- Non-Patent Document 4 reports that when a tungsten trioxide single crystal is cleaved in a vacuum to produce a clean (001) plane, some of the outermost oxygen atoms are released into the vacuum. . Furthermore, in Non-Patent Document 4, according to the first principle calculation, in the (001) plane, rather than all tungsten atoms on the outermost surface being terminated with oxygen atoms, some tungsten atoms are periodically formed as shown in FIG. The structure in which (a) is not terminated is more stable in terms of energy. This is because when all the outermost tungsten atoms are terminated with oxygen atoms, the electrical repulsive force between the terminal oxygen atoms becomes large, which is rather unfavorable. It is reported that it is stabilized. That is, in the (001) plane, the surface having a structure (a) similar to an oxygen defect is more stable.
- the tungsten trioxide single crystal is shown as a rutile structure for the sake of simplification, but it is actually a distorted rutile structure.
- the reason why the electron level formed by the structure similar to the oxygen defect on the surface of the hole injection layer 3 is continuously maintained after the ultraviolet light irradiation of the present embodiment is, for example, the following mechanism Can be considered.
- the hole injection layer 3 made of tungsten oxide according to the present embodiment has a (001) facet on the surface at least locally immediately after the film formation, and is surrounded by the terminal oxygen atom (b) as shown in FIG. It is thought to have an unterminated tungsten atom (a). This is because the (001) plane is a stable structure. Then, this surface is exposed to impurity molecules in the chamber in the sputter deposition apparatus and molecules in the atmosphere after film formation.
- an unsaturated coordination metal atom such as (a) when an unsaturated coordination metal atom such as (a) exists on the surface, it may be terminated by a chemical adsorption reaction with a water molecule or an organic molecule.
- the peak that should be located near the binding energy of 31 to 33 eV derived from the bond between the tungsten atom and the carbon atom is not confirmed. Since only the peak derived from the bond with the atom is confirmed, it is highly possible that the atom of the adsorbed molecule directly chemically bonded to the tungsten atom in (a) is an oxygen atom.
- oxygen molecules (b) which are the peripheral terminals, are chemically adsorbed by water molecules and organic molecules by causing an addition reaction.
- This adsorption itself is relatively easy because there are almost no obstruction factors such as repulsive force around it.
- a terminal group of an organic molecule consisting of several atoms or more exists in the immediate vicinity of (a). It can be a barrier. For this reason, it is expected that even when molecules are adsorbed to (b), molecular adsorption to (a) is still relatively difficult to occur.
- the hole injection layer 3 made of tungsten oxide according to the present embodiment has a local structure made up of terminal oxygen atoms (b) and unterminated tungsten atoms (a) surrounded by them as shown in FIG. It has a structure on the surface, and first, due to the characteristics of the structure itself, the adsorption of molecules hardly occurs to (a). Moreover, the molecule
- the electronic state which acts on the hole injection capability formed by the structure (a) similar to the oxygen defect on the surface is continuously maintained without being influenced by the ultraviolet light irradiation of the present embodiment after the film formation.
- the adsorbate is removed by ultraviolet light irradiation.
- An ultraviolet light irradiation apparatus 20 according to one embodiment of the present invention shown in FIG. 4B is an apparatus for irradiating the intermediate product 9 of the organic EL element 1 with ultraviolet light, and the wavelength region is mainly 184.9 nm.
- a housing 23 and a controller 24 that controls lighting of the light source 21 are provided.
- the intermediate product 9 is obtained, for example, by depositing the anode 2 and the hole injection layer 3 made of a metal oxide on the substrate 7, and the buffer layer 4 is not yet formed.
- the light source 21 is, for example, a straight tube type metal halide lamp, which is arranged so that its longitudinal direction is the horizontal width direction of the intermediate product 9, and efficiently uses an organic EL element that emits light with low power consumption and high luminance. It is lit under suitable irradiation conditions for good manufacturing. Irradiation conditions such as irradiation time and irradiation intensity of ultraviolet light are the film formation conditions of the hole injection layer 3 such as the type of metal oxide, and the convergence of the shape of the photoelectron spectrum of the hole injection layer 3 described in this embodiment. It is set based on. The irradiation conditions are set by the operator. The setting of the irradiation conditions may be automatically performed by the control unit 24.
- Irradiation conditions such as irradiation time and irradiation intensity of ultraviolet light are the film formation conditions of the hole injection layer 3 such as the type of metal oxide, and the convergence of the shape of the photoelectron spectrum of the hole injection layer 3 described in this embodiment. It is set based
- control unit 24 stores a database in which film forming conditions, irradiation time, and irradiation intensity are related, and the control unit 24 refers to the database based on film forming conditions input by an operator. Set the irradiation time and irradiation intensity.
- the conveyance of the intermediate product 9 to the ultraviolet light irradiation target position is performed by, for example, the conveyance conveyor 25.
- the intermediate product 9 carried on the transport conveyor 25 from the transport upstream side (right side) is transported on the transport conveyor 25 and passes through the target position for ultraviolet light irradiation.
- a predetermined amount of ultraviolet light is irradiated onto the upper surface of the intermediate product 9, that is, the upper surface of the hole injection layer 3.
- the intermediate product 9 that has been irradiated with the ultraviolet light is unloaded to the downstream side (left side).
- the light source 21 is not limited to a metal halide lamp, and can emit ultraviolet light whose wavelength region is mainly more than 184.9 nm and less than 380 nm (desirably more than 253.7 nm and less than 380 nm). If it is good.
- the metal oxide contained in the hole injection layer 3 is not limited to tungsten oxide, but is molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, tantalum oxide, titanium oxide, zirconium oxide, hafnium oxide, scandium oxide, yttrium oxide.
- the hole injection layer As an example of forming the hole injection layer with a metal oxide other than tungsten oxide, a case where molybdenum oxide is used will be described as an example.
- the adsorbate on the surface of the hole injection layer 3 is reduced even when the hole injection layer 3 is formed of molybdenum oxide. More obvious.
- the XPS measurement is performed to measure the 3d orbital (Mo3d) of molybdenum (Mo) and the C1s narrow scan spectrum of each sample, and after subtracting the background components, respectively, the photoelectron intensity is equal to the area intensity of the narrow scan spectrum of Mo3d.
- the C1s narrow scan spectrum of each sample at this time is shown in FIG.
- the area intensity of the C1s spectrum in FIG. 15 is proportional to the ratio of the number density of carbon atoms to molybdenum atoms in the surface layer number nm of the hole injection layer 3 made of molybdenum oxide.
- FIG. 15 shows that the area intensity of the C1s spectrum is weaker in the irradiated 10-minute sample and irradiated 60-minute sample than in the non-irradiated sample. From this, it is considered that carbon atoms are reduced by irradiation with ultraviolet light, that is, adsorbed substances are removed.
- the change in the shape of the region corresponding to the vicinity of the upper end of the valence band in the UPS spectrum that is, the change in the shape of the region having a binding energy of 3.7 to 5.2 eV in the UPS spectrum was evaluated.
- the peak or shoulder structure existing in this region corresponds to a 2p orbital unshared electron pair of oxygen atoms constituting molybdenum oxide.
- FIG. 16 shows the UPS spectrum.
- the photoelectron intensity was normalized by the intensity of a binding energy of 6.2 eV.
- the irradiated 10 minute sample and the irradiated 60 minute sample have a broad shoulder structure in the region of the binding energy of 3.7 to 5.2 eV indicated by (III) in the figure as compared to the non-irradiated sample. It is done. Furthermore, the shape of the shoulder structure is in good agreement between the irradiated 10 minute sample and the irradiated 60 minute sample. That is, the shape change of the binding energy of 3.7 to 5.2 eV in the UPS spectrum is almost converged after the irradiation time of 10 minutes or more. This is considered to indicate that the adsorbate removal effect is saturated.
- FIG. 17 shows the Mo3d spectrum of each of the non-irradiated sample, the irradiated 10 minute sample, and the irradiated 60 minute sample. It is standardized by the maximum and minimum values of the spectrum.
- FIG. 17 shows that the peak shape is broader (the half-value width of the peak is wider) in the irradiated sample than in the non-irradiated sample. Furthermore, since the momentum of the broadening of the half-width of the peak declines as the irradiation time increases, it can be seen that the change in the shape of the spectrum tends to converge as the irradiation continues.
- the irradiation conditions when the metal oxide is molybdenum oxide can be determined as follows. For example, for the irradiation time, the irradiation intensity is arbitrarily determined until the change in the shape of the narrow scan spectrum of Mo3d or O1s by XPS measurement or the shape of the binding energy of 3.7 to 5.2 eV in the UPS spectrum converges. Time is measured and this time is defined as the irradiation time.
- the irradiation is performed when the root mean square of the difference between the normalized intensities of the two spectra at each measurement point falls below a certain value. What is necessary is just to judge that the change in the shape of the spectrum due to the irradiation time converges in time n and that the maximum removal of the adsorbate is completed. In this embodiment, it was determined from FIG. 16 that the adsorbate removal effect was saturated after 10 minutes of irradiation.
- ultraviolet light irradiation can be applied in various gas atmospheres, such as a reduced pressure atmosphere, an inert gas atmosphere, and a vacuum, in addition to the air.
- gas atmospheres such as a reduced pressure atmosphere, an inert gas atmosphere, and a vacuum
- the cleaning method uses ultraviolet light having a wavelength that does not generate oxygen radicals.
- performing in the atmosphere is advantageous in the manufacture of large panels as described above.
- the organic EL element according to one embodiment of the present invention is not limited to a structure used alone.
- An organic EL panel can also be configured by integrating a plurality of organic EL elements as pixels on a substrate.
- Such an organic EL display can be implemented by appropriately setting the film thickness of each layer in each element.
- a bank that partitions pixels is a hole made of a metal oxide. It is formed on the injection layer, and a functional layer as an upper layer is laminated in the compartment.
- the bank formation process is performed by, for example, applying a bank material made of a photosensitive resist material on the surface of the hole injection layer, pre-baking, and then exposing the surface using a pattern mask to unexposed excess bank. The material is washed out with a developer and finally washed with pure water.
- the present invention is also applicable to a hole injection layer made of a metal oxide that has undergone such a bank formation process.
- the surface of the hole injection layer after the bank formation is irradiated with ultraviolet light, and organic molecules that are residues of the bank and the developer adsorbed on the surface of the hole injection layer are mainly removed.
- the contact angle with the organic solvent applied as the upper layer changes.
- the contact angle and bank shape may be adjusted based on the irradiation conditions.
- the organic EL element according to one embodiment of the present invention may have a so-called bottom emission type configuration or a so-called top emission type configuration.
- the organic EL element manufactured by the method for manufacturing an organic EL element according to one embodiment of the present invention can be used for a display element for a mobile phone display, a television, and various light sources.
- it can be applied as an organic EL element that is driven at a low voltage in a wide luminance range from low luminance to high luminance such as a light source. With such high performance, it can be widely used as various display devices for home or public facilities, or for business use, television devices, displays for portable electronic devices, illumination light sources, and the like.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
本発明の一態様に係る有機EL素子は、陽極と陰極との間に、ホール注入層と、有機材料を含み前記ホール注入層からホールが注入される機能層とが設けられた有機EL素子であって、前記ホール注入層は、酸化タングステンを含み、UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下である、ことを特徴とする。
本発明者は、有機EL素子の駆動電圧の増大や素子の寿命の低下を防止するため、製造工程において各層の形成後に、洗浄により各層の表面の吸着物を除去するプロセスを設けることを着想した。
本発明者がこれらの方法について鋭意検討した結果、酸化モリブデンや酸化タングステンなどの金属酸化物からなるホール注入層を有する有機EL素子において、UVオゾン洗浄および酸素プラズマ洗浄は、前記ホール注入層の洗浄には適していないことを見出した。
ところで、吸着物を除去する別の方法としては、成膜後に真空容器中にてアルゴンイオンスパッタなどを施すスパッタエッチング処理が挙げられる。このスパッタエッチング処理は、吸着物の除去だけでなく、酸素欠陥に類する構造が形成する電子準位を増大させることも報告されており、一見優れた洗浄方法のようにも受け取れる。
以下、本発明の一態様に係る有機EL素子およびその製造方法、表示装置、発光装置を説明し、続いて各性能確認実験の結果と考察を述べる。なお、各図面における部材縮尺は、実際のものとは異なる。
図1は、本実施の形態における有機EL素子1の構成を示す模式的な断面図である。
ホール注入層3は、例えば、厚さ30nmの、金属酸化物である酸化タングステンの薄膜(層)からなる。酸化タングステンは、その組成式(WOx)において、xは概ね2<x<3の範囲における実数である。ホール注入層3はできるだけ酸化タングステンのみで構成されることが望ましいが、通常レベルで混入し得る程度に、極微量の不純物が含まれていてもよい。
バッファ層4は、例えば、厚さ20nmのアミン系有機高分子であるTFB(poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-((4-sec-butylphenyl)imino)-1,4-phenylene))で構成されている。
発光層5は、例えば、厚さ70nmの有機高分子であるF8BT(poly(9,9-di-n-octylfluorene-alt-benzothiadiazole))で構成される。しかしながら、発光層5はこの材料からなる構成に限定されず、公知の有機材料を含むように構成することが可能である。たとえば特開平5-163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物およびアザキノロン化合物、ピラゾリン誘導体およびピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質等を挙げることができる。
本発明における機能層は、ホールを輸送するホール輸送層、注入されたホールと電子とが再結合することで発光する発光層、光学特性の調整または電子ブロックの用途に用いられるバッファ層等のいずれか、もしくはそれらの2層以上の組み合わせ、または全ての層を指す。本発明はホール注入層を対象としているが、有機EL素子はホール注入層以外に上記したホール輸送層、発光層等のそれぞれ所要機能を果たす層が存在する。機能層とは、本発明の対象とするホール注入層以外の、有機EL素子に必要な層を意味している。
陽極2は、例えば、厚さ50nmのITO薄膜で構成されている。陰極6は、例えば、厚さ5nmのバリウム層6aと、厚さ100nmのアルミニウム層6bを積層して構成される。陽極2および陰極6には直流電源8が接続され、外部より有機EL素子1に給電されるようになっている。
以上の構成を持つ有機EL素子1では、金属酸化物である酸化タングステンからなるホール注入層3の成膜後にその表面に所定の波長の紫外光が照射されているため、金属酸化物の酸素欠陥に類する構造が形成する電子準位が維持されたまま、その表面から吸着物が最大限に除去されている。これにより、低駆動電圧で長寿命の有機EL素子となっている。
図2に基づいて、本発明の一態様に係る表示装置について説明する。図2は、本発明の一態様に係る表示装置の全体構成を示す図である。
図3は、本発明の一態様に係る発光装置を示す図であって、(a)は縦断面図、(b)は横断面図である。図3に示すように、発光装置200は、本発明の一態様に係る有機EL素子の製造方法により製造された有機EL素子210と、それら有機EL素子210が上面に実装されたベース220と、当該ベース220にそれら有機EL素子210を挟むようにして取り付けられた一対の反射部材230とを備え、照明装置や光源として用いられる。各有機EL素子210は、ベース220上に形成された導電パターン(不図示)に電気的に接続されており、前記導電パターンにより供給された駆動電力によって発光する。各有機EL素子210から出射された光の一部は、反射部材230によって配光が制御される。
次に、有機EL素子1の製造方法を図4に基づき例示する。図4は、実施の形態に係る有機EL素子の製造方法の要部を説明するための図である。
以上の有機EL素子1の製造方法では、酸化タングステンからなるホール注入層3の成膜後、所定の波長の紫外光を照射する工程を含む。これにより、ホール注入層表面における金属酸化物の酸素欠陥に類する構造が形成する電子準位を維持したまま、ホール注入層3の表面から吸着物を除去することができる。
(紫外光照射による吸着物の除去効果について)
本実施の形態では、酸化タングステンからなるホール注入層3の成膜後、所定の条件で紫外光を照射することにより、ホール注入層3表面の吸着物を除去している。この吸着物除去効果については以下の実験で確認された。
バイアス:なし
出射角 :基板法線方向
まず、各サンプルをワイドスキャン測定したところ、観測された元素はいずれのサンプルもタングステン(W)、酸素(O)、および炭素(C)のみであった。そこで、Wの4f軌道(W4f)、およびCの1s軌道(C1s)のナロースキャンスペクトルの測定を行い、酸化タングステンからなるホール注入層3の表層数nmにおける、タングステン原子の数密度に対する炭素原子の数密度の相対値、すなわち、WとCとの組成比を求めた。なお、スペクトルから組成比を求めるためには、測定に使用した光電子分光装置に付属のXPS解析ソフトウェア「MultiPak」の組成比算出機能を使用した。
本実施の形態では、酸化タングステンからなるホール注入層3表面の吸着物を、紫外光照射で除去する際、ホール注入能力に作用する酸素欠陥に類する構造が形成する電子準位は、照射の影響はほとんど受けずに維持されている。この維持性については、以下の実験で確認された。
バイアス:なし
出射角 :基板法線方向
図5に、各サンプルのフェルミ面近傍のUPSスペクトルを示す。なお、以降、光電子分光(UPS、XPS)スペクトルは、横軸の結合エネルギーの原点はフェルミ面に採り、左方向を正の向きとした。照射なしサンプル、照射1分サンプル、照射10分サンプルのいずれも、図中に(I)で示したフェルミ面近傍の隆起構造が明確に確認できる。したがって、ホール注入能力に作用する酸素欠陥に類する構造が、紫外光の照射を受けても維持されていることがわかる。
本実施の形態の紫外光照射による、酸化タングステンからなるホール注入層3の表面の洗浄では、ある程度以上の照射時間において、その吸着物除去効果が飽和することが、以下の実験で確認された。
本実施の形態では、ホール注入能力に作用する酸素欠陥に類する構造が形成する電子準位が、少なくとも表面洗浄後からその表面に上層が積層されるまでの間において継続的に維持される。その根拠は以下の通りである。
紫外光照射によりホール注入層3を洗浄した本実施の形態に係る有機EL素子1は、照射をしないで作製した有機EL素子に比べて素子特性が良い。これに関しては、以下の実験で確認された。
本実施の形態では、ホール注入層3の成膜後に所定の波長の紫外光を大気中にて照射することで、ホール注入層3の吸着物が除去されており、除去されたホール注入層3を用いた有機EL素子1は除去を行わない有機EL素子よりも低電圧駆動を実現する。この紫外光の波長については、以下の考察により規定された。
O + O2 → O3
また、さらにオゾンが分解し、再び酸素ラジカルが発生するための紫外光の波長は253.7nmである。
E=Nhc/λ(N:アボガドロ数、h:プランク定数、c:光速、λ:波長 )
上式より、波長184.9nmの紫外光のエネルギーは647kJ/mol、波長253.7nmの紫外光のエネルギーは472kJ/molに相当する。これらの値を表4と比較すると、本実施の形態の波長域の紫外光は、吸着物に見られる多くの原子間結合を切断できることがわかる。特に、後述するように、化学吸着の場合は、吸着物は酸化タングステンの酸素原子と主に単結合すると考えられるが、この吸着物との単結合のエネルギーは、大きくてもO-H結合の463kJ/mol(波長258nmに相当)程度であるから、本実施の形態の波長域の紫外光で切断が可能であることがわかる。また、物理吸着の場合は、化学吸着よりもはるかに結合が弱いため、これも紫外光照射で容易に除去される。
本実施の形態では、紫外光の照射後も、ホール注入層3表面の酸素欠陥に類する構造が形成する電子準位が継続的に維持され、したがって、ホール注入能力も安定して維持され、低駆動電圧の有機EL素子の製造を安定して行うことが可能である。この維持性に関して以下に考察する。
次に、本発明の一態様に係る紫外光照射装置について説明する。図4(b)に示す本発明の一態様に係る紫外光照射装置20は、有機EL素子1の中間製品9に対し紫外光を照射するための装置であって、波長域が主として184.9nm超380nm以下である紫外光を出射する光源21と、当該光源21から出射した紫外光を前記中間製品9に向けて集光する反射鏡22と、それら光源21および反射鏡22を覆いかつ保持する筐体23と、前記光源21を点灯制御する制御部24とを備える。
以上、本発明の一態様に係る有機EL素子の製造方法、および、紫外光照射装置を具体的に説明してきたが、上記実施の形態は、本発明の構成および作用・効果を分かり易く説明するために用いた例であって、本発明の内容は、上記の実施の形態に限定されない。例えば、理解容易のために挙げた各部のサイズや材料などは、あくまでも典型的な一例に過ぎず、本発明がそれらサイズや材料などに限定されるものではない。
本発明の一態様に係る有機EL素子の製造方法において、紫外光照射は、大気中以外にも、減圧雰囲気、不活性ガス雰囲気、真空など、様々なガス雰囲気内で適用できる。これは、酸素ラジカルが発生しない波長の紫外光による洗浄方法だからである。しかしながら、大気中で行うことは、前述のように、大型パネルの製造において有利である。
1A ホールオンリー素子
2 陽極
3 ホール注入層
4 バッファ層(機能層)
5 発光層(機能層)
6 陰極
6a バリウム層
6b アルミニウム層
6A 陰極(金層)
7 基板
8 直流電源
9 中間製品
20 紫外光照射装置
21 光源
22 反射鏡
23 筐体
24 制御部
25 搬送コンベア
100 表示装置
200 発光装置
Claims (13)
- 陽極と陰極との間に、ホール注入層と、有機材料を含み前記ホール注入層からホールが注入される機能層とが設けられた有機EL素子であって、
前記ホール注入層は、酸化タングステンを含み、
UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、
XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下である、
ことを特徴とする有機EL素子。 - 前記UPSスペクトルにおいて、前記隆起した形状は、前記価電子帯の上端に対し、1.8~3.6eV低い結合エネルギー領域内に位置する、請求項1記載の有機EL素子。
- 前記酸化タングステンのタングステン原子に対する、前記その他の原子の数密度の比は、0.62以下である、請求項1記載の有機EL素子。
- 前記その他の原子は炭素原子である、請求項1記載の有機EL素子。
- 前記ホール注入層は、
UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、
XPS測定に基づく、前記酸化タングステンのタングステン原子に対する、前記タングステン原子および酸素原子以外のその他の原子の数密度の比が、0.83以下となるように、紫外線が照射されて構成されている、請求項1記載の有機EL素子。 - 陽極と陰極との間に、ホール注入層と、有機材料を含み前記ホール注入層からホールが注入される機能層とが設けられた有機EL素子であって、
前記ホール注入層は、酸化タングステンを含み、
UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、
かつ、
結合エネルギーが4.5~5.4eVにおいて、ピーク形状を有する、
ことを特徴とする有機EL素子。 - 前記UPSスペクトルにおいて、前記隆起した形状は、前記価電子帯の上端に対し、1.8~3.6eV低い結合エネルギー領域内に位置する、請求項6記載の有機EL素子。
- 前記ホール注入層は、
UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、
かつ、
結合エネルギーが4.5~5.4eVにおいて、ピーク形状を有するように、
紫外線が照射されて構成されている、請求項6記載の有機EL素子。 - 陽極と陰極との間に、ホール注入層と、有機材料を含み前記ホール注入層からホールが注入される機能層とが設けられた有機EL素子であって、
前記ホール注入層は、酸化モリブデンを含み、
UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、
かつ、
結合エネルギーが3.7~5.2eVにおいて、ピーク形状を有する、
ことを特徴とする有機EL素子。 - 前記UPSスペクトルにおいて、前記隆起した形状は、前記価電子帯の上端に対し、1.2~3.0eV低い結合エネルギー領域内に位置する、請求項9記載の有機EL素子。
- 前記ホール注入層は、
UPS測定に基づくUPSスペクトルにおいて、価電子帯の上端よりも低い結合エネルギー領域のフェルミ面近傍に隆起した形状を有し、
かつ、
結合エネルギーが3.7~5.2eVにおいて、ピーク形状を有するように、
紫外線が照射されて構成されている、請求項9記載の有機EL素子。 - 請求項1~11いずれかに記載の有機EL素子を備えた表示装置。
- 請求項1~11いずれかに記載の有機EL素子を備えた発光装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/004212 WO2011161726A1 (ja) | 2010-06-24 | 2010-06-24 | 有機el素子、表示装置および発光装置 |
CN201080025874.2A CN102473847B (zh) | 2010-06-24 | 2010-06-24 | 有机el元件、显示装置以及发光装置 |
JP2011550374A JP5720006B2 (ja) | 2010-06-24 | 2010-06-24 | 有機el素子、表示装置および発光装置 |
US13/360,984 US8664669B2 (en) | 2010-06-24 | 2012-01-30 | Organic EL element, display apparatus, and light-emitting apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/004212 WO2011161726A1 (ja) | 2010-06-24 | 2010-06-24 | 有機el素子、表示装置および発光装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/360,984 Continuation US8664669B2 (en) | 2010-06-24 | 2012-01-30 | Organic EL element, display apparatus, and light-emitting apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011161726A1 true WO2011161726A1 (ja) | 2011-12-29 |
Family
ID=45370942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/004212 WO2011161726A1 (ja) | 2010-06-24 | 2010-06-24 | 有機el素子、表示装置および発光装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8664669B2 (ja) |
JP (1) | JP5720006B2 (ja) |
CN (1) | CN102473847B (ja) |
WO (1) | WO2011161726A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013183093A1 (ja) * | 2012-06-04 | 2013-12-12 | パナソニック株式会社 | 有機el素子とその製造方法、有機elパネル、有機el発光装置、および有機el表示装置 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5677434B2 (ja) | 2010-08-06 | 2015-02-25 | パナソニック株式会社 | 有機el素子 |
CN103053041B (zh) | 2010-08-06 | 2015-11-25 | 株式会社日本有机雷特显示器 | 有机el元件 |
JP5677436B2 (ja) | 2010-08-06 | 2015-02-25 | パナソニック株式会社 | 有機el素子 |
JP5676652B2 (ja) | 2011-01-21 | 2015-02-25 | パナソニック株式会社 | 有機el素子 |
CN103314462B (zh) | 2011-02-23 | 2016-03-02 | 株式会社日本有机雷特显示器 | 有机el显示面板和有机el显示装置 |
US8981361B2 (en) * | 2011-02-25 | 2015-03-17 | Panasonic Corporation | Organic electroluminescence display panel with tungsten oxide containing hole injection layer that electrically connects electrode to auxiliary wiring, and organic electroluminescence display device |
JP5861210B2 (ja) | 2011-07-15 | 2016-02-16 | 株式会社Joled | 有機発光素子 |
US9112189B2 (en) | 2011-07-15 | 2015-08-18 | Joled Inc. | Method for producing organic light-emitting element |
US9065069B2 (en) | 2011-07-15 | 2015-06-23 | Joled Inc. | Method for producing organic light-emitting element |
JP6387547B2 (ja) | 2012-03-02 | 2018-09-12 | 株式会社Joled | 有機el素子とその製造方法、および金属酸化物膜の成膜方法 |
US9035293B2 (en) * | 2012-04-18 | 2015-05-19 | Joled Inc. | Organic el device including a mixed hole injection layer |
JP6142323B2 (ja) | 2012-04-27 | 2017-06-07 | 株式会社Joled | 有機el素子、およびそれを備える有機elパネル、有機el発光装置、有機el表示装置 |
CN104009174A (zh) * | 2013-02-26 | 2014-08-27 | 海洋王照明科技股份有限公司 | 一种有机电致发光器件及其制备方法 |
US10276795B2 (en) * | 2016-08-15 | 2019-04-30 | Arm Ltd. | Fabrication of correlated electron material film via exposure to ultraviolet energy |
WO2019031634A1 (ko) | 2017-08-11 | 2019-02-14 | 주식회사 엘지화학 | 유기 전계 발광 소자 및 이의 제조 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000133446A (ja) * | 1998-10-28 | 2000-05-12 | Tdk Corp | 有機el表示装置の製造装置及び製造方法 |
JP2008140724A (ja) * | 2006-12-05 | 2008-06-19 | Toppan Printing Co Ltd | 有機el素子の製造方法および有機el素子 |
WO2010058716A1 (ja) * | 2008-11-19 | 2010-05-27 | 富士フイルム株式会社 | 有機電界発光素子 |
Family Cites Families (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5443922A (en) | 1991-11-07 | 1995-08-22 | Konica Corporation | Organic thin film electroluminescence element |
JPH05163488A (ja) | 1991-12-17 | 1993-06-29 | Konica Corp | 有機薄膜エレクトロルミネッセンス素子 |
US5294869A (en) | 1991-12-30 | 1994-03-15 | Eastman Kodak Company | Organic electroluminescent multicolor image display device |
US5688551A (en) | 1995-11-13 | 1997-11-18 | Eastman Kodak Company | Method of forming an organic electroluminescent display panel |
EP1119222B1 (en) | 1996-11-29 | 2004-06-02 | Idemitsu Kosan Company Limited | Organic electroluminescent device |
JPH10162959A (ja) | 1996-11-29 | 1998-06-19 | Idemitsu Kosan Co Ltd | 有機エレクトロルミネッセンス素子 |
US6309801B1 (en) | 1998-11-18 | 2001-10-30 | U.S. Philips Corporation | Method of manufacturing an electronic device comprising two layers of organic-containing material |
JP4198253B2 (ja) | 1999-02-02 | 2008-12-17 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子およびその製造方法 |
US7153592B2 (en) | 2000-08-31 | 2006-12-26 | Fujitsu Limited | Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material |
JP2002075661A (ja) | 2000-08-31 | 2002-03-15 | Fujitsu Ltd | 有機el素子及び有機el表示装置 |
JP2002318556A (ja) | 2001-04-20 | 2002-10-31 | Toshiba Corp | アクティブマトリクス型平面表示装置およびその製造方法 |
TWI257496B (en) | 2001-04-20 | 2006-07-01 | Toshiba Corp | Display device and method of manufacturing the same |
US8058797B2 (en) | 2001-05-18 | 2011-11-15 | Cambridge University Technical Services Limited | Electroluminescent device |
JP2003007460A (ja) | 2001-06-22 | 2003-01-10 | Sony Corp | 表示装置の製造方法および表示装置 |
JP3823916B2 (ja) | 2001-12-18 | 2006-09-20 | セイコーエプソン株式会社 | 表示装置及び電子機器並びに表示装置の製造方法 |
JP2003264083A (ja) | 2002-03-08 | 2003-09-19 | Sharp Corp | 有機led素子とその製造方法 |
JP4165173B2 (ja) | 2002-10-15 | 2008-10-15 | 株式会社デンソー | 有機el素子の製造方法 |
JP2004228355A (ja) | 2003-01-23 | 2004-08-12 | Seiko Epson Corp | 絶縁膜基板の製造方法、絶縁膜基板の製造装置及び絶縁膜基板並びに電気光学装置の製造方法及び電気光学装置 |
JP2004234901A (ja) | 2003-01-28 | 2004-08-19 | Seiko Epson Corp | ディスプレイ基板、有機el表示装置、ディスプレイ基板の製造方法および電子機器 |
WO2004100282A2 (en) | 2003-05-12 | 2004-11-18 | Cambridge University Technical Services Limited | Manufacture of a polymer device |
EP1629544B1 (en) | 2003-05-12 | 2008-11-19 | Cambridge Enterprise Limited | Polymer transistor |
JP2005012173A (ja) | 2003-05-28 | 2005-01-13 | Seiko Epson Corp | 膜パターン形成方法、デバイス及びデバイスの製造方法、電気光学装置、並びに電子機器 |
JP2004363170A (ja) | 2003-06-02 | 2004-12-24 | Seiko Epson Corp | 導電パターンの形成方法、電気光学装置、電気光学装置の製造方法および電子機器 |
JP2005203339A (ja) | 2003-12-16 | 2005-07-28 | Matsushita Electric Ind Co Ltd | 有機エレクトロルミネッセント素子およびその製造方法 |
EP1695396B1 (en) | 2003-12-16 | 2009-06-03 | Panasonic Corporation | Organic electroluminescent device and method for manufacturing the same |
JP2005203340A (ja) | 2003-12-16 | 2005-07-28 | Matsushita Electric Ind Co Ltd | 有機エレクトロルミネッセント素子 |
US20090160325A1 (en) | 2003-12-16 | 2009-06-25 | Panasonic Corporation | Organic electroluminescent device and method for manufacturing the same |
JP4857521B2 (ja) | 2004-01-09 | 2012-01-18 | セイコーエプソン株式会社 | 電気光学装置の製造方法、電気光学装置、及び電子機器 |
JP4002949B2 (ja) | 2004-03-17 | 2007-11-07 | 独立行政法人科学技術振興機構 | 両面発光有機elパネル |
JP2005268099A (ja) | 2004-03-19 | 2005-09-29 | Mitsubishi Electric Corp | 有機el表示パネル、有機el表示装置、および有機el表示パネルの製造方法 |
JP4645064B2 (ja) | 2004-05-19 | 2011-03-09 | セイコーエプソン株式会社 | 電気光学装置の製造方法 |
US7541099B2 (en) * | 2004-05-21 | 2009-06-02 | Semiconductor Energy Laboratory Co., Ltd. | Anthracene derivative and light emitting element and light emitting device using the same |
US7211456B2 (en) | 2004-07-09 | 2007-05-01 | Au Optronics Corporation | Method for electro-luminescent display fabrication |
JP2006185869A (ja) | 2004-12-28 | 2006-07-13 | Asahi Glass Co Ltd | 有機電界発光素子及びその製造方法 |
JP2006253443A (ja) | 2005-03-11 | 2006-09-21 | Seiko Epson Corp | 有機el装置、その製造方法および電子機器 |
JP2006294261A (ja) | 2005-04-05 | 2006-10-26 | Fuji Electric Holdings Co Ltd | 有機el発光素子およびその製造方法 |
TWI307612B (en) | 2005-04-27 | 2009-03-11 | Sony Corp | Transfer method and transfer apparatus |
JP2006344459A (ja) | 2005-06-08 | 2006-12-21 | Sony Corp | 転写方法および転写装置 |
JP2007073499A (ja) | 2005-08-08 | 2007-03-22 | Semiconductor Energy Lab Co Ltd | 発光装置およびその作製方法 |
US7994711B2 (en) | 2005-08-08 | 2011-08-09 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and manufacturing method thereof |
US7635858B2 (en) * | 2005-08-10 | 2009-12-22 | Au Optronics Corporation | Organic light-emitting device with improved layer conductivity distribution |
JP2007095606A (ja) | 2005-09-30 | 2007-04-12 | Seiko Epson Corp | 有機el装置、その製造方法、及び電子機器 |
JP4318689B2 (ja) | 2005-12-09 | 2009-08-26 | 出光興産株式会社 | n型無機半導体、n型無機半導体薄膜及びその製造方法 |
JP2007214066A (ja) | 2006-02-13 | 2007-08-23 | Seiko Epson Corp | 有機エレクトロルミネセンス装置の製造方法 |
JP2007288074A (ja) | 2006-04-19 | 2007-11-01 | Matsushita Electric Ind Co Ltd | 有機エレクトロルミネッセント素子およびその製造方法 |
JP2007288071A (ja) | 2006-04-19 | 2007-11-01 | Matsushita Electric Ind Co Ltd | 有機エレクトロルミネッセント素子およびその製造方法、それを用いた表示装置、露光装置 |
JP2007287353A (ja) | 2006-04-12 | 2007-11-01 | Matsushita Electric Ind Co Ltd | 有機エレクトロルミネッセント素子の製造方法およびそれを用いて作成された有機エレクトロルミネッセント素子 |
US20070241665A1 (en) | 2006-04-12 | 2007-10-18 | Matsushita Electric Industrial Co., Ltd. | Organic electroluminescent element, and manufacturing method thereof, as well as display device and exposure apparatus using the same |
JP2008041747A (ja) | 2006-08-02 | 2008-02-21 | Matsushita Electric Ind Co Ltd | 有機エレクトロルミネッセント発光装置およびその製造方法 |
US20070290604A1 (en) | 2006-06-16 | 2007-12-20 | Matsushita Electric Industrial Co., Ltd. | Organic electroluminescent device and method of producing the same |
JP4915650B2 (ja) | 2006-08-25 | 2012-04-11 | パナソニック株式会社 | 有機エレクトロルミネッセンス素子 |
CN102514336B (zh) | 2006-09-08 | 2014-09-03 | 凸版印刷株式会社 | 层叠体的制造方法 |
JP2008091072A (ja) | 2006-09-29 | 2008-04-17 | Seiko Epson Corp | 電気光学装置、およびその製造方法 |
JP4915913B2 (ja) | 2006-11-13 | 2012-04-11 | パナソニック株式会社 | 有機エレクトロルミネッセンス素子 |
WO2008075615A1 (en) | 2006-12-21 | 2008-06-26 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element and light-emitting device |
JP5326289B2 (ja) | 2007-03-23 | 2013-10-30 | 凸版印刷株式会社 | 有機el素子およびそれを備えた表示装置 |
WO2008120714A1 (ja) | 2007-03-29 | 2008-10-09 | Dai Nippon Printing Co., Ltd. | 有機エレクトロルミネッセンス素子及びその製造方法 |
JP2009004347A (ja) | 2007-05-18 | 2009-01-08 | Toppan Printing Co Ltd | 有機el表示素子の製造方法及び有機el表示素子 |
JP4328384B2 (ja) | 2007-05-30 | 2009-09-09 | パナソニック株式会社 | 有機elディスプレイパネルおよびその製造方法 |
JP4280301B2 (ja) | 2007-05-31 | 2009-06-17 | パナソニック株式会社 | 有機el素子、およびその製造方法 |
US20080312437A1 (en) * | 2007-06-04 | 2008-12-18 | Semiconductor Energy Labratory Co., Ltd. | Organometallic Complex, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using the Organometallic Complex |
KR101581475B1 (ko) | 2007-07-31 | 2015-12-30 | 스미또모 가가꾸 가부시키가이샤 | 유기 전계발광 소자 및 그의 제조 방법 |
JP5001745B2 (ja) | 2007-08-10 | 2012-08-15 | 住友化学株式会社 | 有機エレクトロルミネッセンス素子及び製造方法 |
JP2009048960A (ja) | 2007-08-23 | 2009-03-05 | Canon Inc | 電極洗浄処理方法 |
JP2009058897A (ja) | 2007-09-03 | 2009-03-19 | Hitachi Displays Ltd | 表示装置 |
CN101855742B (zh) | 2007-12-10 | 2011-12-28 | 松下电器产业株式会社 | 有机电致发光器件和有机电致发光显示面板及其制造方法 |
WO2009084209A1 (ja) | 2007-12-28 | 2009-07-09 | Panasonic Corporation | 有機elデバイスおよび有機elディスプレイパネル、ならびにそれらの製造方法 |
KR100959466B1 (ko) | 2008-02-28 | 2010-05-25 | 파나소닉 주식회사 | 유기 el 디스플레이 패널 |
JP2009218156A (ja) | 2008-03-12 | 2009-09-24 | Casio Comput Co Ltd | Elパネル及びelパネルの製造方法 |
JP5267246B2 (ja) | 2008-03-26 | 2013-08-21 | 凸版印刷株式会社 | 有機エレクトロルミネッセンス素子及びその製造方法並びに有機エレクトロルミネッセンス表示装置 |
JP2009239180A (ja) | 2008-03-28 | 2009-10-15 | Sumitomo Chemical Co Ltd | 有機エレクトロルミネッセンス素子 |
JP4931858B2 (ja) | 2008-05-13 | 2012-05-16 | パナソニック株式会社 | 有機エレクトロルミネッセント素子の製造方法 |
JP4678421B2 (ja) | 2008-05-16 | 2011-04-27 | ソニー株式会社 | 表示装置 |
JP4975064B2 (ja) | 2008-05-28 | 2012-07-11 | パナソニック株式会社 | 発光装置及びその製造方法 |
JP2008241238A (ja) | 2008-05-28 | 2008-10-09 | Mitsubishi Electric Corp | 冷凍空調装置及び冷凍空調装置の制御方法 |
JP2010021138A (ja) | 2008-06-09 | 2010-01-28 | Panasonic Corp | 有機エレクトロルミネッセント装置およびその製造方法 |
GB0811199D0 (en) * | 2008-06-18 | 2008-07-23 | Cambridge Entpr Ltd | Electro-optic diode devices |
JP5199773B2 (ja) | 2008-07-30 | 2013-05-15 | 住友化学株式会社 | 有機エレクトロルミネッセンス素子およびその製造方法 |
KR101148458B1 (ko) | 2008-09-19 | 2012-05-24 | 파나소닉 주식회사 | 유기 일렉트로 루미네슨스 소자 및 그 제조 방법 |
JP5138542B2 (ja) | 2008-10-24 | 2013-02-06 | パナソニック株式会社 | 有機エレクトロルミネッセンス素子及びその製造方法 |
JP2011040167A (ja) | 2008-11-12 | 2011-02-24 | Panasonic Corp | 表示装置およびその製造方法 |
JP4856753B2 (ja) | 2008-12-10 | 2012-01-18 | パナソニック株式会社 | 光学素子および光学素子を具備する表示装置の製造方法 |
CN101911832B (zh) | 2008-12-18 | 2013-06-19 | 松下电器产业株式会社 | 有机电致发光显示装置及其制造方法 |
JP2010161185A (ja) | 2009-01-08 | 2010-07-22 | Ulvac Japan Ltd | 有機el表示装置、有機el表示装置の製造方法 |
JP5513414B2 (ja) | 2009-02-10 | 2014-06-04 | パナソニック株式会社 | 発光素子、表示装置、および発光素子の製造方法 |
KR20110126594A (ko) | 2009-02-10 | 2011-11-23 | 파나소닉 주식회사 | 발광 소자, 발광 소자를 구비한 발광 장치 및 발광 소자의 제조 방법 |
JP5437736B2 (ja) | 2009-08-19 | 2014-03-12 | パナソニック株式会社 | 有機el素子 |
CN103053041B (zh) | 2010-08-06 | 2015-11-25 | 株式会社日本有机雷特显示器 | 有机el元件 |
JP5612691B2 (ja) | 2010-08-06 | 2014-10-22 | パナソニック株式会社 | 有機el素子およびその製造方法 |
CN103053042B (zh) | 2010-08-06 | 2016-02-24 | 株式会社日本有机雷特显示器 | 有机el元件及其制造方法 |
-
2010
- 2010-06-24 CN CN201080025874.2A patent/CN102473847B/zh active Active
- 2010-06-24 JP JP2011550374A patent/JP5720006B2/ja active Active
- 2010-06-24 WO PCT/JP2010/004212 patent/WO2011161726A1/ja active Application Filing
-
2012
- 2012-01-30 US US13/360,984 patent/US8664669B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000133446A (ja) * | 1998-10-28 | 2000-05-12 | Tdk Corp | 有機el表示装置の製造装置及び製造方法 |
JP2008140724A (ja) * | 2006-12-05 | 2008-06-19 | Toppan Printing Co Ltd | 有機el素子の製造方法および有機el素子 |
WO2010058716A1 (ja) * | 2008-11-19 | 2010-05-27 | 富士フイルム株式会社 | 有機電界発光素子 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013183093A1 (ja) * | 2012-06-04 | 2013-12-12 | パナソニック株式会社 | 有機el素子とその製造方法、有機elパネル、有機el発光装置、および有機el表示装置 |
US9105868B2 (en) | 2012-06-04 | 2015-08-11 | Joled Inc. | Organic EL element including a hole injection layer with a proportion of sulphur atoms relative to metal atoms |
JPWO2013183093A1 (ja) * | 2012-06-04 | 2016-01-21 | 株式会社Joled | 有機el素子とその製造方法、有機elパネル、有機el発光装置、および有機el表示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20120132934A1 (en) | 2012-05-31 |
CN102473847B (zh) | 2015-01-14 |
CN102473847A (zh) | 2012-05-23 |
US8664669B2 (en) | 2014-03-04 |
JP5720006B2 (ja) | 2015-05-20 |
JPWO2011161726A1 (ja) | 2013-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5720006B2 (ja) | 有機el素子、表示装置および発光装置 | |
JP5809234B2 (ja) | 有機el表示パネルおよび有機el表示装置 | |
JP5677432B2 (ja) | 有機el素子、表示装置および発光装置 | |
JP5677433B2 (ja) | 有機el素子、表示装置および発光装置 | |
JP5884224B2 (ja) | 有機el表示パネルおよび有機el表示装置 | |
KR101707254B1 (ko) | 유기 발광 소자의 제조 방법, 유기 발광 소자, 발광 장치, 표시 패널, 및 표시 장치 | |
JP5676652B2 (ja) | 有機el素子 | |
JP5677431B2 (ja) | 有機el素子、表示装置および発光装置 | |
WO2012017495A1 (ja) | 有機el素子およびその製造方法 | |
WO2012153445A1 (ja) | 有機el表示パネルおよび有機el表示装置 | |
JP5624141B2 (ja) | 有機el素子 | |
JP2004139746A (ja) | 有機el素子の製造方法 | |
JP6387547B2 (ja) | 有機el素子とその製造方法、および金属酸化物膜の成膜方法 | |
WO2013161166A1 (ja) | 有機el素子、およびそれを備える有機elパネル、有機el発光装置、有機el表示装置 | |
WO2011161727A1 (ja) | 有機el素子の製造方法、表示装置、発光装置および紫外光照射装置 | |
JP5612503B2 (ja) | 有機発光装置 | |
JP2012174712A (ja) | 有機発光素子 | |
JP5173769B2 (ja) | 有機el素子の製造方法 | |
JP2012174346A (ja) | 有機発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080025874.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011550374 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10853587 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10853587 Country of ref document: EP Kind code of ref document: A1 |